xref: /openbmc/linux/mm/memcontrol.c (revision 276e552e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69 
70 #include <linux/uaccess.h>
71 
72 #include <trace/events/vmscan.h>
73 
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76 
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78 
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 bool cgroup_memory_noswap __read_mostly;
91 #else
92 #define cgroup_memory_noswap		1
93 #endif
94 
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98 
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
103 }
104 
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107 
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112 
113 struct mem_cgroup_tree_per_node {
114 	struct rb_root rb_root;
115 	struct rb_node *rb_rightmost;
116 	spinlock_t lock;
117 };
118 
119 struct mem_cgroup_tree {
120 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122 
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124 
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 	struct list_head list;
128 	struct eventfd_ctx *eventfd;
129 };
130 
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135 	/*
136 	 * memcg which the event belongs to.
137 	 */
138 	struct mem_cgroup *memcg;
139 	/*
140 	 * eventfd to signal userspace about the event.
141 	 */
142 	struct eventfd_ctx *eventfd;
143 	/*
144 	 * Each of these stored in a list by the cgroup.
145 	 */
146 	struct list_head list;
147 	/*
148 	 * register_event() callback will be used to add new userspace
149 	 * waiter for changes related to this event.  Use eventfd_signal()
150 	 * on eventfd to send notification to userspace.
151 	 */
152 	int (*register_event)(struct mem_cgroup *memcg,
153 			      struct eventfd_ctx *eventfd, const char *args);
154 	/*
155 	 * unregister_event() callback will be called when userspace closes
156 	 * the eventfd or on cgroup removing.  This callback must be set,
157 	 * if you want provide notification functionality.
158 	 */
159 	void (*unregister_event)(struct mem_cgroup *memcg,
160 				 struct eventfd_ctx *eventfd);
161 	/*
162 	 * All fields below needed to unregister event when
163 	 * userspace closes eventfd.
164 	 */
165 	poll_table pt;
166 	wait_queue_head_t *wqh;
167 	wait_queue_entry_t wait;
168 	struct work_struct remove;
169 };
170 
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173 
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON	0x1U
179 #define MOVE_FILE	0x2U
180 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181 
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 	spinlock_t	  lock; /* for from, to */
185 	struct mm_struct  *mm;
186 	struct mem_cgroup *from;
187 	struct mem_cgroup *to;
188 	unsigned long flags;
189 	unsigned long precharge;
190 	unsigned long moved_charge;
191 	unsigned long moved_swap;
192 	struct task_struct *moving_task;	/* a task moving charges */
193 	wait_queue_head_t waitq;		/* a waitq for other context */
194 } mc = {
195 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198 
199 /*
200  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205 
206 /* for encoding cft->private value on file */
207 enum res_type {
208 	_MEM,
209 	_MEMSWAP,
210 	_OOM_TYPE,
211 	_KMEM,
212 	_TCP,
213 };
214 
215 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
216 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
217 #define MEMFILE_ATTR(val)	((val) & 0xffff)
218 /* Used for OOM notifier */
219 #define OOM_CONTROL		(0)
220 
221 /*
222  * Iteration constructs for visiting all cgroups (under a tree).  If
223  * loops are exited prematurely (break), mem_cgroup_iter_break() must
224  * be used for reference counting.
225  */
226 #define for_each_mem_cgroup_tree(iter, root)		\
227 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
228 	     iter != NULL;				\
229 	     iter = mem_cgroup_iter(root, iter, NULL))
230 
231 #define for_each_mem_cgroup(iter)			\
232 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
233 	     iter != NULL;				\
234 	     iter = mem_cgroup_iter(NULL, iter, NULL))
235 
236 static inline bool should_force_charge(void)
237 {
238 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 		(current->flags & PF_EXITING);
240 }
241 
242 /* Some nice accessors for the vmpressure. */
243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244 {
245 	if (!memcg)
246 		memcg = root_mem_cgroup;
247 	return &memcg->vmpressure;
248 }
249 
250 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251 {
252 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253 }
254 
255 #ifdef CONFIG_MEMCG_KMEM
256 extern spinlock_t css_set_lock;
257 
258 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
259 				      unsigned int nr_pages);
260 
261 static void obj_cgroup_release(struct percpu_ref *ref)
262 {
263 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
264 	struct mem_cgroup *memcg;
265 	unsigned int nr_bytes;
266 	unsigned int nr_pages;
267 	unsigned long flags;
268 
269 	/*
270 	 * At this point all allocated objects are freed, and
271 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
272 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
273 	 *
274 	 * The following sequence can lead to it:
275 	 * 1) CPU0: objcg == stock->cached_objcg
276 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
277 	 *          PAGE_SIZE bytes are charged
278 	 * 3) CPU1: a process from another memcg is allocating something,
279 	 *          the stock if flushed,
280 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
281 	 * 5) CPU0: we do release this object,
282 	 *          92 bytes are added to stock->nr_bytes
283 	 * 6) CPU0: stock is flushed,
284 	 *          92 bytes are added to objcg->nr_charged_bytes
285 	 *
286 	 * In the result, nr_charged_bytes == PAGE_SIZE.
287 	 * This page will be uncharged in obj_cgroup_release().
288 	 */
289 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
290 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
291 	nr_pages = nr_bytes >> PAGE_SHIFT;
292 
293 	spin_lock_irqsave(&css_set_lock, flags);
294 	memcg = obj_cgroup_memcg(objcg);
295 	if (nr_pages)
296 		obj_cgroup_uncharge_pages(objcg, nr_pages);
297 	list_del(&objcg->list);
298 	mem_cgroup_put(memcg);
299 	spin_unlock_irqrestore(&css_set_lock, flags);
300 
301 	percpu_ref_exit(ref);
302 	kfree_rcu(objcg, rcu);
303 }
304 
305 static struct obj_cgroup *obj_cgroup_alloc(void)
306 {
307 	struct obj_cgroup *objcg;
308 	int ret;
309 
310 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311 	if (!objcg)
312 		return NULL;
313 
314 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315 			      GFP_KERNEL);
316 	if (ret) {
317 		kfree(objcg);
318 		return NULL;
319 	}
320 	INIT_LIST_HEAD(&objcg->list);
321 	return objcg;
322 }
323 
324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325 				  struct mem_cgroup *parent)
326 {
327 	struct obj_cgroup *objcg, *iter;
328 
329 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330 
331 	spin_lock_irq(&css_set_lock);
332 
333 	/* Move active objcg to the parent's list */
334 	xchg(&objcg->memcg, parent);
335 	css_get(&parent->css);
336 	list_add(&objcg->list, &parent->objcg_list);
337 
338 	/* Move already reparented objcgs to the parent's list */
339 	list_for_each_entry(iter, &memcg->objcg_list, list) {
340 		css_get(&parent->css);
341 		xchg(&iter->memcg, parent);
342 		css_put(&memcg->css);
343 	}
344 	list_splice(&memcg->objcg_list, &parent->objcg_list);
345 
346 	spin_unlock_irq(&css_set_lock);
347 
348 	percpu_ref_kill(&objcg->refcnt);
349 }
350 
351 /*
352  * This will be used as a shrinker list's index.
353  * The main reason for not using cgroup id for this:
354  *  this works better in sparse environments, where we have a lot of memcgs,
355  *  but only a few kmem-limited. Or also, if we have, for instance, 200
356  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
357  *  200 entry array for that.
358  *
359  * The current size of the caches array is stored in memcg_nr_cache_ids. It
360  * will double each time we have to increase it.
361  */
362 static DEFINE_IDA(memcg_cache_ida);
363 int memcg_nr_cache_ids;
364 
365 /* Protects memcg_nr_cache_ids */
366 static DECLARE_RWSEM(memcg_cache_ids_sem);
367 
368 void memcg_get_cache_ids(void)
369 {
370 	down_read(&memcg_cache_ids_sem);
371 }
372 
373 void memcg_put_cache_ids(void)
374 {
375 	up_read(&memcg_cache_ids_sem);
376 }
377 
378 /*
379  * MIN_SIZE is different than 1, because we would like to avoid going through
380  * the alloc/free process all the time. In a small machine, 4 kmem-limited
381  * cgroups is a reasonable guess. In the future, it could be a parameter or
382  * tunable, but that is strictly not necessary.
383  *
384  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
385  * this constant directly from cgroup, but it is understandable that this is
386  * better kept as an internal representation in cgroup.c. In any case, the
387  * cgrp_id space is not getting any smaller, and we don't have to necessarily
388  * increase ours as well if it increases.
389  */
390 #define MEMCG_CACHES_MIN_SIZE 4
391 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
392 
393 /*
394  * A lot of the calls to the cache allocation functions are expected to be
395  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
396  * conditional to this static branch, we'll have to allow modules that does
397  * kmem_cache_alloc and the such to see this symbol as well
398  */
399 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
400 EXPORT_SYMBOL(memcg_kmem_enabled_key);
401 #endif
402 
403 /**
404  * mem_cgroup_css_from_page - css of the memcg associated with a page
405  * @page: page of interest
406  *
407  * If memcg is bound to the default hierarchy, css of the memcg associated
408  * with @page is returned.  The returned css remains associated with @page
409  * until it is released.
410  *
411  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
412  * is returned.
413  */
414 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
415 {
416 	struct mem_cgroup *memcg;
417 
418 	memcg = page_memcg(page);
419 
420 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
421 		memcg = root_mem_cgroup;
422 
423 	return &memcg->css;
424 }
425 
426 /**
427  * page_cgroup_ino - return inode number of the memcg a page is charged to
428  * @page: the page
429  *
430  * Look up the closest online ancestor of the memory cgroup @page is charged to
431  * and return its inode number or 0 if @page is not charged to any cgroup. It
432  * is safe to call this function without holding a reference to @page.
433  *
434  * Note, this function is inherently racy, because there is nothing to prevent
435  * the cgroup inode from getting torn down and potentially reallocated a moment
436  * after page_cgroup_ino() returns, so it only should be used by callers that
437  * do not care (such as procfs interfaces).
438  */
439 ino_t page_cgroup_ino(struct page *page)
440 {
441 	struct mem_cgroup *memcg;
442 	unsigned long ino = 0;
443 
444 	rcu_read_lock();
445 	memcg = page_memcg_check(page);
446 
447 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
448 		memcg = parent_mem_cgroup(memcg);
449 	if (memcg)
450 		ino = cgroup_ino(memcg->css.cgroup);
451 	rcu_read_unlock();
452 	return ino;
453 }
454 
455 static struct mem_cgroup_per_node *
456 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
457 {
458 	int nid = page_to_nid(page);
459 
460 	return memcg->nodeinfo[nid];
461 }
462 
463 static struct mem_cgroup_tree_per_node *
464 soft_limit_tree_node(int nid)
465 {
466 	return soft_limit_tree.rb_tree_per_node[nid];
467 }
468 
469 static struct mem_cgroup_tree_per_node *
470 soft_limit_tree_from_page(struct page *page)
471 {
472 	int nid = page_to_nid(page);
473 
474 	return soft_limit_tree.rb_tree_per_node[nid];
475 }
476 
477 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
478 					 struct mem_cgroup_tree_per_node *mctz,
479 					 unsigned long new_usage_in_excess)
480 {
481 	struct rb_node **p = &mctz->rb_root.rb_node;
482 	struct rb_node *parent = NULL;
483 	struct mem_cgroup_per_node *mz_node;
484 	bool rightmost = true;
485 
486 	if (mz->on_tree)
487 		return;
488 
489 	mz->usage_in_excess = new_usage_in_excess;
490 	if (!mz->usage_in_excess)
491 		return;
492 	while (*p) {
493 		parent = *p;
494 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
495 					tree_node);
496 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
497 			p = &(*p)->rb_left;
498 			rightmost = false;
499 		} else {
500 			p = &(*p)->rb_right;
501 		}
502 	}
503 
504 	if (rightmost)
505 		mctz->rb_rightmost = &mz->tree_node;
506 
507 	rb_link_node(&mz->tree_node, parent, p);
508 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
509 	mz->on_tree = true;
510 }
511 
512 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
513 					 struct mem_cgroup_tree_per_node *mctz)
514 {
515 	if (!mz->on_tree)
516 		return;
517 
518 	if (&mz->tree_node == mctz->rb_rightmost)
519 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
520 
521 	rb_erase(&mz->tree_node, &mctz->rb_root);
522 	mz->on_tree = false;
523 }
524 
525 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
526 				       struct mem_cgroup_tree_per_node *mctz)
527 {
528 	unsigned long flags;
529 
530 	spin_lock_irqsave(&mctz->lock, flags);
531 	__mem_cgroup_remove_exceeded(mz, mctz);
532 	spin_unlock_irqrestore(&mctz->lock, flags);
533 }
534 
535 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
536 {
537 	unsigned long nr_pages = page_counter_read(&memcg->memory);
538 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
539 	unsigned long excess = 0;
540 
541 	if (nr_pages > soft_limit)
542 		excess = nr_pages - soft_limit;
543 
544 	return excess;
545 }
546 
547 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
548 {
549 	unsigned long excess;
550 	struct mem_cgroup_per_node *mz;
551 	struct mem_cgroup_tree_per_node *mctz;
552 
553 	mctz = soft_limit_tree_from_page(page);
554 	if (!mctz)
555 		return;
556 	/*
557 	 * Necessary to update all ancestors when hierarchy is used.
558 	 * because their event counter is not touched.
559 	 */
560 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
561 		mz = mem_cgroup_page_nodeinfo(memcg, page);
562 		excess = soft_limit_excess(memcg);
563 		/*
564 		 * We have to update the tree if mz is on RB-tree or
565 		 * mem is over its softlimit.
566 		 */
567 		if (excess || mz->on_tree) {
568 			unsigned long flags;
569 
570 			spin_lock_irqsave(&mctz->lock, flags);
571 			/* if on-tree, remove it */
572 			if (mz->on_tree)
573 				__mem_cgroup_remove_exceeded(mz, mctz);
574 			/*
575 			 * Insert again. mz->usage_in_excess will be updated.
576 			 * If excess is 0, no tree ops.
577 			 */
578 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
579 			spin_unlock_irqrestore(&mctz->lock, flags);
580 		}
581 	}
582 }
583 
584 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
585 {
586 	struct mem_cgroup_tree_per_node *mctz;
587 	struct mem_cgroup_per_node *mz;
588 	int nid;
589 
590 	for_each_node(nid) {
591 		mz = memcg->nodeinfo[nid];
592 		mctz = soft_limit_tree_node(nid);
593 		if (mctz)
594 			mem_cgroup_remove_exceeded(mz, mctz);
595 	}
596 }
597 
598 static struct mem_cgroup_per_node *
599 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
600 {
601 	struct mem_cgroup_per_node *mz;
602 
603 retry:
604 	mz = NULL;
605 	if (!mctz->rb_rightmost)
606 		goto done;		/* Nothing to reclaim from */
607 
608 	mz = rb_entry(mctz->rb_rightmost,
609 		      struct mem_cgroup_per_node, tree_node);
610 	/*
611 	 * Remove the node now but someone else can add it back,
612 	 * we will to add it back at the end of reclaim to its correct
613 	 * position in the tree.
614 	 */
615 	__mem_cgroup_remove_exceeded(mz, mctz);
616 	if (!soft_limit_excess(mz->memcg) ||
617 	    !css_tryget(&mz->memcg->css))
618 		goto retry;
619 done:
620 	return mz;
621 }
622 
623 static struct mem_cgroup_per_node *
624 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
625 {
626 	struct mem_cgroup_per_node *mz;
627 
628 	spin_lock_irq(&mctz->lock);
629 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
630 	spin_unlock_irq(&mctz->lock);
631 	return mz;
632 }
633 
634 /**
635  * __mod_memcg_state - update cgroup memory statistics
636  * @memcg: the memory cgroup
637  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
638  * @val: delta to add to the counter, can be negative
639  */
640 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
641 {
642 	if (mem_cgroup_disabled())
643 		return;
644 
645 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
646 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
647 }
648 
649 /* idx can be of type enum memcg_stat_item or node_stat_item. */
650 static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
651 {
652 	long x = READ_ONCE(memcg->vmstats.state[idx]);
653 #ifdef CONFIG_SMP
654 	if (x < 0)
655 		x = 0;
656 #endif
657 	return x;
658 }
659 
660 /* idx can be of type enum memcg_stat_item or node_stat_item. */
661 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
662 {
663 	long x = 0;
664 	int cpu;
665 
666 	for_each_possible_cpu(cpu)
667 		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
668 #ifdef CONFIG_SMP
669 	if (x < 0)
670 		x = 0;
671 #endif
672 	return x;
673 }
674 
675 static struct mem_cgroup_per_node *
676 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
677 {
678 	struct mem_cgroup *parent;
679 
680 	parent = parent_mem_cgroup(pn->memcg);
681 	if (!parent)
682 		return NULL;
683 	return parent->nodeinfo[nid];
684 }
685 
686 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
687 			      int val)
688 {
689 	struct mem_cgroup_per_node *pn;
690 	struct mem_cgroup *memcg;
691 	long x, threshold = MEMCG_CHARGE_BATCH;
692 
693 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
694 	memcg = pn->memcg;
695 
696 	/* Update memcg */
697 	__mod_memcg_state(memcg, idx, val);
698 
699 	/* Update lruvec */
700 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
701 
702 	if (vmstat_item_in_bytes(idx))
703 		threshold <<= PAGE_SHIFT;
704 
705 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
706 	if (unlikely(abs(x) > threshold)) {
707 		pg_data_t *pgdat = lruvec_pgdat(lruvec);
708 		struct mem_cgroup_per_node *pi;
709 
710 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
711 			atomic_long_add(x, &pi->lruvec_stat[idx]);
712 		x = 0;
713 	}
714 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
715 }
716 
717 /**
718  * __mod_lruvec_state - update lruvec memory statistics
719  * @lruvec: the lruvec
720  * @idx: the stat item
721  * @val: delta to add to the counter, can be negative
722  *
723  * The lruvec is the intersection of the NUMA node and a cgroup. This
724  * function updates the all three counters that are affected by a
725  * change of state at this level: per-node, per-cgroup, per-lruvec.
726  */
727 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
728 			int val)
729 {
730 	/* Update node */
731 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
732 
733 	/* Update memcg and lruvec */
734 	if (!mem_cgroup_disabled())
735 		__mod_memcg_lruvec_state(lruvec, idx, val);
736 }
737 
738 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
739 			     int val)
740 {
741 	struct page *head = compound_head(page); /* rmap on tail pages */
742 	struct mem_cgroup *memcg;
743 	pg_data_t *pgdat = page_pgdat(page);
744 	struct lruvec *lruvec;
745 
746 	rcu_read_lock();
747 	memcg = page_memcg(head);
748 	/* Untracked pages have no memcg, no lruvec. Update only the node */
749 	if (!memcg) {
750 		rcu_read_unlock();
751 		__mod_node_page_state(pgdat, idx, val);
752 		return;
753 	}
754 
755 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
756 	__mod_lruvec_state(lruvec, idx, val);
757 	rcu_read_unlock();
758 }
759 EXPORT_SYMBOL(__mod_lruvec_page_state);
760 
761 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
762 {
763 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
764 	struct mem_cgroup *memcg;
765 	struct lruvec *lruvec;
766 
767 	rcu_read_lock();
768 	memcg = mem_cgroup_from_obj(p);
769 
770 	/*
771 	 * Untracked pages have no memcg, no lruvec. Update only the
772 	 * node. If we reparent the slab objects to the root memcg,
773 	 * when we free the slab object, we need to update the per-memcg
774 	 * vmstats to keep it correct for the root memcg.
775 	 */
776 	if (!memcg) {
777 		__mod_node_page_state(pgdat, idx, val);
778 	} else {
779 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
780 		__mod_lruvec_state(lruvec, idx, val);
781 	}
782 	rcu_read_unlock();
783 }
784 
785 /**
786  * __count_memcg_events - account VM events in a cgroup
787  * @memcg: the memory cgroup
788  * @idx: the event item
789  * @count: the number of events that occurred
790  */
791 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
792 			  unsigned long count)
793 {
794 	if (mem_cgroup_disabled())
795 		return;
796 
797 	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
798 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
799 }
800 
801 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
802 {
803 	return READ_ONCE(memcg->vmstats.events[event]);
804 }
805 
806 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
807 {
808 	long x = 0;
809 	int cpu;
810 
811 	for_each_possible_cpu(cpu)
812 		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
813 	return x;
814 }
815 
816 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
817 					 struct page *page,
818 					 int nr_pages)
819 {
820 	/* pagein of a big page is an event. So, ignore page size */
821 	if (nr_pages > 0)
822 		__count_memcg_events(memcg, PGPGIN, 1);
823 	else {
824 		__count_memcg_events(memcg, PGPGOUT, 1);
825 		nr_pages = -nr_pages; /* for event */
826 	}
827 
828 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
829 }
830 
831 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
832 				       enum mem_cgroup_events_target target)
833 {
834 	unsigned long val, next;
835 
836 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
837 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
838 	/* from time_after() in jiffies.h */
839 	if ((long)(next - val) < 0) {
840 		switch (target) {
841 		case MEM_CGROUP_TARGET_THRESH:
842 			next = val + THRESHOLDS_EVENTS_TARGET;
843 			break;
844 		case MEM_CGROUP_TARGET_SOFTLIMIT:
845 			next = val + SOFTLIMIT_EVENTS_TARGET;
846 			break;
847 		default:
848 			break;
849 		}
850 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
851 		return true;
852 	}
853 	return false;
854 }
855 
856 /*
857  * Check events in order.
858  *
859  */
860 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
861 {
862 	/* threshold event is triggered in finer grain than soft limit */
863 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
864 						MEM_CGROUP_TARGET_THRESH))) {
865 		bool do_softlimit;
866 
867 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
868 						MEM_CGROUP_TARGET_SOFTLIMIT);
869 		mem_cgroup_threshold(memcg);
870 		if (unlikely(do_softlimit))
871 			mem_cgroup_update_tree(memcg, page);
872 	}
873 }
874 
875 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
876 {
877 	/*
878 	 * mm_update_next_owner() may clear mm->owner to NULL
879 	 * if it races with swapoff, page migration, etc.
880 	 * So this can be called with p == NULL.
881 	 */
882 	if (unlikely(!p))
883 		return NULL;
884 
885 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
886 }
887 EXPORT_SYMBOL(mem_cgroup_from_task);
888 
889 /**
890  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
891  * @mm: mm from which memcg should be extracted. It can be NULL.
892  *
893  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
894  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
895  * returned.
896  */
897 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
898 {
899 	struct mem_cgroup *memcg;
900 
901 	if (mem_cgroup_disabled())
902 		return NULL;
903 
904 	rcu_read_lock();
905 	do {
906 		/*
907 		 * Page cache insertions can happen without an
908 		 * actual mm context, e.g. during disk probing
909 		 * on boot, loopback IO, acct() writes etc.
910 		 */
911 		if (unlikely(!mm))
912 			memcg = root_mem_cgroup;
913 		else {
914 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
915 			if (unlikely(!memcg))
916 				memcg = root_mem_cgroup;
917 		}
918 	} while (!css_tryget(&memcg->css));
919 	rcu_read_unlock();
920 	return memcg;
921 }
922 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
923 
924 static __always_inline struct mem_cgroup *active_memcg(void)
925 {
926 	if (in_interrupt())
927 		return this_cpu_read(int_active_memcg);
928 	else
929 		return current->active_memcg;
930 }
931 
932 static __always_inline bool memcg_kmem_bypass(void)
933 {
934 	/* Allow remote memcg charging from any context. */
935 	if (unlikely(active_memcg()))
936 		return false;
937 
938 	/* Memcg to charge can't be determined. */
939 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
940 		return true;
941 
942 	return false;
943 }
944 
945 /**
946  * mem_cgroup_iter - iterate over memory cgroup hierarchy
947  * @root: hierarchy root
948  * @prev: previously returned memcg, NULL on first invocation
949  * @reclaim: cookie for shared reclaim walks, NULL for full walks
950  *
951  * Returns references to children of the hierarchy below @root, or
952  * @root itself, or %NULL after a full round-trip.
953  *
954  * Caller must pass the return value in @prev on subsequent
955  * invocations for reference counting, or use mem_cgroup_iter_break()
956  * to cancel a hierarchy walk before the round-trip is complete.
957  *
958  * Reclaimers can specify a node in @reclaim to divide up the memcgs
959  * in the hierarchy among all concurrent reclaimers operating on the
960  * same node.
961  */
962 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
963 				   struct mem_cgroup *prev,
964 				   struct mem_cgroup_reclaim_cookie *reclaim)
965 {
966 	struct mem_cgroup_reclaim_iter *iter;
967 	struct cgroup_subsys_state *css = NULL;
968 	struct mem_cgroup *memcg = NULL;
969 	struct mem_cgroup *pos = NULL;
970 
971 	if (mem_cgroup_disabled())
972 		return NULL;
973 
974 	if (!root)
975 		root = root_mem_cgroup;
976 
977 	if (prev && !reclaim)
978 		pos = prev;
979 
980 	rcu_read_lock();
981 
982 	if (reclaim) {
983 		struct mem_cgroup_per_node *mz;
984 
985 		mz = root->nodeinfo[reclaim->pgdat->node_id];
986 		iter = &mz->iter;
987 
988 		if (prev && reclaim->generation != iter->generation)
989 			goto out_unlock;
990 
991 		while (1) {
992 			pos = READ_ONCE(iter->position);
993 			if (!pos || css_tryget(&pos->css))
994 				break;
995 			/*
996 			 * css reference reached zero, so iter->position will
997 			 * be cleared by ->css_released. However, we should not
998 			 * rely on this happening soon, because ->css_released
999 			 * is called from a work queue, and by busy-waiting we
1000 			 * might block it. So we clear iter->position right
1001 			 * away.
1002 			 */
1003 			(void)cmpxchg(&iter->position, pos, NULL);
1004 		}
1005 	}
1006 
1007 	if (pos)
1008 		css = &pos->css;
1009 
1010 	for (;;) {
1011 		css = css_next_descendant_pre(css, &root->css);
1012 		if (!css) {
1013 			/*
1014 			 * Reclaimers share the hierarchy walk, and a
1015 			 * new one might jump in right at the end of
1016 			 * the hierarchy - make sure they see at least
1017 			 * one group and restart from the beginning.
1018 			 */
1019 			if (!prev)
1020 				continue;
1021 			break;
1022 		}
1023 
1024 		/*
1025 		 * Verify the css and acquire a reference.  The root
1026 		 * is provided by the caller, so we know it's alive
1027 		 * and kicking, and don't take an extra reference.
1028 		 */
1029 		memcg = mem_cgroup_from_css(css);
1030 
1031 		if (css == &root->css)
1032 			break;
1033 
1034 		if (css_tryget(css))
1035 			break;
1036 
1037 		memcg = NULL;
1038 	}
1039 
1040 	if (reclaim) {
1041 		/*
1042 		 * The position could have already been updated by a competing
1043 		 * thread, so check that the value hasn't changed since we read
1044 		 * it to avoid reclaiming from the same cgroup twice.
1045 		 */
1046 		(void)cmpxchg(&iter->position, pos, memcg);
1047 
1048 		if (pos)
1049 			css_put(&pos->css);
1050 
1051 		if (!memcg)
1052 			iter->generation++;
1053 		else if (!prev)
1054 			reclaim->generation = iter->generation;
1055 	}
1056 
1057 out_unlock:
1058 	rcu_read_unlock();
1059 	if (prev && prev != root)
1060 		css_put(&prev->css);
1061 
1062 	return memcg;
1063 }
1064 
1065 /**
1066  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1067  * @root: hierarchy root
1068  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1069  */
1070 void mem_cgroup_iter_break(struct mem_cgroup *root,
1071 			   struct mem_cgroup *prev)
1072 {
1073 	if (!root)
1074 		root = root_mem_cgroup;
1075 	if (prev && prev != root)
1076 		css_put(&prev->css);
1077 }
1078 
1079 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1080 					struct mem_cgroup *dead_memcg)
1081 {
1082 	struct mem_cgroup_reclaim_iter *iter;
1083 	struct mem_cgroup_per_node *mz;
1084 	int nid;
1085 
1086 	for_each_node(nid) {
1087 		mz = from->nodeinfo[nid];
1088 		iter = &mz->iter;
1089 		cmpxchg(&iter->position, dead_memcg, NULL);
1090 	}
1091 }
1092 
1093 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1094 {
1095 	struct mem_cgroup *memcg = dead_memcg;
1096 	struct mem_cgroup *last;
1097 
1098 	do {
1099 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1100 		last = memcg;
1101 	} while ((memcg = parent_mem_cgroup(memcg)));
1102 
1103 	/*
1104 	 * When cgruop1 non-hierarchy mode is used,
1105 	 * parent_mem_cgroup() does not walk all the way up to the
1106 	 * cgroup root (root_mem_cgroup). So we have to handle
1107 	 * dead_memcg from cgroup root separately.
1108 	 */
1109 	if (last != root_mem_cgroup)
1110 		__invalidate_reclaim_iterators(root_mem_cgroup,
1111 						dead_memcg);
1112 }
1113 
1114 /**
1115  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1116  * @memcg: hierarchy root
1117  * @fn: function to call for each task
1118  * @arg: argument passed to @fn
1119  *
1120  * This function iterates over tasks attached to @memcg or to any of its
1121  * descendants and calls @fn for each task. If @fn returns a non-zero
1122  * value, the function breaks the iteration loop and returns the value.
1123  * Otherwise, it will iterate over all tasks and return 0.
1124  *
1125  * This function must not be called for the root memory cgroup.
1126  */
1127 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1128 			  int (*fn)(struct task_struct *, void *), void *arg)
1129 {
1130 	struct mem_cgroup *iter;
1131 	int ret = 0;
1132 
1133 	BUG_ON(memcg == root_mem_cgroup);
1134 
1135 	for_each_mem_cgroup_tree(iter, memcg) {
1136 		struct css_task_iter it;
1137 		struct task_struct *task;
1138 
1139 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1140 		while (!ret && (task = css_task_iter_next(&it)))
1141 			ret = fn(task, arg);
1142 		css_task_iter_end(&it);
1143 		if (ret) {
1144 			mem_cgroup_iter_break(memcg, iter);
1145 			break;
1146 		}
1147 	}
1148 	return ret;
1149 }
1150 
1151 #ifdef CONFIG_DEBUG_VM
1152 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1153 {
1154 	struct mem_cgroup *memcg;
1155 
1156 	if (mem_cgroup_disabled())
1157 		return;
1158 
1159 	memcg = page_memcg(page);
1160 
1161 	if (!memcg)
1162 		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1163 	else
1164 		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1165 }
1166 #endif
1167 
1168 /**
1169  * lock_page_lruvec - lock and return lruvec for a given page.
1170  * @page: the page
1171  *
1172  * These functions are safe to use under any of the following conditions:
1173  * - page locked
1174  * - PageLRU cleared
1175  * - lock_page_memcg()
1176  * - page->_refcount is zero
1177  */
1178 struct lruvec *lock_page_lruvec(struct page *page)
1179 {
1180 	struct lruvec *lruvec;
1181 	struct pglist_data *pgdat = page_pgdat(page);
1182 
1183 	lruvec = mem_cgroup_page_lruvec(page, pgdat);
1184 	spin_lock(&lruvec->lru_lock);
1185 
1186 	lruvec_memcg_debug(lruvec, page);
1187 
1188 	return lruvec;
1189 }
1190 
1191 struct lruvec *lock_page_lruvec_irq(struct page *page)
1192 {
1193 	struct lruvec *lruvec;
1194 	struct pglist_data *pgdat = page_pgdat(page);
1195 
1196 	lruvec = mem_cgroup_page_lruvec(page, pgdat);
1197 	spin_lock_irq(&lruvec->lru_lock);
1198 
1199 	lruvec_memcg_debug(lruvec, page);
1200 
1201 	return lruvec;
1202 }
1203 
1204 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1205 {
1206 	struct lruvec *lruvec;
1207 	struct pglist_data *pgdat = page_pgdat(page);
1208 
1209 	lruvec = mem_cgroup_page_lruvec(page, pgdat);
1210 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1211 
1212 	lruvec_memcg_debug(lruvec, page);
1213 
1214 	return lruvec;
1215 }
1216 
1217 /**
1218  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1219  * @lruvec: mem_cgroup per zone lru vector
1220  * @lru: index of lru list the page is sitting on
1221  * @zid: zone id of the accounted pages
1222  * @nr_pages: positive when adding or negative when removing
1223  *
1224  * This function must be called under lru_lock, just before a page is added
1225  * to or just after a page is removed from an lru list (that ordering being
1226  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1227  */
1228 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1229 				int zid, int nr_pages)
1230 {
1231 	struct mem_cgroup_per_node *mz;
1232 	unsigned long *lru_size;
1233 	long size;
1234 
1235 	if (mem_cgroup_disabled())
1236 		return;
1237 
1238 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1239 	lru_size = &mz->lru_zone_size[zid][lru];
1240 
1241 	if (nr_pages < 0)
1242 		*lru_size += nr_pages;
1243 
1244 	size = *lru_size;
1245 	if (WARN_ONCE(size < 0,
1246 		"%s(%p, %d, %d): lru_size %ld\n",
1247 		__func__, lruvec, lru, nr_pages, size)) {
1248 		VM_BUG_ON(1);
1249 		*lru_size = 0;
1250 	}
1251 
1252 	if (nr_pages > 0)
1253 		*lru_size += nr_pages;
1254 }
1255 
1256 /**
1257  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1258  * @memcg: the memory cgroup
1259  *
1260  * Returns the maximum amount of memory @mem can be charged with, in
1261  * pages.
1262  */
1263 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1264 {
1265 	unsigned long margin = 0;
1266 	unsigned long count;
1267 	unsigned long limit;
1268 
1269 	count = page_counter_read(&memcg->memory);
1270 	limit = READ_ONCE(memcg->memory.max);
1271 	if (count < limit)
1272 		margin = limit - count;
1273 
1274 	if (do_memsw_account()) {
1275 		count = page_counter_read(&memcg->memsw);
1276 		limit = READ_ONCE(memcg->memsw.max);
1277 		if (count < limit)
1278 			margin = min(margin, limit - count);
1279 		else
1280 			margin = 0;
1281 	}
1282 
1283 	return margin;
1284 }
1285 
1286 /*
1287  * A routine for checking "mem" is under move_account() or not.
1288  *
1289  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1290  * moving cgroups. This is for waiting at high-memory pressure
1291  * caused by "move".
1292  */
1293 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1294 {
1295 	struct mem_cgroup *from;
1296 	struct mem_cgroup *to;
1297 	bool ret = false;
1298 	/*
1299 	 * Unlike task_move routines, we access mc.to, mc.from not under
1300 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1301 	 */
1302 	spin_lock(&mc.lock);
1303 	from = mc.from;
1304 	to = mc.to;
1305 	if (!from)
1306 		goto unlock;
1307 
1308 	ret = mem_cgroup_is_descendant(from, memcg) ||
1309 		mem_cgroup_is_descendant(to, memcg);
1310 unlock:
1311 	spin_unlock(&mc.lock);
1312 	return ret;
1313 }
1314 
1315 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1316 {
1317 	if (mc.moving_task && current != mc.moving_task) {
1318 		if (mem_cgroup_under_move(memcg)) {
1319 			DEFINE_WAIT(wait);
1320 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1321 			/* moving charge context might have finished. */
1322 			if (mc.moving_task)
1323 				schedule();
1324 			finish_wait(&mc.waitq, &wait);
1325 			return true;
1326 		}
1327 	}
1328 	return false;
1329 }
1330 
1331 struct memory_stat {
1332 	const char *name;
1333 	unsigned int idx;
1334 };
1335 
1336 static const struct memory_stat memory_stats[] = {
1337 	{ "anon",			NR_ANON_MAPPED			},
1338 	{ "file",			NR_FILE_PAGES			},
1339 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1340 	{ "pagetables",			NR_PAGETABLE			},
1341 	{ "percpu",			MEMCG_PERCPU_B			},
1342 	{ "sock",			MEMCG_SOCK			},
1343 	{ "shmem",			NR_SHMEM			},
1344 	{ "file_mapped",		NR_FILE_MAPPED			},
1345 	{ "file_dirty",			NR_FILE_DIRTY			},
1346 	{ "file_writeback",		NR_WRITEBACK			},
1347 #ifdef CONFIG_SWAP
1348 	{ "swapcached",			NR_SWAPCACHE			},
1349 #endif
1350 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1351 	{ "anon_thp",			NR_ANON_THPS			},
1352 	{ "file_thp",			NR_FILE_THPS			},
1353 	{ "shmem_thp",			NR_SHMEM_THPS			},
1354 #endif
1355 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1356 	{ "active_anon",		NR_ACTIVE_ANON			},
1357 	{ "inactive_file",		NR_INACTIVE_FILE		},
1358 	{ "active_file",		NR_ACTIVE_FILE			},
1359 	{ "unevictable",		NR_UNEVICTABLE			},
1360 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1361 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1362 
1363 	/* The memory events */
1364 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1365 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1366 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1367 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1368 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1369 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1370 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1371 };
1372 
1373 /* Translate stat items to the correct unit for memory.stat output */
1374 static int memcg_page_state_unit(int item)
1375 {
1376 	switch (item) {
1377 	case MEMCG_PERCPU_B:
1378 	case NR_SLAB_RECLAIMABLE_B:
1379 	case NR_SLAB_UNRECLAIMABLE_B:
1380 	case WORKINGSET_REFAULT_ANON:
1381 	case WORKINGSET_REFAULT_FILE:
1382 	case WORKINGSET_ACTIVATE_ANON:
1383 	case WORKINGSET_ACTIVATE_FILE:
1384 	case WORKINGSET_RESTORE_ANON:
1385 	case WORKINGSET_RESTORE_FILE:
1386 	case WORKINGSET_NODERECLAIM:
1387 		return 1;
1388 	case NR_KERNEL_STACK_KB:
1389 		return SZ_1K;
1390 	default:
1391 		return PAGE_SIZE;
1392 	}
1393 }
1394 
1395 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1396 						    int item)
1397 {
1398 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1399 }
1400 
1401 static char *memory_stat_format(struct mem_cgroup *memcg)
1402 {
1403 	struct seq_buf s;
1404 	int i;
1405 
1406 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1407 	if (!s.buffer)
1408 		return NULL;
1409 
1410 	/*
1411 	 * Provide statistics on the state of the memory subsystem as
1412 	 * well as cumulative event counters that show past behavior.
1413 	 *
1414 	 * This list is ordered following a combination of these gradients:
1415 	 * 1) generic big picture -> specifics and details
1416 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1417 	 *
1418 	 * Current memory state:
1419 	 */
1420 	cgroup_rstat_flush(memcg->css.cgroup);
1421 
1422 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1423 		u64 size;
1424 
1425 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1426 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1427 
1428 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1429 			size += memcg_page_state_output(memcg,
1430 							NR_SLAB_RECLAIMABLE_B);
1431 			seq_buf_printf(&s, "slab %llu\n", size);
1432 		}
1433 	}
1434 
1435 	/* Accumulated memory events */
1436 
1437 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1438 		       memcg_events(memcg, PGFAULT));
1439 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1440 		       memcg_events(memcg, PGMAJFAULT));
1441 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1442 		       memcg_events(memcg, PGREFILL));
1443 	seq_buf_printf(&s, "pgscan %lu\n",
1444 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1445 		       memcg_events(memcg, PGSCAN_DIRECT));
1446 	seq_buf_printf(&s, "pgsteal %lu\n",
1447 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1448 		       memcg_events(memcg, PGSTEAL_DIRECT));
1449 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1450 		       memcg_events(memcg, PGACTIVATE));
1451 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1452 		       memcg_events(memcg, PGDEACTIVATE));
1453 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1454 		       memcg_events(memcg, PGLAZYFREE));
1455 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1456 		       memcg_events(memcg, PGLAZYFREED));
1457 
1458 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1459 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1460 		       memcg_events(memcg, THP_FAULT_ALLOC));
1461 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1462 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1463 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1464 
1465 	/* The above should easily fit into one page */
1466 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1467 
1468 	return s.buffer;
1469 }
1470 
1471 #define K(x) ((x) << (PAGE_SHIFT-10))
1472 /**
1473  * mem_cgroup_print_oom_context: Print OOM information relevant to
1474  * memory controller.
1475  * @memcg: The memory cgroup that went over limit
1476  * @p: Task that is going to be killed
1477  *
1478  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1479  * enabled
1480  */
1481 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1482 {
1483 	rcu_read_lock();
1484 
1485 	if (memcg) {
1486 		pr_cont(",oom_memcg=");
1487 		pr_cont_cgroup_path(memcg->css.cgroup);
1488 	} else
1489 		pr_cont(",global_oom");
1490 	if (p) {
1491 		pr_cont(",task_memcg=");
1492 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1493 	}
1494 	rcu_read_unlock();
1495 }
1496 
1497 /**
1498  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1499  * memory controller.
1500  * @memcg: The memory cgroup that went over limit
1501  */
1502 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1503 {
1504 	char *buf;
1505 
1506 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1507 		K((u64)page_counter_read(&memcg->memory)),
1508 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1509 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1510 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1511 			K((u64)page_counter_read(&memcg->swap)),
1512 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1513 	else {
1514 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1515 			K((u64)page_counter_read(&memcg->memsw)),
1516 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1517 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1518 			K((u64)page_counter_read(&memcg->kmem)),
1519 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1520 	}
1521 
1522 	pr_info("Memory cgroup stats for ");
1523 	pr_cont_cgroup_path(memcg->css.cgroup);
1524 	pr_cont(":");
1525 	buf = memory_stat_format(memcg);
1526 	if (!buf)
1527 		return;
1528 	pr_info("%s", buf);
1529 	kfree(buf);
1530 }
1531 
1532 /*
1533  * Return the memory (and swap, if configured) limit for a memcg.
1534  */
1535 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1536 {
1537 	unsigned long max = READ_ONCE(memcg->memory.max);
1538 
1539 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1540 		if (mem_cgroup_swappiness(memcg))
1541 			max += min(READ_ONCE(memcg->swap.max),
1542 				   (unsigned long)total_swap_pages);
1543 	} else { /* v1 */
1544 		if (mem_cgroup_swappiness(memcg)) {
1545 			/* Calculate swap excess capacity from memsw limit */
1546 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1547 
1548 			max += min(swap, (unsigned long)total_swap_pages);
1549 		}
1550 	}
1551 	return max;
1552 }
1553 
1554 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1555 {
1556 	return page_counter_read(&memcg->memory);
1557 }
1558 
1559 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1560 				     int order)
1561 {
1562 	struct oom_control oc = {
1563 		.zonelist = NULL,
1564 		.nodemask = NULL,
1565 		.memcg = memcg,
1566 		.gfp_mask = gfp_mask,
1567 		.order = order,
1568 	};
1569 	bool ret = true;
1570 
1571 	if (mutex_lock_killable(&oom_lock))
1572 		return true;
1573 
1574 	if (mem_cgroup_margin(memcg) >= (1 << order))
1575 		goto unlock;
1576 
1577 	/*
1578 	 * A few threads which were not waiting at mutex_lock_killable() can
1579 	 * fail to bail out. Therefore, check again after holding oom_lock.
1580 	 */
1581 	ret = should_force_charge() || out_of_memory(&oc);
1582 
1583 unlock:
1584 	mutex_unlock(&oom_lock);
1585 	return ret;
1586 }
1587 
1588 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1589 				   pg_data_t *pgdat,
1590 				   gfp_t gfp_mask,
1591 				   unsigned long *total_scanned)
1592 {
1593 	struct mem_cgroup *victim = NULL;
1594 	int total = 0;
1595 	int loop = 0;
1596 	unsigned long excess;
1597 	unsigned long nr_scanned;
1598 	struct mem_cgroup_reclaim_cookie reclaim = {
1599 		.pgdat = pgdat,
1600 	};
1601 
1602 	excess = soft_limit_excess(root_memcg);
1603 
1604 	while (1) {
1605 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1606 		if (!victim) {
1607 			loop++;
1608 			if (loop >= 2) {
1609 				/*
1610 				 * If we have not been able to reclaim
1611 				 * anything, it might because there are
1612 				 * no reclaimable pages under this hierarchy
1613 				 */
1614 				if (!total)
1615 					break;
1616 				/*
1617 				 * We want to do more targeted reclaim.
1618 				 * excess >> 2 is not to excessive so as to
1619 				 * reclaim too much, nor too less that we keep
1620 				 * coming back to reclaim from this cgroup
1621 				 */
1622 				if (total >= (excess >> 2) ||
1623 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1624 					break;
1625 			}
1626 			continue;
1627 		}
1628 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1629 					pgdat, &nr_scanned);
1630 		*total_scanned += nr_scanned;
1631 		if (!soft_limit_excess(root_memcg))
1632 			break;
1633 	}
1634 	mem_cgroup_iter_break(root_memcg, victim);
1635 	return total;
1636 }
1637 
1638 #ifdef CONFIG_LOCKDEP
1639 static struct lockdep_map memcg_oom_lock_dep_map = {
1640 	.name = "memcg_oom_lock",
1641 };
1642 #endif
1643 
1644 static DEFINE_SPINLOCK(memcg_oom_lock);
1645 
1646 /*
1647  * Check OOM-Killer is already running under our hierarchy.
1648  * If someone is running, return false.
1649  */
1650 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1651 {
1652 	struct mem_cgroup *iter, *failed = NULL;
1653 
1654 	spin_lock(&memcg_oom_lock);
1655 
1656 	for_each_mem_cgroup_tree(iter, memcg) {
1657 		if (iter->oom_lock) {
1658 			/*
1659 			 * this subtree of our hierarchy is already locked
1660 			 * so we cannot give a lock.
1661 			 */
1662 			failed = iter;
1663 			mem_cgroup_iter_break(memcg, iter);
1664 			break;
1665 		} else
1666 			iter->oom_lock = true;
1667 	}
1668 
1669 	if (failed) {
1670 		/*
1671 		 * OK, we failed to lock the whole subtree so we have
1672 		 * to clean up what we set up to the failing subtree
1673 		 */
1674 		for_each_mem_cgroup_tree(iter, memcg) {
1675 			if (iter == failed) {
1676 				mem_cgroup_iter_break(memcg, iter);
1677 				break;
1678 			}
1679 			iter->oom_lock = false;
1680 		}
1681 	} else
1682 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1683 
1684 	spin_unlock(&memcg_oom_lock);
1685 
1686 	return !failed;
1687 }
1688 
1689 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1690 {
1691 	struct mem_cgroup *iter;
1692 
1693 	spin_lock(&memcg_oom_lock);
1694 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1695 	for_each_mem_cgroup_tree(iter, memcg)
1696 		iter->oom_lock = false;
1697 	spin_unlock(&memcg_oom_lock);
1698 }
1699 
1700 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1701 {
1702 	struct mem_cgroup *iter;
1703 
1704 	spin_lock(&memcg_oom_lock);
1705 	for_each_mem_cgroup_tree(iter, memcg)
1706 		iter->under_oom++;
1707 	spin_unlock(&memcg_oom_lock);
1708 }
1709 
1710 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1711 {
1712 	struct mem_cgroup *iter;
1713 
1714 	/*
1715 	 * Be careful about under_oom underflows because a child memcg
1716 	 * could have been added after mem_cgroup_mark_under_oom.
1717 	 */
1718 	spin_lock(&memcg_oom_lock);
1719 	for_each_mem_cgroup_tree(iter, memcg)
1720 		if (iter->under_oom > 0)
1721 			iter->under_oom--;
1722 	spin_unlock(&memcg_oom_lock);
1723 }
1724 
1725 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1726 
1727 struct oom_wait_info {
1728 	struct mem_cgroup *memcg;
1729 	wait_queue_entry_t	wait;
1730 };
1731 
1732 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1733 	unsigned mode, int sync, void *arg)
1734 {
1735 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1736 	struct mem_cgroup *oom_wait_memcg;
1737 	struct oom_wait_info *oom_wait_info;
1738 
1739 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1740 	oom_wait_memcg = oom_wait_info->memcg;
1741 
1742 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1743 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1744 		return 0;
1745 	return autoremove_wake_function(wait, mode, sync, arg);
1746 }
1747 
1748 static void memcg_oom_recover(struct mem_cgroup *memcg)
1749 {
1750 	/*
1751 	 * For the following lockless ->under_oom test, the only required
1752 	 * guarantee is that it must see the state asserted by an OOM when
1753 	 * this function is called as a result of userland actions
1754 	 * triggered by the notification of the OOM.  This is trivially
1755 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1756 	 * triggering notification.
1757 	 */
1758 	if (memcg && memcg->under_oom)
1759 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1760 }
1761 
1762 enum oom_status {
1763 	OOM_SUCCESS,
1764 	OOM_FAILED,
1765 	OOM_ASYNC,
1766 	OOM_SKIPPED
1767 };
1768 
1769 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1770 {
1771 	enum oom_status ret;
1772 	bool locked;
1773 
1774 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1775 		return OOM_SKIPPED;
1776 
1777 	memcg_memory_event(memcg, MEMCG_OOM);
1778 
1779 	/*
1780 	 * We are in the middle of the charge context here, so we
1781 	 * don't want to block when potentially sitting on a callstack
1782 	 * that holds all kinds of filesystem and mm locks.
1783 	 *
1784 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1785 	 * handling until the charge can succeed; remember the context and put
1786 	 * the task to sleep at the end of the page fault when all locks are
1787 	 * released.
1788 	 *
1789 	 * On the other hand, in-kernel OOM killer allows for an async victim
1790 	 * memory reclaim (oom_reaper) and that means that we are not solely
1791 	 * relying on the oom victim to make a forward progress and we can
1792 	 * invoke the oom killer here.
1793 	 *
1794 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1795 	 * victim and then we have to bail out from the charge path.
1796 	 */
1797 	if (memcg->oom_kill_disable) {
1798 		if (!current->in_user_fault)
1799 			return OOM_SKIPPED;
1800 		css_get(&memcg->css);
1801 		current->memcg_in_oom = memcg;
1802 		current->memcg_oom_gfp_mask = mask;
1803 		current->memcg_oom_order = order;
1804 
1805 		return OOM_ASYNC;
1806 	}
1807 
1808 	mem_cgroup_mark_under_oom(memcg);
1809 
1810 	locked = mem_cgroup_oom_trylock(memcg);
1811 
1812 	if (locked)
1813 		mem_cgroup_oom_notify(memcg);
1814 
1815 	mem_cgroup_unmark_under_oom(memcg);
1816 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1817 		ret = OOM_SUCCESS;
1818 	else
1819 		ret = OOM_FAILED;
1820 
1821 	if (locked)
1822 		mem_cgroup_oom_unlock(memcg);
1823 
1824 	return ret;
1825 }
1826 
1827 /**
1828  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1829  * @handle: actually kill/wait or just clean up the OOM state
1830  *
1831  * This has to be called at the end of a page fault if the memcg OOM
1832  * handler was enabled.
1833  *
1834  * Memcg supports userspace OOM handling where failed allocations must
1835  * sleep on a waitqueue until the userspace task resolves the
1836  * situation.  Sleeping directly in the charge context with all kinds
1837  * of locks held is not a good idea, instead we remember an OOM state
1838  * in the task and mem_cgroup_oom_synchronize() has to be called at
1839  * the end of the page fault to complete the OOM handling.
1840  *
1841  * Returns %true if an ongoing memcg OOM situation was detected and
1842  * completed, %false otherwise.
1843  */
1844 bool mem_cgroup_oom_synchronize(bool handle)
1845 {
1846 	struct mem_cgroup *memcg = current->memcg_in_oom;
1847 	struct oom_wait_info owait;
1848 	bool locked;
1849 
1850 	/* OOM is global, do not handle */
1851 	if (!memcg)
1852 		return false;
1853 
1854 	if (!handle)
1855 		goto cleanup;
1856 
1857 	owait.memcg = memcg;
1858 	owait.wait.flags = 0;
1859 	owait.wait.func = memcg_oom_wake_function;
1860 	owait.wait.private = current;
1861 	INIT_LIST_HEAD(&owait.wait.entry);
1862 
1863 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1864 	mem_cgroup_mark_under_oom(memcg);
1865 
1866 	locked = mem_cgroup_oom_trylock(memcg);
1867 
1868 	if (locked)
1869 		mem_cgroup_oom_notify(memcg);
1870 
1871 	if (locked && !memcg->oom_kill_disable) {
1872 		mem_cgroup_unmark_under_oom(memcg);
1873 		finish_wait(&memcg_oom_waitq, &owait.wait);
1874 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1875 					 current->memcg_oom_order);
1876 	} else {
1877 		schedule();
1878 		mem_cgroup_unmark_under_oom(memcg);
1879 		finish_wait(&memcg_oom_waitq, &owait.wait);
1880 	}
1881 
1882 	if (locked) {
1883 		mem_cgroup_oom_unlock(memcg);
1884 		/*
1885 		 * There is no guarantee that an OOM-lock contender
1886 		 * sees the wakeups triggered by the OOM kill
1887 		 * uncharges.  Wake any sleepers explicitly.
1888 		 */
1889 		memcg_oom_recover(memcg);
1890 	}
1891 cleanup:
1892 	current->memcg_in_oom = NULL;
1893 	css_put(&memcg->css);
1894 	return true;
1895 }
1896 
1897 /**
1898  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1899  * @victim: task to be killed by the OOM killer
1900  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1901  *
1902  * Returns a pointer to a memory cgroup, which has to be cleaned up
1903  * by killing all belonging OOM-killable tasks.
1904  *
1905  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1906  */
1907 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1908 					    struct mem_cgroup *oom_domain)
1909 {
1910 	struct mem_cgroup *oom_group = NULL;
1911 	struct mem_cgroup *memcg;
1912 
1913 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1914 		return NULL;
1915 
1916 	if (!oom_domain)
1917 		oom_domain = root_mem_cgroup;
1918 
1919 	rcu_read_lock();
1920 
1921 	memcg = mem_cgroup_from_task(victim);
1922 	if (memcg == root_mem_cgroup)
1923 		goto out;
1924 
1925 	/*
1926 	 * If the victim task has been asynchronously moved to a different
1927 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1928 	 * In this case it's better to ignore memory.group.oom.
1929 	 */
1930 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1931 		goto out;
1932 
1933 	/*
1934 	 * Traverse the memory cgroup hierarchy from the victim task's
1935 	 * cgroup up to the OOMing cgroup (or root) to find the
1936 	 * highest-level memory cgroup with oom.group set.
1937 	 */
1938 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1939 		if (memcg->oom_group)
1940 			oom_group = memcg;
1941 
1942 		if (memcg == oom_domain)
1943 			break;
1944 	}
1945 
1946 	if (oom_group)
1947 		css_get(&oom_group->css);
1948 out:
1949 	rcu_read_unlock();
1950 
1951 	return oom_group;
1952 }
1953 
1954 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1955 {
1956 	pr_info("Tasks in ");
1957 	pr_cont_cgroup_path(memcg->css.cgroup);
1958 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1959 }
1960 
1961 /**
1962  * lock_page_memcg - lock a page and memcg binding
1963  * @page: the page
1964  *
1965  * This function protects unlocked LRU pages from being moved to
1966  * another cgroup.
1967  *
1968  * It ensures lifetime of the locked memcg. Caller is responsible
1969  * for the lifetime of the page.
1970  */
1971 void lock_page_memcg(struct page *page)
1972 {
1973 	struct page *head = compound_head(page); /* rmap on tail pages */
1974 	struct mem_cgroup *memcg;
1975 	unsigned long flags;
1976 
1977 	/*
1978 	 * The RCU lock is held throughout the transaction.  The fast
1979 	 * path can get away without acquiring the memcg->move_lock
1980 	 * because page moving starts with an RCU grace period.
1981          */
1982 	rcu_read_lock();
1983 
1984 	if (mem_cgroup_disabled())
1985 		return;
1986 again:
1987 	memcg = page_memcg(head);
1988 	if (unlikely(!memcg))
1989 		return;
1990 
1991 #ifdef CONFIG_PROVE_LOCKING
1992 	local_irq_save(flags);
1993 	might_lock(&memcg->move_lock);
1994 	local_irq_restore(flags);
1995 #endif
1996 
1997 	if (atomic_read(&memcg->moving_account) <= 0)
1998 		return;
1999 
2000 	spin_lock_irqsave(&memcg->move_lock, flags);
2001 	if (memcg != page_memcg(head)) {
2002 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2003 		goto again;
2004 	}
2005 
2006 	/*
2007 	 * When charge migration first begins, we can have multiple
2008 	 * critical sections holding the fast-path RCU lock and one
2009 	 * holding the slowpath move_lock. Track the task who has the
2010 	 * move_lock for unlock_page_memcg().
2011 	 */
2012 	memcg->move_lock_task = current;
2013 	memcg->move_lock_flags = flags;
2014 }
2015 EXPORT_SYMBOL(lock_page_memcg);
2016 
2017 static void __unlock_page_memcg(struct mem_cgroup *memcg)
2018 {
2019 	if (memcg && memcg->move_lock_task == current) {
2020 		unsigned long flags = memcg->move_lock_flags;
2021 
2022 		memcg->move_lock_task = NULL;
2023 		memcg->move_lock_flags = 0;
2024 
2025 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2026 	}
2027 
2028 	rcu_read_unlock();
2029 }
2030 
2031 /**
2032  * unlock_page_memcg - unlock a page and memcg binding
2033  * @page: the page
2034  */
2035 void unlock_page_memcg(struct page *page)
2036 {
2037 	struct page *head = compound_head(page);
2038 
2039 	__unlock_page_memcg(page_memcg(head));
2040 }
2041 EXPORT_SYMBOL(unlock_page_memcg);
2042 
2043 struct memcg_stock_pcp {
2044 	struct mem_cgroup *cached; /* this never be root cgroup */
2045 	unsigned int nr_pages;
2046 
2047 #ifdef CONFIG_MEMCG_KMEM
2048 	struct obj_cgroup *cached_objcg;
2049 	unsigned int nr_bytes;
2050 #endif
2051 
2052 	struct work_struct work;
2053 	unsigned long flags;
2054 #define FLUSHING_CACHED_CHARGE	0
2055 };
2056 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2057 static DEFINE_MUTEX(percpu_charge_mutex);
2058 
2059 #ifdef CONFIG_MEMCG_KMEM
2060 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2061 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2062 				     struct mem_cgroup *root_memcg);
2063 
2064 #else
2065 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2066 {
2067 }
2068 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2069 				     struct mem_cgroup *root_memcg)
2070 {
2071 	return false;
2072 }
2073 #endif
2074 
2075 /**
2076  * consume_stock: Try to consume stocked charge on this cpu.
2077  * @memcg: memcg to consume from.
2078  * @nr_pages: how many pages to charge.
2079  *
2080  * The charges will only happen if @memcg matches the current cpu's memcg
2081  * stock, and at least @nr_pages are available in that stock.  Failure to
2082  * service an allocation will refill the stock.
2083  *
2084  * returns true if successful, false otherwise.
2085  */
2086 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2087 {
2088 	struct memcg_stock_pcp *stock;
2089 	unsigned long flags;
2090 	bool ret = false;
2091 
2092 	if (nr_pages > MEMCG_CHARGE_BATCH)
2093 		return ret;
2094 
2095 	local_irq_save(flags);
2096 
2097 	stock = this_cpu_ptr(&memcg_stock);
2098 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2099 		stock->nr_pages -= nr_pages;
2100 		ret = true;
2101 	}
2102 
2103 	local_irq_restore(flags);
2104 
2105 	return ret;
2106 }
2107 
2108 /*
2109  * Returns stocks cached in percpu and reset cached information.
2110  */
2111 static void drain_stock(struct memcg_stock_pcp *stock)
2112 {
2113 	struct mem_cgroup *old = stock->cached;
2114 
2115 	if (!old)
2116 		return;
2117 
2118 	if (stock->nr_pages) {
2119 		page_counter_uncharge(&old->memory, stock->nr_pages);
2120 		if (do_memsw_account())
2121 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2122 		stock->nr_pages = 0;
2123 	}
2124 
2125 	css_put(&old->css);
2126 	stock->cached = NULL;
2127 }
2128 
2129 static void drain_local_stock(struct work_struct *dummy)
2130 {
2131 	struct memcg_stock_pcp *stock;
2132 	unsigned long flags;
2133 
2134 	/*
2135 	 * The only protection from memory hotplug vs. drain_stock races is
2136 	 * that we always operate on local CPU stock here with IRQ disabled
2137 	 */
2138 	local_irq_save(flags);
2139 
2140 	stock = this_cpu_ptr(&memcg_stock);
2141 	drain_obj_stock(stock);
2142 	drain_stock(stock);
2143 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2144 
2145 	local_irq_restore(flags);
2146 }
2147 
2148 /*
2149  * Cache charges(val) to local per_cpu area.
2150  * This will be consumed by consume_stock() function, later.
2151  */
2152 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2153 {
2154 	struct memcg_stock_pcp *stock;
2155 	unsigned long flags;
2156 
2157 	local_irq_save(flags);
2158 
2159 	stock = this_cpu_ptr(&memcg_stock);
2160 	if (stock->cached != memcg) { /* reset if necessary */
2161 		drain_stock(stock);
2162 		css_get(&memcg->css);
2163 		stock->cached = memcg;
2164 	}
2165 	stock->nr_pages += nr_pages;
2166 
2167 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2168 		drain_stock(stock);
2169 
2170 	local_irq_restore(flags);
2171 }
2172 
2173 /*
2174  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2175  * of the hierarchy under it.
2176  */
2177 static void drain_all_stock(struct mem_cgroup *root_memcg)
2178 {
2179 	int cpu, curcpu;
2180 
2181 	/* If someone's already draining, avoid adding running more workers. */
2182 	if (!mutex_trylock(&percpu_charge_mutex))
2183 		return;
2184 	/*
2185 	 * Notify other cpus that system-wide "drain" is running
2186 	 * We do not care about races with the cpu hotplug because cpu down
2187 	 * as well as workers from this path always operate on the local
2188 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2189 	 */
2190 	curcpu = get_cpu();
2191 	for_each_online_cpu(cpu) {
2192 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2193 		struct mem_cgroup *memcg;
2194 		bool flush = false;
2195 
2196 		rcu_read_lock();
2197 		memcg = stock->cached;
2198 		if (memcg && stock->nr_pages &&
2199 		    mem_cgroup_is_descendant(memcg, root_memcg))
2200 			flush = true;
2201 		if (obj_stock_flush_required(stock, root_memcg))
2202 			flush = true;
2203 		rcu_read_unlock();
2204 
2205 		if (flush &&
2206 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2207 			if (cpu == curcpu)
2208 				drain_local_stock(&stock->work);
2209 			else
2210 				schedule_work_on(cpu, &stock->work);
2211 		}
2212 	}
2213 	put_cpu();
2214 	mutex_unlock(&percpu_charge_mutex);
2215 }
2216 
2217 static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2218 {
2219 	int nid;
2220 
2221 	for_each_node(nid) {
2222 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2223 		unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2224 		struct batched_lruvec_stat *lstatc;
2225 		int i;
2226 
2227 		lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2228 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2229 			stat[i] = lstatc->count[i];
2230 			lstatc->count[i] = 0;
2231 		}
2232 
2233 		do {
2234 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2235 				atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2236 		} while ((pn = parent_nodeinfo(pn, nid)));
2237 	}
2238 }
2239 
2240 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2241 {
2242 	struct memcg_stock_pcp *stock;
2243 	struct mem_cgroup *memcg;
2244 
2245 	stock = &per_cpu(memcg_stock, cpu);
2246 	drain_stock(stock);
2247 
2248 	for_each_mem_cgroup(memcg)
2249 		memcg_flush_lruvec_page_state(memcg, cpu);
2250 
2251 	return 0;
2252 }
2253 
2254 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2255 				  unsigned int nr_pages,
2256 				  gfp_t gfp_mask)
2257 {
2258 	unsigned long nr_reclaimed = 0;
2259 
2260 	do {
2261 		unsigned long pflags;
2262 
2263 		if (page_counter_read(&memcg->memory) <=
2264 		    READ_ONCE(memcg->memory.high))
2265 			continue;
2266 
2267 		memcg_memory_event(memcg, MEMCG_HIGH);
2268 
2269 		psi_memstall_enter(&pflags);
2270 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2271 							     gfp_mask, true);
2272 		psi_memstall_leave(&pflags);
2273 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2274 		 !mem_cgroup_is_root(memcg));
2275 
2276 	return nr_reclaimed;
2277 }
2278 
2279 static void high_work_func(struct work_struct *work)
2280 {
2281 	struct mem_cgroup *memcg;
2282 
2283 	memcg = container_of(work, struct mem_cgroup, high_work);
2284 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2285 }
2286 
2287 /*
2288  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2289  * enough to still cause a significant slowdown in most cases, while still
2290  * allowing diagnostics and tracing to proceed without becoming stuck.
2291  */
2292 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2293 
2294 /*
2295  * When calculating the delay, we use these either side of the exponentiation to
2296  * maintain precision and scale to a reasonable number of jiffies (see the table
2297  * below.
2298  *
2299  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2300  *   overage ratio to a delay.
2301  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2302  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2303  *   to produce a reasonable delay curve.
2304  *
2305  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2306  * reasonable delay curve compared to precision-adjusted overage, not
2307  * penalising heavily at first, but still making sure that growth beyond the
2308  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2309  * example, with a high of 100 megabytes:
2310  *
2311  *  +-------+------------------------+
2312  *  | usage | time to allocate in ms |
2313  *  +-------+------------------------+
2314  *  | 100M  |                      0 |
2315  *  | 101M  |                      6 |
2316  *  | 102M  |                     25 |
2317  *  | 103M  |                     57 |
2318  *  | 104M  |                    102 |
2319  *  | 105M  |                    159 |
2320  *  | 106M  |                    230 |
2321  *  | 107M  |                    313 |
2322  *  | 108M  |                    409 |
2323  *  | 109M  |                    518 |
2324  *  | 110M  |                    639 |
2325  *  | 111M  |                    774 |
2326  *  | 112M  |                    921 |
2327  *  | 113M  |                   1081 |
2328  *  | 114M  |                   1254 |
2329  *  | 115M  |                   1439 |
2330  *  | 116M  |                   1638 |
2331  *  | 117M  |                   1849 |
2332  *  | 118M  |                   2000 |
2333  *  | 119M  |                   2000 |
2334  *  | 120M  |                   2000 |
2335  *  +-------+------------------------+
2336  */
2337  #define MEMCG_DELAY_PRECISION_SHIFT 20
2338  #define MEMCG_DELAY_SCALING_SHIFT 14
2339 
2340 static u64 calculate_overage(unsigned long usage, unsigned long high)
2341 {
2342 	u64 overage;
2343 
2344 	if (usage <= high)
2345 		return 0;
2346 
2347 	/*
2348 	 * Prevent division by 0 in overage calculation by acting as if
2349 	 * it was a threshold of 1 page
2350 	 */
2351 	high = max(high, 1UL);
2352 
2353 	overage = usage - high;
2354 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2355 	return div64_u64(overage, high);
2356 }
2357 
2358 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2359 {
2360 	u64 overage, max_overage = 0;
2361 
2362 	do {
2363 		overage = calculate_overage(page_counter_read(&memcg->memory),
2364 					    READ_ONCE(memcg->memory.high));
2365 		max_overage = max(overage, max_overage);
2366 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2367 		 !mem_cgroup_is_root(memcg));
2368 
2369 	return max_overage;
2370 }
2371 
2372 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2373 {
2374 	u64 overage, max_overage = 0;
2375 
2376 	do {
2377 		overage = calculate_overage(page_counter_read(&memcg->swap),
2378 					    READ_ONCE(memcg->swap.high));
2379 		if (overage)
2380 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2381 		max_overage = max(overage, max_overage);
2382 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2383 		 !mem_cgroup_is_root(memcg));
2384 
2385 	return max_overage;
2386 }
2387 
2388 /*
2389  * Get the number of jiffies that we should penalise a mischievous cgroup which
2390  * is exceeding its memory.high by checking both it and its ancestors.
2391  */
2392 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2393 					  unsigned int nr_pages,
2394 					  u64 max_overage)
2395 {
2396 	unsigned long penalty_jiffies;
2397 
2398 	if (!max_overage)
2399 		return 0;
2400 
2401 	/*
2402 	 * We use overage compared to memory.high to calculate the number of
2403 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2404 	 * fairly lenient on small overages, and increasingly harsh when the
2405 	 * memcg in question makes it clear that it has no intention of stopping
2406 	 * its crazy behaviour, so we exponentially increase the delay based on
2407 	 * overage amount.
2408 	 */
2409 	penalty_jiffies = max_overage * max_overage * HZ;
2410 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2411 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2412 
2413 	/*
2414 	 * Factor in the task's own contribution to the overage, such that four
2415 	 * N-sized allocations are throttled approximately the same as one
2416 	 * 4N-sized allocation.
2417 	 *
2418 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2419 	 * larger the current charge patch is than that.
2420 	 */
2421 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2422 }
2423 
2424 /*
2425  * Scheduled by try_charge() to be executed from the userland return path
2426  * and reclaims memory over the high limit.
2427  */
2428 void mem_cgroup_handle_over_high(void)
2429 {
2430 	unsigned long penalty_jiffies;
2431 	unsigned long pflags;
2432 	unsigned long nr_reclaimed;
2433 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2434 	int nr_retries = MAX_RECLAIM_RETRIES;
2435 	struct mem_cgroup *memcg;
2436 	bool in_retry = false;
2437 
2438 	if (likely(!nr_pages))
2439 		return;
2440 
2441 	memcg = get_mem_cgroup_from_mm(current->mm);
2442 	current->memcg_nr_pages_over_high = 0;
2443 
2444 retry_reclaim:
2445 	/*
2446 	 * The allocating task should reclaim at least the batch size, but for
2447 	 * subsequent retries we only want to do what's necessary to prevent oom
2448 	 * or breaching resource isolation.
2449 	 *
2450 	 * This is distinct from memory.max or page allocator behaviour because
2451 	 * memory.high is currently batched, whereas memory.max and the page
2452 	 * allocator run every time an allocation is made.
2453 	 */
2454 	nr_reclaimed = reclaim_high(memcg,
2455 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2456 				    GFP_KERNEL);
2457 
2458 	/*
2459 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2460 	 * allocators proactively to slow down excessive growth.
2461 	 */
2462 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2463 					       mem_find_max_overage(memcg));
2464 
2465 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2466 						swap_find_max_overage(memcg));
2467 
2468 	/*
2469 	 * Clamp the max delay per usermode return so as to still keep the
2470 	 * application moving forwards and also permit diagnostics, albeit
2471 	 * extremely slowly.
2472 	 */
2473 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2474 
2475 	/*
2476 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2477 	 * that it's not even worth doing, in an attempt to be nice to those who
2478 	 * go only a small amount over their memory.high value and maybe haven't
2479 	 * been aggressively reclaimed enough yet.
2480 	 */
2481 	if (penalty_jiffies <= HZ / 100)
2482 		goto out;
2483 
2484 	/*
2485 	 * If reclaim is making forward progress but we're still over
2486 	 * memory.high, we want to encourage that rather than doing allocator
2487 	 * throttling.
2488 	 */
2489 	if (nr_reclaimed || nr_retries--) {
2490 		in_retry = true;
2491 		goto retry_reclaim;
2492 	}
2493 
2494 	/*
2495 	 * If we exit early, we're guaranteed to die (since
2496 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2497 	 * need to account for any ill-begotten jiffies to pay them off later.
2498 	 */
2499 	psi_memstall_enter(&pflags);
2500 	schedule_timeout_killable(penalty_jiffies);
2501 	psi_memstall_leave(&pflags);
2502 
2503 out:
2504 	css_put(&memcg->css);
2505 }
2506 
2507 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2508 		      unsigned int nr_pages)
2509 {
2510 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2511 	int nr_retries = MAX_RECLAIM_RETRIES;
2512 	struct mem_cgroup *mem_over_limit;
2513 	struct page_counter *counter;
2514 	enum oom_status oom_status;
2515 	unsigned long nr_reclaimed;
2516 	bool may_swap = true;
2517 	bool drained = false;
2518 	unsigned long pflags;
2519 
2520 	if (mem_cgroup_is_root(memcg))
2521 		return 0;
2522 retry:
2523 	if (consume_stock(memcg, nr_pages))
2524 		return 0;
2525 
2526 	if (!do_memsw_account() ||
2527 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2528 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2529 			goto done_restock;
2530 		if (do_memsw_account())
2531 			page_counter_uncharge(&memcg->memsw, batch);
2532 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2533 	} else {
2534 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2535 		may_swap = false;
2536 	}
2537 
2538 	if (batch > nr_pages) {
2539 		batch = nr_pages;
2540 		goto retry;
2541 	}
2542 
2543 	/*
2544 	 * Memcg doesn't have a dedicated reserve for atomic
2545 	 * allocations. But like the global atomic pool, we need to
2546 	 * put the burden of reclaim on regular allocation requests
2547 	 * and let these go through as privileged allocations.
2548 	 */
2549 	if (gfp_mask & __GFP_ATOMIC)
2550 		goto force;
2551 
2552 	/*
2553 	 * Unlike in global OOM situations, memcg is not in a physical
2554 	 * memory shortage.  Allow dying and OOM-killed tasks to
2555 	 * bypass the last charges so that they can exit quickly and
2556 	 * free their memory.
2557 	 */
2558 	if (unlikely(should_force_charge()))
2559 		goto force;
2560 
2561 	/*
2562 	 * Prevent unbounded recursion when reclaim operations need to
2563 	 * allocate memory. This might exceed the limits temporarily,
2564 	 * but we prefer facilitating memory reclaim and getting back
2565 	 * under the limit over triggering OOM kills in these cases.
2566 	 */
2567 	if (unlikely(current->flags & PF_MEMALLOC))
2568 		goto force;
2569 
2570 	if (unlikely(task_in_memcg_oom(current)))
2571 		goto nomem;
2572 
2573 	if (!gfpflags_allow_blocking(gfp_mask))
2574 		goto nomem;
2575 
2576 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2577 
2578 	psi_memstall_enter(&pflags);
2579 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2580 						    gfp_mask, may_swap);
2581 	psi_memstall_leave(&pflags);
2582 
2583 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2584 		goto retry;
2585 
2586 	if (!drained) {
2587 		drain_all_stock(mem_over_limit);
2588 		drained = true;
2589 		goto retry;
2590 	}
2591 
2592 	if (gfp_mask & __GFP_NORETRY)
2593 		goto nomem;
2594 	/*
2595 	 * Even though the limit is exceeded at this point, reclaim
2596 	 * may have been able to free some pages.  Retry the charge
2597 	 * before killing the task.
2598 	 *
2599 	 * Only for regular pages, though: huge pages are rather
2600 	 * unlikely to succeed so close to the limit, and we fall back
2601 	 * to regular pages anyway in case of failure.
2602 	 */
2603 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2604 		goto retry;
2605 	/*
2606 	 * At task move, charge accounts can be doubly counted. So, it's
2607 	 * better to wait until the end of task_move if something is going on.
2608 	 */
2609 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2610 		goto retry;
2611 
2612 	if (nr_retries--)
2613 		goto retry;
2614 
2615 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2616 		goto nomem;
2617 
2618 	if (fatal_signal_pending(current))
2619 		goto force;
2620 
2621 	/*
2622 	 * keep retrying as long as the memcg oom killer is able to make
2623 	 * a forward progress or bypass the charge if the oom killer
2624 	 * couldn't make any progress.
2625 	 */
2626 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2627 		       get_order(nr_pages * PAGE_SIZE));
2628 	switch (oom_status) {
2629 	case OOM_SUCCESS:
2630 		nr_retries = MAX_RECLAIM_RETRIES;
2631 		goto retry;
2632 	case OOM_FAILED:
2633 		goto force;
2634 	default:
2635 		goto nomem;
2636 	}
2637 nomem:
2638 	if (!(gfp_mask & __GFP_NOFAIL))
2639 		return -ENOMEM;
2640 force:
2641 	/*
2642 	 * The allocation either can't fail or will lead to more memory
2643 	 * being freed very soon.  Allow memory usage go over the limit
2644 	 * temporarily by force charging it.
2645 	 */
2646 	page_counter_charge(&memcg->memory, nr_pages);
2647 	if (do_memsw_account())
2648 		page_counter_charge(&memcg->memsw, nr_pages);
2649 
2650 	return 0;
2651 
2652 done_restock:
2653 	if (batch > nr_pages)
2654 		refill_stock(memcg, batch - nr_pages);
2655 
2656 	/*
2657 	 * If the hierarchy is above the normal consumption range, schedule
2658 	 * reclaim on returning to userland.  We can perform reclaim here
2659 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2660 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2661 	 * not recorded as it most likely matches current's and won't
2662 	 * change in the meantime.  As high limit is checked again before
2663 	 * reclaim, the cost of mismatch is negligible.
2664 	 */
2665 	do {
2666 		bool mem_high, swap_high;
2667 
2668 		mem_high = page_counter_read(&memcg->memory) >
2669 			READ_ONCE(memcg->memory.high);
2670 		swap_high = page_counter_read(&memcg->swap) >
2671 			READ_ONCE(memcg->swap.high);
2672 
2673 		/* Don't bother a random interrupted task */
2674 		if (in_interrupt()) {
2675 			if (mem_high) {
2676 				schedule_work(&memcg->high_work);
2677 				break;
2678 			}
2679 			continue;
2680 		}
2681 
2682 		if (mem_high || swap_high) {
2683 			/*
2684 			 * The allocating tasks in this cgroup will need to do
2685 			 * reclaim or be throttled to prevent further growth
2686 			 * of the memory or swap footprints.
2687 			 *
2688 			 * Target some best-effort fairness between the tasks,
2689 			 * and distribute reclaim work and delay penalties
2690 			 * based on how much each task is actually allocating.
2691 			 */
2692 			current->memcg_nr_pages_over_high += batch;
2693 			set_notify_resume(current);
2694 			break;
2695 		}
2696 	} while ((memcg = parent_mem_cgroup(memcg)));
2697 
2698 	return 0;
2699 }
2700 
2701 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2702 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2703 {
2704 	if (mem_cgroup_is_root(memcg))
2705 		return;
2706 
2707 	page_counter_uncharge(&memcg->memory, nr_pages);
2708 	if (do_memsw_account())
2709 		page_counter_uncharge(&memcg->memsw, nr_pages);
2710 }
2711 #endif
2712 
2713 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2714 {
2715 	VM_BUG_ON_PAGE(page_memcg(page), page);
2716 	/*
2717 	 * Any of the following ensures page's memcg stability:
2718 	 *
2719 	 * - the page lock
2720 	 * - LRU isolation
2721 	 * - lock_page_memcg()
2722 	 * - exclusive reference
2723 	 */
2724 	page->memcg_data = (unsigned long)memcg;
2725 }
2726 
2727 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2728 {
2729 	struct mem_cgroup *memcg;
2730 
2731 	rcu_read_lock();
2732 retry:
2733 	memcg = obj_cgroup_memcg(objcg);
2734 	if (unlikely(!css_tryget(&memcg->css)))
2735 		goto retry;
2736 	rcu_read_unlock();
2737 
2738 	return memcg;
2739 }
2740 
2741 #ifdef CONFIG_MEMCG_KMEM
2742 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2743 				 gfp_t gfp, bool new_page)
2744 {
2745 	unsigned int objects = objs_per_slab_page(s, page);
2746 	unsigned long memcg_data;
2747 	void *vec;
2748 
2749 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2750 			   page_to_nid(page));
2751 	if (!vec)
2752 		return -ENOMEM;
2753 
2754 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2755 	if (new_page) {
2756 		/*
2757 		 * If the slab page is brand new and nobody can yet access
2758 		 * it's memcg_data, no synchronization is required and
2759 		 * memcg_data can be simply assigned.
2760 		 */
2761 		page->memcg_data = memcg_data;
2762 	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2763 		/*
2764 		 * If the slab page is already in use, somebody can allocate
2765 		 * and assign obj_cgroups in parallel. In this case the existing
2766 		 * objcg vector should be reused.
2767 		 */
2768 		kfree(vec);
2769 		return 0;
2770 	}
2771 
2772 	kmemleak_not_leak(vec);
2773 	return 0;
2774 }
2775 
2776 /*
2777  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2778  *
2779  * A passed kernel object can be a slab object or a generic kernel page, so
2780  * different mechanisms for getting the memory cgroup pointer should be used.
2781  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2782  * can not know for sure how the kernel object is implemented.
2783  * mem_cgroup_from_obj() can be safely used in such cases.
2784  *
2785  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2786  * cgroup_mutex, etc.
2787  */
2788 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2789 {
2790 	struct page *page;
2791 
2792 	if (mem_cgroup_disabled())
2793 		return NULL;
2794 
2795 	page = virt_to_head_page(p);
2796 
2797 	/*
2798 	 * Slab objects are accounted individually, not per-page.
2799 	 * Memcg membership data for each individual object is saved in
2800 	 * the page->obj_cgroups.
2801 	 */
2802 	if (page_objcgs_check(page)) {
2803 		struct obj_cgroup *objcg;
2804 		unsigned int off;
2805 
2806 		off = obj_to_index(page->slab_cache, page, p);
2807 		objcg = page_objcgs(page)[off];
2808 		if (objcg)
2809 			return obj_cgroup_memcg(objcg);
2810 
2811 		return NULL;
2812 	}
2813 
2814 	/*
2815 	 * page_memcg_check() is used here, because page_has_obj_cgroups()
2816 	 * check above could fail because the object cgroups vector wasn't set
2817 	 * at that moment, but it can be set concurrently.
2818 	 * page_memcg_check(page) will guarantee that a proper memory
2819 	 * cgroup pointer or NULL will be returned.
2820 	 */
2821 	return page_memcg_check(page);
2822 }
2823 
2824 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2825 {
2826 	struct obj_cgroup *objcg = NULL;
2827 	struct mem_cgroup *memcg;
2828 
2829 	if (memcg_kmem_bypass())
2830 		return NULL;
2831 
2832 	rcu_read_lock();
2833 	if (unlikely(active_memcg()))
2834 		memcg = active_memcg();
2835 	else
2836 		memcg = mem_cgroup_from_task(current);
2837 
2838 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2839 		objcg = rcu_dereference(memcg->objcg);
2840 		if (objcg && obj_cgroup_tryget(objcg))
2841 			break;
2842 		objcg = NULL;
2843 	}
2844 	rcu_read_unlock();
2845 
2846 	return objcg;
2847 }
2848 
2849 static int memcg_alloc_cache_id(void)
2850 {
2851 	int id, size;
2852 	int err;
2853 
2854 	id = ida_simple_get(&memcg_cache_ida,
2855 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2856 	if (id < 0)
2857 		return id;
2858 
2859 	if (id < memcg_nr_cache_ids)
2860 		return id;
2861 
2862 	/*
2863 	 * There's no space for the new id in memcg_caches arrays,
2864 	 * so we have to grow them.
2865 	 */
2866 	down_write(&memcg_cache_ids_sem);
2867 
2868 	size = 2 * (id + 1);
2869 	if (size < MEMCG_CACHES_MIN_SIZE)
2870 		size = MEMCG_CACHES_MIN_SIZE;
2871 	else if (size > MEMCG_CACHES_MAX_SIZE)
2872 		size = MEMCG_CACHES_MAX_SIZE;
2873 
2874 	err = memcg_update_all_list_lrus(size);
2875 	if (!err)
2876 		memcg_nr_cache_ids = size;
2877 
2878 	up_write(&memcg_cache_ids_sem);
2879 
2880 	if (err) {
2881 		ida_simple_remove(&memcg_cache_ida, id);
2882 		return err;
2883 	}
2884 	return id;
2885 }
2886 
2887 static void memcg_free_cache_id(int id)
2888 {
2889 	ida_simple_remove(&memcg_cache_ida, id);
2890 }
2891 
2892 /*
2893  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2894  * @objcg: object cgroup to uncharge
2895  * @nr_pages: number of pages to uncharge
2896  */
2897 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2898 				      unsigned int nr_pages)
2899 {
2900 	struct mem_cgroup *memcg;
2901 
2902 	memcg = get_mem_cgroup_from_objcg(objcg);
2903 
2904 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2905 		page_counter_uncharge(&memcg->kmem, nr_pages);
2906 	refill_stock(memcg, nr_pages);
2907 
2908 	css_put(&memcg->css);
2909 }
2910 
2911 /*
2912  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2913  * @objcg: object cgroup to charge
2914  * @gfp: reclaim mode
2915  * @nr_pages: number of pages to charge
2916  *
2917  * Returns 0 on success, an error code on failure.
2918  */
2919 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2920 				   unsigned int nr_pages)
2921 {
2922 	struct page_counter *counter;
2923 	struct mem_cgroup *memcg;
2924 	int ret;
2925 
2926 	memcg = get_mem_cgroup_from_objcg(objcg);
2927 
2928 	ret = try_charge(memcg, gfp, nr_pages);
2929 	if (ret)
2930 		goto out;
2931 
2932 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2933 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2934 
2935 		/*
2936 		 * Enforce __GFP_NOFAIL allocation because callers are not
2937 		 * prepared to see failures and likely do not have any failure
2938 		 * handling code.
2939 		 */
2940 		if (gfp & __GFP_NOFAIL) {
2941 			page_counter_charge(&memcg->kmem, nr_pages);
2942 			goto out;
2943 		}
2944 		cancel_charge(memcg, nr_pages);
2945 		ret = -ENOMEM;
2946 	}
2947 out:
2948 	css_put(&memcg->css);
2949 
2950 	return ret;
2951 }
2952 
2953 /**
2954  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2955  * @page: page to charge
2956  * @gfp: reclaim mode
2957  * @order: allocation order
2958  *
2959  * Returns 0 on success, an error code on failure.
2960  */
2961 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2962 {
2963 	struct obj_cgroup *objcg;
2964 	int ret = 0;
2965 
2966 	objcg = get_obj_cgroup_from_current();
2967 	if (objcg) {
2968 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2969 		if (!ret) {
2970 			page->memcg_data = (unsigned long)objcg |
2971 				MEMCG_DATA_KMEM;
2972 			return 0;
2973 		}
2974 		obj_cgroup_put(objcg);
2975 	}
2976 	return ret;
2977 }
2978 
2979 /**
2980  * __memcg_kmem_uncharge_page: uncharge a kmem page
2981  * @page: page to uncharge
2982  * @order: allocation order
2983  */
2984 void __memcg_kmem_uncharge_page(struct page *page, int order)
2985 {
2986 	struct obj_cgroup *objcg;
2987 	unsigned int nr_pages = 1 << order;
2988 
2989 	if (!PageMemcgKmem(page))
2990 		return;
2991 
2992 	objcg = __page_objcg(page);
2993 	obj_cgroup_uncharge_pages(objcg, nr_pages);
2994 	page->memcg_data = 0;
2995 	obj_cgroup_put(objcg);
2996 }
2997 
2998 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
2999 {
3000 	struct memcg_stock_pcp *stock;
3001 	unsigned long flags;
3002 	bool ret = false;
3003 
3004 	local_irq_save(flags);
3005 
3006 	stock = this_cpu_ptr(&memcg_stock);
3007 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3008 		stock->nr_bytes -= nr_bytes;
3009 		ret = true;
3010 	}
3011 
3012 	local_irq_restore(flags);
3013 
3014 	return ret;
3015 }
3016 
3017 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3018 {
3019 	struct obj_cgroup *old = stock->cached_objcg;
3020 
3021 	if (!old)
3022 		return;
3023 
3024 	if (stock->nr_bytes) {
3025 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3026 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3027 
3028 		if (nr_pages)
3029 			obj_cgroup_uncharge_pages(old, nr_pages);
3030 
3031 		/*
3032 		 * The leftover is flushed to the centralized per-memcg value.
3033 		 * On the next attempt to refill obj stock it will be moved
3034 		 * to a per-cpu stock (probably, on an other CPU), see
3035 		 * refill_obj_stock().
3036 		 *
3037 		 * How often it's flushed is a trade-off between the memory
3038 		 * limit enforcement accuracy and potential CPU contention,
3039 		 * so it might be changed in the future.
3040 		 */
3041 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3042 		stock->nr_bytes = 0;
3043 	}
3044 
3045 	obj_cgroup_put(old);
3046 	stock->cached_objcg = NULL;
3047 }
3048 
3049 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3050 				     struct mem_cgroup *root_memcg)
3051 {
3052 	struct mem_cgroup *memcg;
3053 
3054 	if (stock->cached_objcg) {
3055 		memcg = obj_cgroup_memcg(stock->cached_objcg);
3056 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3057 			return true;
3058 	}
3059 
3060 	return false;
3061 }
3062 
3063 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3064 {
3065 	struct memcg_stock_pcp *stock;
3066 	unsigned long flags;
3067 
3068 	local_irq_save(flags);
3069 
3070 	stock = this_cpu_ptr(&memcg_stock);
3071 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3072 		drain_obj_stock(stock);
3073 		obj_cgroup_get(objcg);
3074 		stock->cached_objcg = objcg;
3075 		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3076 	}
3077 	stock->nr_bytes += nr_bytes;
3078 
3079 	if (stock->nr_bytes > PAGE_SIZE)
3080 		drain_obj_stock(stock);
3081 
3082 	local_irq_restore(flags);
3083 }
3084 
3085 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3086 {
3087 	unsigned int nr_pages, nr_bytes;
3088 	int ret;
3089 
3090 	if (consume_obj_stock(objcg, size))
3091 		return 0;
3092 
3093 	/*
3094 	 * In theory, memcg->nr_charged_bytes can have enough
3095 	 * pre-charged bytes to satisfy the allocation. However,
3096 	 * flushing memcg->nr_charged_bytes requires two atomic
3097 	 * operations, and memcg->nr_charged_bytes can't be big,
3098 	 * so it's better to ignore it and try grab some new pages.
3099 	 * memcg->nr_charged_bytes will be flushed in
3100 	 * refill_obj_stock(), called from this function or
3101 	 * independently later.
3102 	 */
3103 	nr_pages = size >> PAGE_SHIFT;
3104 	nr_bytes = size & (PAGE_SIZE - 1);
3105 
3106 	if (nr_bytes)
3107 		nr_pages += 1;
3108 
3109 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3110 	if (!ret && nr_bytes)
3111 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3112 
3113 	return ret;
3114 }
3115 
3116 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3117 {
3118 	refill_obj_stock(objcg, size);
3119 }
3120 
3121 #endif /* CONFIG_MEMCG_KMEM */
3122 
3123 /*
3124  * Because page_memcg(head) is not set on tails, set it now.
3125  */
3126 void split_page_memcg(struct page *head, unsigned int nr)
3127 {
3128 	struct mem_cgroup *memcg = page_memcg(head);
3129 	int i;
3130 
3131 	if (mem_cgroup_disabled() || !memcg)
3132 		return;
3133 
3134 	for (i = 1; i < nr; i++)
3135 		head[i].memcg_data = head->memcg_data;
3136 
3137 	if (PageMemcgKmem(head))
3138 		obj_cgroup_get_many(__page_objcg(head), nr - 1);
3139 	else
3140 		css_get_many(&memcg->css, nr - 1);
3141 }
3142 
3143 #ifdef CONFIG_MEMCG_SWAP
3144 /**
3145  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3146  * @entry: swap entry to be moved
3147  * @from:  mem_cgroup which the entry is moved from
3148  * @to:  mem_cgroup which the entry is moved to
3149  *
3150  * It succeeds only when the swap_cgroup's record for this entry is the same
3151  * as the mem_cgroup's id of @from.
3152  *
3153  * Returns 0 on success, -EINVAL on failure.
3154  *
3155  * The caller must have charged to @to, IOW, called page_counter_charge() about
3156  * both res and memsw, and called css_get().
3157  */
3158 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3159 				struct mem_cgroup *from, struct mem_cgroup *to)
3160 {
3161 	unsigned short old_id, new_id;
3162 
3163 	old_id = mem_cgroup_id(from);
3164 	new_id = mem_cgroup_id(to);
3165 
3166 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3167 		mod_memcg_state(from, MEMCG_SWAP, -1);
3168 		mod_memcg_state(to, MEMCG_SWAP, 1);
3169 		return 0;
3170 	}
3171 	return -EINVAL;
3172 }
3173 #else
3174 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3175 				struct mem_cgroup *from, struct mem_cgroup *to)
3176 {
3177 	return -EINVAL;
3178 }
3179 #endif
3180 
3181 static DEFINE_MUTEX(memcg_max_mutex);
3182 
3183 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3184 				 unsigned long max, bool memsw)
3185 {
3186 	bool enlarge = false;
3187 	bool drained = false;
3188 	int ret;
3189 	bool limits_invariant;
3190 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3191 
3192 	do {
3193 		if (signal_pending(current)) {
3194 			ret = -EINTR;
3195 			break;
3196 		}
3197 
3198 		mutex_lock(&memcg_max_mutex);
3199 		/*
3200 		 * Make sure that the new limit (memsw or memory limit) doesn't
3201 		 * break our basic invariant rule memory.max <= memsw.max.
3202 		 */
3203 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3204 					   max <= memcg->memsw.max;
3205 		if (!limits_invariant) {
3206 			mutex_unlock(&memcg_max_mutex);
3207 			ret = -EINVAL;
3208 			break;
3209 		}
3210 		if (max > counter->max)
3211 			enlarge = true;
3212 		ret = page_counter_set_max(counter, max);
3213 		mutex_unlock(&memcg_max_mutex);
3214 
3215 		if (!ret)
3216 			break;
3217 
3218 		if (!drained) {
3219 			drain_all_stock(memcg);
3220 			drained = true;
3221 			continue;
3222 		}
3223 
3224 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3225 					GFP_KERNEL, !memsw)) {
3226 			ret = -EBUSY;
3227 			break;
3228 		}
3229 	} while (true);
3230 
3231 	if (!ret && enlarge)
3232 		memcg_oom_recover(memcg);
3233 
3234 	return ret;
3235 }
3236 
3237 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3238 					    gfp_t gfp_mask,
3239 					    unsigned long *total_scanned)
3240 {
3241 	unsigned long nr_reclaimed = 0;
3242 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3243 	unsigned long reclaimed;
3244 	int loop = 0;
3245 	struct mem_cgroup_tree_per_node *mctz;
3246 	unsigned long excess;
3247 	unsigned long nr_scanned;
3248 
3249 	if (order > 0)
3250 		return 0;
3251 
3252 	mctz = soft_limit_tree_node(pgdat->node_id);
3253 
3254 	/*
3255 	 * Do not even bother to check the largest node if the root
3256 	 * is empty. Do it lockless to prevent lock bouncing. Races
3257 	 * are acceptable as soft limit is best effort anyway.
3258 	 */
3259 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3260 		return 0;
3261 
3262 	/*
3263 	 * This loop can run a while, specially if mem_cgroup's continuously
3264 	 * keep exceeding their soft limit and putting the system under
3265 	 * pressure
3266 	 */
3267 	do {
3268 		if (next_mz)
3269 			mz = next_mz;
3270 		else
3271 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3272 		if (!mz)
3273 			break;
3274 
3275 		nr_scanned = 0;
3276 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3277 						    gfp_mask, &nr_scanned);
3278 		nr_reclaimed += reclaimed;
3279 		*total_scanned += nr_scanned;
3280 		spin_lock_irq(&mctz->lock);
3281 		__mem_cgroup_remove_exceeded(mz, mctz);
3282 
3283 		/*
3284 		 * If we failed to reclaim anything from this memory cgroup
3285 		 * it is time to move on to the next cgroup
3286 		 */
3287 		next_mz = NULL;
3288 		if (!reclaimed)
3289 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3290 
3291 		excess = soft_limit_excess(mz->memcg);
3292 		/*
3293 		 * One school of thought says that we should not add
3294 		 * back the node to the tree if reclaim returns 0.
3295 		 * But our reclaim could return 0, simply because due
3296 		 * to priority we are exposing a smaller subset of
3297 		 * memory to reclaim from. Consider this as a longer
3298 		 * term TODO.
3299 		 */
3300 		/* If excess == 0, no tree ops */
3301 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3302 		spin_unlock_irq(&mctz->lock);
3303 		css_put(&mz->memcg->css);
3304 		loop++;
3305 		/*
3306 		 * Could not reclaim anything and there are no more
3307 		 * mem cgroups to try or we seem to be looping without
3308 		 * reclaiming anything.
3309 		 */
3310 		if (!nr_reclaimed &&
3311 			(next_mz == NULL ||
3312 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3313 			break;
3314 	} while (!nr_reclaimed);
3315 	if (next_mz)
3316 		css_put(&next_mz->memcg->css);
3317 	return nr_reclaimed;
3318 }
3319 
3320 /*
3321  * Reclaims as many pages from the given memcg as possible.
3322  *
3323  * Caller is responsible for holding css reference for memcg.
3324  */
3325 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3326 {
3327 	int nr_retries = MAX_RECLAIM_RETRIES;
3328 
3329 	/* we call try-to-free pages for make this cgroup empty */
3330 	lru_add_drain_all();
3331 
3332 	drain_all_stock(memcg);
3333 
3334 	/* try to free all pages in this cgroup */
3335 	while (nr_retries && page_counter_read(&memcg->memory)) {
3336 		int progress;
3337 
3338 		if (signal_pending(current))
3339 			return -EINTR;
3340 
3341 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3342 							GFP_KERNEL, true);
3343 		if (!progress) {
3344 			nr_retries--;
3345 			/* maybe some writeback is necessary */
3346 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3347 		}
3348 
3349 	}
3350 
3351 	return 0;
3352 }
3353 
3354 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3355 					    char *buf, size_t nbytes,
3356 					    loff_t off)
3357 {
3358 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3359 
3360 	if (mem_cgroup_is_root(memcg))
3361 		return -EINVAL;
3362 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3363 }
3364 
3365 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3366 				     struct cftype *cft)
3367 {
3368 	return 1;
3369 }
3370 
3371 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3372 				      struct cftype *cft, u64 val)
3373 {
3374 	if (val == 1)
3375 		return 0;
3376 
3377 	pr_warn_once("Non-hierarchical mode is deprecated. "
3378 		     "Please report your usecase to linux-mm@kvack.org if you "
3379 		     "depend on this functionality.\n");
3380 
3381 	return -EINVAL;
3382 }
3383 
3384 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3385 {
3386 	unsigned long val;
3387 
3388 	if (mem_cgroup_is_root(memcg)) {
3389 		cgroup_rstat_flush(memcg->css.cgroup);
3390 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3391 			memcg_page_state(memcg, NR_ANON_MAPPED);
3392 		if (swap)
3393 			val += memcg_page_state(memcg, MEMCG_SWAP);
3394 	} else {
3395 		if (!swap)
3396 			val = page_counter_read(&memcg->memory);
3397 		else
3398 			val = page_counter_read(&memcg->memsw);
3399 	}
3400 	return val;
3401 }
3402 
3403 enum {
3404 	RES_USAGE,
3405 	RES_LIMIT,
3406 	RES_MAX_USAGE,
3407 	RES_FAILCNT,
3408 	RES_SOFT_LIMIT,
3409 };
3410 
3411 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3412 			       struct cftype *cft)
3413 {
3414 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3415 	struct page_counter *counter;
3416 
3417 	switch (MEMFILE_TYPE(cft->private)) {
3418 	case _MEM:
3419 		counter = &memcg->memory;
3420 		break;
3421 	case _MEMSWAP:
3422 		counter = &memcg->memsw;
3423 		break;
3424 	case _KMEM:
3425 		counter = &memcg->kmem;
3426 		break;
3427 	case _TCP:
3428 		counter = &memcg->tcpmem;
3429 		break;
3430 	default:
3431 		BUG();
3432 	}
3433 
3434 	switch (MEMFILE_ATTR(cft->private)) {
3435 	case RES_USAGE:
3436 		if (counter == &memcg->memory)
3437 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3438 		if (counter == &memcg->memsw)
3439 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3440 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3441 	case RES_LIMIT:
3442 		return (u64)counter->max * PAGE_SIZE;
3443 	case RES_MAX_USAGE:
3444 		return (u64)counter->watermark * PAGE_SIZE;
3445 	case RES_FAILCNT:
3446 		return counter->failcnt;
3447 	case RES_SOFT_LIMIT:
3448 		return (u64)memcg->soft_limit * PAGE_SIZE;
3449 	default:
3450 		BUG();
3451 	}
3452 }
3453 
3454 #ifdef CONFIG_MEMCG_KMEM
3455 static int memcg_online_kmem(struct mem_cgroup *memcg)
3456 {
3457 	struct obj_cgroup *objcg;
3458 	int memcg_id;
3459 
3460 	if (cgroup_memory_nokmem)
3461 		return 0;
3462 
3463 	BUG_ON(memcg->kmemcg_id >= 0);
3464 	BUG_ON(memcg->kmem_state);
3465 
3466 	memcg_id = memcg_alloc_cache_id();
3467 	if (memcg_id < 0)
3468 		return memcg_id;
3469 
3470 	objcg = obj_cgroup_alloc();
3471 	if (!objcg) {
3472 		memcg_free_cache_id(memcg_id);
3473 		return -ENOMEM;
3474 	}
3475 	objcg->memcg = memcg;
3476 	rcu_assign_pointer(memcg->objcg, objcg);
3477 
3478 	static_branch_enable(&memcg_kmem_enabled_key);
3479 
3480 	memcg->kmemcg_id = memcg_id;
3481 	memcg->kmem_state = KMEM_ONLINE;
3482 
3483 	return 0;
3484 }
3485 
3486 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3487 {
3488 	struct cgroup_subsys_state *css;
3489 	struct mem_cgroup *parent, *child;
3490 	int kmemcg_id;
3491 
3492 	if (memcg->kmem_state != KMEM_ONLINE)
3493 		return;
3494 
3495 	memcg->kmem_state = KMEM_ALLOCATED;
3496 
3497 	parent = parent_mem_cgroup(memcg);
3498 	if (!parent)
3499 		parent = root_mem_cgroup;
3500 
3501 	memcg_reparent_objcgs(memcg, parent);
3502 
3503 	kmemcg_id = memcg->kmemcg_id;
3504 	BUG_ON(kmemcg_id < 0);
3505 
3506 	/*
3507 	 * Change kmemcg_id of this cgroup and all its descendants to the
3508 	 * parent's id, and then move all entries from this cgroup's list_lrus
3509 	 * to ones of the parent. After we have finished, all list_lrus
3510 	 * corresponding to this cgroup are guaranteed to remain empty. The
3511 	 * ordering is imposed by list_lru_node->lock taken by
3512 	 * memcg_drain_all_list_lrus().
3513 	 */
3514 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3515 	css_for_each_descendant_pre(css, &memcg->css) {
3516 		child = mem_cgroup_from_css(css);
3517 		BUG_ON(child->kmemcg_id != kmemcg_id);
3518 		child->kmemcg_id = parent->kmemcg_id;
3519 	}
3520 	rcu_read_unlock();
3521 
3522 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3523 
3524 	memcg_free_cache_id(kmemcg_id);
3525 }
3526 
3527 static void memcg_free_kmem(struct mem_cgroup *memcg)
3528 {
3529 	/* css_alloc() failed, offlining didn't happen */
3530 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3531 		memcg_offline_kmem(memcg);
3532 }
3533 #else
3534 static int memcg_online_kmem(struct mem_cgroup *memcg)
3535 {
3536 	return 0;
3537 }
3538 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3539 {
3540 }
3541 static void memcg_free_kmem(struct mem_cgroup *memcg)
3542 {
3543 }
3544 #endif /* CONFIG_MEMCG_KMEM */
3545 
3546 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3547 				 unsigned long max)
3548 {
3549 	int ret;
3550 
3551 	mutex_lock(&memcg_max_mutex);
3552 	ret = page_counter_set_max(&memcg->kmem, max);
3553 	mutex_unlock(&memcg_max_mutex);
3554 	return ret;
3555 }
3556 
3557 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3558 {
3559 	int ret;
3560 
3561 	mutex_lock(&memcg_max_mutex);
3562 
3563 	ret = page_counter_set_max(&memcg->tcpmem, max);
3564 	if (ret)
3565 		goto out;
3566 
3567 	if (!memcg->tcpmem_active) {
3568 		/*
3569 		 * The active flag needs to be written after the static_key
3570 		 * update. This is what guarantees that the socket activation
3571 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3572 		 * for details, and note that we don't mark any socket as
3573 		 * belonging to this memcg until that flag is up.
3574 		 *
3575 		 * We need to do this, because static_keys will span multiple
3576 		 * sites, but we can't control their order. If we mark a socket
3577 		 * as accounted, but the accounting functions are not patched in
3578 		 * yet, we'll lose accounting.
3579 		 *
3580 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3581 		 * because when this value change, the code to process it is not
3582 		 * patched in yet.
3583 		 */
3584 		static_branch_inc(&memcg_sockets_enabled_key);
3585 		memcg->tcpmem_active = true;
3586 	}
3587 out:
3588 	mutex_unlock(&memcg_max_mutex);
3589 	return ret;
3590 }
3591 
3592 /*
3593  * The user of this function is...
3594  * RES_LIMIT.
3595  */
3596 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3597 				char *buf, size_t nbytes, loff_t off)
3598 {
3599 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3600 	unsigned long nr_pages;
3601 	int ret;
3602 
3603 	buf = strstrip(buf);
3604 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3605 	if (ret)
3606 		return ret;
3607 
3608 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3609 	case RES_LIMIT:
3610 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3611 			ret = -EINVAL;
3612 			break;
3613 		}
3614 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3615 		case _MEM:
3616 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3617 			break;
3618 		case _MEMSWAP:
3619 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3620 			break;
3621 		case _KMEM:
3622 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3623 				     "Please report your usecase to linux-mm@kvack.org if you "
3624 				     "depend on this functionality.\n");
3625 			ret = memcg_update_kmem_max(memcg, nr_pages);
3626 			break;
3627 		case _TCP:
3628 			ret = memcg_update_tcp_max(memcg, nr_pages);
3629 			break;
3630 		}
3631 		break;
3632 	case RES_SOFT_LIMIT:
3633 		memcg->soft_limit = nr_pages;
3634 		ret = 0;
3635 		break;
3636 	}
3637 	return ret ?: nbytes;
3638 }
3639 
3640 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3641 				size_t nbytes, loff_t off)
3642 {
3643 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3644 	struct page_counter *counter;
3645 
3646 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3647 	case _MEM:
3648 		counter = &memcg->memory;
3649 		break;
3650 	case _MEMSWAP:
3651 		counter = &memcg->memsw;
3652 		break;
3653 	case _KMEM:
3654 		counter = &memcg->kmem;
3655 		break;
3656 	case _TCP:
3657 		counter = &memcg->tcpmem;
3658 		break;
3659 	default:
3660 		BUG();
3661 	}
3662 
3663 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3664 	case RES_MAX_USAGE:
3665 		page_counter_reset_watermark(counter);
3666 		break;
3667 	case RES_FAILCNT:
3668 		counter->failcnt = 0;
3669 		break;
3670 	default:
3671 		BUG();
3672 	}
3673 
3674 	return nbytes;
3675 }
3676 
3677 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3678 					struct cftype *cft)
3679 {
3680 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3681 }
3682 
3683 #ifdef CONFIG_MMU
3684 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3685 					struct cftype *cft, u64 val)
3686 {
3687 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3688 
3689 	if (val & ~MOVE_MASK)
3690 		return -EINVAL;
3691 
3692 	/*
3693 	 * No kind of locking is needed in here, because ->can_attach() will
3694 	 * check this value once in the beginning of the process, and then carry
3695 	 * on with stale data. This means that changes to this value will only
3696 	 * affect task migrations starting after the change.
3697 	 */
3698 	memcg->move_charge_at_immigrate = val;
3699 	return 0;
3700 }
3701 #else
3702 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3703 					struct cftype *cft, u64 val)
3704 {
3705 	return -ENOSYS;
3706 }
3707 #endif
3708 
3709 #ifdef CONFIG_NUMA
3710 
3711 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3712 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3713 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3714 
3715 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3716 				int nid, unsigned int lru_mask, bool tree)
3717 {
3718 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3719 	unsigned long nr = 0;
3720 	enum lru_list lru;
3721 
3722 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3723 
3724 	for_each_lru(lru) {
3725 		if (!(BIT(lru) & lru_mask))
3726 			continue;
3727 		if (tree)
3728 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3729 		else
3730 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3731 	}
3732 	return nr;
3733 }
3734 
3735 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3736 					     unsigned int lru_mask,
3737 					     bool tree)
3738 {
3739 	unsigned long nr = 0;
3740 	enum lru_list lru;
3741 
3742 	for_each_lru(lru) {
3743 		if (!(BIT(lru) & lru_mask))
3744 			continue;
3745 		if (tree)
3746 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3747 		else
3748 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3749 	}
3750 	return nr;
3751 }
3752 
3753 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3754 {
3755 	struct numa_stat {
3756 		const char *name;
3757 		unsigned int lru_mask;
3758 	};
3759 
3760 	static const struct numa_stat stats[] = {
3761 		{ "total", LRU_ALL },
3762 		{ "file", LRU_ALL_FILE },
3763 		{ "anon", LRU_ALL_ANON },
3764 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3765 	};
3766 	const struct numa_stat *stat;
3767 	int nid;
3768 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3769 
3770 	cgroup_rstat_flush(memcg->css.cgroup);
3771 
3772 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3773 		seq_printf(m, "%s=%lu", stat->name,
3774 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3775 						   false));
3776 		for_each_node_state(nid, N_MEMORY)
3777 			seq_printf(m, " N%d=%lu", nid,
3778 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3779 							stat->lru_mask, false));
3780 		seq_putc(m, '\n');
3781 	}
3782 
3783 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3784 
3785 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3786 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3787 						   true));
3788 		for_each_node_state(nid, N_MEMORY)
3789 			seq_printf(m, " N%d=%lu", nid,
3790 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3791 							stat->lru_mask, true));
3792 		seq_putc(m, '\n');
3793 	}
3794 
3795 	return 0;
3796 }
3797 #endif /* CONFIG_NUMA */
3798 
3799 static const unsigned int memcg1_stats[] = {
3800 	NR_FILE_PAGES,
3801 	NR_ANON_MAPPED,
3802 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3803 	NR_ANON_THPS,
3804 #endif
3805 	NR_SHMEM,
3806 	NR_FILE_MAPPED,
3807 	NR_FILE_DIRTY,
3808 	NR_WRITEBACK,
3809 	MEMCG_SWAP,
3810 };
3811 
3812 static const char *const memcg1_stat_names[] = {
3813 	"cache",
3814 	"rss",
3815 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3816 	"rss_huge",
3817 #endif
3818 	"shmem",
3819 	"mapped_file",
3820 	"dirty",
3821 	"writeback",
3822 	"swap",
3823 };
3824 
3825 /* Universal VM events cgroup1 shows, original sort order */
3826 static const unsigned int memcg1_events[] = {
3827 	PGPGIN,
3828 	PGPGOUT,
3829 	PGFAULT,
3830 	PGMAJFAULT,
3831 };
3832 
3833 static int memcg_stat_show(struct seq_file *m, void *v)
3834 {
3835 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3836 	unsigned long memory, memsw;
3837 	struct mem_cgroup *mi;
3838 	unsigned int i;
3839 
3840 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3841 
3842 	cgroup_rstat_flush(memcg->css.cgroup);
3843 
3844 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3845 		unsigned long nr;
3846 
3847 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3848 			continue;
3849 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3850 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3851 	}
3852 
3853 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3854 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3855 			   memcg_events_local(memcg, memcg1_events[i]));
3856 
3857 	for (i = 0; i < NR_LRU_LISTS; i++)
3858 		seq_printf(m, "%s %lu\n", lru_list_name(i),
3859 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3860 			   PAGE_SIZE);
3861 
3862 	/* Hierarchical information */
3863 	memory = memsw = PAGE_COUNTER_MAX;
3864 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3865 		memory = min(memory, READ_ONCE(mi->memory.max));
3866 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
3867 	}
3868 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3869 		   (u64)memory * PAGE_SIZE);
3870 	if (do_memsw_account())
3871 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3872 			   (u64)memsw * PAGE_SIZE);
3873 
3874 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3875 		unsigned long nr;
3876 
3877 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3878 			continue;
3879 		nr = memcg_page_state(memcg, memcg1_stats[i]);
3880 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3881 						(u64)nr * PAGE_SIZE);
3882 	}
3883 
3884 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3885 		seq_printf(m, "total_%s %llu\n",
3886 			   vm_event_name(memcg1_events[i]),
3887 			   (u64)memcg_events(memcg, memcg1_events[i]));
3888 
3889 	for (i = 0; i < NR_LRU_LISTS; i++)
3890 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3891 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3892 			   PAGE_SIZE);
3893 
3894 #ifdef CONFIG_DEBUG_VM
3895 	{
3896 		pg_data_t *pgdat;
3897 		struct mem_cgroup_per_node *mz;
3898 		unsigned long anon_cost = 0;
3899 		unsigned long file_cost = 0;
3900 
3901 		for_each_online_pgdat(pgdat) {
3902 			mz = memcg->nodeinfo[pgdat->node_id];
3903 
3904 			anon_cost += mz->lruvec.anon_cost;
3905 			file_cost += mz->lruvec.file_cost;
3906 		}
3907 		seq_printf(m, "anon_cost %lu\n", anon_cost);
3908 		seq_printf(m, "file_cost %lu\n", file_cost);
3909 	}
3910 #endif
3911 
3912 	return 0;
3913 }
3914 
3915 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3916 				      struct cftype *cft)
3917 {
3918 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3919 
3920 	return mem_cgroup_swappiness(memcg);
3921 }
3922 
3923 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3924 				       struct cftype *cft, u64 val)
3925 {
3926 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3927 
3928 	if (val > 100)
3929 		return -EINVAL;
3930 
3931 	if (!mem_cgroup_is_root(memcg))
3932 		memcg->swappiness = val;
3933 	else
3934 		vm_swappiness = val;
3935 
3936 	return 0;
3937 }
3938 
3939 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3940 {
3941 	struct mem_cgroup_threshold_ary *t;
3942 	unsigned long usage;
3943 	int i;
3944 
3945 	rcu_read_lock();
3946 	if (!swap)
3947 		t = rcu_dereference(memcg->thresholds.primary);
3948 	else
3949 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3950 
3951 	if (!t)
3952 		goto unlock;
3953 
3954 	usage = mem_cgroup_usage(memcg, swap);
3955 
3956 	/*
3957 	 * current_threshold points to threshold just below or equal to usage.
3958 	 * If it's not true, a threshold was crossed after last
3959 	 * call of __mem_cgroup_threshold().
3960 	 */
3961 	i = t->current_threshold;
3962 
3963 	/*
3964 	 * Iterate backward over array of thresholds starting from
3965 	 * current_threshold and check if a threshold is crossed.
3966 	 * If none of thresholds below usage is crossed, we read
3967 	 * only one element of the array here.
3968 	 */
3969 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3970 		eventfd_signal(t->entries[i].eventfd, 1);
3971 
3972 	/* i = current_threshold + 1 */
3973 	i++;
3974 
3975 	/*
3976 	 * Iterate forward over array of thresholds starting from
3977 	 * current_threshold+1 and check if a threshold is crossed.
3978 	 * If none of thresholds above usage is crossed, we read
3979 	 * only one element of the array here.
3980 	 */
3981 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3982 		eventfd_signal(t->entries[i].eventfd, 1);
3983 
3984 	/* Update current_threshold */
3985 	t->current_threshold = i - 1;
3986 unlock:
3987 	rcu_read_unlock();
3988 }
3989 
3990 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3991 {
3992 	while (memcg) {
3993 		__mem_cgroup_threshold(memcg, false);
3994 		if (do_memsw_account())
3995 			__mem_cgroup_threshold(memcg, true);
3996 
3997 		memcg = parent_mem_cgroup(memcg);
3998 	}
3999 }
4000 
4001 static int compare_thresholds(const void *a, const void *b)
4002 {
4003 	const struct mem_cgroup_threshold *_a = a;
4004 	const struct mem_cgroup_threshold *_b = b;
4005 
4006 	if (_a->threshold > _b->threshold)
4007 		return 1;
4008 
4009 	if (_a->threshold < _b->threshold)
4010 		return -1;
4011 
4012 	return 0;
4013 }
4014 
4015 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4016 {
4017 	struct mem_cgroup_eventfd_list *ev;
4018 
4019 	spin_lock(&memcg_oom_lock);
4020 
4021 	list_for_each_entry(ev, &memcg->oom_notify, list)
4022 		eventfd_signal(ev->eventfd, 1);
4023 
4024 	spin_unlock(&memcg_oom_lock);
4025 	return 0;
4026 }
4027 
4028 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4029 {
4030 	struct mem_cgroup *iter;
4031 
4032 	for_each_mem_cgroup_tree(iter, memcg)
4033 		mem_cgroup_oom_notify_cb(iter);
4034 }
4035 
4036 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4037 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4038 {
4039 	struct mem_cgroup_thresholds *thresholds;
4040 	struct mem_cgroup_threshold_ary *new;
4041 	unsigned long threshold;
4042 	unsigned long usage;
4043 	int i, size, ret;
4044 
4045 	ret = page_counter_memparse(args, "-1", &threshold);
4046 	if (ret)
4047 		return ret;
4048 
4049 	mutex_lock(&memcg->thresholds_lock);
4050 
4051 	if (type == _MEM) {
4052 		thresholds = &memcg->thresholds;
4053 		usage = mem_cgroup_usage(memcg, false);
4054 	} else if (type == _MEMSWAP) {
4055 		thresholds = &memcg->memsw_thresholds;
4056 		usage = mem_cgroup_usage(memcg, true);
4057 	} else
4058 		BUG();
4059 
4060 	/* Check if a threshold crossed before adding a new one */
4061 	if (thresholds->primary)
4062 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4063 
4064 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4065 
4066 	/* Allocate memory for new array of thresholds */
4067 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4068 	if (!new) {
4069 		ret = -ENOMEM;
4070 		goto unlock;
4071 	}
4072 	new->size = size;
4073 
4074 	/* Copy thresholds (if any) to new array */
4075 	if (thresholds->primary)
4076 		memcpy(new->entries, thresholds->primary->entries,
4077 		       flex_array_size(new, entries, size - 1));
4078 
4079 	/* Add new threshold */
4080 	new->entries[size - 1].eventfd = eventfd;
4081 	new->entries[size - 1].threshold = threshold;
4082 
4083 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4084 	sort(new->entries, size, sizeof(*new->entries),
4085 			compare_thresholds, NULL);
4086 
4087 	/* Find current threshold */
4088 	new->current_threshold = -1;
4089 	for (i = 0; i < size; i++) {
4090 		if (new->entries[i].threshold <= usage) {
4091 			/*
4092 			 * new->current_threshold will not be used until
4093 			 * rcu_assign_pointer(), so it's safe to increment
4094 			 * it here.
4095 			 */
4096 			++new->current_threshold;
4097 		} else
4098 			break;
4099 	}
4100 
4101 	/* Free old spare buffer and save old primary buffer as spare */
4102 	kfree(thresholds->spare);
4103 	thresholds->spare = thresholds->primary;
4104 
4105 	rcu_assign_pointer(thresholds->primary, new);
4106 
4107 	/* To be sure that nobody uses thresholds */
4108 	synchronize_rcu();
4109 
4110 unlock:
4111 	mutex_unlock(&memcg->thresholds_lock);
4112 
4113 	return ret;
4114 }
4115 
4116 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4117 	struct eventfd_ctx *eventfd, const char *args)
4118 {
4119 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4120 }
4121 
4122 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4123 	struct eventfd_ctx *eventfd, const char *args)
4124 {
4125 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4126 }
4127 
4128 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4129 	struct eventfd_ctx *eventfd, enum res_type type)
4130 {
4131 	struct mem_cgroup_thresholds *thresholds;
4132 	struct mem_cgroup_threshold_ary *new;
4133 	unsigned long usage;
4134 	int i, j, size, entries;
4135 
4136 	mutex_lock(&memcg->thresholds_lock);
4137 
4138 	if (type == _MEM) {
4139 		thresholds = &memcg->thresholds;
4140 		usage = mem_cgroup_usage(memcg, false);
4141 	} else if (type == _MEMSWAP) {
4142 		thresholds = &memcg->memsw_thresholds;
4143 		usage = mem_cgroup_usage(memcg, true);
4144 	} else
4145 		BUG();
4146 
4147 	if (!thresholds->primary)
4148 		goto unlock;
4149 
4150 	/* Check if a threshold crossed before removing */
4151 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4152 
4153 	/* Calculate new number of threshold */
4154 	size = entries = 0;
4155 	for (i = 0; i < thresholds->primary->size; i++) {
4156 		if (thresholds->primary->entries[i].eventfd != eventfd)
4157 			size++;
4158 		else
4159 			entries++;
4160 	}
4161 
4162 	new = thresholds->spare;
4163 
4164 	/* If no items related to eventfd have been cleared, nothing to do */
4165 	if (!entries)
4166 		goto unlock;
4167 
4168 	/* Set thresholds array to NULL if we don't have thresholds */
4169 	if (!size) {
4170 		kfree(new);
4171 		new = NULL;
4172 		goto swap_buffers;
4173 	}
4174 
4175 	new->size = size;
4176 
4177 	/* Copy thresholds and find current threshold */
4178 	new->current_threshold = -1;
4179 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4180 		if (thresholds->primary->entries[i].eventfd == eventfd)
4181 			continue;
4182 
4183 		new->entries[j] = thresholds->primary->entries[i];
4184 		if (new->entries[j].threshold <= usage) {
4185 			/*
4186 			 * new->current_threshold will not be used
4187 			 * until rcu_assign_pointer(), so it's safe to increment
4188 			 * it here.
4189 			 */
4190 			++new->current_threshold;
4191 		}
4192 		j++;
4193 	}
4194 
4195 swap_buffers:
4196 	/* Swap primary and spare array */
4197 	thresholds->spare = thresholds->primary;
4198 
4199 	rcu_assign_pointer(thresholds->primary, new);
4200 
4201 	/* To be sure that nobody uses thresholds */
4202 	synchronize_rcu();
4203 
4204 	/* If all events are unregistered, free the spare array */
4205 	if (!new) {
4206 		kfree(thresholds->spare);
4207 		thresholds->spare = NULL;
4208 	}
4209 unlock:
4210 	mutex_unlock(&memcg->thresholds_lock);
4211 }
4212 
4213 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4214 	struct eventfd_ctx *eventfd)
4215 {
4216 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4217 }
4218 
4219 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4220 	struct eventfd_ctx *eventfd)
4221 {
4222 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4223 }
4224 
4225 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4226 	struct eventfd_ctx *eventfd, const char *args)
4227 {
4228 	struct mem_cgroup_eventfd_list *event;
4229 
4230 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4231 	if (!event)
4232 		return -ENOMEM;
4233 
4234 	spin_lock(&memcg_oom_lock);
4235 
4236 	event->eventfd = eventfd;
4237 	list_add(&event->list, &memcg->oom_notify);
4238 
4239 	/* already in OOM ? */
4240 	if (memcg->under_oom)
4241 		eventfd_signal(eventfd, 1);
4242 	spin_unlock(&memcg_oom_lock);
4243 
4244 	return 0;
4245 }
4246 
4247 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4248 	struct eventfd_ctx *eventfd)
4249 {
4250 	struct mem_cgroup_eventfd_list *ev, *tmp;
4251 
4252 	spin_lock(&memcg_oom_lock);
4253 
4254 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4255 		if (ev->eventfd == eventfd) {
4256 			list_del(&ev->list);
4257 			kfree(ev);
4258 		}
4259 	}
4260 
4261 	spin_unlock(&memcg_oom_lock);
4262 }
4263 
4264 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4265 {
4266 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4267 
4268 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4269 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4270 	seq_printf(sf, "oom_kill %lu\n",
4271 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4272 	return 0;
4273 }
4274 
4275 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4276 	struct cftype *cft, u64 val)
4277 {
4278 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4279 
4280 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4281 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4282 		return -EINVAL;
4283 
4284 	memcg->oom_kill_disable = val;
4285 	if (!val)
4286 		memcg_oom_recover(memcg);
4287 
4288 	return 0;
4289 }
4290 
4291 #ifdef CONFIG_CGROUP_WRITEBACK
4292 
4293 #include <trace/events/writeback.h>
4294 
4295 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4296 {
4297 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4298 }
4299 
4300 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4301 {
4302 	wb_domain_exit(&memcg->cgwb_domain);
4303 }
4304 
4305 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4306 {
4307 	wb_domain_size_changed(&memcg->cgwb_domain);
4308 }
4309 
4310 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4311 {
4312 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4313 
4314 	if (!memcg->css.parent)
4315 		return NULL;
4316 
4317 	return &memcg->cgwb_domain;
4318 }
4319 
4320 /**
4321  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4322  * @wb: bdi_writeback in question
4323  * @pfilepages: out parameter for number of file pages
4324  * @pheadroom: out parameter for number of allocatable pages according to memcg
4325  * @pdirty: out parameter for number of dirty pages
4326  * @pwriteback: out parameter for number of pages under writeback
4327  *
4328  * Determine the numbers of file, headroom, dirty, and writeback pages in
4329  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4330  * is a bit more involved.
4331  *
4332  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4333  * headroom is calculated as the lowest headroom of itself and the
4334  * ancestors.  Note that this doesn't consider the actual amount of
4335  * available memory in the system.  The caller should further cap
4336  * *@pheadroom accordingly.
4337  */
4338 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4339 			 unsigned long *pheadroom, unsigned long *pdirty,
4340 			 unsigned long *pwriteback)
4341 {
4342 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4343 	struct mem_cgroup *parent;
4344 
4345 	cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4346 
4347 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4348 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4349 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4350 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4351 
4352 	*pheadroom = PAGE_COUNTER_MAX;
4353 	while ((parent = parent_mem_cgroup(memcg))) {
4354 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4355 					    READ_ONCE(memcg->memory.high));
4356 		unsigned long used = page_counter_read(&memcg->memory);
4357 
4358 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4359 		memcg = parent;
4360 	}
4361 }
4362 
4363 /*
4364  * Foreign dirty flushing
4365  *
4366  * There's an inherent mismatch between memcg and writeback.  The former
4367  * tracks ownership per-page while the latter per-inode.  This was a
4368  * deliberate design decision because honoring per-page ownership in the
4369  * writeback path is complicated, may lead to higher CPU and IO overheads
4370  * and deemed unnecessary given that write-sharing an inode across
4371  * different cgroups isn't a common use-case.
4372  *
4373  * Combined with inode majority-writer ownership switching, this works well
4374  * enough in most cases but there are some pathological cases.  For
4375  * example, let's say there are two cgroups A and B which keep writing to
4376  * different but confined parts of the same inode.  B owns the inode and
4377  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4378  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4379  * triggering background writeback.  A will be slowed down without a way to
4380  * make writeback of the dirty pages happen.
4381  *
4382  * Conditions like the above can lead to a cgroup getting repeatedly and
4383  * severely throttled after making some progress after each
4384  * dirty_expire_interval while the underlying IO device is almost
4385  * completely idle.
4386  *
4387  * Solving this problem completely requires matching the ownership tracking
4388  * granularities between memcg and writeback in either direction.  However,
4389  * the more egregious behaviors can be avoided by simply remembering the
4390  * most recent foreign dirtying events and initiating remote flushes on
4391  * them when local writeback isn't enough to keep the memory clean enough.
4392  *
4393  * The following two functions implement such mechanism.  When a foreign
4394  * page - a page whose memcg and writeback ownerships don't match - is
4395  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4396  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4397  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4398  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4399  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4400  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4401  * limited to MEMCG_CGWB_FRN_CNT.
4402  *
4403  * The mechanism only remembers IDs and doesn't hold any object references.
4404  * As being wrong occasionally doesn't matter, updates and accesses to the
4405  * records are lockless and racy.
4406  */
4407 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4408 					     struct bdi_writeback *wb)
4409 {
4410 	struct mem_cgroup *memcg = page_memcg(page);
4411 	struct memcg_cgwb_frn *frn;
4412 	u64 now = get_jiffies_64();
4413 	u64 oldest_at = now;
4414 	int oldest = -1;
4415 	int i;
4416 
4417 	trace_track_foreign_dirty(page, wb);
4418 
4419 	/*
4420 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4421 	 * using it.  If not replace the oldest one which isn't being
4422 	 * written out.
4423 	 */
4424 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4425 		frn = &memcg->cgwb_frn[i];
4426 		if (frn->bdi_id == wb->bdi->id &&
4427 		    frn->memcg_id == wb->memcg_css->id)
4428 			break;
4429 		if (time_before64(frn->at, oldest_at) &&
4430 		    atomic_read(&frn->done.cnt) == 1) {
4431 			oldest = i;
4432 			oldest_at = frn->at;
4433 		}
4434 	}
4435 
4436 	if (i < MEMCG_CGWB_FRN_CNT) {
4437 		/*
4438 		 * Re-using an existing one.  Update timestamp lazily to
4439 		 * avoid making the cacheline hot.  We want them to be
4440 		 * reasonably up-to-date and significantly shorter than
4441 		 * dirty_expire_interval as that's what expires the record.
4442 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4443 		 */
4444 		unsigned long update_intv =
4445 			min_t(unsigned long, HZ,
4446 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4447 
4448 		if (time_before64(frn->at, now - update_intv))
4449 			frn->at = now;
4450 	} else if (oldest >= 0) {
4451 		/* replace the oldest free one */
4452 		frn = &memcg->cgwb_frn[oldest];
4453 		frn->bdi_id = wb->bdi->id;
4454 		frn->memcg_id = wb->memcg_css->id;
4455 		frn->at = now;
4456 	}
4457 }
4458 
4459 /* issue foreign writeback flushes for recorded foreign dirtying events */
4460 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4461 {
4462 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4463 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4464 	u64 now = jiffies_64;
4465 	int i;
4466 
4467 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4468 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4469 
4470 		/*
4471 		 * If the record is older than dirty_expire_interval,
4472 		 * writeback on it has already started.  No need to kick it
4473 		 * off again.  Also, don't start a new one if there's
4474 		 * already one in flight.
4475 		 */
4476 		if (time_after64(frn->at, now - intv) &&
4477 		    atomic_read(&frn->done.cnt) == 1) {
4478 			frn->at = 0;
4479 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4480 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4481 					       WB_REASON_FOREIGN_FLUSH,
4482 					       &frn->done);
4483 		}
4484 	}
4485 }
4486 
4487 #else	/* CONFIG_CGROUP_WRITEBACK */
4488 
4489 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4490 {
4491 	return 0;
4492 }
4493 
4494 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4495 {
4496 }
4497 
4498 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4499 {
4500 }
4501 
4502 #endif	/* CONFIG_CGROUP_WRITEBACK */
4503 
4504 /*
4505  * DO NOT USE IN NEW FILES.
4506  *
4507  * "cgroup.event_control" implementation.
4508  *
4509  * This is way over-engineered.  It tries to support fully configurable
4510  * events for each user.  Such level of flexibility is completely
4511  * unnecessary especially in the light of the planned unified hierarchy.
4512  *
4513  * Please deprecate this and replace with something simpler if at all
4514  * possible.
4515  */
4516 
4517 /*
4518  * Unregister event and free resources.
4519  *
4520  * Gets called from workqueue.
4521  */
4522 static void memcg_event_remove(struct work_struct *work)
4523 {
4524 	struct mem_cgroup_event *event =
4525 		container_of(work, struct mem_cgroup_event, remove);
4526 	struct mem_cgroup *memcg = event->memcg;
4527 
4528 	remove_wait_queue(event->wqh, &event->wait);
4529 
4530 	event->unregister_event(memcg, event->eventfd);
4531 
4532 	/* Notify userspace the event is going away. */
4533 	eventfd_signal(event->eventfd, 1);
4534 
4535 	eventfd_ctx_put(event->eventfd);
4536 	kfree(event);
4537 	css_put(&memcg->css);
4538 }
4539 
4540 /*
4541  * Gets called on EPOLLHUP on eventfd when user closes it.
4542  *
4543  * Called with wqh->lock held and interrupts disabled.
4544  */
4545 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4546 			    int sync, void *key)
4547 {
4548 	struct mem_cgroup_event *event =
4549 		container_of(wait, struct mem_cgroup_event, wait);
4550 	struct mem_cgroup *memcg = event->memcg;
4551 	__poll_t flags = key_to_poll(key);
4552 
4553 	if (flags & EPOLLHUP) {
4554 		/*
4555 		 * If the event has been detached at cgroup removal, we
4556 		 * can simply return knowing the other side will cleanup
4557 		 * for us.
4558 		 *
4559 		 * We can't race against event freeing since the other
4560 		 * side will require wqh->lock via remove_wait_queue(),
4561 		 * which we hold.
4562 		 */
4563 		spin_lock(&memcg->event_list_lock);
4564 		if (!list_empty(&event->list)) {
4565 			list_del_init(&event->list);
4566 			/*
4567 			 * We are in atomic context, but cgroup_event_remove()
4568 			 * may sleep, so we have to call it in workqueue.
4569 			 */
4570 			schedule_work(&event->remove);
4571 		}
4572 		spin_unlock(&memcg->event_list_lock);
4573 	}
4574 
4575 	return 0;
4576 }
4577 
4578 static void memcg_event_ptable_queue_proc(struct file *file,
4579 		wait_queue_head_t *wqh, poll_table *pt)
4580 {
4581 	struct mem_cgroup_event *event =
4582 		container_of(pt, struct mem_cgroup_event, pt);
4583 
4584 	event->wqh = wqh;
4585 	add_wait_queue(wqh, &event->wait);
4586 }
4587 
4588 /*
4589  * DO NOT USE IN NEW FILES.
4590  *
4591  * Parse input and register new cgroup event handler.
4592  *
4593  * Input must be in format '<event_fd> <control_fd> <args>'.
4594  * Interpretation of args is defined by control file implementation.
4595  */
4596 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4597 					 char *buf, size_t nbytes, loff_t off)
4598 {
4599 	struct cgroup_subsys_state *css = of_css(of);
4600 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4601 	struct mem_cgroup_event *event;
4602 	struct cgroup_subsys_state *cfile_css;
4603 	unsigned int efd, cfd;
4604 	struct fd efile;
4605 	struct fd cfile;
4606 	const char *name;
4607 	char *endp;
4608 	int ret;
4609 
4610 	buf = strstrip(buf);
4611 
4612 	efd = simple_strtoul(buf, &endp, 10);
4613 	if (*endp != ' ')
4614 		return -EINVAL;
4615 	buf = endp + 1;
4616 
4617 	cfd = simple_strtoul(buf, &endp, 10);
4618 	if ((*endp != ' ') && (*endp != '\0'))
4619 		return -EINVAL;
4620 	buf = endp + 1;
4621 
4622 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4623 	if (!event)
4624 		return -ENOMEM;
4625 
4626 	event->memcg = memcg;
4627 	INIT_LIST_HEAD(&event->list);
4628 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4629 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4630 	INIT_WORK(&event->remove, memcg_event_remove);
4631 
4632 	efile = fdget(efd);
4633 	if (!efile.file) {
4634 		ret = -EBADF;
4635 		goto out_kfree;
4636 	}
4637 
4638 	event->eventfd = eventfd_ctx_fileget(efile.file);
4639 	if (IS_ERR(event->eventfd)) {
4640 		ret = PTR_ERR(event->eventfd);
4641 		goto out_put_efile;
4642 	}
4643 
4644 	cfile = fdget(cfd);
4645 	if (!cfile.file) {
4646 		ret = -EBADF;
4647 		goto out_put_eventfd;
4648 	}
4649 
4650 	/* the process need read permission on control file */
4651 	/* AV: shouldn't we check that it's been opened for read instead? */
4652 	ret = file_permission(cfile.file, MAY_READ);
4653 	if (ret < 0)
4654 		goto out_put_cfile;
4655 
4656 	/*
4657 	 * Determine the event callbacks and set them in @event.  This used
4658 	 * to be done via struct cftype but cgroup core no longer knows
4659 	 * about these events.  The following is crude but the whole thing
4660 	 * is for compatibility anyway.
4661 	 *
4662 	 * DO NOT ADD NEW FILES.
4663 	 */
4664 	name = cfile.file->f_path.dentry->d_name.name;
4665 
4666 	if (!strcmp(name, "memory.usage_in_bytes")) {
4667 		event->register_event = mem_cgroup_usage_register_event;
4668 		event->unregister_event = mem_cgroup_usage_unregister_event;
4669 	} else if (!strcmp(name, "memory.oom_control")) {
4670 		event->register_event = mem_cgroup_oom_register_event;
4671 		event->unregister_event = mem_cgroup_oom_unregister_event;
4672 	} else if (!strcmp(name, "memory.pressure_level")) {
4673 		event->register_event = vmpressure_register_event;
4674 		event->unregister_event = vmpressure_unregister_event;
4675 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4676 		event->register_event = memsw_cgroup_usage_register_event;
4677 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4678 	} else {
4679 		ret = -EINVAL;
4680 		goto out_put_cfile;
4681 	}
4682 
4683 	/*
4684 	 * Verify @cfile should belong to @css.  Also, remaining events are
4685 	 * automatically removed on cgroup destruction but the removal is
4686 	 * asynchronous, so take an extra ref on @css.
4687 	 */
4688 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4689 					       &memory_cgrp_subsys);
4690 	ret = -EINVAL;
4691 	if (IS_ERR(cfile_css))
4692 		goto out_put_cfile;
4693 	if (cfile_css != css) {
4694 		css_put(cfile_css);
4695 		goto out_put_cfile;
4696 	}
4697 
4698 	ret = event->register_event(memcg, event->eventfd, buf);
4699 	if (ret)
4700 		goto out_put_css;
4701 
4702 	vfs_poll(efile.file, &event->pt);
4703 
4704 	spin_lock(&memcg->event_list_lock);
4705 	list_add(&event->list, &memcg->event_list);
4706 	spin_unlock(&memcg->event_list_lock);
4707 
4708 	fdput(cfile);
4709 	fdput(efile);
4710 
4711 	return nbytes;
4712 
4713 out_put_css:
4714 	css_put(css);
4715 out_put_cfile:
4716 	fdput(cfile);
4717 out_put_eventfd:
4718 	eventfd_ctx_put(event->eventfd);
4719 out_put_efile:
4720 	fdput(efile);
4721 out_kfree:
4722 	kfree(event);
4723 
4724 	return ret;
4725 }
4726 
4727 static struct cftype mem_cgroup_legacy_files[] = {
4728 	{
4729 		.name = "usage_in_bytes",
4730 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4731 		.read_u64 = mem_cgroup_read_u64,
4732 	},
4733 	{
4734 		.name = "max_usage_in_bytes",
4735 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4736 		.write = mem_cgroup_reset,
4737 		.read_u64 = mem_cgroup_read_u64,
4738 	},
4739 	{
4740 		.name = "limit_in_bytes",
4741 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4742 		.write = mem_cgroup_write,
4743 		.read_u64 = mem_cgroup_read_u64,
4744 	},
4745 	{
4746 		.name = "soft_limit_in_bytes",
4747 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4748 		.write = mem_cgroup_write,
4749 		.read_u64 = mem_cgroup_read_u64,
4750 	},
4751 	{
4752 		.name = "failcnt",
4753 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4754 		.write = mem_cgroup_reset,
4755 		.read_u64 = mem_cgroup_read_u64,
4756 	},
4757 	{
4758 		.name = "stat",
4759 		.seq_show = memcg_stat_show,
4760 	},
4761 	{
4762 		.name = "force_empty",
4763 		.write = mem_cgroup_force_empty_write,
4764 	},
4765 	{
4766 		.name = "use_hierarchy",
4767 		.write_u64 = mem_cgroup_hierarchy_write,
4768 		.read_u64 = mem_cgroup_hierarchy_read,
4769 	},
4770 	{
4771 		.name = "cgroup.event_control",		/* XXX: for compat */
4772 		.write = memcg_write_event_control,
4773 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4774 	},
4775 	{
4776 		.name = "swappiness",
4777 		.read_u64 = mem_cgroup_swappiness_read,
4778 		.write_u64 = mem_cgroup_swappiness_write,
4779 	},
4780 	{
4781 		.name = "move_charge_at_immigrate",
4782 		.read_u64 = mem_cgroup_move_charge_read,
4783 		.write_u64 = mem_cgroup_move_charge_write,
4784 	},
4785 	{
4786 		.name = "oom_control",
4787 		.seq_show = mem_cgroup_oom_control_read,
4788 		.write_u64 = mem_cgroup_oom_control_write,
4789 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4790 	},
4791 	{
4792 		.name = "pressure_level",
4793 	},
4794 #ifdef CONFIG_NUMA
4795 	{
4796 		.name = "numa_stat",
4797 		.seq_show = memcg_numa_stat_show,
4798 	},
4799 #endif
4800 	{
4801 		.name = "kmem.limit_in_bytes",
4802 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4803 		.write = mem_cgroup_write,
4804 		.read_u64 = mem_cgroup_read_u64,
4805 	},
4806 	{
4807 		.name = "kmem.usage_in_bytes",
4808 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4809 		.read_u64 = mem_cgroup_read_u64,
4810 	},
4811 	{
4812 		.name = "kmem.failcnt",
4813 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4814 		.write = mem_cgroup_reset,
4815 		.read_u64 = mem_cgroup_read_u64,
4816 	},
4817 	{
4818 		.name = "kmem.max_usage_in_bytes",
4819 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4820 		.write = mem_cgroup_reset,
4821 		.read_u64 = mem_cgroup_read_u64,
4822 	},
4823 #if defined(CONFIG_MEMCG_KMEM) && \
4824 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4825 	{
4826 		.name = "kmem.slabinfo",
4827 		.seq_show = memcg_slab_show,
4828 	},
4829 #endif
4830 	{
4831 		.name = "kmem.tcp.limit_in_bytes",
4832 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4833 		.write = mem_cgroup_write,
4834 		.read_u64 = mem_cgroup_read_u64,
4835 	},
4836 	{
4837 		.name = "kmem.tcp.usage_in_bytes",
4838 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4839 		.read_u64 = mem_cgroup_read_u64,
4840 	},
4841 	{
4842 		.name = "kmem.tcp.failcnt",
4843 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4844 		.write = mem_cgroup_reset,
4845 		.read_u64 = mem_cgroup_read_u64,
4846 	},
4847 	{
4848 		.name = "kmem.tcp.max_usage_in_bytes",
4849 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4850 		.write = mem_cgroup_reset,
4851 		.read_u64 = mem_cgroup_read_u64,
4852 	},
4853 	{ },	/* terminate */
4854 };
4855 
4856 /*
4857  * Private memory cgroup IDR
4858  *
4859  * Swap-out records and page cache shadow entries need to store memcg
4860  * references in constrained space, so we maintain an ID space that is
4861  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4862  * memory-controlled cgroups to 64k.
4863  *
4864  * However, there usually are many references to the offline CSS after
4865  * the cgroup has been destroyed, such as page cache or reclaimable
4866  * slab objects, that don't need to hang on to the ID. We want to keep
4867  * those dead CSS from occupying IDs, or we might quickly exhaust the
4868  * relatively small ID space and prevent the creation of new cgroups
4869  * even when there are much fewer than 64k cgroups - possibly none.
4870  *
4871  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4872  * be freed and recycled when it's no longer needed, which is usually
4873  * when the CSS is offlined.
4874  *
4875  * The only exception to that are records of swapped out tmpfs/shmem
4876  * pages that need to be attributed to live ancestors on swapin. But
4877  * those references are manageable from userspace.
4878  */
4879 
4880 static DEFINE_IDR(mem_cgroup_idr);
4881 
4882 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4883 {
4884 	if (memcg->id.id > 0) {
4885 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4886 		memcg->id.id = 0;
4887 	}
4888 }
4889 
4890 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4891 						  unsigned int n)
4892 {
4893 	refcount_add(n, &memcg->id.ref);
4894 }
4895 
4896 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4897 {
4898 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4899 		mem_cgroup_id_remove(memcg);
4900 
4901 		/* Memcg ID pins CSS */
4902 		css_put(&memcg->css);
4903 	}
4904 }
4905 
4906 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4907 {
4908 	mem_cgroup_id_put_many(memcg, 1);
4909 }
4910 
4911 /**
4912  * mem_cgroup_from_id - look up a memcg from a memcg id
4913  * @id: the memcg id to look up
4914  *
4915  * Caller must hold rcu_read_lock().
4916  */
4917 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4918 {
4919 	WARN_ON_ONCE(!rcu_read_lock_held());
4920 	return idr_find(&mem_cgroup_idr, id);
4921 }
4922 
4923 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4924 {
4925 	struct mem_cgroup_per_node *pn;
4926 	int tmp = node;
4927 	/*
4928 	 * This routine is called against possible nodes.
4929 	 * But it's BUG to call kmalloc() against offline node.
4930 	 *
4931 	 * TODO: this routine can waste much memory for nodes which will
4932 	 *       never be onlined. It's better to use memory hotplug callback
4933 	 *       function.
4934 	 */
4935 	if (!node_state(node, N_NORMAL_MEMORY))
4936 		tmp = -1;
4937 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4938 	if (!pn)
4939 		return 1;
4940 
4941 	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
4942 						 GFP_KERNEL_ACCOUNT);
4943 	if (!pn->lruvec_stat_local) {
4944 		kfree(pn);
4945 		return 1;
4946 	}
4947 
4948 	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
4949 					       GFP_KERNEL_ACCOUNT);
4950 	if (!pn->lruvec_stat_cpu) {
4951 		free_percpu(pn->lruvec_stat_local);
4952 		kfree(pn);
4953 		return 1;
4954 	}
4955 
4956 	lruvec_init(&pn->lruvec);
4957 	pn->usage_in_excess = 0;
4958 	pn->on_tree = false;
4959 	pn->memcg = memcg;
4960 
4961 	memcg->nodeinfo[node] = pn;
4962 	return 0;
4963 }
4964 
4965 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4966 {
4967 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4968 
4969 	if (!pn)
4970 		return;
4971 
4972 	free_percpu(pn->lruvec_stat_cpu);
4973 	free_percpu(pn->lruvec_stat_local);
4974 	kfree(pn);
4975 }
4976 
4977 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4978 {
4979 	int node;
4980 
4981 	for_each_node(node)
4982 		free_mem_cgroup_per_node_info(memcg, node);
4983 	free_percpu(memcg->vmstats_percpu);
4984 	kfree(memcg);
4985 }
4986 
4987 static void mem_cgroup_free(struct mem_cgroup *memcg)
4988 {
4989 	int cpu;
4990 
4991 	memcg_wb_domain_exit(memcg);
4992 	/*
4993 	 * Flush percpu lruvec stats to guarantee the value
4994 	 * correctness on parent's and all ancestor levels.
4995 	 */
4996 	for_each_online_cpu(cpu)
4997 		memcg_flush_lruvec_page_state(memcg, cpu);
4998 	__mem_cgroup_free(memcg);
4999 }
5000 
5001 static struct mem_cgroup *mem_cgroup_alloc(void)
5002 {
5003 	struct mem_cgroup *memcg;
5004 	unsigned int size;
5005 	int node;
5006 	int __maybe_unused i;
5007 	long error = -ENOMEM;
5008 
5009 	size = sizeof(struct mem_cgroup);
5010 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5011 
5012 	memcg = kzalloc(size, GFP_KERNEL);
5013 	if (!memcg)
5014 		return ERR_PTR(error);
5015 
5016 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5017 				 1, MEM_CGROUP_ID_MAX,
5018 				 GFP_KERNEL);
5019 	if (memcg->id.id < 0) {
5020 		error = memcg->id.id;
5021 		goto fail;
5022 	}
5023 
5024 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5025 						 GFP_KERNEL_ACCOUNT);
5026 	if (!memcg->vmstats_percpu)
5027 		goto fail;
5028 
5029 	for_each_node(node)
5030 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5031 			goto fail;
5032 
5033 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5034 		goto fail;
5035 
5036 	INIT_WORK(&memcg->high_work, high_work_func);
5037 	INIT_LIST_HEAD(&memcg->oom_notify);
5038 	mutex_init(&memcg->thresholds_lock);
5039 	spin_lock_init(&memcg->move_lock);
5040 	vmpressure_init(&memcg->vmpressure);
5041 	INIT_LIST_HEAD(&memcg->event_list);
5042 	spin_lock_init(&memcg->event_list_lock);
5043 	memcg->socket_pressure = jiffies;
5044 #ifdef CONFIG_MEMCG_KMEM
5045 	memcg->kmemcg_id = -1;
5046 	INIT_LIST_HEAD(&memcg->objcg_list);
5047 #endif
5048 #ifdef CONFIG_CGROUP_WRITEBACK
5049 	INIT_LIST_HEAD(&memcg->cgwb_list);
5050 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5051 		memcg->cgwb_frn[i].done =
5052 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5053 #endif
5054 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5055 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5056 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5057 	memcg->deferred_split_queue.split_queue_len = 0;
5058 #endif
5059 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5060 	return memcg;
5061 fail:
5062 	mem_cgroup_id_remove(memcg);
5063 	__mem_cgroup_free(memcg);
5064 	return ERR_PTR(error);
5065 }
5066 
5067 static struct cgroup_subsys_state * __ref
5068 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5069 {
5070 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5071 	struct mem_cgroup *memcg, *old_memcg;
5072 	long error = -ENOMEM;
5073 
5074 	old_memcg = set_active_memcg(parent);
5075 	memcg = mem_cgroup_alloc();
5076 	set_active_memcg(old_memcg);
5077 	if (IS_ERR(memcg))
5078 		return ERR_CAST(memcg);
5079 
5080 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5081 	memcg->soft_limit = PAGE_COUNTER_MAX;
5082 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5083 	if (parent) {
5084 		memcg->swappiness = mem_cgroup_swappiness(parent);
5085 		memcg->oom_kill_disable = parent->oom_kill_disable;
5086 
5087 		page_counter_init(&memcg->memory, &parent->memory);
5088 		page_counter_init(&memcg->swap, &parent->swap);
5089 		page_counter_init(&memcg->kmem, &parent->kmem);
5090 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5091 	} else {
5092 		page_counter_init(&memcg->memory, NULL);
5093 		page_counter_init(&memcg->swap, NULL);
5094 		page_counter_init(&memcg->kmem, NULL);
5095 		page_counter_init(&memcg->tcpmem, NULL);
5096 
5097 		root_mem_cgroup = memcg;
5098 		return &memcg->css;
5099 	}
5100 
5101 	/* The following stuff does not apply to the root */
5102 	error = memcg_online_kmem(memcg);
5103 	if (error)
5104 		goto fail;
5105 
5106 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5107 		static_branch_inc(&memcg_sockets_enabled_key);
5108 
5109 	return &memcg->css;
5110 fail:
5111 	mem_cgroup_id_remove(memcg);
5112 	mem_cgroup_free(memcg);
5113 	return ERR_PTR(error);
5114 }
5115 
5116 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5117 {
5118 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5119 
5120 	/*
5121 	 * A memcg must be visible for expand_shrinker_info()
5122 	 * by the time the maps are allocated. So, we allocate maps
5123 	 * here, when for_each_mem_cgroup() can't skip it.
5124 	 */
5125 	if (alloc_shrinker_info(memcg)) {
5126 		mem_cgroup_id_remove(memcg);
5127 		return -ENOMEM;
5128 	}
5129 
5130 	/* Online state pins memcg ID, memcg ID pins CSS */
5131 	refcount_set(&memcg->id.ref, 1);
5132 	css_get(css);
5133 	return 0;
5134 }
5135 
5136 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5137 {
5138 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5139 	struct mem_cgroup_event *event, *tmp;
5140 
5141 	/*
5142 	 * Unregister events and notify userspace.
5143 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5144 	 * directory to avoid race between userspace and kernelspace.
5145 	 */
5146 	spin_lock(&memcg->event_list_lock);
5147 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5148 		list_del_init(&event->list);
5149 		schedule_work(&event->remove);
5150 	}
5151 	spin_unlock(&memcg->event_list_lock);
5152 
5153 	page_counter_set_min(&memcg->memory, 0);
5154 	page_counter_set_low(&memcg->memory, 0);
5155 
5156 	memcg_offline_kmem(memcg);
5157 	reparent_shrinker_deferred(memcg);
5158 	wb_memcg_offline(memcg);
5159 
5160 	drain_all_stock(memcg);
5161 
5162 	mem_cgroup_id_put(memcg);
5163 }
5164 
5165 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5166 {
5167 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5168 
5169 	invalidate_reclaim_iterators(memcg);
5170 }
5171 
5172 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5173 {
5174 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5175 	int __maybe_unused i;
5176 
5177 #ifdef CONFIG_CGROUP_WRITEBACK
5178 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5179 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5180 #endif
5181 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5182 		static_branch_dec(&memcg_sockets_enabled_key);
5183 
5184 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5185 		static_branch_dec(&memcg_sockets_enabled_key);
5186 
5187 	vmpressure_cleanup(&memcg->vmpressure);
5188 	cancel_work_sync(&memcg->high_work);
5189 	mem_cgroup_remove_from_trees(memcg);
5190 	free_shrinker_info(memcg);
5191 	memcg_free_kmem(memcg);
5192 	mem_cgroup_free(memcg);
5193 }
5194 
5195 /**
5196  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5197  * @css: the target css
5198  *
5199  * Reset the states of the mem_cgroup associated with @css.  This is
5200  * invoked when the userland requests disabling on the default hierarchy
5201  * but the memcg is pinned through dependency.  The memcg should stop
5202  * applying policies and should revert to the vanilla state as it may be
5203  * made visible again.
5204  *
5205  * The current implementation only resets the essential configurations.
5206  * This needs to be expanded to cover all the visible parts.
5207  */
5208 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5209 {
5210 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5211 
5212 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5213 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5214 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5215 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5216 	page_counter_set_min(&memcg->memory, 0);
5217 	page_counter_set_low(&memcg->memory, 0);
5218 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5219 	memcg->soft_limit = PAGE_COUNTER_MAX;
5220 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5221 	memcg_wb_domain_size_changed(memcg);
5222 }
5223 
5224 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5225 {
5226 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5227 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5228 	struct memcg_vmstats_percpu *statc;
5229 	long delta, v;
5230 	int i;
5231 
5232 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5233 
5234 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5235 		/*
5236 		 * Collect the aggregated propagation counts of groups
5237 		 * below us. We're in a per-cpu loop here and this is
5238 		 * a global counter, so the first cycle will get them.
5239 		 */
5240 		delta = memcg->vmstats.state_pending[i];
5241 		if (delta)
5242 			memcg->vmstats.state_pending[i] = 0;
5243 
5244 		/* Add CPU changes on this level since the last flush */
5245 		v = READ_ONCE(statc->state[i]);
5246 		if (v != statc->state_prev[i]) {
5247 			delta += v - statc->state_prev[i];
5248 			statc->state_prev[i] = v;
5249 		}
5250 
5251 		if (!delta)
5252 			continue;
5253 
5254 		/* Aggregate counts on this level and propagate upwards */
5255 		memcg->vmstats.state[i] += delta;
5256 		if (parent)
5257 			parent->vmstats.state_pending[i] += delta;
5258 	}
5259 
5260 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5261 		delta = memcg->vmstats.events_pending[i];
5262 		if (delta)
5263 			memcg->vmstats.events_pending[i] = 0;
5264 
5265 		v = READ_ONCE(statc->events[i]);
5266 		if (v != statc->events_prev[i]) {
5267 			delta += v - statc->events_prev[i];
5268 			statc->events_prev[i] = v;
5269 		}
5270 
5271 		if (!delta)
5272 			continue;
5273 
5274 		memcg->vmstats.events[i] += delta;
5275 		if (parent)
5276 			parent->vmstats.events_pending[i] += delta;
5277 	}
5278 }
5279 
5280 #ifdef CONFIG_MMU
5281 /* Handlers for move charge at task migration. */
5282 static int mem_cgroup_do_precharge(unsigned long count)
5283 {
5284 	int ret;
5285 
5286 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5287 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5288 	if (!ret) {
5289 		mc.precharge += count;
5290 		return ret;
5291 	}
5292 
5293 	/* Try charges one by one with reclaim, but do not retry */
5294 	while (count--) {
5295 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5296 		if (ret)
5297 			return ret;
5298 		mc.precharge++;
5299 		cond_resched();
5300 	}
5301 	return 0;
5302 }
5303 
5304 union mc_target {
5305 	struct page	*page;
5306 	swp_entry_t	ent;
5307 };
5308 
5309 enum mc_target_type {
5310 	MC_TARGET_NONE = 0,
5311 	MC_TARGET_PAGE,
5312 	MC_TARGET_SWAP,
5313 	MC_TARGET_DEVICE,
5314 };
5315 
5316 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5317 						unsigned long addr, pte_t ptent)
5318 {
5319 	struct page *page = vm_normal_page(vma, addr, ptent);
5320 
5321 	if (!page || !page_mapped(page))
5322 		return NULL;
5323 	if (PageAnon(page)) {
5324 		if (!(mc.flags & MOVE_ANON))
5325 			return NULL;
5326 	} else {
5327 		if (!(mc.flags & MOVE_FILE))
5328 			return NULL;
5329 	}
5330 	if (!get_page_unless_zero(page))
5331 		return NULL;
5332 
5333 	return page;
5334 }
5335 
5336 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5337 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5338 			pte_t ptent, swp_entry_t *entry)
5339 {
5340 	struct page *page = NULL;
5341 	swp_entry_t ent = pte_to_swp_entry(ptent);
5342 
5343 	if (!(mc.flags & MOVE_ANON))
5344 		return NULL;
5345 
5346 	/*
5347 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5348 	 * a device and because they are not accessible by CPU they are store
5349 	 * as special swap entry in the CPU page table.
5350 	 */
5351 	if (is_device_private_entry(ent)) {
5352 		page = device_private_entry_to_page(ent);
5353 		/*
5354 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5355 		 * a refcount of 1 when free (unlike normal page)
5356 		 */
5357 		if (!page_ref_add_unless(page, 1, 1))
5358 			return NULL;
5359 		return page;
5360 	}
5361 
5362 	if (non_swap_entry(ent))
5363 		return NULL;
5364 
5365 	/*
5366 	 * Because lookup_swap_cache() updates some statistics counter,
5367 	 * we call find_get_page() with swapper_space directly.
5368 	 */
5369 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5370 	entry->val = ent.val;
5371 
5372 	return page;
5373 }
5374 #else
5375 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5376 			pte_t ptent, swp_entry_t *entry)
5377 {
5378 	return NULL;
5379 }
5380 #endif
5381 
5382 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5383 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5384 {
5385 	if (!vma->vm_file) /* anonymous vma */
5386 		return NULL;
5387 	if (!(mc.flags & MOVE_FILE))
5388 		return NULL;
5389 
5390 	/* page is moved even if it's not RSS of this task(page-faulted). */
5391 	/* shmem/tmpfs may report page out on swap: account for that too. */
5392 	return find_get_incore_page(vma->vm_file->f_mapping,
5393 			linear_page_index(vma, addr));
5394 }
5395 
5396 /**
5397  * mem_cgroup_move_account - move account of the page
5398  * @page: the page
5399  * @compound: charge the page as compound or small page
5400  * @from: mem_cgroup which the page is moved from.
5401  * @to:	mem_cgroup which the page is moved to. @from != @to.
5402  *
5403  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5404  *
5405  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5406  * from old cgroup.
5407  */
5408 static int mem_cgroup_move_account(struct page *page,
5409 				   bool compound,
5410 				   struct mem_cgroup *from,
5411 				   struct mem_cgroup *to)
5412 {
5413 	struct lruvec *from_vec, *to_vec;
5414 	struct pglist_data *pgdat;
5415 	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5416 	int ret;
5417 
5418 	VM_BUG_ON(from == to);
5419 	VM_BUG_ON_PAGE(PageLRU(page), page);
5420 	VM_BUG_ON(compound && !PageTransHuge(page));
5421 
5422 	/*
5423 	 * Prevent mem_cgroup_migrate() from looking at
5424 	 * page's memory cgroup of its source page while we change it.
5425 	 */
5426 	ret = -EBUSY;
5427 	if (!trylock_page(page))
5428 		goto out;
5429 
5430 	ret = -EINVAL;
5431 	if (page_memcg(page) != from)
5432 		goto out_unlock;
5433 
5434 	pgdat = page_pgdat(page);
5435 	from_vec = mem_cgroup_lruvec(from, pgdat);
5436 	to_vec = mem_cgroup_lruvec(to, pgdat);
5437 
5438 	lock_page_memcg(page);
5439 
5440 	if (PageAnon(page)) {
5441 		if (page_mapped(page)) {
5442 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5443 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5444 			if (PageTransHuge(page)) {
5445 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5446 						   -nr_pages);
5447 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5448 						   nr_pages);
5449 			}
5450 		}
5451 	} else {
5452 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5453 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5454 
5455 		if (PageSwapBacked(page)) {
5456 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5457 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5458 		}
5459 
5460 		if (page_mapped(page)) {
5461 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5462 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5463 		}
5464 
5465 		if (PageDirty(page)) {
5466 			struct address_space *mapping = page_mapping(page);
5467 
5468 			if (mapping_can_writeback(mapping)) {
5469 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5470 						   -nr_pages);
5471 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5472 						   nr_pages);
5473 			}
5474 		}
5475 	}
5476 
5477 	if (PageWriteback(page)) {
5478 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5479 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5480 	}
5481 
5482 	/*
5483 	 * All state has been migrated, let's switch to the new memcg.
5484 	 *
5485 	 * It is safe to change page's memcg here because the page
5486 	 * is referenced, charged, isolated, and locked: we can't race
5487 	 * with (un)charging, migration, LRU putback, or anything else
5488 	 * that would rely on a stable page's memory cgroup.
5489 	 *
5490 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5491 	 * to save space. As soon as we switch page's memory cgroup to a
5492 	 * new memcg that isn't locked, the above state can change
5493 	 * concurrently again. Make sure we're truly done with it.
5494 	 */
5495 	smp_mb();
5496 
5497 	css_get(&to->css);
5498 	css_put(&from->css);
5499 
5500 	page->memcg_data = (unsigned long)to;
5501 
5502 	__unlock_page_memcg(from);
5503 
5504 	ret = 0;
5505 
5506 	local_irq_disable();
5507 	mem_cgroup_charge_statistics(to, page, nr_pages);
5508 	memcg_check_events(to, page);
5509 	mem_cgroup_charge_statistics(from, page, -nr_pages);
5510 	memcg_check_events(from, page);
5511 	local_irq_enable();
5512 out_unlock:
5513 	unlock_page(page);
5514 out:
5515 	return ret;
5516 }
5517 
5518 /**
5519  * get_mctgt_type - get target type of moving charge
5520  * @vma: the vma the pte to be checked belongs
5521  * @addr: the address corresponding to the pte to be checked
5522  * @ptent: the pte to be checked
5523  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5524  *
5525  * Returns
5526  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5527  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5528  *     move charge. if @target is not NULL, the page is stored in target->page
5529  *     with extra refcnt got(Callers should handle it).
5530  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5531  *     target for charge migration. if @target is not NULL, the entry is stored
5532  *     in target->ent.
5533  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5534  *     (so ZONE_DEVICE page and thus not on the lru).
5535  *     For now we such page is charge like a regular page would be as for all
5536  *     intent and purposes it is just special memory taking the place of a
5537  *     regular page.
5538  *
5539  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5540  *
5541  * Called with pte lock held.
5542  */
5543 
5544 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5545 		unsigned long addr, pte_t ptent, union mc_target *target)
5546 {
5547 	struct page *page = NULL;
5548 	enum mc_target_type ret = MC_TARGET_NONE;
5549 	swp_entry_t ent = { .val = 0 };
5550 
5551 	if (pte_present(ptent))
5552 		page = mc_handle_present_pte(vma, addr, ptent);
5553 	else if (is_swap_pte(ptent))
5554 		page = mc_handle_swap_pte(vma, ptent, &ent);
5555 	else if (pte_none(ptent))
5556 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5557 
5558 	if (!page && !ent.val)
5559 		return ret;
5560 	if (page) {
5561 		/*
5562 		 * Do only loose check w/o serialization.
5563 		 * mem_cgroup_move_account() checks the page is valid or
5564 		 * not under LRU exclusion.
5565 		 */
5566 		if (page_memcg(page) == mc.from) {
5567 			ret = MC_TARGET_PAGE;
5568 			if (is_device_private_page(page))
5569 				ret = MC_TARGET_DEVICE;
5570 			if (target)
5571 				target->page = page;
5572 		}
5573 		if (!ret || !target)
5574 			put_page(page);
5575 	}
5576 	/*
5577 	 * There is a swap entry and a page doesn't exist or isn't charged.
5578 	 * But we cannot move a tail-page in a THP.
5579 	 */
5580 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5581 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5582 		ret = MC_TARGET_SWAP;
5583 		if (target)
5584 			target->ent = ent;
5585 	}
5586 	return ret;
5587 }
5588 
5589 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5590 /*
5591  * We don't consider PMD mapped swapping or file mapped pages because THP does
5592  * not support them for now.
5593  * Caller should make sure that pmd_trans_huge(pmd) is true.
5594  */
5595 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5596 		unsigned long addr, pmd_t pmd, union mc_target *target)
5597 {
5598 	struct page *page = NULL;
5599 	enum mc_target_type ret = MC_TARGET_NONE;
5600 
5601 	if (unlikely(is_swap_pmd(pmd))) {
5602 		VM_BUG_ON(thp_migration_supported() &&
5603 				  !is_pmd_migration_entry(pmd));
5604 		return ret;
5605 	}
5606 	page = pmd_page(pmd);
5607 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5608 	if (!(mc.flags & MOVE_ANON))
5609 		return ret;
5610 	if (page_memcg(page) == mc.from) {
5611 		ret = MC_TARGET_PAGE;
5612 		if (target) {
5613 			get_page(page);
5614 			target->page = page;
5615 		}
5616 	}
5617 	return ret;
5618 }
5619 #else
5620 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5621 		unsigned long addr, pmd_t pmd, union mc_target *target)
5622 {
5623 	return MC_TARGET_NONE;
5624 }
5625 #endif
5626 
5627 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5628 					unsigned long addr, unsigned long end,
5629 					struct mm_walk *walk)
5630 {
5631 	struct vm_area_struct *vma = walk->vma;
5632 	pte_t *pte;
5633 	spinlock_t *ptl;
5634 
5635 	ptl = pmd_trans_huge_lock(pmd, vma);
5636 	if (ptl) {
5637 		/*
5638 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5639 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5640 		 * this might change.
5641 		 */
5642 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5643 			mc.precharge += HPAGE_PMD_NR;
5644 		spin_unlock(ptl);
5645 		return 0;
5646 	}
5647 
5648 	if (pmd_trans_unstable(pmd))
5649 		return 0;
5650 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5651 	for (; addr != end; pte++, addr += PAGE_SIZE)
5652 		if (get_mctgt_type(vma, addr, *pte, NULL))
5653 			mc.precharge++;	/* increment precharge temporarily */
5654 	pte_unmap_unlock(pte - 1, ptl);
5655 	cond_resched();
5656 
5657 	return 0;
5658 }
5659 
5660 static const struct mm_walk_ops precharge_walk_ops = {
5661 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5662 };
5663 
5664 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5665 {
5666 	unsigned long precharge;
5667 
5668 	mmap_read_lock(mm);
5669 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5670 	mmap_read_unlock(mm);
5671 
5672 	precharge = mc.precharge;
5673 	mc.precharge = 0;
5674 
5675 	return precharge;
5676 }
5677 
5678 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5679 {
5680 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5681 
5682 	VM_BUG_ON(mc.moving_task);
5683 	mc.moving_task = current;
5684 	return mem_cgroup_do_precharge(precharge);
5685 }
5686 
5687 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5688 static void __mem_cgroup_clear_mc(void)
5689 {
5690 	struct mem_cgroup *from = mc.from;
5691 	struct mem_cgroup *to = mc.to;
5692 
5693 	/* we must uncharge all the leftover precharges from mc.to */
5694 	if (mc.precharge) {
5695 		cancel_charge(mc.to, mc.precharge);
5696 		mc.precharge = 0;
5697 	}
5698 	/*
5699 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5700 	 * we must uncharge here.
5701 	 */
5702 	if (mc.moved_charge) {
5703 		cancel_charge(mc.from, mc.moved_charge);
5704 		mc.moved_charge = 0;
5705 	}
5706 	/* we must fixup refcnts and charges */
5707 	if (mc.moved_swap) {
5708 		/* uncharge swap account from the old cgroup */
5709 		if (!mem_cgroup_is_root(mc.from))
5710 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5711 
5712 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5713 
5714 		/*
5715 		 * we charged both to->memory and to->memsw, so we
5716 		 * should uncharge to->memory.
5717 		 */
5718 		if (!mem_cgroup_is_root(mc.to))
5719 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5720 
5721 		mc.moved_swap = 0;
5722 	}
5723 	memcg_oom_recover(from);
5724 	memcg_oom_recover(to);
5725 	wake_up_all(&mc.waitq);
5726 }
5727 
5728 static void mem_cgroup_clear_mc(void)
5729 {
5730 	struct mm_struct *mm = mc.mm;
5731 
5732 	/*
5733 	 * we must clear moving_task before waking up waiters at the end of
5734 	 * task migration.
5735 	 */
5736 	mc.moving_task = NULL;
5737 	__mem_cgroup_clear_mc();
5738 	spin_lock(&mc.lock);
5739 	mc.from = NULL;
5740 	mc.to = NULL;
5741 	mc.mm = NULL;
5742 	spin_unlock(&mc.lock);
5743 
5744 	mmput(mm);
5745 }
5746 
5747 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5748 {
5749 	struct cgroup_subsys_state *css;
5750 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5751 	struct mem_cgroup *from;
5752 	struct task_struct *leader, *p;
5753 	struct mm_struct *mm;
5754 	unsigned long move_flags;
5755 	int ret = 0;
5756 
5757 	/* charge immigration isn't supported on the default hierarchy */
5758 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5759 		return 0;
5760 
5761 	/*
5762 	 * Multi-process migrations only happen on the default hierarchy
5763 	 * where charge immigration is not used.  Perform charge
5764 	 * immigration if @tset contains a leader and whine if there are
5765 	 * multiple.
5766 	 */
5767 	p = NULL;
5768 	cgroup_taskset_for_each_leader(leader, css, tset) {
5769 		WARN_ON_ONCE(p);
5770 		p = leader;
5771 		memcg = mem_cgroup_from_css(css);
5772 	}
5773 	if (!p)
5774 		return 0;
5775 
5776 	/*
5777 	 * We are now committed to this value whatever it is. Changes in this
5778 	 * tunable will only affect upcoming migrations, not the current one.
5779 	 * So we need to save it, and keep it going.
5780 	 */
5781 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5782 	if (!move_flags)
5783 		return 0;
5784 
5785 	from = mem_cgroup_from_task(p);
5786 
5787 	VM_BUG_ON(from == memcg);
5788 
5789 	mm = get_task_mm(p);
5790 	if (!mm)
5791 		return 0;
5792 	/* We move charges only when we move a owner of the mm */
5793 	if (mm->owner == p) {
5794 		VM_BUG_ON(mc.from);
5795 		VM_BUG_ON(mc.to);
5796 		VM_BUG_ON(mc.precharge);
5797 		VM_BUG_ON(mc.moved_charge);
5798 		VM_BUG_ON(mc.moved_swap);
5799 
5800 		spin_lock(&mc.lock);
5801 		mc.mm = mm;
5802 		mc.from = from;
5803 		mc.to = memcg;
5804 		mc.flags = move_flags;
5805 		spin_unlock(&mc.lock);
5806 		/* We set mc.moving_task later */
5807 
5808 		ret = mem_cgroup_precharge_mc(mm);
5809 		if (ret)
5810 			mem_cgroup_clear_mc();
5811 	} else {
5812 		mmput(mm);
5813 	}
5814 	return ret;
5815 }
5816 
5817 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5818 {
5819 	if (mc.to)
5820 		mem_cgroup_clear_mc();
5821 }
5822 
5823 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5824 				unsigned long addr, unsigned long end,
5825 				struct mm_walk *walk)
5826 {
5827 	int ret = 0;
5828 	struct vm_area_struct *vma = walk->vma;
5829 	pte_t *pte;
5830 	spinlock_t *ptl;
5831 	enum mc_target_type target_type;
5832 	union mc_target target;
5833 	struct page *page;
5834 
5835 	ptl = pmd_trans_huge_lock(pmd, vma);
5836 	if (ptl) {
5837 		if (mc.precharge < HPAGE_PMD_NR) {
5838 			spin_unlock(ptl);
5839 			return 0;
5840 		}
5841 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5842 		if (target_type == MC_TARGET_PAGE) {
5843 			page = target.page;
5844 			if (!isolate_lru_page(page)) {
5845 				if (!mem_cgroup_move_account(page, true,
5846 							     mc.from, mc.to)) {
5847 					mc.precharge -= HPAGE_PMD_NR;
5848 					mc.moved_charge += HPAGE_PMD_NR;
5849 				}
5850 				putback_lru_page(page);
5851 			}
5852 			put_page(page);
5853 		} else if (target_type == MC_TARGET_DEVICE) {
5854 			page = target.page;
5855 			if (!mem_cgroup_move_account(page, true,
5856 						     mc.from, mc.to)) {
5857 				mc.precharge -= HPAGE_PMD_NR;
5858 				mc.moved_charge += HPAGE_PMD_NR;
5859 			}
5860 			put_page(page);
5861 		}
5862 		spin_unlock(ptl);
5863 		return 0;
5864 	}
5865 
5866 	if (pmd_trans_unstable(pmd))
5867 		return 0;
5868 retry:
5869 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5870 	for (; addr != end; addr += PAGE_SIZE) {
5871 		pte_t ptent = *(pte++);
5872 		bool device = false;
5873 		swp_entry_t ent;
5874 
5875 		if (!mc.precharge)
5876 			break;
5877 
5878 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5879 		case MC_TARGET_DEVICE:
5880 			device = true;
5881 			fallthrough;
5882 		case MC_TARGET_PAGE:
5883 			page = target.page;
5884 			/*
5885 			 * We can have a part of the split pmd here. Moving it
5886 			 * can be done but it would be too convoluted so simply
5887 			 * ignore such a partial THP and keep it in original
5888 			 * memcg. There should be somebody mapping the head.
5889 			 */
5890 			if (PageTransCompound(page))
5891 				goto put;
5892 			if (!device && isolate_lru_page(page))
5893 				goto put;
5894 			if (!mem_cgroup_move_account(page, false,
5895 						mc.from, mc.to)) {
5896 				mc.precharge--;
5897 				/* we uncharge from mc.from later. */
5898 				mc.moved_charge++;
5899 			}
5900 			if (!device)
5901 				putback_lru_page(page);
5902 put:			/* get_mctgt_type() gets the page */
5903 			put_page(page);
5904 			break;
5905 		case MC_TARGET_SWAP:
5906 			ent = target.ent;
5907 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5908 				mc.precharge--;
5909 				mem_cgroup_id_get_many(mc.to, 1);
5910 				/* we fixup other refcnts and charges later. */
5911 				mc.moved_swap++;
5912 			}
5913 			break;
5914 		default:
5915 			break;
5916 		}
5917 	}
5918 	pte_unmap_unlock(pte - 1, ptl);
5919 	cond_resched();
5920 
5921 	if (addr != end) {
5922 		/*
5923 		 * We have consumed all precharges we got in can_attach().
5924 		 * We try charge one by one, but don't do any additional
5925 		 * charges to mc.to if we have failed in charge once in attach()
5926 		 * phase.
5927 		 */
5928 		ret = mem_cgroup_do_precharge(1);
5929 		if (!ret)
5930 			goto retry;
5931 	}
5932 
5933 	return ret;
5934 }
5935 
5936 static const struct mm_walk_ops charge_walk_ops = {
5937 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
5938 };
5939 
5940 static void mem_cgroup_move_charge(void)
5941 {
5942 	lru_add_drain_all();
5943 	/*
5944 	 * Signal lock_page_memcg() to take the memcg's move_lock
5945 	 * while we're moving its pages to another memcg. Then wait
5946 	 * for already started RCU-only updates to finish.
5947 	 */
5948 	atomic_inc(&mc.from->moving_account);
5949 	synchronize_rcu();
5950 retry:
5951 	if (unlikely(!mmap_read_trylock(mc.mm))) {
5952 		/*
5953 		 * Someone who are holding the mmap_lock might be waiting in
5954 		 * waitq. So we cancel all extra charges, wake up all waiters,
5955 		 * and retry. Because we cancel precharges, we might not be able
5956 		 * to move enough charges, but moving charge is a best-effort
5957 		 * feature anyway, so it wouldn't be a big problem.
5958 		 */
5959 		__mem_cgroup_clear_mc();
5960 		cond_resched();
5961 		goto retry;
5962 	}
5963 	/*
5964 	 * When we have consumed all precharges and failed in doing
5965 	 * additional charge, the page walk just aborts.
5966 	 */
5967 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5968 			NULL);
5969 
5970 	mmap_read_unlock(mc.mm);
5971 	atomic_dec(&mc.from->moving_account);
5972 }
5973 
5974 static void mem_cgroup_move_task(void)
5975 {
5976 	if (mc.to) {
5977 		mem_cgroup_move_charge();
5978 		mem_cgroup_clear_mc();
5979 	}
5980 }
5981 #else	/* !CONFIG_MMU */
5982 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5983 {
5984 	return 0;
5985 }
5986 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5987 {
5988 }
5989 static void mem_cgroup_move_task(void)
5990 {
5991 }
5992 #endif
5993 
5994 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5995 {
5996 	if (value == PAGE_COUNTER_MAX)
5997 		seq_puts(m, "max\n");
5998 	else
5999 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6000 
6001 	return 0;
6002 }
6003 
6004 static u64 memory_current_read(struct cgroup_subsys_state *css,
6005 			       struct cftype *cft)
6006 {
6007 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6008 
6009 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6010 }
6011 
6012 static int memory_min_show(struct seq_file *m, void *v)
6013 {
6014 	return seq_puts_memcg_tunable(m,
6015 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6016 }
6017 
6018 static ssize_t memory_min_write(struct kernfs_open_file *of,
6019 				char *buf, size_t nbytes, loff_t off)
6020 {
6021 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6022 	unsigned long min;
6023 	int err;
6024 
6025 	buf = strstrip(buf);
6026 	err = page_counter_memparse(buf, "max", &min);
6027 	if (err)
6028 		return err;
6029 
6030 	page_counter_set_min(&memcg->memory, min);
6031 
6032 	return nbytes;
6033 }
6034 
6035 static int memory_low_show(struct seq_file *m, void *v)
6036 {
6037 	return seq_puts_memcg_tunable(m,
6038 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6039 }
6040 
6041 static ssize_t memory_low_write(struct kernfs_open_file *of,
6042 				char *buf, size_t nbytes, loff_t off)
6043 {
6044 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6045 	unsigned long low;
6046 	int err;
6047 
6048 	buf = strstrip(buf);
6049 	err = page_counter_memparse(buf, "max", &low);
6050 	if (err)
6051 		return err;
6052 
6053 	page_counter_set_low(&memcg->memory, low);
6054 
6055 	return nbytes;
6056 }
6057 
6058 static int memory_high_show(struct seq_file *m, void *v)
6059 {
6060 	return seq_puts_memcg_tunable(m,
6061 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6062 }
6063 
6064 static ssize_t memory_high_write(struct kernfs_open_file *of,
6065 				 char *buf, size_t nbytes, loff_t off)
6066 {
6067 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6068 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6069 	bool drained = false;
6070 	unsigned long high;
6071 	int err;
6072 
6073 	buf = strstrip(buf);
6074 	err = page_counter_memparse(buf, "max", &high);
6075 	if (err)
6076 		return err;
6077 
6078 	page_counter_set_high(&memcg->memory, high);
6079 
6080 	for (;;) {
6081 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6082 		unsigned long reclaimed;
6083 
6084 		if (nr_pages <= high)
6085 			break;
6086 
6087 		if (signal_pending(current))
6088 			break;
6089 
6090 		if (!drained) {
6091 			drain_all_stock(memcg);
6092 			drained = true;
6093 			continue;
6094 		}
6095 
6096 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6097 							 GFP_KERNEL, true);
6098 
6099 		if (!reclaimed && !nr_retries--)
6100 			break;
6101 	}
6102 
6103 	memcg_wb_domain_size_changed(memcg);
6104 	return nbytes;
6105 }
6106 
6107 static int memory_max_show(struct seq_file *m, void *v)
6108 {
6109 	return seq_puts_memcg_tunable(m,
6110 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6111 }
6112 
6113 static ssize_t memory_max_write(struct kernfs_open_file *of,
6114 				char *buf, size_t nbytes, loff_t off)
6115 {
6116 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6117 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6118 	bool drained = false;
6119 	unsigned long max;
6120 	int err;
6121 
6122 	buf = strstrip(buf);
6123 	err = page_counter_memparse(buf, "max", &max);
6124 	if (err)
6125 		return err;
6126 
6127 	xchg(&memcg->memory.max, max);
6128 
6129 	for (;;) {
6130 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6131 
6132 		if (nr_pages <= max)
6133 			break;
6134 
6135 		if (signal_pending(current))
6136 			break;
6137 
6138 		if (!drained) {
6139 			drain_all_stock(memcg);
6140 			drained = true;
6141 			continue;
6142 		}
6143 
6144 		if (nr_reclaims) {
6145 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6146 							  GFP_KERNEL, true))
6147 				nr_reclaims--;
6148 			continue;
6149 		}
6150 
6151 		memcg_memory_event(memcg, MEMCG_OOM);
6152 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6153 			break;
6154 	}
6155 
6156 	memcg_wb_domain_size_changed(memcg);
6157 	return nbytes;
6158 }
6159 
6160 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6161 {
6162 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6163 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6164 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6165 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6166 	seq_printf(m, "oom_kill %lu\n",
6167 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6168 }
6169 
6170 static int memory_events_show(struct seq_file *m, void *v)
6171 {
6172 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6173 
6174 	__memory_events_show(m, memcg->memory_events);
6175 	return 0;
6176 }
6177 
6178 static int memory_events_local_show(struct seq_file *m, void *v)
6179 {
6180 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6181 
6182 	__memory_events_show(m, memcg->memory_events_local);
6183 	return 0;
6184 }
6185 
6186 static int memory_stat_show(struct seq_file *m, void *v)
6187 {
6188 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6189 	char *buf;
6190 
6191 	buf = memory_stat_format(memcg);
6192 	if (!buf)
6193 		return -ENOMEM;
6194 	seq_puts(m, buf);
6195 	kfree(buf);
6196 	return 0;
6197 }
6198 
6199 #ifdef CONFIG_NUMA
6200 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6201 						     int item)
6202 {
6203 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6204 }
6205 
6206 static int memory_numa_stat_show(struct seq_file *m, void *v)
6207 {
6208 	int i;
6209 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6210 
6211 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6212 		int nid;
6213 
6214 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6215 			continue;
6216 
6217 		seq_printf(m, "%s", memory_stats[i].name);
6218 		for_each_node_state(nid, N_MEMORY) {
6219 			u64 size;
6220 			struct lruvec *lruvec;
6221 
6222 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6223 			size = lruvec_page_state_output(lruvec,
6224 							memory_stats[i].idx);
6225 			seq_printf(m, " N%d=%llu", nid, size);
6226 		}
6227 		seq_putc(m, '\n');
6228 	}
6229 
6230 	return 0;
6231 }
6232 #endif
6233 
6234 static int memory_oom_group_show(struct seq_file *m, void *v)
6235 {
6236 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6237 
6238 	seq_printf(m, "%d\n", memcg->oom_group);
6239 
6240 	return 0;
6241 }
6242 
6243 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6244 				      char *buf, size_t nbytes, loff_t off)
6245 {
6246 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6247 	int ret, oom_group;
6248 
6249 	buf = strstrip(buf);
6250 	if (!buf)
6251 		return -EINVAL;
6252 
6253 	ret = kstrtoint(buf, 0, &oom_group);
6254 	if (ret)
6255 		return ret;
6256 
6257 	if (oom_group != 0 && oom_group != 1)
6258 		return -EINVAL;
6259 
6260 	memcg->oom_group = oom_group;
6261 
6262 	return nbytes;
6263 }
6264 
6265 static struct cftype memory_files[] = {
6266 	{
6267 		.name = "current",
6268 		.flags = CFTYPE_NOT_ON_ROOT,
6269 		.read_u64 = memory_current_read,
6270 	},
6271 	{
6272 		.name = "min",
6273 		.flags = CFTYPE_NOT_ON_ROOT,
6274 		.seq_show = memory_min_show,
6275 		.write = memory_min_write,
6276 	},
6277 	{
6278 		.name = "low",
6279 		.flags = CFTYPE_NOT_ON_ROOT,
6280 		.seq_show = memory_low_show,
6281 		.write = memory_low_write,
6282 	},
6283 	{
6284 		.name = "high",
6285 		.flags = CFTYPE_NOT_ON_ROOT,
6286 		.seq_show = memory_high_show,
6287 		.write = memory_high_write,
6288 	},
6289 	{
6290 		.name = "max",
6291 		.flags = CFTYPE_NOT_ON_ROOT,
6292 		.seq_show = memory_max_show,
6293 		.write = memory_max_write,
6294 	},
6295 	{
6296 		.name = "events",
6297 		.flags = CFTYPE_NOT_ON_ROOT,
6298 		.file_offset = offsetof(struct mem_cgroup, events_file),
6299 		.seq_show = memory_events_show,
6300 	},
6301 	{
6302 		.name = "events.local",
6303 		.flags = CFTYPE_NOT_ON_ROOT,
6304 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6305 		.seq_show = memory_events_local_show,
6306 	},
6307 	{
6308 		.name = "stat",
6309 		.seq_show = memory_stat_show,
6310 	},
6311 #ifdef CONFIG_NUMA
6312 	{
6313 		.name = "numa_stat",
6314 		.seq_show = memory_numa_stat_show,
6315 	},
6316 #endif
6317 	{
6318 		.name = "oom.group",
6319 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6320 		.seq_show = memory_oom_group_show,
6321 		.write = memory_oom_group_write,
6322 	},
6323 	{ }	/* terminate */
6324 };
6325 
6326 struct cgroup_subsys memory_cgrp_subsys = {
6327 	.css_alloc = mem_cgroup_css_alloc,
6328 	.css_online = mem_cgroup_css_online,
6329 	.css_offline = mem_cgroup_css_offline,
6330 	.css_released = mem_cgroup_css_released,
6331 	.css_free = mem_cgroup_css_free,
6332 	.css_reset = mem_cgroup_css_reset,
6333 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6334 	.can_attach = mem_cgroup_can_attach,
6335 	.cancel_attach = mem_cgroup_cancel_attach,
6336 	.post_attach = mem_cgroup_move_task,
6337 	.dfl_cftypes = memory_files,
6338 	.legacy_cftypes = mem_cgroup_legacy_files,
6339 	.early_init = 0,
6340 };
6341 
6342 /*
6343  * This function calculates an individual cgroup's effective
6344  * protection which is derived from its own memory.min/low, its
6345  * parent's and siblings' settings, as well as the actual memory
6346  * distribution in the tree.
6347  *
6348  * The following rules apply to the effective protection values:
6349  *
6350  * 1. At the first level of reclaim, effective protection is equal to
6351  *    the declared protection in memory.min and memory.low.
6352  *
6353  * 2. To enable safe delegation of the protection configuration, at
6354  *    subsequent levels the effective protection is capped to the
6355  *    parent's effective protection.
6356  *
6357  * 3. To make complex and dynamic subtrees easier to configure, the
6358  *    user is allowed to overcommit the declared protection at a given
6359  *    level. If that is the case, the parent's effective protection is
6360  *    distributed to the children in proportion to how much protection
6361  *    they have declared and how much of it they are utilizing.
6362  *
6363  *    This makes distribution proportional, but also work-conserving:
6364  *    if one cgroup claims much more protection than it uses memory,
6365  *    the unused remainder is available to its siblings.
6366  *
6367  * 4. Conversely, when the declared protection is undercommitted at a
6368  *    given level, the distribution of the larger parental protection
6369  *    budget is NOT proportional. A cgroup's protection from a sibling
6370  *    is capped to its own memory.min/low setting.
6371  *
6372  * 5. However, to allow protecting recursive subtrees from each other
6373  *    without having to declare each individual cgroup's fixed share
6374  *    of the ancestor's claim to protection, any unutilized -
6375  *    "floating" - protection from up the tree is distributed in
6376  *    proportion to each cgroup's *usage*. This makes the protection
6377  *    neutral wrt sibling cgroups and lets them compete freely over
6378  *    the shared parental protection budget, but it protects the
6379  *    subtree as a whole from neighboring subtrees.
6380  *
6381  * Note that 4. and 5. are not in conflict: 4. is about protecting
6382  * against immediate siblings whereas 5. is about protecting against
6383  * neighboring subtrees.
6384  */
6385 static unsigned long effective_protection(unsigned long usage,
6386 					  unsigned long parent_usage,
6387 					  unsigned long setting,
6388 					  unsigned long parent_effective,
6389 					  unsigned long siblings_protected)
6390 {
6391 	unsigned long protected;
6392 	unsigned long ep;
6393 
6394 	protected = min(usage, setting);
6395 	/*
6396 	 * If all cgroups at this level combined claim and use more
6397 	 * protection then what the parent affords them, distribute
6398 	 * shares in proportion to utilization.
6399 	 *
6400 	 * We are using actual utilization rather than the statically
6401 	 * claimed protection in order to be work-conserving: claimed
6402 	 * but unused protection is available to siblings that would
6403 	 * otherwise get a smaller chunk than what they claimed.
6404 	 */
6405 	if (siblings_protected > parent_effective)
6406 		return protected * parent_effective / siblings_protected;
6407 
6408 	/*
6409 	 * Ok, utilized protection of all children is within what the
6410 	 * parent affords them, so we know whatever this child claims
6411 	 * and utilizes is effectively protected.
6412 	 *
6413 	 * If there is unprotected usage beyond this value, reclaim
6414 	 * will apply pressure in proportion to that amount.
6415 	 *
6416 	 * If there is unutilized protection, the cgroup will be fully
6417 	 * shielded from reclaim, but we do return a smaller value for
6418 	 * protection than what the group could enjoy in theory. This
6419 	 * is okay. With the overcommit distribution above, effective
6420 	 * protection is always dependent on how memory is actually
6421 	 * consumed among the siblings anyway.
6422 	 */
6423 	ep = protected;
6424 
6425 	/*
6426 	 * If the children aren't claiming (all of) the protection
6427 	 * afforded to them by the parent, distribute the remainder in
6428 	 * proportion to the (unprotected) memory of each cgroup. That
6429 	 * way, cgroups that aren't explicitly prioritized wrt each
6430 	 * other compete freely over the allowance, but they are
6431 	 * collectively protected from neighboring trees.
6432 	 *
6433 	 * We're using unprotected memory for the weight so that if
6434 	 * some cgroups DO claim explicit protection, we don't protect
6435 	 * the same bytes twice.
6436 	 *
6437 	 * Check both usage and parent_usage against the respective
6438 	 * protected values. One should imply the other, but they
6439 	 * aren't read atomically - make sure the division is sane.
6440 	 */
6441 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6442 		return ep;
6443 	if (parent_effective > siblings_protected &&
6444 	    parent_usage > siblings_protected &&
6445 	    usage > protected) {
6446 		unsigned long unclaimed;
6447 
6448 		unclaimed = parent_effective - siblings_protected;
6449 		unclaimed *= usage - protected;
6450 		unclaimed /= parent_usage - siblings_protected;
6451 
6452 		ep += unclaimed;
6453 	}
6454 
6455 	return ep;
6456 }
6457 
6458 /**
6459  * mem_cgroup_protected - check if memory consumption is in the normal range
6460  * @root: the top ancestor of the sub-tree being checked
6461  * @memcg: the memory cgroup to check
6462  *
6463  * WARNING: This function is not stateless! It can only be used as part
6464  *          of a top-down tree iteration, not for isolated queries.
6465  */
6466 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6467 				     struct mem_cgroup *memcg)
6468 {
6469 	unsigned long usage, parent_usage;
6470 	struct mem_cgroup *parent;
6471 
6472 	if (mem_cgroup_disabled())
6473 		return;
6474 
6475 	if (!root)
6476 		root = root_mem_cgroup;
6477 
6478 	/*
6479 	 * Effective values of the reclaim targets are ignored so they
6480 	 * can be stale. Have a look at mem_cgroup_protection for more
6481 	 * details.
6482 	 * TODO: calculation should be more robust so that we do not need
6483 	 * that special casing.
6484 	 */
6485 	if (memcg == root)
6486 		return;
6487 
6488 	usage = page_counter_read(&memcg->memory);
6489 	if (!usage)
6490 		return;
6491 
6492 	parent = parent_mem_cgroup(memcg);
6493 	/* No parent means a non-hierarchical mode on v1 memcg */
6494 	if (!parent)
6495 		return;
6496 
6497 	if (parent == root) {
6498 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6499 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6500 		return;
6501 	}
6502 
6503 	parent_usage = page_counter_read(&parent->memory);
6504 
6505 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6506 			READ_ONCE(memcg->memory.min),
6507 			READ_ONCE(parent->memory.emin),
6508 			atomic_long_read(&parent->memory.children_min_usage)));
6509 
6510 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6511 			READ_ONCE(memcg->memory.low),
6512 			READ_ONCE(parent->memory.elow),
6513 			atomic_long_read(&parent->memory.children_low_usage)));
6514 }
6515 
6516 static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6517 			       gfp_t gfp)
6518 {
6519 	unsigned int nr_pages = thp_nr_pages(page);
6520 	int ret;
6521 
6522 	ret = try_charge(memcg, gfp, nr_pages);
6523 	if (ret)
6524 		goto out;
6525 
6526 	css_get(&memcg->css);
6527 	commit_charge(page, memcg);
6528 
6529 	local_irq_disable();
6530 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6531 	memcg_check_events(memcg, page);
6532 	local_irq_enable();
6533 out:
6534 	return ret;
6535 }
6536 
6537 /**
6538  * mem_cgroup_charge - charge a newly allocated page to a cgroup
6539  * @page: page to charge
6540  * @mm: mm context of the victim
6541  * @gfp_mask: reclaim mode
6542  *
6543  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6544  * pages according to @gfp_mask if necessary.
6545  *
6546  * Do not use this for pages allocated for swapin.
6547  *
6548  * Returns 0 on success. Otherwise, an error code is returned.
6549  */
6550 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6551 {
6552 	struct mem_cgroup *memcg;
6553 	int ret;
6554 
6555 	if (mem_cgroup_disabled())
6556 		return 0;
6557 
6558 	memcg = get_mem_cgroup_from_mm(mm);
6559 	ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6560 	css_put(&memcg->css);
6561 
6562 	return ret;
6563 }
6564 
6565 /**
6566  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6567  * @page: page to charge
6568  * @mm: mm context of the victim
6569  * @gfp: reclaim mode
6570  * @entry: swap entry for which the page is allocated
6571  *
6572  * This function charges a page allocated for swapin. Please call this before
6573  * adding the page to the swapcache.
6574  *
6575  * Returns 0 on success. Otherwise, an error code is returned.
6576  */
6577 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6578 				  gfp_t gfp, swp_entry_t entry)
6579 {
6580 	struct mem_cgroup *memcg;
6581 	unsigned short id;
6582 	int ret;
6583 
6584 	if (mem_cgroup_disabled())
6585 		return 0;
6586 
6587 	id = lookup_swap_cgroup_id(entry);
6588 	rcu_read_lock();
6589 	memcg = mem_cgroup_from_id(id);
6590 	if (!memcg || !css_tryget_online(&memcg->css))
6591 		memcg = get_mem_cgroup_from_mm(mm);
6592 	rcu_read_unlock();
6593 
6594 	ret = __mem_cgroup_charge(page, memcg, gfp);
6595 
6596 	css_put(&memcg->css);
6597 	return ret;
6598 }
6599 
6600 /*
6601  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6602  * @entry: swap entry for which the page is charged
6603  *
6604  * Call this function after successfully adding the charged page to swapcache.
6605  *
6606  * Note: This function assumes the page for which swap slot is being uncharged
6607  * is order 0 page.
6608  */
6609 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6610 {
6611 	/*
6612 	 * Cgroup1's unified memory+swap counter has been charged with the
6613 	 * new swapcache page, finish the transfer by uncharging the swap
6614 	 * slot. The swap slot would also get uncharged when it dies, but
6615 	 * it can stick around indefinitely and we'd count the page twice
6616 	 * the entire time.
6617 	 *
6618 	 * Cgroup2 has separate resource counters for memory and swap,
6619 	 * so this is a non-issue here. Memory and swap charge lifetimes
6620 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6621 	 * page to memory here, and uncharge swap when the slot is freed.
6622 	 */
6623 	if (!mem_cgroup_disabled() && do_memsw_account()) {
6624 		/*
6625 		 * The swap entry might not get freed for a long time,
6626 		 * let's not wait for it.  The page already received a
6627 		 * memory+swap charge, drop the swap entry duplicate.
6628 		 */
6629 		mem_cgroup_uncharge_swap(entry, 1);
6630 	}
6631 }
6632 
6633 struct uncharge_gather {
6634 	struct mem_cgroup *memcg;
6635 	unsigned long nr_memory;
6636 	unsigned long pgpgout;
6637 	unsigned long nr_kmem;
6638 	struct page *dummy_page;
6639 };
6640 
6641 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6642 {
6643 	memset(ug, 0, sizeof(*ug));
6644 }
6645 
6646 static void uncharge_batch(const struct uncharge_gather *ug)
6647 {
6648 	unsigned long flags;
6649 
6650 	if (ug->nr_memory) {
6651 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6652 		if (do_memsw_account())
6653 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6654 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6655 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6656 		memcg_oom_recover(ug->memcg);
6657 	}
6658 
6659 	local_irq_save(flags);
6660 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6661 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6662 	memcg_check_events(ug->memcg, ug->dummy_page);
6663 	local_irq_restore(flags);
6664 
6665 	/* drop reference from uncharge_page */
6666 	css_put(&ug->memcg->css);
6667 }
6668 
6669 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6670 {
6671 	unsigned long nr_pages;
6672 	struct mem_cgroup *memcg;
6673 	struct obj_cgroup *objcg;
6674 
6675 	VM_BUG_ON_PAGE(PageLRU(page), page);
6676 
6677 	/*
6678 	 * Nobody should be changing or seriously looking at
6679 	 * page memcg or objcg at this point, we have fully
6680 	 * exclusive access to the page.
6681 	 */
6682 	if (PageMemcgKmem(page)) {
6683 		objcg = __page_objcg(page);
6684 		/*
6685 		 * This get matches the put at the end of the function and
6686 		 * kmem pages do not hold memcg references anymore.
6687 		 */
6688 		memcg = get_mem_cgroup_from_objcg(objcg);
6689 	} else {
6690 		memcg = __page_memcg(page);
6691 	}
6692 
6693 	if (!memcg)
6694 		return;
6695 
6696 	if (ug->memcg != memcg) {
6697 		if (ug->memcg) {
6698 			uncharge_batch(ug);
6699 			uncharge_gather_clear(ug);
6700 		}
6701 		ug->memcg = memcg;
6702 		ug->dummy_page = page;
6703 
6704 		/* pairs with css_put in uncharge_batch */
6705 		css_get(&memcg->css);
6706 	}
6707 
6708 	nr_pages = compound_nr(page);
6709 
6710 	if (PageMemcgKmem(page)) {
6711 		ug->nr_memory += nr_pages;
6712 		ug->nr_kmem += nr_pages;
6713 
6714 		page->memcg_data = 0;
6715 		obj_cgroup_put(objcg);
6716 	} else {
6717 		/* LRU pages aren't accounted at the root level */
6718 		if (!mem_cgroup_is_root(memcg))
6719 			ug->nr_memory += nr_pages;
6720 		ug->pgpgout++;
6721 
6722 		page->memcg_data = 0;
6723 	}
6724 
6725 	css_put(&memcg->css);
6726 }
6727 
6728 /**
6729  * mem_cgroup_uncharge - uncharge a page
6730  * @page: page to uncharge
6731  *
6732  * Uncharge a page previously charged with mem_cgroup_charge().
6733  */
6734 void mem_cgroup_uncharge(struct page *page)
6735 {
6736 	struct uncharge_gather ug;
6737 
6738 	if (mem_cgroup_disabled())
6739 		return;
6740 
6741 	/* Don't touch page->lru of any random page, pre-check: */
6742 	if (!page_memcg(page))
6743 		return;
6744 
6745 	uncharge_gather_clear(&ug);
6746 	uncharge_page(page, &ug);
6747 	uncharge_batch(&ug);
6748 }
6749 
6750 /**
6751  * mem_cgroup_uncharge_list - uncharge a list of page
6752  * @page_list: list of pages to uncharge
6753  *
6754  * Uncharge a list of pages previously charged with
6755  * mem_cgroup_charge().
6756  */
6757 void mem_cgroup_uncharge_list(struct list_head *page_list)
6758 {
6759 	struct uncharge_gather ug;
6760 	struct page *page;
6761 
6762 	if (mem_cgroup_disabled())
6763 		return;
6764 
6765 	uncharge_gather_clear(&ug);
6766 	list_for_each_entry(page, page_list, lru)
6767 		uncharge_page(page, &ug);
6768 	if (ug.memcg)
6769 		uncharge_batch(&ug);
6770 }
6771 
6772 /**
6773  * mem_cgroup_migrate - charge a page's replacement
6774  * @oldpage: currently circulating page
6775  * @newpage: replacement page
6776  *
6777  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6778  * be uncharged upon free.
6779  *
6780  * Both pages must be locked, @newpage->mapping must be set up.
6781  */
6782 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6783 {
6784 	struct mem_cgroup *memcg;
6785 	unsigned int nr_pages;
6786 	unsigned long flags;
6787 
6788 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6789 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6790 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6791 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6792 		       newpage);
6793 
6794 	if (mem_cgroup_disabled())
6795 		return;
6796 
6797 	/* Page cache replacement: new page already charged? */
6798 	if (page_memcg(newpage))
6799 		return;
6800 
6801 	memcg = page_memcg(oldpage);
6802 	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6803 	if (!memcg)
6804 		return;
6805 
6806 	/* Force-charge the new page. The old one will be freed soon */
6807 	nr_pages = thp_nr_pages(newpage);
6808 
6809 	page_counter_charge(&memcg->memory, nr_pages);
6810 	if (do_memsw_account())
6811 		page_counter_charge(&memcg->memsw, nr_pages);
6812 
6813 	css_get(&memcg->css);
6814 	commit_charge(newpage, memcg);
6815 
6816 	local_irq_save(flags);
6817 	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6818 	memcg_check_events(memcg, newpage);
6819 	local_irq_restore(flags);
6820 }
6821 
6822 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6823 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6824 
6825 void mem_cgroup_sk_alloc(struct sock *sk)
6826 {
6827 	struct mem_cgroup *memcg;
6828 
6829 	if (!mem_cgroup_sockets_enabled)
6830 		return;
6831 
6832 	/* Do not associate the sock with unrelated interrupted task's memcg. */
6833 	if (in_interrupt())
6834 		return;
6835 
6836 	rcu_read_lock();
6837 	memcg = mem_cgroup_from_task(current);
6838 	if (memcg == root_mem_cgroup)
6839 		goto out;
6840 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6841 		goto out;
6842 	if (css_tryget(&memcg->css))
6843 		sk->sk_memcg = memcg;
6844 out:
6845 	rcu_read_unlock();
6846 }
6847 
6848 void mem_cgroup_sk_free(struct sock *sk)
6849 {
6850 	if (sk->sk_memcg)
6851 		css_put(&sk->sk_memcg->css);
6852 }
6853 
6854 /**
6855  * mem_cgroup_charge_skmem - charge socket memory
6856  * @memcg: memcg to charge
6857  * @nr_pages: number of pages to charge
6858  *
6859  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6860  * @memcg's configured limit, %false if the charge had to be forced.
6861  */
6862 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6863 {
6864 	gfp_t gfp_mask = GFP_KERNEL;
6865 
6866 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6867 		struct page_counter *fail;
6868 
6869 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6870 			memcg->tcpmem_pressure = 0;
6871 			return true;
6872 		}
6873 		page_counter_charge(&memcg->tcpmem, nr_pages);
6874 		memcg->tcpmem_pressure = 1;
6875 		return false;
6876 	}
6877 
6878 	/* Don't block in the packet receive path */
6879 	if (in_softirq())
6880 		gfp_mask = GFP_NOWAIT;
6881 
6882 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6883 
6884 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6885 		return true;
6886 
6887 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6888 	return false;
6889 }
6890 
6891 /**
6892  * mem_cgroup_uncharge_skmem - uncharge socket memory
6893  * @memcg: memcg to uncharge
6894  * @nr_pages: number of pages to uncharge
6895  */
6896 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6897 {
6898 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6899 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6900 		return;
6901 	}
6902 
6903 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6904 
6905 	refill_stock(memcg, nr_pages);
6906 }
6907 
6908 static int __init cgroup_memory(char *s)
6909 {
6910 	char *token;
6911 
6912 	while ((token = strsep(&s, ",")) != NULL) {
6913 		if (!*token)
6914 			continue;
6915 		if (!strcmp(token, "nosocket"))
6916 			cgroup_memory_nosocket = true;
6917 		if (!strcmp(token, "nokmem"))
6918 			cgroup_memory_nokmem = true;
6919 	}
6920 	return 0;
6921 }
6922 __setup("cgroup.memory=", cgroup_memory);
6923 
6924 /*
6925  * subsys_initcall() for memory controller.
6926  *
6927  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6928  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6929  * basically everything that doesn't depend on a specific mem_cgroup structure
6930  * should be initialized from here.
6931  */
6932 static int __init mem_cgroup_init(void)
6933 {
6934 	int cpu, node;
6935 
6936 	/*
6937 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
6938 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
6939 	 * to work fine, we should make sure that the overfill threshold can't
6940 	 * exceed S32_MAX / PAGE_SIZE.
6941 	 */
6942 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
6943 
6944 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6945 				  memcg_hotplug_cpu_dead);
6946 
6947 	for_each_possible_cpu(cpu)
6948 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6949 			  drain_local_stock);
6950 
6951 	for_each_node(node) {
6952 		struct mem_cgroup_tree_per_node *rtpn;
6953 
6954 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6955 				    node_online(node) ? node : NUMA_NO_NODE);
6956 
6957 		rtpn->rb_root = RB_ROOT;
6958 		rtpn->rb_rightmost = NULL;
6959 		spin_lock_init(&rtpn->lock);
6960 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6961 	}
6962 
6963 	return 0;
6964 }
6965 subsys_initcall(mem_cgroup_init);
6966 
6967 #ifdef CONFIG_MEMCG_SWAP
6968 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6969 {
6970 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6971 		/*
6972 		 * The root cgroup cannot be destroyed, so it's refcount must
6973 		 * always be >= 1.
6974 		 */
6975 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6976 			VM_BUG_ON(1);
6977 			break;
6978 		}
6979 		memcg = parent_mem_cgroup(memcg);
6980 		if (!memcg)
6981 			memcg = root_mem_cgroup;
6982 	}
6983 	return memcg;
6984 }
6985 
6986 /**
6987  * mem_cgroup_swapout - transfer a memsw charge to swap
6988  * @page: page whose memsw charge to transfer
6989  * @entry: swap entry to move the charge to
6990  *
6991  * Transfer the memsw charge of @page to @entry.
6992  */
6993 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6994 {
6995 	struct mem_cgroup *memcg, *swap_memcg;
6996 	unsigned int nr_entries;
6997 	unsigned short oldid;
6998 
6999 	VM_BUG_ON_PAGE(PageLRU(page), page);
7000 	VM_BUG_ON_PAGE(page_count(page), page);
7001 
7002 	if (mem_cgroup_disabled())
7003 		return;
7004 
7005 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7006 		return;
7007 
7008 	memcg = page_memcg(page);
7009 
7010 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7011 	if (!memcg)
7012 		return;
7013 
7014 	/*
7015 	 * In case the memcg owning these pages has been offlined and doesn't
7016 	 * have an ID allocated to it anymore, charge the closest online
7017 	 * ancestor for the swap instead and transfer the memory+swap charge.
7018 	 */
7019 	swap_memcg = mem_cgroup_id_get_online(memcg);
7020 	nr_entries = thp_nr_pages(page);
7021 	/* Get references for the tail pages, too */
7022 	if (nr_entries > 1)
7023 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7024 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7025 				   nr_entries);
7026 	VM_BUG_ON_PAGE(oldid, page);
7027 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7028 
7029 	page->memcg_data = 0;
7030 
7031 	if (!mem_cgroup_is_root(memcg))
7032 		page_counter_uncharge(&memcg->memory, nr_entries);
7033 
7034 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7035 		if (!mem_cgroup_is_root(swap_memcg))
7036 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7037 		page_counter_uncharge(&memcg->memsw, nr_entries);
7038 	}
7039 
7040 	/*
7041 	 * Interrupts should be disabled here because the caller holds the
7042 	 * i_pages lock which is taken with interrupts-off. It is
7043 	 * important here to have the interrupts disabled because it is the
7044 	 * only synchronisation we have for updating the per-CPU variables.
7045 	 */
7046 	VM_BUG_ON(!irqs_disabled());
7047 	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7048 	memcg_check_events(memcg, page);
7049 
7050 	css_put(&memcg->css);
7051 }
7052 
7053 /**
7054  * mem_cgroup_try_charge_swap - try charging swap space for a page
7055  * @page: page being added to swap
7056  * @entry: swap entry to charge
7057  *
7058  * Try to charge @page's memcg for the swap space at @entry.
7059  *
7060  * Returns 0 on success, -ENOMEM on failure.
7061  */
7062 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7063 {
7064 	unsigned int nr_pages = thp_nr_pages(page);
7065 	struct page_counter *counter;
7066 	struct mem_cgroup *memcg;
7067 	unsigned short oldid;
7068 
7069 	if (mem_cgroup_disabled())
7070 		return 0;
7071 
7072 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7073 		return 0;
7074 
7075 	memcg = page_memcg(page);
7076 
7077 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7078 	if (!memcg)
7079 		return 0;
7080 
7081 	if (!entry.val) {
7082 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7083 		return 0;
7084 	}
7085 
7086 	memcg = mem_cgroup_id_get_online(memcg);
7087 
7088 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7089 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7090 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7091 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7092 		mem_cgroup_id_put(memcg);
7093 		return -ENOMEM;
7094 	}
7095 
7096 	/* Get references for the tail pages, too */
7097 	if (nr_pages > 1)
7098 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7099 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7100 	VM_BUG_ON_PAGE(oldid, page);
7101 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7102 
7103 	return 0;
7104 }
7105 
7106 /**
7107  * mem_cgroup_uncharge_swap - uncharge swap space
7108  * @entry: swap entry to uncharge
7109  * @nr_pages: the amount of swap space to uncharge
7110  */
7111 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7112 {
7113 	struct mem_cgroup *memcg;
7114 	unsigned short id;
7115 
7116 	id = swap_cgroup_record(entry, 0, nr_pages);
7117 	rcu_read_lock();
7118 	memcg = mem_cgroup_from_id(id);
7119 	if (memcg) {
7120 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7121 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7122 				page_counter_uncharge(&memcg->swap, nr_pages);
7123 			else
7124 				page_counter_uncharge(&memcg->memsw, nr_pages);
7125 		}
7126 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7127 		mem_cgroup_id_put_many(memcg, nr_pages);
7128 	}
7129 	rcu_read_unlock();
7130 }
7131 
7132 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7133 {
7134 	long nr_swap_pages = get_nr_swap_pages();
7135 
7136 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7137 		return nr_swap_pages;
7138 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7139 		nr_swap_pages = min_t(long, nr_swap_pages,
7140 				      READ_ONCE(memcg->swap.max) -
7141 				      page_counter_read(&memcg->swap));
7142 	return nr_swap_pages;
7143 }
7144 
7145 bool mem_cgroup_swap_full(struct page *page)
7146 {
7147 	struct mem_cgroup *memcg;
7148 
7149 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7150 
7151 	if (vm_swap_full())
7152 		return true;
7153 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7154 		return false;
7155 
7156 	memcg = page_memcg(page);
7157 	if (!memcg)
7158 		return false;
7159 
7160 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7161 		unsigned long usage = page_counter_read(&memcg->swap);
7162 
7163 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7164 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7165 			return true;
7166 	}
7167 
7168 	return false;
7169 }
7170 
7171 static int __init setup_swap_account(char *s)
7172 {
7173 	if (!strcmp(s, "1"))
7174 		cgroup_memory_noswap = false;
7175 	else if (!strcmp(s, "0"))
7176 		cgroup_memory_noswap = true;
7177 	return 1;
7178 }
7179 __setup("swapaccount=", setup_swap_account);
7180 
7181 static u64 swap_current_read(struct cgroup_subsys_state *css,
7182 			     struct cftype *cft)
7183 {
7184 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7185 
7186 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7187 }
7188 
7189 static int swap_high_show(struct seq_file *m, void *v)
7190 {
7191 	return seq_puts_memcg_tunable(m,
7192 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7193 }
7194 
7195 static ssize_t swap_high_write(struct kernfs_open_file *of,
7196 			       char *buf, size_t nbytes, loff_t off)
7197 {
7198 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7199 	unsigned long high;
7200 	int err;
7201 
7202 	buf = strstrip(buf);
7203 	err = page_counter_memparse(buf, "max", &high);
7204 	if (err)
7205 		return err;
7206 
7207 	page_counter_set_high(&memcg->swap, high);
7208 
7209 	return nbytes;
7210 }
7211 
7212 static int swap_max_show(struct seq_file *m, void *v)
7213 {
7214 	return seq_puts_memcg_tunable(m,
7215 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7216 }
7217 
7218 static ssize_t swap_max_write(struct kernfs_open_file *of,
7219 			      char *buf, size_t nbytes, loff_t off)
7220 {
7221 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7222 	unsigned long max;
7223 	int err;
7224 
7225 	buf = strstrip(buf);
7226 	err = page_counter_memparse(buf, "max", &max);
7227 	if (err)
7228 		return err;
7229 
7230 	xchg(&memcg->swap.max, max);
7231 
7232 	return nbytes;
7233 }
7234 
7235 static int swap_events_show(struct seq_file *m, void *v)
7236 {
7237 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7238 
7239 	seq_printf(m, "high %lu\n",
7240 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7241 	seq_printf(m, "max %lu\n",
7242 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7243 	seq_printf(m, "fail %lu\n",
7244 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7245 
7246 	return 0;
7247 }
7248 
7249 static struct cftype swap_files[] = {
7250 	{
7251 		.name = "swap.current",
7252 		.flags = CFTYPE_NOT_ON_ROOT,
7253 		.read_u64 = swap_current_read,
7254 	},
7255 	{
7256 		.name = "swap.high",
7257 		.flags = CFTYPE_NOT_ON_ROOT,
7258 		.seq_show = swap_high_show,
7259 		.write = swap_high_write,
7260 	},
7261 	{
7262 		.name = "swap.max",
7263 		.flags = CFTYPE_NOT_ON_ROOT,
7264 		.seq_show = swap_max_show,
7265 		.write = swap_max_write,
7266 	},
7267 	{
7268 		.name = "swap.events",
7269 		.flags = CFTYPE_NOT_ON_ROOT,
7270 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7271 		.seq_show = swap_events_show,
7272 	},
7273 	{ }	/* terminate */
7274 };
7275 
7276 static struct cftype memsw_files[] = {
7277 	{
7278 		.name = "memsw.usage_in_bytes",
7279 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7280 		.read_u64 = mem_cgroup_read_u64,
7281 	},
7282 	{
7283 		.name = "memsw.max_usage_in_bytes",
7284 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7285 		.write = mem_cgroup_reset,
7286 		.read_u64 = mem_cgroup_read_u64,
7287 	},
7288 	{
7289 		.name = "memsw.limit_in_bytes",
7290 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7291 		.write = mem_cgroup_write,
7292 		.read_u64 = mem_cgroup_read_u64,
7293 	},
7294 	{
7295 		.name = "memsw.failcnt",
7296 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7297 		.write = mem_cgroup_reset,
7298 		.read_u64 = mem_cgroup_read_u64,
7299 	},
7300 	{ },	/* terminate */
7301 };
7302 
7303 /*
7304  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7305  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7306  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7307  * boot parameter. This may result in premature OOPS inside
7308  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7309  */
7310 static int __init mem_cgroup_swap_init(void)
7311 {
7312 	/* No memory control -> no swap control */
7313 	if (mem_cgroup_disabled())
7314 		cgroup_memory_noswap = true;
7315 
7316 	if (cgroup_memory_noswap)
7317 		return 0;
7318 
7319 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7320 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7321 
7322 	return 0;
7323 }
7324 core_initcall(mem_cgroup_swap_init);
7325 
7326 #endif /* CONFIG_MEMCG_SWAP */
7327