xref: /openbmc/linux/mm/memcontrol.c (revision 275876e2)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64 
65 #include <asm/uaccess.h>
66 
67 #include <trace/events/vmscan.h>
68 
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71 
72 #define MEM_CGROUP_RECLAIM_RETRIES	5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74 
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78 
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85 
86 #else
87 #define do_swap_account		0
88 #endif
89 
90 
91 static const char * const mem_cgroup_stat_names[] = {
92 	"cache",
93 	"rss",
94 	"rss_huge",
95 	"mapped_file",
96 	"writeback",
97 	"swap",
98 };
99 
100 enum mem_cgroup_events_index {
101 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
102 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
104 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 	MEM_CGROUP_EVENTS_NSTATS,
106 };
107 
108 static const char * const mem_cgroup_events_names[] = {
109 	"pgpgin",
110 	"pgpgout",
111 	"pgfault",
112 	"pgmajfault",
113 };
114 
115 static const char * const mem_cgroup_lru_names[] = {
116 	"inactive_anon",
117 	"active_anon",
118 	"inactive_file",
119 	"active_file",
120 	"unevictable",
121 };
122 
123 /*
124  * Per memcg event counter is incremented at every pagein/pageout. With THP,
125  * it will be incremated by the number of pages. This counter is used for
126  * for trigger some periodic events. This is straightforward and better
127  * than using jiffies etc. to handle periodic memcg event.
128  */
129 enum mem_cgroup_events_target {
130 	MEM_CGROUP_TARGET_THRESH,
131 	MEM_CGROUP_TARGET_SOFTLIMIT,
132 	MEM_CGROUP_TARGET_NUMAINFO,
133 	MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET	1024
138 
139 struct mem_cgroup_stat_cpu {
140 	long count[MEM_CGROUP_STAT_NSTATS];
141 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 	unsigned long nr_page_events;
143 	unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145 
146 struct mem_cgroup_reclaim_iter {
147 	/*
148 	 * last scanned hierarchy member. Valid only if last_dead_count
149 	 * matches memcg->dead_count of the hierarchy root group.
150 	 */
151 	struct mem_cgroup *last_visited;
152 	int last_dead_count;
153 
154 	/* scan generation, increased every round-trip */
155 	unsigned int generation;
156 };
157 
158 /*
159  * per-zone information in memory controller.
160  */
161 struct mem_cgroup_per_zone {
162 	struct lruvec		lruvec;
163 	unsigned long		lru_size[NR_LRU_LISTS];
164 
165 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166 
167 	struct rb_node		tree_node;	/* RB tree node */
168 	unsigned long long	usage_in_excess;/* Set to the value by which */
169 						/* the soft limit is exceeded*/
170 	bool			on_tree;
171 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172 						/* use container_of	   */
173 };
174 
175 struct mem_cgroup_per_node {
176 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178 
179 /*
180  * Cgroups above their limits are maintained in a RB-Tree, independent of
181  * their hierarchy representation
182  */
183 
184 struct mem_cgroup_tree_per_zone {
185 	struct rb_root rb_root;
186 	spinlock_t lock;
187 };
188 
189 struct mem_cgroup_tree_per_node {
190 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192 
193 struct mem_cgroup_tree {
194 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196 
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198 
199 struct mem_cgroup_threshold {
200 	struct eventfd_ctx *eventfd;
201 	u64 threshold;
202 };
203 
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 	/* An array index points to threshold just below or equal to usage. */
207 	int current_threshold;
208 	/* Size of entries[] */
209 	unsigned int size;
210 	/* Array of thresholds */
211 	struct mem_cgroup_threshold entries[0];
212 };
213 
214 struct mem_cgroup_thresholds {
215 	/* Primary thresholds array */
216 	struct mem_cgroup_threshold_ary *primary;
217 	/*
218 	 * Spare threshold array.
219 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 	 * It must be able to store at least primary->size - 1 entries.
221 	 */
222 	struct mem_cgroup_threshold_ary *spare;
223 };
224 
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 	struct list_head list;
228 	struct eventfd_ctx *eventfd;
229 };
230 
231 /*
232  * cgroup_event represents events which userspace want to receive.
233  */
234 struct mem_cgroup_event {
235 	/*
236 	 * memcg which the event belongs to.
237 	 */
238 	struct mem_cgroup *memcg;
239 	/*
240 	 * eventfd to signal userspace about the event.
241 	 */
242 	struct eventfd_ctx *eventfd;
243 	/*
244 	 * Each of these stored in a list by the cgroup.
245 	 */
246 	struct list_head list;
247 	/*
248 	 * register_event() callback will be used to add new userspace
249 	 * waiter for changes related to this event.  Use eventfd_signal()
250 	 * on eventfd to send notification to userspace.
251 	 */
252 	int (*register_event)(struct mem_cgroup *memcg,
253 			      struct eventfd_ctx *eventfd, const char *args);
254 	/*
255 	 * unregister_event() callback will be called when userspace closes
256 	 * the eventfd or on cgroup removing.  This callback must be set,
257 	 * if you want provide notification functionality.
258 	 */
259 	void (*unregister_event)(struct mem_cgroup *memcg,
260 				 struct eventfd_ctx *eventfd);
261 	/*
262 	 * All fields below needed to unregister event when
263 	 * userspace closes eventfd.
264 	 */
265 	poll_table pt;
266 	wait_queue_head_t *wqh;
267 	wait_queue_t wait;
268 	struct work_struct remove;
269 };
270 
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273 
274 /*
275  * The memory controller data structure. The memory controller controls both
276  * page cache and RSS per cgroup. We would eventually like to provide
277  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278  * to help the administrator determine what knobs to tune.
279  *
280  * TODO: Add a water mark for the memory controller. Reclaim will begin when
281  * we hit the water mark. May be even add a low water mark, such that
282  * no reclaim occurs from a cgroup at it's low water mark, this is
283  * a feature that will be implemented much later in the future.
284  */
285 struct mem_cgroup {
286 	struct cgroup_subsys_state css;
287 	/*
288 	 * the counter to account for memory usage
289 	 */
290 	struct res_counter res;
291 
292 	/* vmpressure notifications */
293 	struct vmpressure vmpressure;
294 
295 	/*
296 	 * the counter to account for mem+swap usage.
297 	 */
298 	struct res_counter memsw;
299 
300 	/*
301 	 * the counter to account for kernel memory usage.
302 	 */
303 	struct res_counter kmem;
304 	/*
305 	 * Should the accounting and control be hierarchical, per subtree?
306 	 */
307 	bool use_hierarchy;
308 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309 
310 	bool		oom_lock;
311 	atomic_t	under_oom;
312 	atomic_t	oom_wakeups;
313 
314 	int	swappiness;
315 	/* OOM-Killer disable */
316 	int		oom_kill_disable;
317 
318 	/* set when res.limit == memsw.limit */
319 	bool		memsw_is_minimum;
320 
321 	/* protect arrays of thresholds */
322 	struct mutex thresholds_lock;
323 
324 	/* thresholds for memory usage. RCU-protected */
325 	struct mem_cgroup_thresholds thresholds;
326 
327 	/* thresholds for mem+swap usage. RCU-protected */
328 	struct mem_cgroup_thresholds memsw_thresholds;
329 
330 	/* For oom notifier event fd */
331 	struct list_head oom_notify;
332 
333 	/*
334 	 * Should we move charges of a task when a task is moved into this
335 	 * mem_cgroup ? And what type of charges should we move ?
336 	 */
337 	unsigned long move_charge_at_immigrate;
338 	/*
339 	 * set > 0 if pages under this cgroup are moving to other cgroup.
340 	 */
341 	atomic_t	moving_account;
342 	/* taken only while moving_account > 0 */
343 	spinlock_t	move_lock;
344 	/*
345 	 * percpu counter.
346 	 */
347 	struct mem_cgroup_stat_cpu __percpu *stat;
348 	/*
349 	 * used when a cpu is offlined or other synchronizations
350 	 * See mem_cgroup_read_stat().
351 	 */
352 	struct mem_cgroup_stat_cpu nocpu_base;
353 	spinlock_t pcp_counter_lock;
354 
355 	atomic_t	dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 	struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 	/* analogous to slab_common's slab_caches list, but per-memcg;
361 	 * protected by memcg_slab_mutex */
362 	struct list_head memcg_slab_caches;
363         /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 	int kmemcg_id;
365 #endif
366 
367 	int last_scanned_node;
368 #if MAX_NUMNODES > 1
369 	nodemask_t	scan_nodes;
370 	atomic_t	numainfo_events;
371 	atomic_t	numainfo_updating;
372 #endif
373 
374 	/* List of events which userspace want to receive */
375 	struct list_head event_list;
376 	spinlock_t event_list_lock;
377 
378 	struct mem_cgroup_per_node *nodeinfo[0];
379 	/* WARNING: nodeinfo must be the last member here */
380 };
381 
382 /* internal only representation about the status of kmem accounting. */
383 enum {
384 	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 };
387 
388 #ifdef CONFIG_MEMCG_KMEM
389 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390 {
391 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392 }
393 
394 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395 {
396 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397 }
398 
399 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400 {
401 	/*
402 	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 	 * will call css_put() if it sees the memcg is dead.
404 	 */
405 	smp_wmb();
406 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408 }
409 
410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411 {
412 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 				  &memcg->kmem_account_flags);
414 }
415 #endif
416 
417 /* Stuffs for move charges at task migration. */
418 /*
419  * Types of charges to be moved. "move_charge_at_immitgrate" and
420  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421  */
422 enum move_type {
423 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
424 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
425 	NR_MOVE_TYPE,
426 };
427 
428 /* "mc" and its members are protected by cgroup_mutex */
429 static struct move_charge_struct {
430 	spinlock_t	  lock; /* for from, to */
431 	struct mem_cgroup *from;
432 	struct mem_cgroup *to;
433 	unsigned long immigrate_flags;
434 	unsigned long precharge;
435 	unsigned long moved_charge;
436 	unsigned long moved_swap;
437 	struct task_struct *moving_task;	/* a task moving charges */
438 	wait_queue_head_t waitq;		/* a waitq for other context */
439 } mc = {
440 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442 };
443 
444 static bool move_anon(void)
445 {
446 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
447 }
448 
449 static bool move_file(void)
450 {
451 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 }
453 
454 /*
455  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456  * limit reclaim to prevent infinite loops, if they ever occur.
457  */
458 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
459 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
460 
461 enum charge_type {
462 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463 	MEM_CGROUP_CHARGE_TYPE_ANON,
464 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
465 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
466 	NR_CHARGE_TYPE,
467 };
468 
469 /* for encoding cft->private value on file */
470 enum res_type {
471 	_MEM,
472 	_MEMSWAP,
473 	_OOM_TYPE,
474 	_KMEM,
475 };
476 
477 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
478 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
479 #define MEMFILE_ATTR(val)	((val) & 0xffff)
480 /* Used for OOM nofiier */
481 #define OOM_CONTROL		(0)
482 
483 /*
484  * Reclaim flags for mem_cgroup_hierarchical_reclaim
485  */
486 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
487 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
489 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
490 
491 /*
492  * The memcg_create_mutex will be held whenever a new cgroup is created.
493  * As a consequence, any change that needs to protect against new child cgroups
494  * appearing has to hold it as well.
495  */
496 static DEFINE_MUTEX(memcg_create_mutex);
497 
498 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
499 {
500 	return s ? container_of(s, struct mem_cgroup, css) : NULL;
501 }
502 
503 /* Some nice accessors for the vmpressure. */
504 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
505 {
506 	if (!memcg)
507 		memcg = root_mem_cgroup;
508 	return &memcg->vmpressure;
509 }
510 
511 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
512 {
513 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
514 }
515 
516 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
517 {
518 	return (memcg == root_mem_cgroup);
519 }
520 
521 /*
522  * We restrict the id in the range of [1, 65535], so it can fit into
523  * an unsigned short.
524  */
525 #define MEM_CGROUP_ID_MAX	USHRT_MAX
526 
527 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
528 {
529 	return memcg->css.id;
530 }
531 
532 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
533 {
534 	struct cgroup_subsys_state *css;
535 
536 	css = css_from_id(id, &memory_cgrp_subsys);
537 	return mem_cgroup_from_css(css);
538 }
539 
540 /* Writing them here to avoid exposing memcg's inner layout */
541 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
542 
543 void sock_update_memcg(struct sock *sk)
544 {
545 	if (mem_cgroup_sockets_enabled) {
546 		struct mem_cgroup *memcg;
547 		struct cg_proto *cg_proto;
548 
549 		BUG_ON(!sk->sk_prot->proto_cgroup);
550 
551 		/* Socket cloning can throw us here with sk_cgrp already
552 		 * filled. It won't however, necessarily happen from
553 		 * process context. So the test for root memcg given
554 		 * the current task's memcg won't help us in this case.
555 		 *
556 		 * Respecting the original socket's memcg is a better
557 		 * decision in this case.
558 		 */
559 		if (sk->sk_cgrp) {
560 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
561 			css_get(&sk->sk_cgrp->memcg->css);
562 			return;
563 		}
564 
565 		rcu_read_lock();
566 		memcg = mem_cgroup_from_task(current);
567 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
568 		if (!mem_cgroup_is_root(memcg) &&
569 		    memcg_proto_active(cg_proto) &&
570 		    css_tryget_online(&memcg->css)) {
571 			sk->sk_cgrp = cg_proto;
572 		}
573 		rcu_read_unlock();
574 	}
575 }
576 EXPORT_SYMBOL(sock_update_memcg);
577 
578 void sock_release_memcg(struct sock *sk)
579 {
580 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
581 		struct mem_cgroup *memcg;
582 		WARN_ON(!sk->sk_cgrp->memcg);
583 		memcg = sk->sk_cgrp->memcg;
584 		css_put(&sk->sk_cgrp->memcg->css);
585 	}
586 }
587 
588 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
589 {
590 	if (!memcg || mem_cgroup_is_root(memcg))
591 		return NULL;
592 
593 	return &memcg->tcp_mem;
594 }
595 EXPORT_SYMBOL(tcp_proto_cgroup);
596 
597 static void disarm_sock_keys(struct mem_cgroup *memcg)
598 {
599 	if (!memcg_proto_activated(&memcg->tcp_mem))
600 		return;
601 	static_key_slow_dec(&memcg_socket_limit_enabled);
602 }
603 #else
604 static void disarm_sock_keys(struct mem_cgroup *memcg)
605 {
606 }
607 #endif
608 
609 #ifdef CONFIG_MEMCG_KMEM
610 /*
611  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
612  * The main reason for not using cgroup id for this:
613  *  this works better in sparse environments, where we have a lot of memcgs,
614  *  but only a few kmem-limited. Or also, if we have, for instance, 200
615  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
616  *  200 entry array for that.
617  *
618  * The current size of the caches array is stored in
619  * memcg_limited_groups_array_size.  It will double each time we have to
620  * increase it.
621  */
622 static DEFINE_IDA(kmem_limited_groups);
623 int memcg_limited_groups_array_size;
624 
625 /*
626  * MIN_SIZE is different than 1, because we would like to avoid going through
627  * the alloc/free process all the time. In a small machine, 4 kmem-limited
628  * cgroups is a reasonable guess. In the future, it could be a parameter or
629  * tunable, but that is strictly not necessary.
630  *
631  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
632  * this constant directly from cgroup, but it is understandable that this is
633  * better kept as an internal representation in cgroup.c. In any case, the
634  * cgrp_id space is not getting any smaller, and we don't have to necessarily
635  * increase ours as well if it increases.
636  */
637 #define MEMCG_CACHES_MIN_SIZE 4
638 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
639 
640 /*
641  * A lot of the calls to the cache allocation functions are expected to be
642  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
643  * conditional to this static branch, we'll have to allow modules that does
644  * kmem_cache_alloc and the such to see this symbol as well
645  */
646 struct static_key memcg_kmem_enabled_key;
647 EXPORT_SYMBOL(memcg_kmem_enabled_key);
648 
649 static void disarm_kmem_keys(struct mem_cgroup *memcg)
650 {
651 	if (memcg_kmem_is_active(memcg)) {
652 		static_key_slow_dec(&memcg_kmem_enabled_key);
653 		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
654 	}
655 	/*
656 	 * This check can't live in kmem destruction function,
657 	 * since the charges will outlive the cgroup
658 	 */
659 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
660 }
661 #else
662 static void disarm_kmem_keys(struct mem_cgroup *memcg)
663 {
664 }
665 #endif /* CONFIG_MEMCG_KMEM */
666 
667 static void disarm_static_keys(struct mem_cgroup *memcg)
668 {
669 	disarm_sock_keys(memcg);
670 	disarm_kmem_keys(memcg);
671 }
672 
673 static void drain_all_stock_async(struct mem_cgroup *memcg);
674 
675 static struct mem_cgroup_per_zone *
676 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
677 {
678 	int nid = zone_to_nid(zone);
679 	int zid = zone_idx(zone);
680 
681 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
682 }
683 
684 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
685 {
686 	return &memcg->css;
687 }
688 
689 static struct mem_cgroup_per_zone *
690 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
691 {
692 	int nid = page_to_nid(page);
693 	int zid = page_zonenum(page);
694 
695 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
696 }
697 
698 static struct mem_cgroup_tree_per_zone *
699 soft_limit_tree_node_zone(int nid, int zid)
700 {
701 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
702 }
703 
704 static struct mem_cgroup_tree_per_zone *
705 soft_limit_tree_from_page(struct page *page)
706 {
707 	int nid = page_to_nid(page);
708 	int zid = page_zonenum(page);
709 
710 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
711 }
712 
713 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
714 					 struct mem_cgroup_tree_per_zone *mctz,
715 					 unsigned long long new_usage_in_excess)
716 {
717 	struct rb_node **p = &mctz->rb_root.rb_node;
718 	struct rb_node *parent = NULL;
719 	struct mem_cgroup_per_zone *mz_node;
720 
721 	if (mz->on_tree)
722 		return;
723 
724 	mz->usage_in_excess = new_usage_in_excess;
725 	if (!mz->usage_in_excess)
726 		return;
727 	while (*p) {
728 		parent = *p;
729 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
730 					tree_node);
731 		if (mz->usage_in_excess < mz_node->usage_in_excess)
732 			p = &(*p)->rb_left;
733 		/*
734 		 * We can't avoid mem cgroups that are over their soft
735 		 * limit by the same amount
736 		 */
737 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
738 			p = &(*p)->rb_right;
739 	}
740 	rb_link_node(&mz->tree_node, parent, p);
741 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
742 	mz->on_tree = true;
743 }
744 
745 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
746 					 struct mem_cgroup_tree_per_zone *mctz)
747 {
748 	if (!mz->on_tree)
749 		return;
750 	rb_erase(&mz->tree_node, &mctz->rb_root);
751 	mz->on_tree = false;
752 }
753 
754 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
755 				       struct mem_cgroup_tree_per_zone *mctz)
756 {
757 	unsigned long flags;
758 
759 	spin_lock_irqsave(&mctz->lock, flags);
760 	__mem_cgroup_remove_exceeded(mz, mctz);
761 	spin_unlock_irqrestore(&mctz->lock, flags);
762 }
763 
764 
765 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
766 {
767 	unsigned long long excess;
768 	struct mem_cgroup_per_zone *mz;
769 	struct mem_cgroup_tree_per_zone *mctz;
770 
771 	mctz = soft_limit_tree_from_page(page);
772 	/*
773 	 * Necessary to update all ancestors when hierarchy is used.
774 	 * because their event counter is not touched.
775 	 */
776 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
777 		mz = mem_cgroup_page_zoneinfo(memcg, page);
778 		excess = res_counter_soft_limit_excess(&memcg->res);
779 		/*
780 		 * We have to update the tree if mz is on RB-tree or
781 		 * mem is over its softlimit.
782 		 */
783 		if (excess || mz->on_tree) {
784 			unsigned long flags;
785 
786 			spin_lock_irqsave(&mctz->lock, flags);
787 			/* if on-tree, remove it */
788 			if (mz->on_tree)
789 				__mem_cgroup_remove_exceeded(mz, mctz);
790 			/*
791 			 * Insert again. mz->usage_in_excess will be updated.
792 			 * If excess is 0, no tree ops.
793 			 */
794 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
795 			spin_unlock_irqrestore(&mctz->lock, flags);
796 		}
797 	}
798 }
799 
800 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
801 {
802 	struct mem_cgroup_tree_per_zone *mctz;
803 	struct mem_cgroup_per_zone *mz;
804 	int nid, zid;
805 
806 	for_each_node(nid) {
807 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
808 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
809 			mctz = soft_limit_tree_node_zone(nid, zid);
810 			mem_cgroup_remove_exceeded(mz, mctz);
811 		}
812 	}
813 }
814 
815 static struct mem_cgroup_per_zone *
816 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
817 {
818 	struct rb_node *rightmost = NULL;
819 	struct mem_cgroup_per_zone *mz;
820 
821 retry:
822 	mz = NULL;
823 	rightmost = rb_last(&mctz->rb_root);
824 	if (!rightmost)
825 		goto done;		/* Nothing to reclaim from */
826 
827 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
828 	/*
829 	 * Remove the node now but someone else can add it back,
830 	 * we will to add it back at the end of reclaim to its correct
831 	 * position in the tree.
832 	 */
833 	__mem_cgroup_remove_exceeded(mz, mctz);
834 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
835 	    !css_tryget_online(&mz->memcg->css))
836 		goto retry;
837 done:
838 	return mz;
839 }
840 
841 static struct mem_cgroup_per_zone *
842 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
843 {
844 	struct mem_cgroup_per_zone *mz;
845 
846 	spin_lock_irq(&mctz->lock);
847 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
848 	spin_unlock_irq(&mctz->lock);
849 	return mz;
850 }
851 
852 /*
853  * Implementation Note: reading percpu statistics for memcg.
854  *
855  * Both of vmstat[] and percpu_counter has threshold and do periodic
856  * synchronization to implement "quick" read. There are trade-off between
857  * reading cost and precision of value. Then, we may have a chance to implement
858  * a periodic synchronizion of counter in memcg's counter.
859  *
860  * But this _read() function is used for user interface now. The user accounts
861  * memory usage by memory cgroup and he _always_ requires exact value because
862  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
863  * have to visit all online cpus and make sum. So, for now, unnecessary
864  * synchronization is not implemented. (just implemented for cpu hotplug)
865  *
866  * If there are kernel internal actions which can make use of some not-exact
867  * value, and reading all cpu value can be performance bottleneck in some
868  * common workload, threashold and synchonization as vmstat[] should be
869  * implemented.
870  */
871 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
872 				 enum mem_cgroup_stat_index idx)
873 {
874 	long val = 0;
875 	int cpu;
876 
877 	get_online_cpus();
878 	for_each_online_cpu(cpu)
879 		val += per_cpu(memcg->stat->count[idx], cpu);
880 #ifdef CONFIG_HOTPLUG_CPU
881 	spin_lock(&memcg->pcp_counter_lock);
882 	val += memcg->nocpu_base.count[idx];
883 	spin_unlock(&memcg->pcp_counter_lock);
884 #endif
885 	put_online_cpus();
886 	return val;
887 }
888 
889 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
890 					    enum mem_cgroup_events_index idx)
891 {
892 	unsigned long val = 0;
893 	int cpu;
894 
895 	get_online_cpus();
896 	for_each_online_cpu(cpu)
897 		val += per_cpu(memcg->stat->events[idx], cpu);
898 #ifdef CONFIG_HOTPLUG_CPU
899 	spin_lock(&memcg->pcp_counter_lock);
900 	val += memcg->nocpu_base.events[idx];
901 	spin_unlock(&memcg->pcp_counter_lock);
902 #endif
903 	put_online_cpus();
904 	return val;
905 }
906 
907 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
908 					 struct page *page,
909 					 int nr_pages)
910 {
911 	/*
912 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
913 	 * counted as CACHE even if it's on ANON LRU.
914 	 */
915 	if (PageAnon(page))
916 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
917 				nr_pages);
918 	else
919 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
920 				nr_pages);
921 
922 	if (PageTransHuge(page))
923 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
924 				nr_pages);
925 
926 	/* pagein of a big page is an event. So, ignore page size */
927 	if (nr_pages > 0)
928 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
929 	else {
930 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
931 		nr_pages = -nr_pages; /* for event */
932 	}
933 
934 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
935 }
936 
937 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
938 {
939 	struct mem_cgroup_per_zone *mz;
940 
941 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
942 	return mz->lru_size[lru];
943 }
944 
945 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
946 						  int nid,
947 						  unsigned int lru_mask)
948 {
949 	unsigned long nr = 0;
950 	int zid;
951 
952 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
953 
954 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
955 		struct mem_cgroup_per_zone *mz;
956 		enum lru_list lru;
957 
958 		for_each_lru(lru) {
959 			if (!(BIT(lru) & lru_mask))
960 				continue;
961 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
962 			nr += mz->lru_size[lru];
963 		}
964 	}
965 	return nr;
966 }
967 
968 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
969 			unsigned int lru_mask)
970 {
971 	unsigned long nr = 0;
972 	int nid;
973 
974 	for_each_node_state(nid, N_MEMORY)
975 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
976 	return nr;
977 }
978 
979 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
980 				       enum mem_cgroup_events_target target)
981 {
982 	unsigned long val, next;
983 
984 	val = __this_cpu_read(memcg->stat->nr_page_events);
985 	next = __this_cpu_read(memcg->stat->targets[target]);
986 	/* from time_after() in jiffies.h */
987 	if ((long)next - (long)val < 0) {
988 		switch (target) {
989 		case MEM_CGROUP_TARGET_THRESH:
990 			next = val + THRESHOLDS_EVENTS_TARGET;
991 			break;
992 		case MEM_CGROUP_TARGET_SOFTLIMIT:
993 			next = val + SOFTLIMIT_EVENTS_TARGET;
994 			break;
995 		case MEM_CGROUP_TARGET_NUMAINFO:
996 			next = val + NUMAINFO_EVENTS_TARGET;
997 			break;
998 		default:
999 			break;
1000 		}
1001 		__this_cpu_write(memcg->stat->targets[target], next);
1002 		return true;
1003 	}
1004 	return false;
1005 }
1006 
1007 /*
1008  * Check events in order.
1009  *
1010  */
1011 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1012 {
1013 	/* threshold event is triggered in finer grain than soft limit */
1014 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1015 						MEM_CGROUP_TARGET_THRESH))) {
1016 		bool do_softlimit;
1017 		bool do_numainfo __maybe_unused;
1018 
1019 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1020 						MEM_CGROUP_TARGET_SOFTLIMIT);
1021 #if MAX_NUMNODES > 1
1022 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
1023 						MEM_CGROUP_TARGET_NUMAINFO);
1024 #endif
1025 		mem_cgroup_threshold(memcg);
1026 		if (unlikely(do_softlimit))
1027 			mem_cgroup_update_tree(memcg, page);
1028 #if MAX_NUMNODES > 1
1029 		if (unlikely(do_numainfo))
1030 			atomic_inc(&memcg->numainfo_events);
1031 #endif
1032 	}
1033 }
1034 
1035 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1036 {
1037 	/*
1038 	 * mm_update_next_owner() may clear mm->owner to NULL
1039 	 * if it races with swapoff, page migration, etc.
1040 	 * So this can be called with p == NULL.
1041 	 */
1042 	if (unlikely(!p))
1043 		return NULL;
1044 
1045 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1046 }
1047 
1048 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1049 {
1050 	struct mem_cgroup *memcg = NULL;
1051 
1052 	rcu_read_lock();
1053 	do {
1054 		/*
1055 		 * Page cache insertions can happen withou an
1056 		 * actual mm context, e.g. during disk probing
1057 		 * on boot, loopback IO, acct() writes etc.
1058 		 */
1059 		if (unlikely(!mm))
1060 			memcg = root_mem_cgroup;
1061 		else {
1062 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1063 			if (unlikely(!memcg))
1064 				memcg = root_mem_cgroup;
1065 		}
1066 	} while (!css_tryget_online(&memcg->css));
1067 	rcu_read_unlock();
1068 	return memcg;
1069 }
1070 
1071 /*
1072  * Returns a next (in a pre-order walk) alive memcg (with elevated css
1073  * ref. count) or NULL if the whole root's subtree has been visited.
1074  *
1075  * helper function to be used by mem_cgroup_iter
1076  */
1077 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1078 		struct mem_cgroup *last_visited)
1079 {
1080 	struct cgroup_subsys_state *prev_css, *next_css;
1081 
1082 	prev_css = last_visited ? &last_visited->css : NULL;
1083 skip_node:
1084 	next_css = css_next_descendant_pre(prev_css, &root->css);
1085 
1086 	/*
1087 	 * Even if we found a group we have to make sure it is
1088 	 * alive. css && !memcg means that the groups should be
1089 	 * skipped and we should continue the tree walk.
1090 	 * last_visited css is safe to use because it is
1091 	 * protected by css_get and the tree walk is rcu safe.
1092 	 *
1093 	 * We do not take a reference on the root of the tree walk
1094 	 * because we might race with the root removal when it would
1095 	 * be the only node in the iterated hierarchy and mem_cgroup_iter
1096 	 * would end up in an endless loop because it expects that at
1097 	 * least one valid node will be returned. Root cannot disappear
1098 	 * because caller of the iterator should hold it already so
1099 	 * skipping css reference should be safe.
1100 	 */
1101 	if (next_css) {
1102 		if ((next_css == &root->css) ||
1103 		    ((next_css->flags & CSS_ONLINE) &&
1104 		     css_tryget_online(next_css)))
1105 			return mem_cgroup_from_css(next_css);
1106 
1107 		prev_css = next_css;
1108 		goto skip_node;
1109 	}
1110 
1111 	return NULL;
1112 }
1113 
1114 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1115 {
1116 	/*
1117 	 * When a group in the hierarchy below root is destroyed, the
1118 	 * hierarchy iterator can no longer be trusted since it might
1119 	 * have pointed to the destroyed group.  Invalidate it.
1120 	 */
1121 	atomic_inc(&root->dead_count);
1122 }
1123 
1124 static struct mem_cgroup *
1125 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1126 		     struct mem_cgroup *root,
1127 		     int *sequence)
1128 {
1129 	struct mem_cgroup *position = NULL;
1130 	/*
1131 	 * A cgroup destruction happens in two stages: offlining and
1132 	 * release.  They are separated by a RCU grace period.
1133 	 *
1134 	 * If the iterator is valid, we may still race with an
1135 	 * offlining.  The RCU lock ensures the object won't be
1136 	 * released, tryget will fail if we lost the race.
1137 	 */
1138 	*sequence = atomic_read(&root->dead_count);
1139 	if (iter->last_dead_count == *sequence) {
1140 		smp_rmb();
1141 		position = iter->last_visited;
1142 
1143 		/*
1144 		 * We cannot take a reference to root because we might race
1145 		 * with root removal and returning NULL would end up in
1146 		 * an endless loop on the iterator user level when root
1147 		 * would be returned all the time.
1148 		 */
1149 		if (position && position != root &&
1150 		    !css_tryget_online(&position->css))
1151 			position = NULL;
1152 	}
1153 	return position;
1154 }
1155 
1156 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1157 				   struct mem_cgroup *last_visited,
1158 				   struct mem_cgroup *new_position,
1159 				   struct mem_cgroup *root,
1160 				   int sequence)
1161 {
1162 	/* root reference counting symmetric to mem_cgroup_iter_load */
1163 	if (last_visited && last_visited != root)
1164 		css_put(&last_visited->css);
1165 	/*
1166 	 * We store the sequence count from the time @last_visited was
1167 	 * loaded successfully instead of rereading it here so that we
1168 	 * don't lose destruction events in between.  We could have
1169 	 * raced with the destruction of @new_position after all.
1170 	 */
1171 	iter->last_visited = new_position;
1172 	smp_wmb();
1173 	iter->last_dead_count = sequence;
1174 }
1175 
1176 /**
1177  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1178  * @root: hierarchy root
1179  * @prev: previously returned memcg, NULL on first invocation
1180  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1181  *
1182  * Returns references to children of the hierarchy below @root, or
1183  * @root itself, or %NULL after a full round-trip.
1184  *
1185  * Caller must pass the return value in @prev on subsequent
1186  * invocations for reference counting, or use mem_cgroup_iter_break()
1187  * to cancel a hierarchy walk before the round-trip is complete.
1188  *
1189  * Reclaimers can specify a zone and a priority level in @reclaim to
1190  * divide up the memcgs in the hierarchy among all concurrent
1191  * reclaimers operating on the same zone and priority.
1192  */
1193 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1194 				   struct mem_cgroup *prev,
1195 				   struct mem_cgroup_reclaim_cookie *reclaim)
1196 {
1197 	struct mem_cgroup *memcg = NULL;
1198 	struct mem_cgroup *last_visited = NULL;
1199 
1200 	if (mem_cgroup_disabled())
1201 		return NULL;
1202 
1203 	if (!root)
1204 		root = root_mem_cgroup;
1205 
1206 	if (prev && !reclaim)
1207 		last_visited = prev;
1208 
1209 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1210 		if (prev)
1211 			goto out_css_put;
1212 		return root;
1213 	}
1214 
1215 	rcu_read_lock();
1216 	while (!memcg) {
1217 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1218 		int uninitialized_var(seq);
1219 
1220 		if (reclaim) {
1221 			struct mem_cgroup_per_zone *mz;
1222 
1223 			mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1224 			iter = &mz->reclaim_iter[reclaim->priority];
1225 			if (prev && reclaim->generation != iter->generation) {
1226 				iter->last_visited = NULL;
1227 				goto out_unlock;
1228 			}
1229 
1230 			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1231 		}
1232 
1233 		memcg = __mem_cgroup_iter_next(root, last_visited);
1234 
1235 		if (reclaim) {
1236 			mem_cgroup_iter_update(iter, last_visited, memcg, root,
1237 					seq);
1238 
1239 			if (!memcg)
1240 				iter->generation++;
1241 			else if (!prev && memcg)
1242 				reclaim->generation = iter->generation;
1243 		}
1244 
1245 		if (prev && !memcg)
1246 			goto out_unlock;
1247 	}
1248 out_unlock:
1249 	rcu_read_unlock();
1250 out_css_put:
1251 	if (prev && prev != root)
1252 		css_put(&prev->css);
1253 
1254 	return memcg;
1255 }
1256 
1257 /**
1258  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1259  * @root: hierarchy root
1260  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1261  */
1262 void mem_cgroup_iter_break(struct mem_cgroup *root,
1263 			   struct mem_cgroup *prev)
1264 {
1265 	if (!root)
1266 		root = root_mem_cgroup;
1267 	if (prev && prev != root)
1268 		css_put(&prev->css);
1269 }
1270 
1271 /*
1272  * Iteration constructs for visiting all cgroups (under a tree).  If
1273  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1274  * be used for reference counting.
1275  */
1276 #define for_each_mem_cgroup_tree(iter, root)		\
1277 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1278 	     iter != NULL;				\
1279 	     iter = mem_cgroup_iter(root, iter, NULL))
1280 
1281 #define for_each_mem_cgroup(iter)			\
1282 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1283 	     iter != NULL;				\
1284 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1285 
1286 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1287 {
1288 	struct mem_cgroup *memcg;
1289 
1290 	rcu_read_lock();
1291 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1292 	if (unlikely(!memcg))
1293 		goto out;
1294 
1295 	switch (idx) {
1296 	case PGFAULT:
1297 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1298 		break;
1299 	case PGMAJFAULT:
1300 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1301 		break;
1302 	default:
1303 		BUG();
1304 	}
1305 out:
1306 	rcu_read_unlock();
1307 }
1308 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1309 
1310 /**
1311  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1312  * @zone: zone of the wanted lruvec
1313  * @memcg: memcg of the wanted lruvec
1314  *
1315  * Returns the lru list vector holding pages for the given @zone and
1316  * @mem.  This can be the global zone lruvec, if the memory controller
1317  * is disabled.
1318  */
1319 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1320 				      struct mem_cgroup *memcg)
1321 {
1322 	struct mem_cgroup_per_zone *mz;
1323 	struct lruvec *lruvec;
1324 
1325 	if (mem_cgroup_disabled()) {
1326 		lruvec = &zone->lruvec;
1327 		goto out;
1328 	}
1329 
1330 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1331 	lruvec = &mz->lruvec;
1332 out:
1333 	/*
1334 	 * Since a node can be onlined after the mem_cgroup was created,
1335 	 * we have to be prepared to initialize lruvec->zone here;
1336 	 * and if offlined then reonlined, we need to reinitialize it.
1337 	 */
1338 	if (unlikely(lruvec->zone != zone))
1339 		lruvec->zone = zone;
1340 	return lruvec;
1341 }
1342 
1343 /**
1344  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1345  * @page: the page
1346  * @zone: zone of the page
1347  */
1348 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1349 {
1350 	struct mem_cgroup_per_zone *mz;
1351 	struct mem_cgroup *memcg;
1352 	struct page_cgroup *pc;
1353 	struct lruvec *lruvec;
1354 
1355 	if (mem_cgroup_disabled()) {
1356 		lruvec = &zone->lruvec;
1357 		goto out;
1358 	}
1359 
1360 	pc = lookup_page_cgroup(page);
1361 	memcg = pc->mem_cgroup;
1362 
1363 	/*
1364 	 * Surreptitiously switch any uncharged offlist page to root:
1365 	 * an uncharged page off lru does nothing to secure
1366 	 * its former mem_cgroup from sudden removal.
1367 	 *
1368 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1369 	 * under page_cgroup lock: between them, they make all uses
1370 	 * of pc->mem_cgroup safe.
1371 	 */
1372 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1373 		pc->mem_cgroup = memcg = root_mem_cgroup;
1374 
1375 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1376 	lruvec = &mz->lruvec;
1377 out:
1378 	/*
1379 	 * Since a node can be onlined after the mem_cgroup was created,
1380 	 * we have to be prepared to initialize lruvec->zone here;
1381 	 * and if offlined then reonlined, we need to reinitialize it.
1382 	 */
1383 	if (unlikely(lruvec->zone != zone))
1384 		lruvec->zone = zone;
1385 	return lruvec;
1386 }
1387 
1388 /**
1389  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1390  * @lruvec: mem_cgroup per zone lru vector
1391  * @lru: index of lru list the page is sitting on
1392  * @nr_pages: positive when adding or negative when removing
1393  *
1394  * This function must be called when a page is added to or removed from an
1395  * lru list.
1396  */
1397 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1398 				int nr_pages)
1399 {
1400 	struct mem_cgroup_per_zone *mz;
1401 	unsigned long *lru_size;
1402 
1403 	if (mem_cgroup_disabled())
1404 		return;
1405 
1406 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1407 	lru_size = mz->lru_size + lru;
1408 	*lru_size += nr_pages;
1409 	VM_BUG_ON((long)(*lru_size) < 0);
1410 }
1411 
1412 /*
1413  * Checks whether given mem is same or in the root_mem_cgroup's
1414  * hierarchy subtree
1415  */
1416 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1417 				  struct mem_cgroup *memcg)
1418 {
1419 	if (root_memcg == memcg)
1420 		return true;
1421 	if (!root_memcg->use_hierarchy || !memcg)
1422 		return false;
1423 	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1424 }
1425 
1426 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1427 				       struct mem_cgroup *memcg)
1428 {
1429 	bool ret;
1430 
1431 	rcu_read_lock();
1432 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1433 	rcu_read_unlock();
1434 	return ret;
1435 }
1436 
1437 bool task_in_mem_cgroup(struct task_struct *task,
1438 			const struct mem_cgroup *memcg)
1439 {
1440 	struct mem_cgroup *curr = NULL;
1441 	struct task_struct *p;
1442 	bool ret;
1443 
1444 	p = find_lock_task_mm(task);
1445 	if (p) {
1446 		curr = get_mem_cgroup_from_mm(p->mm);
1447 		task_unlock(p);
1448 	} else {
1449 		/*
1450 		 * All threads may have already detached their mm's, but the oom
1451 		 * killer still needs to detect if they have already been oom
1452 		 * killed to prevent needlessly killing additional tasks.
1453 		 */
1454 		rcu_read_lock();
1455 		curr = mem_cgroup_from_task(task);
1456 		if (curr)
1457 			css_get(&curr->css);
1458 		rcu_read_unlock();
1459 	}
1460 	/*
1461 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1462 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1463 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1464 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1465 	 */
1466 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1467 	css_put(&curr->css);
1468 	return ret;
1469 }
1470 
1471 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1472 {
1473 	unsigned long inactive_ratio;
1474 	unsigned long inactive;
1475 	unsigned long active;
1476 	unsigned long gb;
1477 
1478 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1479 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1480 
1481 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1482 	if (gb)
1483 		inactive_ratio = int_sqrt(10 * gb);
1484 	else
1485 		inactive_ratio = 1;
1486 
1487 	return inactive * inactive_ratio < active;
1488 }
1489 
1490 #define mem_cgroup_from_res_counter(counter, member)	\
1491 	container_of(counter, struct mem_cgroup, member)
1492 
1493 /**
1494  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1495  * @memcg: the memory cgroup
1496  *
1497  * Returns the maximum amount of memory @mem can be charged with, in
1498  * pages.
1499  */
1500 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1501 {
1502 	unsigned long long margin;
1503 
1504 	margin = res_counter_margin(&memcg->res);
1505 	if (do_swap_account)
1506 		margin = min(margin, res_counter_margin(&memcg->memsw));
1507 	return margin >> PAGE_SHIFT;
1508 }
1509 
1510 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1511 {
1512 	/* root ? */
1513 	if (mem_cgroup_disabled() || !memcg->css.parent)
1514 		return vm_swappiness;
1515 
1516 	return memcg->swappiness;
1517 }
1518 
1519 /*
1520  * memcg->moving_account is used for checking possibility that some thread is
1521  * calling move_account(). When a thread on CPU-A starts moving pages under
1522  * a memcg, other threads should check memcg->moving_account under
1523  * rcu_read_lock(), like this:
1524  *
1525  *         CPU-A                                    CPU-B
1526  *                                              rcu_read_lock()
1527  *         memcg->moving_account+1              if (memcg->mocing_account)
1528  *                                                   take heavy locks.
1529  *         synchronize_rcu()                    update something.
1530  *                                              rcu_read_unlock()
1531  *         start move here.
1532  */
1533 
1534 /* for quick checking without looking up memcg */
1535 atomic_t memcg_moving __read_mostly;
1536 
1537 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1538 {
1539 	atomic_inc(&memcg_moving);
1540 	atomic_inc(&memcg->moving_account);
1541 	synchronize_rcu();
1542 }
1543 
1544 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1545 {
1546 	/*
1547 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1548 	 * We check NULL in callee rather than caller.
1549 	 */
1550 	if (memcg) {
1551 		atomic_dec(&memcg_moving);
1552 		atomic_dec(&memcg->moving_account);
1553 	}
1554 }
1555 
1556 /*
1557  * A routine for checking "mem" is under move_account() or not.
1558  *
1559  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1560  * moving cgroups. This is for waiting at high-memory pressure
1561  * caused by "move".
1562  */
1563 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1564 {
1565 	struct mem_cgroup *from;
1566 	struct mem_cgroup *to;
1567 	bool ret = false;
1568 	/*
1569 	 * Unlike task_move routines, we access mc.to, mc.from not under
1570 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1571 	 */
1572 	spin_lock(&mc.lock);
1573 	from = mc.from;
1574 	to = mc.to;
1575 	if (!from)
1576 		goto unlock;
1577 
1578 	ret = mem_cgroup_same_or_subtree(memcg, from)
1579 		|| mem_cgroup_same_or_subtree(memcg, to);
1580 unlock:
1581 	spin_unlock(&mc.lock);
1582 	return ret;
1583 }
1584 
1585 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1586 {
1587 	if (mc.moving_task && current != mc.moving_task) {
1588 		if (mem_cgroup_under_move(memcg)) {
1589 			DEFINE_WAIT(wait);
1590 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1591 			/* moving charge context might have finished. */
1592 			if (mc.moving_task)
1593 				schedule();
1594 			finish_wait(&mc.waitq, &wait);
1595 			return true;
1596 		}
1597 	}
1598 	return false;
1599 }
1600 
1601 /*
1602  * Take this lock when
1603  * - a code tries to modify page's memcg while it's USED.
1604  * - a code tries to modify page state accounting in a memcg.
1605  */
1606 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1607 				  unsigned long *flags)
1608 {
1609 	spin_lock_irqsave(&memcg->move_lock, *flags);
1610 }
1611 
1612 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1613 				unsigned long *flags)
1614 {
1615 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1616 }
1617 
1618 #define K(x) ((x) << (PAGE_SHIFT-10))
1619 /**
1620  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1621  * @memcg: The memory cgroup that went over limit
1622  * @p: Task that is going to be killed
1623  *
1624  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1625  * enabled
1626  */
1627 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1628 {
1629 	/* oom_info_lock ensures that parallel ooms do not interleave */
1630 	static DEFINE_MUTEX(oom_info_lock);
1631 	struct mem_cgroup *iter;
1632 	unsigned int i;
1633 
1634 	if (!p)
1635 		return;
1636 
1637 	mutex_lock(&oom_info_lock);
1638 	rcu_read_lock();
1639 
1640 	pr_info("Task in ");
1641 	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1642 	pr_info(" killed as a result of limit of ");
1643 	pr_cont_cgroup_path(memcg->css.cgroup);
1644 	pr_info("\n");
1645 
1646 	rcu_read_unlock();
1647 
1648 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1649 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1650 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1651 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1652 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1653 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1654 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1655 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1656 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1657 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1658 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1659 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1660 
1661 	for_each_mem_cgroup_tree(iter, memcg) {
1662 		pr_info("Memory cgroup stats for ");
1663 		pr_cont_cgroup_path(iter->css.cgroup);
1664 		pr_cont(":");
1665 
1666 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1667 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1668 				continue;
1669 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1670 				K(mem_cgroup_read_stat(iter, i)));
1671 		}
1672 
1673 		for (i = 0; i < NR_LRU_LISTS; i++)
1674 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1675 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1676 
1677 		pr_cont("\n");
1678 	}
1679 	mutex_unlock(&oom_info_lock);
1680 }
1681 
1682 /*
1683  * This function returns the number of memcg under hierarchy tree. Returns
1684  * 1(self count) if no children.
1685  */
1686 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1687 {
1688 	int num = 0;
1689 	struct mem_cgroup *iter;
1690 
1691 	for_each_mem_cgroup_tree(iter, memcg)
1692 		num++;
1693 	return num;
1694 }
1695 
1696 /*
1697  * Return the memory (and swap, if configured) limit for a memcg.
1698  */
1699 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1700 {
1701 	u64 limit;
1702 
1703 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1704 
1705 	/*
1706 	 * Do not consider swap space if we cannot swap due to swappiness
1707 	 */
1708 	if (mem_cgroup_swappiness(memcg)) {
1709 		u64 memsw;
1710 
1711 		limit += total_swap_pages << PAGE_SHIFT;
1712 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1713 
1714 		/*
1715 		 * If memsw is finite and limits the amount of swap space
1716 		 * available to this memcg, return that limit.
1717 		 */
1718 		limit = min(limit, memsw);
1719 	}
1720 
1721 	return limit;
1722 }
1723 
1724 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1725 				     int order)
1726 {
1727 	struct mem_cgroup *iter;
1728 	unsigned long chosen_points = 0;
1729 	unsigned long totalpages;
1730 	unsigned int points = 0;
1731 	struct task_struct *chosen = NULL;
1732 
1733 	/*
1734 	 * If current has a pending SIGKILL or is exiting, then automatically
1735 	 * select it.  The goal is to allow it to allocate so that it may
1736 	 * quickly exit and free its memory.
1737 	 */
1738 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1739 		set_thread_flag(TIF_MEMDIE);
1740 		return;
1741 	}
1742 
1743 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1744 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1745 	for_each_mem_cgroup_tree(iter, memcg) {
1746 		struct css_task_iter it;
1747 		struct task_struct *task;
1748 
1749 		css_task_iter_start(&iter->css, &it);
1750 		while ((task = css_task_iter_next(&it))) {
1751 			switch (oom_scan_process_thread(task, totalpages, NULL,
1752 							false)) {
1753 			case OOM_SCAN_SELECT:
1754 				if (chosen)
1755 					put_task_struct(chosen);
1756 				chosen = task;
1757 				chosen_points = ULONG_MAX;
1758 				get_task_struct(chosen);
1759 				/* fall through */
1760 			case OOM_SCAN_CONTINUE:
1761 				continue;
1762 			case OOM_SCAN_ABORT:
1763 				css_task_iter_end(&it);
1764 				mem_cgroup_iter_break(memcg, iter);
1765 				if (chosen)
1766 					put_task_struct(chosen);
1767 				return;
1768 			case OOM_SCAN_OK:
1769 				break;
1770 			};
1771 			points = oom_badness(task, memcg, NULL, totalpages);
1772 			if (!points || points < chosen_points)
1773 				continue;
1774 			/* Prefer thread group leaders for display purposes */
1775 			if (points == chosen_points &&
1776 			    thread_group_leader(chosen))
1777 				continue;
1778 
1779 			if (chosen)
1780 				put_task_struct(chosen);
1781 			chosen = task;
1782 			chosen_points = points;
1783 			get_task_struct(chosen);
1784 		}
1785 		css_task_iter_end(&it);
1786 	}
1787 
1788 	if (!chosen)
1789 		return;
1790 	points = chosen_points * 1000 / totalpages;
1791 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1792 			 NULL, "Memory cgroup out of memory");
1793 }
1794 
1795 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1796 					gfp_t gfp_mask,
1797 					unsigned long flags)
1798 {
1799 	unsigned long total = 0;
1800 	bool noswap = false;
1801 	int loop;
1802 
1803 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1804 		noswap = true;
1805 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1806 		noswap = true;
1807 
1808 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1809 		if (loop)
1810 			drain_all_stock_async(memcg);
1811 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1812 		/*
1813 		 * Allow limit shrinkers, which are triggered directly
1814 		 * by userspace, to catch signals and stop reclaim
1815 		 * after minimal progress, regardless of the margin.
1816 		 */
1817 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1818 			break;
1819 		if (mem_cgroup_margin(memcg))
1820 			break;
1821 		/*
1822 		 * If nothing was reclaimed after two attempts, there
1823 		 * may be no reclaimable pages in this hierarchy.
1824 		 */
1825 		if (loop && !total)
1826 			break;
1827 	}
1828 	return total;
1829 }
1830 
1831 /**
1832  * test_mem_cgroup_node_reclaimable
1833  * @memcg: the target memcg
1834  * @nid: the node ID to be checked.
1835  * @noswap : specify true here if the user wants flle only information.
1836  *
1837  * This function returns whether the specified memcg contains any
1838  * reclaimable pages on a node. Returns true if there are any reclaimable
1839  * pages in the node.
1840  */
1841 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1842 		int nid, bool noswap)
1843 {
1844 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1845 		return true;
1846 	if (noswap || !total_swap_pages)
1847 		return false;
1848 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1849 		return true;
1850 	return false;
1851 
1852 }
1853 #if MAX_NUMNODES > 1
1854 
1855 /*
1856  * Always updating the nodemask is not very good - even if we have an empty
1857  * list or the wrong list here, we can start from some node and traverse all
1858  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1859  *
1860  */
1861 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1862 {
1863 	int nid;
1864 	/*
1865 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1866 	 * pagein/pageout changes since the last update.
1867 	 */
1868 	if (!atomic_read(&memcg->numainfo_events))
1869 		return;
1870 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1871 		return;
1872 
1873 	/* make a nodemask where this memcg uses memory from */
1874 	memcg->scan_nodes = node_states[N_MEMORY];
1875 
1876 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1877 
1878 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1879 			node_clear(nid, memcg->scan_nodes);
1880 	}
1881 
1882 	atomic_set(&memcg->numainfo_events, 0);
1883 	atomic_set(&memcg->numainfo_updating, 0);
1884 }
1885 
1886 /*
1887  * Selecting a node where we start reclaim from. Because what we need is just
1888  * reducing usage counter, start from anywhere is O,K. Considering
1889  * memory reclaim from current node, there are pros. and cons.
1890  *
1891  * Freeing memory from current node means freeing memory from a node which
1892  * we'll use or we've used. So, it may make LRU bad. And if several threads
1893  * hit limits, it will see a contention on a node. But freeing from remote
1894  * node means more costs for memory reclaim because of memory latency.
1895  *
1896  * Now, we use round-robin. Better algorithm is welcomed.
1897  */
1898 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1899 {
1900 	int node;
1901 
1902 	mem_cgroup_may_update_nodemask(memcg);
1903 	node = memcg->last_scanned_node;
1904 
1905 	node = next_node(node, memcg->scan_nodes);
1906 	if (node == MAX_NUMNODES)
1907 		node = first_node(memcg->scan_nodes);
1908 	/*
1909 	 * We call this when we hit limit, not when pages are added to LRU.
1910 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1911 	 * memcg is too small and all pages are not on LRU. In that case,
1912 	 * we use curret node.
1913 	 */
1914 	if (unlikely(node == MAX_NUMNODES))
1915 		node = numa_node_id();
1916 
1917 	memcg->last_scanned_node = node;
1918 	return node;
1919 }
1920 
1921 /*
1922  * Check all nodes whether it contains reclaimable pages or not.
1923  * For quick scan, we make use of scan_nodes. This will allow us to skip
1924  * unused nodes. But scan_nodes is lazily updated and may not cotain
1925  * enough new information. We need to do double check.
1926  */
1927 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1928 {
1929 	int nid;
1930 
1931 	/*
1932 	 * quick check...making use of scan_node.
1933 	 * We can skip unused nodes.
1934 	 */
1935 	if (!nodes_empty(memcg->scan_nodes)) {
1936 		for (nid = first_node(memcg->scan_nodes);
1937 		     nid < MAX_NUMNODES;
1938 		     nid = next_node(nid, memcg->scan_nodes)) {
1939 
1940 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1941 				return true;
1942 		}
1943 	}
1944 	/*
1945 	 * Check rest of nodes.
1946 	 */
1947 	for_each_node_state(nid, N_MEMORY) {
1948 		if (node_isset(nid, memcg->scan_nodes))
1949 			continue;
1950 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1951 			return true;
1952 	}
1953 	return false;
1954 }
1955 
1956 #else
1957 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1958 {
1959 	return 0;
1960 }
1961 
1962 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1963 {
1964 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1965 }
1966 #endif
1967 
1968 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1969 				   struct zone *zone,
1970 				   gfp_t gfp_mask,
1971 				   unsigned long *total_scanned)
1972 {
1973 	struct mem_cgroup *victim = NULL;
1974 	int total = 0;
1975 	int loop = 0;
1976 	unsigned long excess;
1977 	unsigned long nr_scanned;
1978 	struct mem_cgroup_reclaim_cookie reclaim = {
1979 		.zone = zone,
1980 		.priority = 0,
1981 	};
1982 
1983 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1984 
1985 	while (1) {
1986 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1987 		if (!victim) {
1988 			loop++;
1989 			if (loop >= 2) {
1990 				/*
1991 				 * If we have not been able to reclaim
1992 				 * anything, it might because there are
1993 				 * no reclaimable pages under this hierarchy
1994 				 */
1995 				if (!total)
1996 					break;
1997 				/*
1998 				 * We want to do more targeted reclaim.
1999 				 * excess >> 2 is not to excessive so as to
2000 				 * reclaim too much, nor too less that we keep
2001 				 * coming back to reclaim from this cgroup
2002 				 */
2003 				if (total >= (excess >> 2) ||
2004 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2005 					break;
2006 			}
2007 			continue;
2008 		}
2009 		if (!mem_cgroup_reclaimable(victim, false))
2010 			continue;
2011 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2012 						     zone, &nr_scanned);
2013 		*total_scanned += nr_scanned;
2014 		if (!res_counter_soft_limit_excess(&root_memcg->res))
2015 			break;
2016 	}
2017 	mem_cgroup_iter_break(root_memcg, victim);
2018 	return total;
2019 }
2020 
2021 #ifdef CONFIG_LOCKDEP
2022 static struct lockdep_map memcg_oom_lock_dep_map = {
2023 	.name = "memcg_oom_lock",
2024 };
2025 #endif
2026 
2027 static DEFINE_SPINLOCK(memcg_oom_lock);
2028 
2029 /*
2030  * Check OOM-Killer is already running under our hierarchy.
2031  * If someone is running, return false.
2032  */
2033 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2034 {
2035 	struct mem_cgroup *iter, *failed = NULL;
2036 
2037 	spin_lock(&memcg_oom_lock);
2038 
2039 	for_each_mem_cgroup_tree(iter, memcg) {
2040 		if (iter->oom_lock) {
2041 			/*
2042 			 * this subtree of our hierarchy is already locked
2043 			 * so we cannot give a lock.
2044 			 */
2045 			failed = iter;
2046 			mem_cgroup_iter_break(memcg, iter);
2047 			break;
2048 		} else
2049 			iter->oom_lock = true;
2050 	}
2051 
2052 	if (failed) {
2053 		/*
2054 		 * OK, we failed to lock the whole subtree so we have
2055 		 * to clean up what we set up to the failing subtree
2056 		 */
2057 		for_each_mem_cgroup_tree(iter, memcg) {
2058 			if (iter == failed) {
2059 				mem_cgroup_iter_break(memcg, iter);
2060 				break;
2061 			}
2062 			iter->oom_lock = false;
2063 		}
2064 	} else
2065 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2066 
2067 	spin_unlock(&memcg_oom_lock);
2068 
2069 	return !failed;
2070 }
2071 
2072 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2073 {
2074 	struct mem_cgroup *iter;
2075 
2076 	spin_lock(&memcg_oom_lock);
2077 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2078 	for_each_mem_cgroup_tree(iter, memcg)
2079 		iter->oom_lock = false;
2080 	spin_unlock(&memcg_oom_lock);
2081 }
2082 
2083 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2084 {
2085 	struct mem_cgroup *iter;
2086 
2087 	for_each_mem_cgroup_tree(iter, memcg)
2088 		atomic_inc(&iter->under_oom);
2089 }
2090 
2091 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2092 {
2093 	struct mem_cgroup *iter;
2094 
2095 	/*
2096 	 * When a new child is created while the hierarchy is under oom,
2097 	 * mem_cgroup_oom_lock() may not be called. We have to use
2098 	 * atomic_add_unless() here.
2099 	 */
2100 	for_each_mem_cgroup_tree(iter, memcg)
2101 		atomic_add_unless(&iter->under_oom, -1, 0);
2102 }
2103 
2104 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2105 
2106 struct oom_wait_info {
2107 	struct mem_cgroup *memcg;
2108 	wait_queue_t	wait;
2109 };
2110 
2111 static int memcg_oom_wake_function(wait_queue_t *wait,
2112 	unsigned mode, int sync, void *arg)
2113 {
2114 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2115 	struct mem_cgroup *oom_wait_memcg;
2116 	struct oom_wait_info *oom_wait_info;
2117 
2118 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2119 	oom_wait_memcg = oom_wait_info->memcg;
2120 
2121 	/*
2122 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2123 	 * Then we can use css_is_ancestor without taking care of RCU.
2124 	 */
2125 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2126 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2127 		return 0;
2128 	return autoremove_wake_function(wait, mode, sync, arg);
2129 }
2130 
2131 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2132 {
2133 	atomic_inc(&memcg->oom_wakeups);
2134 	/* for filtering, pass "memcg" as argument. */
2135 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2136 }
2137 
2138 static void memcg_oom_recover(struct mem_cgroup *memcg)
2139 {
2140 	if (memcg && atomic_read(&memcg->under_oom))
2141 		memcg_wakeup_oom(memcg);
2142 }
2143 
2144 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2145 {
2146 	if (!current->memcg_oom.may_oom)
2147 		return;
2148 	/*
2149 	 * We are in the middle of the charge context here, so we
2150 	 * don't want to block when potentially sitting on a callstack
2151 	 * that holds all kinds of filesystem and mm locks.
2152 	 *
2153 	 * Also, the caller may handle a failed allocation gracefully
2154 	 * (like optional page cache readahead) and so an OOM killer
2155 	 * invocation might not even be necessary.
2156 	 *
2157 	 * That's why we don't do anything here except remember the
2158 	 * OOM context and then deal with it at the end of the page
2159 	 * fault when the stack is unwound, the locks are released,
2160 	 * and when we know whether the fault was overall successful.
2161 	 */
2162 	css_get(&memcg->css);
2163 	current->memcg_oom.memcg = memcg;
2164 	current->memcg_oom.gfp_mask = mask;
2165 	current->memcg_oom.order = order;
2166 }
2167 
2168 /**
2169  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2170  * @handle: actually kill/wait or just clean up the OOM state
2171  *
2172  * This has to be called at the end of a page fault if the memcg OOM
2173  * handler was enabled.
2174  *
2175  * Memcg supports userspace OOM handling where failed allocations must
2176  * sleep on a waitqueue until the userspace task resolves the
2177  * situation.  Sleeping directly in the charge context with all kinds
2178  * of locks held is not a good idea, instead we remember an OOM state
2179  * in the task and mem_cgroup_oom_synchronize() has to be called at
2180  * the end of the page fault to complete the OOM handling.
2181  *
2182  * Returns %true if an ongoing memcg OOM situation was detected and
2183  * completed, %false otherwise.
2184  */
2185 bool mem_cgroup_oom_synchronize(bool handle)
2186 {
2187 	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2188 	struct oom_wait_info owait;
2189 	bool locked;
2190 
2191 	/* OOM is global, do not handle */
2192 	if (!memcg)
2193 		return false;
2194 
2195 	if (!handle)
2196 		goto cleanup;
2197 
2198 	owait.memcg = memcg;
2199 	owait.wait.flags = 0;
2200 	owait.wait.func = memcg_oom_wake_function;
2201 	owait.wait.private = current;
2202 	INIT_LIST_HEAD(&owait.wait.task_list);
2203 
2204 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2205 	mem_cgroup_mark_under_oom(memcg);
2206 
2207 	locked = mem_cgroup_oom_trylock(memcg);
2208 
2209 	if (locked)
2210 		mem_cgroup_oom_notify(memcg);
2211 
2212 	if (locked && !memcg->oom_kill_disable) {
2213 		mem_cgroup_unmark_under_oom(memcg);
2214 		finish_wait(&memcg_oom_waitq, &owait.wait);
2215 		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2216 					 current->memcg_oom.order);
2217 	} else {
2218 		schedule();
2219 		mem_cgroup_unmark_under_oom(memcg);
2220 		finish_wait(&memcg_oom_waitq, &owait.wait);
2221 	}
2222 
2223 	if (locked) {
2224 		mem_cgroup_oom_unlock(memcg);
2225 		/*
2226 		 * There is no guarantee that an OOM-lock contender
2227 		 * sees the wakeups triggered by the OOM kill
2228 		 * uncharges.  Wake any sleepers explicitely.
2229 		 */
2230 		memcg_oom_recover(memcg);
2231 	}
2232 cleanup:
2233 	current->memcg_oom.memcg = NULL;
2234 	css_put(&memcg->css);
2235 	return true;
2236 }
2237 
2238 /*
2239  * Used to update mapped file or writeback or other statistics.
2240  *
2241  * Notes: Race condition
2242  *
2243  * Charging occurs during page instantiation, while the page is
2244  * unmapped and locked in page migration, or while the page table is
2245  * locked in THP migration.  No race is possible.
2246  *
2247  * Uncharge happens to pages with zero references, no race possible.
2248  *
2249  * Charge moving between groups is protected by checking mm->moving
2250  * account and taking the move_lock in the slowpath.
2251  */
2252 
2253 void __mem_cgroup_begin_update_page_stat(struct page *page,
2254 				bool *locked, unsigned long *flags)
2255 {
2256 	struct mem_cgroup *memcg;
2257 	struct page_cgroup *pc;
2258 
2259 	pc = lookup_page_cgroup(page);
2260 again:
2261 	memcg = pc->mem_cgroup;
2262 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2263 		return;
2264 	/*
2265 	 * If this memory cgroup is not under account moving, we don't
2266 	 * need to take move_lock_mem_cgroup(). Because we already hold
2267 	 * rcu_read_lock(), any calls to move_account will be delayed until
2268 	 * rcu_read_unlock().
2269 	 */
2270 	VM_BUG_ON(!rcu_read_lock_held());
2271 	if (atomic_read(&memcg->moving_account) <= 0)
2272 		return;
2273 
2274 	move_lock_mem_cgroup(memcg, flags);
2275 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2276 		move_unlock_mem_cgroup(memcg, flags);
2277 		goto again;
2278 	}
2279 	*locked = true;
2280 }
2281 
2282 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2283 {
2284 	struct page_cgroup *pc = lookup_page_cgroup(page);
2285 
2286 	/*
2287 	 * It's guaranteed that pc->mem_cgroup never changes while
2288 	 * lock is held because a routine modifies pc->mem_cgroup
2289 	 * should take move_lock_mem_cgroup().
2290 	 */
2291 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2292 }
2293 
2294 void mem_cgroup_update_page_stat(struct page *page,
2295 				 enum mem_cgroup_stat_index idx, int val)
2296 {
2297 	struct mem_cgroup *memcg;
2298 	struct page_cgroup *pc = lookup_page_cgroup(page);
2299 	unsigned long uninitialized_var(flags);
2300 
2301 	if (mem_cgroup_disabled())
2302 		return;
2303 
2304 	VM_BUG_ON(!rcu_read_lock_held());
2305 	memcg = pc->mem_cgroup;
2306 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2307 		return;
2308 
2309 	this_cpu_add(memcg->stat->count[idx], val);
2310 }
2311 
2312 /*
2313  * size of first charge trial. "32" comes from vmscan.c's magic value.
2314  * TODO: maybe necessary to use big numbers in big irons.
2315  */
2316 #define CHARGE_BATCH	32U
2317 struct memcg_stock_pcp {
2318 	struct mem_cgroup *cached; /* this never be root cgroup */
2319 	unsigned int nr_pages;
2320 	struct work_struct work;
2321 	unsigned long flags;
2322 #define FLUSHING_CACHED_CHARGE	0
2323 };
2324 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2325 static DEFINE_MUTEX(percpu_charge_mutex);
2326 
2327 /**
2328  * consume_stock: Try to consume stocked charge on this cpu.
2329  * @memcg: memcg to consume from.
2330  * @nr_pages: how many pages to charge.
2331  *
2332  * The charges will only happen if @memcg matches the current cpu's memcg
2333  * stock, and at least @nr_pages are available in that stock.  Failure to
2334  * service an allocation will refill the stock.
2335  *
2336  * returns true if successful, false otherwise.
2337  */
2338 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2339 {
2340 	struct memcg_stock_pcp *stock;
2341 	bool ret = true;
2342 
2343 	if (nr_pages > CHARGE_BATCH)
2344 		return false;
2345 
2346 	stock = &get_cpu_var(memcg_stock);
2347 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2348 		stock->nr_pages -= nr_pages;
2349 	else /* need to call res_counter_charge */
2350 		ret = false;
2351 	put_cpu_var(memcg_stock);
2352 	return ret;
2353 }
2354 
2355 /*
2356  * Returns stocks cached in percpu to res_counter and reset cached information.
2357  */
2358 static void drain_stock(struct memcg_stock_pcp *stock)
2359 {
2360 	struct mem_cgroup *old = stock->cached;
2361 
2362 	if (stock->nr_pages) {
2363 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2364 
2365 		res_counter_uncharge(&old->res, bytes);
2366 		if (do_swap_account)
2367 			res_counter_uncharge(&old->memsw, bytes);
2368 		stock->nr_pages = 0;
2369 	}
2370 	stock->cached = NULL;
2371 }
2372 
2373 /*
2374  * This must be called under preempt disabled or must be called by
2375  * a thread which is pinned to local cpu.
2376  */
2377 static void drain_local_stock(struct work_struct *dummy)
2378 {
2379 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2380 	drain_stock(stock);
2381 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2382 }
2383 
2384 static void __init memcg_stock_init(void)
2385 {
2386 	int cpu;
2387 
2388 	for_each_possible_cpu(cpu) {
2389 		struct memcg_stock_pcp *stock =
2390 					&per_cpu(memcg_stock, cpu);
2391 		INIT_WORK(&stock->work, drain_local_stock);
2392 	}
2393 }
2394 
2395 /*
2396  * Cache charges(val) which is from res_counter, to local per_cpu area.
2397  * This will be consumed by consume_stock() function, later.
2398  */
2399 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2400 {
2401 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2402 
2403 	if (stock->cached != memcg) { /* reset if necessary */
2404 		drain_stock(stock);
2405 		stock->cached = memcg;
2406 	}
2407 	stock->nr_pages += nr_pages;
2408 	put_cpu_var(memcg_stock);
2409 }
2410 
2411 /*
2412  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2413  * of the hierarchy under it. sync flag says whether we should block
2414  * until the work is done.
2415  */
2416 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2417 {
2418 	int cpu, curcpu;
2419 
2420 	/* Notify other cpus that system-wide "drain" is running */
2421 	get_online_cpus();
2422 	curcpu = get_cpu();
2423 	for_each_online_cpu(cpu) {
2424 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2425 		struct mem_cgroup *memcg;
2426 
2427 		memcg = stock->cached;
2428 		if (!memcg || !stock->nr_pages)
2429 			continue;
2430 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2431 			continue;
2432 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2433 			if (cpu == curcpu)
2434 				drain_local_stock(&stock->work);
2435 			else
2436 				schedule_work_on(cpu, &stock->work);
2437 		}
2438 	}
2439 	put_cpu();
2440 
2441 	if (!sync)
2442 		goto out;
2443 
2444 	for_each_online_cpu(cpu) {
2445 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2446 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2447 			flush_work(&stock->work);
2448 	}
2449 out:
2450 	put_online_cpus();
2451 }
2452 
2453 /*
2454  * Tries to drain stocked charges in other cpus. This function is asynchronous
2455  * and just put a work per cpu for draining localy on each cpu. Caller can
2456  * expects some charges will be back to res_counter later but cannot wait for
2457  * it.
2458  */
2459 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2460 {
2461 	/*
2462 	 * If someone calls draining, avoid adding more kworker runs.
2463 	 */
2464 	if (!mutex_trylock(&percpu_charge_mutex))
2465 		return;
2466 	drain_all_stock(root_memcg, false);
2467 	mutex_unlock(&percpu_charge_mutex);
2468 }
2469 
2470 /* This is a synchronous drain interface. */
2471 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2472 {
2473 	/* called when force_empty is called */
2474 	mutex_lock(&percpu_charge_mutex);
2475 	drain_all_stock(root_memcg, true);
2476 	mutex_unlock(&percpu_charge_mutex);
2477 }
2478 
2479 /*
2480  * This function drains percpu counter value from DEAD cpu and
2481  * move it to local cpu. Note that this function can be preempted.
2482  */
2483 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2484 {
2485 	int i;
2486 
2487 	spin_lock(&memcg->pcp_counter_lock);
2488 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2489 		long x = per_cpu(memcg->stat->count[i], cpu);
2490 
2491 		per_cpu(memcg->stat->count[i], cpu) = 0;
2492 		memcg->nocpu_base.count[i] += x;
2493 	}
2494 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2495 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2496 
2497 		per_cpu(memcg->stat->events[i], cpu) = 0;
2498 		memcg->nocpu_base.events[i] += x;
2499 	}
2500 	spin_unlock(&memcg->pcp_counter_lock);
2501 }
2502 
2503 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2504 					unsigned long action,
2505 					void *hcpu)
2506 {
2507 	int cpu = (unsigned long)hcpu;
2508 	struct memcg_stock_pcp *stock;
2509 	struct mem_cgroup *iter;
2510 
2511 	if (action == CPU_ONLINE)
2512 		return NOTIFY_OK;
2513 
2514 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2515 		return NOTIFY_OK;
2516 
2517 	for_each_mem_cgroup(iter)
2518 		mem_cgroup_drain_pcp_counter(iter, cpu);
2519 
2520 	stock = &per_cpu(memcg_stock, cpu);
2521 	drain_stock(stock);
2522 	return NOTIFY_OK;
2523 }
2524 
2525 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2526 		      unsigned int nr_pages)
2527 {
2528 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2529 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2530 	struct mem_cgroup *mem_over_limit;
2531 	struct res_counter *fail_res;
2532 	unsigned long nr_reclaimed;
2533 	unsigned long flags = 0;
2534 	unsigned long long size;
2535 	int ret = 0;
2536 
2537 retry:
2538 	if (consume_stock(memcg, nr_pages))
2539 		goto done;
2540 
2541 	size = batch * PAGE_SIZE;
2542 	if (!res_counter_charge(&memcg->res, size, &fail_res)) {
2543 		if (!do_swap_account)
2544 			goto done_restock;
2545 		if (!res_counter_charge(&memcg->memsw, size, &fail_res))
2546 			goto done_restock;
2547 		res_counter_uncharge(&memcg->res, size);
2548 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2549 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2550 	} else
2551 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2552 
2553 	if (batch > nr_pages) {
2554 		batch = nr_pages;
2555 		goto retry;
2556 	}
2557 
2558 	/*
2559 	 * Unlike in global OOM situations, memcg is not in a physical
2560 	 * memory shortage.  Allow dying and OOM-killed tasks to
2561 	 * bypass the last charges so that they can exit quickly and
2562 	 * free their memory.
2563 	 */
2564 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2565 		     fatal_signal_pending(current) ||
2566 		     current->flags & PF_EXITING))
2567 		goto bypass;
2568 
2569 	if (unlikely(task_in_memcg_oom(current)))
2570 		goto nomem;
2571 
2572 	if (!(gfp_mask & __GFP_WAIT))
2573 		goto nomem;
2574 
2575 	nr_reclaimed = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2576 
2577 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2578 		goto retry;
2579 
2580 	if (gfp_mask & __GFP_NORETRY)
2581 		goto nomem;
2582 	/*
2583 	 * Even though the limit is exceeded at this point, reclaim
2584 	 * may have been able to free some pages.  Retry the charge
2585 	 * before killing the task.
2586 	 *
2587 	 * Only for regular pages, though: huge pages are rather
2588 	 * unlikely to succeed so close to the limit, and we fall back
2589 	 * to regular pages anyway in case of failure.
2590 	 */
2591 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2592 		goto retry;
2593 	/*
2594 	 * At task move, charge accounts can be doubly counted. So, it's
2595 	 * better to wait until the end of task_move if something is going on.
2596 	 */
2597 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2598 		goto retry;
2599 
2600 	if (nr_retries--)
2601 		goto retry;
2602 
2603 	if (gfp_mask & __GFP_NOFAIL)
2604 		goto bypass;
2605 
2606 	if (fatal_signal_pending(current))
2607 		goto bypass;
2608 
2609 	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2610 nomem:
2611 	if (!(gfp_mask & __GFP_NOFAIL))
2612 		return -ENOMEM;
2613 bypass:
2614 	memcg = root_mem_cgroup;
2615 	ret = -EINTR;
2616 	goto retry;
2617 
2618 done_restock:
2619 	if (batch > nr_pages)
2620 		refill_stock(memcg, batch - nr_pages);
2621 done:
2622 	return ret;
2623 }
2624 
2625 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2626 {
2627 	unsigned long bytes = nr_pages * PAGE_SIZE;
2628 
2629 	res_counter_uncharge(&memcg->res, bytes);
2630 	if (do_swap_account)
2631 		res_counter_uncharge(&memcg->memsw, bytes);
2632 }
2633 
2634 /*
2635  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2636  * This is useful when moving usage to parent cgroup.
2637  */
2638 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2639 					unsigned int nr_pages)
2640 {
2641 	unsigned long bytes = nr_pages * PAGE_SIZE;
2642 
2643 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2644 	if (do_swap_account)
2645 		res_counter_uncharge_until(&memcg->memsw,
2646 						memcg->memsw.parent, bytes);
2647 }
2648 
2649 /*
2650  * A helper function to get mem_cgroup from ID. must be called under
2651  * rcu_read_lock().  The caller is responsible for calling
2652  * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2653  * refcnt from swap can be called against removed memcg.)
2654  */
2655 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2656 {
2657 	/* ID 0 is unused ID */
2658 	if (!id)
2659 		return NULL;
2660 	return mem_cgroup_from_id(id);
2661 }
2662 
2663 /*
2664  * try_get_mem_cgroup_from_page - look up page's memcg association
2665  * @page: the page
2666  *
2667  * Look up, get a css reference, and return the memcg that owns @page.
2668  *
2669  * The page must be locked to prevent racing with swap-in and page
2670  * cache charges.  If coming from an unlocked page table, the caller
2671  * must ensure the page is on the LRU or this can race with charging.
2672  */
2673 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2674 {
2675 	struct mem_cgroup *memcg = NULL;
2676 	struct page_cgroup *pc;
2677 	unsigned short id;
2678 	swp_entry_t ent;
2679 
2680 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2681 
2682 	pc = lookup_page_cgroup(page);
2683 	if (PageCgroupUsed(pc)) {
2684 		memcg = pc->mem_cgroup;
2685 		if (memcg && !css_tryget_online(&memcg->css))
2686 			memcg = NULL;
2687 	} else if (PageSwapCache(page)) {
2688 		ent.val = page_private(page);
2689 		id = lookup_swap_cgroup_id(ent);
2690 		rcu_read_lock();
2691 		memcg = mem_cgroup_lookup(id);
2692 		if (memcg && !css_tryget_online(&memcg->css))
2693 			memcg = NULL;
2694 		rcu_read_unlock();
2695 	}
2696 	return memcg;
2697 }
2698 
2699 static void lock_page_lru(struct page *page, int *isolated)
2700 {
2701 	struct zone *zone = page_zone(page);
2702 
2703 	spin_lock_irq(&zone->lru_lock);
2704 	if (PageLRU(page)) {
2705 		struct lruvec *lruvec;
2706 
2707 		lruvec = mem_cgroup_page_lruvec(page, zone);
2708 		ClearPageLRU(page);
2709 		del_page_from_lru_list(page, lruvec, page_lru(page));
2710 		*isolated = 1;
2711 	} else
2712 		*isolated = 0;
2713 }
2714 
2715 static void unlock_page_lru(struct page *page, int isolated)
2716 {
2717 	struct zone *zone = page_zone(page);
2718 
2719 	if (isolated) {
2720 		struct lruvec *lruvec;
2721 
2722 		lruvec = mem_cgroup_page_lruvec(page, zone);
2723 		VM_BUG_ON_PAGE(PageLRU(page), page);
2724 		SetPageLRU(page);
2725 		add_page_to_lru_list(page, lruvec, page_lru(page));
2726 	}
2727 	spin_unlock_irq(&zone->lru_lock);
2728 }
2729 
2730 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2731 			  bool lrucare)
2732 {
2733 	struct page_cgroup *pc = lookup_page_cgroup(page);
2734 	int isolated;
2735 
2736 	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2737 	/*
2738 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2739 	 * accessed by any other context at this point.
2740 	 */
2741 
2742 	/*
2743 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2744 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2745 	 */
2746 	if (lrucare)
2747 		lock_page_lru(page, &isolated);
2748 
2749 	/*
2750 	 * Nobody should be changing or seriously looking at
2751 	 * pc->mem_cgroup and pc->flags at this point:
2752 	 *
2753 	 * - the page is uncharged
2754 	 *
2755 	 * - the page is off-LRU
2756 	 *
2757 	 * - an anonymous fault has exclusive page access, except for
2758 	 *   a locked page table
2759 	 *
2760 	 * - a page cache insertion, a swapin fault, or a migration
2761 	 *   have the page locked
2762 	 */
2763 	pc->mem_cgroup = memcg;
2764 	pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
2765 
2766 	if (lrucare)
2767 		unlock_page_lru(page, isolated);
2768 }
2769 
2770 static DEFINE_MUTEX(set_limit_mutex);
2771 
2772 #ifdef CONFIG_MEMCG_KMEM
2773 /*
2774  * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2775  * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2776  */
2777 static DEFINE_MUTEX(memcg_slab_mutex);
2778 
2779 static DEFINE_MUTEX(activate_kmem_mutex);
2780 
2781 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2782 {
2783 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2784 		memcg_kmem_is_active(memcg);
2785 }
2786 
2787 /*
2788  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2789  * in the memcg_cache_params struct.
2790  */
2791 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2792 {
2793 	struct kmem_cache *cachep;
2794 
2795 	VM_BUG_ON(p->is_root_cache);
2796 	cachep = p->root_cache;
2797 	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2798 }
2799 
2800 #ifdef CONFIG_SLABINFO
2801 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2802 {
2803 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2804 	struct memcg_cache_params *params;
2805 
2806 	if (!memcg_can_account_kmem(memcg))
2807 		return -EIO;
2808 
2809 	print_slabinfo_header(m);
2810 
2811 	mutex_lock(&memcg_slab_mutex);
2812 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2813 		cache_show(memcg_params_to_cache(params), m);
2814 	mutex_unlock(&memcg_slab_mutex);
2815 
2816 	return 0;
2817 }
2818 #endif
2819 
2820 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2821 {
2822 	struct res_counter *fail_res;
2823 	int ret = 0;
2824 
2825 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2826 	if (ret)
2827 		return ret;
2828 
2829 	ret = try_charge(memcg, gfp, size >> PAGE_SHIFT);
2830 	if (ret == -EINTR)  {
2831 		/*
2832 		 * try_charge() chose to bypass to root due to OOM kill or
2833 		 * fatal signal.  Since our only options are to either fail
2834 		 * the allocation or charge it to this cgroup, do it as a
2835 		 * temporary condition. But we can't fail. From a kmem/slab
2836 		 * perspective, the cache has already been selected, by
2837 		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2838 		 * our minds.
2839 		 *
2840 		 * This condition will only trigger if the task entered
2841 		 * memcg_charge_kmem in a sane state, but was OOM-killed
2842 		 * during try_charge() above. Tasks that were already dying
2843 		 * when the allocation triggers should have been already
2844 		 * directed to the root cgroup in memcontrol.h
2845 		 */
2846 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
2847 		if (do_swap_account)
2848 			res_counter_charge_nofail(&memcg->memsw, size,
2849 						  &fail_res);
2850 		ret = 0;
2851 	} else if (ret)
2852 		res_counter_uncharge(&memcg->kmem, size);
2853 
2854 	return ret;
2855 }
2856 
2857 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2858 {
2859 	res_counter_uncharge(&memcg->res, size);
2860 	if (do_swap_account)
2861 		res_counter_uncharge(&memcg->memsw, size);
2862 
2863 	/* Not down to 0 */
2864 	if (res_counter_uncharge(&memcg->kmem, size))
2865 		return;
2866 
2867 	/*
2868 	 * Releases a reference taken in kmem_cgroup_css_offline in case
2869 	 * this last uncharge is racing with the offlining code or it is
2870 	 * outliving the memcg existence.
2871 	 *
2872 	 * The memory barrier imposed by test&clear is paired with the
2873 	 * explicit one in memcg_kmem_mark_dead().
2874 	 */
2875 	if (memcg_kmem_test_and_clear_dead(memcg))
2876 		css_put(&memcg->css);
2877 }
2878 
2879 /*
2880  * helper for acessing a memcg's index. It will be used as an index in the
2881  * child cache array in kmem_cache, and also to derive its name. This function
2882  * will return -1 when this is not a kmem-limited memcg.
2883  */
2884 int memcg_cache_id(struct mem_cgroup *memcg)
2885 {
2886 	return memcg ? memcg->kmemcg_id : -1;
2887 }
2888 
2889 static size_t memcg_caches_array_size(int num_groups)
2890 {
2891 	ssize_t size;
2892 	if (num_groups <= 0)
2893 		return 0;
2894 
2895 	size = 2 * num_groups;
2896 	if (size < MEMCG_CACHES_MIN_SIZE)
2897 		size = MEMCG_CACHES_MIN_SIZE;
2898 	else if (size > MEMCG_CACHES_MAX_SIZE)
2899 		size = MEMCG_CACHES_MAX_SIZE;
2900 
2901 	return size;
2902 }
2903 
2904 /*
2905  * We should update the current array size iff all caches updates succeed. This
2906  * can only be done from the slab side. The slab mutex needs to be held when
2907  * calling this.
2908  */
2909 void memcg_update_array_size(int num)
2910 {
2911 	if (num > memcg_limited_groups_array_size)
2912 		memcg_limited_groups_array_size = memcg_caches_array_size(num);
2913 }
2914 
2915 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2916 {
2917 	struct memcg_cache_params *cur_params = s->memcg_params;
2918 
2919 	VM_BUG_ON(!is_root_cache(s));
2920 
2921 	if (num_groups > memcg_limited_groups_array_size) {
2922 		int i;
2923 		struct memcg_cache_params *new_params;
2924 		ssize_t size = memcg_caches_array_size(num_groups);
2925 
2926 		size *= sizeof(void *);
2927 		size += offsetof(struct memcg_cache_params, memcg_caches);
2928 
2929 		new_params = kzalloc(size, GFP_KERNEL);
2930 		if (!new_params)
2931 			return -ENOMEM;
2932 
2933 		new_params->is_root_cache = true;
2934 
2935 		/*
2936 		 * There is the chance it will be bigger than
2937 		 * memcg_limited_groups_array_size, if we failed an allocation
2938 		 * in a cache, in which case all caches updated before it, will
2939 		 * have a bigger array.
2940 		 *
2941 		 * But if that is the case, the data after
2942 		 * memcg_limited_groups_array_size is certainly unused
2943 		 */
2944 		for (i = 0; i < memcg_limited_groups_array_size; i++) {
2945 			if (!cur_params->memcg_caches[i])
2946 				continue;
2947 			new_params->memcg_caches[i] =
2948 						cur_params->memcg_caches[i];
2949 		}
2950 
2951 		/*
2952 		 * Ideally, we would wait until all caches succeed, and only
2953 		 * then free the old one. But this is not worth the extra
2954 		 * pointer per-cache we'd have to have for this.
2955 		 *
2956 		 * It is not a big deal if some caches are left with a size
2957 		 * bigger than the others. And all updates will reset this
2958 		 * anyway.
2959 		 */
2960 		rcu_assign_pointer(s->memcg_params, new_params);
2961 		if (cur_params)
2962 			kfree_rcu(cur_params, rcu_head);
2963 	}
2964 	return 0;
2965 }
2966 
2967 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
2968 			     struct kmem_cache *root_cache)
2969 {
2970 	size_t size;
2971 
2972 	if (!memcg_kmem_enabled())
2973 		return 0;
2974 
2975 	if (!memcg) {
2976 		size = offsetof(struct memcg_cache_params, memcg_caches);
2977 		size += memcg_limited_groups_array_size * sizeof(void *);
2978 	} else
2979 		size = sizeof(struct memcg_cache_params);
2980 
2981 	s->memcg_params = kzalloc(size, GFP_KERNEL);
2982 	if (!s->memcg_params)
2983 		return -ENOMEM;
2984 
2985 	if (memcg) {
2986 		s->memcg_params->memcg = memcg;
2987 		s->memcg_params->root_cache = root_cache;
2988 		css_get(&memcg->css);
2989 	} else
2990 		s->memcg_params->is_root_cache = true;
2991 
2992 	return 0;
2993 }
2994 
2995 void memcg_free_cache_params(struct kmem_cache *s)
2996 {
2997 	if (!s->memcg_params)
2998 		return;
2999 	if (!s->memcg_params->is_root_cache)
3000 		css_put(&s->memcg_params->memcg->css);
3001 	kfree(s->memcg_params);
3002 }
3003 
3004 static void memcg_register_cache(struct mem_cgroup *memcg,
3005 				 struct kmem_cache *root_cache)
3006 {
3007 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
3008 						     memcg_slab_mutex */
3009 	struct kmem_cache *cachep;
3010 	int id;
3011 
3012 	lockdep_assert_held(&memcg_slab_mutex);
3013 
3014 	id = memcg_cache_id(memcg);
3015 
3016 	/*
3017 	 * Since per-memcg caches are created asynchronously on first
3018 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
3019 	 * create the same cache, but only one of them may succeed.
3020 	 */
3021 	if (cache_from_memcg_idx(root_cache, id))
3022 		return;
3023 
3024 	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
3025 	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
3026 	/*
3027 	 * If we could not create a memcg cache, do not complain, because
3028 	 * that's not critical at all as we can always proceed with the root
3029 	 * cache.
3030 	 */
3031 	if (!cachep)
3032 		return;
3033 
3034 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3035 
3036 	/*
3037 	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3038 	 * barrier here to ensure nobody will see the kmem_cache partially
3039 	 * initialized.
3040 	 */
3041 	smp_wmb();
3042 
3043 	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
3044 	root_cache->memcg_params->memcg_caches[id] = cachep;
3045 }
3046 
3047 static void memcg_unregister_cache(struct kmem_cache *cachep)
3048 {
3049 	struct kmem_cache *root_cache;
3050 	struct mem_cgroup *memcg;
3051 	int id;
3052 
3053 	lockdep_assert_held(&memcg_slab_mutex);
3054 
3055 	BUG_ON(is_root_cache(cachep));
3056 
3057 	root_cache = cachep->memcg_params->root_cache;
3058 	memcg = cachep->memcg_params->memcg;
3059 	id = memcg_cache_id(memcg);
3060 
3061 	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3062 	root_cache->memcg_params->memcg_caches[id] = NULL;
3063 
3064 	list_del(&cachep->memcg_params->list);
3065 
3066 	kmem_cache_destroy(cachep);
3067 }
3068 
3069 /*
3070  * During the creation a new cache, we need to disable our accounting mechanism
3071  * altogether. This is true even if we are not creating, but rather just
3072  * enqueing new caches to be created.
3073  *
3074  * This is because that process will trigger allocations; some visible, like
3075  * explicit kmallocs to auxiliary data structures, name strings and internal
3076  * cache structures; some well concealed, like INIT_WORK() that can allocate
3077  * objects during debug.
3078  *
3079  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3080  * to it. This may not be a bounded recursion: since the first cache creation
3081  * failed to complete (waiting on the allocation), we'll just try to create the
3082  * cache again, failing at the same point.
3083  *
3084  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3085  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3086  * inside the following two functions.
3087  */
3088 static inline void memcg_stop_kmem_account(void)
3089 {
3090 	VM_BUG_ON(!current->mm);
3091 	current->memcg_kmem_skip_account++;
3092 }
3093 
3094 static inline void memcg_resume_kmem_account(void)
3095 {
3096 	VM_BUG_ON(!current->mm);
3097 	current->memcg_kmem_skip_account--;
3098 }
3099 
3100 int __memcg_cleanup_cache_params(struct kmem_cache *s)
3101 {
3102 	struct kmem_cache *c;
3103 	int i, failed = 0;
3104 
3105 	mutex_lock(&memcg_slab_mutex);
3106 	for_each_memcg_cache_index(i) {
3107 		c = cache_from_memcg_idx(s, i);
3108 		if (!c)
3109 			continue;
3110 
3111 		memcg_unregister_cache(c);
3112 
3113 		if (cache_from_memcg_idx(s, i))
3114 			failed++;
3115 	}
3116 	mutex_unlock(&memcg_slab_mutex);
3117 	return failed;
3118 }
3119 
3120 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3121 {
3122 	struct kmem_cache *cachep;
3123 	struct memcg_cache_params *params, *tmp;
3124 
3125 	if (!memcg_kmem_is_active(memcg))
3126 		return;
3127 
3128 	mutex_lock(&memcg_slab_mutex);
3129 	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
3130 		cachep = memcg_params_to_cache(params);
3131 		kmem_cache_shrink(cachep);
3132 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3133 			memcg_unregister_cache(cachep);
3134 	}
3135 	mutex_unlock(&memcg_slab_mutex);
3136 }
3137 
3138 struct memcg_register_cache_work {
3139 	struct mem_cgroup *memcg;
3140 	struct kmem_cache *cachep;
3141 	struct work_struct work;
3142 };
3143 
3144 static void memcg_register_cache_func(struct work_struct *w)
3145 {
3146 	struct memcg_register_cache_work *cw =
3147 		container_of(w, struct memcg_register_cache_work, work);
3148 	struct mem_cgroup *memcg = cw->memcg;
3149 	struct kmem_cache *cachep = cw->cachep;
3150 
3151 	mutex_lock(&memcg_slab_mutex);
3152 	memcg_register_cache(memcg, cachep);
3153 	mutex_unlock(&memcg_slab_mutex);
3154 
3155 	css_put(&memcg->css);
3156 	kfree(cw);
3157 }
3158 
3159 /*
3160  * Enqueue the creation of a per-memcg kmem_cache.
3161  */
3162 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3163 					    struct kmem_cache *cachep)
3164 {
3165 	struct memcg_register_cache_work *cw;
3166 
3167 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3168 	if (cw == NULL) {
3169 		css_put(&memcg->css);
3170 		return;
3171 	}
3172 
3173 	cw->memcg = memcg;
3174 	cw->cachep = cachep;
3175 
3176 	INIT_WORK(&cw->work, memcg_register_cache_func);
3177 	schedule_work(&cw->work);
3178 }
3179 
3180 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3181 					  struct kmem_cache *cachep)
3182 {
3183 	/*
3184 	 * We need to stop accounting when we kmalloc, because if the
3185 	 * corresponding kmalloc cache is not yet created, the first allocation
3186 	 * in __memcg_schedule_register_cache will recurse.
3187 	 *
3188 	 * However, it is better to enclose the whole function. Depending on
3189 	 * the debugging options enabled, INIT_WORK(), for instance, can
3190 	 * trigger an allocation. This too, will make us recurse. Because at
3191 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3192 	 * the safest choice is to do it like this, wrapping the whole function.
3193 	 */
3194 	memcg_stop_kmem_account();
3195 	__memcg_schedule_register_cache(memcg, cachep);
3196 	memcg_resume_kmem_account();
3197 }
3198 
3199 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3200 {
3201 	int res;
3202 
3203 	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3204 				PAGE_SIZE << order);
3205 	if (!res)
3206 		atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3207 	return res;
3208 }
3209 
3210 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3211 {
3212 	memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3213 	atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3214 }
3215 
3216 /*
3217  * Return the kmem_cache we're supposed to use for a slab allocation.
3218  * We try to use the current memcg's version of the cache.
3219  *
3220  * If the cache does not exist yet, if we are the first user of it,
3221  * we either create it immediately, if possible, or create it asynchronously
3222  * in a workqueue.
3223  * In the latter case, we will let the current allocation go through with
3224  * the original cache.
3225  *
3226  * Can't be called in interrupt context or from kernel threads.
3227  * This function needs to be called with rcu_read_lock() held.
3228  */
3229 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3230 					  gfp_t gfp)
3231 {
3232 	struct mem_cgroup *memcg;
3233 	struct kmem_cache *memcg_cachep;
3234 
3235 	VM_BUG_ON(!cachep->memcg_params);
3236 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3237 
3238 	if (!current->mm || current->memcg_kmem_skip_account)
3239 		return cachep;
3240 
3241 	rcu_read_lock();
3242 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3243 
3244 	if (!memcg_can_account_kmem(memcg))
3245 		goto out;
3246 
3247 	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3248 	if (likely(memcg_cachep)) {
3249 		cachep = memcg_cachep;
3250 		goto out;
3251 	}
3252 
3253 	/* The corresponding put will be done in the workqueue. */
3254 	if (!css_tryget_online(&memcg->css))
3255 		goto out;
3256 	rcu_read_unlock();
3257 
3258 	/*
3259 	 * If we are in a safe context (can wait, and not in interrupt
3260 	 * context), we could be be predictable and return right away.
3261 	 * This would guarantee that the allocation being performed
3262 	 * already belongs in the new cache.
3263 	 *
3264 	 * However, there are some clashes that can arrive from locking.
3265 	 * For instance, because we acquire the slab_mutex while doing
3266 	 * memcg_create_kmem_cache, this means no further allocation
3267 	 * could happen with the slab_mutex held. So it's better to
3268 	 * defer everything.
3269 	 */
3270 	memcg_schedule_register_cache(memcg, cachep);
3271 	return cachep;
3272 out:
3273 	rcu_read_unlock();
3274 	return cachep;
3275 }
3276 
3277 /*
3278  * We need to verify if the allocation against current->mm->owner's memcg is
3279  * possible for the given order. But the page is not allocated yet, so we'll
3280  * need a further commit step to do the final arrangements.
3281  *
3282  * It is possible for the task to switch cgroups in this mean time, so at
3283  * commit time, we can't rely on task conversion any longer.  We'll then use
3284  * the handle argument to return to the caller which cgroup we should commit
3285  * against. We could also return the memcg directly and avoid the pointer
3286  * passing, but a boolean return value gives better semantics considering
3287  * the compiled-out case as well.
3288  *
3289  * Returning true means the allocation is possible.
3290  */
3291 bool
3292 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3293 {
3294 	struct mem_cgroup *memcg;
3295 	int ret;
3296 
3297 	*_memcg = NULL;
3298 
3299 	/*
3300 	 * Disabling accounting is only relevant for some specific memcg
3301 	 * internal allocations. Therefore we would initially not have such
3302 	 * check here, since direct calls to the page allocator that are
3303 	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3304 	 * outside memcg core. We are mostly concerned with cache allocations,
3305 	 * and by having this test at memcg_kmem_get_cache, we are already able
3306 	 * to relay the allocation to the root cache and bypass the memcg cache
3307 	 * altogether.
3308 	 *
3309 	 * There is one exception, though: the SLUB allocator does not create
3310 	 * large order caches, but rather service large kmallocs directly from
3311 	 * the page allocator. Therefore, the following sequence when backed by
3312 	 * the SLUB allocator:
3313 	 *
3314 	 *	memcg_stop_kmem_account();
3315 	 *	kmalloc(<large_number>)
3316 	 *	memcg_resume_kmem_account();
3317 	 *
3318 	 * would effectively ignore the fact that we should skip accounting,
3319 	 * since it will drive us directly to this function without passing
3320 	 * through the cache selector memcg_kmem_get_cache. Such large
3321 	 * allocations are extremely rare but can happen, for instance, for the
3322 	 * cache arrays. We bring this test here.
3323 	 */
3324 	if (!current->mm || current->memcg_kmem_skip_account)
3325 		return true;
3326 
3327 	memcg = get_mem_cgroup_from_mm(current->mm);
3328 
3329 	if (!memcg_can_account_kmem(memcg)) {
3330 		css_put(&memcg->css);
3331 		return true;
3332 	}
3333 
3334 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3335 	if (!ret)
3336 		*_memcg = memcg;
3337 
3338 	css_put(&memcg->css);
3339 	return (ret == 0);
3340 }
3341 
3342 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3343 			      int order)
3344 {
3345 	struct page_cgroup *pc;
3346 
3347 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3348 
3349 	/* The page allocation failed. Revert */
3350 	if (!page) {
3351 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3352 		return;
3353 	}
3354 	/*
3355 	 * The page is freshly allocated and not visible to any
3356 	 * outside callers yet.  Set up pc non-atomically.
3357 	 */
3358 	pc = lookup_page_cgroup(page);
3359 	pc->mem_cgroup = memcg;
3360 	pc->flags = PCG_USED;
3361 }
3362 
3363 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3364 {
3365 	struct mem_cgroup *memcg = NULL;
3366 	struct page_cgroup *pc;
3367 
3368 
3369 	pc = lookup_page_cgroup(page);
3370 	if (!PageCgroupUsed(pc))
3371 		return;
3372 
3373 	memcg = pc->mem_cgroup;
3374 	pc->flags = 0;
3375 
3376 	/*
3377 	 * We trust that only if there is a memcg associated with the page, it
3378 	 * is a valid allocation
3379 	 */
3380 	if (!memcg)
3381 		return;
3382 
3383 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3384 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3385 }
3386 #else
3387 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3388 {
3389 }
3390 #endif /* CONFIG_MEMCG_KMEM */
3391 
3392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3393 
3394 /*
3395  * Because tail pages are not marked as "used", set it. We're under
3396  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3397  * charge/uncharge will be never happen and move_account() is done under
3398  * compound_lock(), so we don't have to take care of races.
3399  */
3400 void mem_cgroup_split_huge_fixup(struct page *head)
3401 {
3402 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3403 	struct page_cgroup *pc;
3404 	struct mem_cgroup *memcg;
3405 	int i;
3406 
3407 	if (mem_cgroup_disabled())
3408 		return;
3409 
3410 	memcg = head_pc->mem_cgroup;
3411 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3412 		pc = head_pc + i;
3413 		pc->mem_cgroup = memcg;
3414 		pc->flags = head_pc->flags;
3415 	}
3416 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3417 		       HPAGE_PMD_NR);
3418 }
3419 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3420 
3421 /**
3422  * mem_cgroup_move_account - move account of the page
3423  * @page: the page
3424  * @nr_pages: number of regular pages (>1 for huge pages)
3425  * @pc:	page_cgroup of the page.
3426  * @from: mem_cgroup which the page is moved from.
3427  * @to:	mem_cgroup which the page is moved to. @from != @to.
3428  *
3429  * The caller must confirm following.
3430  * - page is not on LRU (isolate_page() is useful.)
3431  * - compound_lock is held when nr_pages > 1
3432  *
3433  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3434  * from old cgroup.
3435  */
3436 static int mem_cgroup_move_account(struct page *page,
3437 				   unsigned int nr_pages,
3438 				   struct page_cgroup *pc,
3439 				   struct mem_cgroup *from,
3440 				   struct mem_cgroup *to)
3441 {
3442 	unsigned long flags;
3443 	int ret;
3444 
3445 	VM_BUG_ON(from == to);
3446 	VM_BUG_ON_PAGE(PageLRU(page), page);
3447 	/*
3448 	 * The page is isolated from LRU. So, collapse function
3449 	 * will not handle this page. But page splitting can happen.
3450 	 * Do this check under compound_page_lock(). The caller should
3451 	 * hold it.
3452 	 */
3453 	ret = -EBUSY;
3454 	if (nr_pages > 1 && !PageTransHuge(page))
3455 		goto out;
3456 
3457 	/*
3458 	 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3459 	 * of its source page while we change it: page migration takes
3460 	 * both pages off the LRU, but page cache replacement doesn't.
3461 	 */
3462 	if (!trylock_page(page))
3463 		goto out;
3464 
3465 	ret = -EINVAL;
3466 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3467 		goto out_unlock;
3468 
3469 	move_lock_mem_cgroup(from, &flags);
3470 
3471 	if (!PageAnon(page) && page_mapped(page)) {
3472 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3473 			       nr_pages);
3474 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3475 			       nr_pages);
3476 	}
3477 
3478 	if (PageWriteback(page)) {
3479 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3480 			       nr_pages);
3481 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3482 			       nr_pages);
3483 	}
3484 
3485 	/*
3486 	 * It is safe to change pc->mem_cgroup here because the page
3487 	 * is referenced, charged, and isolated - we can't race with
3488 	 * uncharging, charging, migration, or LRU putback.
3489 	 */
3490 
3491 	/* caller should have done css_get */
3492 	pc->mem_cgroup = to;
3493 	move_unlock_mem_cgroup(from, &flags);
3494 	ret = 0;
3495 
3496 	local_irq_disable();
3497 	mem_cgroup_charge_statistics(to, page, nr_pages);
3498 	memcg_check_events(to, page);
3499 	mem_cgroup_charge_statistics(from, page, -nr_pages);
3500 	memcg_check_events(from, page);
3501 	local_irq_enable();
3502 out_unlock:
3503 	unlock_page(page);
3504 out:
3505 	return ret;
3506 }
3507 
3508 /**
3509  * mem_cgroup_move_parent - moves page to the parent group
3510  * @page: the page to move
3511  * @pc: page_cgroup of the page
3512  * @child: page's cgroup
3513  *
3514  * move charges to its parent or the root cgroup if the group has no
3515  * parent (aka use_hierarchy==0).
3516  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3517  * mem_cgroup_move_account fails) the failure is always temporary and
3518  * it signals a race with a page removal/uncharge or migration. In the
3519  * first case the page is on the way out and it will vanish from the LRU
3520  * on the next attempt and the call should be retried later.
3521  * Isolation from the LRU fails only if page has been isolated from
3522  * the LRU since we looked at it and that usually means either global
3523  * reclaim or migration going on. The page will either get back to the
3524  * LRU or vanish.
3525  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3526  * (!PageCgroupUsed) or moved to a different group. The page will
3527  * disappear in the next attempt.
3528  */
3529 static int mem_cgroup_move_parent(struct page *page,
3530 				  struct page_cgroup *pc,
3531 				  struct mem_cgroup *child)
3532 {
3533 	struct mem_cgroup *parent;
3534 	unsigned int nr_pages;
3535 	unsigned long uninitialized_var(flags);
3536 	int ret;
3537 
3538 	VM_BUG_ON(mem_cgroup_is_root(child));
3539 
3540 	ret = -EBUSY;
3541 	if (!get_page_unless_zero(page))
3542 		goto out;
3543 	if (isolate_lru_page(page))
3544 		goto put;
3545 
3546 	nr_pages = hpage_nr_pages(page);
3547 
3548 	parent = parent_mem_cgroup(child);
3549 	/*
3550 	 * If no parent, move charges to root cgroup.
3551 	 */
3552 	if (!parent)
3553 		parent = root_mem_cgroup;
3554 
3555 	if (nr_pages > 1) {
3556 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3557 		flags = compound_lock_irqsave(page);
3558 	}
3559 
3560 	ret = mem_cgroup_move_account(page, nr_pages,
3561 				pc, child, parent);
3562 	if (!ret)
3563 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3564 
3565 	if (nr_pages > 1)
3566 		compound_unlock_irqrestore(page, flags);
3567 	putback_lru_page(page);
3568 put:
3569 	put_page(page);
3570 out:
3571 	return ret;
3572 }
3573 
3574 #ifdef CONFIG_MEMCG_SWAP
3575 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3576 					 bool charge)
3577 {
3578 	int val = (charge) ? 1 : -1;
3579 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
3580 }
3581 
3582 /**
3583  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3584  * @entry: swap entry to be moved
3585  * @from:  mem_cgroup which the entry is moved from
3586  * @to:  mem_cgroup which the entry is moved to
3587  *
3588  * It succeeds only when the swap_cgroup's record for this entry is the same
3589  * as the mem_cgroup's id of @from.
3590  *
3591  * Returns 0 on success, -EINVAL on failure.
3592  *
3593  * The caller must have charged to @to, IOW, called res_counter_charge() about
3594  * both res and memsw, and called css_get().
3595  */
3596 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3597 				struct mem_cgroup *from, struct mem_cgroup *to)
3598 {
3599 	unsigned short old_id, new_id;
3600 
3601 	old_id = mem_cgroup_id(from);
3602 	new_id = mem_cgroup_id(to);
3603 
3604 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3605 		mem_cgroup_swap_statistics(from, false);
3606 		mem_cgroup_swap_statistics(to, true);
3607 		/*
3608 		 * This function is only called from task migration context now.
3609 		 * It postpones res_counter and refcount handling till the end
3610 		 * of task migration(mem_cgroup_clear_mc()) for performance
3611 		 * improvement. But we cannot postpone css_get(to)  because if
3612 		 * the process that has been moved to @to does swap-in, the
3613 		 * refcount of @to might be decreased to 0.
3614 		 *
3615 		 * We are in attach() phase, so the cgroup is guaranteed to be
3616 		 * alive, so we can just call css_get().
3617 		 */
3618 		css_get(&to->css);
3619 		return 0;
3620 	}
3621 	return -EINVAL;
3622 }
3623 #else
3624 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3625 				struct mem_cgroup *from, struct mem_cgroup *to)
3626 {
3627 	return -EINVAL;
3628 }
3629 #endif
3630 
3631 #ifdef CONFIG_DEBUG_VM
3632 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3633 {
3634 	struct page_cgroup *pc;
3635 
3636 	pc = lookup_page_cgroup(page);
3637 	/*
3638 	 * Can be NULL while feeding pages into the page allocator for
3639 	 * the first time, i.e. during boot or memory hotplug;
3640 	 * or when mem_cgroup_disabled().
3641 	 */
3642 	if (likely(pc) && PageCgroupUsed(pc))
3643 		return pc;
3644 	return NULL;
3645 }
3646 
3647 bool mem_cgroup_bad_page_check(struct page *page)
3648 {
3649 	if (mem_cgroup_disabled())
3650 		return false;
3651 
3652 	return lookup_page_cgroup_used(page) != NULL;
3653 }
3654 
3655 void mem_cgroup_print_bad_page(struct page *page)
3656 {
3657 	struct page_cgroup *pc;
3658 
3659 	pc = lookup_page_cgroup_used(page);
3660 	if (pc) {
3661 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3662 			 pc, pc->flags, pc->mem_cgroup);
3663 	}
3664 }
3665 #endif
3666 
3667 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3668 				unsigned long long val)
3669 {
3670 	int retry_count;
3671 	u64 memswlimit, memlimit;
3672 	int ret = 0;
3673 	int children = mem_cgroup_count_children(memcg);
3674 	u64 curusage, oldusage;
3675 	int enlarge;
3676 
3677 	/*
3678 	 * For keeping hierarchical_reclaim simple, how long we should retry
3679 	 * is depends on callers. We set our retry-count to be function
3680 	 * of # of children which we should visit in this loop.
3681 	 */
3682 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3683 
3684 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3685 
3686 	enlarge = 0;
3687 	while (retry_count) {
3688 		if (signal_pending(current)) {
3689 			ret = -EINTR;
3690 			break;
3691 		}
3692 		/*
3693 		 * Rather than hide all in some function, I do this in
3694 		 * open coded manner. You see what this really does.
3695 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3696 		 */
3697 		mutex_lock(&set_limit_mutex);
3698 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3699 		if (memswlimit < val) {
3700 			ret = -EINVAL;
3701 			mutex_unlock(&set_limit_mutex);
3702 			break;
3703 		}
3704 
3705 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3706 		if (memlimit < val)
3707 			enlarge = 1;
3708 
3709 		ret = res_counter_set_limit(&memcg->res, val);
3710 		if (!ret) {
3711 			if (memswlimit == val)
3712 				memcg->memsw_is_minimum = true;
3713 			else
3714 				memcg->memsw_is_minimum = false;
3715 		}
3716 		mutex_unlock(&set_limit_mutex);
3717 
3718 		if (!ret)
3719 			break;
3720 
3721 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3722 				   MEM_CGROUP_RECLAIM_SHRINK);
3723 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3724 		/* Usage is reduced ? */
3725 		if (curusage >= oldusage)
3726 			retry_count--;
3727 		else
3728 			oldusage = curusage;
3729 	}
3730 	if (!ret && enlarge)
3731 		memcg_oom_recover(memcg);
3732 
3733 	return ret;
3734 }
3735 
3736 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3737 					unsigned long long val)
3738 {
3739 	int retry_count;
3740 	u64 memlimit, memswlimit, oldusage, curusage;
3741 	int children = mem_cgroup_count_children(memcg);
3742 	int ret = -EBUSY;
3743 	int enlarge = 0;
3744 
3745 	/* see mem_cgroup_resize_res_limit */
3746 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3747 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3748 	while (retry_count) {
3749 		if (signal_pending(current)) {
3750 			ret = -EINTR;
3751 			break;
3752 		}
3753 		/*
3754 		 * Rather than hide all in some function, I do this in
3755 		 * open coded manner. You see what this really does.
3756 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3757 		 */
3758 		mutex_lock(&set_limit_mutex);
3759 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3760 		if (memlimit > val) {
3761 			ret = -EINVAL;
3762 			mutex_unlock(&set_limit_mutex);
3763 			break;
3764 		}
3765 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3766 		if (memswlimit < val)
3767 			enlarge = 1;
3768 		ret = res_counter_set_limit(&memcg->memsw, val);
3769 		if (!ret) {
3770 			if (memlimit == val)
3771 				memcg->memsw_is_minimum = true;
3772 			else
3773 				memcg->memsw_is_minimum = false;
3774 		}
3775 		mutex_unlock(&set_limit_mutex);
3776 
3777 		if (!ret)
3778 			break;
3779 
3780 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3781 				   MEM_CGROUP_RECLAIM_NOSWAP |
3782 				   MEM_CGROUP_RECLAIM_SHRINK);
3783 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3784 		/* Usage is reduced ? */
3785 		if (curusage >= oldusage)
3786 			retry_count--;
3787 		else
3788 			oldusage = curusage;
3789 	}
3790 	if (!ret && enlarge)
3791 		memcg_oom_recover(memcg);
3792 	return ret;
3793 }
3794 
3795 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3796 					    gfp_t gfp_mask,
3797 					    unsigned long *total_scanned)
3798 {
3799 	unsigned long nr_reclaimed = 0;
3800 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3801 	unsigned long reclaimed;
3802 	int loop = 0;
3803 	struct mem_cgroup_tree_per_zone *mctz;
3804 	unsigned long long excess;
3805 	unsigned long nr_scanned;
3806 
3807 	if (order > 0)
3808 		return 0;
3809 
3810 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3811 	/*
3812 	 * This loop can run a while, specially if mem_cgroup's continuously
3813 	 * keep exceeding their soft limit and putting the system under
3814 	 * pressure
3815 	 */
3816 	do {
3817 		if (next_mz)
3818 			mz = next_mz;
3819 		else
3820 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3821 		if (!mz)
3822 			break;
3823 
3824 		nr_scanned = 0;
3825 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3826 						    gfp_mask, &nr_scanned);
3827 		nr_reclaimed += reclaimed;
3828 		*total_scanned += nr_scanned;
3829 		spin_lock_irq(&mctz->lock);
3830 
3831 		/*
3832 		 * If we failed to reclaim anything from this memory cgroup
3833 		 * it is time to move on to the next cgroup
3834 		 */
3835 		next_mz = NULL;
3836 		if (!reclaimed) {
3837 			do {
3838 				/*
3839 				 * Loop until we find yet another one.
3840 				 *
3841 				 * By the time we get the soft_limit lock
3842 				 * again, someone might have aded the
3843 				 * group back on the RB tree. Iterate to
3844 				 * make sure we get a different mem.
3845 				 * mem_cgroup_largest_soft_limit_node returns
3846 				 * NULL if no other cgroup is present on
3847 				 * the tree
3848 				 */
3849 				next_mz =
3850 				__mem_cgroup_largest_soft_limit_node(mctz);
3851 				if (next_mz == mz)
3852 					css_put(&next_mz->memcg->css);
3853 				else /* next_mz == NULL or other memcg */
3854 					break;
3855 			} while (1);
3856 		}
3857 		__mem_cgroup_remove_exceeded(mz, mctz);
3858 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3859 		/*
3860 		 * One school of thought says that we should not add
3861 		 * back the node to the tree if reclaim returns 0.
3862 		 * But our reclaim could return 0, simply because due
3863 		 * to priority we are exposing a smaller subset of
3864 		 * memory to reclaim from. Consider this as a longer
3865 		 * term TODO.
3866 		 */
3867 		/* If excess == 0, no tree ops */
3868 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3869 		spin_unlock_irq(&mctz->lock);
3870 		css_put(&mz->memcg->css);
3871 		loop++;
3872 		/*
3873 		 * Could not reclaim anything and there are no more
3874 		 * mem cgroups to try or we seem to be looping without
3875 		 * reclaiming anything.
3876 		 */
3877 		if (!nr_reclaimed &&
3878 			(next_mz == NULL ||
3879 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3880 			break;
3881 	} while (!nr_reclaimed);
3882 	if (next_mz)
3883 		css_put(&next_mz->memcg->css);
3884 	return nr_reclaimed;
3885 }
3886 
3887 /**
3888  * mem_cgroup_force_empty_list - clears LRU of a group
3889  * @memcg: group to clear
3890  * @node: NUMA node
3891  * @zid: zone id
3892  * @lru: lru to to clear
3893  *
3894  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3895  * reclaim the pages page themselves - pages are moved to the parent (or root)
3896  * group.
3897  */
3898 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3899 				int node, int zid, enum lru_list lru)
3900 {
3901 	struct lruvec *lruvec;
3902 	unsigned long flags;
3903 	struct list_head *list;
3904 	struct page *busy;
3905 	struct zone *zone;
3906 
3907 	zone = &NODE_DATA(node)->node_zones[zid];
3908 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3909 	list = &lruvec->lists[lru];
3910 
3911 	busy = NULL;
3912 	do {
3913 		struct page_cgroup *pc;
3914 		struct page *page;
3915 
3916 		spin_lock_irqsave(&zone->lru_lock, flags);
3917 		if (list_empty(list)) {
3918 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3919 			break;
3920 		}
3921 		page = list_entry(list->prev, struct page, lru);
3922 		if (busy == page) {
3923 			list_move(&page->lru, list);
3924 			busy = NULL;
3925 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3926 			continue;
3927 		}
3928 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3929 
3930 		pc = lookup_page_cgroup(page);
3931 
3932 		if (mem_cgroup_move_parent(page, pc, memcg)) {
3933 			/* found lock contention or "pc" is obsolete. */
3934 			busy = page;
3935 		} else
3936 			busy = NULL;
3937 		cond_resched();
3938 	} while (!list_empty(list));
3939 }
3940 
3941 /*
3942  * make mem_cgroup's charge to be 0 if there is no task by moving
3943  * all the charges and pages to the parent.
3944  * This enables deleting this mem_cgroup.
3945  *
3946  * Caller is responsible for holding css reference on the memcg.
3947  */
3948 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3949 {
3950 	int node, zid;
3951 	u64 usage;
3952 
3953 	do {
3954 		/* This is for making all *used* pages to be on LRU. */
3955 		lru_add_drain_all();
3956 		drain_all_stock_sync(memcg);
3957 		mem_cgroup_start_move(memcg);
3958 		for_each_node_state(node, N_MEMORY) {
3959 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3960 				enum lru_list lru;
3961 				for_each_lru(lru) {
3962 					mem_cgroup_force_empty_list(memcg,
3963 							node, zid, lru);
3964 				}
3965 			}
3966 		}
3967 		mem_cgroup_end_move(memcg);
3968 		memcg_oom_recover(memcg);
3969 		cond_resched();
3970 
3971 		/*
3972 		 * Kernel memory may not necessarily be trackable to a specific
3973 		 * process. So they are not migrated, and therefore we can't
3974 		 * expect their value to drop to 0 here.
3975 		 * Having res filled up with kmem only is enough.
3976 		 *
3977 		 * This is a safety check because mem_cgroup_force_empty_list
3978 		 * could have raced with mem_cgroup_replace_page_cache callers
3979 		 * so the lru seemed empty but the page could have been added
3980 		 * right after the check. RES_USAGE should be safe as we always
3981 		 * charge before adding to the LRU.
3982 		 */
3983 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
3984 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
3985 	} while (usage > 0);
3986 }
3987 
3988 /*
3989  * Test whether @memcg has children, dead or alive.  Note that this
3990  * function doesn't care whether @memcg has use_hierarchy enabled and
3991  * returns %true if there are child csses according to the cgroup
3992  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3993  */
3994 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3995 {
3996 	bool ret;
3997 
3998 	/*
3999 	 * The lock does not prevent addition or deletion of children, but
4000 	 * it prevents a new child from being initialized based on this
4001 	 * parent in css_online(), so it's enough to decide whether
4002 	 * hierarchically inherited attributes can still be changed or not.
4003 	 */
4004 	lockdep_assert_held(&memcg_create_mutex);
4005 
4006 	rcu_read_lock();
4007 	ret = css_next_child(NULL, &memcg->css);
4008 	rcu_read_unlock();
4009 	return ret;
4010 }
4011 
4012 /*
4013  * Reclaims as many pages from the given memcg as possible and moves
4014  * the rest to the parent.
4015  *
4016  * Caller is responsible for holding css reference for memcg.
4017  */
4018 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4019 {
4020 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4021 
4022 	/* we call try-to-free pages for make this cgroup empty */
4023 	lru_add_drain_all();
4024 	/* try to free all pages in this cgroup */
4025 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4026 		int progress;
4027 
4028 		if (signal_pending(current))
4029 			return -EINTR;
4030 
4031 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4032 						false);
4033 		if (!progress) {
4034 			nr_retries--;
4035 			/* maybe some writeback is necessary */
4036 			congestion_wait(BLK_RW_ASYNC, HZ/10);
4037 		}
4038 
4039 	}
4040 
4041 	return 0;
4042 }
4043 
4044 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
4045 					    char *buf, size_t nbytes,
4046 					    loff_t off)
4047 {
4048 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4049 
4050 	if (mem_cgroup_is_root(memcg))
4051 		return -EINVAL;
4052 	return mem_cgroup_force_empty(memcg) ?: nbytes;
4053 }
4054 
4055 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4056 				     struct cftype *cft)
4057 {
4058 	return mem_cgroup_from_css(css)->use_hierarchy;
4059 }
4060 
4061 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4062 				      struct cftype *cft, u64 val)
4063 {
4064 	int retval = 0;
4065 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4066 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
4067 
4068 	mutex_lock(&memcg_create_mutex);
4069 
4070 	if (memcg->use_hierarchy == val)
4071 		goto out;
4072 
4073 	/*
4074 	 * If parent's use_hierarchy is set, we can't make any modifications
4075 	 * in the child subtrees. If it is unset, then the change can
4076 	 * occur, provided the current cgroup has no children.
4077 	 *
4078 	 * For the root cgroup, parent_mem is NULL, we allow value to be
4079 	 * set if there are no children.
4080 	 */
4081 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4082 				(val == 1 || val == 0)) {
4083 		if (!memcg_has_children(memcg))
4084 			memcg->use_hierarchy = val;
4085 		else
4086 			retval = -EBUSY;
4087 	} else
4088 		retval = -EINVAL;
4089 
4090 out:
4091 	mutex_unlock(&memcg_create_mutex);
4092 
4093 	return retval;
4094 }
4095 
4096 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4097 			       struct cftype *cft)
4098 {
4099 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4100 	enum res_type type = MEMFILE_TYPE(cft->private);
4101 	int name = MEMFILE_ATTR(cft->private);
4102 
4103 	switch (type) {
4104 	case _MEM:
4105 		return res_counter_read_u64(&memcg->res, name);
4106 	case _MEMSWAP:
4107 		return res_counter_read_u64(&memcg->memsw, name);
4108 	case _KMEM:
4109 		return res_counter_read_u64(&memcg->kmem, name);
4110 		break;
4111 	default:
4112 		BUG();
4113 	}
4114 }
4115 
4116 #ifdef CONFIG_MEMCG_KMEM
4117 /* should be called with activate_kmem_mutex held */
4118 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4119 				 unsigned long long limit)
4120 {
4121 	int err = 0;
4122 	int memcg_id;
4123 
4124 	if (memcg_kmem_is_active(memcg))
4125 		return 0;
4126 
4127 	/*
4128 	 * We are going to allocate memory for data shared by all memory
4129 	 * cgroups so let's stop accounting here.
4130 	 */
4131 	memcg_stop_kmem_account();
4132 
4133 	/*
4134 	 * For simplicity, we won't allow this to be disabled.  It also can't
4135 	 * be changed if the cgroup has children already, or if tasks had
4136 	 * already joined.
4137 	 *
4138 	 * If tasks join before we set the limit, a person looking at
4139 	 * kmem.usage_in_bytes will have no way to determine when it took
4140 	 * place, which makes the value quite meaningless.
4141 	 *
4142 	 * After it first became limited, changes in the value of the limit are
4143 	 * of course permitted.
4144 	 */
4145 	mutex_lock(&memcg_create_mutex);
4146 	if (cgroup_has_tasks(memcg->css.cgroup) ||
4147 	    (memcg->use_hierarchy && memcg_has_children(memcg)))
4148 		err = -EBUSY;
4149 	mutex_unlock(&memcg_create_mutex);
4150 	if (err)
4151 		goto out;
4152 
4153 	memcg_id = ida_simple_get(&kmem_limited_groups,
4154 				  0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
4155 	if (memcg_id < 0) {
4156 		err = memcg_id;
4157 		goto out;
4158 	}
4159 
4160 	/*
4161 	 * Make sure we have enough space for this cgroup in each root cache's
4162 	 * memcg_params.
4163 	 */
4164 	mutex_lock(&memcg_slab_mutex);
4165 	err = memcg_update_all_caches(memcg_id + 1);
4166 	mutex_unlock(&memcg_slab_mutex);
4167 	if (err)
4168 		goto out_rmid;
4169 
4170 	memcg->kmemcg_id = memcg_id;
4171 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4172 
4173 	/*
4174 	 * We couldn't have accounted to this cgroup, because it hasn't got the
4175 	 * active bit set yet, so this should succeed.
4176 	 */
4177 	err = res_counter_set_limit(&memcg->kmem, limit);
4178 	VM_BUG_ON(err);
4179 
4180 	static_key_slow_inc(&memcg_kmem_enabled_key);
4181 	/*
4182 	 * Setting the active bit after enabling static branching will
4183 	 * guarantee no one starts accounting before all call sites are
4184 	 * patched.
4185 	 */
4186 	memcg_kmem_set_active(memcg);
4187 out:
4188 	memcg_resume_kmem_account();
4189 	return err;
4190 
4191 out_rmid:
4192 	ida_simple_remove(&kmem_limited_groups, memcg_id);
4193 	goto out;
4194 }
4195 
4196 static int memcg_activate_kmem(struct mem_cgroup *memcg,
4197 			       unsigned long long limit)
4198 {
4199 	int ret;
4200 
4201 	mutex_lock(&activate_kmem_mutex);
4202 	ret = __memcg_activate_kmem(memcg, limit);
4203 	mutex_unlock(&activate_kmem_mutex);
4204 	return ret;
4205 }
4206 
4207 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4208 				   unsigned long long val)
4209 {
4210 	int ret;
4211 
4212 	if (!memcg_kmem_is_active(memcg))
4213 		ret = memcg_activate_kmem(memcg, val);
4214 	else
4215 		ret = res_counter_set_limit(&memcg->kmem, val);
4216 	return ret;
4217 }
4218 
4219 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4220 {
4221 	int ret = 0;
4222 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4223 
4224 	if (!parent)
4225 		return 0;
4226 
4227 	mutex_lock(&activate_kmem_mutex);
4228 	/*
4229 	 * If the parent cgroup is not kmem-active now, it cannot be activated
4230 	 * after this point, because it has at least one child already.
4231 	 */
4232 	if (memcg_kmem_is_active(parent))
4233 		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
4234 	mutex_unlock(&activate_kmem_mutex);
4235 	return ret;
4236 }
4237 #else
4238 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4239 				   unsigned long long val)
4240 {
4241 	return -EINVAL;
4242 }
4243 #endif /* CONFIG_MEMCG_KMEM */
4244 
4245 /*
4246  * The user of this function is...
4247  * RES_LIMIT.
4248  */
4249 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4250 				char *buf, size_t nbytes, loff_t off)
4251 {
4252 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4253 	enum res_type type;
4254 	int name;
4255 	unsigned long long val;
4256 	int ret;
4257 
4258 	buf = strstrip(buf);
4259 	type = MEMFILE_TYPE(of_cft(of)->private);
4260 	name = MEMFILE_ATTR(of_cft(of)->private);
4261 
4262 	switch (name) {
4263 	case RES_LIMIT:
4264 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4265 			ret = -EINVAL;
4266 			break;
4267 		}
4268 		/* This function does all necessary parse...reuse it */
4269 		ret = res_counter_memparse_write_strategy(buf, &val);
4270 		if (ret)
4271 			break;
4272 		if (type == _MEM)
4273 			ret = mem_cgroup_resize_limit(memcg, val);
4274 		else if (type == _MEMSWAP)
4275 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4276 		else if (type == _KMEM)
4277 			ret = memcg_update_kmem_limit(memcg, val);
4278 		else
4279 			return -EINVAL;
4280 		break;
4281 	case RES_SOFT_LIMIT:
4282 		ret = res_counter_memparse_write_strategy(buf, &val);
4283 		if (ret)
4284 			break;
4285 		/*
4286 		 * For memsw, soft limits are hard to implement in terms
4287 		 * of semantics, for now, we support soft limits for
4288 		 * control without swap
4289 		 */
4290 		if (type == _MEM)
4291 			ret = res_counter_set_soft_limit(&memcg->res, val);
4292 		else
4293 			ret = -EINVAL;
4294 		break;
4295 	default:
4296 		ret = -EINVAL; /* should be BUG() ? */
4297 		break;
4298 	}
4299 	return ret ?: nbytes;
4300 }
4301 
4302 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4303 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
4304 {
4305 	unsigned long long min_limit, min_memsw_limit, tmp;
4306 
4307 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4308 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4309 	if (!memcg->use_hierarchy)
4310 		goto out;
4311 
4312 	while (memcg->css.parent) {
4313 		memcg = mem_cgroup_from_css(memcg->css.parent);
4314 		if (!memcg->use_hierarchy)
4315 			break;
4316 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4317 		min_limit = min(min_limit, tmp);
4318 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4319 		min_memsw_limit = min(min_memsw_limit, tmp);
4320 	}
4321 out:
4322 	*mem_limit = min_limit;
4323 	*memsw_limit = min_memsw_limit;
4324 }
4325 
4326 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4327 				size_t nbytes, loff_t off)
4328 {
4329 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4330 	int name;
4331 	enum res_type type;
4332 
4333 	type = MEMFILE_TYPE(of_cft(of)->private);
4334 	name = MEMFILE_ATTR(of_cft(of)->private);
4335 
4336 	switch (name) {
4337 	case RES_MAX_USAGE:
4338 		if (type == _MEM)
4339 			res_counter_reset_max(&memcg->res);
4340 		else if (type == _MEMSWAP)
4341 			res_counter_reset_max(&memcg->memsw);
4342 		else if (type == _KMEM)
4343 			res_counter_reset_max(&memcg->kmem);
4344 		else
4345 			return -EINVAL;
4346 		break;
4347 	case RES_FAILCNT:
4348 		if (type == _MEM)
4349 			res_counter_reset_failcnt(&memcg->res);
4350 		else if (type == _MEMSWAP)
4351 			res_counter_reset_failcnt(&memcg->memsw);
4352 		else if (type == _KMEM)
4353 			res_counter_reset_failcnt(&memcg->kmem);
4354 		else
4355 			return -EINVAL;
4356 		break;
4357 	}
4358 
4359 	return nbytes;
4360 }
4361 
4362 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4363 					struct cftype *cft)
4364 {
4365 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4366 }
4367 
4368 #ifdef CONFIG_MMU
4369 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4370 					struct cftype *cft, u64 val)
4371 {
4372 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4373 
4374 	if (val >= (1 << NR_MOVE_TYPE))
4375 		return -EINVAL;
4376 
4377 	/*
4378 	 * No kind of locking is needed in here, because ->can_attach() will
4379 	 * check this value once in the beginning of the process, and then carry
4380 	 * on with stale data. This means that changes to this value will only
4381 	 * affect task migrations starting after the change.
4382 	 */
4383 	memcg->move_charge_at_immigrate = val;
4384 	return 0;
4385 }
4386 #else
4387 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4388 					struct cftype *cft, u64 val)
4389 {
4390 	return -ENOSYS;
4391 }
4392 #endif
4393 
4394 #ifdef CONFIG_NUMA
4395 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4396 {
4397 	struct numa_stat {
4398 		const char *name;
4399 		unsigned int lru_mask;
4400 	};
4401 
4402 	static const struct numa_stat stats[] = {
4403 		{ "total", LRU_ALL },
4404 		{ "file", LRU_ALL_FILE },
4405 		{ "anon", LRU_ALL_ANON },
4406 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
4407 	};
4408 	const struct numa_stat *stat;
4409 	int nid;
4410 	unsigned long nr;
4411 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4412 
4413 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4414 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
4415 		seq_printf(m, "%s=%lu", stat->name, nr);
4416 		for_each_node_state(nid, N_MEMORY) {
4417 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4418 							  stat->lru_mask);
4419 			seq_printf(m, " N%d=%lu", nid, nr);
4420 		}
4421 		seq_putc(m, '\n');
4422 	}
4423 
4424 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4425 		struct mem_cgroup *iter;
4426 
4427 		nr = 0;
4428 		for_each_mem_cgroup_tree(iter, memcg)
4429 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
4430 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
4431 		for_each_node_state(nid, N_MEMORY) {
4432 			nr = 0;
4433 			for_each_mem_cgroup_tree(iter, memcg)
4434 				nr += mem_cgroup_node_nr_lru_pages(
4435 					iter, nid, stat->lru_mask);
4436 			seq_printf(m, " N%d=%lu", nid, nr);
4437 		}
4438 		seq_putc(m, '\n');
4439 	}
4440 
4441 	return 0;
4442 }
4443 #endif /* CONFIG_NUMA */
4444 
4445 static inline void mem_cgroup_lru_names_not_uptodate(void)
4446 {
4447 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4448 }
4449 
4450 static int memcg_stat_show(struct seq_file *m, void *v)
4451 {
4452 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4453 	struct mem_cgroup *mi;
4454 	unsigned int i;
4455 
4456 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4457 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4458 			continue;
4459 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4460 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4461 	}
4462 
4463 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4464 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4465 			   mem_cgroup_read_events(memcg, i));
4466 
4467 	for (i = 0; i < NR_LRU_LISTS; i++)
4468 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4469 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4470 
4471 	/* Hierarchical information */
4472 	{
4473 		unsigned long long limit, memsw_limit;
4474 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4475 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4476 		if (do_swap_account)
4477 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
4478 				   memsw_limit);
4479 	}
4480 
4481 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4482 		long long val = 0;
4483 
4484 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4485 			continue;
4486 		for_each_mem_cgroup_tree(mi, memcg)
4487 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4488 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4489 	}
4490 
4491 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4492 		unsigned long long val = 0;
4493 
4494 		for_each_mem_cgroup_tree(mi, memcg)
4495 			val += mem_cgroup_read_events(mi, i);
4496 		seq_printf(m, "total_%s %llu\n",
4497 			   mem_cgroup_events_names[i], val);
4498 	}
4499 
4500 	for (i = 0; i < NR_LRU_LISTS; i++) {
4501 		unsigned long long val = 0;
4502 
4503 		for_each_mem_cgroup_tree(mi, memcg)
4504 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4505 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4506 	}
4507 
4508 #ifdef CONFIG_DEBUG_VM
4509 	{
4510 		int nid, zid;
4511 		struct mem_cgroup_per_zone *mz;
4512 		struct zone_reclaim_stat *rstat;
4513 		unsigned long recent_rotated[2] = {0, 0};
4514 		unsigned long recent_scanned[2] = {0, 0};
4515 
4516 		for_each_online_node(nid)
4517 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4518 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4519 				rstat = &mz->lruvec.reclaim_stat;
4520 
4521 				recent_rotated[0] += rstat->recent_rotated[0];
4522 				recent_rotated[1] += rstat->recent_rotated[1];
4523 				recent_scanned[0] += rstat->recent_scanned[0];
4524 				recent_scanned[1] += rstat->recent_scanned[1];
4525 			}
4526 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4527 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4528 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4529 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4530 	}
4531 #endif
4532 
4533 	return 0;
4534 }
4535 
4536 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4537 				      struct cftype *cft)
4538 {
4539 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4540 
4541 	return mem_cgroup_swappiness(memcg);
4542 }
4543 
4544 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4545 				       struct cftype *cft, u64 val)
4546 {
4547 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4548 
4549 	if (val > 100)
4550 		return -EINVAL;
4551 
4552 	if (css->parent)
4553 		memcg->swappiness = val;
4554 	else
4555 		vm_swappiness = val;
4556 
4557 	return 0;
4558 }
4559 
4560 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4561 {
4562 	struct mem_cgroup_threshold_ary *t;
4563 	u64 usage;
4564 	int i;
4565 
4566 	rcu_read_lock();
4567 	if (!swap)
4568 		t = rcu_dereference(memcg->thresholds.primary);
4569 	else
4570 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4571 
4572 	if (!t)
4573 		goto unlock;
4574 
4575 	if (!swap)
4576 		usage = res_counter_read_u64(&memcg->res, RES_USAGE);
4577 	else
4578 		usage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4579 
4580 	/*
4581 	 * current_threshold points to threshold just below or equal to usage.
4582 	 * If it's not true, a threshold was crossed after last
4583 	 * call of __mem_cgroup_threshold().
4584 	 */
4585 	i = t->current_threshold;
4586 
4587 	/*
4588 	 * Iterate backward over array of thresholds starting from
4589 	 * current_threshold and check if a threshold is crossed.
4590 	 * If none of thresholds below usage is crossed, we read
4591 	 * only one element of the array here.
4592 	 */
4593 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4594 		eventfd_signal(t->entries[i].eventfd, 1);
4595 
4596 	/* i = current_threshold + 1 */
4597 	i++;
4598 
4599 	/*
4600 	 * Iterate forward over array of thresholds starting from
4601 	 * current_threshold+1 and check if a threshold is crossed.
4602 	 * If none of thresholds above usage is crossed, we read
4603 	 * only one element of the array here.
4604 	 */
4605 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4606 		eventfd_signal(t->entries[i].eventfd, 1);
4607 
4608 	/* Update current_threshold */
4609 	t->current_threshold = i - 1;
4610 unlock:
4611 	rcu_read_unlock();
4612 }
4613 
4614 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4615 {
4616 	while (memcg) {
4617 		__mem_cgroup_threshold(memcg, false);
4618 		if (do_swap_account)
4619 			__mem_cgroup_threshold(memcg, true);
4620 
4621 		memcg = parent_mem_cgroup(memcg);
4622 	}
4623 }
4624 
4625 static int compare_thresholds(const void *a, const void *b)
4626 {
4627 	const struct mem_cgroup_threshold *_a = a;
4628 	const struct mem_cgroup_threshold *_b = b;
4629 
4630 	if (_a->threshold > _b->threshold)
4631 		return 1;
4632 
4633 	if (_a->threshold < _b->threshold)
4634 		return -1;
4635 
4636 	return 0;
4637 }
4638 
4639 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4640 {
4641 	struct mem_cgroup_eventfd_list *ev;
4642 
4643 	spin_lock(&memcg_oom_lock);
4644 
4645 	list_for_each_entry(ev, &memcg->oom_notify, list)
4646 		eventfd_signal(ev->eventfd, 1);
4647 
4648 	spin_unlock(&memcg_oom_lock);
4649 	return 0;
4650 }
4651 
4652 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4653 {
4654 	struct mem_cgroup *iter;
4655 
4656 	for_each_mem_cgroup_tree(iter, memcg)
4657 		mem_cgroup_oom_notify_cb(iter);
4658 }
4659 
4660 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4661 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4662 {
4663 	struct mem_cgroup_thresholds *thresholds;
4664 	struct mem_cgroup_threshold_ary *new;
4665 	u64 threshold, usage;
4666 	int i, size, ret;
4667 
4668 	ret = res_counter_memparse_write_strategy(args, &threshold);
4669 	if (ret)
4670 		return ret;
4671 
4672 	mutex_lock(&memcg->thresholds_lock);
4673 
4674 	if (type == _MEM) {
4675 		thresholds = &memcg->thresholds;
4676 		usage = res_counter_read_u64(&memcg->res, RES_USAGE);
4677 	} else if (type == _MEMSWAP) {
4678 		thresholds = &memcg->memsw_thresholds;
4679 		usage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4680 	} else
4681 		BUG();
4682 
4683 	/* Check if a threshold crossed before adding a new one */
4684 	if (thresholds->primary)
4685 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4686 
4687 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4688 
4689 	/* Allocate memory for new array of thresholds */
4690 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4691 			GFP_KERNEL);
4692 	if (!new) {
4693 		ret = -ENOMEM;
4694 		goto unlock;
4695 	}
4696 	new->size = size;
4697 
4698 	/* Copy thresholds (if any) to new array */
4699 	if (thresholds->primary) {
4700 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4701 				sizeof(struct mem_cgroup_threshold));
4702 	}
4703 
4704 	/* Add new threshold */
4705 	new->entries[size - 1].eventfd = eventfd;
4706 	new->entries[size - 1].threshold = threshold;
4707 
4708 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4709 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4710 			compare_thresholds, NULL);
4711 
4712 	/* Find current threshold */
4713 	new->current_threshold = -1;
4714 	for (i = 0; i < size; i++) {
4715 		if (new->entries[i].threshold <= usage) {
4716 			/*
4717 			 * new->current_threshold will not be used until
4718 			 * rcu_assign_pointer(), so it's safe to increment
4719 			 * it here.
4720 			 */
4721 			++new->current_threshold;
4722 		} else
4723 			break;
4724 	}
4725 
4726 	/* Free old spare buffer and save old primary buffer as spare */
4727 	kfree(thresholds->spare);
4728 	thresholds->spare = thresholds->primary;
4729 
4730 	rcu_assign_pointer(thresholds->primary, new);
4731 
4732 	/* To be sure that nobody uses thresholds */
4733 	synchronize_rcu();
4734 
4735 unlock:
4736 	mutex_unlock(&memcg->thresholds_lock);
4737 
4738 	return ret;
4739 }
4740 
4741 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4742 	struct eventfd_ctx *eventfd, const char *args)
4743 {
4744 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4745 }
4746 
4747 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4748 	struct eventfd_ctx *eventfd, const char *args)
4749 {
4750 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4751 }
4752 
4753 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4754 	struct eventfd_ctx *eventfd, enum res_type type)
4755 {
4756 	struct mem_cgroup_thresholds *thresholds;
4757 	struct mem_cgroup_threshold_ary *new;
4758 	u64 usage;
4759 	int i, j, size;
4760 
4761 	mutex_lock(&memcg->thresholds_lock);
4762 
4763 	if (type == _MEM) {
4764 		thresholds = &memcg->thresholds;
4765 		usage = res_counter_read_u64(&memcg->res, RES_USAGE);
4766 	} else if (type == _MEMSWAP) {
4767 		thresholds = &memcg->memsw_thresholds;
4768 		usage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4769 	} else
4770 		BUG();
4771 
4772 	if (!thresholds->primary)
4773 		goto unlock;
4774 
4775 	/* Check if a threshold crossed before removing */
4776 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4777 
4778 	/* Calculate new number of threshold */
4779 	size = 0;
4780 	for (i = 0; i < thresholds->primary->size; i++) {
4781 		if (thresholds->primary->entries[i].eventfd != eventfd)
4782 			size++;
4783 	}
4784 
4785 	new = thresholds->spare;
4786 
4787 	/* Set thresholds array to NULL if we don't have thresholds */
4788 	if (!size) {
4789 		kfree(new);
4790 		new = NULL;
4791 		goto swap_buffers;
4792 	}
4793 
4794 	new->size = size;
4795 
4796 	/* Copy thresholds and find current threshold */
4797 	new->current_threshold = -1;
4798 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4799 		if (thresholds->primary->entries[i].eventfd == eventfd)
4800 			continue;
4801 
4802 		new->entries[j] = thresholds->primary->entries[i];
4803 		if (new->entries[j].threshold <= usage) {
4804 			/*
4805 			 * new->current_threshold will not be used
4806 			 * until rcu_assign_pointer(), so it's safe to increment
4807 			 * it here.
4808 			 */
4809 			++new->current_threshold;
4810 		}
4811 		j++;
4812 	}
4813 
4814 swap_buffers:
4815 	/* Swap primary and spare array */
4816 	thresholds->spare = thresholds->primary;
4817 	/* If all events are unregistered, free the spare array */
4818 	if (!new) {
4819 		kfree(thresholds->spare);
4820 		thresholds->spare = NULL;
4821 	}
4822 
4823 	rcu_assign_pointer(thresholds->primary, new);
4824 
4825 	/* To be sure that nobody uses thresholds */
4826 	synchronize_rcu();
4827 unlock:
4828 	mutex_unlock(&memcg->thresholds_lock);
4829 }
4830 
4831 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4832 	struct eventfd_ctx *eventfd)
4833 {
4834 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4835 }
4836 
4837 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4838 	struct eventfd_ctx *eventfd)
4839 {
4840 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4841 }
4842 
4843 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4844 	struct eventfd_ctx *eventfd, const char *args)
4845 {
4846 	struct mem_cgroup_eventfd_list *event;
4847 
4848 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4849 	if (!event)
4850 		return -ENOMEM;
4851 
4852 	spin_lock(&memcg_oom_lock);
4853 
4854 	event->eventfd = eventfd;
4855 	list_add(&event->list, &memcg->oom_notify);
4856 
4857 	/* already in OOM ? */
4858 	if (atomic_read(&memcg->under_oom))
4859 		eventfd_signal(eventfd, 1);
4860 	spin_unlock(&memcg_oom_lock);
4861 
4862 	return 0;
4863 }
4864 
4865 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4866 	struct eventfd_ctx *eventfd)
4867 {
4868 	struct mem_cgroup_eventfd_list *ev, *tmp;
4869 
4870 	spin_lock(&memcg_oom_lock);
4871 
4872 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4873 		if (ev->eventfd == eventfd) {
4874 			list_del(&ev->list);
4875 			kfree(ev);
4876 		}
4877 	}
4878 
4879 	spin_unlock(&memcg_oom_lock);
4880 }
4881 
4882 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4883 {
4884 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4885 
4886 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4887 	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4888 	return 0;
4889 }
4890 
4891 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4892 	struct cftype *cft, u64 val)
4893 {
4894 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4895 
4896 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4897 	if (!css->parent || !((val == 0) || (val == 1)))
4898 		return -EINVAL;
4899 
4900 	memcg->oom_kill_disable = val;
4901 	if (!val)
4902 		memcg_oom_recover(memcg);
4903 
4904 	return 0;
4905 }
4906 
4907 #ifdef CONFIG_MEMCG_KMEM
4908 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4909 {
4910 	int ret;
4911 
4912 	memcg->kmemcg_id = -1;
4913 	ret = memcg_propagate_kmem(memcg);
4914 	if (ret)
4915 		return ret;
4916 
4917 	return mem_cgroup_sockets_init(memcg, ss);
4918 }
4919 
4920 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4921 {
4922 	mem_cgroup_sockets_destroy(memcg);
4923 }
4924 
4925 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4926 {
4927 	if (!memcg_kmem_is_active(memcg))
4928 		return;
4929 
4930 	/*
4931 	 * kmem charges can outlive the cgroup. In the case of slab
4932 	 * pages, for instance, a page contain objects from various
4933 	 * processes. As we prevent from taking a reference for every
4934 	 * such allocation we have to be careful when doing uncharge
4935 	 * (see memcg_uncharge_kmem) and here during offlining.
4936 	 *
4937 	 * The idea is that that only the _last_ uncharge which sees
4938 	 * the dead memcg will drop the last reference. An additional
4939 	 * reference is taken here before the group is marked dead
4940 	 * which is then paired with css_put during uncharge resp. here.
4941 	 *
4942 	 * Although this might sound strange as this path is called from
4943 	 * css_offline() when the referencemight have dropped down to 0 and
4944 	 * shouldn't be incremented anymore (css_tryget_online() would
4945 	 * fail) we do not have other options because of the kmem
4946 	 * allocations lifetime.
4947 	 */
4948 	css_get(&memcg->css);
4949 
4950 	memcg_kmem_mark_dead(memcg);
4951 
4952 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
4953 		return;
4954 
4955 	if (memcg_kmem_test_and_clear_dead(memcg))
4956 		css_put(&memcg->css);
4957 }
4958 #else
4959 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4960 {
4961 	return 0;
4962 }
4963 
4964 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4965 {
4966 }
4967 
4968 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4969 {
4970 }
4971 #endif
4972 
4973 /*
4974  * DO NOT USE IN NEW FILES.
4975  *
4976  * "cgroup.event_control" implementation.
4977  *
4978  * This is way over-engineered.  It tries to support fully configurable
4979  * events for each user.  Such level of flexibility is completely
4980  * unnecessary especially in the light of the planned unified hierarchy.
4981  *
4982  * Please deprecate this and replace with something simpler if at all
4983  * possible.
4984  */
4985 
4986 /*
4987  * Unregister event and free resources.
4988  *
4989  * Gets called from workqueue.
4990  */
4991 static void memcg_event_remove(struct work_struct *work)
4992 {
4993 	struct mem_cgroup_event *event =
4994 		container_of(work, struct mem_cgroup_event, remove);
4995 	struct mem_cgroup *memcg = event->memcg;
4996 
4997 	remove_wait_queue(event->wqh, &event->wait);
4998 
4999 	event->unregister_event(memcg, event->eventfd);
5000 
5001 	/* Notify userspace the event is going away. */
5002 	eventfd_signal(event->eventfd, 1);
5003 
5004 	eventfd_ctx_put(event->eventfd);
5005 	kfree(event);
5006 	css_put(&memcg->css);
5007 }
5008 
5009 /*
5010  * Gets called on POLLHUP on eventfd when user closes it.
5011  *
5012  * Called with wqh->lock held and interrupts disabled.
5013  */
5014 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5015 			    int sync, void *key)
5016 {
5017 	struct mem_cgroup_event *event =
5018 		container_of(wait, struct mem_cgroup_event, wait);
5019 	struct mem_cgroup *memcg = event->memcg;
5020 	unsigned long flags = (unsigned long)key;
5021 
5022 	if (flags & POLLHUP) {
5023 		/*
5024 		 * If the event has been detached at cgroup removal, we
5025 		 * can simply return knowing the other side will cleanup
5026 		 * for us.
5027 		 *
5028 		 * We can't race against event freeing since the other
5029 		 * side will require wqh->lock via remove_wait_queue(),
5030 		 * which we hold.
5031 		 */
5032 		spin_lock(&memcg->event_list_lock);
5033 		if (!list_empty(&event->list)) {
5034 			list_del_init(&event->list);
5035 			/*
5036 			 * We are in atomic context, but cgroup_event_remove()
5037 			 * may sleep, so we have to call it in workqueue.
5038 			 */
5039 			schedule_work(&event->remove);
5040 		}
5041 		spin_unlock(&memcg->event_list_lock);
5042 	}
5043 
5044 	return 0;
5045 }
5046 
5047 static void memcg_event_ptable_queue_proc(struct file *file,
5048 		wait_queue_head_t *wqh, poll_table *pt)
5049 {
5050 	struct mem_cgroup_event *event =
5051 		container_of(pt, struct mem_cgroup_event, pt);
5052 
5053 	event->wqh = wqh;
5054 	add_wait_queue(wqh, &event->wait);
5055 }
5056 
5057 /*
5058  * DO NOT USE IN NEW FILES.
5059  *
5060  * Parse input and register new cgroup event handler.
5061  *
5062  * Input must be in format '<event_fd> <control_fd> <args>'.
5063  * Interpretation of args is defined by control file implementation.
5064  */
5065 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5066 					 char *buf, size_t nbytes, loff_t off)
5067 {
5068 	struct cgroup_subsys_state *css = of_css(of);
5069 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5070 	struct mem_cgroup_event *event;
5071 	struct cgroup_subsys_state *cfile_css;
5072 	unsigned int efd, cfd;
5073 	struct fd efile;
5074 	struct fd cfile;
5075 	const char *name;
5076 	char *endp;
5077 	int ret;
5078 
5079 	buf = strstrip(buf);
5080 
5081 	efd = simple_strtoul(buf, &endp, 10);
5082 	if (*endp != ' ')
5083 		return -EINVAL;
5084 	buf = endp + 1;
5085 
5086 	cfd = simple_strtoul(buf, &endp, 10);
5087 	if ((*endp != ' ') && (*endp != '\0'))
5088 		return -EINVAL;
5089 	buf = endp + 1;
5090 
5091 	event = kzalloc(sizeof(*event), GFP_KERNEL);
5092 	if (!event)
5093 		return -ENOMEM;
5094 
5095 	event->memcg = memcg;
5096 	INIT_LIST_HEAD(&event->list);
5097 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5098 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5099 	INIT_WORK(&event->remove, memcg_event_remove);
5100 
5101 	efile = fdget(efd);
5102 	if (!efile.file) {
5103 		ret = -EBADF;
5104 		goto out_kfree;
5105 	}
5106 
5107 	event->eventfd = eventfd_ctx_fileget(efile.file);
5108 	if (IS_ERR(event->eventfd)) {
5109 		ret = PTR_ERR(event->eventfd);
5110 		goto out_put_efile;
5111 	}
5112 
5113 	cfile = fdget(cfd);
5114 	if (!cfile.file) {
5115 		ret = -EBADF;
5116 		goto out_put_eventfd;
5117 	}
5118 
5119 	/* the process need read permission on control file */
5120 	/* AV: shouldn't we check that it's been opened for read instead? */
5121 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
5122 	if (ret < 0)
5123 		goto out_put_cfile;
5124 
5125 	/*
5126 	 * Determine the event callbacks and set them in @event.  This used
5127 	 * to be done via struct cftype but cgroup core no longer knows
5128 	 * about these events.  The following is crude but the whole thing
5129 	 * is for compatibility anyway.
5130 	 *
5131 	 * DO NOT ADD NEW FILES.
5132 	 */
5133 	name = cfile.file->f_dentry->d_name.name;
5134 
5135 	if (!strcmp(name, "memory.usage_in_bytes")) {
5136 		event->register_event = mem_cgroup_usage_register_event;
5137 		event->unregister_event = mem_cgroup_usage_unregister_event;
5138 	} else if (!strcmp(name, "memory.oom_control")) {
5139 		event->register_event = mem_cgroup_oom_register_event;
5140 		event->unregister_event = mem_cgroup_oom_unregister_event;
5141 	} else if (!strcmp(name, "memory.pressure_level")) {
5142 		event->register_event = vmpressure_register_event;
5143 		event->unregister_event = vmpressure_unregister_event;
5144 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5145 		event->register_event = memsw_cgroup_usage_register_event;
5146 		event->unregister_event = memsw_cgroup_usage_unregister_event;
5147 	} else {
5148 		ret = -EINVAL;
5149 		goto out_put_cfile;
5150 	}
5151 
5152 	/*
5153 	 * Verify @cfile should belong to @css.  Also, remaining events are
5154 	 * automatically removed on cgroup destruction but the removal is
5155 	 * asynchronous, so take an extra ref on @css.
5156 	 */
5157 	cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5158 					       &memory_cgrp_subsys);
5159 	ret = -EINVAL;
5160 	if (IS_ERR(cfile_css))
5161 		goto out_put_cfile;
5162 	if (cfile_css != css) {
5163 		css_put(cfile_css);
5164 		goto out_put_cfile;
5165 	}
5166 
5167 	ret = event->register_event(memcg, event->eventfd, buf);
5168 	if (ret)
5169 		goto out_put_css;
5170 
5171 	efile.file->f_op->poll(efile.file, &event->pt);
5172 
5173 	spin_lock(&memcg->event_list_lock);
5174 	list_add(&event->list, &memcg->event_list);
5175 	spin_unlock(&memcg->event_list_lock);
5176 
5177 	fdput(cfile);
5178 	fdput(efile);
5179 
5180 	return nbytes;
5181 
5182 out_put_css:
5183 	css_put(css);
5184 out_put_cfile:
5185 	fdput(cfile);
5186 out_put_eventfd:
5187 	eventfd_ctx_put(event->eventfd);
5188 out_put_efile:
5189 	fdput(efile);
5190 out_kfree:
5191 	kfree(event);
5192 
5193 	return ret;
5194 }
5195 
5196 static struct cftype mem_cgroup_files[] = {
5197 	{
5198 		.name = "usage_in_bytes",
5199 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5200 		.read_u64 = mem_cgroup_read_u64,
5201 	},
5202 	{
5203 		.name = "max_usage_in_bytes",
5204 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5205 		.write = mem_cgroup_reset,
5206 		.read_u64 = mem_cgroup_read_u64,
5207 	},
5208 	{
5209 		.name = "limit_in_bytes",
5210 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5211 		.write = mem_cgroup_write,
5212 		.read_u64 = mem_cgroup_read_u64,
5213 	},
5214 	{
5215 		.name = "soft_limit_in_bytes",
5216 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5217 		.write = mem_cgroup_write,
5218 		.read_u64 = mem_cgroup_read_u64,
5219 	},
5220 	{
5221 		.name = "failcnt",
5222 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5223 		.write = mem_cgroup_reset,
5224 		.read_u64 = mem_cgroup_read_u64,
5225 	},
5226 	{
5227 		.name = "stat",
5228 		.seq_show = memcg_stat_show,
5229 	},
5230 	{
5231 		.name = "force_empty",
5232 		.write = mem_cgroup_force_empty_write,
5233 	},
5234 	{
5235 		.name = "use_hierarchy",
5236 		.write_u64 = mem_cgroup_hierarchy_write,
5237 		.read_u64 = mem_cgroup_hierarchy_read,
5238 	},
5239 	{
5240 		.name = "cgroup.event_control",		/* XXX: for compat */
5241 		.write = memcg_write_event_control,
5242 		.flags = CFTYPE_NO_PREFIX,
5243 		.mode = S_IWUGO,
5244 	},
5245 	{
5246 		.name = "swappiness",
5247 		.read_u64 = mem_cgroup_swappiness_read,
5248 		.write_u64 = mem_cgroup_swappiness_write,
5249 	},
5250 	{
5251 		.name = "move_charge_at_immigrate",
5252 		.read_u64 = mem_cgroup_move_charge_read,
5253 		.write_u64 = mem_cgroup_move_charge_write,
5254 	},
5255 	{
5256 		.name = "oom_control",
5257 		.seq_show = mem_cgroup_oom_control_read,
5258 		.write_u64 = mem_cgroup_oom_control_write,
5259 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5260 	},
5261 	{
5262 		.name = "pressure_level",
5263 	},
5264 #ifdef CONFIG_NUMA
5265 	{
5266 		.name = "numa_stat",
5267 		.seq_show = memcg_numa_stat_show,
5268 	},
5269 #endif
5270 #ifdef CONFIG_MEMCG_KMEM
5271 	{
5272 		.name = "kmem.limit_in_bytes",
5273 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5274 		.write = mem_cgroup_write,
5275 		.read_u64 = mem_cgroup_read_u64,
5276 	},
5277 	{
5278 		.name = "kmem.usage_in_bytes",
5279 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5280 		.read_u64 = mem_cgroup_read_u64,
5281 	},
5282 	{
5283 		.name = "kmem.failcnt",
5284 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5285 		.write = mem_cgroup_reset,
5286 		.read_u64 = mem_cgroup_read_u64,
5287 	},
5288 	{
5289 		.name = "kmem.max_usage_in_bytes",
5290 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5291 		.write = mem_cgroup_reset,
5292 		.read_u64 = mem_cgroup_read_u64,
5293 	},
5294 #ifdef CONFIG_SLABINFO
5295 	{
5296 		.name = "kmem.slabinfo",
5297 		.seq_show = mem_cgroup_slabinfo_read,
5298 	},
5299 #endif
5300 #endif
5301 	{ },	/* terminate */
5302 };
5303 
5304 #ifdef CONFIG_MEMCG_SWAP
5305 static struct cftype memsw_cgroup_files[] = {
5306 	{
5307 		.name = "memsw.usage_in_bytes",
5308 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5309 		.read_u64 = mem_cgroup_read_u64,
5310 	},
5311 	{
5312 		.name = "memsw.max_usage_in_bytes",
5313 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5314 		.write = mem_cgroup_reset,
5315 		.read_u64 = mem_cgroup_read_u64,
5316 	},
5317 	{
5318 		.name = "memsw.limit_in_bytes",
5319 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5320 		.write = mem_cgroup_write,
5321 		.read_u64 = mem_cgroup_read_u64,
5322 	},
5323 	{
5324 		.name = "memsw.failcnt",
5325 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5326 		.write = mem_cgroup_reset,
5327 		.read_u64 = mem_cgroup_read_u64,
5328 	},
5329 	{ },	/* terminate */
5330 };
5331 #endif
5332 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5333 {
5334 	struct mem_cgroup_per_node *pn;
5335 	struct mem_cgroup_per_zone *mz;
5336 	int zone, tmp = node;
5337 	/*
5338 	 * This routine is called against possible nodes.
5339 	 * But it's BUG to call kmalloc() against offline node.
5340 	 *
5341 	 * TODO: this routine can waste much memory for nodes which will
5342 	 *       never be onlined. It's better to use memory hotplug callback
5343 	 *       function.
5344 	 */
5345 	if (!node_state(node, N_NORMAL_MEMORY))
5346 		tmp = -1;
5347 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5348 	if (!pn)
5349 		return 1;
5350 
5351 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5352 		mz = &pn->zoneinfo[zone];
5353 		lruvec_init(&mz->lruvec);
5354 		mz->usage_in_excess = 0;
5355 		mz->on_tree = false;
5356 		mz->memcg = memcg;
5357 	}
5358 	memcg->nodeinfo[node] = pn;
5359 	return 0;
5360 }
5361 
5362 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5363 {
5364 	kfree(memcg->nodeinfo[node]);
5365 }
5366 
5367 static struct mem_cgroup *mem_cgroup_alloc(void)
5368 {
5369 	struct mem_cgroup *memcg;
5370 	size_t size;
5371 
5372 	size = sizeof(struct mem_cgroup);
5373 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5374 
5375 	memcg = kzalloc(size, GFP_KERNEL);
5376 	if (!memcg)
5377 		return NULL;
5378 
5379 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5380 	if (!memcg->stat)
5381 		goto out_free;
5382 	spin_lock_init(&memcg->pcp_counter_lock);
5383 	return memcg;
5384 
5385 out_free:
5386 	kfree(memcg);
5387 	return NULL;
5388 }
5389 
5390 /*
5391  * At destroying mem_cgroup, references from swap_cgroup can remain.
5392  * (scanning all at force_empty is too costly...)
5393  *
5394  * Instead of clearing all references at force_empty, we remember
5395  * the number of reference from swap_cgroup and free mem_cgroup when
5396  * it goes down to 0.
5397  *
5398  * Removal of cgroup itself succeeds regardless of refs from swap.
5399  */
5400 
5401 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5402 {
5403 	int node;
5404 
5405 	mem_cgroup_remove_from_trees(memcg);
5406 
5407 	for_each_node(node)
5408 		free_mem_cgroup_per_zone_info(memcg, node);
5409 
5410 	free_percpu(memcg->stat);
5411 
5412 	/*
5413 	 * We need to make sure that (at least for now), the jump label
5414 	 * destruction code runs outside of the cgroup lock. This is because
5415 	 * get_online_cpus(), which is called from the static_branch update,
5416 	 * can't be called inside the cgroup_lock. cpusets are the ones
5417 	 * enforcing this dependency, so if they ever change, we might as well.
5418 	 *
5419 	 * schedule_work() will guarantee this happens. Be careful if you need
5420 	 * to move this code around, and make sure it is outside
5421 	 * the cgroup_lock.
5422 	 */
5423 	disarm_static_keys(memcg);
5424 	kfree(memcg);
5425 }
5426 
5427 /*
5428  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5429  */
5430 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5431 {
5432 	if (!memcg->res.parent)
5433 		return NULL;
5434 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5435 }
5436 EXPORT_SYMBOL(parent_mem_cgroup);
5437 
5438 static void __init mem_cgroup_soft_limit_tree_init(void)
5439 {
5440 	struct mem_cgroup_tree_per_node *rtpn;
5441 	struct mem_cgroup_tree_per_zone *rtpz;
5442 	int tmp, node, zone;
5443 
5444 	for_each_node(node) {
5445 		tmp = node;
5446 		if (!node_state(node, N_NORMAL_MEMORY))
5447 			tmp = -1;
5448 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5449 		BUG_ON(!rtpn);
5450 
5451 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5452 
5453 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5454 			rtpz = &rtpn->rb_tree_per_zone[zone];
5455 			rtpz->rb_root = RB_ROOT;
5456 			spin_lock_init(&rtpz->lock);
5457 		}
5458 	}
5459 }
5460 
5461 static struct cgroup_subsys_state * __ref
5462 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5463 {
5464 	struct mem_cgroup *memcg;
5465 	long error = -ENOMEM;
5466 	int node;
5467 
5468 	memcg = mem_cgroup_alloc();
5469 	if (!memcg)
5470 		return ERR_PTR(error);
5471 
5472 	for_each_node(node)
5473 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5474 			goto free_out;
5475 
5476 	/* root ? */
5477 	if (parent_css == NULL) {
5478 		root_mem_cgroup = memcg;
5479 		res_counter_init(&memcg->res, NULL);
5480 		res_counter_init(&memcg->memsw, NULL);
5481 		res_counter_init(&memcg->kmem, NULL);
5482 	}
5483 
5484 	memcg->last_scanned_node = MAX_NUMNODES;
5485 	INIT_LIST_HEAD(&memcg->oom_notify);
5486 	memcg->move_charge_at_immigrate = 0;
5487 	mutex_init(&memcg->thresholds_lock);
5488 	spin_lock_init(&memcg->move_lock);
5489 	vmpressure_init(&memcg->vmpressure);
5490 	INIT_LIST_HEAD(&memcg->event_list);
5491 	spin_lock_init(&memcg->event_list_lock);
5492 
5493 	return &memcg->css;
5494 
5495 free_out:
5496 	__mem_cgroup_free(memcg);
5497 	return ERR_PTR(error);
5498 }
5499 
5500 static int
5501 mem_cgroup_css_online(struct cgroup_subsys_state *css)
5502 {
5503 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5504 	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
5505 
5506 	if (css->id > MEM_CGROUP_ID_MAX)
5507 		return -ENOSPC;
5508 
5509 	if (!parent)
5510 		return 0;
5511 
5512 	mutex_lock(&memcg_create_mutex);
5513 
5514 	memcg->use_hierarchy = parent->use_hierarchy;
5515 	memcg->oom_kill_disable = parent->oom_kill_disable;
5516 	memcg->swappiness = mem_cgroup_swappiness(parent);
5517 
5518 	if (parent->use_hierarchy) {
5519 		res_counter_init(&memcg->res, &parent->res);
5520 		res_counter_init(&memcg->memsw, &parent->memsw);
5521 		res_counter_init(&memcg->kmem, &parent->kmem);
5522 
5523 		/*
5524 		 * No need to take a reference to the parent because cgroup
5525 		 * core guarantees its existence.
5526 		 */
5527 	} else {
5528 		res_counter_init(&memcg->res, &root_mem_cgroup->res);
5529 		res_counter_init(&memcg->memsw, &root_mem_cgroup->memsw);
5530 		res_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
5531 		/*
5532 		 * Deeper hierachy with use_hierarchy == false doesn't make
5533 		 * much sense so let cgroup subsystem know about this
5534 		 * unfortunate state in our controller.
5535 		 */
5536 		if (parent != root_mem_cgroup)
5537 			memory_cgrp_subsys.broken_hierarchy = true;
5538 	}
5539 	mutex_unlock(&memcg_create_mutex);
5540 
5541 	return memcg_init_kmem(memcg, &memory_cgrp_subsys);
5542 }
5543 
5544 /*
5545  * Announce all parents that a group from their hierarchy is gone.
5546  */
5547 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
5548 {
5549 	struct mem_cgroup *parent = memcg;
5550 
5551 	while ((parent = parent_mem_cgroup(parent)))
5552 		mem_cgroup_iter_invalidate(parent);
5553 
5554 	/*
5555 	 * if the root memcg is not hierarchical we have to check it
5556 	 * explicitely.
5557 	 */
5558 	if (!root_mem_cgroup->use_hierarchy)
5559 		mem_cgroup_iter_invalidate(root_mem_cgroup);
5560 }
5561 
5562 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5563 {
5564 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5565 	struct mem_cgroup_event *event, *tmp;
5566 	struct cgroup_subsys_state *iter;
5567 
5568 	/*
5569 	 * Unregister events and notify userspace.
5570 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5571 	 * directory to avoid race between userspace and kernelspace.
5572 	 */
5573 	spin_lock(&memcg->event_list_lock);
5574 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5575 		list_del_init(&event->list);
5576 		schedule_work(&event->remove);
5577 	}
5578 	spin_unlock(&memcg->event_list_lock);
5579 
5580 	kmem_cgroup_css_offline(memcg);
5581 
5582 	mem_cgroup_invalidate_reclaim_iterators(memcg);
5583 
5584 	/*
5585 	 * This requires that offlining is serialized.  Right now that is
5586 	 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
5587 	 */
5588 	css_for_each_descendant_post(iter, css)
5589 		mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
5590 
5591 	memcg_unregister_all_caches(memcg);
5592 	vmpressure_cleanup(&memcg->vmpressure);
5593 }
5594 
5595 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5596 {
5597 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5598 	/*
5599 	 * XXX: css_offline() would be where we should reparent all
5600 	 * memory to prepare the cgroup for destruction.  However,
5601 	 * memcg does not do css_tryget_online() and res_counter charging
5602 	 * under the same RCU lock region, which means that charging
5603 	 * could race with offlining.  Offlining only happens to
5604 	 * cgroups with no tasks in them but charges can show up
5605 	 * without any tasks from the swapin path when the target
5606 	 * memcg is looked up from the swapout record and not from the
5607 	 * current task as it usually is.  A race like this can leak
5608 	 * charges and put pages with stale cgroup pointers into
5609 	 * circulation:
5610 	 *
5611 	 * #0                        #1
5612 	 *                           lookup_swap_cgroup_id()
5613 	 *                           rcu_read_lock()
5614 	 *                           mem_cgroup_lookup()
5615 	 *                           css_tryget_online()
5616 	 *                           rcu_read_unlock()
5617 	 * disable css_tryget_online()
5618 	 * call_rcu()
5619 	 *   offline_css()
5620 	 *     reparent_charges()
5621 	 *                           res_counter_charge()
5622 	 *                           css_put()
5623 	 *                             css_free()
5624 	 *                           pc->mem_cgroup = dead memcg
5625 	 *                           add page to lru
5626 	 *
5627 	 * The bulk of the charges are still moved in offline_css() to
5628 	 * avoid pinning a lot of pages in case a long-term reference
5629 	 * like a swapout record is deferring the css_free() to long
5630 	 * after offlining.  But this makes sure we catch any charges
5631 	 * made after offlining:
5632 	 */
5633 	mem_cgroup_reparent_charges(memcg);
5634 
5635 	memcg_destroy_kmem(memcg);
5636 	__mem_cgroup_free(memcg);
5637 }
5638 
5639 /**
5640  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5641  * @css: the target css
5642  *
5643  * Reset the states of the mem_cgroup associated with @css.  This is
5644  * invoked when the userland requests disabling on the default hierarchy
5645  * but the memcg is pinned through dependency.  The memcg should stop
5646  * applying policies and should revert to the vanilla state as it may be
5647  * made visible again.
5648  *
5649  * The current implementation only resets the essential configurations.
5650  * This needs to be expanded to cover all the visible parts.
5651  */
5652 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5653 {
5654 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5655 
5656 	mem_cgroup_resize_limit(memcg, ULLONG_MAX);
5657 	mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
5658 	memcg_update_kmem_limit(memcg, ULLONG_MAX);
5659 	res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
5660 }
5661 
5662 #ifdef CONFIG_MMU
5663 /* Handlers for move charge at task migration. */
5664 static int mem_cgroup_do_precharge(unsigned long count)
5665 {
5666 	int ret;
5667 
5668 	/* Try a single bulk charge without reclaim first */
5669 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5670 	if (!ret) {
5671 		mc.precharge += count;
5672 		return ret;
5673 	}
5674 	if (ret == -EINTR) {
5675 		cancel_charge(root_mem_cgroup, count);
5676 		return ret;
5677 	}
5678 
5679 	/* Try charges one by one with reclaim */
5680 	while (count--) {
5681 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5682 		/*
5683 		 * In case of failure, any residual charges against
5684 		 * mc.to will be dropped by mem_cgroup_clear_mc()
5685 		 * later on.  However, cancel any charges that are
5686 		 * bypassed to root right away or they'll be lost.
5687 		 */
5688 		if (ret == -EINTR)
5689 			cancel_charge(root_mem_cgroup, 1);
5690 		if (ret)
5691 			return ret;
5692 		mc.precharge++;
5693 		cond_resched();
5694 	}
5695 	return 0;
5696 }
5697 
5698 /**
5699  * get_mctgt_type - get target type of moving charge
5700  * @vma: the vma the pte to be checked belongs
5701  * @addr: the address corresponding to the pte to be checked
5702  * @ptent: the pte to be checked
5703  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5704  *
5705  * Returns
5706  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5707  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5708  *     move charge. if @target is not NULL, the page is stored in target->page
5709  *     with extra refcnt got(Callers should handle it).
5710  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5711  *     target for charge migration. if @target is not NULL, the entry is stored
5712  *     in target->ent.
5713  *
5714  * Called with pte lock held.
5715  */
5716 union mc_target {
5717 	struct page	*page;
5718 	swp_entry_t	ent;
5719 };
5720 
5721 enum mc_target_type {
5722 	MC_TARGET_NONE = 0,
5723 	MC_TARGET_PAGE,
5724 	MC_TARGET_SWAP,
5725 };
5726 
5727 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5728 						unsigned long addr, pte_t ptent)
5729 {
5730 	struct page *page = vm_normal_page(vma, addr, ptent);
5731 
5732 	if (!page || !page_mapped(page))
5733 		return NULL;
5734 	if (PageAnon(page)) {
5735 		/* we don't move shared anon */
5736 		if (!move_anon())
5737 			return NULL;
5738 	} else if (!move_file())
5739 		/* we ignore mapcount for file pages */
5740 		return NULL;
5741 	if (!get_page_unless_zero(page))
5742 		return NULL;
5743 
5744 	return page;
5745 }
5746 
5747 #ifdef CONFIG_SWAP
5748 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5749 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5750 {
5751 	struct page *page = NULL;
5752 	swp_entry_t ent = pte_to_swp_entry(ptent);
5753 
5754 	if (!move_anon() || non_swap_entry(ent))
5755 		return NULL;
5756 	/*
5757 	 * Because lookup_swap_cache() updates some statistics counter,
5758 	 * we call find_get_page() with swapper_space directly.
5759 	 */
5760 	page = find_get_page(swap_address_space(ent), ent.val);
5761 	if (do_swap_account)
5762 		entry->val = ent.val;
5763 
5764 	return page;
5765 }
5766 #else
5767 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5768 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5769 {
5770 	return NULL;
5771 }
5772 #endif
5773 
5774 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5775 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5776 {
5777 	struct page *page = NULL;
5778 	struct address_space *mapping;
5779 	pgoff_t pgoff;
5780 
5781 	if (!vma->vm_file) /* anonymous vma */
5782 		return NULL;
5783 	if (!move_file())
5784 		return NULL;
5785 
5786 	mapping = vma->vm_file->f_mapping;
5787 	if (pte_none(ptent))
5788 		pgoff = linear_page_index(vma, addr);
5789 	else /* pte_file(ptent) is true */
5790 		pgoff = pte_to_pgoff(ptent);
5791 
5792 	/* page is moved even if it's not RSS of this task(page-faulted). */
5793 #ifdef CONFIG_SWAP
5794 	/* shmem/tmpfs may report page out on swap: account for that too. */
5795 	if (shmem_mapping(mapping)) {
5796 		page = find_get_entry(mapping, pgoff);
5797 		if (radix_tree_exceptional_entry(page)) {
5798 			swp_entry_t swp = radix_to_swp_entry(page);
5799 			if (do_swap_account)
5800 				*entry = swp;
5801 			page = find_get_page(swap_address_space(swp), swp.val);
5802 		}
5803 	} else
5804 		page = find_get_page(mapping, pgoff);
5805 #else
5806 	page = find_get_page(mapping, pgoff);
5807 #endif
5808 	return page;
5809 }
5810 
5811 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5812 		unsigned long addr, pte_t ptent, union mc_target *target)
5813 {
5814 	struct page *page = NULL;
5815 	struct page_cgroup *pc;
5816 	enum mc_target_type ret = MC_TARGET_NONE;
5817 	swp_entry_t ent = { .val = 0 };
5818 
5819 	if (pte_present(ptent))
5820 		page = mc_handle_present_pte(vma, addr, ptent);
5821 	else if (is_swap_pte(ptent))
5822 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5823 	else if (pte_none(ptent) || pte_file(ptent))
5824 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5825 
5826 	if (!page && !ent.val)
5827 		return ret;
5828 	if (page) {
5829 		pc = lookup_page_cgroup(page);
5830 		/*
5831 		 * Do only loose check w/o serialization.
5832 		 * mem_cgroup_move_account() checks the pc is valid or
5833 		 * not under LRU exclusion.
5834 		 */
5835 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5836 			ret = MC_TARGET_PAGE;
5837 			if (target)
5838 				target->page = page;
5839 		}
5840 		if (!ret || !target)
5841 			put_page(page);
5842 	}
5843 	/* There is a swap entry and a page doesn't exist or isn't charged */
5844 	if (ent.val && !ret &&
5845 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5846 		ret = MC_TARGET_SWAP;
5847 		if (target)
5848 			target->ent = ent;
5849 	}
5850 	return ret;
5851 }
5852 
5853 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5854 /*
5855  * We don't consider swapping or file mapped pages because THP does not
5856  * support them for now.
5857  * Caller should make sure that pmd_trans_huge(pmd) is true.
5858  */
5859 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5860 		unsigned long addr, pmd_t pmd, union mc_target *target)
5861 {
5862 	struct page *page = NULL;
5863 	struct page_cgroup *pc;
5864 	enum mc_target_type ret = MC_TARGET_NONE;
5865 
5866 	page = pmd_page(pmd);
5867 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5868 	if (!move_anon())
5869 		return ret;
5870 	pc = lookup_page_cgroup(page);
5871 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5872 		ret = MC_TARGET_PAGE;
5873 		if (target) {
5874 			get_page(page);
5875 			target->page = page;
5876 		}
5877 	}
5878 	return ret;
5879 }
5880 #else
5881 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5882 		unsigned long addr, pmd_t pmd, union mc_target *target)
5883 {
5884 	return MC_TARGET_NONE;
5885 }
5886 #endif
5887 
5888 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5889 					unsigned long addr, unsigned long end,
5890 					struct mm_walk *walk)
5891 {
5892 	struct vm_area_struct *vma = walk->private;
5893 	pte_t *pte;
5894 	spinlock_t *ptl;
5895 
5896 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5897 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5898 			mc.precharge += HPAGE_PMD_NR;
5899 		spin_unlock(ptl);
5900 		return 0;
5901 	}
5902 
5903 	if (pmd_trans_unstable(pmd))
5904 		return 0;
5905 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5906 	for (; addr != end; pte++, addr += PAGE_SIZE)
5907 		if (get_mctgt_type(vma, addr, *pte, NULL))
5908 			mc.precharge++;	/* increment precharge temporarily */
5909 	pte_unmap_unlock(pte - 1, ptl);
5910 	cond_resched();
5911 
5912 	return 0;
5913 }
5914 
5915 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5916 {
5917 	unsigned long precharge;
5918 	struct vm_area_struct *vma;
5919 
5920 	down_read(&mm->mmap_sem);
5921 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5922 		struct mm_walk mem_cgroup_count_precharge_walk = {
5923 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5924 			.mm = mm,
5925 			.private = vma,
5926 		};
5927 		if (is_vm_hugetlb_page(vma))
5928 			continue;
5929 		walk_page_range(vma->vm_start, vma->vm_end,
5930 					&mem_cgroup_count_precharge_walk);
5931 	}
5932 	up_read(&mm->mmap_sem);
5933 
5934 	precharge = mc.precharge;
5935 	mc.precharge = 0;
5936 
5937 	return precharge;
5938 }
5939 
5940 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5941 {
5942 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5943 
5944 	VM_BUG_ON(mc.moving_task);
5945 	mc.moving_task = current;
5946 	return mem_cgroup_do_precharge(precharge);
5947 }
5948 
5949 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5950 static void __mem_cgroup_clear_mc(void)
5951 {
5952 	struct mem_cgroup *from = mc.from;
5953 	struct mem_cgroup *to = mc.to;
5954 	int i;
5955 
5956 	/* we must uncharge all the leftover precharges from mc.to */
5957 	if (mc.precharge) {
5958 		cancel_charge(mc.to, mc.precharge);
5959 		mc.precharge = 0;
5960 	}
5961 	/*
5962 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5963 	 * we must uncharge here.
5964 	 */
5965 	if (mc.moved_charge) {
5966 		cancel_charge(mc.from, mc.moved_charge);
5967 		mc.moved_charge = 0;
5968 	}
5969 	/* we must fixup refcnts and charges */
5970 	if (mc.moved_swap) {
5971 		/* uncharge swap account from the old cgroup */
5972 		res_counter_uncharge(&mc.from->memsw,
5973 				     PAGE_SIZE * mc.moved_swap);
5974 
5975 		for (i = 0; i < mc.moved_swap; i++)
5976 			css_put(&mc.from->css);
5977 
5978 		/*
5979 		 * we charged both to->res and to->memsw, so we should
5980 		 * uncharge to->res.
5981 		 */
5982 		res_counter_uncharge(&mc.to->res,
5983 				     PAGE_SIZE * mc.moved_swap);
5984 		/* we've already done css_get(mc.to) */
5985 		mc.moved_swap = 0;
5986 	}
5987 	memcg_oom_recover(from);
5988 	memcg_oom_recover(to);
5989 	wake_up_all(&mc.waitq);
5990 }
5991 
5992 static void mem_cgroup_clear_mc(void)
5993 {
5994 	struct mem_cgroup *from = mc.from;
5995 
5996 	/*
5997 	 * we must clear moving_task before waking up waiters at the end of
5998 	 * task migration.
5999 	 */
6000 	mc.moving_task = NULL;
6001 	__mem_cgroup_clear_mc();
6002 	spin_lock(&mc.lock);
6003 	mc.from = NULL;
6004 	mc.to = NULL;
6005 	spin_unlock(&mc.lock);
6006 	mem_cgroup_end_move(from);
6007 }
6008 
6009 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6010 				 struct cgroup_taskset *tset)
6011 {
6012 	struct task_struct *p = cgroup_taskset_first(tset);
6013 	int ret = 0;
6014 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6015 	unsigned long move_charge_at_immigrate;
6016 
6017 	/*
6018 	 * We are now commited to this value whatever it is. Changes in this
6019 	 * tunable will only affect upcoming migrations, not the current one.
6020 	 * So we need to save it, and keep it going.
6021 	 */
6022 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
6023 	if (move_charge_at_immigrate) {
6024 		struct mm_struct *mm;
6025 		struct mem_cgroup *from = mem_cgroup_from_task(p);
6026 
6027 		VM_BUG_ON(from == memcg);
6028 
6029 		mm = get_task_mm(p);
6030 		if (!mm)
6031 			return 0;
6032 		/* We move charges only when we move a owner of the mm */
6033 		if (mm->owner == p) {
6034 			VM_BUG_ON(mc.from);
6035 			VM_BUG_ON(mc.to);
6036 			VM_BUG_ON(mc.precharge);
6037 			VM_BUG_ON(mc.moved_charge);
6038 			VM_BUG_ON(mc.moved_swap);
6039 			mem_cgroup_start_move(from);
6040 			spin_lock(&mc.lock);
6041 			mc.from = from;
6042 			mc.to = memcg;
6043 			mc.immigrate_flags = move_charge_at_immigrate;
6044 			spin_unlock(&mc.lock);
6045 			/* We set mc.moving_task later */
6046 
6047 			ret = mem_cgroup_precharge_mc(mm);
6048 			if (ret)
6049 				mem_cgroup_clear_mc();
6050 		}
6051 		mmput(mm);
6052 	}
6053 	return ret;
6054 }
6055 
6056 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6057 				     struct cgroup_taskset *tset)
6058 {
6059 	mem_cgroup_clear_mc();
6060 }
6061 
6062 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6063 				unsigned long addr, unsigned long end,
6064 				struct mm_walk *walk)
6065 {
6066 	int ret = 0;
6067 	struct vm_area_struct *vma = walk->private;
6068 	pte_t *pte;
6069 	spinlock_t *ptl;
6070 	enum mc_target_type target_type;
6071 	union mc_target target;
6072 	struct page *page;
6073 	struct page_cgroup *pc;
6074 
6075 	/*
6076 	 * We don't take compound_lock() here but no race with splitting thp
6077 	 * happens because:
6078 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6079 	 *    under splitting, which means there's no concurrent thp split,
6080 	 *  - if another thread runs into split_huge_page() just after we
6081 	 *    entered this if-block, the thread must wait for page table lock
6082 	 *    to be unlocked in __split_huge_page_splitting(), where the main
6083 	 *    part of thp split is not executed yet.
6084 	 */
6085 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6086 		if (mc.precharge < HPAGE_PMD_NR) {
6087 			spin_unlock(ptl);
6088 			return 0;
6089 		}
6090 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6091 		if (target_type == MC_TARGET_PAGE) {
6092 			page = target.page;
6093 			if (!isolate_lru_page(page)) {
6094 				pc = lookup_page_cgroup(page);
6095 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6096 							pc, mc.from, mc.to)) {
6097 					mc.precharge -= HPAGE_PMD_NR;
6098 					mc.moved_charge += HPAGE_PMD_NR;
6099 				}
6100 				putback_lru_page(page);
6101 			}
6102 			put_page(page);
6103 		}
6104 		spin_unlock(ptl);
6105 		return 0;
6106 	}
6107 
6108 	if (pmd_trans_unstable(pmd))
6109 		return 0;
6110 retry:
6111 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6112 	for (; addr != end; addr += PAGE_SIZE) {
6113 		pte_t ptent = *(pte++);
6114 		swp_entry_t ent;
6115 
6116 		if (!mc.precharge)
6117 			break;
6118 
6119 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6120 		case MC_TARGET_PAGE:
6121 			page = target.page;
6122 			if (isolate_lru_page(page))
6123 				goto put;
6124 			pc = lookup_page_cgroup(page);
6125 			if (!mem_cgroup_move_account(page, 1, pc,
6126 						     mc.from, mc.to)) {
6127 				mc.precharge--;
6128 				/* we uncharge from mc.from later. */
6129 				mc.moved_charge++;
6130 			}
6131 			putback_lru_page(page);
6132 put:			/* get_mctgt_type() gets the page */
6133 			put_page(page);
6134 			break;
6135 		case MC_TARGET_SWAP:
6136 			ent = target.ent;
6137 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6138 				mc.precharge--;
6139 				/* we fixup refcnts and charges later. */
6140 				mc.moved_swap++;
6141 			}
6142 			break;
6143 		default:
6144 			break;
6145 		}
6146 	}
6147 	pte_unmap_unlock(pte - 1, ptl);
6148 	cond_resched();
6149 
6150 	if (addr != end) {
6151 		/*
6152 		 * We have consumed all precharges we got in can_attach().
6153 		 * We try charge one by one, but don't do any additional
6154 		 * charges to mc.to if we have failed in charge once in attach()
6155 		 * phase.
6156 		 */
6157 		ret = mem_cgroup_do_precharge(1);
6158 		if (!ret)
6159 			goto retry;
6160 	}
6161 
6162 	return ret;
6163 }
6164 
6165 static void mem_cgroup_move_charge(struct mm_struct *mm)
6166 {
6167 	struct vm_area_struct *vma;
6168 
6169 	lru_add_drain_all();
6170 retry:
6171 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6172 		/*
6173 		 * Someone who are holding the mmap_sem might be waiting in
6174 		 * waitq. So we cancel all extra charges, wake up all waiters,
6175 		 * and retry. Because we cancel precharges, we might not be able
6176 		 * to move enough charges, but moving charge is a best-effort
6177 		 * feature anyway, so it wouldn't be a big problem.
6178 		 */
6179 		__mem_cgroup_clear_mc();
6180 		cond_resched();
6181 		goto retry;
6182 	}
6183 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6184 		int ret;
6185 		struct mm_walk mem_cgroup_move_charge_walk = {
6186 			.pmd_entry = mem_cgroup_move_charge_pte_range,
6187 			.mm = mm,
6188 			.private = vma,
6189 		};
6190 		if (is_vm_hugetlb_page(vma))
6191 			continue;
6192 		ret = walk_page_range(vma->vm_start, vma->vm_end,
6193 						&mem_cgroup_move_charge_walk);
6194 		if (ret)
6195 			/*
6196 			 * means we have consumed all precharges and failed in
6197 			 * doing additional charge. Just abandon here.
6198 			 */
6199 			break;
6200 	}
6201 	up_read(&mm->mmap_sem);
6202 }
6203 
6204 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6205 				 struct cgroup_taskset *tset)
6206 {
6207 	struct task_struct *p = cgroup_taskset_first(tset);
6208 	struct mm_struct *mm = get_task_mm(p);
6209 
6210 	if (mm) {
6211 		if (mc.to)
6212 			mem_cgroup_move_charge(mm);
6213 		mmput(mm);
6214 	}
6215 	if (mc.to)
6216 		mem_cgroup_clear_mc();
6217 }
6218 #else	/* !CONFIG_MMU */
6219 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6220 				 struct cgroup_taskset *tset)
6221 {
6222 	return 0;
6223 }
6224 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6225 				     struct cgroup_taskset *tset)
6226 {
6227 }
6228 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6229 				 struct cgroup_taskset *tset)
6230 {
6231 }
6232 #endif
6233 
6234 /*
6235  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6236  * to verify whether we're attached to the default hierarchy on each mount
6237  * attempt.
6238  */
6239 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6240 {
6241 	/*
6242 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6243 	 * guarantees that @root doesn't have any children, so turning it
6244 	 * on for the root memcg is enough.
6245 	 */
6246 	if (cgroup_on_dfl(root_css->cgroup))
6247 		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6248 }
6249 
6250 struct cgroup_subsys memory_cgrp_subsys = {
6251 	.css_alloc = mem_cgroup_css_alloc,
6252 	.css_online = mem_cgroup_css_online,
6253 	.css_offline = mem_cgroup_css_offline,
6254 	.css_free = mem_cgroup_css_free,
6255 	.css_reset = mem_cgroup_css_reset,
6256 	.can_attach = mem_cgroup_can_attach,
6257 	.cancel_attach = mem_cgroup_cancel_attach,
6258 	.attach = mem_cgroup_move_task,
6259 	.bind = mem_cgroup_bind,
6260 	.legacy_cftypes = mem_cgroup_files,
6261 	.early_init = 0,
6262 };
6263 
6264 #ifdef CONFIG_MEMCG_SWAP
6265 static int __init enable_swap_account(char *s)
6266 {
6267 	if (!strcmp(s, "1"))
6268 		really_do_swap_account = 1;
6269 	else if (!strcmp(s, "0"))
6270 		really_do_swap_account = 0;
6271 	return 1;
6272 }
6273 __setup("swapaccount=", enable_swap_account);
6274 
6275 static void __init memsw_file_init(void)
6276 {
6277 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6278 					  memsw_cgroup_files));
6279 }
6280 
6281 static void __init enable_swap_cgroup(void)
6282 {
6283 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6284 		do_swap_account = 1;
6285 		memsw_file_init();
6286 	}
6287 }
6288 
6289 #else
6290 static void __init enable_swap_cgroup(void)
6291 {
6292 }
6293 #endif
6294 
6295 #ifdef CONFIG_MEMCG_SWAP
6296 /**
6297  * mem_cgroup_swapout - transfer a memsw charge to swap
6298  * @page: page whose memsw charge to transfer
6299  * @entry: swap entry to move the charge to
6300  *
6301  * Transfer the memsw charge of @page to @entry.
6302  */
6303 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6304 {
6305 	struct page_cgroup *pc;
6306 	unsigned short oldid;
6307 
6308 	VM_BUG_ON_PAGE(PageLRU(page), page);
6309 	VM_BUG_ON_PAGE(page_count(page), page);
6310 
6311 	if (!do_swap_account)
6312 		return;
6313 
6314 	pc = lookup_page_cgroup(page);
6315 
6316 	/* Readahead page, never charged */
6317 	if (!PageCgroupUsed(pc))
6318 		return;
6319 
6320 	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);
6321 
6322 	oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
6323 	VM_BUG_ON_PAGE(oldid, page);
6324 
6325 	pc->flags &= ~PCG_MEMSW;
6326 	css_get(&pc->mem_cgroup->css);
6327 	mem_cgroup_swap_statistics(pc->mem_cgroup, true);
6328 }
6329 
6330 /**
6331  * mem_cgroup_uncharge_swap - uncharge a swap entry
6332  * @entry: swap entry to uncharge
6333  *
6334  * Drop the memsw charge associated with @entry.
6335  */
6336 void mem_cgroup_uncharge_swap(swp_entry_t entry)
6337 {
6338 	struct mem_cgroup *memcg;
6339 	unsigned short id;
6340 
6341 	if (!do_swap_account)
6342 		return;
6343 
6344 	id = swap_cgroup_record(entry, 0);
6345 	rcu_read_lock();
6346 	memcg = mem_cgroup_lookup(id);
6347 	if (memcg) {
6348 		res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
6349 		mem_cgroup_swap_statistics(memcg, false);
6350 		css_put(&memcg->css);
6351 	}
6352 	rcu_read_unlock();
6353 }
6354 #endif
6355 
6356 /**
6357  * mem_cgroup_try_charge - try charging a page
6358  * @page: page to charge
6359  * @mm: mm context of the victim
6360  * @gfp_mask: reclaim mode
6361  * @memcgp: charged memcg return
6362  *
6363  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6364  * pages according to @gfp_mask if necessary.
6365  *
6366  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6367  * Otherwise, an error code is returned.
6368  *
6369  * After page->mapping has been set up, the caller must finalize the
6370  * charge with mem_cgroup_commit_charge().  Or abort the transaction
6371  * with mem_cgroup_cancel_charge() in case page instantiation fails.
6372  */
6373 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6374 			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
6375 {
6376 	struct mem_cgroup *memcg = NULL;
6377 	unsigned int nr_pages = 1;
6378 	int ret = 0;
6379 
6380 	if (mem_cgroup_disabled())
6381 		goto out;
6382 
6383 	if (PageSwapCache(page)) {
6384 		struct page_cgroup *pc = lookup_page_cgroup(page);
6385 		/*
6386 		 * Every swap fault against a single page tries to charge the
6387 		 * page, bail as early as possible.  shmem_unuse() encounters
6388 		 * already charged pages, too.  The USED bit is protected by
6389 		 * the page lock, which serializes swap cache removal, which
6390 		 * in turn serializes uncharging.
6391 		 */
6392 		if (PageCgroupUsed(pc))
6393 			goto out;
6394 	}
6395 
6396 	if (PageTransHuge(page)) {
6397 		nr_pages <<= compound_order(page);
6398 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6399 	}
6400 
6401 	if (do_swap_account && PageSwapCache(page))
6402 		memcg = try_get_mem_cgroup_from_page(page);
6403 	if (!memcg)
6404 		memcg = get_mem_cgroup_from_mm(mm);
6405 
6406 	ret = try_charge(memcg, gfp_mask, nr_pages);
6407 
6408 	css_put(&memcg->css);
6409 
6410 	if (ret == -EINTR) {
6411 		memcg = root_mem_cgroup;
6412 		ret = 0;
6413 	}
6414 out:
6415 	*memcgp = memcg;
6416 	return ret;
6417 }
6418 
6419 /**
6420  * mem_cgroup_commit_charge - commit a page charge
6421  * @page: page to charge
6422  * @memcg: memcg to charge the page to
6423  * @lrucare: page might be on LRU already
6424  *
6425  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6426  * after page->mapping has been set up.  This must happen atomically
6427  * as part of the page instantiation, i.e. under the page table lock
6428  * for anonymous pages, under the page lock for page and swap cache.
6429  *
6430  * In addition, the page must not be on the LRU during the commit, to
6431  * prevent racing with task migration.  If it might be, use @lrucare.
6432  *
6433  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6434  */
6435 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6436 			      bool lrucare)
6437 {
6438 	unsigned int nr_pages = 1;
6439 
6440 	VM_BUG_ON_PAGE(!page->mapping, page);
6441 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6442 
6443 	if (mem_cgroup_disabled())
6444 		return;
6445 	/*
6446 	 * Swap faults will attempt to charge the same page multiple
6447 	 * times.  But reuse_swap_page() might have removed the page
6448 	 * from swapcache already, so we can't check PageSwapCache().
6449 	 */
6450 	if (!memcg)
6451 		return;
6452 
6453 	commit_charge(page, memcg, lrucare);
6454 
6455 	if (PageTransHuge(page)) {
6456 		nr_pages <<= compound_order(page);
6457 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6458 	}
6459 
6460 	local_irq_disable();
6461 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6462 	memcg_check_events(memcg, page);
6463 	local_irq_enable();
6464 
6465 	if (do_swap_account && PageSwapCache(page)) {
6466 		swp_entry_t entry = { .val = page_private(page) };
6467 		/*
6468 		 * The swap entry might not get freed for a long time,
6469 		 * let's not wait for it.  The page already received a
6470 		 * memory+swap charge, drop the swap entry duplicate.
6471 		 */
6472 		mem_cgroup_uncharge_swap(entry);
6473 	}
6474 }
6475 
6476 /**
6477  * mem_cgroup_cancel_charge - cancel a page charge
6478  * @page: page to charge
6479  * @memcg: memcg to charge the page to
6480  *
6481  * Cancel a charge transaction started by mem_cgroup_try_charge().
6482  */
6483 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
6484 {
6485 	unsigned int nr_pages = 1;
6486 
6487 	if (mem_cgroup_disabled())
6488 		return;
6489 	/*
6490 	 * Swap faults will attempt to charge the same page multiple
6491 	 * times.  But reuse_swap_page() might have removed the page
6492 	 * from swapcache already, so we can't check PageSwapCache().
6493 	 */
6494 	if (!memcg)
6495 		return;
6496 
6497 	if (PageTransHuge(page)) {
6498 		nr_pages <<= compound_order(page);
6499 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6500 	}
6501 
6502 	cancel_charge(memcg, nr_pages);
6503 }
6504 
6505 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
6506 			   unsigned long nr_mem, unsigned long nr_memsw,
6507 			   unsigned long nr_anon, unsigned long nr_file,
6508 			   unsigned long nr_huge, struct page *dummy_page)
6509 {
6510 	unsigned long flags;
6511 
6512 	if (nr_mem)
6513 		res_counter_uncharge(&memcg->res, nr_mem * PAGE_SIZE);
6514 	if (nr_memsw)
6515 		res_counter_uncharge(&memcg->memsw, nr_memsw * PAGE_SIZE);
6516 
6517 	memcg_oom_recover(memcg);
6518 
6519 	local_irq_save(flags);
6520 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
6521 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
6522 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
6523 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
6524 	__this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
6525 	memcg_check_events(memcg, dummy_page);
6526 	local_irq_restore(flags);
6527 }
6528 
6529 static void uncharge_list(struct list_head *page_list)
6530 {
6531 	struct mem_cgroup *memcg = NULL;
6532 	unsigned long nr_memsw = 0;
6533 	unsigned long nr_anon = 0;
6534 	unsigned long nr_file = 0;
6535 	unsigned long nr_huge = 0;
6536 	unsigned long pgpgout = 0;
6537 	unsigned long nr_mem = 0;
6538 	struct list_head *next;
6539 	struct page *page;
6540 
6541 	next = page_list->next;
6542 	do {
6543 		unsigned int nr_pages = 1;
6544 		struct page_cgroup *pc;
6545 
6546 		page = list_entry(next, struct page, lru);
6547 		next = page->lru.next;
6548 
6549 		VM_BUG_ON_PAGE(PageLRU(page), page);
6550 		VM_BUG_ON_PAGE(page_count(page), page);
6551 
6552 		pc = lookup_page_cgroup(page);
6553 		if (!PageCgroupUsed(pc))
6554 			continue;
6555 
6556 		/*
6557 		 * Nobody should be changing or seriously looking at
6558 		 * pc->mem_cgroup and pc->flags at this point, we have
6559 		 * fully exclusive access to the page.
6560 		 */
6561 
6562 		if (memcg != pc->mem_cgroup) {
6563 			if (memcg) {
6564 				uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6565 					       nr_anon, nr_file, nr_huge, page);
6566 				pgpgout = nr_mem = nr_memsw = 0;
6567 				nr_anon = nr_file = nr_huge = 0;
6568 			}
6569 			memcg = pc->mem_cgroup;
6570 		}
6571 
6572 		if (PageTransHuge(page)) {
6573 			nr_pages <<= compound_order(page);
6574 			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6575 			nr_huge += nr_pages;
6576 		}
6577 
6578 		if (PageAnon(page))
6579 			nr_anon += nr_pages;
6580 		else
6581 			nr_file += nr_pages;
6582 
6583 		if (pc->flags & PCG_MEM)
6584 			nr_mem += nr_pages;
6585 		if (pc->flags & PCG_MEMSW)
6586 			nr_memsw += nr_pages;
6587 		pc->flags = 0;
6588 
6589 		pgpgout++;
6590 	} while (next != page_list);
6591 
6592 	if (memcg)
6593 		uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6594 			       nr_anon, nr_file, nr_huge, page);
6595 }
6596 
6597 /**
6598  * mem_cgroup_uncharge - uncharge a page
6599  * @page: page to uncharge
6600  *
6601  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6602  * mem_cgroup_commit_charge().
6603  */
6604 void mem_cgroup_uncharge(struct page *page)
6605 {
6606 	struct page_cgroup *pc;
6607 
6608 	if (mem_cgroup_disabled())
6609 		return;
6610 
6611 	/* Don't touch page->lru of any random page, pre-check: */
6612 	pc = lookup_page_cgroup(page);
6613 	if (!PageCgroupUsed(pc))
6614 		return;
6615 
6616 	INIT_LIST_HEAD(&page->lru);
6617 	uncharge_list(&page->lru);
6618 }
6619 
6620 /**
6621  * mem_cgroup_uncharge_list - uncharge a list of page
6622  * @page_list: list of pages to uncharge
6623  *
6624  * Uncharge a list of pages previously charged with
6625  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6626  */
6627 void mem_cgroup_uncharge_list(struct list_head *page_list)
6628 {
6629 	if (mem_cgroup_disabled())
6630 		return;
6631 
6632 	if (!list_empty(page_list))
6633 		uncharge_list(page_list);
6634 }
6635 
6636 /**
6637  * mem_cgroup_migrate - migrate a charge to another page
6638  * @oldpage: currently charged page
6639  * @newpage: page to transfer the charge to
6640  * @lrucare: both pages might be on the LRU already
6641  *
6642  * Migrate the charge from @oldpage to @newpage.
6643  *
6644  * Both pages must be locked, @newpage->mapping must be set up.
6645  */
6646 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6647 			bool lrucare)
6648 {
6649 	struct page_cgroup *pc;
6650 	int isolated;
6651 
6652 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6653 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6654 	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6655 	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6656 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6657 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6658 		       newpage);
6659 
6660 	if (mem_cgroup_disabled())
6661 		return;
6662 
6663 	/* Page cache replacement: new page already charged? */
6664 	pc = lookup_page_cgroup(newpage);
6665 	if (PageCgroupUsed(pc))
6666 		return;
6667 
6668 	/* Re-entrant migration: old page already uncharged? */
6669 	pc = lookup_page_cgroup(oldpage);
6670 	if (!PageCgroupUsed(pc))
6671 		return;
6672 
6673 	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
6674 	VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);
6675 
6676 	if (lrucare)
6677 		lock_page_lru(oldpage, &isolated);
6678 
6679 	pc->flags = 0;
6680 
6681 	if (lrucare)
6682 		unlock_page_lru(oldpage, isolated);
6683 
6684 	commit_charge(newpage, pc->mem_cgroup, lrucare);
6685 }
6686 
6687 /*
6688  * subsys_initcall() for memory controller.
6689  *
6690  * Some parts like hotcpu_notifier() have to be initialized from this context
6691  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6692  * everything that doesn't depend on a specific mem_cgroup structure should
6693  * be initialized from here.
6694  */
6695 static int __init mem_cgroup_init(void)
6696 {
6697 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6698 	enable_swap_cgroup();
6699 	mem_cgroup_soft_limit_tree_init();
6700 	memcg_stock_init();
6701 	return 0;
6702 }
6703 subsys_initcall(mem_cgroup_init);
6704