xref: /openbmc/linux/mm/memcontrol.c (revision 26ba4e57)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66 
67 #include <linux/uaccess.h>
68 
69 #include <trace/events/vmscan.h>
70 
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73 
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75 
76 #define MEM_CGROUP_RECLAIM_RETRIES	5
77 
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80 
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83 
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
87 #else
88 #define do_swap_account		0
89 #endif
90 
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 static const char *const mem_cgroup_lru_names[] = {
102 	"inactive_anon",
103 	"active_anon",
104 	"inactive_file",
105 	"active_file",
106 	"unevictable",
107 };
108 
109 #define THRESHOLDS_EVENTS_TARGET 128
110 #define SOFTLIMIT_EVENTS_TARGET 1024
111 #define NUMAINFO_EVENTS_TARGET	1024
112 
113 /*
114  * Cgroups above their limits are maintained in a RB-Tree, independent of
115  * their hierarchy representation
116  */
117 
118 struct mem_cgroup_tree_per_node {
119 	struct rb_root rb_root;
120 	struct rb_node *rb_rightmost;
121 	spinlock_t lock;
122 };
123 
124 struct mem_cgroup_tree {
125 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
126 };
127 
128 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
129 
130 /* for OOM */
131 struct mem_cgroup_eventfd_list {
132 	struct list_head list;
133 	struct eventfd_ctx *eventfd;
134 };
135 
136 /*
137  * cgroup_event represents events which userspace want to receive.
138  */
139 struct mem_cgroup_event {
140 	/*
141 	 * memcg which the event belongs to.
142 	 */
143 	struct mem_cgroup *memcg;
144 	/*
145 	 * eventfd to signal userspace about the event.
146 	 */
147 	struct eventfd_ctx *eventfd;
148 	/*
149 	 * Each of these stored in a list by the cgroup.
150 	 */
151 	struct list_head list;
152 	/*
153 	 * register_event() callback will be used to add new userspace
154 	 * waiter for changes related to this event.  Use eventfd_signal()
155 	 * on eventfd to send notification to userspace.
156 	 */
157 	int (*register_event)(struct mem_cgroup *memcg,
158 			      struct eventfd_ctx *eventfd, const char *args);
159 	/*
160 	 * unregister_event() callback will be called when userspace closes
161 	 * the eventfd or on cgroup removing.  This callback must be set,
162 	 * if you want provide notification functionality.
163 	 */
164 	void (*unregister_event)(struct mem_cgroup *memcg,
165 				 struct eventfd_ctx *eventfd);
166 	/*
167 	 * All fields below needed to unregister event when
168 	 * userspace closes eventfd.
169 	 */
170 	poll_table pt;
171 	wait_queue_head_t *wqh;
172 	wait_queue_entry_t wait;
173 	struct work_struct remove;
174 };
175 
176 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
177 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
178 
179 /* Stuffs for move charges at task migration. */
180 /*
181  * Types of charges to be moved.
182  */
183 #define MOVE_ANON	0x1U
184 #define MOVE_FILE	0x2U
185 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
186 
187 /* "mc" and its members are protected by cgroup_mutex */
188 static struct move_charge_struct {
189 	spinlock_t	  lock; /* for from, to */
190 	struct mm_struct  *mm;
191 	struct mem_cgroup *from;
192 	struct mem_cgroup *to;
193 	unsigned long flags;
194 	unsigned long precharge;
195 	unsigned long moved_charge;
196 	unsigned long moved_swap;
197 	struct task_struct *moving_task;	/* a task moving charges */
198 	wait_queue_head_t waitq;		/* a waitq for other context */
199 } mc = {
200 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
201 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
202 };
203 
204 /*
205  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
206  * limit reclaim to prevent infinite loops, if they ever occur.
207  */
208 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
209 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
210 
211 enum charge_type {
212 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
213 	MEM_CGROUP_CHARGE_TYPE_ANON,
214 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
215 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
216 	NR_CHARGE_TYPE,
217 };
218 
219 /* for encoding cft->private value on file */
220 enum res_type {
221 	_MEM,
222 	_MEMSWAP,
223 	_OOM_TYPE,
224 	_KMEM,
225 	_TCP,
226 };
227 
228 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
229 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
230 #define MEMFILE_ATTR(val)	((val) & 0xffff)
231 /* Used for OOM nofiier */
232 #define OOM_CONTROL		(0)
233 
234 /*
235  * Iteration constructs for visiting all cgroups (under a tree).  If
236  * loops are exited prematurely (break), mem_cgroup_iter_break() must
237  * be used for reference counting.
238  */
239 #define for_each_mem_cgroup_tree(iter, root)		\
240 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
241 	     iter != NULL;				\
242 	     iter = mem_cgroup_iter(root, iter, NULL))
243 
244 #define for_each_mem_cgroup(iter)			\
245 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
246 	     iter != NULL;				\
247 	     iter = mem_cgroup_iter(NULL, iter, NULL))
248 
249 static inline bool should_force_charge(void)
250 {
251 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
252 		(current->flags & PF_EXITING);
253 }
254 
255 /* Some nice accessors for the vmpressure. */
256 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
257 {
258 	if (!memcg)
259 		memcg = root_mem_cgroup;
260 	return &memcg->vmpressure;
261 }
262 
263 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
264 {
265 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
266 }
267 
268 #ifdef CONFIG_MEMCG_KMEM
269 /*
270  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271  * The main reason for not using cgroup id for this:
272  *  this works better in sparse environments, where we have a lot of memcgs,
273  *  but only a few kmem-limited. Or also, if we have, for instance, 200
274  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
275  *  200 entry array for that.
276  *
277  * The current size of the caches array is stored in memcg_nr_cache_ids. It
278  * will double each time we have to increase it.
279  */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282 
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285 
286 void memcg_get_cache_ids(void)
287 {
288 	down_read(&memcg_cache_ids_sem);
289 }
290 
291 void memcg_put_cache_ids(void)
292 {
293 	up_read(&memcg_cache_ids_sem);
294 }
295 
296 /*
297  * MIN_SIZE is different than 1, because we would like to avoid going through
298  * the alloc/free process all the time. In a small machine, 4 kmem-limited
299  * cgroups is a reasonable guess. In the future, it could be a parameter or
300  * tunable, but that is strictly not necessary.
301  *
302  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303  * this constant directly from cgroup, but it is understandable that this is
304  * better kept as an internal representation in cgroup.c. In any case, the
305  * cgrp_id space is not getting any smaller, and we don't have to necessarily
306  * increase ours as well if it increases.
307  */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310 
311 /*
312  * A lot of the calls to the cache allocation functions are expected to be
313  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314  * conditional to this static branch, we'll have to allow modules that does
315  * kmem_cache_alloc and the such to see this symbol as well
316  */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319 
320 struct workqueue_struct *memcg_kmem_cache_wq;
321 #endif
322 
323 static int memcg_shrinker_map_size;
324 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
325 
326 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
327 {
328 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
329 }
330 
331 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
332 					 int size, int old_size)
333 {
334 	struct memcg_shrinker_map *new, *old;
335 	int nid;
336 
337 	lockdep_assert_held(&memcg_shrinker_map_mutex);
338 
339 	for_each_node(nid) {
340 		old = rcu_dereference_protected(
341 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
342 		/* Not yet online memcg */
343 		if (!old)
344 			return 0;
345 
346 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
347 		if (!new)
348 			return -ENOMEM;
349 
350 		/* Set all old bits, clear all new bits */
351 		memset(new->map, (int)0xff, old_size);
352 		memset((void *)new->map + old_size, 0, size - old_size);
353 
354 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
355 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
356 	}
357 
358 	return 0;
359 }
360 
361 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
362 {
363 	struct mem_cgroup_per_node *pn;
364 	struct memcg_shrinker_map *map;
365 	int nid;
366 
367 	if (mem_cgroup_is_root(memcg))
368 		return;
369 
370 	for_each_node(nid) {
371 		pn = mem_cgroup_nodeinfo(memcg, nid);
372 		map = rcu_dereference_protected(pn->shrinker_map, true);
373 		if (map)
374 			kvfree(map);
375 		rcu_assign_pointer(pn->shrinker_map, NULL);
376 	}
377 }
378 
379 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
380 {
381 	struct memcg_shrinker_map *map;
382 	int nid, size, ret = 0;
383 
384 	if (mem_cgroup_is_root(memcg))
385 		return 0;
386 
387 	mutex_lock(&memcg_shrinker_map_mutex);
388 	size = memcg_shrinker_map_size;
389 	for_each_node(nid) {
390 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
391 		if (!map) {
392 			memcg_free_shrinker_maps(memcg);
393 			ret = -ENOMEM;
394 			break;
395 		}
396 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
397 	}
398 	mutex_unlock(&memcg_shrinker_map_mutex);
399 
400 	return ret;
401 }
402 
403 int memcg_expand_shrinker_maps(int new_id)
404 {
405 	int size, old_size, ret = 0;
406 	struct mem_cgroup *memcg;
407 
408 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
409 	old_size = memcg_shrinker_map_size;
410 	if (size <= old_size)
411 		return 0;
412 
413 	mutex_lock(&memcg_shrinker_map_mutex);
414 	if (!root_mem_cgroup)
415 		goto unlock;
416 
417 	for_each_mem_cgroup(memcg) {
418 		if (mem_cgroup_is_root(memcg))
419 			continue;
420 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
421 		if (ret)
422 			goto unlock;
423 	}
424 unlock:
425 	if (!ret)
426 		memcg_shrinker_map_size = size;
427 	mutex_unlock(&memcg_shrinker_map_mutex);
428 	return ret;
429 }
430 
431 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
432 {
433 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
434 		struct memcg_shrinker_map *map;
435 
436 		rcu_read_lock();
437 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
438 		/* Pairs with smp mb in shrink_slab() */
439 		smp_mb__before_atomic();
440 		set_bit(shrinker_id, map->map);
441 		rcu_read_unlock();
442 	}
443 }
444 
445 /**
446  * mem_cgroup_css_from_page - css of the memcg associated with a page
447  * @page: page of interest
448  *
449  * If memcg is bound to the default hierarchy, css of the memcg associated
450  * with @page is returned.  The returned css remains associated with @page
451  * until it is released.
452  *
453  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
454  * is returned.
455  */
456 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
457 {
458 	struct mem_cgroup *memcg;
459 
460 	memcg = page->mem_cgroup;
461 
462 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
463 		memcg = root_mem_cgroup;
464 
465 	return &memcg->css;
466 }
467 
468 /**
469  * page_cgroup_ino - return inode number of the memcg a page is charged to
470  * @page: the page
471  *
472  * Look up the closest online ancestor of the memory cgroup @page is charged to
473  * and return its inode number or 0 if @page is not charged to any cgroup. It
474  * is safe to call this function without holding a reference to @page.
475  *
476  * Note, this function is inherently racy, because there is nothing to prevent
477  * the cgroup inode from getting torn down and potentially reallocated a moment
478  * after page_cgroup_ino() returns, so it only should be used by callers that
479  * do not care (such as procfs interfaces).
480  */
481 ino_t page_cgroup_ino(struct page *page)
482 {
483 	struct mem_cgroup *memcg;
484 	unsigned long ino = 0;
485 
486 	rcu_read_lock();
487 	if (PageHead(page) && PageSlab(page))
488 		memcg = memcg_from_slab_page(page);
489 	else
490 		memcg = READ_ONCE(page->mem_cgroup);
491 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
492 		memcg = parent_mem_cgroup(memcg);
493 	if (memcg)
494 		ino = cgroup_ino(memcg->css.cgroup);
495 	rcu_read_unlock();
496 	return ino;
497 }
498 
499 static struct mem_cgroup_per_node *
500 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
501 {
502 	int nid = page_to_nid(page);
503 
504 	return memcg->nodeinfo[nid];
505 }
506 
507 static struct mem_cgroup_tree_per_node *
508 soft_limit_tree_node(int nid)
509 {
510 	return soft_limit_tree.rb_tree_per_node[nid];
511 }
512 
513 static struct mem_cgroup_tree_per_node *
514 soft_limit_tree_from_page(struct page *page)
515 {
516 	int nid = page_to_nid(page);
517 
518 	return soft_limit_tree.rb_tree_per_node[nid];
519 }
520 
521 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
522 					 struct mem_cgroup_tree_per_node *mctz,
523 					 unsigned long new_usage_in_excess)
524 {
525 	struct rb_node **p = &mctz->rb_root.rb_node;
526 	struct rb_node *parent = NULL;
527 	struct mem_cgroup_per_node *mz_node;
528 	bool rightmost = true;
529 
530 	if (mz->on_tree)
531 		return;
532 
533 	mz->usage_in_excess = new_usage_in_excess;
534 	if (!mz->usage_in_excess)
535 		return;
536 	while (*p) {
537 		parent = *p;
538 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
539 					tree_node);
540 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
541 			p = &(*p)->rb_left;
542 			rightmost = false;
543 		}
544 
545 		/*
546 		 * We can't avoid mem cgroups that are over their soft
547 		 * limit by the same amount
548 		 */
549 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
550 			p = &(*p)->rb_right;
551 	}
552 
553 	if (rightmost)
554 		mctz->rb_rightmost = &mz->tree_node;
555 
556 	rb_link_node(&mz->tree_node, parent, p);
557 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 	mz->on_tree = true;
559 }
560 
561 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
562 					 struct mem_cgroup_tree_per_node *mctz)
563 {
564 	if (!mz->on_tree)
565 		return;
566 
567 	if (&mz->tree_node == mctz->rb_rightmost)
568 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
569 
570 	rb_erase(&mz->tree_node, &mctz->rb_root);
571 	mz->on_tree = false;
572 }
573 
574 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
575 				       struct mem_cgroup_tree_per_node *mctz)
576 {
577 	unsigned long flags;
578 
579 	spin_lock_irqsave(&mctz->lock, flags);
580 	__mem_cgroup_remove_exceeded(mz, mctz);
581 	spin_unlock_irqrestore(&mctz->lock, flags);
582 }
583 
584 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
585 {
586 	unsigned long nr_pages = page_counter_read(&memcg->memory);
587 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
588 	unsigned long excess = 0;
589 
590 	if (nr_pages > soft_limit)
591 		excess = nr_pages - soft_limit;
592 
593 	return excess;
594 }
595 
596 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
597 {
598 	unsigned long excess;
599 	struct mem_cgroup_per_node *mz;
600 	struct mem_cgroup_tree_per_node *mctz;
601 
602 	mctz = soft_limit_tree_from_page(page);
603 	if (!mctz)
604 		return;
605 	/*
606 	 * Necessary to update all ancestors when hierarchy is used.
607 	 * because their event counter is not touched.
608 	 */
609 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
610 		mz = mem_cgroup_page_nodeinfo(memcg, page);
611 		excess = soft_limit_excess(memcg);
612 		/*
613 		 * We have to update the tree if mz is on RB-tree or
614 		 * mem is over its softlimit.
615 		 */
616 		if (excess || mz->on_tree) {
617 			unsigned long flags;
618 
619 			spin_lock_irqsave(&mctz->lock, flags);
620 			/* if on-tree, remove it */
621 			if (mz->on_tree)
622 				__mem_cgroup_remove_exceeded(mz, mctz);
623 			/*
624 			 * Insert again. mz->usage_in_excess will be updated.
625 			 * If excess is 0, no tree ops.
626 			 */
627 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
628 			spin_unlock_irqrestore(&mctz->lock, flags);
629 		}
630 	}
631 }
632 
633 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
634 {
635 	struct mem_cgroup_tree_per_node *mctz;
636 	struct mem_cgroup_per_node *mz;
637 	int nid;
638 
639 	for_each_node(nid) {
640 		mz = mem_cgroup_nodeinfo(memcg, nid);
641 		mctz = soft_limit_tree_node(nid);
642 		if (mctz)
643 			mem_cgroup_remove_exceeded(mz, mctz);
644 	}
645 }
646 
647 static struct mem_cgroup_per_node *
648 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
649 {
650 	struct mem_cgroup_per_node *mz;
651 
652 retry:
653 	mz = NULL;
654 	if (!mctz->rb_rightmost)
655 		goto done;		/* Nothing to reclaim from */
656 
657 	mz = rb_entry(mctz->rb_rightmost,
658 		      struct mem_cgroup_per_node, tree_node);
659 	/*
660 	 * Remove the node now but someone else can add it back,
661 	 * we will to add it back at the end of reclaim to its correct
662 	 * position in the tree.
663 	 */
664 	__mem_cgroup_remove_exceeded(mz, mctz);
665 	if (!soft_limit_excess(mz->memcg) ||
666 	    !css_tryget_online(&mz->memcg->css))
667 		goto retry;
668 done:
669 	return mz;
670 }
671 
672 static struct mem_cgroup_per_node *
673 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
674 {
675 	struct mem_cgroup_per_node *mz;
676 
677 	spin_lock_irq(&mctz->lock);
678 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
679 	spin_unlock_irq(&mctz->lock);
680 	return mz;
681 }
682 
683 /**
684  * __mod_memcg_state - update cgroup memory statistics
685  * @memcg: the memory cgroup
686  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
687  * @val: delta to add to the counter, can be negative
688  */
689 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
690 {
691 	long x;
692 
693 	if (mem_cgroup_disabled())
694 		return;
695 
696 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
697 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
698 		struct mem_cgroup *mi;
699 
700 		/*
701 		 * Batch local counters to keep them in sync with
702 		 * the hierarchical ones.
703 		 */
704 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
705 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
706 			atomic_long_add(x, &mi->vmstats[idx]);
707 		x = 0;
708 	}
709 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
710 }
711 
712 static struct mem_cgroup_per_node *
713 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
714 {
715 	struct mem_cgroup *parent;
716 
717 	parent = parent_mem_cgroup(pn->memcg);
718 	if (!parent)
719 		return NULL;
720 	return mem_cgroup_nodeinfo(parent, nid);
721 }
722 
723 /**
724  * __mod_lruvec_state - update lruvec memory statistics
725  * @lruvec: the lruvec
726  * @idx: the stat item
727  * @val: delta to add to the counter, can be negative
728  *
729  * The lruvec is the intersection of the NUMA node and a cgroup. This
730  * function updates the all three counters that are affected by a
731  * change of state at this level: per-node, per-cgroup, per-lruvec.
732  */
733 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
734 			int val)
735 {
736 	pg_data_t *pgdat = lruvec_pgdat(lruvec);
737 	struct mem_cgroup_per_node *pn;
738 	struct mem_cgroup *memcg;
739 	long x;
740 
741 	/* Update node */
742 	__mod_node_page_state(pgdat, idx, val);
743 
744 	if (mem_cgroup_disabled())
745 		return;
746 
747 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
748 	memcg = pn->memcg;
749 
750 	/* Update memcg */
751 	__mod_memcg_state(memcg, idx, val);
752 
753 	/* Update lruvec */
754 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
755 
756 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
757 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
758 		struct mem_cgroup_per_node *pi;
759 
760 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
761 			atomic_long_add(x, &pi->lruvec_stat[idx]);
762 		x = 0;
763 	}
764 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
765 }
766 
767 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
768 {
769 	struct page *page = virt_to_head_page(p);
770 	pg_data_t *pgdat = page_pgdat(page);
771 	struct mem_cgroup *memcg;
772 	struct lruvec *lruvec;
773 
774 	rcu_read_lock();
775 	memcg = memcg_from_slab_page(page);
776 
777 	/* Untracked pages have no memcg, no lruvec. Update only the node */
778 	if (!memcg || memcg == root_mem_cgroup) {
779 		__mod_node_page_state(pgdat, idx, val);
780 	} else {
781 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
782 		__mod_lruvec_state(lruvec, idx, val);
783 	}
784 	rcu_read_unlock();
785 }
786 
787 /**
788  * __count_memcg_events - account VM events in a cgroup
789  * @memcg: the memory cgroup
790  * @idx: the event item
791  * @count: the number of events that occured
792  */
793 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
794 			  unsigned long count)
795 {
796 	unsigned long x;
797 
798 	if (mem_cgroup_disabled())
799 		return;
800 
801 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
802 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
803 		struct mem_cgroup *mi;
804 
805 		/*
806 		 * Batch local counters to keep them in sync with
807 		 * the hierarchical ones.
808 		 */
809 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
810 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
811 			atomic_long_add(x, &mi->vmevents[idx]);
812 		x = 0;
813 	}
814 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
815 }
816 
817 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
818 {
819 	return atomic_long_read(&memcg->vmevents[event]);
820 }
821 
822 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
823 {
824 	long x = 0;
825 	int cpu;
826 
827 	for_each_possible_cpu(cpu)
828 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
829 	return x;
830 }
831 
832 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
833 					 struct page *page,
834 					 bool compound, int nr_pages)
835 {
836 	/*
837 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
838 	 * counted as CACHE even if it's on ANON LRU.
839 	 */
840 	if (PageAnon(page))
841 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
842 	else {
843 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
844 		if (PageSwapBacked(page))
845 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
846 	}
847 
848 	if (compound) {
849 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
850 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
851 	}
852 
853 	/* pagein of a big page is an event. So, ignore page size */
854 	if (nr_pages > 0)
855 		__count_memcg_events(memcg, PGPGIN, 1);
856 	else {
857 		__count_memcg_events(memcg, PGPGOUT, 1);
858 		nr_pages = -nr_pages; /* for event */
859 	}
860 
861 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
862 }
863 
864 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
865 				       enum mem_cgroup_events_target target)
866 {
867 	unsigned long val, next;
868 
869 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
870 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
871 	/* from time_after() in jiffies.h */
872 	if ((long)(next - val) < 0) {
873 		switch (target) {
874 		case MEM_CGROUP_TARGET_THRESH:
875 			next = val + THRESHOLDS_EVENTS_TARGET;
876 			break;
877 		case MEM_CGROUP_TARGET_SOFTLIMIT:
878 			next = val + SOFTLIMIT_EVENTS_TARGET;
879 			break;
880 		case MEM_CGROUP_TARGET_NUMAINFO:
881 			next = val + NUMAINFO_EVENTS_TARGET;
882 			break;
883 		default:
884 			break;
885 		}
886 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
887 		return true;
888 	}
889 	return false;
890 }
891 
892 /*
893  * Check events in order.
894  *
895  */
896 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
897 {
898 	/* threshold event is triggered in finer grain than soft limit */
899 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
900 						MEM_CGROUP_TARGET_THRESH))) {
901 		bool do_softlimit;
902 		bool do_numainfo __maybe_unused;
903 
904 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
905 						MEM_CGROUP_TARGET_SOFTLIMIT);
906 #if MAX_NUMNODES > 1
907 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
908 						MEM_CGROUP_TARGET_NUMAINFO);
909 #endif
910 		mem_cgroup_threshold(memcg);
911 		if (unlikely(do_softlimit))
912 			mem_cgroup_update_tree(memcg, page);
913 #if MAX_NUMNODES > 1
914 		if (unlikely(do_numainfo))
915 			atomic_inc(&memcg->numainfo_events);
916 #endif
917 	}
918 }
919 
920 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
921 {
922 	/*
923 	 * mm_update_next_owner() may clear mm->owner to NULL
924 	 * if it races with swapoff, page migration, etc.
925 	 * So this can be called with p == NULL.
926 	 */
927 	if (unlikely(!p))
928 		return NULL;
929 
930 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
931 }
932 EXPORT_SYMBOL(mem_cgroup_from_task);
933 
934 /**
935  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
936  * @mm: mm from which memcg should be extracted. It can be NULL.
937  *
938  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
939  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
940  * returned.
941  */
942 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
943 {
944 	struct mem_cgroup *memcg;
945 
946 	if (mem_cgroup_disabled())
947 		return NULL;
948 
949 	rcu_read_lock();
950 	do {
951 		/*
952 		 * Page cache insertions can happen withou an
953 		 * actual mm context, e.g. during disk probing
954 		 * on boot, loopback IO, acct() writes etc.
955 		 */
956 		if (unlikely(!mm))
957 			memcg = root_mem_cgroup;
958 		else {
959 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
960 			if (unlikely(!memcg))
961 				memcg = root_mem_cgroup;
962 		}
963 	} while (!css_tryget_online(&memcg->css));
964 	rcu_read_unlock();
965 	return memcg;
966 }
967 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
968 
969 /**
970  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
971  * @page: page from which memcg should be extracted.
972  *
973  * Obtain a reference on page->memcg and returns it if successful. Otherwise
974  * root_mem_cgroup is returned.
975  */
976 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
977 {
978 	struct mem_cgroup *memcg = page->mem_cgroup;
979 
980 	if (mem_cgroup_disabled())
981 		return NULL;
982 
983 	rcu_read_lock();
984 	if (!memcg || !css_tryget_online(&memcg->css))
985 		memcg = root_mem_cgroup;
986 	rcu_read_unlock();
987 	return memcg;
988 }
989 EXPORT_SYMBOL(get_mem_cgroup_from_page);
990 
991 /**
992  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
993  */
994 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
995 {
996 	if (unlikely(current->active_memcg)) {
997 		struct mem_cgroup *memcg = root_mem_cgroup;
998 
999 		rcu_read_lock();
1000 		if (css_tryget_online(&current->active_memcg->css))
1001 			memcg = current->active_memcg;
1002 		rcu_read_unlock();
1003 		return memcg;
1004 	}
1005 	return get_mem_cgroup_from_mm(current->mm);
1006 }
1007 
1008 /**
1009  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1010  * @root: hierarchy root
1011  * @prev: previously returned memcg, NULL on first invocation
1012  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1013  *
1014  * Returns references to children of the hierarchy below @root, or
1015  * @root itself, or %NULL after a full round-trip.
1016  *
1017  * Caller must pass the return value in @prev on subsequent
1018  * invocations for reference counting, or use mem_cgroup_iter_break()
1019  * to cancel a hierarchy walk before the round-trip is complete.
1020  *
1021  * Reclaimers can specify a node and a priority level in @reclaim to
1022  * divide up the memcgs in the hierarchy among all concurrent
1023  * reclaimers operating on the same node and priority.
1024  */
1025 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1026 				   struct mem_cgroup *prev,
1027 				   struct mem_cgroup_reclaim_cookie *reclaim)
1028 {
1029 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1030 	struct cgroup_subsys_state *css = NULL;
1031 	struct mem_cgroup *memcg = NULL;
1032 	struct mem_cgroup *pos = NULL;
1033 
1034 	if (mem_cgroup_disabled())
1035 		return NULL;
1036 
1037 	if (!root)
1038 		root = root_mem_cgroup;
1039 
1040 	if (prev && !reclaim)
1041 		pos = prev;
1042 
1043 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1044 		if (prev)
1045 			goto out;
1046 		return root;
1047 	}
1048 
1049 	rcu_read_lock();
1050 
1051 	if (reclaim) {
1052 		struct mem_cgroup_per_node *mz;
1053 
1054 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1055 		iter = &mz->iter[reclaim->priority];
1056 
1057 		if (prev && reclaim->generation != iter->generation)
1058 			goto out_unlock;
1059 
1060 		while (1) {
1061 			pos = READ_ONCE(iter->position);
1062 			if (!pos || css_tryget(&pos->css))
1063 				break;
1064 			/*
1065 			 * css reference reached zero, so iter->position will
1066 			 * be cleared by ->css_released. However, we should not
1067 			 * rely on this happening soon, because ->css_released
1068 			 * is called from a work queue, and by busy-waiting we
1069 			 * might block it. So we clear iter->position right
1070 			 * away.
1071 			 */
1072 			(void)cmpxchg(&iter->position, pos, NULL);
1073 		}
1074 	}
1075 
1076 	if (pos)
1077 		css = &pos->css;
1078 
1079 	for (;;) {
1080 		css = css_next_descendant_pre(css, &root->css);
1081 		if (!css) {
1082 			/*
1083 			 * Reclaimers share the hierarchy walk, and a
1084 			 * new one might jump in right at the end of
1085 			 * the hierarchy - make sure they see at least
1086 			 * one group and restart from the beginning.
1087 			 */
1088 			if (!prev)
1089 				continue;
1090 			break;
1091 		}
1092 
1093 		/*
1094 		 * Verify the css and acquire a reference.  The root
1095 		 * is provided by the caller, so we know it's alive
1096 		 * and kicking, and don't take an extra reference.
1097 		 */
1098 		memcg = mem_cgroup_from_css(css);
1099 
1100 		if (css == &root->css)
1101 			break;
1102 
1103 		if (css_tryget(css))
1104 			break;
1105 
1106 		memcg = NULL;
1107 	}
1108 
1109 	if (reclaim) {
1110 		/*
1111 		 * The position could have already been updated by a competing
1112 		 * thread, so check that the value hasn't changed since we read
1113 		 * it to avoid reclaiming from the same cgroup twice.
1114 		 */
1115 		(void)cmpxchg(&iter->position, pos, memcg);
1116 
1117 		if (pos)
1118 			css_put(&pos->css);
1119 
1120 		if (!memcg)
1121 			iter->generation++;
1122 		else if (!prev)
1123 			reclaim->generation = iter->generation;
1124 	}
1125 
1126 out_unlock:
1127 	rcu_read_unlock();
1128 out:
1129 	if (prev && prev != root)
1130 		css_put(&prev->css);
1131 
1132 	return memcg;
1133 }
1134 
1135 /**
1136  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1137  * @root: hierarchy root
1138  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1139  */
1140 void mem_cgroup_iter_break(struct mem_cgroup *root,
1141 			   struct mem_cgroup *prev)
1142 {
1143 	if (!root)
1144 		root = root_mem_cgroup;
1145 	if (prev && prev != root)
1146 		css_put(&prev->css);
1147 }
1148 
1149 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1150 					struct mem_cgroup *dead_memcg)
1151 {
1152 	struct mem_cgroup_reclaim_iter *iter;
1153 	struct mem_cgroup_per_node *mz;
1154 	int nid;
1155 	int i;
1156 
1157 	for_each_node(nid) {
1158 		mz = mem_cgroup_nodeinfo(from, nid);
1159 		for (i = 0; i <= DEF_PRIORITY; i++) {
1160 			iter = &mz->iter[i];
1161 			cmpxchg(&iter->position,
1162 				dead_memcg, NULL);
1163 		}
1164 	}
1165 }
1166 
1167 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1168 {
1169 	struct mem_cgroup *memcg = dead_memcg;
1170 	struct mem_cgroup *last;
1171 
1172 	do {
1173 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1174 		last = memcg;
1175 	} while ((memcg = parent_mem_cgroup(memcg)));
1176 
1177 	/*
1178 	 * When cgruop1 non-hierarchy mode is used,
1179 	 * parent_mem_cgroup() does not walk all the way up to the
1180 	 * cgroup root (root_mem_cgroup). So we have to handle
1181 	 * dead_memcg from cgroup root separately.
1182 	 */
1183 	if (last != root_mem_cgroup)
1184 		__invalidate_reclaim_iterators(root_mem_cgroup,
1185 						dead_memcg);
1186 }
1187 
1188 /**
1189  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1190  * @memcg: hierarchy root
1191  * @fn: function to call for each task
1192  * @arg: argument passed to @fn
1193  *
1194  * This function iterates over tasks attached to @memcg or to any of its
1195  * descendants and calls @fn for each task. If @fn returns a non-zero
1196  * value, the function breaks the iteration loop and returns the value.
1197  * Otherwise, it will iterate over all tasks and return 0.
1198  *
1199  * This function must not be called for the root memory cgroup.
1200  */
1201 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1202 			  int (*fn)(struct task_struct *, void *), void *arg)
1203 {
1204 	struct mem_cgroup *iter;
1205 	int ret = 0;
1206 
1207 	BUG_ON(memcg == root_mem_cgroup);
1208 
1209 	for_each_mem_cgroup_tree(iter, memcg) {
1210 		struct css_task_iter it;
1211 		struct task_struct *task;
1212 
1213 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1214 		while (!ret && (task = css_task_iter_next(&it)))
1215 			ret = fn(task, arg);
1216 		css_task_iter_end(&it);
1217 		if (ret) {
1218 			mem_cgroup_iter_break(memcg, iter);
1219 			break;
1220 		}
1221 	}
1222 	return ret;
1223 }
1224 
1225 /**
1226  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1227  * @page: the page
1228  * @pgdat: pgdat of the page
1229  *
1230  * This function is only safe when following the LRU page isolation
1231  * and putback protocol: the LRU lock must be held, and the page must
1232  * either be PageLRU() or the caller must have isolated/allocated it.
1233  */
1234 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1235 {
1236 	struct mem_cgroup_per_node *mz;
1237 	struct mem_cgroup *memcg;
1238 	struct lruvec *lruvec;
1239 
1240 	if (mem_cgroup_disabled()) {
1241 		lruvec = &pgdat->lruvec;
1242 		goto out;
1243 	}
1244 
1245 	memcg = page->mem_cgroup;
1246 	/*
1247 	 * Swapcache readahead pages are added to the LRU - and
1248 	 * possibly migrated - before they are charged.
1249 	 */
1250 	if (!memcg)
1251 		memcg = root_mem_cgroup;
1252 
1253 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1254 	lruvec = &mz->lruvec;
1255 out:
1256 	/*
1257 	 * Since a node can be onlined after the mem_cgroup was created,
1258 	 * we have to be prepared to initialize lruvec->zone here;
1259 	 * and if offlined then reonlined, we need to reinitialize it.
1260 	 */
1261 	if (unlikely(lruvec->pgdat != pgdat))
1262 		lruvec->pgdat = pgdat;
1263 	return lruvec;
1264 }
1265 
1266 /**
1267  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1268  * @lruvec: mem_cgroup per zone lru vector
1269  * @lru: index of lru list the page is sitting on
1270  * @zid: zone id of the accounted pages
1271  * @nr_pages: positive when adding or negative when removing
1272  *
1273  * This function must be called under lru_lock, just before a page is added
1274  * to or just after a page is removed from an lru list (that ordering being
1275  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1276  */
1277 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1278 				int zid, int nr_pages)
1279 {
1280 	struct mem_cgroup_per_node *mz;
1281 	unsigned long *lru_size;
1282 	long size;
1283 
1284 	if (mem_cgroup_disabled())
1285 		return;
1286 
1287 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1288 	lru_size = &mz->lru_zone_size[zid][lru];
1289 
1290 	if (nr_pages < 0)
1291 		*lru_size += nr_pages;
1292 
1293 	size = *lru_size;
1294 	if (WARN_ONCE(size < 0,
1295 		"%s(%p, %d, %d): lru_size %ld\n",
1296 		__func__, lruvec, lru, nr_pages, size)) {
1297 		VM_BUG_ON(1);
1298 		*lru_size = 0;
1299 	}
1300 
1301 	if (nr_pages > 0)
1302 		*lru_size += nr_pages;
1303 }
1304 
1305 /**
1306  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1307  * @memcg: the memory cgroup
1308  *
1309  * Returns the maximum amount of memory @mem can be charged with, in
1310  * pages.
1311  */
1312 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1313 {
1314 	unsigned long margin = 0;
1315 	unsigned long count;
1316 	unsigned long limit;
1317 
1318 	count = page_counter_read(&memcg->memory);
1319 	limit = READ_ONCE(memcg->memory.max);
1320 	if (count < limit)
1321 		margin = limit - count;
1322 
1323 	if (do_memsw_account()) {
1324 		count = page_counter_read(&memcg->memsw);
1325 		limit = READ_ONCE(memcg->memsw.max);
1326 		if (count <= limit)
1327 			margin = min(margin, limit - count);
1328 		else
1329 			margin = 0;
1330 	}
1331 
1332 	return margin;
1333 }
1334 
1335 /*
1336  * A routine for checking "mem" is under move_account() or not.
1337  *
1338  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1339  * moving cgroups. This is for waiting at high-memory pressure
1340  * caused by "move".
1341  */
1342 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1343 {
1344 	struct mem_cgroup *from;
1345 	struct mem_cgroup *to;
1346 	bool ret = false;
1347 	/*
1348 	 * Unlike task_move routines, we access mc.to, mc.from not under
1349 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1350 	 */
1351 	spin_lock(&mc.lock);
1352 	from = mc.from;
1353 	to = mc.to;
1354 	if (!from)
1355 		goto unlock;
1356 
1357 	ret = mem_cgroup_is_descendant(from, memcg) ||
1358 		mem_cgroup_is_descendant(to, memcg);
1359 unlock:
1360 	spin_unlock(&mc.lock);
1361 	return ret;
1362 }
1363 
1364 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1365 {
1366 	if (mc.moving_task && current != mc.moving_task) {
1367 		if (mem_cgroup_under_move(memcg)) {
1368 			DEFINE_WAIT(wait);
1369 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1370 			/* moving charge context might have finished. */
1371 			if (mc.moving_task)
1372 				schedule();
1373 			finish_wait(&mc.waitq, &wait);
1374 			return true;
1375 		}
1376 	}
1377 	return false;
1378 }
1379 
1380 static char *memory_stat_format(struct mem_cgroup *memcg)
1381 {
1382 	struct seq_buf s;
1383 	int i;
1384 
1385 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1386 	if (!s.buffer)
1387 		return NULL;
1388 
1389 	/*
1390 	 * Provide statistics on the state of the memory subsystem as
1391 	 * well as cumulative event counters that show past behavior.
1392 	 *
1393 	 * This list is ordered following a combination of these gradients:
1394 	 * 1) generic big picture -> specifics and details
1395 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1396 	 *
1397 	 * Current memory state:
1398 	 */
1399 
1400 	seq_buf_printf(&s, "anon %llu\n",
1401 		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
1402 		       PAGE_SIZE);
1403 	seq_buf_printf(&s, "file %llu\n",
1404 		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1405 		       PAGE_SIZE);
1406 	seq_buf_printf(&s, "kernel_stack %llu\n",
1407 		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1408 		       1024);
1409 	seq_buf_printf(&s, "slab %llu\n",
1410 		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1411 			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1412 		       PAGE_SIZE);
1413 	seq_buf_printf(&s, "sock %llu\n",
1414 		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1415 		       PAGE_SIZE);
1416 
1417 	seq_buf_printf(&s, "shmem %llu\n",
1418 		       (u64)memcg_page_state(memcg, NR_SHMEM) *
1419 		       PAGE_SIZE);
1420 	seq_buf_printf(&s, "file_mapped %llu\n",
1421 		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1422 		       PAGE_SIZE);
1423 	seq_buf_printf(&s, "file_dirty %llu\n",
1424 		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1425 		       PAGE_SIZE);
1426 	seq_buf_printf(&s, "file_writeback %llu\n",
1427 		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1428 		       PAGE_SIZE);
1429 
1430 	/*
1431 	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1432 	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1433 	 * arse because it requires migrating the work out of rmap to a place
1434 	 * where the page->mem_cgroup is set up and stable.
1435 	 */
1436 	seq_buf_printf(&s, "anon_thp %llu\n",
1437 		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1438 		       PAGE_SIZE);
1439 
1440 	for (i = 0; i < NR_LRU_LISTS; i++)
1441 		seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1442 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1443 			       PAGE_SIZE);
1444 
1445 	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1446 		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1447 		       PAGE_SIZE);
1448 	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1449 		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1450 		       PAGE_SIZE);
1451 
1452 	/* Accumulated memory events */
1453 
1454 	seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1455 	seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1456 
1457 	seq_buf_printf(&s, "workingset_refault %lu\n",
1458 		       memcg_page_state(memcg, WORKINGSET_REFAULT));
1459 	seq_buf_printf(&s, "workingset_activate %lu\n",
1460 		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1461 	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1462 		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1463 
1464 	seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1465 	seq_buf_printf(&s, "pgscan %lu\n",
1466 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1467 		       memcg_events(memcg, PGSCAN_DIRECT));
1468 	seq_buf_printf(&s, "pgsteal %lu\n",
1469 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1470 		       memcg_events(memcg, PGSTEAL_DIRECT));
1471 	seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1472 	seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1473 	seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1474 	seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1475 
1476 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1477 	seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1478 		       memcg_events(memcg, THP_FAULT_ALLOC));
1479 	seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1480 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1481 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1482 
1483 	/* The above should easily fit into one page */
1484 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1485 
1486 	return s.buffer;
1487 }
1488 
1489 #define K(x) ((x) << (PAGE_SHIFT-10))
1490 /**
1491  * mem_cgroup_print_oom_context: Print OOM information relevant to
1492  * memory controller.
1493  * @memcg: The memory cgroup that went over limit
1494  * @p: Task that is going to be killed
1495  *
1496  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1497  * enabled
1498  */
1499 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1500 {
1501 	rcu_read_lock();
1502 
1503 	if (memcg) {
1504 		pr_cont(",oom_memcg=");
1505 		pr_cont_cgroup_path(memcg->css.cgroup);
1506 	} else
1507 		pr_cont(",global_oom");
1508 	if (p) {
1509 		pr_cont(",task_memcg=");
1510 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1511 	}
1512 	rcu_read_unlock();
1513 }
1514 
1515 /**
1516  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1517  * memory controller.
1518  * @memcg: The memory cgroup that went over limit
1519  */
1520 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1521 {
1522 	char *buf;
1523 
1524 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1525 		K((u64)page_counter_read(&memcg->memory)),
1526 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1527 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1528 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1529 			K((u64)page_counter_read(&memcg->swap)),
1530 			K((u64)memcg->swap.max), memcg->swap.failcnt);
1531 	else {
1532 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1533 			K((u64)page_counter_read(&memcg->memsw)),
1534 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1535 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1536 			K((u64)page_counter_read(&memcg->kmem)),
1537 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1538 	}
1539 
1540 	pr_info("Memory cgroup stats for ");
1541 	pr_cont_cgroup_path(memcg->css.cgroup);
1542 	pr_cont(":");
1543 	buf = memory_stat_format(memcg);
1544 	if (!buf)
1545 		return;
1546 	pr_info("%s", buf);
1547 	kfree(buf);
1548 }
1549 
1550 /*
1551  * Return the memory (and swap, if configured) limit for a memcg.
1552  */
1553 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1554 {
1555 	unsigned long max;
1556 
1557 	max = memcg->memory.max;
1558 	if (mem_cgroup_swappiness(memcg)) {
1559 		unsigned long memsw_max;
1560 		unsigned long swap_max;
1561 
1562 		memsw_max = memcg->memsw.max;
1563 		swap_max = memcg->swap.max;
1564 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1565 		max = min(max + swap_max, memsw_max);
1566 	}
1567 	return max;
1568 }
1569 
1570 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1571 				     int order)
1572 {
1573 	struct oom_control oc = {
1574 		.zonelist = NULL,
1575 		.nodemask = NULL,
1576 		.memcg = memcg,
1577 		.gfp_mask = gfp_mask,
1578 		.order = order,
1579 	};
1580 	bool ret;
1581 
1582 	if (mutex_lock_killable(&oom_lock))
1583 		return true;
1584 	/*
1585 	 * A few threads which were not waiting at mutex_lock_killable() can
1586 	 * fail to bail out. Therefore, check again after holding oom_lock.
1587 	 */
1588 	ret = should_force_charge() || out_of_memory(&oc);
1589 	mutex_unlock(&oom_lock);
1590 	return ret;
1591 }
1592 
1593 #if MAX_NUMNODES > 1
1594 
1595 /**
1596  * test_mem_cgroup_node_reclaimable
1597  * @memcg: the target memcg
1598  * @nid: the node ID to be checked.
1599  * @noswap : specify true here if the user wants flle only information.
1600  *
1601  * This function returns whether the specified memcg contains any
1602  * reclaimable pages on a node. Returns true if there are any reclaimable
1603  * pages in the node.
1604  */
1605 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1606 		int nid, bool noswap)
1607 {
1608 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1609 
1610 	if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1611 	    lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1612 		return true;
1613 	if (noswap || !total_swap_pages)
1614 		return false;
1615 	if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1616 	    lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1617 		return true;
1618 	return false;
1619 
1620 }
1621 
1622 /*
1623  * Always updating the nodemask is not very good - even if we have an empty
1624  * list or the wrong list here, we can start from some node and traverse all
1625  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1626  *
1627  */
1628 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1629 {
1630 	int nid;
1631 	/*
1632 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1633 	 * pagein/pageout changes since the last update.
1634 	 */
1635 	if (!atomic_read(&memcg->numainfo_events))
1636 		return;
1637 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1638 		return;
1639 
1640 	/* make a nodemask where this memcg uses memory from */
1641 	memcg->scan_nodes = node_states[N_MEMORY];
1642 
1643 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1644 
1645 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1646 			node_clear(nid, memcg->scan_nodes);
1647 	}
1648 
1649 	atomic_set(&memcg->numainfo_events, 0);
1650 	atomic_set(&memcg->numainfo_updating, 0);
1651 }
1652 
1653 /*
1654  * Selecting a node where we start reclaim from. Because what we need is just
1655  * reducing usage counter, start from anywhere is O,K. Considering
1656  * memory reclaim from current node, there are pros. and cons.
1657  *
1658  * Freeing memory from current node means freeing memory from a node which
1659  * we'll use or we've used. So, it may make LRU bad. And if several threads
1660  * hit limits, it will see a contention on a node. But freeing from remote
1661  * node means more costs for memory reclaim because of memory latency.
1662  *
1663  * Now, we use round-robin. Better algorithm is welcomed.
1664  */
1665 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1666 {
1667 	int node;
1668 
1669 	mem_cgroup_may_update_nodemask(memcg);
1670 	node = memcg->last_scanned_node;
1671 
1672 	node = next_node_in(node, memcg->scan_nodes);
1673 	/*
1674 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1675 	 * last time it really checked all the LRUs due to rate limiting.
1676 	 * Fallback to the current node in that case for simplicity.
1677 	 */
1678 	if (unlikely(node == MAX_NUMNODES))
1679 		node = numa_node_id();
1680 
1681 	memcg->last_scanned_node = node;
1682 	return node;
1683 }
1684 #else
1685 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1686 {
1687 	return 0;
1688 }
1689 #endif
1690 
1691 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1692 				   pg_data_t *pgdat,
1693 				   gfp_t gfp_mask,
1694 				   unsigned long *total_scanned)
1695 {
1696 	struct mem_cgroup *victim = NULL;
1697 	int total = 0;
1698 	int loop = 0;
1699 	unsigned long excess;
1700 	unsigned long nr_scanned;
1701 	struct mem_cgroup_reclaim_cookie reclaim = {
1702 		.pgdat = pgdat,
1703 		.priority = 0,
1704 	};
1705 
1706 	excess = soft_limit_excess(root_memcg);
1707 
1708 	while (1) {
1709 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1710 		if (!victim) {
1711 			loop++;
1712 			if (loop >= 2) {
1713 				/*
1714 				 * If we have not been able to reclaim
1715 				 * anything, it might because there are
1716 				 * no reclaimable pages under this hierarchy
1717 				 */
1718 				if (!total)
1719 					break;
1720 				/*
1721 				 * We want to do more targeted reclaim.
1722 				 * excess >> 2 is not to excessive so as to
1723 				 * reclaim too much, nor too less that we keep
1724 				 * coming back to reclaim from this cgroup
1725 				 */
1726 				if (total >= (excess >> 2) ||
1727 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1728 					break;
1729 			}
1730 			continue;
1731 		}
1732 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1733 					pgdat, &nr_scanned);
1734 		*total_scanned += nr_scanned;
1735 		if (!soft_limit_excess(root_memcg))
1736 			break;
1737 	}
1738 	mem_cgroup_iter_break(root_memcg, victim);
1739 	return total;
1740 }
1741 
1742 #ifdef CONFIG_LOCKDEP
1743 static struct lockdep_map memcg_oom_lock_dep_map = {
1744 	.name = "memcg_oom_lock",
1745 };
1746 #endif
1747 
1748 static DEFINE_SPINLOCK(memcg_oom_lock);
1749 
1750 /*
1751  * Check OOM-Killer is already running under our hierarchy.
1752  * If someone is running, return false.
1753  */
1754 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1755 {
1756 	struct mem_cgroup *iter, *failed = NULL;
1757 
1758 	spin_lock(&memcg_oom_lock);
1759 
1760 	for_each_mem_cgroup_tree(iter, memcg) {
1761 		if (iter->oom_lock) {
1762 			/*
1763 			 * this subtree of our hierarchy is already locked
1764 			 * so we cannot give a lock.
1765 			 */
1766 			failed = iter;
1767 			mem_cgroup_iter_break(memcg, iter);
1768 			break;
1769 		} else
1770 			iter->oom_lock = true;
1771 	}
1772 
1773 	if (failed) {
1774 		/*
1775 		 * OK, we failed to lock the whole subtree so we have
1776 		 * to clean up what we set up to the failing subtree
1777 		 */
1778 		for_each_mem_cgroup_tree(iter, memcg) {
1779 			if (iter == failed) {
1780 				mem_cgroup_iter_break(memcg, iter);
1781 				break;
1782 			}
1783 			iter->oom_lock = false;
1784 		}
1785 	} else
1786 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1787 
1788 	spin_unlock(&memcg_oom_lock);
1789 
1790 	return !failed;
1791 }
1792 
1793 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1794 {
1795 	struct mem_cgroup *iter;
1796 
1797 	spin_lock(&memcg_oom_lock);
1798 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1799 	for_each_mem_cgroup_tree(iter, memcg)
1800 		iter->oom_lock = false;
1801 	spin_unlock(&memcg_oom_lock);
1802 }
1803 
1804 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1805 {
1806 	struct mem_cgroup *iter;
1807 
1808 	spin_lock(&memcg_oom_lock);
1809 	for_each_mem_cgroup_tree(iter, memcg)
1810 		iter->under_oom++;
1811 	spin_unlock(&memcg_oom_lock);
1812 }
1813 
1814 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1815 {
1816 	struct mem_cgroup *iter;
1817 
1818 	/*
1819 	 * When a new child is created while the hierarchy is under oom,
1820 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1821 	 */
1822 	spin_lock(&memcg_oom_lock);
1823 	for_each_mem_cgroup_tree(iter, memcg)
1824 		if (iter->under_oom > 0)
1825 			iter->under_oom--;
1826 	spin_unlock(&memcg_oom_lock);
1827 }
1828 
1829 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1830 
1831 struct oom_wait_info {
1832 	struct mem_cgroup *memcg;
1833 	wait_queue_entry_t	wait;
1834 };
1835 
1836 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1837 	unsigned mode, int sync, void *arg)
1838 {
1839 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1840 	struct mem_cgroup *oom_wait_memcg;
1841 	struct oom_wait_info *oom_wait_info;
1842 
1843 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1844 	oom_wait_memcg = oom_wait_info->memcg;
1845 
1846 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1847 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1848 		return 0;
1849 	return autoremove_wake_function(wait, mode, sync, arg);
1850 }
1851 
1852 static void memcg_oom_recover(struct mem_cgroup *memcg)
1853 {
1854 	/*
1855 	 * For the following lockless ->under_oom test, the only required
1856 	 * guarantee is that it must see the state asserted by an OOM when
1857 	 * this function is called as a result of userland actions
1858 	 * triggered by the notification of the OOM.  This is trivially
1859 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1860 	 * triggering notification.
1861 	 */
1862 	if (memcg && memcg->under_oom)
1863 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1864 }
1865 
1866 enum oom_status {
1867 	OOM_SUCCESS,
1868 	OOM_FAILED,
1869 	OOM_ASYNC,
1870 	OOM_SKIPPED
1871 };
1872 
1873 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1874 {
1875 	enum oom_status ret;
1876 	bool locked;
1877 
1878 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1879 		return OOM_SKIPPED;
1880 
1881 	memcg_memory_event(memcg, MEMCG_OOM);
1882 
1883 	/*
1884 	 * We are in the middle of the charge context here, so we
1885 	 * don't want to block when potentially sitting on a callstack
1886 	 * that holds all kinds of filesystem and mm locks.
1887 	 *
1888 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1889 	 * handling until the charge can succeed; remember the context and put
1890 	 * the task to sleep at the end of the page fault when all locks are
1891 	 * released.
1892 	 *
1893 	 * On the other hand, in-kernel OOM killer allows for an async victim
1894 	 * memory reclaim (oom_reaper) and that means that we are not solely
1895 	 * relying on the oom victim to make a forward progress and we can
1896 	 * invoke the oom killer here.
1897 	 *
1898 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1899 	 * victim and then we have to bail out from the charge path.
1900 	 */
1901 	if (memcg->oom_kill_disable) {
1902 		if (!current->in_user_fault)
1903 			return OOM_SKIPPED;
1904 		css_get(&memcg->css);
1905 		current->memcg_in_oom = memcg;
1906 		current->memcg_oom_gfp_mask = mask;
1907 		current->memcg_oom_order = order;
1908 
1909 		return OOM_ASYNC;
1910 	}
1911 
1912 	mem_cgroup_mark_under_oom(memcg);
1913 
1914 	locked = mem_cgroup_oom_trylock(memcg);
1915 
1916 	if (locked)
1917 		mem_cgroup_oom_notify(memcg);
1918 
1919 	mem_cgroup_unmark_under_oom(memcg);
1920 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1921 		ret = OOM_SUCCESS;
1922 	else
1923 		ret = OOM_FAILED;
1924 
1925 	if (locked)
1926 		mem_cgroup_oom_unlock(memcg);
1927 
1928 	return ret;
1929 }
1930 
1931 /**
1932  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1933  * @handle: actually kill/wait or just clean up the OOM state
1934  *
1935  * This has to be called at the end of a page fault if the memcg OOM
1936  * handler was enabled.
1937  *
1938  * Memcg supports userspace OOM handling where failed allocations must
1939  * sleep on a waitqueue until the userspace task resolves the
1940  * situation.  Sleeping directly in the charge context with all kinds
1941  * of locks held is not a good idea, instead we remember an OOM state
1942  * in the task and mem_cgroup_oom_synchronize() has to be called at
1943  * the end of the page fault to complete the OOM handling.
1944  *
1945  * Returns %true if an ongoing memcg OOM situation was detected and
1946  * completed, %false otherwise.
1947  */
1948 bool mem_cgroup_oom_synchronize(bool handle)
1949 {
1950 	struct mem_cgroup *memcg = current->memcg_in_oom;
1951 	struct oom_wait_info owait;
1952 	bool locked;
1953 
1954 	/* OOM is global, do not handle */
1955 	if (!memcg)
1956 		return false;
1957 
1958 	if (!handle)
1959 		goto cleanup;
1960 
1961 	owait.memcg = memcg;
1962 	owait.wait.flags = 0;
1963 	owait.wait.func = memcg_oom_wake_function;
1964 	owait.wait.private = current;
1965 	INIT_LIST_HEAD(&owait.wait.entry);
1966 
1967 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1968 	mem_cgroup_mark_under_oom(memcg);
1969 
1970 	locked = mem_cgroup_oom_trylock(memcg);
1971 
1972 	if (locked)
1973 		mem_cgroup_oom_notify(memcg);
1974 
1975 	if (locked && !memcg->oom_kill_disable) {
1976 		mem_cgroup_unmark_under_oom(memcg);
1977 		finish_wait(&memcg_oom_waitq, &owait.wait);
1978 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1979 					 current->memcg_oom_order);
1980 	} else {
1981 		schedule();
1982 		mem_cgroup_unmark_under_oom(memcg);
1983 		finish_wait(&memcg_oom_waitq, &owait.wait);
1984 	}
1985 
1986 	if (locked) {
1987 		mem_cgroup_oom_unlock(memcg);
1988 		/*
1989 		 * There is no guarantee that an OOM-lock contender
1990 		 * sees the wakeups triggered by the OOM kill
1991 		 * uncharges.  Wake any sleepers explicitely.
1992 		 */
1993 		memcg_oom_recover(memcg);
1994 	}
1995 cleanup:
1996 	current->memcg_in_oom = NULL;
1997 	css_put(&memcg->css);
1998 	return true;
1999 }
2000 
2001 /**
2002  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2003  * @victim: task to be killed by the OOM killer
2004  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2005  *
2006  * Returns a pointer to a memory cgroup, which has to be cleaned up
2007  * by killing all belonging OOM-killable tasks.
2008  *
2009  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2010  */
2011 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2012 					    struct mem_cgroup *oom_domain)
2013 {
2014 	struct mem_cgroup *oom_group = NULL;
2015 	struct mem_cgroup *memcg;
2016 
2017 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2018 		return NULL;
2019 
2020 	if (!oom_domain)
2021 		oom_domain = root_mem_cgroup;
2022 
2023 	rcu_read_lock();
2024 
2025 	memcg = mem_cgroup_from_task(victim);
2026 	if (memcg == root_mem_cgroup)
2027 		goto out;
2028 
2029 	/*
2030 	 * Traverse the memory cgroup hierarchy from the victim task's
2031 	 * cgroup up to the OOMing cgroup (or root) to find the
2032 	 * highest-level memory cgroup with oom.group set.
2033 	 */
2034 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2035 		if (memcg->oom_group)
2036 			oom_group = memcg;
2037 
2038 		if (memcg == oom_domain)
2039 			break;
2040 	}
2041 
2042 	if (oom_group)
2043 		css_get(&oom_group->css);
2044 out:
2045 	rcu_read_unlock();
2046 
2047 	return oom_group;
2048 }
2049 
2050 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2051 {
2052 	pr_info("Tasks in ");
2053 	pr_cont_cgroup_path(memcg->css.cgroup);
2054 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2055 }
2056 
2057 /**
2058  * lock_page_memcg - lock a page->mem_cgroup binding
2059  * @page: the page
2060  *
2061  * This function protects unlocked LRU pages from being moved to
2062  * another cgroup.
2063  *
2064  * It ensures lifetime of the returned memcg. Caller is responsible
2065  * for the lifetime of the page; __unlock_page_memcg() is available
2066  * when @page might get freed inside the locked section.
2067  */
2068 struct mem_cgroup *lock_page_memcg(struct page *page)
2069 {
2070 	struct mem_cgroup *memcg;
2071 	unsigned long flags;
2072 
2073 	/*
2074 	 * The RCU lock is held throughout the transaction.  The fast
2075 	 * path can get away without acquiring the memcg->move_lock
2076 	 * because page moving starts with an RCU grace period.
2077 	 *
2078 	 * The RCU lock also protects the memcg from being freed when
2079 	 * the page state that is going to change is the only thing
2080 	 * preventing the page itself from being freed. E.g. writeback
2081 	 * doesn't hold a page reference and relies on PG_writeback to
2082 	 * keep off truncation, migration and so forth.
2083          */
2084 	rcu_read_lock();
2085 
2086 	if (mem_cgroup_disabled())
2087 		return NULL;
2088 again:
2089 	memcg = page->mem_cgroup;
2090 	if (unlikely(!memcg))
2091 		return NULL;
2092 
2093 	if (atomic_read(&memcg->moving_account) <= 0)
2094 		return memcg;
2095 
2096 	spin_lock_irqsave(&memcg->move_lock, flags);
2097 	if (memcg != page->mem_cgroup) {
2098 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2099 		goto again;
2100 	}
2101 
2102 	/*
2103 	 * When charge migration first begins, we can have locked and
2104 	 * unlocked page stat updates happening concurrently.  Track
2105 	 * the task who has the lock for unlock_page_memcg().
2106 	 */
2107 	memcg->move_lock_task = current;
2108 	memcg->move_lock_flags = flags;
2109 
2110 	return memcg;
2111 }
2112 EXPORT_SYMBOL(lock_page_memcg);
2113 
2114 /**
2115  * __unlock_page_memcg - unlock and unpin a memcg
2116  * @memcg: the memcg
2117  *
2118  * Unlock and unpin a memcg returned by lock_page_memcg().
2119  */
2120 void __unlock_page_memcg(struct mem_cgroup *memcg)
2121 {
2122 	if (memcg && memcg->move_lock_task == current) {
2123 		unsigned long flags = memcg->move_lock_flags;
2124 
2125 		memcg->move_lock_task = NULL;
2126 		memcg->move_lock_flags = 0;
2127 
2128 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2129 	}
2130 
2131 	rcu_read_unlock();
2132 }
2133 
2134 /**
2135  * unlock_page_memcg - unlock a page->mem_cgroup binding
2136  * @page: the page
2137  */
2138 void unlock_page_memcg(struct page *page)
2139 {
2140 	__unlock_page_memcg(page->mem_cgroup);
2141 }
2142 EXPORT_SYMBOL(unlock_page_memcg);
2143 
2144 struct memcg_stock_pcp {
2145 	struct mem_cgroup *cached; /* this never be root cgroup */
2146 	unsigned int nr_pages;
2147 	struct work_struct work;
2148 	unsigned long flags;
2149 #define FLUSHING_CACHED_CHARGE	0
2150 };
2151 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2152 static DEFINE_MUTEX(percpu_charge_mutex);
2153 
2154 /**
2155  * consume_stock: Try to consume stocked charge on this cpu.
2156  * @memcg: memcg to consume from.
2157  * @nr_pages: how many pages to charge.
2158  *
2159  * The charges will only happen if @memcg matches the current cpu's memcg
2160  * stock, and at least @nr_pages are available in that stock.  Failure to
2161  * service an allocation will refill the stock.
2162  *
2163  * returns true if successful, false otherwise.
2164  */
2165 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2166 {
2167 	struct memcg_stock_pcp *stock;
2168 	unsigned long flags;
2169 	bool ret = false;
2170 
2171 	if (nr_pages > MEMCG_CHARGE_BATCH)
2172 		return ret;
2173 
2174 	local_irq_save(flags);
2175 
2176 	stock = this_cpu_ptr(&memcg_stock);
2177 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2178 		stock->nr_pages -= nr_pages;
2179 		ret = true;
2180 	}
2181 
2182 	local_irq_restore(flags);
2183 
2184 	return ret;
2185 }
2186 
2187 /*
2188  * Returns stocks cached in percpu and reset cached information.
2189  */
2190 static void drain_stock(struct memcg_stock_pcp *stock)
2191 {
2192 	struct mem_cgroup *old = stock->cached;
2193 
2194 	if (stock->nr_pages) {
2195 		page_counter_uncharge(&old->memory, stock->nr_pages);
2196 		if (do_memsw_account())
2197 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2198 		css_put_many(&old->css, stock->nr_pages);
2199 		stock->nr_pages = 0;
2200 	}
2201 	stock->cached = NULL;
2202 }
2203 
2204 static void drain_local_stock(struct work_struct *dummy)
2205 {
2206 	struct memcg_stock_pcp *stock;
2207 	unsigned long flags;
2208 
2209 	/*
2210 	 * The only protection from memory hotplug vs. drain_stock races is
2211 	 * that we always operate on local CPU stock here with IRQ disabled
2212 	 */
2213 	local_irq_save(flags);
2214 
2215 	stock = this_cpu_ptr(&memcg_stock);
2216 	drain_stock(stock);
2217 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2218 
2219 	local_irq_restore(flags);
2220 }
2221 
2222 /*
2223  * Cache charges(val) to local per_cpu area.
2224  * This will be consumed by consume_stock() function, later.
2225  */
2226 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2227 {
2228 	struct memcg_stock_pcp *stock;
2229 	unsigned long flags;
2230 
2231 	local_irq_save(flags);
2232 
2233 	stock = this_cpu_ptr(&memcg_stock);
2234 	if (stock->cached != memcg) { /* reset if necessary */
2235 		drain_stock(stock);
2236 		stock->cached = memcg;
2237 	}
2238 	stock->nr_pages += nr_pages;
2239 
2240 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2241 		drain_stock(stock);
2242 
2243 	local_irq_restore(flags);
2244 }
2245 
2246 /*
2247  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2248  * of the hierarchy under it.
2249  */
2250 static void drain_all_stock(struct mem_cgroup *root_memcg)
2251 {
2252 	int cpu, curcpu;
2253 
2254 	/* If someone's already draining, avoid adding running more workers. */
2255 	if (!mutex_trylock(&percpu_charge_mutex))
2256 		return;
2257 	/*
2258 	 * Notify other cpus that system-wide "drain" is running
2259 	 * We do not care about races with the cpu hotplug because cpu down
2260 	 * as well as workers from this path always operate on the local
2261 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2262 	 */
2263 	curcpu = get_cpu();
2264 	for_each_online_cpu(cpu) {
2265 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2266 		struct mem_cgroup *memcg;
2267 		bool flush = false;
2268 
2269 		rcu_read_lock();
2270 		memcg = stock->cached;
2271 		if (memcg && stock->nr_pages &&
2272 		    mem_cgroup_is_descendant(memcg, root_memcg))
2273 			flush = true;
2274 		rcu_read_unlock();
2275 
2276 		if (flush &&
2277 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2278 			if (cpu == curcpu)
2279 				drain_local_stock(&stock->work);
2280 			else
2281 				schedule_work_on(cpu, &stock->work);
2282 		}
2283 	}
2284 	put_cpu();
2285 	mutex_unlock(&percpu_charge_mutex);
2286 }
2287 
2288 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2289 {
2290 	struct memcg_stock_pcp *stock;
2291 	struct mem_cgroup *memcg, *mi;
2292 
2293 	stock = &per_cpu(memcg_stock, cpu);
2294 	drain_stock(stock);
2295 
2296 	for_each_mem_cgroup(memcg) {
2297 		int i;
2298 
2299 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2300 			int nid;
2301 			long x;
2302 
2303 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2304 			if (x)
2305 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2306 					atomic_long_add(x, &memcg->vmstats[i]);
2307 
2308 			if (i >= NR_VM_NODE_STAT_ITEMS)
2309 				continue;
2310 
2311 			for_each_node(nid) {
2312 				struct mem_cgroup_per_node *pn;
2313 
2314 				pn = mem_cgroup_nodeinfo(memcg, nid);
2315 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2316 				if (x)
2317 					do {
2318 						atomic_long_add(x, &pn->lruvec_stat[i]);
2319 					} while ((pn = parent_nodeinfo(pn, nid)));
2320 			}
2321 		}
2322 
2323 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2324 			long x;
2325 
2326 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2327 			if (x)
2328 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2329 					atomic_long_add(x, &memcg->vmevents[i]);
2330 		}
2331 	}
2332 
2333 	return 0;
2334 }
2335 
2336 static void reclaim_high(struct mem_cgroup *memcg,
2337 			 unsigned int nr_pages,
2338 			 gfp_t gfp_mask)
2339 {
2340 	do {
2341 		if (page_counter_read(&memcg->memory) <= memcg->high)
2342 			continue;
2343 		memcg_memory_event(memcg, MEMCG_HIGH);
2344 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2345 	} while ((memcg = parent_mem_cgroup(memcg)));
2346 }
2347 
2348 static void high_work_func(struct work_struct *work)
2349 {
2350 	struct mem_cgroup *memcg;
2351 
2352 	memcg = container_of(work, struct mem_cgroup, high_work);
2353 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2354 }
2355 
2356 /*
2357  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2358  * enough to still cause a significant slowdown in most cases, while still
2359  * allowing diagnostics and tracing to proceed without becoming stuck.
2360  */
2361 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2362 
2363 /*
2364  * When calculating the delay, we use these either side of the exponentiation to
2365  * maintain precision and scale to a reasonable number of jiffies (see the table
2366  * below.
2367  *
2368  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2369  *   overage ratio to a delay.
2370  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2371  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2372  *   to produce a reasonable delay curve.
2373  *
2374  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2375  * reasonable delay curve compared to precision-adjusted overage, not
2376  * penalising heavily at first, but still making sure that growth beyond the
2377  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2378  * example, with a high of 100 megabytes:
2379  *
2380  *  +-------+------------------------+
2381  *  | usage | time to allocate in ms |
2382  *  +-------+------------------------+
2383  *  | 100M  |                      0 |
2384  *  | 101M  |                      6 |
2385  *  | 102M  |                     25 |
2386  *  | 103M  |                     57 |
2387  *  | 104M  |                    102 |
2388  *  | 105M  |                    159 |
2389  *  | 106M  |                    230 |
2390  *  | 107M  |                    313 |
2391  *  | 108M  |                    409 |
2392  *  | 109M  |                    518 |
2393  *  | 110M  |                    639 |
2394  *  | 111M  |                    774 |
2395  *  | 112M  |                    921 |
2396  *  | 113M  |                   1081 |
2397  *  | 114M  |                   1254 |
2398  *  | 115M  |                   1439 |
2399  *  | 116M  |                   1638 |
2400  *  | 117M  |                   1849 |
2401  *  | 118M  |                   2000 |
2402  *  | 119M  |                   2000 |
2403  *  | 120M  |                   2000 |
2404  *  +-------+------------------------+
2405  */
2406  #define MEMCG_DELAY_PRECISION_SHIFT 20
2407  #define MEMCG_DELAY_SCALING_SHIFT 14
2408 
2409 /*
2410  * Scheduled by try_charge() to be executed from the userland return path
2411  * and reclaims memory over the high limit.
2412  */
2413 void mem_cgroup_handle_over_high(void)
2414 {
2415 	unsigned long usage, high, clamped_high;
2416 	unsigned long pflags;
2417 	unsigned long penalty_jiffies, overage;
2418 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2419 	struct mem_cgroup *memcg;
2420 
2421 	if (likely(!nr_pages))
2422 		return;
2423 
2424 	memcg = get_mem_cgroup_from_mm(current->mm);
2425 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2426 	current->memcg_nr_pages_over_high = 0;
2427 
2428 	/*
2429 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2430 	 * allocators proactively to slow down excessive growth.
2431 	 *
2432 	 * We use overage compared to memory.high to calculate the number of
2433 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2434 	 * fairly lenient on small overages, and increasingly harsh when the
2435 	 * memcg in question makes it clear that it has no intention of stopping
2436 	 * its crazy behaviour, so we exponentially increase the delay based on
2437 	 * overage amount.
2438 	 */
2439 
2440 	usage = page_counter_read(&memcg->memory);
2441 	high = READ_ONCE(memcg->high);
2442 
2443 	if (usage <= high)
2444 		goto out;
2445 
2446 	/*
2447 	 * Prevent division by 0 in overage calculation by acting as if it was a
2448 	 * threshold of 1 page
2449 	 */
2450 	clamped_high = max(high, 1UL);
2451 
2452 	overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT,
2453 			  clamped_high);
2454 
2455 	penalty_jiffies = ((u64)overage * overage * HZ)
2456 		>> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT);
2457 
2458 	/*
2459 	 * Factor in the task's own contribution to the overage, such that four
2460 	 * N-sized allocations are throttled approximately the same as one
2461 	 * 4N-sized allocation.
2462 	 *
2463 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2464 	 * larger the current charge patch is than that.
2465 	 */
2466 	penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2467 
2468 	/*
2469 	 * Clamp the max delay per usermode return so as to still keep the
2470 	 * application moving forwards and also permit diagnostics, albeit
2471 	 * extremely slowly.
2472 	 */
2473 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2474 
2475 	/*
2476 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2477 	 * that it's not even worth doing, in an attempt to be nice to those who
2478 	 * go only a small amount over their memory.high value and maybe haven't
2479 	 * been aggressively reclaimed enough yet.
2480 	 */
2481 	if (penalty_jiffies <= HZ / 100)
2482 		goto out;
2483 
2484 	/*
2485 	 * If we exit early, we're guaranteed to die (since
2486 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2487 	 * need to account for any ill-begotten jiffies to pay them off later.
2488 	 */
2489 	psi_memstall_enter(&pflags);
2490 	schedule_timeout_killable(penalty_jiffies);
2491 	psi_memstall_leave(&pflags);
2492 
2493 out:
2494 	css_put(&memcg->css);
2495 }
2496 
2497 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2498 		      unsigned int nr_pages)
2499 {
2500 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2501 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2502 	struct mem_cgroup *mem_over_limit;
2503 	struct page_counter *counter;
2504 	unsigned long nr_reclaimed;
2505 	bool may_swap = true;
2506 	bool drained = false;
2507 	enum oom_status oom_status;
2508 
2509 	if (mem_cgroup_is_root(memcg))
2510 		return 0;
2511 retry:
2512 	if (consume_stock(memcg, nr_pages))
2513 		return 0;
2514 
2515 	if (!do_memsw_account() ||
2516 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2517 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2518 			goto done_restock;
2519 		if (do_memsw_account())
2520 			page_counter_uncharge(&memcg->memsw, batch);
2521 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2522 	} else {
2523 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2524 		may_swap = false;
2525 	}
2526 
2527 	if (batch > nr_pages) {
2528 		batch = nr_pages;
2529 		goto retry;
2530 	}
2531 
2532 	/*
2533 	 * Unlike in global OOM situations, memcg is not in a physical
2534 	 * memory shortage.  Allow dying and OOM-killed tasks to
2535 	 * bypass the last charges so that they can exit quickly and
2536 	 * free their memory.
2537 	 */
2538 	if (unlikely(should_force_charge()))
2539 		goto force;
2540 
2541 	/*
2542 	 * Prevent unbounded recursion when reclaim operations need to
2543 	 * allocate memory. This might exceed the limits temporarily,
2544 	 * but we prefer facilitating memory reclaim and getting back
2545 	 * under the limit over triggering OOM kills in these cases.
2546 	 */
2547 	if (unlikely(current->flags & PF_MEMALLOC))
2548 		goto force;
2549 
2550 	if (unlikely(task_in_memcg_oom(current)))
2551 		goto nomem;
2552 
2553 	if (!gfpflags_allow_blocking(gfp_mask))
2554 		goto nomem;
2555 
2556 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2557 
2558 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2559 						    gfp_mask, may_swap);
2560 
2561 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2562 		goto retry;
2563 
2564 	if (!drained) {
2565 		drain_all_stock(mem_over_limit);
2566 		drained = true;
2567 		goto retry;
2568 	}
2569 
2570 	if (gfp_mask & __GFP_NORETRY)
2571 		goto nomem;
2572 	/*
2573 	 * Even though the limit is exceeded at this point, reclaim
2574 	 * may have been able to free some pages.  Retry the charge
2575 	 * before killing the task.
2576 	 *
2577 	 * Only for regular pages, though: huge pages are rather
2578 	 * unlikely to succeed so close to the limit, and we fall back
2579 	 * to regular pages anyway in case of failure.
2580 	 */
2581 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2582 		goto retry;
2583 	/*
2584 	 * At task move, charge accounts can be doubly counted. So, it's
2585 	 * better to wait until the end of task_move if something is going on.
2586 	 */
2587 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2588 		goto retry;
2589 
2590 	if (nr_retries--)
2591 		goto retry;
2592 
2593 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2594 		goto nomem;
2595 
2596 	if (gfp_mask & __GFP_NOFAIL)
2597 		goto force;
2598 
2599 	if (fatal_signal_pending(current))
2600 		goto force;
2601 
2602 	/*
2603 	 * keep retrying as long as the memcg oom killer is able to make
2604 	 * a forward progress or bypass the charge if the oom killer
2605 	 * couldn't make any progress.
2606 	 */
2607 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2608 		       get_order(nr_pages * PAGE_SIZE));
2609 	switch (oom_status) {
2610 	case OOM_SUCCESS:
2611 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2612 		goto retry;
2613 	case OOM_FAILED:
2614 		goto force;
2615 	default:
2616 		goto nomem;
2617 	}
2618 nomem:
2619 	if (!(gfp_mask & __GFP_NOFAIL))
2620 		return -ENOMEM;
2621 force:
2622 	/*
2623 	 * The allocation either can't fail or will lead to more memory
2624 	 * being freed very soon.  Allow memory usage go over the limit
2625 	 * temporarily by force charging it.
2626 	 */
2627 	page_counter_charge(&memcg->memory, nr_pages);
2628 	if (do_memsw_account())
2629 		page_counter_charge(&memcg->memsw, nr_pages);
2630 	css_get_many(&memcg->css, nr_pages);
2631 
2632 	return 0;
2633 
2634 done_restock:
2635 	css_get_many(&memcg->css, batch);
2636 	if (batch > nr_pages)
2637 		refill_stock(memcg, batch - nr_pages);
2638 
2639 	/*
2640 	 * If the hierarchy is above the normal consumption range, schedule
2641 	 * reclaim on returning to userland.  We can perform reclaim here
2642 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2643 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2644 	 * not recorded as it most likely matches current's and won't
2645 	 * change in the meantime.  As high limit is checked again before
2646 	 * reclaim, the cost of mismatch is negligible.
2647 	 */
2648 	do {
2649 		if (page_counter_read(&memcg->memory) > memcg->high) {
2650 			/* Don't bother a random interrupted task */
2651 			if (in_interrupt()) {
2652 				schedule_work(&memcg->high_work);
2653 				break;
2654 			}
2655 			current->memcg_nr_pages_over_high += batch;
2656 			set_notify_resume(current);
2657 			break;
2658 		}
2659 	} while ((memcg = parent_mem_cgroup(memcg)));
2660 
2661 	return 0;
2662 }
2663 
2664 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2665 {
2666 	if (mem_cgroup_is_root(memcg))
2667 		return;
2668 
2669 	page_counter_uncharge(&memcg->memory, nr_pages);
2670 	if (do_memsw_account())
2671 		page_counter_uncharge(&memcg->memsw, nr_pages);
2672 
2673 	css_put_many(&memcg->css, nr_pages);
2674 }
2675 
2676 static void lock_page_lru(struct page *page, int *isolated)
2677 {
2678 	pg_data_t *pgdat = page_pgdat(page);
2679 
2680 	spin_lock_irq(&pgdat->lru_lock);
2681 	if (PageLRU(page)) {
2682 		struct lruvec *lruvec;
2683 
2684 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2685 		ClearPageLRU(page);
2686 		del_page_from_lru_list(page, lruvec, page_lru(page));
2687 		*isolated = 1;
2688 	} else
2689 		*isolated = 0;
2690 }
2691 
2692 static void unlock_page_lru(struct page *page, int isolated)
2693 {
2694 	pg_data_t *pgdat = page_pgdat(page);
2695 
2696 	if (isolated) {
2697 		struct lruvec *lruvec;
2698 
2699 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2700 		VM_BUG_ON_PAGE(PageLRU(page), page);
2701 		SetPageLRU(page);
2702 		add_page_to_lru_list(page, lruvec, page_lru(page));
2703 	}
2704 	spin_unlock_irq(&pgdat->lru_lock);
2705 }
2706 
2707 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2708 			  bool lrucare)
2709 {
2710 	int isolated;
2711 
2712 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2713 
2714 	/*
2715 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2716 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2717 	 */
2718 	if (lrucare)
2719 		lock_page_lru(page, &isolated);
2720 
2721 	/*
2722 	 * Nobody should be changing or seriously looking at
2723 	 * page->mem_cgroup at this point:
2724 	 *
2725 	 * - the page is uncharged
2726 	 *
2727 	 * - the page is off-LRU
2728 	 *
2729 	 * - an anonymous fault has exclusive page access, except for
2730 	 *   a locked page table
2731 	 *
2732 	 * - a page cache insertion, a swapin fault, or a migration
2733 	 *   have the page locked
2734 	 */
2735 	page->mem_cgroup = memcg;
2736 
2737 	if (lrucare)
2738 		unlock_page_lru(page, isolated);
2739 }
2740 
2741 #ifdef CONFIG_MEMCG_KMEM
2742 static int memcg_alloc_cache_id(void)
2743 {
2744 	int id, size;
2745 	int err;
2746 
2747 	id = ida_simple_get(&memcg_cache_ida,
2748 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2749 	if (id < 0)
2750 		return id;
2751 
2752 	if (id < memcg_nr_cache_ids)
2753 		return id;
2754 
2755 	/*
2756 	 * There's no space for the new id in memcg_caches arrays,
2757 	 * so we have to grow them.
2758 	 */
2759 	down_write(&memcg_cache_ids_sem);
2760 
2761 	size = 2 * (id + 1);
2762 	if (size < MEMCG_CACHES_MIN_SIZE)
2763 		size = MEMCG_CACHES_MIN_SIZE;
2764 	else if (size > MEMCG_CACHES_MAX_SIZE)
2765 		size = MEMCG_CACHES_MAX_SIZE;
2766 
2767 	err = memcg_update_all_caches(size);
2768 	if (!err)
2769 		err = memcg_update_all_list_lrus(size);
2770 	if (!err)
2771 		memcg_nr_cache_ids = size;
2772 
2773 	up_write(&memcg_cache_ids_sem);
2774 
2775 	if (err) {
2776 		ida_simple_remove(&memcg_cache_ida, id);
2777 		return err;
2778 	}
2779 	return id;
2780 }
2781 
2782 static void memcg_free_cache_id(int id)
2783 {
2784 	ida_simple_remove(&memcg_cache_ida, id);
2785 }
2786 
2787 struct memcg_kmem_cache_create_work {
2788 	struct mem_cgroup *memcg;
2789 	struct kmem_cache *cachep;
2790 	struct work_struct work;
2791 };
2792 
2793 static void memcg_kmem_cache_create_func(struct work_struct *w)
2794 {
2795 	struct memcg_kmem_cache_create_work *cw =
2796 		container_of(w, struct memcg_kmem_cache_create_work, work);
2797 	struct mem_cgroup *memcg = cw->memcg;
2798 	struct kmem_cache *cachep = cw->cachep;
2799 
2800 	memcg_create_kmem_cache(memcg, cachep);
2801 
2802 	css_put(&memcg->css);
2803 	kfree(cw);
2804 }
2805 
2806 /*
2807  * Enqueue the creation of a per-memcg kmem_cache.
2808  */
2809 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2810 					       struct kmem_cache *cachep)
2811 {
2812 	struct memcg_kmem_cache_create_work *cw;
2813 
2814 	if (!css_tryget_online(&memcg->css))
2815 		return;
2816 
2817 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2818 	if (!cw)
2819 		return;
2820 
2821 	cw->memcg = memcg;
2822 	cw->cachep = cachep;
2823 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2824 
2825 	queue_work(memcg_kmem_cache_wq, &cw->work);
2826 }
2827 
2828 static inline bool memcg_kmem_bypass(void)
2829 {
2830 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2831 		return true;
2832 	return false;
2833 }
2834 
2835 /**
2836  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2837  * @cachep: the original global kmem cache
2838  *
2839  * Return the kmem_cache we're supposed to use for a slab allocation.
2840  * We try to use the current memcg's version of the cache.
2841  *
2842  * If the cache does not exist yet, if we are the first user of it, we
2843  * create it asynchronously in a workqueue and let the current allocation
2844  * go through with the original cache.
2845  *
2846  * This function takes a reference to the cache it returns to assure it
2847  * won't get destroyed while we are working with it. Once the caller is
2848  * done with it, memcg_kmem_put_cache() must be called to release the
2849  * reference.
2850  */
2851 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2852 {
2853 	struct mem_cgroup *memcg;
2854 	struct kmem_cache *memcg_cachep;
2855 	struct memcg_cache_array *arr;
2856 	int kmemcg_id;
2857 
2858 	VM_BUG_ON(!is_root_cache(cachep));
2859 
2860 	if (memcg_kmem_bypass())
2861 		return cachep;
2862 
2863 	rcu_read_lock();
2864 
2865 	if (unlikely(current->active_memcg))
2866 		memcg = current->active_memcg;
2867 	else
2868 		memcg = mem_cgroup_from_task(current);
2869 
2870 	if (!memcg || memcg == root_mem_cgroup)
2871 		goto out_unlock;
2872 
2873 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2874 	if (kmemcg_id < 0)
2875 		goto out_unlock;
2876 
2877 	arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2878 
2879 	/*
2880 	 * Make sure we will access the up-to-date value. The code updating
2881 	 * memcg_caches issues a write barrier to match the data dependency
2882 	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2883 	 */
2884 	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2885 
2886 	/*
2887 	 * If we are in a safe context (can wait, and not in interrupt
2888 	 * context), we could be be predictable and return right away.
2889 	 * This would guarantee that the allocation being performed
2890 	 * already belongs in the new cache.
2891 	 *
2892 	 * However, there are some clashes that can arrive from locking.
2893 	 * For instance, because we acquire the slab_mutex while doing
2894 	 * memcg_create_kmem_cache, this means no further allocation
2895 	 * could happen with the slab_mutex held. So it's better to
2896 	 * defer everything.
2897 	 *
2898 	 * If the memcg is dying or memcg_cache is about to be released,
2899 	 * don't bother creating new kmem_caches. Because memcg_cachep
2900 	 * is ZEROed as the fist step of kmem offlining, we don't need
2901 	 * percpu_ref_tryget_live() here. css_tryget_online() check in
2902 	 * memcg_schedule_kmem_cache_create() will prevent us from
2903 	 * creation of a new kmem_cache.
2904 	 */
2905 	if (unlikely(!memcg_cachep))
2906 		memcg_schedule_kmem_cache_create(memcg, cachep);
2907 	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2908 		cachep = memcg_cachep;
2909 out_unlock:
2910 	rcu_read_unlock();
2911 	return cachep;
2912 }
2913 
2914 /**
2915  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2916  * @cachep: the cache returned by memcg_kmem_get_cache
2917  */
2918 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2919 {
2920 	if (!is_root_cache(cachep))
2921 		percpu_ref_put(&cachep->memcg_params.refcnt);
2922 }
2923 
2924 /**
2925  * __memcg_kmem_charge_memcg: charge a kmem page
2926  * @page: page to charge
2927  * @gfp: reclaim mode
2928  * @order: allocation order
2929  * @memcg: memory cgroup to charge
2930  *
2931  * Returns 0 on success, an error code on failure.
2932  */
2933 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2934 			    struct mem_cgroup *memcg)
2935 {
2936 	unsigned int nr_pages = 1 << order;
2937 	struct page_counter *counter;
2938 	int ret;
2939 
2940 	ret = try_charge(memcg, gfp, nr_pages);
2941 	if (ret)
2942 		return ret;
2943 
2944 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2945 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2946 
2947 		/*
2948 		 * Enforce __GFP_NOFAIL allocation because callers are not
2949 		 * prepared to see failures and likely do not have any failure
2950 		 * handling code.
2951 		 */
2952 		if (gfp & __GFP_NOFAIL) {
2953 			page_counter_charge(&memcg->kmem, nr_pages);
2954 			return 0;
2955 		}
2956 		cancel_charge(memcg, nr_pages);
2957 		return -ENOMEM;
2958 	}
2959 	return 0;
2960 }
2961 
2962 /**
2963  * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2964  * @page: page to charge
2965  * @gfp: reclaim mode
2966  * @order: allocation order
2967  *
2968  * Returns 0 on success, an error code on failure.
2969  */
2970 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2971 {
2972 	struct mem_cgroup *memcg;
2973 	int ret = 0;
2974 
2975 	if (memcg_kmem_bypass())
2976 		return 0;
2977 
2978 	memcg = get_mem_cgroup_from_current();
2979 	if (!mem_cgroup_is_root(memcg)) {
2980 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2981 		if (!ret) {
2982 			page->mem_cgroup = memcg;
2983 			__SetPageKmemcg(page);
2984 		}
2985 	}
2986 	css_put(&memcg->css);
2987 	return ret;
2988 }
2989 
2990 /**
2991  * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2992  * @memcg: memcg to uncharge
2993  * @nr_pages: number of pages to uncharge
2994  */
2995 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2996 				 unsigned int nr_pages)
2997 {
2998 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2999 		page_counter_uncharge(&memcg->kmem, nr_pages);
3000 
3001 	page_counter_uncharge(&memcg->memory, nr_pages);
3002 	if (do_memsw_account())
3003 		page_counter_uncharge(&memcg->memsw, nr_pages);
3004 }
3005 /**
3006  * __memcg_kmem_uncharge: uncharge a kmem page
3007  * @page: page to uncharge
3008  * @order: allocation order
3009  */
3010 void __memcg_kmem_uncharge(struct page *page, int order)
3011 {
3012 	struct mem_cgroup *memcg = page->mem_cgroup;
3013 	unsigned int nr_pages = 1 << order;
3014 
3015 	if (!memcg)
3016 		return;
3017 
3018 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3019 	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
3020 	page->mem_cgroup = NULL;
3021 
3022 	/* slab pages do not have PageKmemcg flag set */
3023 	if (PageKmemcg(page))
3024 		__ClearPageKmemcg(page);
3025 
3026 	css_put_many(&memcg->css, nr_pages);
3027 }
3028 #endif /* CONFIG_MEMCG_KMEM */
3029 
3030 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3031 
3032 /*
3033  * Because tail pages are not marked as "used", set it. We're under
3034  * pgdat->lru_lock and migration entries setup in all page mappings.
3035  */
3036 void mem_cgroup_split_huge_fixup(struct page *head)
3037 {
3038 	int i;
3039 
3040 	if (mem_cgroup_disabled())
3041 		return;
3042 
3043 	for (i = 1; i < HPAGE_PMD_NR; i++)
3044 		head[i].mem_cgroup = head->mem_cgroup;
3045 
3046 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
3047 }
3048 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3049 
3050 #ifdef CONFIG_MEMCG_SWAP
3051 /**
3052  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3053  * @entry: swap entry to be moved
3054  * @from:  mem_cgroup which the entry is moved from
3055  * @to:  mem_cgroup which the entry is moved to
3056  *
3057  * It succeeds only when the swap_cgroup's record for this entry is the same
3058  * as the mem_cgroup's id of @from.
3059  *
3060  * Returns 0 on success, -EINVAL on failure.
3061  *
3062  * The caller must have charged to @to, IOW, called page_counter_charge() about
3063  * both res and memsw, and called css_get().
3064  */
3065 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3066 				struct mem_cgroup *from, struct mem_cgroup *to)
3067 {
3068 	unsigned short old_id, new_id;
3069 
3070 	old_id = mem_cgroup_id(from);
3071 	new_id = mem_cgroup_id(to);
3072 
3073 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3074 		mod_memcg_state(from, MEMCG_SWAP, -1);
3075 		mod_memcg_state(to, MEMCG_SWAP, 1);
3076 		return 0;
3077 	}
3078 	return -EINVAL;
3079 }
3080 #else
3081 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3082 				struct mem_cgroup *from, struct mem_cgroup *to)
3083 {
3084 	return -EINVAL;
3085 }
3086 #endif
3087 
3088 static DEFINE_MUTEX(memcg_max_mutex);
3089 
3090 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3091 				 unsigned long max, bool memsw)
3092 {
3093 	bool enlarge = false;
3094 	bool drained = false;
3095 	int ret;
3096 	bool limits_invariant;
3097 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3098 
3099 	do {
3100 		if (signal_pending(current)) {
3101 			ret = -EINTR;
3102 			break;
3103 		}
3104 
3105 		mutex_lock(&memcg_max_mutex);
3106 		/*
3107 		 * Make sure that the new limit (memsw or memory limit) doesn't
3108 		 * break our basic invariant rule memory.max <= memsw.max.
3109 		 */
3110 		limits_invariant = memsw ? max >= memcg->memory.max :
3111 					   max <= memcg->memsw.max;
3112 		if (!limits_invariant) {
3113 			mutex_unlock(&memcg_max_mutex);
3114 			ret = -EINVAL;
3115 			break;
3116 		}
3117 		if (max > counter->max)
3118 			enlarge = true;
3119 		ret = page_counter_set_max(counter, max);
3120 		mutex_unlock(&memcg_max_mutex);
3121 
3122 		if (!ret)
3123 			break;
3124 
3125 		if (!drained) {
3126 			drain_all_stock(memcg);
3127 			drained = true;
3128 			continue;
3129 		}
3130 
3131 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3132 					GFP_KERNEL, !memsw)) {
3133 			ret = -EBUSY;
3134 			break;
3135 		}
3136 	} while (true);
3137 
3138 	if (!ret && enlarge)
3139 		memcg_oom_recover(memcg);
3140 
3141 	return ret;
3142 }
3143 
3144 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3145 					    gfp_t gfp_mask,
3146 					    unsigned long *total_scanned)
3147 {
3148 	unsigned long nr_reclaimed = 0;
3149 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3150 	unsigned long reclaimed;
3151 	int loop = 0;
3152 	struct mem_cgroup_tree_per_node *mctz;
3153 	unsigned long excess;
3154 	unsigned long nr_scanned;
3155 
3156 	if (order > 0)
3157 		return 0;
3158 
3159 	mctz = soft_limit_tree_node(pgdat->node_id);
3160 
3161 	/*
3162 	 * Do not even bother to check the largest node if the root
3163 	 * is empty. Do it lockless to prevent lock bouncing. Races
3164 	 * are acceptable as soft limit is best effort anyway.
3165 	 */
3166 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3167 		return 0;
3168 
3169 	/*
3170 	 * This loop can run a while, specially if mem_cgroup's continuously
3171 	 * keep exceeding their soft limit and putting the system under
3172 	 * pressure
3173 	 */
3174 	do {
3175 		if (next_mz)
3176 			mz = next_mz;
3177 		else
3178 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3179 		if (!mz)
3180 			break;
3181 
3182 		nr_scanned = 0;
3183 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3184 						    gfp_mask, &nr_scanned);
3185 		nr_reclaimed += reclaimed;
3186 		*total_scanned += nr_scanned;
3187 		spin_lock_irq(&mctz->lock);
3188 		__mem_cgroup_remove_exceeded(mz, mctz);
3189 
3190 		/*
3191 		 * If we failed to reclaim anything from this memory cgroup
3192 		 * it is time to move on to the next cgroup
3193 		 */
3194 		next_mz = NULL;
3195 		if (!reclaimed)
3196 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3197 
3198 		excess = soft_limit_excess(mz->memcg);
3199 		/*
3200 		 * One school of thought says that we should not add
3201 		 * back the node to the tree if reclaim returns 0.
3202 		 * But our reclaim could return 0, simply because due
3203 		 * to priority we are exposing a smaller subset of
3204 		 * memory to reclaim from. Consider this as a longer
3205 		 * term TODO.
3206 		 */
3207 		/* If excess == 0, no tree ops */
3208 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3209 		spin_unlock_irq(&mctz->lock);
3210 		css_put(&mz->memcg->css);
3211 		loop++;
3212 		/*
3213 		 * Could not reclaim anything and there are no more
3214 		 * mem cgroups to try or we seem to be looping without
3215 		 * reclaiming anything.
3216 		 */
3217 		if (!nr_reclaimed &&
3218 			(next_mz == NULL ||
3219 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3220 			break;
3221 	} while (!nr_reclaimed);
3222 	if (next_mz)
3223 		css_put(&next_mz->memcg->css);
3224 	return nr_reclaimed;
3225 }
3226 
3227 /*
3228  * Test whether @memcg has children, dead or alive.  Note that this
3229  * function doesn't care whether @memcg has use_hierarchy enabled and
3230  * returns %true if there are child csses according to the cgroup
3231  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3232  */
3233 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3234 {
3235 	bool ret;
3236 
3237 	rcu_read_lock();
3238 	ret = css_next_child(NULL, &memcg->css);
3239 	rcu_read_unlock();
3240 	return ret;
3241 }
3242 
3243 /*
3244  * Reclaims as many pages from the given memcg as possible.
3245  *
3246  * Caller is responsible for holding css reference for memcg.
3247  */
3248 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3249 {
3250 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3251 
3252 	/* we call try-to-free pages for make this cgroup empty */
3253 	lru_add_drain_all();
3254 
3255 	drain_all_stock(memcg);
3256 
3257 	/* try to free all pages in this cgroup */
3258 	while (nr_retries && page_counter_read(&memcg->memory)) {
3259 		int progress;
3260 
3261 		if (signal_pending(current))
3262 			return -EINTR;
3263 
3264 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3265 							GFP_KERNEL, true);
3266 		if (!progress) {
3267 			nr_retries--;
3268 			/* maybe some writeback is necessary */
3269 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3270 		}
3271 
3272 	}
3273 
3274 	return 0;
3275 }
3276 
3277 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3278 					    char *buf, size_t nbytes,
3279 					    loff_t off)
3280 {
3281 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3282 
3283 	if (mem_cgroup_is_root(memcg))
3284 		return -EINVAL;
3285 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3286 }
3287 
3288 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3289 				     struct cftype *cft)
3290 {
3291 	return mem_cgroup_from_css(css)->use_hierarchy;
3292 }
3293 
3294 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3295 				      struct cftype *cft, u64 val)
3296 {
3297 	int retval = 0;
3298 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3299 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3300 
3301 	if (memcg->use_hierarchy == val)
3302 		return 0;
3303 
3304 	/*
3305 	 * If parent's use_hierarchy is set, we can't make any modifications
3306 	 * in the child subtrees. If it is unset, then the change can
3307 	 * occur, provided the current cgroup has no children.
3308 	 *
3309 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3310 	 * set if there are no children.
3311 	 */
3312 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3313 				(val == 1 || val == 0)) {
3314 		if (!memcg_has_children(memcg))
3315 			memcg->use_hierarchy = val;
3316 		else
3317 			retval = -EBUSY;
3318 	} else
3319 		retval = -EINVAL;
3320 
3321 	return retval;
3322 }
3323 
3324 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3325 {
3326 	unsigned long val;
3327 
3328 	if (mem_cgroup_is_root(memcg)) {
3329 		val = memcg_page_state(memcg, MEMCG_CACHE) +
3330 			memcg_page_state(memcg, MEMCG_RSS);
3331 		if (swap)
3332 			val += memcg_page_state(memcg, MEMCG_SWAP);
3333 	} else {
3334 		if (!swap)
3335 			val = page_counter_read(&memcg->memory);
3336 		else
3337 			val = page_counter_read(&memcg->memsw);
3338 	}
3339 	return val;
3340 }
3341 
3342 enum {
3343 	RES_USAGE,
3344 	RES_LIMIT,
3345 	RES_MAX_USAGE,
3346 	RES_FAILCNT,
3347 	RES_SOFT_LIMIT,
3348 };
3349 
3350 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3351 			       struct cftype *cft)
3352 {
3353 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3354 	struct page_counter *counter;
3355 
3356 	switch (MEMFILE_TYPE(cft->private)) {
3357 	case _MEM:
3358 		counter = &memcg->memory;
3359 		break;
3360 	case _MEMSWAP:
3361 		counter = &memcg->memsw;
3362 		break;
3363 	case _KMEM:
3364 		counter = &memcg->kmem;
3365 		break;
3366 	case _TCP:
3367 		counter = &memcg->tcpmem;
3368 		break;
3369 	default:
3370 		BUG();
3371 	}
3372 
3373 	switch (MEMFILE_ATTR(cft->private)) {
3374 	case RES_USAGE:
3375 		if (counter == &memcg->memory)
3376 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3377 		if (counter == &memcg->memsw)
3378 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3379 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3380 	case RES_LIMIT:
3381 		return (u64)counter->max * PAGE_SIZE;
3382 	case RES_MAX_USAGE:
3383 		return (u64)counter->watermark * PAGE_SIZE;
3384 	case RES_FAILCNT:
3385 		return counter->failcnt;
3386 	case RES_SOFT_LIMIT:
3387 		return (u64)memcg->soft_limit * PAGE_SIZE;
3388 	default:
3389 		BUG();
3390 	}
3391 }
3392 
3393 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
3394 {
3395 	unsigned long stat[MEMCG_NR_STAT];
3396 	struct mem_cgroup *mi;
3397 	int node, cpu, i;
3398 	int min_idx, max_idx;
3399 
3400 	if (slab_only) {
3401 		min_idx = NR_SLAB_RECLAIMABLE;
3402 		max_idx = NR_SLAB_UNRECLAIMABLE;
3403 	} else {
3404 		min_idx = 0;
3405 		max_idx = MEMCG_NR_STAT;
3406 	}
3407 
3408 	for (i = min_idx; i < max_idx; i++)
3409 		stat[i] = 0;
3410 
3411 	for_each_online_cpu(cpu)
3412 		for (i = min_idx; i < max_idx; i++)
3413 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3414 
3415 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3416 		for (i = min_idx; i < max_idx; i++)
3417 			atomic_long_add(stat[i], &mi->vmstats[i]);
3418 
3419 	if (!slab_only)
3420 		max_idx = NR_VM_NODE_STAT_ITEMS;
3421 
3422 	for_each_node(node) {
3423 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3424 		struct mem_cgroup_per_node *pi;
3425 
3426 		for (i = min_idx; i < max_idx; i++)
3427 			stat[i] = 0;
3428 
3429 		for_each_online_cpu(cpu)
3430 			for (i = min_idx; i < max_idx; i++)
3431 				stat[i] += per_cpu(
3432 					pn->lruvec_stat_cpu->count[i], cpu);
3433 
3434 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3435 			for (i = min_idx; i < max_idx; i++)
3436 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3437 	}
3438 }
3439 
3440 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3441 {
3442 	unsigned long events[NR_VM_EVENT_ITEMS];
3443 	struct mem_cgroup *mi;
3444 	int cpu, i;
3445 
3446 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3447 		events[i] = 0;
3448 
3449 	for_each_online_cpu(cpu)
3450 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3451 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3452 					     cpu);
3453 
3454 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3455 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3456 			atomic_long_add(events[i], &mi->vmevents[i]);
3457 }
3458 
3459 #ifdef CONFIG_MEMCG_KMEM
3460 static int memcg_online_kmem(struct mem_cgroup *memcg)
3461 {
3462 	int memcg_id;
3463 
3464 	if (cgroup_memory_nokmem)
3465 		return 0;
3466 
3467 	BUG_ON(memcg->kmemcg_id >= 0);
3468 	BUG_ON(memcg->kmem_state);
3469 
3470 	memcg_id = memcg_alloc_cache_id();
3471 	if (memcg_id < 0)
3472 		return memcg_id;
3473 
3474 	static_branch_inc(&memcg_kmem_enabled_key);
3475 	/*
3476 	 * A memory cgroup is considered kmem-online as soon as it gets
3477 	 * kmemcg_id. Setting the id after enabling static branching will
3478 	 * guarantee no one starts accounting before all call sites are
3479 	 * patched.
3480 	 */
3481 	memcg->kmemcg_id = memcg_id;
3482 	memcg->kmem_state = KMEM_ONLINE;
3483 	INIT_LIST_HEAD(&memcg->kmem_caches);
3484 
3485 	return 0;
3486 }
3487 
3488 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3489 {
3490 	struct cgroup_subsys_state *css;
3491 	struct mem_cgroup *parent, *child;
3492 	int kmemcg_id;
3493 
3494 	if (memcg->kmem_state != KMEM_ONLINE)
3495 		return;
3496 	/*
3497 	 * Clear the online state before clearing memcg_caches array
3498 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3499 	 * guarantees that no cache will be created for this cgroup
3500 	 * after we are done (see memcg_create_kmem_cache()).
3501 	 */
3502 	memcg->kmem_state = KMEM_ALLOCATED;
3503 
3504 	parent = parent_mem_cgroup(memcg);
3505 	if (!parent)
3506 		parent = root_mem_cgroup;
3507 
3508 	/*
3509 	 * Deactivate and reparent kmem_caches. Then flush percpu
3510 	 * slab statistics to have precise values at the parent and
3511 	 * all ancestor levels. It's required to keep slab stats
3512 	 * accurate after the reparenting of kmem_caches.
3513 	 */
3514 	memcg_deactivate_kmem_caches(memcg, parent);
3515 	memcg_flush_percpu_vmstats(memcg, true);
3516 
3517 	kmemcg_id = memcg->kmemcg_id;
3518 	BUG_ON(kmemcg_id < 0);
3519 
3520 	/*
3521 	 * Change kmemcg_id of this cgroup and all its descendants to the
3522 	 * parent's id, and then move all entries from this cgroup's list_lrus
3523 	 * to ones of the parent. After we have finished, all list_lrus
3524 	 * corresponding to this cgroup are guaranteed to remain empty. The
3525 	 * ordering is imposed by list_lru_node->lock taken by
3526 	 * memcg_drain_all_list_lrus().
3527 	 */
3528 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3529 	css_for_each_descendant_pre(css, &memcg->css) {
3530 		child = mem_cgroup_from_css(css);
3531 		BUG_ON(child->kmemcg_id != kmemcg_id);
3532 		child->kmemcg_id = parent->kmemcg_id;
3533 		if (!memcg->use_hierarchy)
3534 			break;
3535 	}
3536 	rcu_read_unlock();
3537 
3538 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3539 
3540 	memcg_free_cache_id(kmemcg_id);
3541 }
3542 
3543 static void memcg_free_kmem(struct mem_cgroup *memcg)
3544 {
3545 	/* css_alloc() failed, offlining didn't happen */
3546 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3547 		memcg_offline_kmem(memcg);
3548 
3549 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3550 		WARN_ON(!list_empty(&memcg->kmem_caches));
3551 		static_branch_dec(&memcg_kmem_enabled_key);
3552 	}
3553 }
3554 #else
3555 static int memcg_online_kmem(struct mem_cgroup *memcg)
3556 {
3557 	return 0;
3558 }
3559 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3560 {
3561 }
3562 static void memcg_free_kmem(struct mem_cgroup *memcg)
3563 {
3564 }
3565 #endif /* CONFIG_MEMCG_KMEM */
3566 
3567 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3568 				 unsigned long max)
3569 {
3570 	int ret;
3571 
3572 	mutex_lock(&memcg_max_mutex);
3573 	ret = page_counter_set_max(&memcg->kmem, max);
3574 	mutex_unlock(&memcg_max_mutex);
3575 	return ret;
3576 }
3577 
3578 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3579 {
3580 	int ret;
3581 
3582 	mutex_lock(&memcg_max_mutex);
3583 
3584 	ret = page_counter_set_max(&memcg->tcpmem, max);
3585 	if (ret)
3586 		goto out;
3587 
3588 	if (!memcg->tcpmem_active) {
3589 		/*
3590 		 * The active flag needs to be written after the static_key
3591 		 * update. This is what guarantees that the socket activation
3592 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3593 		 * for details, and note that we don't mark any socket as
3594 		 * belonging to this memcg until that flag is up.
3595 		 *
3596 		 * We need to do this, because static_keys will span multiple
3597 		 * sites, but we can't control their order. If we mark a socket
3598 		 * as accounted, but the accounting functions are not patched in
3599 		 * yet, we'll lose accounting.
3600 		 *
3601 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3602 		 * because when this value change, the code to process it is not
3603 		 * patched in yet.
3604 		 */
3605 		static_branch_inc(&memcg_sockets_enabled_key);
3606 		memcg->tcpmem_active = true;
3607 	}
3608 out:
3609 	mutex_unlock(&memcg_max_mutex);
3610 	return ret;
3611 }
3612 
3613 /*
3614  * The user of this function is...
3615  * RES_LIMIT.
3616  */
3617 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3618 				char *buf, size_t nbytes, loff_t off)
3619 {
3620 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3621 	unsigned long nr_pages;
3622 	int ret;
3623 
3624 	buf = strstrip(buf);
3625 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3626 	if (ret)
3627 		return ret;
3628 
3629 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3630 	case RES_LIMIT:
3631 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3632 			ret = -EINVAL;
3633 			break;
3634 		}
3635 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3636 		case _MEM:
3637 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3638 			break;
3639 		case _MEMSWAP:
3640 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3641 			break;
3642 		case _KMEM:
3643 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3644 				     "Please report your usecase to linux-mm@kvack.org if you "
3645 				     "depend on this functionality.\n");
3646 			ret = memcg_update_kmem_max(memcg, nr_pages);
3647 			break;
3648 		case _TCP:
3649 			ret = memcg_update_tcp_max(memcg, nr_pages);
3650 			break;
3651 		}
3652 		break;
3653 	case RES_SOFT_LIMIT:
3654 		memcg->soft_limit = nr_pages;
3655 		ret = 0;
3656 		break;
3657 	}
3658 	return ret ?: nbytes;
3659 }
3660 
3661 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3662 				size_t nbytes, loff_t off)
3663 {
3664 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3665 	struct page_counter *counter;
3666 
3667 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3668 	case _MEM:
3669 		counter = &memcg->memory;
3670 		break;
3671 	case _MEMSWAP:
3672 		counter = &memcg->memsw;
3673 		break;
3674 	case _KMEM:
3675 		counter = &memcg->kmem;
3676 		break;
3677 	case _TCP:
3678 		counter = &memcg->tcpmem;
3679 		break;
3680 	default:
3681 		BUG();
3682 	}
3683 
3684 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3685 	case RES_MAX_USAGE:
3686 		page_counter_reset_watermark(counter);
3687 		break;
3688 	case RES_FAILCNT:
3689 		counter->failcnt = 0;
3690 		break;
3691 	default:
3692 		BUG();
3693 	}
3694 
3695 	return nbytes;
3696 }
3697 
3698 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3699 					struct cftype *cft)
3700 {
3701 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3702 }
3703 
3704 #ifdef CONFIG_MMU
3705 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3706 					struct cftype *cft, u64 val)
3707 {
3708 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3709 
3710 	if (val & ~MOVE_MASK)
3711 		return -EINVAL;
3712 
3713 	/*
3714 	 * No kind of locking is needed in here, because ->can_attach() will
3715 	 * check this value once in the beginning of the process, and then carry
3716 	 * on with stale data. This means that changes to this value will only
3717 	 * affect task migrations starting after the change.
3718 	 */
3719 	memcg->move_charge_at_immigrate = val;
3720 	return 0;
3721 }
3722 #else
3723 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3724 					struct cftype *cft, u64 val)
3725 {
3726 	return -ENOSYS;
3727 }
3728 #endif
3729 
3730 #ifdef CONFIG_NUMA
3731 
3732 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3733 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3734 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3735 
3736 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3737 					   int nid, unsigned int lru_mask)
3738 {
3739 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3740 	unsigned long nr = 0;
3741 	enum lru_list lru;
3742 
3743 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3744 
3745 	for_each_lru(lru) {
3746 		if (!(BIT(lru) & lru_mask))
3747 			continue;
3748 		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3749 	}
3750 	return nr;
3751 }
3752 
3753 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3754 					     unsigned int lru_mask)
3755 {
3756 	unsigned long nr = 0;
3757 	enum lru_list lru;
3758 
3759 	for_each_lru(lru) {
3760 		if (!(BIT(lru) & lru_mask))
3761 			continue;
3762 		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3763 	}
3764 	return nr;
3765 }
3766 
3767 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3768 {
3769 	struct numa_stat {
3770 		const char *name;
3771 		unsigned int lru_mask;
3772 	};
3773 
3774 	static const struct numa_stat stats[] = {
3775 		{ "total", LRU_ALL },
3776 		{ "file", LRU_ALL_FILE },
3777 		{ "anon", LRU_ALL_ANON },
3778 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3779 	};
3780 	const struct numa_stat *stat;
3781 	int nid;
3782 	unsigned long nr;
3783 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3784 
3785 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3786 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3787 		seq_printf(m, "%s=%lu", stat->name, nr);
3788 		for_each_node_state(nid, N_MEMORY) {
3789 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3790 							  stat->lru_mask);
3791 			seq_printf(m, " N%d=%lu", nid, nr);
3792 		}
3793 		seq_putc(m, '\n');
3794 	}
3795 
3796 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3797 		struct mem_cgroup *iter;
3798 
3799 		nr = 0;
3800 		for_each_mem_cgroup_tree(iter, memcg)
3801 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3802 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3803 		for_each_node_state(nid, N_MEMORY) {
3804 			nr = 0;
3805 			for_each_mem_cgroup_tree(iter, memcg)
3806 				nr += mem_cgroup_node_nr_lru_pages(
3807 					iter, nid, stat->lru_mask);
3808 			seq_printf(m, " N%d=%lu", nid, nr);
3809 		}
3810 		seq_putc(m, '\n');
3811 	}
3812 
3813 	return 0;
3814 }
3815 #endif /* CONFIG_NUMA */
3816 
3817 static const unsigned int memcg1_stats[] = {
3818 	MEMCG_CACHE,
3819 	MEMCG_RSS,
3820 	MEMCG_RSS_HUGE,
3821 	NR_SHMEM,
3822 	NR_FILE_MAPPED,
3823 	NR_FILE_DIRTY,
3824 	NR_WRITEBACK,
3825 	MEMCG_SWAP,
3826 };
3827 
3828 static const char *const memcg1_stat_names[] = {
3829 	"cache",
3830 	"rss",
3831 	"rss_huge",
3832 	"shmem",
3833 	"mapped_file",
3834 	"dirty",
3835 	"writeback",
3836 	"swap",
3837 };
3838 
3839 /* Universal VM events cgroup1 shows, original sort order */
3840 static const unsigned int memcg1_events[] = {
3841 	PGPGIN,
3842 	PGPGOUT,
3843 	PGFAULT,
3844 	PGMAJFAULT,
3845 };
3846 
3847 static const char *const memcg1_event_names[] = {
3848 	"pgpgin",
3849 	"pgpgout",
3850 	"pgfault",
3851 	"pgmajfault",
3852 };
3853 
3854 static int memcg_stat_show(struct seq_file *m, void *v)
3855 {
3856 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3857 	unsigned long memory, memsw;
3858 	struct mem_cgroup *mi;
3859 	unsigned int i;
3860 
3861 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3862 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3863 
3864 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3865 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3866 			continue;
3867 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3868 			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3869 			   PAGE_SIZE);
3870 	}
3871 
3872 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3873 		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3874 			   memcg_events_local(memcg, memcg1_events[i]));
3875 
3876 	for (i = 0; i < NR_LRU_LISTS; i++)
3877 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3878 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3879 			   PAGE_SIZE);
3880 
3881 	/* Hierarchical information */
3882 	memory = memsw = PAGE_COUNTER_MAX;
3883 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3884 		memory = min(memory, mi->memory.max);
3885 		memsw = min(memsw, mi->memsw.max);
3886 	}
3887 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3888 		   (u64)memory * PAGE_SIZE);
3889 	if (do_memsw_account())
3890 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3891 			   (u64)memsw * PAGE_SIZE);
3892 
3893 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3894 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3895 			continue;
3896 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3897 			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3898 			   PAGE_SIZE);
3899 	}
3900 
3901 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3902 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3903 			   (u64)memcg_events(memcg, memcg1_events[i]));
3904 
3905 	for (i = 0; i < NR_LRU_LISTS; i++)
3906 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3907 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3908 			   PAGE_SIZE);
3909 
3910 #ifdef CONFIG_DEBUG_VM
3911 	{
3912 		pg_data_t *pgdat;
3913 		struct mem_cgroup_per_node *mz;
3914 		struct zone_reclaim_stat *rstat;
3915 		unsigned long recent_rotated[2] = {0, 0};
3916 		unsigned long recent_scanned[2] = {0, 0};
3917 
3918 		for_each_online_pgdat(pgdat) {
3919 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3920 			rstat = &mz->lruvec.reclaim_stat;
3921 
3922 			recent_rotated[0] += rstat->recent_rotated[0];
3923 			recent_rotated[1] += rstat->recent_rotated[1];
3924 			recent_scanned[0] += rstat->recent_scanned[0];
3925 			recent_scanned[1] += rstat->recent_scanned[1];
3926 		}
3927 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3928 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3929 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3930 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3931 	}
3932 #endif
3933 
3934 	return 0;
3935 }
3936 
3937 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3938 				      struct cftype *cft)
3939 {
3940 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3941 
3942 	return mem_cgroup_swappiness(memcg);
3943 }
3944 
3945 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3946 				       struct cftype *cft, u64 val)
3947 {
3948 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3949 
3950 	if (val > 100)
3951 		return -EINVAL;
3952 
3953 	if (css->parent)
3954 		memcg->swappiness = val;
3955 	else
3956 		vm_swappiness = val;
3957 
3958 	return 0;
3959 }
3960 
3961 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3962 {
3963 	struct mem_cgroup_threshold_ary *t;
3964 	unsigned long usage;
3965 	int i;
3966 
3967 	rcu_read_lock();
3968 	if (!swap)
3969 		t = rcu_dereference(memcg->thresholds.primary);
3970 	else
3971 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3972 
3973 	if (!t)
3974 		goto unlock;
3975 
3976 	usage = mem_cgroup_usage(memcg, swap);
3977 
3978 	/*
3979 	 * current_threshold points to threshold just below or equal to usage.
3980 	 * If it's not true, a threshold was crossed after last
3981 	 * call of __mem_cgroup_threshold().
3982 	 */
3983 	i = t->current_threshold;
3984 
3985 	/*
3986 	 * Iterate backward over array of thresholds starting from
3987 	 * current_threshold and check if a threshold is crossed.
3988 	 * If none of thresholds below usage is crossed, we read
3989 	 * only one element of the array here.
3990 	 */
3991 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3992 		eventfd_signal(t->entries[i].eventfd, 1);
3993 
3994 	/* i = current_threshold + 1 */
3995 	i++;
3996 
3997 	/*
3998 	 * Iterate forward over array of thresholds starting from
3999 	 * current_threshold+1 and check if a threshold is crossed.
4000 	 * If none of thresholds above usage is crossed, we read
4001 	 * only one element of the array here.
4002 	 */
4003 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4004 		eventfd_signal(t->entries[i].eventfd, 1);
4005 
4006 	/* Update current_threshold */
4007 	t->current_threshold = i - 1;
4008 unlock:
4009 	rcu_read_unlock();
4010 }
4011 
4012 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4013 {
4014 	while (memcg) {
4015 		__mem_cgroup_threshold(memcg, false);
4016 		if (do_memsw_account())
4017 			__mem_cgroup_threshold(memcg, true);
4018 
4019 		memcg = parent_mem_cgroup(memcg);
4020 	}
4021 }
4022 
4023 static int compare_thresholds(const void *a, const void *b)
4024 {
4025 	const struct mem_cgroup_threshold *_a = a;
4026 	const struct mem_cgroup_threshold *_b = b;
4027 
4028 	if (_a->threshold > _b->threshold)
4029 		return 1;
4030 
4031 	if (_a->threshold < _b->threshold)
4032 		return -1;
4033 
4034 	return 0;
4035 }
4036 
4037 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4038 {
4039 	struct mem_cgroup_eventfd_list *ev;
4040 
4041 	spin_lock(&memcg_oom_lock);
4042 
4043 	list_for_each_entry(ev, &memcg->oom_notify, list)
4044 		eventfd_signal(ev->eventfd, 1);
4045 
4046 	spin_unlock(&memcg_oom_lock);
4047 	return 0;
4048 }
4049 
4050 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4051 {
4052 	struct mem_cgroup *iter;
4053 
4054 	for_each_mem_cgroup_tree(iter, memcg)
4055 		mem_cgroup_oom_notify_cb(iter);
4056 }
4057 
4058 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4059 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4060 {
4061 	struct mem_cgroup_thresholds *thresholds;
4062 	struct mem_cgroup_threshold_ary *new;
4063 	unsigned long threshold;
4064 	unsigned long usage;
4065 	int i, size, ret;
4066 
4067 	ret = page_counter_memparse(args, "-1", &threshold);
4068 	if (ret)
4069 		return ret;
4070 
4071 	mutex_lock(&memcg->thresholds_lock);
4072 
4073 	if (type == _MEM) {
4074 		thresholds = &memcg->thresholds;
4075 		usage = mem_cgroup_usage(memcg, false);
4076 	} else if (type == _MEMSWAP) {
4077 		thresholds = &memcg->memsw_thresholds;
4078 		usage = mem_cgroup_usage(memcg, true);
4079 	} else
4080 		BUG();
4081 
4082 	/* Check if a threshold crossed before adding a new one */
4083 	if (thresholds->primary)
4084 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4085 
4086 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4087 
4088 	/* Allocate memory for new array of thresholds */
4089 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4090 	if (!new) {
4091 		ret = -ENOMEM;
4092 		goto unlock;
4093 	}
4094 	new->size = size;
4095 
4096 	/* Copy thresholds (if any) to new array */
4097 	if (thresholds->primary) {
4098 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4099 				sizeof(struct mem_cgroup_threshold));
4100 	}
4101 
4102 	/* Add new threshold */
4103 	new->entries[size - 1].eventfd = eventfd;
4104 	new->entries[size - 1].threshold = threshold;
4105 
4106 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4107 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4108 			compare_thresholds, NULL);
4109 
4110 	/* Find current threshold */
4111 	new->current_threshold = -1;
4112 	for (i = 0; i < size; i++) {
4113 		if (new->entries[i].threshold <= usage) {
4114 			/*
4115 			 * new->current_threshold will not be used until
4116 			 * rcu_assign_pointer(), so it's safe to increment
4117 			 * it here.
4118 			 */
4119 			++new->current_threshold;
4120 		} else
4121 			break;
4122 	}
4123 
4124 	/* Free old spare buffer and save old primary buffer as spare */
4125 	kfree(thresholds->spare);
4126 	thresholds->spare = thresholds->primary;
4127 
4128 	rcu_assign_pointer(thresholds->primary, new);
4129 
4130 	/* To be sure that nobody uses thresholds */
4131 	synchronize_rcu();
4132 
4133 unlock:
4134 	mutex_unlock(&memcg->thresholds_lock);
4135 
4136 	return ret;
4137 }
4138 
4139 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4140 	struct eventfd_ctx *eventfd, const char *args)
4141 {
4142 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4143 }
4144 
4145 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4146 	struct eventfd_ctx *eventfd, const char *args)
4147 {
4148 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4149 }
4150 
4151 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4152 	struct eventfd_ctx *eventfd, enum res_type type)
4153 {
4154 	struct mem_cgroup_thresholds *thresholds;
4155 	struct mem_cgroup_threshold_ary *new;
4156 	unsigned long usage;
4157 	int i, j, size;
4158 
4159 	mutex_lock(&memcg->thresholds_lock);
4160 
4161 	if (type == _MEM) {
4162 		thresholds = &memcg->thresholds;
4163 		usage = mem_cgroup_usage(memcg, false);
4164 	} else if (type == _MEMSWAP) {
4165 		thresholds = &memcg->memsw_thresholds;
4166 		usage = mem_cgroup_usage(memcg, true);
4167 	} else
4168 		BUG();
4169 
4170 	if (!thresholds->primary)
4171 		goto unlock;
4172 
4173 	/* Check if a threshold crossed before removing */
4174 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4175 
4176 	/* Calculate new number of threshold */
4177 	size = 0;
4178 	for (i = 0; i < thresholds->primary->size; i++) {
4179 		if (thresholds->primary->entries[i].eventfd != eventfd)
4180 			size++;
4181 	}
4182 
4183 	new = thresholds->spare;
4184 
4185 	/* Set thresholds array to NULL if we don't have thresholds */
4186 	if (!size) {
4187 		kfree(new);
4188 		new = NULL;
4189 		goto swap_buffers;
4190 	}
4191 
4192 	new->size = size;
4193 
4194 	/* Copy thresholds and find current threshold */
4195 	new->current_threshold = -1;
4196 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4197 		if (thresholds->primary->entries[i].eventfd == eventfd)
4198 			continue;
4199 
4200 		new->entries[j] = thresholds->primary->entries[i];
4201 		if (new->entries[j].threshold <= usage) {
4202 			/*
4203 			 * new->current_threshold will not be used
4204 			 * until rcu_assign_pointer(), so it's safe to increment
4205 			 * it here.
4206 			 */
4207 			++new->current_threshold;
4208 		}
4209 		j++;
4210 	}
4211 
4212 swap_buffers:
4213 	/* Swap primary and spare array */
4214 	thresholds->spare = thresholds->primary;
4215 
4216 	rcu_assign_pointer(thresholds->primary, new);
4217 
4218 	/* To be sure that nobody uses thresholds */
4219 	synchronize_rcu();
4220 
4221 	/* If all events are unregistered, free the spare array */
4222 	if (!new) {
4223 		kfree(thresholds->spare);
4224 		thresholds->spare = NULL;
4225 	}
4226 unlock:
4227 	mutex_unlock(&memcg->thresholds_lock);
4228 }
4229 
4230 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4231 	struct eventfd_ctx *eventfd)
4232 {
4233 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4234 }
4235 
4236 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4237 	struct eventfd_ctx *eventfd)
4238 {
4239 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4240 }
4241 
4242 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4243 	struct eventfd_ctx *eventfd, const char *args)
4244 {
4245 	struct mem_cgroup_eventfd_list *event;
4246 
4247 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4248 	if (!event)
4249 		return -ENOMEM;
4250 
4251 	spin_lock(&memcg_oom_lock);
4252 
4253 	event->eventfd = eventfd;
4254 	list_add(&event->list, &memcg->oom_notify);
4255 
4256 	/* already in OOM ? */
4257 	if (memcg->under_oom)
4258 		eventfd_signal(eventfd, 1);
4259 	spin_unlock(&memcg_oom_lock);
4260 
4261 	return 0;
4262 }
4263 
4264 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4265 	struct eventfd_ctx *eventfd)
4266 {
4267 	struct mem_cgroup_eventfd_list *ev, *tmp;
4268 
4269 	spin_lock(&memcg_oom_lock);
4270 
4271 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4272 		if (ev->eventfd == eventfd) {
4273 			list_del(&ev->list);
4274 			kfree(ev);
4275 		}
4276 	}
4277 
4278 	spin_unlock(&memcg_oom_lock);
4279 }
4280 
4281 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4282 {
4283 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4284 
4285 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4286 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4287 	seq_printf(sf, "oom_kill %lu\n",
4288 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4289 	return 0;
4290 }
4291 
4292 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4293 	struct cftype *cft, u64 val)
4294 {
4295 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4296 
4297 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4298 	if (!css->parent || !((val == 0) || (val == 1)))
4299 		return -EINVAL;
4300 
4301 	memcg->oom_kill_disable = val;
4302 	if (!val)
4303 		memcg_oom_recover(memcg);
4304 
4305 	return 0;
4306 }
4307 
4308 #ifdef CONFIG_CGROUP_WRITEBACK
4309 
4310 #include <trace/events/writeback.h>
4311 
4312 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4313 {
4314 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4315 }
4316 
4317 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4318 {
4319 	wb_domain_exit(&memcg->cgwb_domain);
4320 }
4321 
4322 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4323 {
4324 	wb_domain_size_changed(&memcg->cgwb_domain);
4325 }
4326 
4327 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4328 {
4329 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4330 
4331 	if (!memcg->css.parent)
4332 		return NULL;
4333 
4334 	return &memcg->cgwb_domain;
4335 }
4336 
4337 /*
4338  * idx can be of type enum memcg_stat_item or node_stat_item.
4339  * Keep in sync with memcg_exact_page().
4340  */
4341 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4342 {
4343 	long x = atomic_long_read(&memcg->vmstats[idx]);
4344 	int cpu;
4345 
4346 	for_each_online_cpu(cpu)
4347 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4348 	if (x < 0)
4349 		x = 0;
4350 	return x;
4351 }
4352 
4353 /**
4354  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4355  * @wb: bdi_writeback in question
4356  * @pfilepages: out parameter for number of file pages
4357  * @pheadroom: out parameter for number of allocatable pages according to memcg
4358  * @pdirty: out parameter for number of dirty pages
4359  * @pwriteback: out parameter for number of pages under writeback
4360  *
4361  * Determine the numbers of file, headroom, dirty, and writeback pages in
4362  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4363  * is a bit more involved.
4364  *
4365  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4366  * headroom is calculated as the lowest headroom of itself and the
4367  * ancestors.  Note that this doesn't consider the actual amount of
4368  * available memory in the system.  The caller should further cap
4369  * *@pheadroom accordingly.
4370  */
4371 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4372 			 unsigned long *pheadroom, unsigned long *pdirty,
4373 			 unsigned long *pwriteback)
4374 {
4375 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4376 	struct mem_cgroup *parent;
4377 
4378 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4379 
4380 	/* this should eventually include NR_UNSTABLE_NFS */
4381 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4382 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4383 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4384 	*pheadroom = PAGE_COUNTER_MAX;
4385 
4386 	while ((parent = parent_mem_cgroup(memcg))) {
4387 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4388 		unsigned long used = page_counter_read(&memcg->memory);
4389 
4390 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4391 		memcg = parent;
4392 	}
4393 }
4394 
4395 /*
4396  * Foreign dirty flushing
4397  *
4398  * There's an inherent mismatch between memcg and writeback.  The former
4399  * trackes ownership per-page while the latter per-inode.  This was a
4400  * deliberate design decision because honoring per-page ownership in the
4401  * writeback path is complicated, may lead to higher CPU and IO overheads
4402  * and deemed unnecessary given that write-sharing an inode across
4403  * different cgroups isn't a common use-case.
4404  *
4405  * Combined with inode majority-writer ownership switching, this works well
4406  * enough in most cases but there are some pathological cases.  For
4407  * example, let's say there are two cgroups A and B which keep writing to
4408  * different but confined parts of the same inode.  B owns the inode and
4409  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4410  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4411  * triggering background writeback.  A will be slowed down without a way to
4412  * make writeback of the dirty pages happen.
4413  *
4414  * Conditions like the above can lead to a cgroup getting repatedly and
4415  * severely throttled after making some progress after each
4416  * dirty_expire_interval while the underyling IO device is almost
4417  * completely idle.
4418  *
4419  * Solving this problem completely requires matching the ownership tracking
4420  * granularities between memcg and writeback in either direction.  However,
4421  * the more egregious behaviors can be avoided by simply remembering the
4422  * most recent foreign dirtying events and initiating remote flushes on
4423  * them when local writeback isn't enough to keep the memory clean enough.
4424  *
4425  * The following two functions implement such mechanism.  When a foreign
4426  * page - a page whose memcg and writeback ownerships don't match - is
4427  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4428  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4429  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4430  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4431  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4432  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4433  * limited to MEMCG_CGWB_FRN_CNT.
4434  *
4435  * The mechanism only remembers IDs and doesn't hold any object references.
4436  * As being wrong occasionally doesn't matter, updates and accesses to the
4437  * records are lockless and racy.
4438  */
4439 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4440 					     struct bdi_writeback *wb)
4441 {
4442 	struct mem_cgroup *memcg = page->mem_cgroup;
4443 	struct memcg_cgwb_frn *frn;
4444 	u64 now = get_jiffies_64();
4445 	u64 oldest_at = now;
4446 	int oldest = -1;
4447 	int i;
4448 
4449 	trace_track_foreign_dirty(page, wb);
4450 
4451 	/*
4452 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4453 	 * using it.  If not replace the oldest one which isn't being
4454 	 * written out.
4455 	 */
4456 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4457 		frn = &memcg->cgwb_frn[i];
4458 		if (frn->bdi_id == wb->bdi->id &&
4459 		    frn->memcg_id == wb->memcg_css->id)
4460 			break;
4461 		if (time_before64(frn->at, oldest_at) &&
4462 		    atomic_read(&frn->done.cnt) == 1) {
4463 			oldest = i;
4464 			oldest_at = frn->at;
4465 		}
4466 	}
4467 
4468 	if (i < MEMCG_CGWB_FRN_CNT) {
4469 		/*
4470 		 * Re-using an existing one.  Update timestamp lazily to
4471 		 * avoid making the cacheline hot.  We want them to be
4472 		 * reasonably up-to-date and significantly shorter than
4473 		 * dirty_expire_interval as that's what expires the record.
4474 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4475 		 */
4476 		unsigned long update_intv =
4477 			min_t(unsigned long, HZ,
4478 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4479 
4480 		if (time_before64(frn->at, now - update_intv))
4481 			frn->at = now;
4482 	} else if (oldest >= 0) {
4483 		/* replace the oldest free one */
4484 		frn = &memcg->cgwb_frn[oldest];
4485 		frn->bdi_id = wb->bdi->id;
4486 		frn->memcg_id = wb->memcg_css->id;
4487 		frn->at = now;
4488 	}
4489 }
4490 
4491 /* issue foreign writeback flushes for recorded foreign dirtying events */
4492 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4493 {
4494 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4495 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4496 	u64 now = jiffies_64;
4497 	int i;
4498 
4499 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4500 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4501 
4502 		/*
4503 		 * If the record is older than dirty_expire_interval,
4504 		 * writeback on it has already started.  No need to kick it
4505 		 * off again.  Also, don't start a new one if there's
4506 		 * already one in flight.
4507 		 */
4508 		if (time_after64(frn->at, now - intv) &&
4509 		    atomic_read(&frn->done.cnt) == 1) {
4510 			frn->at = 0;
4511 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4512 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4513 					       WB_REASON_FOREIGN_FLUSH,
4514 					       &frn->done);
4515 		}
4516 	}
4517 }
4518 
4519 #else	/* CONFIG_CGROUP_WRITEBACK */
4520 
4521 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4522 {
4523 	return 0;
4524 }
4525 
4526 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4527 {
4528 }
4529 
4530 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4531 {
4532 }
4533 
4534 #endif	/* CONFIG_CGROUP_WRITEBACK */
4535 
4536 /*
4537  * DO NOT USE IN NEW FILES.
4538  *
4539  * "cgroup.event_control" implementation.
4540  *
4541  * This is way over-engineered.  It tries to support fully configurable
4542  * events for each user.  Such level of flexibility is completely
4543  * unnecessary especially in the light of the planned unified hierarchy.
4544  *
4545  * Please deprecate this and replace with something simpler if at all
4546  * possible.
4547  */
4548 
4549 /*
4550  * Unregister event and free resources.
4551  *
4552  * Gets called from workqueue.
4553  */
4554 static void memcg_event_remove(struct work_struct *work)
4555 {
4556 	struct mem_cgroup_event *event =
4557 		container_of(work, struct mem_cgroup_event, remove);
4558 	struct mem_cgroup *memcg = event->memcg;
4559 
4560 	remove_wait_queue(event->wqh, &event->wait);
4561 
4562 	event->unregister_event(memcg, event->eventfd);
4563 
4564 	/* Notify userspace the event is going away. */
4565 	eventfd_signal(event->eventfd, 1);
4566 
4567 	eventfd_ctx_put(event->eventfd);
4568 	kfree(event);
4569 	css_put(&memcg->css);
4570 }
4571 
4572 /*
4573  * Gets called on EPOLLHUP on eventfd when user closes it.
4574  *
4575  * Called with wqh->lock held and interrupts disabled.
4576  */
4577 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4578 			    int sync, void *key)
4579 {
4580 	struct mem_cgroup_event *event =
4581 		container_of(wait, struct mem_cgroup_event, wait);
4582 	struct mem_cgroup *memcg = event->memcg;
4583 	__poll_t flags = key_to_poll(key);
4584 
4585 	if (flags & EPOLLHUP) {
4586 		/*
4587 		 * If the event has been detached at cgroup removal, we
4588 		 * can simply return knowing the other side will cleanup
4589 		 * for us.
4590 		 *
4591 		 * We can't race against event freeing since the other
4592 		 * side will require wqh->lock via remove_wait_queue(),
4593 		 * which we hold.
4594 		 */
4595 		spin_lock(&memcg->event_list_lock);
4596 		if (!list_empty(&event->list)) {
4597 			list_del_init(&event->list);
4598 			/*
4599 			 * We are in atomic context, but cgroup_event_remove()
4600 			 * may sleep, so we have to call it in workqueue.
4601 			 */
4602 			schedule_work(&event->remove);
4603 		}
4604 		spin_unlock(&memcg->event_list_lock);
4605 	}
4606 
4607 	return 0;
4608 }
4609 
4610 static void memcg_event_ptable_queue_proc(struct file *file,
4611 		wait_queue_head_t *wqh, poll_table *pt)
4612 {
4613 	struct mem_cgroup_event *event =
4614 		container_of(pt, struct mem_cgroup_event, pt);
4615 
4616 	event->wqh = wqh;
4617 	add_wait_queue(wqh, &event->wait);
4618 }
4619 
4620 /*
4621  * DO NOT USE IN NEW FILES.
4622  *
4623  * Parse input and register new cgroup event handler.
4624  *
4625  * Input must be in format '<event_fd> <control_fd> <args>'.
4626  * Interpretation of args is defined by control file implementation.
4627  */
4628 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4629 					 char *buf, size_t nbytes, loff_t off)
4630 {
4631 	struct cgroup_subsys_state *css = of_css(of);
4632 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4633 	struct mem_cgroup_event *event;
4634 	struct cgroup_subsys_state *cfile_css;
4635 	unsigned int efd, cfd;
4636 	struct fd efile;
4637 	struct fd cfile;
4638 	const char *name;
4639 	char *endp;
4640 	int ret;
4641 
4642 	buf = strstrip(buf);
4643 
4644 	efd = simple_strtoul(buf, &endp, 10);
4645 	if (*endp != ' ')
4646 		return -EINVAL;
4647 	buf = endp + 1;
4648 
4649 	cfd = simple_strtoul(buf, &endp, 10);
4650 	if ((*endp != ' ') && (*endp != '\0'))
4651 		return -EINVAL;
4652 	buf = endp + 1;
4653 
4654 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4655 	if (!event)
4656 		return -ENOMEM;
4657 
4658 	event->memcg = memcg;
4659 	INIT_LIST_HEAD(&event->list);
4660 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4661 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4662 	INIT_WORK(&event->remove, memcg_event_remove);
4663 
4664 	efile = fdget(efd);
4665 	if (!efile.file) {
4666 		ret = -EBADF;
4667 		goto out_kfree;
4668 	}
4669 
4670 	event->eventfd = eventfd_ctx_fileget(efile.file);
4671 	if (IS_ERR(event->eventfd)) {
4672 		ret = PTR_ERR(event->eventfd);
4673 		goto out_put_efile;
4674 	}
4675 
4676 	cfile = fdget(cfd);
4677 	if (!cfile.file) {
4678 		ret = -EBADF;
4679 		goto out_put_eventfd;
4680 	}
4681 
4682 	/* the process need read permission on control file */
4683 	/* AV: shouldn't we check that it's been opened for read instead? */
4684 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4685 	if (ret < 0)
4686 		goto out_put_cfile;
4687 
4688 	/*
4689 	 * Determine the event callbacks and set them in @event.  This used
4690 	 * to be done via struct cftype but cgroup core no longer knows
4691 	 * about these events.  The following is crude but the whole thing
4692 	 * is for compatibility anyway.
4693 	 *
4694 	 * DO NOT ADD NEW FILES.
4695 	 */
4696 	name = cfile.file->f_path.dentry->d_name.name;
4697 
4698 	if (!strcmp(name, "memory.usage_in_bytes")) {
4699 		event->register_event = mem_cgroup_usage_register_event;
4700 		event->unregister_event = mem_cgroup_usage_unregister_event;
4701 	} else if (!strcmp(name, "memory.oom_control")) {
4702 		event->register_event = mem_cgroup_oom_register_event;
4703 		event->unregister_event = mem_cgroup_oom_unregister_event;
4704 	} else if (!strcmp(name, "memory.pressure_level")) {
4705 		event->register_event = vmpressure_register_event;
4706 		event->unregister_event = vmpressure_unregister_event;
4707 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4708 		event->register_event = memsw_cgroup_usage_register_event;
4709 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4710 	} else {
4711 		ret = -EINVAL;
4712 		goto out_put_cfile;
4713 	}
4714 
4715 	/*
4716 	 * Verify @cfile should belong to @css.  Also, remaining events are
4717 	 * automatically removed on cgroup destruction but the removal is
4718 	 * asynchronous, so take an extra ref on @css.
4719 	 */
4720 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4721 					       &memory_cgrp_subsys);
4722 	ret = -EINVAL;
4723 	if (IS_ERR(cfile_css))
4724 		goto out_put_cfile;
4725 	if (cfile_css != css) {
4726 		css_put(cfile_css);
4727 		goto out_put_cfile;
4728 	}
4729 
4730 	ret = event->register_event(memcg, event->eventfd, buf);
4731 	if (ret)
4732 		goto out_put_css;
4733 
4734 	vfs_poll(efile.file, &event->pt);
4735 
4736 	spin_lock(&memcg->event_list_lock);
4737 	list_add(&event->list, &memcg->event_list);
4738 	spin_unlock(&memcg->event_list_lock);
4739 
4740 	fdput(cfile);
4741 	fdput(efile);
4742 
4743 	return nbytes;
4744 
4745 out_put_css:
4746 	css_put(css);
4747 out_put_cfile:
4748 	fdput(cfile);
4749 out_put_eventfd:
4750 	eventfd_ctx_put(event->eventfd);
4751 out_put_efile:
4752 	fdput(efile);
4753 out_kfree:
4754 	kfree(event);
4755 
4756 	return ret;
4757 }
4758 
4759 static struct cftype mem_cgroup_legacy_files[] = {
4760 	{
4761 		.name = "usage_in_bytes",
4762 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4763 		.read_u64 = mem_cgroup_read_u64,
4764 	},
4765 	{
4766 		.name = "max_usage_in_bytes",
4767 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4768 		.write = mem_cgroup_reset,
4769 		.read_u64 = mem_cgroup_read_u64,
4770 	},
4771 	{
4772 		.name = "limit_in_bytes",
4773 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4774 		.write = mem_cgroup_write,
4775 		.read_u64 = mem_cgroup_read_u64,
4776 	},
4777 	{
4778 		.name = "soft_limit_in_bytes",
4779 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4780 		.write = mem_cgroup_write,
4781 		.read_u64 = mem_cgroup_read_u64,
4782 	},
4783 	{
4784 		.name = "failcnt",
4785 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4786 		.write = mem_cgroup_reset,
4787 		.read_u64 = mem_cgroup_read_u64,
4788 	},
4789 	{
4790 		.name = "stat",
4791 		.seq_show = memcg_stat_show,
4792 	},
4793 	{
4794 		.name = "force_empty",
4795 		.write = mem_cgroup_force_empty_write,
4796 	},
4797 	{
4798 		.name = "use_hierarchy",
4799 		.write_u64 = mem_cgroup_hierarchy_write,
4800 		.read_u64 = mem_cgroup_hierarchy_read,
4801 	},
4802 	{
4803 		.name = "cgroup.event_control",		/* XXX: for compat */
4804 		.write = memcg_write_event_control,
4805 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4806 	},
4807 	{
4808 		.name = "swappiness",
4809 		.read_u64 = mem_cgroup_swappiness_read,
4810 		.write_u64 = mem_cgroup_swappiness_write,
4811 	},
4812 	{
4813 		.name = "move_charge_at_immigrate",
4814 		.read_u64 = mem_cgroup_move_charge_read,
4815 		.write_u64 = mem_cgroup_move_charge_write,
4816 	},
4817 	{
4818 		.name = "oom_control",
4819 		.seq_show = mem_cgroup_oom_control_read,
4820 		.write_u64 = mem_cgroup_oom_control_write,
4821 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4822 	},
4823 	{
4824 		.name = "pressure_level",
4825 	},
4826 #ifdef CONFIG_NUMA
4827 	{
4828 		.name = "numa_stat",
4829 		.seq_show = memcg_numa_stat_show,
4830 	},
4831 #endif
4832 	{
4833 		.name = "kmem.limit_in_bytes",
4834 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4835 		.write = mem_cgroup_write,
4836 		.read_u64 = mem_cgroup_read_u64,
4837 	},
4838 	{
4839 		.name = "kmem.usage_in_bytes",
4840 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4841 		.read_u64 = mem_cgroup_read_u64,
4842 	},
4843 	{
4844 		.name = "kmem.failcnt",
4845 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4846 		.write = mem_cgroup_reset,
4847 		.read_u64 = mem_cgroup_read_u64,
4848 	},
4849 	{
4850 		.name = "kmem.max_usage_in_bytes",
4851 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4852 		.write = mem_cgroup_reset,
4853 		.read_u64 = mem_cgroup_read_u64,
4854 	},
4855 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4856 	{
4857 		.name = "kmem.slabinfo",
4858 		.seq_start = memcg_slab_start,
4859 		.seq_next = memcg_slab_next,
4860 		.seq_stop = memcg_slab_stop,
4861 		.seq_show = memcg_slab_show,
4862 	},
4863 #endif
4864 	{
4865 		.name = "kmem.tcp.limit_in_bytes",
4866 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4867 		.write = mem_cgroup_write,
4868 		.read_u64 = mem_cgroup_read_u64,
4869 	},
4870 	{
4871 		.name = "kmem.tcp.usage_in_bytes",
4872 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4873 		.read_u64 = mem_cgroup_read_u64,
4874 	},
4875 	{
4876 		.name = "kmem.tcp.failcnt",
4877 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4878 		.write = mem_cgroup_reset,
4879 		.read_u64 = mem_cgroup_read_u64,
4880 	},
4881 	{
4882 		.name = "kmem.tcp.max_usage_in_bytes",
4883 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4884 		.write = mem_cgroup_reset,
4885 		.read_u64 = mem_cgroup_read_u64,
4886 	},
4887 	{ },	/* terminate */
4888 };
4889 
4890 /*
4891  * Private memory cgroup IDR
4892  *
4893  * Swap-out records and page cache shadow entries need to store memcg
4894  * references in constrained space, so we maintain an ID space that is
4895  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4896  * memory-controlled cgroups to 64k.
4897  *
4898  * However, there usually are many references to the oflline CSS after
4899  * the cgroup has been destroyed, such as page cache or reclaimable
4900  * slab objects, that don't need to hang on to the ID. We want to keep
4901  * those dead CSS from occupying IDs, or we might quickly exhaust the
4902  * relatively small ID space and prevent the creation of new cgroups
4903  * even when there are much fewer than 64k cgroups - possibly none.
4904  *
4905  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4906  * be freed and recycled when it's no longer needed, which is usually
4907  * when the CSS is offlined.
4908  *
4909  * The only exception to that are records of swapped out tmpfs/shmem
4910  * pages that need to be attributed to live ancestors on swapin. But
4911  * those references are manageable from userspace.
4912  */
4913 
4914 static DEFINE_IDR(mem_cgroup_idr);
4915 
4916 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4917 {
4918 	if (memcg->id.id > 0) {
4919 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4920 		memcg->id.id = 0;
4921 	}
4922 }
4923 
4924 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4925 {
4926 	refcount_add(n, &memcg->id.ref);
4927 }
4928 
4929 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4930 {
4931 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4932 		mem_cgroup_id_remove(memcg);
4933 
4934 		/* Memcg ID pins CSS */
4935 		css_put(&memcg->css);
4936 	}
4937 }
4938 
4939 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4940 {
4941 	mem_cgroup_id_put_many(memcg, 1);
4942 }
4943 
4944 /**
4945  * mem_cgroup_from_id - look up a memcg from a memcg id
4946  * @id: the memcg id to look up
4947  *
4948  * Caller must hold rcu_read_lock().
4949  */
4950 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4951 {
4952 	WARN_ON_ONCE(!rcu_read_lock_held());
4953 	return idr_find(&mem_cgroup_idr, id);
4954 }
4955 
4956 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4957 {
4958 	struct mem_cgroup_per_node *pn;
4959 	int tmp = node;
4960 	/*
4961 	 * This routine is called against possible nodes.
4962 	 * But it's BUG to call kmalloc() against offline node.
4963 	 *
4964 	 * TODO: this routine can waste much memory for nodes which will
4965 	 *       never be onlined. It's better to use memory hotplug callback
4966 	 *       function.
4967 	 */
4968 	if (!node_state(node, N_NORMAL_MEMORY))
4969 		tmp = -1;
4970 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4971 	if (!pn)
4972 		return 1;
4973 
4974 	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4975 	if (!pn->lruvec_stat_local) {
4976 		kfree(pn);
4977 		return 1;
4978 	}
4979 
4980 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4981 	if (!pn->lruvec_stat_cpu) {
4982 		free_percpu(pn->lruvec_stat_local);
4983 		kfree(pn);
4984 		return 1;
4985 	}
4986 
4987 	lruvec_init(&pn->lruvec);
4988 	pn->usage_in_excess = 0;
4989 	pn->on_tree = false;
4990 	pn->memcg = memcg;
4991 
4992 	memcg->nodeinfo[node] = pn;
4993 	return 0;
4994 }
4995 
4996 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4997 {
4998 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4999 
5000 	if (!pn)
5001 		return;
5002 
5003 	free_percpu(pn->lruvec_stat_cpu);
5004 	free_percpu(pn->lruvec_stat_local);
5005 	kfree(pn);
5006 }
5007 
5008 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5009 {
5010 	int node;
5011 
5012 	/*
5013 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
5014 	 * on parent's and all ancestor levels.
5015 	 */
5016 	memcg_flush_percpu_vmstats(memcg, false);
5017 	memcg_flush_percpu_vmevents(memcg);
5018 	for_each_node(node)
5019 		free_mem_cgroup_per_node_info(memcg, node);
5020 	free_percpu(memcg->vmstats_percpu);
5021 	free_percpu(memcg->vmstats_local);
5022 	kfree(memcg);
5023 }
5024 
5025 static void mem_cgroup_free(struct mem_cgroup *memcg)
5026 {
5027 	memcg_wb_domain_exit(memcg);
5028 	__mem_cgroup_free(memcg);
5029 }
5030 
5031 static struct mem_cgroup *mem_cgroup_alloc(void)
5032 {
5033 	struct mem_cgroup *memcg;
5034 	unsigned int size;
5035 	int node;
5036 	int __maybe_unused i;
5037 
5038 	size = sizeof(struct mem_cgroup);
5039 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5040 
5041 	memcg = kzalloc(size, GFP_KERNEL);
5042 	if (!memcg)
5043 		return NULL;
5044 
5045 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5046 				 1, MEM_CGROUP_ID_MAX,
5047 				 GFP_KERNEL);
5048 	if (memcg->id.id < 0)
5049 		goto fail;
5050 
5051 	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5052 	if (!memcg->vmstats_local)
5053 		goto fail;
5054 
5055 	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5056 	if (!memcg->vmstats_percpu)
5057 		goto fail;
5058 
5059 	for_each_node(node)
5060 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5061 			goto fail;
5062 
5063 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5064 		goto fail;
5065 
5066 	INIT_WORK(&memcg->high_work, high_work_func);
5067 	memcg->last_scanned_node = MAX_NUMNODES;
5068 	INIT_LIST_HEAD(&memcg->oom_notify);
5069 	mutex_init(&memcg->thresholds_lock);
5070 	spin_lock_init(&memcg->move_lock);
5071 	vmpressure_init(&memcg->vmpressure);
5072 	INIT_LIST_HEAD(&memcg->event_list);
5073 	spin_lock_init(&memcg->event_list_lock);
5074 	memcg->socket_pressure = jiffies;
5075 #ifdef CONFIG_MEMCG_KMEM
5076 	memcg->kmemcg_id = -1;
5077 #endif
5078 #ifdef CONFIG_CGROUP_WRITEBACK
5079 	INIT_LIST_HEAD(&memcg->cgwb_list);
5080 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5081 		memcg->cgwb_frn[i].done =
5082 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5083 #endif
5084 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5085 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5086 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5087 	memcg->deferred_split_queue.split_queue_len = 0;
5088 #endif
5089 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5090 	return memcg;
5091 fail:
5092 	mem_cgroup_id_remove(memcg);
5093 	__mem_cgroup_free(memcg);
5094 	return NULL;
5095 }
5096 
5097 static struct cgroup_subsys_state * __ref
5098 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5099 {
5100 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5101 	struct mem_cgroup *memcg;
5102 	long error = -ENOMEM;
5103 
5104 	memcg = mem_cgroup_alloc();
5105 	if (!memcg)
5106 		return ERR_PTR(error);
5107 
5108 	memcg->high = PAGE_COUNTER_MAX;
5109 	memcg->soft_limit = PAGE_COUNTER_MAX;
5110 	if (parent) {
5111 		memcg->swappiness = mem_cgroup_swappiness(parent);
5112 		memcg->oom_kill_disable = parent->oom_kill_disable;
5113 	}
5114 	if (parent && parent->use_hierarchy) {
5115 		memcg->use_hierarchy = true;
5116 		page_counter_init(&memcg->memory, &parent->memory);
5117 		page_counter_init(&memcg->swap, &parent->swap);
5118 		page_counter_init(&memcg->memsw, &parent->memsw);
5119 		page_counter_init(&memcg->kmem, &parent->kmem);
5120 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5121 	} else {
5122 		page_counter_init(&memcg->memory, NULL);
5123 		page_counter_init(&memcg->swap, NULL);
5124 		page_counter_init(&memcg->memsw, NULL);
5125 		page_counter_init(&memcg->kmem, NULL);
5126 		page_counter_init(&memcg->tcpmem, NULL);
5127 		/*
5128 		 * Deeper hierachy with use_hierarchy == false doesn't make
5129 		 * much sense so let cgroup subsystem know about this
5130 		 * unfortunate state in our controller.
5131 		 */
5132 		if (parent != root_mem_cgroup)
5133 			memory_cgrp_subsys.broken_hierarchy = true;
5134 	}
5135 
5136 	/* The following stuff does not apply to the root */
5137 	if (!parent) {
5138 #ifdef CONFIG_MEMCG_KMEM
5139 		INIT_LIST_HEAD(&memcg->kmem_caches);
5140 #endif
5141 		root_mem_cgroup = memcg;
5142 		return &memcg->css;
5143 	}
5144 
5145 	error = memcg_online_kmem(memcg);
5146 	if (error)
5147 		goto fail;
5148 
5149 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5150 		static_branch_inc(&memcg_sockets_enabled_key);
5151 
5152 	return &memcg->css;
5153 fail:
5154 	mem_cgroup_id_remove(memcg);
5155 	mem_cgroup_free(memcg);
5156 	return ERR_PTR(-ENOMEM);
5157 }
5158 
5159 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5160 {
5161 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5162 
5163 	/*
5164 	 * A memcg must be visible for memcg_expand_shrinker_maps()
5165 	 * by the time the maps are allocated. So, we allocate maps
5166 	 * here, when for_each_mem_cgroup() can't skip it.
5167 	 */
5168 	if (memcg_alloc_shrinker_maps(memcg)) {
5169 		mem_cgroup_id_remove(memcg);
5170 		return -ENOMEM;
5171 	}
5172 
5173 	/* Online state pins memcg ID, memcg ID pins CSS */
5174 	refcount_set(&memcg->id.ref, 1);
5175 	css_get(css);
5176 	return 0;
5177 }
5178 
5179 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5180 {
5181 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5182 	struct mem_cgroup_event *event, *tmp;
5183 
5184 	/*
5185 	 * Unregister events and notify userspace.
5186 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5187 	 * directory to avoid race between userspace and kernelspace.
5188 	 */
5189 	spin_lock(&memcg->event_list_lock);
5190 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5191 		list_del_init(&event->list);
5192 		schedule_work(&event->remove);
5193 	}
5194 	spin_unlock(&memcg->event_list_lock);
5195 
5196 	page_counter_set_min(&memcg->memory, 0);
5197 	page_counter_set_low(&memcg->memory, 0);
5198 
5199 	memcg_offline_kmem(memcg);
5200 	wb_memcg_offline(memcg);
5201 
5202 	drain_all_stock(memcg);
5203 
5204 	mem_cgroup_id_put(memcg);
5205 }
5206 
5207 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5208 {
5209 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5210 
5211 	invalidate_reclaim_iterators(memcg);
5212 }
5213 
5214 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5215 {
5216 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5217 	int __maybe_unused i;
5218 
5219 #ifdef CONFIG_CGROUP_WRITEBACK
5220 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5221 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5222 #endif
5223 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5224 		static_branch_dec(&memcg_sockets_enabled_key);
5225 
5226 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5227 		static_branch_dec(&memcg_sockets_enabled_key);
5228 
5229 	vmpressure_cleanup(&memcg->vmpressure);
5230 	cancel_work_sync(&memcg->high_work);
5231 	mem_cgroup_remove_from_trees(memcg);
5232 	memcg_free_shrinker_maps(memcg);
5233 	memcg_free_kmem(memcg);
5234 	mem_cgroup_free(memcg);
5235 }
5236 
5237 /**
5238  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5239  * @css: the target css
5240  *
5241  * Reset the states of the mem_cgroup associated with @css.  This is
5242  * invoked when the userland requests disabling on the default hierarchy
5243  * but the memcg is pinned through dependency.  The memcg should stop
5244  * applying policies and should revert to the vanilla state as it may be
5245  * made visible again.
5246  *
5247  * The current implementation only resets the essential configurations.
5248  * This needs to be expanded to cover all the visible parts.
5249  */
5250 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5251 {
5252 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5253 
5254 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5255 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5256 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5257 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5258 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5259 	page_counter_set_min(&memcg->memory, 0);
5260 	page_counter_set_low(&memcg->memory, 0);
5261 	memcg->high = PAGE_COUNTER_MAX;
5262 	memcg->soft_limit = PAGE_COUNTER_MAX;
5263 	memcg_wb_domain_size_changed(memcg);
5264 }
5265 
5266 #ifdef CONFIG_MMU
5267 /* Handlers for move charge at task migration. */
5268 static int mem_cgroup_do_precharge(unsigned long count)
5269 {
5270 	int ret;
5271 
5272 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5273 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5274 	if (!ret) {
5275 		mc.precharge += count;
5276 		return ret;
5277 	}
5278 
5279 	/* Try charges one by one with reclaim, but do not retry */
5280 	while (count--) {
5281 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5282 		if (ret)
5283 			return ret;
5284 		mc.precharge++;
5285 		cond_resched();
5286 	}
5287 	return 0;
5288 }
5289 
5290 union mc_target {
5291 	struct page	*page;
5292 	swp_entry_t	ent;
5293 };
5294 
5295 enum mc_target_type {
5296 	MC_TARGET_NONE = 0,
5297 	MC_TARGET_PAGE,
5298 	MC_TARGET_SWAP,
5299 	MC_TARGET_DEVICE,
5300 };
5301 
5302 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5303 						unsigned long addr, pte_t ptent)
5304 {
5305 	struct page *page = vm_normal_page(vma, addr, ptent);
5306 
5307 	if (!page || !page_mapped(page))
5308 		return NULL;
5309 	if (PageAnon(page)) {
5310 		if (!(mc.flags & MOVE_ANON))
5311 			return NULL;
5312 	} else {
5313 		if (!(mc.flags & MOVE_FILE))
5314 			return NULL;
5315 	}
5316 	if (!get_page_unless_zero(page))
5317 		return NULL;
5318 
5319 	return page;
5320 }
5321 
5322 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5323 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5324 			pte_t ptent, swp_entry_t *entry)
5325 {
5326 	struct page *page = NULL;
5327 	swp_entry_t ent = pte_to_swp_entry(ptent);
5328 
5329 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5330 		return NULL;
5331 
5332 	/*
5333 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5334 	 * a device and because they are not accessible by CPU they are store
5335 	 * as special swap entry in the CPU page table.
5336 	 */
5337 	if (is_device_private_entry(ent)) {
5338 		page = device_private_entry_to_page(ent);
5339 		/*
5340 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5341 		 * a refcount of 1 when free (unlike normal page)
5342 		 */
5343 		if (!page_ref_add_unless(page, 1, 1))
5344 			return NULL;
5345 		return page;
5346 	}
5347 
5348 	/*
5349 	 * Because lookup_swap_cache() updates some statistics counter,
5350 	 * we call find_get_page() with swapper_space directly.
5351 	 */
5352 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5353 	if (do_memsw_account())
5354 		entry->val = ent.val;
5355 
5356 	return page;
5357 }
5358 #else
5359 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5360 			pte_t ptent, swp_entry_t *entry)
5361 {
5362 	return NULL;
5363 }
5364 #endif
5365 
5366 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5367 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5368 {
5369 	struct page *page = NULL;
5370 	struct address_space *mapping;
5371 	pgoff_t pgoff;
5372 
5373 	if (!vma->vm_file) /* anonymous vma */
5374 		return NULL;
5375 	if (!(mc.flags & MOVE_FILE))
5376 		return NULL;
5377 
5378 	mapping = vma->vm_file->f_mapping;
5379 	pgoff = linear_page_index(vma, addr);
5380 
5381 	/* page is moved even if it's not RSS of this task(page-faulted). */
5382 #ifdef CONFIG_SWAP
5383 	/* shmem/tmpfs may report page out on swap: account for that too. */
5384 	if (shmem_mapping(mapping)) {
5385 		page = find_get_entry(mapping, pgoff);
5386 		if (xa_is_value(page)) {
5387 			swp_entry_t swp = radix_to_swp_entry(page);
5388 			if (do_memsw_account())
5389 				*entry = swp;
5390 			page = find_get_page(swap_address_space(swp),
5391 					     swp_offset(swp));
5392 		}
5393 	} else
5394 		page = find_get_page(mapping, pgoff);
5395 #else
5396 	page = find_get_page(mapping, pgoff);
5397 #endif
5398 	return page;
5399 }
5400 
5401 /**
5402  * mem_cgroup_move_account - move account of the page
5403  * @page: the page
5404  * @compound: charge the page as compound or small page
5405  * @from: mem_cgroup which the page is moved from.
5406  * @to:	mem_cgroup which the page is moved to. @from != @to.
5407  *
5408  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5409  *
5410  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5411  * from old cgroup.
5412  */
5413 static int mem_cgroup_move_account(struct page *page,
5414 				   bool compound,
5415 				   struct mem_cgroup *from,
5416 				   struct mem_cgroup *to)
5417 {
5418 	unsigned long flags;
5419 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5420 	int ret;
5421 	bool anon;
5422 
5423 	VM_BUG_ON(from == to);
5424 	VM_BUG_ON_PAGE(PageLRU(page), page);
5425 	VM_BUG_ON(compound && !PageTransHuge(page));
5426 
5427 	/*
5428 	 * Prevent mem_cgroup_migrate() from looking at
5429 	 * page->mem_cgroup of its source page while we change it.
5430 	 */
5431 	ret = -EBUSY;
5432 	if (!trylock_page(page))
5433 		goto out;
5434 
5435 	ret = -EINVAL;
5436 	if (page->mem_cgroup != from)
5437 		goto out_unlock;
5438 
5439 	anon = PageAnon(page);
5440 
5441 	spin_lock_irqsave(&from->move_lock, flags);
5442 
5443 	if (!anon && page_mapped(page)) {
5444 		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
5445 		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
5446 	}
5447 
5448 	/*
5449 	 * move_lock grabbed above and caller set from->moving_account, so
5450 	 * mod_memcg_page_state will serialize updates to PageDirty.
5451 	 * So mapping should be stable for dirty pages.
5452 	 */
5453 	if (!anon && PageDirty(page)) {
5454 		struct address_space *mapping = page_mapping(page);
5455 
5456 		if (mapping_cap_account_dirty(mapping)) {
5457 			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
5458 			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
5459 		}
5460 	}
5461 
5462 	if (PageWriteback(page)) {
5463 		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
5464 		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
5465 	}
5466 
5467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5468 	if (compound && !list_empty(page_deferred_list(page))) {
5469 		spin_lock(&from->deferred_split_queue.split_queue_lock);
5470 		list_del_init(page_deferred_list(page));
5471 		from->deferred_split_queue.split_queue_len--;
5472 		spin_unlock(&from->deferred_split_queue.split_queue_lock);
5473 	}
5474 #endif
5475 	/*
5476 	 * It is safe to change page->mem_cgroup here because the page
5477 	 * is referenced, charged, and isolated - we can't race with
5478 	 * uncharging, charging, migration, or LRU putback.
5479 	 */
5480 
5481 	/* caller should have done css_get */
5482 	page->mem_cgroup = to;
5483 
5484 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5485 	if (compound && list_empty(page_deferred_list(page))) {
5486 		spin_lock(&to->deferred_split_queue.split_queue_lock);
5487 		list_add_tail(page_deferred_list(page),
5488 			      &to->deferred_split_queue.split_queue);
5489 		to->deferred_split_queue.split_queue_len++;
5490 		spin_unlock(&to->deferred_split_queue.split_queue_lock);
5491 	}
5492 #endif
5493 
5494 	spin_unlock_irqrestore(&from->move_lock, flags);
5495 
5496 	ret = 0;
5497 
5498 	local_irq_disable();
5499 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5500 	memcg_check_events(to, page);
5501 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5502 	memcg_check_events(from, page);
5503 	local_irq_enable();
5504 out_unlock:
5505 	unlock_page(page);
5506 out:
5507 	return ret;
5508 }
5509 
5510 /**
5511  * get_mctgt_type - get target type of moving charge
5512  * @vma: the vma the pte to be checked belongs
5513  * @addr: the address corresponding to the pte to be checked
5514  * @ptent: the pte to be checked
5515  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5516  *
5517  * Returns
5518  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5519  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5520  *     move charge. if @target is not NULL, the page is stored in target->page
5521  *     with extra refcnt got(Callers should handle it).
5522  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5523  *     target for charge migration. if @target is not NULL, the entry is stored
5524  *     in target->ent.
5525  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5526  *     (so ZONE_DEVICE page and thus not on the lru).
5527  *     For now we such page is charge like a regular page would be as for all
5528  *     intent and purposes it is just special memory taking the place of a
5529  *     regular page.
5530  *
5531  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5532  *
5533  * Called with pte lock held.
5534  */
5535 
5536 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5537 		unsigned long addr, pte_t ptent, union mc_target *target)
5538 {
5539 	struct page *page = NULL;
5540 	enum mc_target_type ret = MC_TARGET_NONE;
5541 	swp_entry_t ent = { .val = 0 };
5542 
5543 	if (pte_present(ptent))
5544 		page = mc_handle_present_pte(vma, addr, ptent);
5545 	else if (is_swap_pte(ptent))
5546 		page = mc_handle_swap_pte(vma, ptent, &ent);
5547 	else if (pte_none(ptent))
5548 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5549 
5550 	if (!page && !ent.val)
5551 		return ret;
5552 	if (page) {
5553 		/*
5554 		 * Do only loose check w/o serialization.
5555 		 * mem_cgroup_move_account() checks the page is valid or
5556 		 * not under LRU exclusion.
5557 		 */
5558 		if (page->mem_cgroup == mc.from) {
5559 			ret = MC_TARGET_PAGE;
5560 			if (is_device_private_page(page))
5561 				ret = MC_TARGET_DEVICE;
5562 			if (target)
5563 				target->page = page;
5564 		}
5565 		if (!ret || !target)
5566 			put_page(page);
5567 	}
5568 	/*
5569 	 * There is a swap entry and a page doesn't exist or isn't charged.
5570 	 * But we cannot move a tail-page in a THP.
5571 	 */
5572 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5573 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5574 		ret = MC_TARGET_SWAP;
5575 		if (target)
5576 			target->ent = ent;
5577 	}
5578 	return ret;
5579 }
5580 
5581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5582 /*
5583  * We don't consider PMD mapped swapping or file mapped pages because THP does
5584  * not support them for now.
5585  * Caller should make sure that pmd_trans_huge(pmd) is true.
5586  */
5587 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5588 		unsigned long addr, pmd_t pmd, union mc_target *target)
5589 {
5590 	struct page *page = NULL;
5591 	enum mc_target_type ret = MC_TARGET_NONE;
5592 
5593 	if (unlikely(is_swap_pmd(pmd))) {
5594 		VM_BUG_ON(thp_migration_supported() &&
5595 				  !is_pmd_migration_entry(pmd));
5596 		return ret;
5597 	}
5598 	page = pmd_page(pmd);
5599 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5600 	if (!(mc.flags & MOVE_ANON))
5601 		return ret;
5602 	if (page->mem_cgroup == mc.from) {
5603 		ret = MC_TARGET_PAGE;
5604 		if (target) {
5605 			get_page(page);
5606 			target->page = page;
5607 		}
5608 	}
5609 	return ret;
5610 }
5611 #else
5612 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5613 		unsigned long addr, pmd_t pmd, union mc_target *target)
5614 {
5615 	return MC_TARGET_NONE;
5616 }
5617 #endif
5618 
5619 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5620 					unsigned long addr, unsigned long end,
5621 					struct mm_walk *walk)
5622 {
5623 	struct vm_area_struct *vma = walk->vma;
5624 	pte_t *pte;
5625 	spinlock_t *ptl;
5626 
5627 	ptl = pmd_trans_huge_lock(pmd, vma);
5628 	if (ptl) {
5629 		/*
5630 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5631 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5632 		 * this might change.
5633 		 */
5634 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5635 			mc.precharge += HPAGE_PMD_NR;
5636 		spin_unlock(ptl);
5637 		return 0;
5638 	}
5639 
5640 	if (pmd_trans_unstable(pmd))
5641 		return 0;
5642 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5643 	for (; addr != end; pte++, addr += PAGE_SIZE)
5644 		if (get_mctgt_type(vma, addr, *pte, NULL))
5645 			mc.precharge++;	/* increment precharge temporarily */
5646 	pte_unmap_unlock(pte - 1, ptl);
5647 	cond_resched();
5648 
5649 	return 0;
5650 }
5651 
5652 static const struct mm_walk_ops precharge_walk_ops = {
5653 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5654 };
5655 
5656 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5657 {
5658 	unsigned long precharge;
5659 
5660 	down_read(&mm->mmap_sem);
5661 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5662 	up_read(&mm->mmap_sem);
5663 
5664 	precharge = mc.precharge;
5665 	mc.precharge = 0;
5666 
5667 	return precharge;
5668 }
5669 
5670 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5671 {
5672 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5673 
5674 	VM_BUG_ON(mc.moving_task);
5675 	mc.moving_task = current;
5676 	return mem_cgroup_do_precharge(precharge);
5677 }
5678 
5679 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5680 static void __mem_cgroup_clear_mc(void)
5681 {
5682 	struct mem_cgroup *from = mc.from;
5683 	struct mem_cgroup *to = mc.to;
5684 
5685 	/* we must uncharge all the leftover precharges from mc.to */
5686 	if (mc.precharge) {
5687 		cancel_charge(mc.to, mc.precharge);
5688 		mc.precharge = 0;
5689 	}
5690 	/*
5691 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5692 	 * we must uncharge here.
5693 	 */
5694 	if (mc.moved_charge) {
5695 		cancel_charge(mc.from, mc.moved_charge);
5696 		mc.moved_charge = 0;
5697 	}
5698 	/* we must fixup refcnts and charges */
5699 	if (mc.moved_swap) {
5700 		/* uncharge swap account from the old cgroup */
5701 		if (!mem_cgroup_is_root(mc.from))
5702 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5703 
5704 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5705 
5706 		/*
5707 		 * we charged both to->memory and to->memsw, so we
5708 		 * should uncharge to->memory.
5709 		 */
5710 		if (!mem_cgroup_is_root(mc.to))
5711 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5712 
5713 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5714 		css_put_many(&mc.to->css, mc.moved_swap);
5715 
5716 		mc.moved_swap = 0;
5717 	}
5718 	memcg_oom_recover(from);
5719 	memcg_oom_recover(to);
5720 	wake_up_all(&mc.waitq);
5721 }
5722 
5723 static void mem_cgroup_clear_mc(void)
5724 {
5725 	struct mm_struct *mm = mc.mm;
5726 
5727 	/*
5728 	 * we must clear moving_task before waking up waiters at the end of
5729 	 * task migration.
5730 	 */
5731 	mc.moving_task = NULL;
5732 	__mem_cgroup_clear_mc();
5733 	spin_lock(&mc.lock);
5734 	mc.from = NULL;
5735 	mc.to = NULL;
5736 	mc.mm = NULL;
5737 	spin_unlock(&mc.lock);
5738 
5739 	mmput(mm);
5740 }
5741 
5742 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5743 {
5744 	struct cgroup_subsys_state *css;
5745 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5746 	struct mem_cgroup *from;
5747 	struct task_struct *leader, *p;
5748 	struct mm_struct *mm;
5749 	unsigned long move_flags;
5750 	int ret = 0;
5751 
5752 	/* charge immigration isn't supported on the default hierarchy */
5753 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5754 		return 0;
5755 
5756 	/*
5757 	 * Multi-process migrations only happen on the default hierarchy
5758 	 * where charge immigration is not used.  Perform charge
5759 	 * immigration if @tset contains a leader and whine if there are
5760 	 * multiple.
5761 	 */
5762 	p = NULL;
5763 	cgroup_taskset_for_each_leader(leader, css, tset) {
5764 		WARN_ON_ONCE(p);
5765 		p = leader;
5766 		memcg = mem_cgroup_from_css(css);
5767 	}
5768 	if (!p)
5769 		return 0;
5770 
5771 	/*
5772 	 * We are now commited to this value whatever it is. Changes in this
5773 	 * tunable will only affect upcoming migrations, not the current one.
5774 	 * So we need to save it, and keep it going.
5775 	 */
5776 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5777 	if (!move_flags)
5778 		return 0;
5779 
5780 	from = mem_cgroup_from_task(p);
5781 
5782 	VM_BUG_ON(from == memcg);
5783 
5784 	mm = get_task_mm(p);
5785 	if (!mm)
5786 		return 0;
5787 	/* We move charges only when we move a owner of the mm */
5788 	if (mm->owner == p) {
5789 		VM_BUG_ON(mc.from);
5790 		VM_BUG_ON(mc.to);
5791 		VM_BUG_ON(mc.precharge);
5792 		VM_BUG_ON(mc.moved_charge);
5793 		VM_BUG_ON(mc.moved_swap);
5794 
5795 		spin_lock(&mc.lock);
5796 		mc.mm = mm;
5797 		mc.from = from;
5798 		mc.to = memcg;
5799 		mc.flags = move_flags;
5800 		spin_unlock(&mc.lock);
5801 		/* We set mc.moving_task later */
5802 
5803 		ret = mem_cgroup_precharge_mc(mm);
5804 		if (ret)
5805 			mem_cgroup_clear_mc();
5806 	} else {
5807 		mmput(mm);
5808 	}
5809 	return ret;
5810 }
5811 
5812 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5813 {
5814 	if (mc.to)
5815 		mem_cgroup_clear_mc();
5816 }
5817 
5818 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5819 				unsigned long addr, unsigned long end,
5820 				struct mm_walk *walk)
5821 {
5822 	int ret = 0;
5823 	struct vm_area_struct *vma = walk->vma;
5824 	pte_t *pte;
5825 	spinlock_t *ptl;
5826 	enum mc_target_type target_type;
5827 	union mc_target target;
5828 	struct page *page;
5829 
5830 	ptl = pmd_trans_huge_lock(pmd, vma);
5831 	if (ptl) {
5832 		if (mc.precharge < HPAGE_PMD_NR) {
5833 			spin_unlock(ptl);
5834 			return 0;
5835 		}
5836 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5837 		if (target_type == MC_TARGET_PAGE) {
5838 			page = target.page;
5839 			if (!isolate_lru_page(page)) {
5840 				if (!mem_cgroup_move_account(page, true,
5841 							     mc.from, mc.to)) {
5842 					mc.precharge -= HPAGE_PMD_NR;
5843 					mc.moved_charge += HPAGE_PMD_NR;
5844 				}
5845 				putback_lru_page(page);
5846 			}
5847 			put_page(page);
5848 		} else if (target_type == MC_TARGET_DEVICE) {
5849 			page = target.page;
5850 			if (!mem_cgroup_move_account(page, true,
5851 						     mc.from, mc.to)) {
5852 				mc.precharge -= HPAGE_PMD_NR;
5853 				mc.moved_charge += HPAGE_PMD_NR;
5854 			}
5855 			put_page(page);
5856 		}
5857 		spin_unlock(ptl);
5858 		return 0;
5859 	}
5860 
5861 	if (pmd_trans_unstable(pmd))
5862 		return 0;
5863 retry:
5864 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5865 	for (; addr != end; addr += PAGE_SIZE) {
5866 		pte_t ptent = *(pte++);
5867 		bool device = false;
5868 		swp_entry_t ent;
5869 
5870 		if (!mc.precharge)
5871 			break;
5872 
5873 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5874 		case MC_TARGET_DEVICE:
5875 			device = true;
5876 			/* fall through */
5877 		case MC_TARGET_PAGE:
5878 			page = target.page;
5879 			/*
5880 			 * We can have a part of the split pmd here. Moving it
5881 			 * can be done but it would be too convoluted so simply
5882 			 * ignore such a partial THP and keep it in original
5883 			 * memcg. There should be somebody mapping the head.
5884 			 */
5885 			if (PageTransCompound(page))
5886 				goto put;
5887 			if (!device && isolate_lru_page(page))
5888 				goto put;
5889 			if (!mem_cgroup_move_account(page, false,
5890 						mc.from, mc.to)) {
5891 				mc.precharge--;
5892 				/* we uncharge from mc.from later. */
5893 				mc.moved_charge++;
5894 			}
5895 			if (!device)
5896 				putback_lru_page(page);
5897 put:			/* get_mctgt_type() gets the page */
5898 			put_page(page);
5899 			break;
5900 		case MC_TARGET_SWAP:
5901 			ent = target.ent;
5902 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5903 				mc.precharge--;
5904 				/* we fixup refcnts and charges later. */
5905 				mc.moved_swap++;
5906 			}
5907 			break;
5908 		default:
5909 			break;
5910 		}
5911 	}
5912 	pte_unmap_unlock(pte - 1, ptl);
5913 	cond_resched();
5914 
5915 	if (addr != end) {
5916 		/*
5917 		 * We have consumed all precharges we got in can_attach().
5918 		 * We try charge one by one, but don't do any additional
5919 		 * charges to mc.to if we have failed in charge once in attach()
5920 		 * phase.
5921 		 */
5922 		ret = mem_cgroup_do_precharge(1);
5923 		if (!ret)
5924 			goto retry;
5925 	}
5926 
5927 	return ret;
5928 }
5929 
5930 static const struct mm_walk_ops charge_walk_ops = {
5931 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
5932 };
5933 
5934 static void mem_cgroup_move_charge(void)
5935 {
5936 	lru_add_drain_all();
5937 	/*
5938 	 * Signal lock_page_memcg() to take the memcg's move_lock
5939 	 * while we're moving its pages to another memcg. Then wait
5940 	 * for already started RCU-only updates to finish.
5941 	 */
5942 	atomic_inc(&mc.from->moving_account);
5943 	synchronize_rcu();
5944 retry:
5945 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5946 		/*
5947 		 * Someone who are holding the mmap_sem might be waiting in
5948 		 * waitq. So we cancel all extra charges, wake up all waiters,
5949 		 * and retry. Because we cancel precharges, we might not be able
5950 		 * to move enough charges, but moving charge is a best-effort
5951 		 * feature anyway, so it wouldn't be a big problem.
5952 		 */
5953 		__mem_cgroup_clear_mc();
5954 		cond_resched();
5955 		goto retry;
5956 	}
5957 	/*
5958 	 * When we have consumed all precharges and failed in doing
5959 	 * additional charge, the page walk just aborts.
5960 	 */
5961 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5962 			NULL);
5963 
5964 	up_read(&mc.mm->mmap_sem);
5965 	atomic_dec(&mc.from->moving_account);
5966 }
5967 
5968 static void mem_cgroup_move_task(void)
5969 {
5970 	if (mc.to) {
5971 		mem_cgroup_move_charge();
5972 		mem_cgroup_clear_mc();
5973 	}
5974 }
5975 #else	/* !CONFIG_MMU */
5976 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5977 {
5978 	return 0;
5979 }
5980 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5981 {
5982 }
5983 static void mem_cgroup_move_task(void)
5984 {
5985 }
5986 #endif
5987 
5988 /*
5989  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5990  * to verify whether we're attached to the default hierarchy on each mount
5991  * attempt.
5992  */
5993 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5994 {
5995 	/*
5996 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5997 	 * guarantees that @root doesn't have any children, so turning it
5998 	 * on for the root memcg is enough.
5999 	 */
6000 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6001 		root_mem_cgroup->use_hierarchy = true;
6002 	else
6003 		root_mem_cgroup->use_hierarchy = false;
6004 }
6005 
6006 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6007 {
6008 	if (value == PAGE_COUNTER_MAX)
6009 		seq_puts(m, "max\n");
6010 	else
6011 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6012 
6013 	return 0;
6014 }
6015 
6016 static u64 memory_current_read(struct cgroup_subsys_state *css,
6017 			       struct cftype *cft)
6018 {
6019 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6020 
6021 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6022 }
6023 
6024 static int memory_min_show(struct seq_file *m, void *v)
6025 {
6026 	return seq_puts_memcg_tunable(m,
6027 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6028 }
6029 
6030 static ssize_t memory_min_write(struct kernfs_open_file *of,
6031 				char *buf, size_t nbytes, loff_t off)
6032 {
6033 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6034 	unsigned long min;
6035 	int err;
6036 
6037 	buf = strstrip(buf);
6038 	err = page_counter_memparse(buf, "max", &min);
6039 	if (err)
6040 		return err;
6041 
6042 	page_counter_set_min(&memcg->memory, min);
6043 
6044 	return nbytes;
6045 }
6046 
6047 static int memory_low_show(struct seq_file *m, void *v)
6048 {
6049 	return seq_puts_memcg_tunable(m,
6050 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6051 }
6052 
6053 static ssize_t memory_low_write(struct kernfs_open_file *of,
6054 				char *buf, size_t nbytes, loff_t off)
6055 {
6056 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6057 	unsigned long low;
6058 	int err;
6059 
6060 	buf = strstrip(buf);
6061 	err = page_counter_memparse(buf, "max", &low);
6062 	if (err)
6063 		return err;
6064 
6065 	page_counter_set_low(&memcg->memory, low);
6066 
6067 	return nbytes;
6068 }
6069 
6070 static int memory_high_show(struct seq_file *m, void *v)
6071 {
6072 	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
6073 }
6074 
6075 static ssize_t memory_high_write(struct kernfs_open_file *of,
6076 				 char *buf, size_t nbytes, loff_t off)
6077 {
6078 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6079 	unsigned long nr_pages;
6080 	unsigned long high;
6081 	int err;
6082 
6083 	buf = strstrip(buf);
6084 	err = page_counter_memparse(buf, "max", &high);
6085 	if (err)
6086 		return err;
6087 
6088 	memcg->high = high;
6089 
6090 	nr_pages = page_counter_read(&memcg->memory);
6091 	if (nr_pages > high)
6092 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6093 					     GFP_KERNEL, true);
6094 
6095 	memcg_wb_domain_size_changed(memcg);
6096 	return nbytes;
6097 }
6098 
6099 static int memory_max_show(struct seq_file *m, void *v)
6100 {
6101 	return seq_puts_memcg_tunable(m,
6102 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6103 }
6104 
6105 static ssize_t memory_max_write(struct kernfs_open_file *of,
6106 				char *buf, size_t nbytes, loff_t off)
6107 {
6108 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6109 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6110 	bool drained = false;
6111 	unsigned long max;
6112 	int err;
6113 
6114 	buf = strstrip(buf);
6115 	err = page_counter_memparse(buf, "max", &max);
6116 	if (err)
6117 		return err;
6118 
6119 	xchg(&memcg->memory.max, max);
6120 
6121 	for (;;) {
6122 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6123 
6124 		if (nr_pages <= max)
6125 			break;
6126 
6127 		if (signal_pending(current)) {
6128 			err = -EINTR;
6129 			break;
6130 		}
6131 
6132 		if (!drained) {
6133 			drain_all_stock(memcg);
6134 			drained = true;
6135 			continue;
6136 		}
6137 
6138 		if (nr_reclaims) {
6139 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6140 							  GFP_KERNEL, true))
6141 				nr_reclaims--;
6142 			continue;
6143 		}
6144 
6145 		memcg_memory_event(memcg, MEMCG_OOM);
6146 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6147 			break;
6148 	}
6149 
6150 	memcg_wb_domain_size_changed(memcg);
6151 	return nbytes;
6152 }
6153 
6154 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6155 {
6156 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6157 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6158 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6159 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6160 	seq_printf(m, "oom_kill %lu\n",
6161 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6162 }
6163 
6164 static int memory_events_show(struct seq_file *m, void *v)
6165 {
6166 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6167 
6168 	__memory_events_show(m, memcg->memory_events);
6169 	return 0;
6170 }
6171 
6172 static int memory_events_local_show(struct seq_file *m, void *v)
6173 {
6174 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6175 
6176 	__memory_events_show(m, memcg->memory_events_local);
6177 	return 0;
6178 }
6179 
6180 static int memory_stat_show(struct seq_file *m, void *v)
6181 {
6182 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6183 	char *buf;
6184 
6185 	buf = memory_stat_format(memcg);
6186 	if (!buf)
6187 		return -ENOMEM;
6188 	seq_puts(m, buf);
6189 	kfree(buf);
6190 	return 0;
6191 }
6192 
6193 static int memory_oom_group_show(struct seq_file *m, void *v)
6194 {
6195 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6196 
6197 	seq_printf(m, "%d\n", memcg->oom_group);
6198 
6199 	return 0;
6200 }
6201 
6202 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6203 				      char *buf, size_t nbytes, loff_t off)
6204 {
6205 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6206 	int ret, oom_group;
6207 
6208 	buf = strstrip(buf);
6209 	if (!buf)
6210 		return -EINVAL;
6211 
6212 	ret = kstrtoint(buf, 0, &oom_group);
6213 	if (ret)
6214 		return ret;
6215 
6216 	if (oom_group != 0 && oom_group != 1)
6217 		return -EINVAL;
6218 
6219 	memcg->oom_group = oom_group;
6220 
6221 	return nbytes;
6222 }
6223 
6224 static struct cftype memory_files[] = {
6225 	{
6226 		.name = "current",
6227 		.flags = CFTYPE_NOT_ON_ROOT,
6228 		.read_u64 = memory_current_read,
6229 	},
6230 	{
6231 		.name = "min",
6232 		.flags = CFTYPE_NOT_ON_ROOT,
6233 		.seq_show = memory_min_show,
6234 		.write = memory_min_write,
6235 	},
6236 	{
6237 		.name = "low",
6238 		.flags = CFTYPE_NOT_ON_ROOT,
6239 		.seq_show = memory_low_show,
6240 		.write = memory_low_write,
6241 	},
6242 	{
6243 		.name = "high",
6244 		.flags = CFTYPE_NOT_ON_ROOT,
6245 		.seq_show = memory_high_show,
6246 		.write = memory_high_write,
6247 	},
6248 	{
6249 		.name = "max",
6250 		.flags = CFTYPE_NOT_ON_ROOT,
6251 		.seq_show = memory_max_show,
6252 		.write = memory_max_write,
6253 	},
6254 	{
6255 		.name = "events",
6256 		.flags = CFTYPE_NOT_ON_ROOT,
6257 		.file_offset = offsetof(struct mem_cgroup, events_file),
6258 		.seq_show = memory_events_show,
6259 	},
6260 	{
6261 		.name = "events.local",
6262 		.flags = CFTYPE_NOT_ON_ROOT,
6263 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6264 		.seq_show = memory_events_local_show,
6265 	},
6266 	{
6267 		.name = "stat",
6268 		.flags = CFTYPE_NOT_ON_ROOT,
6269 		.seq_show = memory_stat_show,
6270 	},
6271 	{
6272 		.name = "oom.group",
6273 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6274 		.seq_show = memory_oom_group_show,
6275 		.write = memory_oom_group_write,
6276 	},
6277 	{ }	/* terminate */
6278 };
6279 
6280 struct cgroup_subsys memory_cgrp_subsys = {
6281 	.css_alloc = mem_cgroup_css_alloc,
6282 	.css_online = mem_cgroup_css_online,
6283 	.css_offline = mem_cgroup_css_offline,
6284 	.css_released = mem_cgroup_css_released,
6285 	.css_free = mem_cgroup_css_free,
6286 	.css_reset = mem_cgroup_css_reset,
6287 	.can_attach = mem_cgroup_can_attach,
6288 	.cancel_attach = mem_cgroup_cancel_attach,
6289 	.post_attach = mem_cgroup_move_task,
6290 	.bind = mem_cgroup_bind,
6291 	.dfl_cftypes = memory_files,
6292 	.legacy_cftypes = mem_cgroup_legacy_files,
6293 	.early_init = 0,
6294 };
6295 
6296 /**
6297  * mem_cgroup_protected - check if memory consumption is in the normal range
6298  * @root: the top ancestor of the sub-tree being checked
6299  * @memcg: the memory cgroup to check
6300  *
6301  * WARNING: This function is not stateless! It can only be used as part
6302  *          of a top-down tree iteration, not for isolated queries.
6303  *
6304  * Returns one of the following:
6305  *   MEMCG_PROT_NONE: cgroup memory is not protected
6306  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
6307  *     an unprotected supply of reclaimable memory from other cgroups.
6308  *   MEMCG_PROT_MIN: cgroup memory is protected
6309  *
6310  * @root is exclusive; it is never protected when looked at directly
6311  *
6312  * To provide a proper hierarchical behavior, effective memory.min/low values
6313  * are used. Below is the description of how effective memory.low is calculated.
6314  * Effective memory.min values is calculated in the same way.
6315  *
6316  * Effective memory.low is always equal or less than the original memory.low.
6317  * If there is no memory.low overcommittment (which is always true for
6318  * top-level memory cgroups), these two values are equal.
6319  * Otherwise, it's a part of parent's effective memory.low,
6320  * calculated as a cgroup's memory.low usage divided by sum of sibling's
6321  * memory.low usages, where memory.low usage is the size of actually
6322  * protected memory.
6323  *
6324  *                                             low_usage
6325  * elow = min( memory.low, parent->elow * ------------------ ),
6326  *                                        siblings_low_usage
6327  *
6328  *             | memory.current, if memory.current < memory.low
6329  * low_usage = |
6330  *	       | 0, otherwise.
6331  *
6332  *
6333  * Such definition of the effective memory.low provides the expected
6334  * hierarchical behavior: parent's memory.low value is limiting
6335  * children, unprotected memory is reclaimed first and cgroups,
6336  * which are not using their guarantee do not affect actual memory
6337  * distribution.
6338  *
6339  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6340  *
6341  *     A      A/memory.low = 2G, A/memory.current = 6G
6342  *    //\\
6343  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
6344  *            C/memory.low = 1G  C/memory.current = 2G
6345  *            D/memory.low = 0   D/memory.current = 2G
6346  *            E/memory.low = 10G E/memory.current = 0
6347  *
6348  * and the memory pressure is applied, the following memory distribution
6349  * is expected (approximately):
6350  *
6351  *     A/memory.current = 2G
6352  *
6353  *     B/memory.current = 1.3G
6354  *     C/memory.current = 0.6G
6355  *     D/memory.current = 0
6356  *     E/memory.current = 0
6357  *
6358  * These calculations require constant tracking of the actual low usages
6359  * (see propagate_protected_usage()), as well as recursive calculation of
6360  * effective memory.low values. But as we do call mem_cgroup_protected()
6361  * path for each memory cgroup top-down from the reclaim,
6362  * it's possible to optimize this part, and save calculated elow
6363  * for next usage. This part is intentionally racy, but it's ok,
6364  * as memory.low is a best-effort mechanism.
6365  */
6366 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6367 						struct mem_cgroup *memcg)
6368 {
6369 	struct mem_cgroup *parent;
6370 	unsigned long emin, parent_emin;
6371 	unsigned long elow, parent_elow;
6372 	unsigned long usage;
6373 
6374 	if (mem_cgroup_disabled())
6375 		return MEMCG_PROT_NONE;
6376 
6377 	if (!root)
6378 		root = root_mem_cgroup;
6379 	if (memcg == root)
6380 		return MEMCG_PROT_NONE;
6381 
6382 	usage = page_counter_read(&memcg->memory);
6383 	if (!usage)
6384 		return MEMCG_PROT_NONE;
6385 
6386 	emin = memcg->memory.min;
6387 	elow = memcg->memory.low;
6388 
6389 	parent = parent_mem_cgroup(memcg);
6390 	/* No parent means a non-hierarchical mode on v1 memcg */
6391 	if (!parent)
6392 		return MEMCG_PROT_NONE;
6393 
6394 	if (parent == root)
6395 		goto exit;
6396 
6397 	parent_emin = READ_ONCE(parent->memory.emin);
6398 	emin = min(emin, parent_emin);
6399 	if (emin && parent_emin) {
6400 		unsigned long min_usage, siblings_min_usage;
6401 
6402 		min_usage = min(usage, memcg->memory.min);
6403 		siblings_min_usage = atomic_long_read(
6404 			&parent->memory.children_min_usage);
6405 
6406 		if (min_usage && siblings_min_usage)
6407 			emin = min(emin, parent_emin * min_usage /
6408 				   siblings_min_usage);
6409 	}
6410 
6411 	parent_elow = READ_ONCE(parent->memory.elow);
6412 	elow = min(elow, parent_elow);
6413 	if (elow && parent_elow) {
6414 		unsigned long low_usage, siblings_low_usage;
6415 
6416 		low_usage = min(usage, memcg->memory.low);
6417 		siblings_low_usage = atomic_long_read(
6418 			&parent->memory.children_low_usage);
6419 
6420 		if (low_usage && siblings_low_usage)
6421 			elow = min(elow, parent_elow * low_usage /
6422 				   siblings_low_usage);
6423 	}
6424 
6425 exit:
6426 	memcg->memory.emin = emin;
6427 	memcg->memory.elow = elow;
6428 
6429 	if (usage <= emin)
6430 		return MEMCG_PROT_MIN;
6431 	else if (usage <= elow)
6432 		return MEMCG_PROT_LOW;
6433 	else
6434 		return MEMCG_PROT_NONE;
6435 }
6436 
6437 /**
6438  * mem_cgroup_try_charge - try charging a page
6439  * @page: page to charge
6440  * @mm: mm context of the victim
6441  * @gfp_mask: reclaim mode
6442  * @memcgp: charged memcg return
6443  * @compound: charge the page as compound or small page
6444  *
6445  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6446  * pages according to @gfp_mask if necessary.
6447  *
6448  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6449  * Otherwise, an error code is returned.
6450  *
6451  * After page->mapping has been set up, the caller must finalize the
6452  * charge with mem_cgroup_commit_charge().  Or abort the transaction
6453  * with mem_cgroup_cancel_charge() in case page instantiation fails.
6454  */
6455 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6456 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6457 			  bool compound)
6458 {
6459 	struct mem_cgroup *memcg = NULL;
6460 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6461 	int ret = 0;
6462 
6463 	if (mem_cgroup_disabled())
6464 		goto out;
6465 
6466 	if (PageSwapCache(page)) {
6467 		/*
6468 		 * Every swap fault against a single page tries to charge the
6469 		 * page, bail as early as possible.  shmem_unuse() encounters
6470 		 * already charged pages, too.  The USED bit is protected by
6471 		 * the page lock, which serializes swap cache removal, which
6472 		 * in turn serializes uncharging.
6473 		 */
6474 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6475 		if (compound_head(page)->mem_cgroup)
6476 			goto out;
6477 
6478 		if (do_swap_account) {
6479 			swp_entry_t ent = { .val = page_private(page), };
6480 			unsigned short id = lookup_swap_cgroup_id(ent);
6481 
6482 			rcu_read_lock();
6483 			memcg = mem_cgroup_from_id(id);
6484 			if (memcg && !css_tryget_online(&memcg->css))
6485 				memcg = NULL;
6486 			rcu_read_unlock();
6487 		}
6488 	}
6489 
6490 	if (!memcg)
6491 		memcg = get_mem_cgroup_from_mm(mm);
6492 
6493 	ret = try_charge(memcg, gfp_mask, nr_pages);
6494 
6495 	css_put(&memcg->css);
6496 out:
6497 	*memcgp = memcg;
6498 	return ret;
6499 }
6500 
6501 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6502 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6503 			  bool compound)
6504 {
6505 	struct mem_cgroup *memcg;
6506 	int ret;
6507 
6508 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6509 	memcg = *memcgp;
6510 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6511 	return ret;
6512 }
6513 
6514 /**
6515  * mem_cgroup_commit_charge - commit a page charge
6516  * @page: page to charge
6517  * @memcg: memcg to charge the page to
6518  * @lrucare: page might be on LRU already
6519  * @compound: charge the page as compound or small page
6520  *
6521  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6522  * after page->mapping has been set up.  This must happen atomically
6523  * as part of the page instantiation, i.e. under the page table lock
6524  * for anonymous pages, under the page lock for page and swap cache.
6525  *
6526  * In addition, the page must not be on the LRU during the commit, to
6527  * prevent racing with task migration.  If it might be, use @lrucare.
6528  *
6529  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6530  */
6531 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6532 			      bool lrucare, bool compound)
6533 {
6534 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6535 
6536 	VM_BUG_ON_PAGE(!page->mapping, page);
6537 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6538 
6539 	if (mem_cgroup_disabled())
6540 		return;
6541 	/*
6542 	 * Swap faults will attempt to charge the same page multiple
6543 	 * times.  But reuse_swap_page() might have removed the page
6544 	 * from swapcache already, so we can't check PageSwapCache().
6545 	 */
6546 	if (!memcg)
6547 		return;
6548 
6549 	commit_charge(page, memcg, lrucare);
6550 
6551 	local_irq_disable();
6552 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6553 	memcg_check_events(memcg, page);
6554 	local_irq_enable();
6555 
6556 	if (do_memsw_account() && PageSwapCache(page)) {
6557 		swp_entry_t entry = { .val = page_private(page) };
6558 		/*
6559 		 * The swap entry might not get freed for a long time,
6560 		 * let's not wait for it.  The page already received a
6561 		 * memory+swap charge, drop the swap entry duplicate.
6562 		 */
6563 		mem_cgroup_uncharge_swap(entry, nr_pages);
6564 	}
6565 }
6566 
6567 /**
6568  * mem_cgroup_cancel_charge - cancel a page charge
6569  * @page: page to charge
6570  * @memcg: memcg to charge the page to
6571  * @compound: charge the page as compound or small page
6572  *
6573  * Cancel a charge transaction started by mem_cgroup_try_charge().
6574  */
6575 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6576 		bool compound)
6577 {
6578 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6579 
6580 	if (mem_cgroup_disabled())
6581 		return;
6582 	/*
6583 	 * Swap faults will attempt to charge the same page multiple
6584 	 * times.  But reuse_swap_page() might have removed the page
6585 	 * from swapcache already, so we can't check PageSwapCache().
6586 	 */
6587 	if (!memcg)
6588 		return;
6589 
6590 	cancel_charge(memcg, nr_pages);
6591 }
6592 
6593 struct uncharge_gather {
6594 	struct mem_cgroup *memcg;
6595 	unsigned long pgpgout;
6596 	unsigned long nr_anon;
6597 	unsigned long nr_file;
6598 	unsigned long nr_kmem;
6599 	unsigned long nr_huge;
6600 	unsigned long nr_shmem;
6601 	struct page *dummy_page;
6602 };
6603 
6604 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6605 {
6606 	memset(ug, 0, sizeof(*ug));
6607 }
6608 
6609 static void uncharge_batch(const struct uncharge_gather *ug)
6610 {
6611 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6612 	unsigned long flags;
6613 
6614 	if (!mem_cgroup_is_root(ug->memcg)) {
6615 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6616 		if (do_memsw_account())
6617 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6618 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6619 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6620 		memcg_oom_recover(ug->memcg);
6621 	}
6622 
6623 	local_irq_save(flags);
6624 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6625 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6626 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6627 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6628 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6629 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6630 	memcg_check_events(ug->memcg, ug->dummy_page);
6631 	local_irq_restore(flags);
6632 
6633 	if (!mem_cgroup_is_root(ug->memcg))
6634 		css_put_many(&ug->memcg->css, nr_pages);
6635 }
6636 
6637 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6638 {
6639 	VM_BUG_ON_PAGE(PageLRU(page), page);
6640 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6641 			!PageHWPoison(page) , page);
6642 
6643 	if (!page->mem_cgroup)
6644 		return;
6645 
6646 	/*
6647 	 * Nobody should be changing or seriously looking at
6648 	 * page->mem_cgroup at this point, we have fully
6649 	 * exclusive access to the page.
6650 	 */
6651 
6652 	if (ug->memcg != page->mem_cgroup) {
6653 		if (ug->memcg) {
6654 			uncharge_batch(ug);
6655 			uncharge_gather_clear(ug);
6656 		}
6657 		ug->memcg = page->mem_cgroup;
6658 	}
6659 
6660 	if (!PageKmemcg(page)) {
6661 		unsigned int nr_pages = 1;
6662 
6663 		if (PageTransHuge(page)) {
6664 			nr_pages = compound_nr(page);
6665 			ug->nr_huge += nr_pages;
6666 		}
6667 		if (PageAnon(page))
6668 			ug->nr_anon += nr_pages;
6669 		else {
6670 			ug->nr_file += nr_pages;
6671 			if (PageSwapBacked(page))
6672 				ug->nr_shmem += nr_pages;
6673 		}
6674 		ug->pgpgout++;
6675 	} else {
6676 		ug->nr_kmem += compound_nr(page);
6677 		__ClearPageKmemcg(page);
6678 	}
6679 
6680 	ug->dummy_page = page;
6681 	page->mem_cgroup = NULL;
6682 }
6683 
6684 static void uncharge_list(struct list_head *page_list)
6685 {
6686 	struct uncharge_gather ug;
6687 	struct list_head *next;
6688 
6689 	uncharge_gather_clear(&ug);
6690 
6691 	/*
6692 	 * Note that the list can be a single page->lru; hence the
6693 	 * do-while loop instead of a simple list_for_each_entry().
6694 	 */
6695 	next = page_list->next;
6696 	do {
6697 		struct page *page;
6698 
6699 		page = list_entry(next, struct page, lru);
6700 		next = page->lru.next;
6701 
6702 		uncharge_page(page, &ug);
6703 	} while (next != page_list);
6704 
6705 	if (ug.memcg)
6706 		uncharge_batch(&ug);
6707 }
6708 
6709 /**
6710  * mem_cgroup_uncharge - uncharge a page
6711  * @page: page to uncharge
6712  *
6713  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6714  * mem_cgroup_commit_charge().
6715  */
6716 void mem_cgroup_uncharge(struct page *page)
6717 {
6718 	struct uncharge_gather ug;
6719 
6720 	if (mem_cgroup_disabled())
6721 		return;
6722 
6723 	/* Don't touch page->lru of any random page, pre-check: */
6724 	if (!page->mem_cgroup)
6725 		return;
6726 
6727 	uncharge_gather_clear(&ug);
6728 	uncharge_page(page, &ug);
6729 	uncharge_batch(&ug);
6730 }
6731 
6732 /**
6733  * mem_cgroup_uncharge_list - uncharge a list of page
6734  * @page_list: list of pages to uncharge
6735  *
6736  * Uncharge a list of pages previously charged with
6737  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6738  */
6739 void mem_cgroup_uncharge_list(struct list_head *page_list)
6740 {
6741 	if (mem_cgroup_disabled())
6742 		return;
6743 
6744 	if (!list_empty(page_list))
6745 		uncharge_list(page_list);
6746 }
6747 
6748 /**
6749  * mem_cgroup_migrate - charge a page's replacement
6750  * @oldpage: currently circulating page
6751  * @newpage: replacement page
6752  *
6753  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6754  * be uncharged upon free.
6755  *
6756  * Both pages must be locked, @newpage->mapping must be set up.
6757  */
6758 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6759 {
6760 	struct mem_cgroup *memcg;
6761 	unsigned int nr_pages;
6762 	bool compound;
6763 	unsigned long flags;
6764 
6765 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6766 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6767 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6768 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6769 		       newpage);
6770 
6771 	if (mem_cgroup_disabled())
6772 		return;
6773 
6774 	/* Page cache replacement: new page already charged? */
6775 	if (newpage->mem_cgroup)
6776 		return;
6777 
6778 	/* Swapcache readahead pages can get replaced before being charged */
6779 	memcg = oldpage->mem_cgroup;
6780 	if (!memcg)
6781 		return;
6782 
6783 	/* Force-charge the new page. The old one will be freed soon */
6784 	compound = PageTransHuge(newpage);
6785 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6786 
6787 	page_counter_charge(&memcg->memory, nr_pages);
6788 	if (do_memsw_account())
6789 		page_counter_charge(&memcg->memsw, nr_pages);
6790 	css_get_many(&memcg->css, nr_pages);
6791 
6792 	commit_charge(newpage, memcg, false);
6793 
6794 	local_irq_save(flags);
6795 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6796 	memcg_check_events(memcg, newpage);
6797 	local_irq_restore(flags);
6798 }
6799 
6800 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6801 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6802 
6803 void mem_cgroup_sk_alloc(struct sock *sk)
6804 {
6805 	struct mem_cgroup *memcg;
6806 
6807 	if (!mem_cgroup_sockets_enabled)
6808 		return;
6809 
6810 	/*
6811 	 * Socket cloning can throw us here with sk_memcg already
6812 	 * filled. It won't however, necessarily happen from
6813 	 * process context. So the test for root memcg given
6814 	 * the current task's memcg won't help us in this case.
6815 	 *
6816 	 * Respecting the original socket's memcg is a better
6817 	 * decision in this case.
6818 	 */
6819 	if (sk->sk_memcg) {
6820 		css_get(&sk->sk_memcg->css);
6821 		return;
6822 	}
6823 
6824 	rcu_read_lock();
6825 	memcg = mem_cgroup_from_task(current);
6826 	if (memcg == root_mem_cgroup)
6827 		goto out;
6828 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6829 		goto out;
6830 	if (css_tryget_online(&memcg->css))
6831 		sk->sk_memcg = memcg;
6832 out:
6833 	rcu_read_unlock();
6834 }
6835 
6836 void mem_cgroup_sk_free(struct sock *sk)
6837 {
6838 	if (sk->sk_memcg)
6839 		css_put(&sk->sk_memcg->css);
6840 }
6841 
6842 /**
6843  * mem_cgroup_charge_skmem - charge socket memory
6844  * @memcg: memcg to charge
6845  * @nr_pages: number of pages to charge
6846  *
6847  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6848  * @memcg's configured limit, %false if the charge had to be forced.
6849  */
6850 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6851 {
6852 	gfp_t gfp_mask = GFP_KERNEL;
6853 
6854 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6855 		struct page_counter *fail;
6856 
6857 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6858 			memcg->tcpmem_pressure = 0;
6859 			return true;
6860 		}
6861 		page_counter_charge(&memcg->tcpmem, nr_pages);
6862 		memcg->tcpmem_pressure = 1;
6863 		return false;
6864 	}
6865 
6866 	/* Don't block in the packet receive path */
6867 	if (in_softirq())
6868 		gfp_mask = GFP_NOWAIT;
6869 
6870 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6871 
6872 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6873 		return true;
6874 
6875 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6876 	return false;
6877 }
6878 
6879 /**
6880  * mem_cgroup_uncharge_skmem - uncharge socket memory
6881  * @memcg: memcg to uncharge
6882  * @nr_pages: number of pages to uncharge
6883  */
6884 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6885 {
6886 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6887 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6888 		return;
6889 	}
6890 
6891 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6892 
6893 	refill_stock(memcg, nr_pages);
6894 }
6895 
6896 static int __init cgroup_memory(char *s)
6897 {
6898 	char *token;
6899 
6900 	while ((token = strsep(&s, ",")) != NULL) {
6901 		if (!*token)
6902 			continue;
6903 		if (!strcmp(token, "nosocket"))
6904 			cgroup_memory_nosocket = true;
6905 		if (!strcmp(token, "nokmem"))
6906 			cgroup_memory_nokmem = true;
6907 	}
6908 	return 0;
6909 }
6910 __setup("cgroup.memory=", cgroup_memory);
6911 
6912 /*
6913  * subsys_initcall() for memory controller.
6914  *
6915  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6916  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6917  * basically everything that doesn't depend on a specific mem_cgroup structure
6918  * should be initialized from here.
6919  */
6920 static int __init mem_cgroup_init(void)
6921 {
6922 	int cpu, node;
6923 
6924 #ifdef CONFIG_MEMCG_KMEM
6925 	/*
6926 	 * Kmem cache creation is mostly done with the slab_mutex held,
6927 	 * so use a workqueue with limited concurrency to avoid stalling
6928 	 * all worker threads in case lots of cgroups are created and
6929 	 * destroyed simultaneously.
6930 	 */
6931 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6932 	BUG_ON(!memcg_kmem_cache_wq);
6933 #endif
6934 
6935 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6936 				  memcg_hotplug_cpu_dead);
6937 
6938 	for_each_possible_cpu(cpu)
6939 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6940 			  drain_local_stock);
6941 
6942 	for_each_node(node) {
6943 		struct mem_cgroup_tree_per_node *rtpn;
6944 
6945 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6946 				    node_online(node) ? node : NUMA_NO_NODE);
6947 
6948 		rtpn->rb_root = RB_ROOT;
6949 		rtpn->rb_rightmost = NULL;
6950 		spin_lock_init(&rtpn->lock);
6951 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6952 	}
6953 
6954 	return 0;
6955 }
6956 subsys_initcall(mem_cgroup_init);
6957 
6958 #ifdef CONFIG_MEMCG_SWAP
6959 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6960 {
6961 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6962 		/*
6963 		 * The root cgroup cannot be destroyed, so it's refcount must
6964 		 * always be >= 1.
6965 		 */
6966 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6967 			VM_BUG_ON(1);
6968 			break;
6969 		}
6970 		memcg = parent_mem_cgroup(memcg);
6971 		if (!memcg)
6972 			memcg = root_mem_cgroup;
6973 	}
6974 	return memcg;
6975 }
6976 
6977 /**
6978  * mem_cgroup_swapout - transfer a memsw charge to swap
6979  * @page: page whose memsw charge to transfer
6980  * @entry: swap entry to move the charge to
6981  *
6982  * Transfer the memsw charge of @page to @entry.
6983  */
6984 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6985 {
6986 	struct mem_cgroup *memcg, *swap_memcg;
6987 	unsigned int nr_entries;
6988 	unsigned short oldid;
6989 
6990 	VM_BUG_ON_PAGE(PageLRU(page), page);
6991 	VM_BUG_ON_PAGE(page_count(page), page);
6992 
6993 	if (!do_memsw_account())
6994 		return;
6995 
6996 	memcg = page->mem_cgroup;
6997 
6998 	/* Readahead page, never charged */
6999 	if (!memcg)
7000 		return;
7001 
7002 	/*
7003 	 * In case the memcg owning these pages has been offlined and doesn't
7004 	 * have an ID allocated to it anymore, charge the closest online
7005 	 * ancestor for the swap instead and transfer the memory+swap charge.
7006 	 */
7007 	swap_memcg = mem_cgroup_id_get_online(memcg);
7008 	nr_entries = hpage_nr_pages(page);
7009 	/* Get references for the tail pages, too */
7010 	if (nr_entries > 1)
7011 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7012 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7013 				   nr_entries);
7014 	VM_BUG_ON_PAGE(oldid, page);
7015 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7016 
7017 	page->mem_cgroup = NULL;
7018 
7019 	if (!mem_cgroup_is_root(memcg))
7020 		page_counter_uncharge(&memcg->memory, nr_entries);
7021 
7022 	if (memcg != swap_memcg) {
7023 		if (!mem_cgroup_is_root(swap_memcg))
7024 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7025 		page_counter_uncharge(&memcg->memsw, nr_entries);
7026 	}
7027 
7028 	/*
7029 	 * Interrupts should be disabled here because the caller holds the
7030 	 * i_pages lock which is taken with interrupts-off. It is
7031 	 * important here to have the interrupts disabled because it is the
7032 	 * only synchronisation we have for updating the per-CPU variables.
7033 	 */
7034 	VM_BUG_ON(!irqs_disabled());
7035 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7036 				     -nr_entries);
7037 	memcg_check_events(memcg, page);
7038 
7039 	if (!mem_cgroup_is_root(memcg))
7040 		css_put_many(&memcg->css, nr_entries);
7041 }
7042 
7043 /**
7044  * mem_cgroup_try_charge_swap - try charging swap space for a page
7045  * @page: page being added to swap
7046  * @entry: swap entry to charge
7047  *
7048  * Try to charge @page's memcg for the swap space at @entry.
7049  *
7050  * Returns 0 on success, -ENOMEM on failure.
7051  */
7052 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7053 {
7054 	unsigned int nr_pages = hpage_nr_pages(page);
7055 	struct page_counter *counter;
7056 	struct mem_cgroup *memcg;
7057 	unsigned short oldid;
7058 
7059 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7060 		return 0;
7061 
7062 	memcg = page->mem_cgroup;
7063 
7064 	/* Readahead page, never charged */
7065 	if (!memcg)
7066 		return 0;
7067 
7068 	if (!entry.val) {
7069 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7070 		return 0;
7071 	}
7072 
7073 	memcg = mem_cgroup_id_get_online(memcg);
7074 
7075 	if (!mem_cgroup_is_root(memcg) &&
7076 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7077 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7078 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7079 		mem_cgroup_id_put(memcg);
7080 		return -ENOMEM;
7081 	}
7082 
7083 	/* Get references for the tail pages, too */
7084 	if (nr_pages > 1)
7085 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7086 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7087 	VM_BUG_ON_PAGE(oldid, page);
7088 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7089 
7090 	return 0;
7091 }
7092 
7093 /**
7094  * mem_cgroup_uncharge_swap - uncharge swap space
7095  * @entry: swap entry to uncharge
7096  * @nr_pages: the amount of swap space to uncharge
7097  */
7098 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7099 {
7100 	struct mem_cgroup *memcg;
7101 	unsigned short id;
7102 
7103 	if (!do_swap_account)
7104 		return;
7105 
7106 	id = swap_cgroup_record(entry, 0, nr_pages);
7107 	rcu_read_lock();
7108 	memcg = mem_cgroup_from_id(id);
7109 	if (memcg) {
7110 		if (!mem_cgroup_is_root(memcg)) {
7111 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7112 				page_counter_uncharge(&memcg->swap, nr_pages);
7113 			else
7114 				page_counter_uncharge(&memcg->memsw, nr_pages);
7115 		}
7116 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7117 		mem_cgroup_id_put_many(memcg, nr_pages);
7118 	}
7119 	rcu_read_unlock();
7120 }
7121 
7122 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7123 {
7124 	long nr_swap_pages = get_nr_swap_pages();
7125 
7126 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7127 		return nr_swap_pages;
7128 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7129 		nr_swap_pages = min_t(long, nr_swap_pages,
7130 				      READ_ONCE(memcg->swap.max) -
7131 				      page_counter_read(&memcg->swap));
7132 	return nr_swap_pages;
7133 }
7134 
7135 bool mem_cgroup_swap_full(struct page *page)
7136 {
7137 	struct mem_cgroup *memcg;
7138 
7139 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7140 
7141 	if (vm_swap_full())
7142 		return true;
7143 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7144 		return false;
7145 
7146 	memcg = page->mem_cgroup;
7147 	if (!memcg)
7148 		return false;
7149 
7150 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7151 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7152 			return true;
7153 
7154 	return false;
7155 }
7156 
7157 /* for remember boot option*/
7158 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7159 static int really_do_swap_account __initdata = 1;
7160 #else
7161 static int really_do_swap_account __initdata;
7162 #endif
7163 
7164 static int __init enable_swap_account(char *s)
7165 {
7166 	if (!strcmp(s, "1"))
7167 		really_do_swap_account = 1;
7168 	else if (!strcmp(s, "0"))
7169 		really_do_swap_account = 0;
7170 	return 1;
7171 }
7172 __setup("swapaccount=", enable_swap_account);
7173 
7174 static u64 swap_current_read(struct cgroup_subsys_state *css,
7175 			     struct cftype *cft)
7176 {
7177 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7178 
7179 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7180 }
7181 
7182 static int swap_max_show(struct seq_file *m, void *v)
7183 {
7184 	return seq_puts_memcg_tunable(m,
7185 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7186 }
7187 
7188 static ssize_t swap_max_write(struct kernfs_open_file *of,
7189 			      char *buf, size_t nbytes, loff_t off)
7190 {
7191 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7192 	unsigned long max;
7193 	int err;
7194 
7195 	buf = strstrip(buf);
7196 	err = page_counter_memparse(buf, "max", &max);
7197 	if (err)
7198 		return err;
7199 
7200 	xchg(&memcg->swap.max, max);
7201 
7202 	return nbytes;
7203 }
7204 
7205 static int swap_events_show(struct seq_file *m, void *v)
7206 {
7207 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7208 
7209 	seq_printf(m, "max %lu\n",
7210 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7211 	seq_printf(m, "fail %lu\n",
7212 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7213 
7214 	return 0;
7215 }
7216 
7217 static struct cftype swap_files[] = {
7218 	{
7219 		.name = "swap.current",
7220 		.flags = CFTYPE_NOT_ON_ROOT,
7221 		.read_u64 = swap_current_read,
7222 	},
7223 	{
7224 		.name = "swap.max",
7225 		.flags = CFTYPE_NOT_ON_ROOT,
7226 		.seq_show = swap_max_show,
7227 		.write = swap_max_write,
7228 	},
7229 	{
7230 		.name = "swap.events",
7231 		.flags = CFTYPE_NOT_ON_ROOT,
7232 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7233 		.seq_show = swap_events_show,
7234 	},
7235 	{ }	/* terminate */
7236 };
7237 
7238 static struct cftype memsw_cgroup_files[] = {
7239 	{
7240 		.name = "memsw.usage_in_bytes",
7241 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7242 		.read_u64 = mem_cgroup_read_u64,
7243 	},
7244 	{
7245 		.name = "memsw.max_usage_in_bytes",
7246 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7247 		.write = mem_cgroup_reset,
7248 		.read_u64 = mem_cgroup_read_u64,
7249 	},
7250 	{
7251 		.name = "memsw.limit_in_bytes",
7252 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7253 		.write = mem_cgroup_write,
7254 		.read_u64 = mem_cgroup_read_u64,
7255 	},
7256 	{
7257 		.name = "memsw.failcnt",
7258 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7259 		.write = mem_cgroup_reset,
7260 		.read_u64 = mem_cgroup_read_u64,
7261 	},
7262 	{ },	/* terminate */
7263 };
7264 
7265 static int __init mem_cgroup_swap_init(void)
7266 {
7267 	if (!mem_cgroup_disabled() && really_do_swap_account) {
7268 		do_swap_account = 1;
7269 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7270 					       swap_files));
7271 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7272 						  memsw_cgroup_files));
7273 	}
7274 	return 0;
7275 }
7276 subsys_initcall(mem_cgroup_swap_init);
7277 
7278 #endif /* CONFIG_MEMCG_SWAP */
7279