xref: /openbmc/linux/mm/memcontrol.c (revision 2572f00d)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include <net/tcp_memcontrol.h>
70 #include "slab.h"
71 
72 #include <asm/uaccess.h>
73 
74 #include <trace/events/vmscan.h>
75 
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78 
79 #define MEM_CGROUP_RECLAIM_RETRIES	5
80 static struct mem_cgroup *root_mem_cgroup __read_mostly;
81 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
82 
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
86 #else
87 #define do_swap_account		0
88 #endif
89 
90 static const char * const mem_cgroup_stat_names[] = {
91 	"cache",
92 	"rss",
93 	"rss_huge",
94 	"mapped_file",
95 	"dirty",
96 	"writeback",
97 	"swap",
98 };
99 
100 static const char * const mem_cgroup_events_names[] = {
101 	"pgpgin",
102 	"pgpgout",
103 	"pgfault",
104 	"pgmajfault",
105 };
106 
107 static const char * const mem_cgroup_lru_names[] = {
108 	"inactive_anon",
109 	"active_anon",
110 	"inactive_file",
111 	"active_file",
112 	"unevictable",
113 };
114 
115 #define THRESHOLDS_EVENTS_TARGET 128
116 #define SOFTLIMIT_EVENTS_TARGET 1024
117 #define NUMAINFO_EVENTS_TARGET	1024
118 
119 /*
120  * Cgroups above their limits are maintained in a RB-Tree, independent of
121  * their hierarchy representation
122  */
123 
124 struct mem_cgroup_tree_per_zone {
125 	struct rb_root rb_root;
126 	spinlock_t lock;
127 };
128 
129 struct mem_cgroup_tree_per_node {
130 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
131 };
132 
133 struct mem_cgroup_tree {
134 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
135 };
136 
137 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
138 
139 /* for OOM */
140 struct mem_cgroup_eventfd_list {
141 	struct list_head list;
142 	struct eventfd_ctx *eventfd;
143 };
144 
145 /*
146  * cgroup_event represents events which userspace want to receive.
147  */
148 struct mem_cgroup_event {
149 	/*
150 	 * memcg which the event belongs to.
151 	 */
152 	struct mem_cgroup *memcg;
153 	/*
154 	 * eventfd to signal userspace about the event.
155 	 */
156 	struct eventfd_ctx *eventfd;
157 	/*
158 	 * Each of these stored in a list by the cgroup.
159 	 */
160 	struct list_head list;
161 	/*
162 	 * register_event() callback will be used to add new userspace
163 	 * waiter for changes related to this event.  Use eventfd_signal()
164 	 * on eventfd to send notification to userspace.
165 	 */
166 	int (*register_event)(struct mem_cgroup *memcg,
167 			      struct eventfd_ctx *eventfd, const char *args);
168 	/*
169 	 * unregister_event() callback will be called when userspace closes
170 	 * the eventfd or on cgroup removing.  This callback must be set,
171 	 * if you want provide notification functionality.
172 	 */
173 	void (*unregister_event)(struct mem_cgroup *memcg,
174 				 struct eventfd_ctx *eventfd);
175 	/*
176 	 * All fields below needed to unregister event when
177 	 * userspace closes eventfd.
178 	 */
179 	poll_table pt;
180 	wait_queue_head_t *wqh;
181 	wait_queue_t wait;
182 	struct work_struct remove;
183 };
184 
185 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
186 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
187 
188 /* Stuffs for move charges at task migration. */
189 /*
190  * Types of charges to be moved.
191  */
192 #define MOVE_ANON	0x1U
193 #define MOVE_FILE	0x2U
194 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
195 
196 /* "mc" and its members are protected by cgroup_mutex */
197 static struct move_charge_struct {
198 	spinlock_t	  lock; /* for from, to */
199 	struct mem_cgroup *from;
200 	struct mem_cgroup *to;
201 	unsigned long flags;
202 	unsigned long precharge;
203 	unsigned long moved_charge;
204 	unsigned long moved_swap;
205 	struct task_struct *moving_task;	/* a task moving charges */
206 	wait_queue_head_t waitq;		/* a waitq for other context */
207 } mc = {
208 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
209 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
210 };
211 
212 /*
213  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
214  * limit reclaim to prevent infinite loops, if they ever occur.
215  */
216 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
217 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
218 
219 enum charge_type {
220 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
221 	MEM_CGROUP_CHARGE_TYPE_ANON,
222 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
223 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
224 	NR_CHARGE_TYPE,
225 };
226 
227 /* for encoding cft->private value on file */
228 enum res_type {
229 	_MEM,
230 	_MEMSWAP,
231 	_OOM_TYPE,
232 	_KMEM,
233 };
234 
235 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
236 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
237 #define MEMFILE_ATTR(val)	((val) & 0xffff)
238 /* Used for OOM nofiier */
239 #define OOM_CONTROL		(0)
240 
241 /*
242  * The memcg_create_mutex will be held whenever a new cgroup is created.
243  * As a consequence, any change that needs to protect against new child cgroups
244  * appearing has to hold it as well.
245  */
246 static DEFINE_MUTEX(memcg_create_mutex);
247 
248 /* Some nice accessors for the vmpressure. */
249 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
250 {
251 	if (!memcg)
252 		memcg = root_mem_cgroup;
253 	return &memcg->vmpressure;
254 }
255 
256 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
257 {
258 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
259 }
260 
261 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
262 {
263 	return (memcg == root_mem_cgroup);
264 }
265 
266 /*
267  * We restrict the id in the range of [1, 65535], so it can fit into
268  * an unsigned short.
269  */
270 #define MEM_CGROUP_ID_MAX	USHRT_MAX
271 
272 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
273 {
274 	return memcg->css.id;
275 }
276 
277 /*
278  * A helper function to get mem_cgroup from ID. must be called under
279  * rcu_read_lock().  The caller is responsible for calling
280  * css_tryget_online() if the mem_cgroup is used for charging. (dropping
281  * refcnt from swap can be called against removed memcg.)
282  */
283 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
284 {
285 	struct cgroup_subsys_state *css;
286 
287 	css = css_from_id(id, &memory_cgrp_subsys);
288 	return mem_cgroup_from_css(css);
289 }
290 
291 /* Writing them here to avoid exposing memcg's inner layout */
292 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
293 
294 void sock_update_memcg(struct sock *sk)
295 {
296 	if (mem_cgroup_sockets_enabled) {
297 		struct mem_cgroup *memcg;
298 		struct cg_proto *cg_proto;
299 
300 		BUG_ON(!sk->sk_prot->proto_cgroup);
301 
302 		/* Socket cloning can throw us here with sk_cgrp already
303 		 * filled. It won't however, necessarily happen from
304 		 * process context. So the test for root memcg given
305 		 * the current task's memcg won't help us in this case.
306 		 *
307 		 * Respecting the original socket's memcg is a better
308 		 * decision in this case.
309 		 */
310 		if (sk->sk_cgrp) {
311 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
312 			css_get(&sk->sk_cgrp->memcg->css);
313 			return;
314 		}
315 
316 		rcu_read_lock();
317 		memcg = mem_cgroup_from_task(current);
318 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
319 		if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
320 		    css_tryget_online(&memcg->css)) {
321 			sk->sk_cgrp = cg_proto;
322 		}
323 		rcu_read_unlock();
324 	}
325 }
326 EXPORT_SYMBOL(sock_update_memcg);
327 
328 void sock_release_memcg(struct sock *sk)
329 {
330 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
331 		struct mem_cgroup *memcg;
332 		WARN_ON(!sk->sk_cgrp->memcg);
333 		memcg = sk->sk_cgrp->memcg;
334 		css_put(&sk->sk_cgrp->memcg->css);
335 	}
336 }
337 
338 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
339 {
340 	if (!memcg || mem_cgroup_is_root(memcg))
341 		return NULL;
342 
343 	return &memcg->tcp_mem;
344 }
345 EXPORT_SYMBOL(tcp_proto_cgroup);
346 
347 #endif
348 
349 #ifdef CONFIG_MEMCG_KMEM
350 /*
351  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
352  * The main reason for not using cgroup id for this:
353  *  this works better in sparse environments, where we have a lot of memcgs,
354  *  but only a few kmem-limited. Or also, if we have, for instance, 200
355  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
356  *  200 entry array for that.
357  *
358  * The current size of the caches array is stored in memcg_nr_cache_ids. It
359  * will double each time we have to increase it.
360  */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363 
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366 
367 void memcg_get_cache_ids(void)
368 {
369 	down_read(&memcg_cache_ids_sem);
370 }
371 
372 void memcg_put_cache_ids(void)
373 {
374 	up_read(&memcg_cache_ids_sem);
375 }
376 
377 /*
378  * MIN_SIZE is different than 1, because we would like to avoid going through
379  * the alloc/free process all the time. In a small machine, 4 kmem-limited
380  * cgroups is a reasonable guess. In the future, it could be a parameter or
381  * tunable, but that is strictly not necessary.
382  *
383  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384  * this constant directly from cgroup, but it is understandable that this is
385  * better kept as an internal representation in cgroup.c. In any case, the
386  * cgrp_id space is not getting any smaller, and we don't have to necessarily
387  * increase ours as well if it increases.
388  */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391 
392 /*
393  * A lot of the calls to the cache allocation functions are expected to be
394  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
395  * conditional to this static branch, we'll have to allow modules that does
396  * kmem_cache_alloc and the such to see this symbol as well
397  */
398 struct static_key memcg_kmem_enabled_key;
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 
401 #endif /* CONFIG_MEMCG_KMEM */
402 
403 static struct mem_cgroup_per_zone *
404 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
405 {
406 	int nid = zone_to_nid(zone);
407 	int zid = zone_idx(zone);
408 
409 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
410 }
411 
412 /**
413  * mem_cgroup_css_from_page - css of the memcg associated with a page
414  * @page: page of interest
415  *
416  * If memcg is bound to the default hierarchy, css of the memcg associated
417  * with @page is returned.  The returned css remains associated with @page
418  * until it is released.
419  *
420  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
421  * is returned.
422  *
423  * XXX: The above description of behavior on the default hierarchy isn't
424  * strictly true yet as replace_page_cache_page() can modify the
425  * association before @page is released even on the default hierarchy;
426  * however, the current and planned usages don't mix the the two functions
427  * and replace_page_cache_page() will soon be updated to make the invariant
428  * actually true.
429  */
430 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
431 {
432 	struct mem_cgroup *memcg;
433 
434 	rcu_read_lock();
435 
436 	memcg = page->mem_cgroup;
437 
438 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
439 		memcg = root_mem_cgroup;
440 
441 	rcu_read_unlock();
442 	return &memcg->css;
443 }
444 
445 /**
446  * page_cgroup_ino - return inode number of the memcg a page is charged to
447  * @page: the page
448  *
449  * Look up the closest online ancestor of the memory cgroup @page is charged to
450  * and return its inode number or 0 if @page is not charged to any cgroup. It
451  * is safe to call this function without holding a reference to @page.
452  *
453  * Note, this function is inherently racy, because there is nothing to prevent
454  * the cgroup inode from getting torn down and potentially reallocated a moment
455  * after page_cgroup_ino() returns, so it only should be used by callers that
456  * do not care (such as procfs interfaces).
457  */
458 ino_t page_cgroup_ino(struct page *page)
459 {
460 	struct mem_cgroup *memcg;
461 	unsigned long ino = 0;
462 
463 	rcu_read_lock();
464 	memcg = READ_ONCE(page->mem_cgroup);
465 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
466 		memcg = parent_mem_cgroup(memcg);
467 	if (memcg)
468 		ino = cgroup_ino(memcg->css.cgroup);
469 	rcu_read_unlock();
470 	return ino;
471 }
472 
473 static struct mem_cgroup_per_zone *
474 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
475 {
476 	int nid = page_to_nid(page);
477 	int zid = page_zonenum(page);
478 
479 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
480 }
481 
482 static struct mem_cgroup_tree_per_zone *
483 soft_limit_tree_node_zone(int nid, int zid)
484 {
485 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
486 }
487 
488 static struct mem_cgroup_tree_per_zone *
489 soft_limit_tree_from_page(struct page *page)
490 {
491 	int nid = page_to_nid(page);
492 	int zid = page_zonenum(page);
493 
494 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
495 }
496 
497 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
498 					 struct mem_cgroup_tree_per_zone *mctz,
499 					 unsigned long new_usage_in_excess)
500 {
501 	struct rb_node **p = &mctz->rb_root.rb_node;
502 	struct rb_node *parent = NULL;
503 	struct mem_cgroup_per_zone *mz_node;
504 
505 	if (mz->on_tree)
506 		return;
507 
508 	mz->usage_in_excess = new_usage_in_excess;
509 	if (!mz->usage_in_excess)
510 		return;
511 	while (*p) {
512 		parent = *p;
513 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
514 					tree_node);
515 		if (mz->usage_in_excess < mz_node->usage_in_excess)
516 			p = &(*p)->rb_left;
517 		/*
518 		 * We can't avoid mem cgroups that are over their soft
519 		 * limit by the same amount
520 		 */
521 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
522 			p = &(*p)->rb_right;
523 	}
524 	rb_link_node(&mz->tree_node, parent, p);
525 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
526 	mz->on_tree = true;
527 }
528 
529 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
530 					 struct mem_cgroup_tree_per_zone *mctz)
531 {
532 	if (!mz->on_tree)
533 		return;
534 	rb_erase(&mz->tree_node, &mctz->rb_root);
535 	mz->on_tree = false;
536 }
537 
538 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
539 				       struct mem_cgroup_tree_per_zone *mctz)
540 {
541 	unsigned long flags;
542 
543 	spin_lock_irqsave(&mctz->lock, flags);
544 	__mem_cgroup_remove_exceeded(mz, mctz);
545 	spin_unlock_irqrestore(&mctz->lock, flags);
546 }
547 
548 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
549 {
550 	unsigned long nr_pages = page_counter_read(&memcg->memory);
551 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
552 	unsigned long excess = 0;
553 
554 	if (nr_pages > soft_limit)
555 		excess = nr_pages - soft_limit;
556 
557 	return excess;
558 }
559 
560 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
561 {
562 	unsigned long excess;
563 	struct mem_cgroup_per_zone *mz;
564 	struct mem_cgroup_tree_per_zone *mctz;
565 
566 	mctz = soft_limit_tree_from_page(page);
567 	/*
568 	 * Necessary to update all ancestors when hierarchy is used.
569 	 * because their event counter is not touched.
570 	 */
571 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
572 		mz = mem_cgroup_page_zoneinfo(memcg, page);
573 		excess = soft_limit_excess(memcg);
574 		/*
575 		 * We have to update the tree if mz is on RB-tree or
576 		 * mem is over its softlimit.
577 		 */
578 		if (excess || mz->on_tree) {
579 			unsigned long flags;
580 
581 			spin_lock_irqsave(&mctz->lock, flags);
582 			/* if on-tree, remove it */
583 			if (mz->on_tree)
584 				__mem_cgroup_remove_exceeded(mz, mctz);
585 			/*
586 			 * Insert again. mz->usage_in_excess will be updated.
587 			 * If excess is 0, no tree ops.
588 			 */
589 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
590 			spin_unlock_irqrestore(&mctz->lock, flags);
591 		}
592 	}
593 }
594 
595 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
596 {
597 	struct mem_cgroup_tree_per_zone *mctz;
598 	struct mem_cgroup_per_zone *mz;
599 	int nid, zid;
600 
601 	for_each_node(nid) {
602 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
603 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
604 			mctz = soft_limit_tree_node_zone(nid, zid);
605 			mem_cgroup_remove_exceeded(mz, mctz);
606 		}
607 	}
608 }
609 
610 static struct mem_cgroup_per_zone *
611 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
612 {
613 	struct rb_node *rightmost = NULL;
614 	struct mem_cgroup_per_zone *mz;
615 
616 retry:
617 	mz = NULL;
618 	rightmost = rb_last(&mctz->rb_root);
619 	if (!rightmost)
620 		goto done;		/* Nothing to reclaim from */
621 
622 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
623 	/*
624 	 * Remove the node now but someone else can add it back,
625 	 * we will to add it back at the end of reclaim to its correct
626 	 * position in the tree.
627 	 */
628 	__mem_cgroup_remove_exceeded(mz, mctz);
629 	if (!soft_limit_excess(mz->memcg) ||
630 	    !css_tryget_online(&mz->memcg->css))
631 		goto retry;
632 done:
633 	return mz;
634 }
635 
636 static struct mem_cgroup_per_zone *
637 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
638 {
639 	struct mem_cgroup_per_zone *mz;
640 
641 	spin_lock_irq(&mctz->lock);
642 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
643 	spin_unlock_irq(&mctz->lock);
644 	return mz;
645 }
646 
647 /*
648  * Return page count for single (non recursive) @memcg.
649  *
650  * Implementation Note: reading percpu statistics for memcg.
651  *
652  * Both of vmstat[] and percpu_counter has threshold and do periodic
653  * synchronization to implement "quick" read. There are trade-off between
654  * reading cost and precision of value. Then, we may have a chance to implement
655  * a periodic synchronization of counter in memcg's counter.
656  *
657  * But this _read() function is used for user interface now. The user accounts
658  * memory usage by memory cgroup and he _always_ requires exact value because
659  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
660  * have to visit all online cpus and make sum. So, for now, unnecessary
661  * synchronization is not implemented. (just implemented for cpu hotplug)
662  *
663  * If there are kernel internal actions which can make use of some not-exact
664  * value, and reading all cpu value can be performance bottleneck in some
665  * common workload, threshold and synchronization as vmstat[] should be
666  * implemented.
667  */
668 static unsigned long
669 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
670 {
671 	long val = 0;
672 	int cpu;
673 
674 	/* Per-cpu values can be negative, use a signed accumulator */
675 	for_each_possible_cpu(cpu)
676 		val += per_cpu(memcg->stat->count[idx], cpu);
677 	/*
678 	 * Summing races with updates, so val may be negative.  Avoid exposing
679 	 * transient negative values.
680 	 */
681 	if (val < 0)
682 		val = 0;
683 	return val;
684 }
685 
686 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
687 					    enum mem_cgroup_events_index idx)
688 {
689 	unsigned long val = 0;
690 	int cpu;
691 
692 	for_each_possible_cpu(cpu)
693 		val += per_cpu(memcg->stat->events[idx], cpu);
694 	return val;
695 }
696 
697 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698 					 struct page *page,
699 					 int nr_pages)
700 {
701 	/*
702 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
703 	 * counted as CACHE even if it's on ANON LRU.
704 	 */
705 	if (PageAnon(page))
706 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
707 				nr_pages);
708 	else
709 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
710 				nr_pages);
711 
712 	if (PageTransHuge(page))
713 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
714 				nr_pages);
715 
716 	/* pagein of a big page is an event. So, ignore page size */
717 	if (nr_pages > 0)
718 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
719 	else {
720 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
721 		nr_pages = -nr_pages; /* for event */
722 	}
723 
724 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
725 }
726 
727 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
728 						  int nid,
729 						  unsigned int lru_mask)
730 {
731 	unsigned long nr = 0;
732 	int zid;
733 
734 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
735 
736 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
737 		struct mem_cgroup_per_zone *mz;
738 		enum lru_list lru;
739 
740 		for_each_lru(lru) {
741 			if (!(BIT(lru) & lru_mask))
742 				continue;
743 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
744 			nr += mz->lru_size[lru];
745 		}
746 	}
747 	return nr;
748 }
749 
750 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
751 			unsigned int lru_mask)
752 {
753 	unsigned long nr = 0;
754 	int nid;
755 
756 	for_each_node_state(nid, N_MEMORY)
757 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
758 	return nr;
759 }
760 
761 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
762 				       enum mem_cgroup_events_target target)
763 {
764 	unsigned long val, next;
765 
766 	val = __this_cpu_read(memcg->stat->nr_page_events);
767 	next = __this_cpu_read(memcg->stat->targets[target]);
768 	/* from time_after() in jiffies.h */
769 	if ((long)next - (long)val < 0) {
770 		switch (target) {
771 		case MEM_CGROUP_TARGET_THRESH:
772 			next = val + THRESHOLDS_EVENTS_TARGET;
773 			break;
774 		case MEM_CGROUP_TARGET_SOFTLIMIT:
775 			next = val + SOFTLIMIT_EVENTS_TARGET;
776 			break;
777 		case MEM_CGROUP_TARGET_NUMAINFO:
778 			next = val + NUMAINFO_EVENTS_TARGET;
779 			break;
780 		default:
781 			break;
782 		}
783 		__this_cpu_write(memcg->stat->targets[target], next);
784 		return true;
785 	}
786 	return false;
787 }
788 
789 /*
790  * Check events in order.
791  *
792  */
793 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
794 {
795 	/* threshold event is triggered in finer grain than soft limit */
796 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
797 						MEM_CGROUP_TARGET_THRESH))) {
798 		bool do_softlimit;
799 		bool do_numainfo __maybe_unused;
800 
801 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
802 						MEM_CGROUP_TARGET_SOFTLIMIT);
803 #if MAX_NUMNODES > 1
804 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
805 						MEM_CGROUP_TARGET_NUMAINFO);
806 #endif
807 		mem_cgroup_threshold(memcg);
808 		if (unlikely(do_softlimit))
809 			mem_cgroup_update_tree(memcg, page);
810 #if MAX_NUMNODES > 1
811 		if (unlikely(do_numainfo))
812 			atomic_inc(&memcg->numainfo_events);
813 #endif
814 	}
815 }
816 
817 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
818 {
819 	/*
820 	 * mm_update_next_owner() may clear mm->owner to NULL
821 	 * if it races with swapoff, page migration, etc.
822 	 * So this can be called with p == NULL.
823 	 */
824 	if (unlikely(!p))
825 		return NULL;
826 
827 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
828 }
829 EXPORT_SYMBOL(mem_cgroup_from_task);
830 
831 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
832 {
833 	struct mem_cgroup *memcg = NULL;
834 
835 	rcu_read_lock();
836 	do {
837 		/*
838 		 * Page cache insertions can happen withou an
839 		 * actual mm context, e.g. during disk probing
840 		 * on boot, loopback IO, acct() writes etc.
841 		 */
842 		if (unlikely(!mm))
843 			memcg = root_mem_cgroup;
844 		else {
845 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
846 			if (unlikely(!memcg))
847 				memcg = root_mem_cgroup;
848 		}
849 	} while (!css_tryget_online(&memcg->css));
850 	rcu_read_unlock();
851 	return memcg;
852 }
853 
854 /**
855  * mem_cgroup_iter - iterate over memory cgroup hierarchy
856  * @root: hierarchy root
857  * @prev: previously returned memcg, NULL on first invocation
858  * @reclaim: cookie for shared reclaim walks, NULL for full walks
859  *
860  * Returns references to children of the hierarchy below @root, or
861  * @root itself, or %NULL after a full round-trip.
862  *
863  * Caller must pass the return value in @prev on subsequent
864  * invocations for reference counting, or use mem_cgroup_iter_break()
865  * to cancel a hierarchy walk before the round-trip is complete.
866  *
867  * Reclaimers can specify a zone and a priority level in @reclaim to
868  * divide up the memcgs in the hierarchy among all concurrent
869  * reclaimers operating on the same zone and priority.
870  */
871 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
872 				   struct mem_cgroup *prev,
873 				   struct mem_cgroup_reclaim_cookie *reclaim)
874 {
875 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
876 	struct cgroup_subsys_state *css = NULL;
877 	struct mem_cgroup *memcg = NULL;
878 	struct mem_cgroup *pos = NULL;
879 
880 	if (mem_cgroup_disabled())
881 		return NULL;
882 
883 	if (!root)
884 		root = root_mem_cgroup;
885 
886 	if (prev && !reclaim)
887 		pos = prev;
888 
889 	if (!root->use_hierarchy && root != root_mem_cgroup) {
890 		if (prev)
891 			goto out;
892 		return root;
893 	}
894 
895 	rcu_read_lock();
896 
897 	if (reclaim) {
898 		struct mem_cgroup_per_zone *mz;
899 
900 		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
901 		iter = &mz->iter[reclaim->priority];
902 
903 		if (prev && reclaim->generation != iter->generation)
904 			goto out_unlock;
905 
906 		while (1) {
907 			pos = READ_ONCE(iter->position);
908 			if (!pos || css_tryget(&pos->css))
909 				break;
910 			/*
911 			 * css reference reached zero, so iter->position will
912 			 * be cleared by ->css_released. However, we should not
913 			 * rely on this happening soon, because ->css_released
914 			 * is called from a work queue, and by busy-waiting we
915 			 * might block it. So we clear iter->position right
916 			 * away.
917 			 */
918 			(void)cmpxchg(&iter->position, pos, NULL);
919 		}
920 	}
921 
922 	if (pos)
923 		css = &pos->css;
924 
925 	for (;;) {
926 		css = css_next_descendant_pre(css, &root->css);
927 		if (!css) {
928 			/*
929 			 * Reclaimers share the hierarchy walk, and a
930 			 * new one might jump in right at the end of
931 			 * the hierarchy - make sure they see at least
932 			 * one group and restart from the beginning.
933 			 */
934 			if (!prev)
935 				continue;
936 			break;
937 		}
938 
939 		/*
940 		 * Verify the css and acquire a reference.  The root
941 		 * is provided by the caller, so we know it's alive
942 		 * and kicking, and don't take an extra reference.
943 		 */
944 		memcg = mem_cgroup_from_css(css);
945 
946 		if (css == &root->css)
947 			break;
948 
949 		if (css_tryget(css)) {
950 			/*
951 			 * Make sure the memcg is initialized:
952 			 * mem_cgroup_css_online() orders the the
953 			 * initialization against setting the flag.
954 			 */
955 			if (smp_load_acquire(&memcg->initialized))
956 				break;
957 
958 			css_put(css);
959 		}
960 
961 		memcg = NULL;
962 	}
963 
964 	if (reclaim) {
965 		/*
966 		 * The position could have already been updated by a competing
967 		 * thread, so check that the value hasn't changed since we read
968 		 * it to avoid reclaiming from the same cgroup twice.
969 		 */
970 		(void)cmpxchg(&iter->position, pos, memcg);
971 
972 		if (pos)
973 			css_put(&pos->css);
974 
975 		if (!memcg)
976 			iter->generation++;
977 		else if (!prev)
978 			reclaim->generation = iter->generation;
979 	}
980 
981 out_unlock:
982 	rcu_read_unlock();
983 out:
984 	if (prev && prev != root)
985 		css_put(&prev->css);
986 
987 	return memcg;
988 }
989 
990 /**
991  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
992  * @root: hierarchy root
993  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
994  */
995 void mem_cgroup_iter_break(struct mem_cgroup *root,
996 			   struct mem_cgroup *prev)
997 {
998 	if (!root)
999 		root = root_mem_cgroup;
1000 	if (prev && prev != root)
1001 		css_put(&prev->css);
1002 }
1003 
1004 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1005 {
1006 	struct mem_cgroup *memcg = dead_memcg;
1007 	struct mem_cgroup_reclaim_iter *iter;
1008 	struct mem_cgroup_per_zone *mz;
1009 	int nid, zid;
1010 	int i;
1011 
1012 	while ((memcg = parent_mem_cgroup(memcg))) {
1013 		for_each_node(nid) {
1014 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1015 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
1016 				for (i = 0; i <= DEF_PRIORITY; i++) {
1017 					iter = &mz->iter[i];
1018 					cmpxchg(&iter->position,
1019 						dead_memcg, NULL);
1020 				}
1021 			}
1022 		}
1023 	}
1024 }
1025 
1026 /*
1027  * Iteration constructs for visiting all cgroups (under a tree).  If
1028  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1029  * be used for reference counting.
1030  */
1031 #define for_each_mem_cgroup_tree(iter, root)		\
1032 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1033 	     iter != NULL;				\
1034 	     iter = mem_cgroup_iter(root, iter, NULL))
1035 
1036 #define for_each_mem_cgroup(iter)			\
1037 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1038 	     iter != NULL;				\
1039 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1040 
1041 /**
1042  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1043  * @zone: zone of the wanted lruvec
1044  * @memcg: memcg of the wanted lruvec
1045  *
1046  * Returns the lru list vector holding pages for the given @zone and
1047  * @mem.  This can be the global zone lruvec, if the memory controller
1048  * is disabled.
1049  */
1050 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1051 				      struct mem_cgroup *memcg)
1052 {
1053 	struct mem_cgroup_per_zone *mz;
1054 	struct lruvec *lruvec;
1055 
1056 	if (mem_cgroup_disabled()) {
1057 		lruvec = &zone->lruvec;
1058 		goto out;
1059 	}
1060 
1061 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1062 	lruvec = &mz->lruvec;
1063 out:
1064 	/*
1065 	 * Since a node can be onlined after the mem_cgroup was created,
1066 	 * we have to be prepared to initialize lruvec->zone here;
1067 	 * and if offlined then reonlined, we need to reinitialize it.
1068 	 */
1069 	if (unlikely(lruvec->zone != zone))
1070 		lruvec->zone = zone;
1071 	return lruvec;
1072 }
1073 
1074 /**
1075  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1076  * @page: the page
1077  * @zone: zone of the page
1078  *
1079  * This function is only safe when following the LRU page isolation
1080  * and putback protocol: the LRU lock must be held, and the page must
1081  * either be PageLRU() or the caller must have isolated/allocated it.
1082  */
1083 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1084 {
1085 	struct mem_cgroup_per_zone *mz;
1086 	struct mem_cgroup *memcg;
1087 	struct lruvec *lruvec;
1088 
1089 	if (mem_cgroup_disabled()) {
1090 		lruvec = &zone->lruvec;
1091 		goto out;
1092 	}
1093 
1094 	memcg = page->mem_cgroup;
1095 	/*
1096 	 * Swapcache readahead pages are added to the LRU - and
1097 	 * possibly migrated - before they are charged.
1098 	 */
1099 	if (!memcg)
1100 		memcg = root_mem_cgroup;
1101 
1102 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1103 	lruvec = &mz->lruvec;
1104 out:
1105 	/*
1106 	 * Since a node can be onlined after the mem_cgroup was created,
1107 	 * we have to be prepared to initialize lruvec->zone here;
1108 	 * and if offlined then reonlined, we need to reinitialize it.
1109 	 */
1110 	if (unlikely(lruvec->zone != zone))
1111 		lruvec->zone = zone;
1112 	return lruvec;
1113 }
1114 
1115 /**
1116  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1117  * @lruvec: mem_cgroup per zone lru vector
1118  * @lru: index of lru list the page is sitting on
1119  * @nr_pages: positive when adding or negative when removing
1120  *
1121  * This function must be called when a page is added to or removed from an
1122  * lru list.
1123  */
1124 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1125 				int nr_pages)
1126 {
1127 	struct mem_cgroup_per_zone *mz;
1128 	unsigned long *lru_size;
1129 
1130 	if (mem_cgroup_disabled())
1131 		return;
1132 
1133 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1134 	lru_size = mz->lru_size + lru;
1135 	*lru_size += nr_pages;
1136 	VM_BUG_ON((long)(*lru_size) < 0);
1137 }
1138 
1139 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1140 {
1141 	struct mem_cgroup *task_memcg;
1142 	struct task_struct *p;
1143 	bool ret;
1144 
1145 	p = find_lock_task_mm(task);
1146 	if (p) {
1147 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1148 		task_unlock(p);
1149 	} else {
1150 		/*
1151 		 * All threads may have already detached their mm's, but the oom
1152 		 * killer still needs to detect if they have already been oom
1153 		 * killed to prevent needlessly killing additional tasks.
1154 		 */
1155 		rcu_read_lock();
1156 		task_memcg = mem_cgroup_from_task(task);
1157 		css_get(&task_memcg->css);
1158 		rcu_read_unlock();
1159 	}
1160 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1161 	css_put(&task_memcg->css);
1162 	return ret;
1163 }
1164 
1165 #define mem_cgroup_from_counter(counter, member)	\
1166 	container_of(counter, struct mem_cgroup, member)
1167 
1168 /**
1169  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1170  * @memcg: the memory cgroup
1171  *
1172  * Returns the maximum amount of memory @mem can be charged with, in
1173  * pages.
1174  */
1175 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1176 {
1177 	unsigned long margin = 0;
1178 	unsigned long count;
1179 	unsigned long limit;
1180 
1181 	count = page_counter_read(&memcg->memory);
1182 	limit = READ_ONCE(memcg->memory.limit);
1183 	if (count < limit)
1184 		margin = limit - count;
1185 
1186 	if (do_swap_account) {
1187 		count = page_counter_read(&memcg->memsw);
1188 		limit = READ_ONCE(memcg->memsw.limit);
1189 		if (count <= limit)
1190 			margin = min(margin, limit - count);
1191 	}
1192 
1193 	return margin;
1194 }
1195 
1196 /*
1197  * A routine for checking "mem" is under move_account() or not.
1198  *
1199  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1200  * moving cgroups. This is for waiting at high-memory pressure
1201  * caused by "move".
1202  */
1203 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1204 {
1205 	struct mem_cgroup *from;
1206 	struct mem_cgroup *to;
1207 	bool ret = false;
1208 	/*
1209 	 * Unlike task_move routines, we access mc.to, mc.from not under
1210 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1211 	 */
1212 	spin_lock(&mc.lock);
1213 	from = mc.from;
1214 	to = mc.to;
1215 	if (!from)
1216 		goto unlock;
1217 
1218 	ret = mem_cgroup_is_descendant(from, memcg) ||
1219 		mem_cgroup_is_descendant(to, memcg);
1220 unlock:
1221 	spin_unlock(&mc.lock);
1222 	return ret;
1223 }
1224 
1225 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1226 {
1227 	if (mc.moving_task && current != mc.moving_task) {
1228 		if (mem_cgroup_under_move(memcg)) {
1229 			DEFINE_WAIT(wait);
1230 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1231 			/* moving charge context might have finished. */
1232 			if (mc.moving_task)
1233 				schedule();
1234 			finish_wait(&mc.waitq, &wait);
1235 			return true;
1236 		}
1237 	}
1238 	return false;
1239 }
1240 
1241 #define K(x) ((x) << (PAGE_SHIFT-10))
1242 /**
1243  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1244  * @memcg: The memory cgroup that went over limit
1245  * @p: Task that is going to be killed
1246  *
1247  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1248  * enabled
1249  */
1250 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1251 {
1252 	/* oom_info_lock ensures that parallel ooms do not interleave */
1253 	static DEFINE_MUTEX(oom_info_lock);
1254 	struct mem_cgroup *iter;
1255 	unsigned int i;
1256 
1257 	mutex_lock(&oom_info_lock);
1258 	rcu_read_lock();
1259 
1260 	if (p) {
1261 		pr_info("Task in ");
1262 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1263 		pr_cont(" killed as a result of limit of ");
1264 	} else {
1265 		pr_info("Memory limit reached of cgroup ");
1266 	}
1267 
1268 	pr_cont_cgroup_path(memcg->css.cgroup);
1269 	pr_cont("\n");
1270 
1271 	rcu_read_unlock();
1272 
1273 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1274 		K((u64)page_counter_read(&memcg->memory)),
1275 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1276 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1277 		K((u64)page_counter_read(&memcg->memsw)),
1278 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1279 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1280 		K((u64)page_counter_read(&memcg->kmem)),
1281 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1282 
1283 	for_each_mem_cgroup_tree(iter, memcg) {
1284 		pr_info("Memory cgroup stats for ");
1285 		pr_cont_cgroup_path(iter->css.cgroup);
1286 		pr_cont(":");
1287 
1288 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1289 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1290 				continue;
1291 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1292 				K(mem_cgroup_read_stat(iter, i)));
1293 		}
1294 
1295 		for (i = 0; i < NR_LRU_LISTS; i++)
1296 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1297 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1298 
1299 		pr_cont("\n");
1300 	}
1301 	mutex_unlock(&oom_info_lock);
1302 }
1303 
1304 /*
1305  * This function returns the number of memcg under hierarchy tree. Returns
1306  * 1(self count) if no children.
1307  */
1308 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1309 {
1310 	int num = 0;
1311 	struct mem_cgroup *iter;
1312 
1313 	for_each_mem_cgroup_tree(iter, memcg)
1314 		num++;
1315 	return num;
1316 }
1317 
1318 /*
1319  * Return the memory (and swap, if configured) limit for a memcg.
1320  */
1321 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1322 {
1323 	unsigned long limit;
1324 
1325 	limit = memcg->memory.limit;
1326 	if (mem_cgroup_swappiness(memcg)) {
1327 		unsigned long memsw_limit;
1328 
1329 		memsw_limit = memcg->memsw.limit;
1330 		limit = min(limit + total_swap_pages, memsw_limit);
1331 	}
1332 	return limit;
1333 }
1334 
1335 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1336 				     int order)
1337 {
1338 	struct oom_control oc = {
1339 		.zonelist = NULL,
1340 		.nodemask = NULL,
1341 		.gfp_mask = gfp_mask,
1342 		.order = order,
1343 	};
1344 	struct mem_cgroup *iter;
1345 	unsigned long chosen_points = 0;
1346 	unsigned long totalpages;
1347 	unsigned int points = 0;
1348 	struct task_struct *chosen = NULL;
1349 
1350 	mutex_lock(&oom_lock);
1351 
1352 	/*
1353 	 * If current has a pending SIGKILL or is exiting, then automatically
1354 	 * select it.  The goal is to allow it to allocate so that it may
1355 	 * quickly exit and free its memory.
1356 	 */
1357 	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1358 		mark_oom_victim(current);
1359 		goto unlock;
1360 	}
1361 
1362 	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1363 	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1364 	for_each_mem_cgroup_tree(iter, memcg) {
1365 		struct css_task_iter it;
1366 		struct task_struct *task;
1367 
1368 		css_task_iter_start(&iter->css, &it);
1369 		while ((task = css_task_iter_next(&it))) {
1370 			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1371 			case OOM_SCAN_SELECT:
1372 				if (chosen)
1373 					put_task_struct(chosen);
1374 				chosen = task;
1375 				chosen_points = ULONG_MAX;
1376 				get_task_struct(chosen);
1377 				/* fall through */
1378 			case OOM_SCAN_CONTINUE:
1379 				continue;
1380 			case OOM_SCAN_ABORT:
1381 				css_task_iter_end(&it);
1382 				mem_cgroup_iter_break(memcg, iter);
1383 				if (chosen)
1384 					put_task_struct(chosen);
1385 				goto unlock;
1386 			case OOM_SCAN_OK:
1387 				break;
1388 			};
1389 			points = oom_badness(task, memcg, NULL, totalpages);
1390 			if (!points || points < chosen_points)
1391 				continue;
1392 			/* Prefer thread group leaders for display purposes */
1393 			if (points == chosen_points &&
1394 			    thread_group_leader(chosen))
1395 				continue;
1396 
1397 			if (chosen)
1398 				put_task_struct(chosen);
1399 			chosen = task;
1400 			chosen_points = points;
1401 			get_task_struct(chosen);
1402 		}
1403 		css_task_iter_end(&it);
1404 	}
1405 
1406 	if (chosen) {
1407 		points = chosen_points * 1000 / totalpages;
1408 		oom_kill_process(&oc, chosen, points, totalpages, memcg,
1409 				 "Memory cgroup out of memory");
1410 	}
1411 unlock:
1412 	mutex_unlock(&oom_lock);
1413 }
1414 
1415 #if MAX_NUMNODES > 1
1416 
1417 /**
1418  * test_mem_cgroup_node_reclaimable
1419  * @memcg: the target memcg
1420  * @nid: the node ID to be checked.
1421  * @noswap : specify true here if the user wants flle only information.
1422  *
1423  * This function returns whether the specified memcg contains any
1424  * reclaimable pages on a node. Returns true if there are any reclaimable
1425  * pages in the node.
1426  */
1427 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1428 		int nid, bool noswap)
1429 {
1430 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1431 		return true;
1432 	if (noswap || !total_swap_pages)
1433 		return false;
1434 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1435 		return true;
1436 	return false;
1437 
1438 }
1439 
1440 /*
1441  * Always updating the nodemask is not very good - even if we have an empty
1442  * list or the wrong list here, we can start from some node and traverse all
1443  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1444  *
1445  */
1446 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1447 {
1448 	int nid;
1449 	/*
1450 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1451 	 * pagein/pageout changes since the last update.
1452 	 */
1453 	if (!atomic_read(&memcg->numainfo_events))
1454 		return;
1455 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1456 		return;
1457 
1458 	/* make a nodemask where this memcg uses memory from */
1459 	memcg->scan_nodes = node_states[N_MEMORY];
1460 
1461 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1462 
1463 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1464 			node_clear(nid, memcg->scan_nodes);
1465 	}
1466 
1467 	atomic_set(&memcg->numainfo_events, 0);
1468 	atomic_set(&memcg->numainfo_updating, 0);
1469 }
1470 
1471 /*
1472  * Selecting a node where we start reclaim from. Because what we need is just
1473  * reducing usage counter, start from anywhere is O,K. Considering
1474  * memory reclaim from current node, there are pros. and cons.
1475  *
1476  * Freeing memory from current node means freeing memory from a node which
1477  * we'll use or we've used. So, it may make LRU bad. And if several threads
1478  * hit limits, it will see a contention on a node. But freeing from remote
1479  * node means more costs for memory reclaim because of memory latency.
1480  *
1481  * Now, we use round-robin. Better algorithm is welcomed.
1482  */
1483 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1484 {
1485 	int node;
1486 
1487 	mem_cgroup_may_update_nodemask(memcg);
1488 	node = memcg->last_scanned_node;
1489 
1490 	node = next_node(node, memcg->scan_nodes);
1491 	if (node == MAX_NUMNODES)
1492 		node = first_node(memcg->scan_nodes);
1493 	/*
1494 	 * We call this when we hit limit, not when pages are added to LRU.
1495 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1496 	 * memcg is too small and all pages are not on LRU. In that case,
1497 	 * we use curret node.
1498 	 */
1499 	if (unlikely(node == MAX_NUMNODES))
1500 		node = numa_node_id();
1501 
1502 	memcg->last_scanned_node = node;
1503 	return node;
1504 }
1505 #else
1506 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1507 {
1508 	return 0;
1509 }
1510 #endif
1511 
1512 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1513 				   struct zone *zone,
1514 				   gfp_t gfp_mask,
1515 				   unsigned long *total_scanned)
1516 {
1517 	struct mem_cgroup *victim = NULL;
1518 	int total = 0;
1519 	int loop = 0;
1520 	unsigned long excess;
1521 	unsigned long nr_scanned;
1522 	struct mem_cgroup_reclaim_cookie reclaim = {
1523 		.zone = zone,
1524 		.priority = 0,
1525 	};
1526 
1527 	excess = soft_limit_excess(root_memcg);
1528 
1529 	while (1) {
1530 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1531 		if (!victim) {
1532 			loop++;
1533 			if (loop >= 2) {
1534 				/*
1535 				 * If we have not been able to reclaim
1536 				 * anything, it might because there are
1537 				 * no reclaimable pages under this hierarchy
1538 				 */
1539 				if (!total)
1540 					break;
1541 				/*
1542 				 * We want to do more targeted reclaim.
1543 				 * excess >> 2 is not to excessive so as to
1544 				 * reclaim too much, nor too less that we keep
1545 				 * coming back to reclaim from this cgroup
1546 				 */
1547 				if (total >= (excess >> 2) ||
1548 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1549 					break;
1550 			}
1551 			continue;
1552 		}
1553 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1554 						     zone, &nr_scanned);
1555 		*total_scanned += nr_scanned;
1556 		if (!soft_limit_excess(root_memcg))
1557 			break;
1558 	}
1559 	mem_cgroup_iter_break(root_memcg, victim);
1560 	return total;
1561 }
1562 
1563 #ifdef CONFIG_LOCKDEP
1564 static struct lockdep_map memcg_oom_lock_dep_map = {
1565 	.name = "memcg_oom_lock",
1566 };
1567 #endif
1568 
1569 static DEFINE_SPINLOCK(memcg_oom_lock);
1570 
1571 /*
1572  * Check OOM-Killer is already running under our hierarchy.
1573  * If someone is running, return false.
1574  */
1575 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1576 {
1577 	struct mem_cgroup *iter, *failed = NULL;
1578 
1579 	spin_lock(&memcg_oom_lock);
1580 
1581 	for_each_mem_cgroup_tree(iter, memcg) {
1582 		if (iter->oom_lock) {
1583 			/*
1584 			 * this subtree of our hierarchy is already locked
1585 			 * so we cannot give a lock.
1586 			 */
1587 			failed = iter;
1588 			mem_cgroup_iter_break(memcg, iter);
1589 			break;
1590 		} else
1591 			iter->oom_lock = true;
1592 	}
1593 
1594 	if (failed) {
1595 		/*
1596 		 * OK, we failed to lock the whole subtree so we have
1597 		 * to clean up what we set up to the failing subtree
1598 		 */
1599 		for_each_mem_cgroup_tree(iter, memcg) {
1600 			if (iter == failed) {
1601 				mem_cgroup_iter_break(memcg, iter);
1602 				break;
1603 			}
1604 			iter->oom_lock = false;
1605 		}
1606 	} else
1607 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1608 
1609 	spin_unlock(&memcg_oom_lock);
1610 
1611 	return !failed;
1612 }
1613 
1614 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1615 {
1616 	struct mem_cgroup *iter;
1617 
1618 	spin_lock(&memcg_oom_lock);
1619 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1620 	for_each_mem_cgroup_tree(iter, memcg)
1621 		iter->oom_lock = false;
1622 	spin_unlock(&memcg_oom_lock);
1623 }
1624 
1625 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1626 {
1627 	struct mem_cgroup *iter;
1628 
1629 	spin_lock(&memcg_oom_lock);
1630 	for_each_mem_cgroup_tree(iter, memcg)
1631 		iter->under_oom++;
1632 	spin_unlock(&memcg_oom_lock);
1633 }
1634 
1635 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1636 {
1637 	struct mem_cgroup *iter;
1638 
1639 	/*
1640 	 * When a new child is created while the hierarchy is under oom,
1641 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1642 	 */
1643 	spin_lock(&memcg_oom_lock);
1644 	for_each_mem_cgroup_tree(iter, memcg)
1645 		if (iter->under_oom > 0)
1646 			iter->under_oom--;
1647 	spin_unlock(&memcg_oom_lock);
1648 }
1649 
1650 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1651 
1652 struct oom_wait_info {
1653 	struct mem_cgroup *memcg;
1654 	wait_queue_t	wait;
1655 };
1656 
1657 static int memcg_oom_wake_function(wait_queue_t *wait,
1658 	unsigned mode, int sync, void *arg)
1659 {
1660 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1661 	struct mem_cgroup *oom_wait_memcg;
1662 	struct oom_wait_info *oom_wait_info;
1663 
1664 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1665 	oom_wait_memcg = oom_wait_info->memcg;
1666 
1667 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1668 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1669 		return 0;
1670 	return autoremove_wake_function(wait, mode, sync, arg);
1671 }
1672 
1673 static void memcg_oom_recover(struct mem_cgroup *memcg)
1674 {
1675 	/*
1676 	 * For the following lockless ->under_oom test, the only required
1677 	 * guarantee is that it must see the state asserted by an OOM when
1678 	 * this function is called as a result of userland actions
1679 	 * triggered by the notification of the OOM.  This is trivially
1680 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1681 	 * triggering notification.
1682 	 */
1683 	if (memcg && memcg->under_oom)
1684 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1685 }
1686 
1687 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1688 {
1689 	if (!current->memcg_may_oom)
1690 		return;
1691 	/*
1692 	 * We are in the middle of the charge context here, so we
1693 	 * don't want to block when potentially sitting on a callstack
1694 	 * that holds all kinds of filesystem and mm locks.
1695 	 *
1696 	 * Also, the caller may handle a failed allocation gracefully
1697 	 * (like optional page cache readahead) and so an OOM killer
1698 	 * invocation might not even be necessary.
1699 	 *
1700 	 * That's why we don't do anything here except remember the
1701 	 * OOM context and then deal with it at the end of the page
1702 	 * fault when the stack is unwound, the locks are released,
1703 	 * and when we know whether the fault was overall successful.
1704 	 */
1705 	css_get(&memcg->css);
1706 	current->memcg_in_oom = memcg;
1707 	current->memcg_oom_gfp_mask = mask;
1708 	current->memcg_oom_order = order;
1709 }
1710 
1711 /**
1712  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1713  * @handle: actually kill/wait or just clean up the OOM state
1714  *
1715  * This has to be called at the end of a page fault if the memcg OOM
1716  * handler was enabled.
1717  *
1718  * Memcg supports userspace OOM handling where failed allocations must
1719  * sleep on a waitqueue until the userspace task resolves the
1720  * situation.  Sleeping directly in the charge context with all kinds
1721  * of locks held is not a good idea, instead we remember an OOM state
1722  * in the task and mem_cgroup_oom_synchronize() has to be called at
1723  * the end of the page fault to complete the OOM handling.
1724  *
1725  * Returns %true if an ongoing memcg OOM situation was detected and
1726  * completed, %false otherwise.
1727  */
1728 bool mem_cgroup_oom_synchronize(bool handle)
1729 {
1730 	struct mem_cgroup *memcg = current->memcg_in_oom;
1731 	struct oom_wait_info owait;
1732 	bool locked;
1733 
1734 	/* OOM is global, do not handle */
1735 	if (!memcg)
1736 		return false;
1737 
1738 	if (!handle || oom_killer_disabled)
1739 		goto cleanup;
1740 
1741 	owait.memcg = memcg;
1742 	owait.wait.flags = 0;
1743 	owait.wait.func = memcg_oom_wake_function;
1744 	owait.wait.private = current;
1745 	INIT_LIST_HEAD(&owait.wait.task_list);
1746 
1747 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1748 	mem_cgroup_mark_under_oom(memcg);
1749 
1750 	locked = mem_cgroup_oom_trylock(memcg);
1751 
1752 	if (locked)
1753 		mem_cgroup_oom_notify(memcg);
1754 
1755 	if (locked && !memcg->oom_kill_disable) {
1756 		mem_cgroup_unmark_under_oom(memcg);
1757 		finish_wait(&memcg_oom_waitq, &owait.wait);
1758 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1759 					 current->memcg_oom_order);
1760 	} else {
1761 		schedule();
1762 		mem_cgroup_unmark_under_oom(memcg);
1763 		finish_wait(&memcg_oom_waitq, &owait.wait);
1764 	}
1765 
1766 	if (locked) {
1767 		mem_cgroup_oom_unlock(memcg);
1768 		/*
1769 		 * There is no guarantee that an OOM-lock contender
1770 		 * sees the wakeups triggered by the OOM kill
1771 		 * uncharges.  Wake any sleepers explicitely.
1772 		 */
1773 		memcg_oom_recover(memcg);
1774 	}
1775 cleanup:
1776 	current->memcg_in_oom = NULL;
1777 	css_put(&memcg->css);
1778 	return true;
1779 }
1780 
1781 /**
1782  * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1783  * @page: page that is going to change accounted state
1784  *
1785  * This function must mark the beginning of an accounted page state
1786  * change to prevent double accounting when the page is concurrently
1787  * being moved to another memcg:
1788  *
1789  *   memcg = mem_cgroup_begin_page_stat(page);
1790  *   if (TestClearPageState(page))
1791  *     mem_cgroup_update_page_stat(memcg, state, -1);
1792  *   mem_cgroup_end_page_stat(memcg);
1793  */
1794 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1795 {
1796 	struct mem_cgroup *memcg;
1797 	unsigned long flags;
1798 
1799 	/*
1800 	 * The RCU lock is held throughout the transaction.  The fast
1801 	 * path can get away without acquiring the memcg->move_lock
1802 	 * because page moving starts with an RCU grace period.
1803 	 *
1804 	 * The RCU lock also protects the memcg from being freed when
1805 	 * the page state that is going to change is the only thing
1806 	 * preventing the page from being uncharged.
1807 	 * E.g. end-writeback clearing PageWriteback(), which allows
1808 	 * migration to go ahead and uncharge the page before the
1809 	 * account transaction might be complete.
1810 	 */
1811 	rcu_read_lock();
1812 
1813 	if (mem_cgroup_disabled())
1814 		return NULL;
1815 again:
1816 	memcg = page->mem_cgroup;
1817 	if (unlikely(!memcg))
1818 		return NULL;
1819 
1820 	if (atomic_read(&memcg->moving_account) <= 0)
1821 		return memcg;
1822 
1823 	spin_lock_irqsave(&memcg->move_lock, flags);
1824 	if (memcg != page->mem_cgroup) {
1825 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1826 		goto again;
1827 	}
1828 
1829 	/*
1830 	 * When charge migration first begins, we can have locked and
1831 	 * unlocked page stat updates happening concurrently.  Track
1832 	 * the task who has the lock for mem_cgroup_end_page_stat().
1833 	 */
1834 	memcg->move_lock_task = current;
1835 	memcg->move_lock_flags = flags;
1836 
1837 	return memcg;
1838 }
1839 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1840 
1841 /**
1842  * mem_cgroup_end_page_stat - finish a page state statistics transaction
1843  * @memcg: the memcg that was accounted against
1844  */
1845 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1846 {
1847 	if (memcg && memcg->move_lock_task == current) {
1848 		unsigned long flags = memcg->move_lock_flags;
1849 
1850 		memcg->move_lock_task = NULL;
1851 		memcg->move_lock_flags = 0;
1852 
1853 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1854 	}
1855 
1856 	rcu_read_unlock();
1857 }
1858 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1859 
1860 /*
1861  * size of first charge trial. "32" comes from vmscan.c's magic value.
1862  * TODO: maybe necessary to use big numbers in big irons.
1863  */
1864 #define CHARGE_BATCH	32U
1865 struct memcg_stock_pcp {
1866 	struct mem_cgroup *cached; /* this never be root cgroup */
1867 	unsigned int nr_pages;
1868 	struct work_struct work;
1869 	unsigned long flags;
1870 #define FLUSHING_CACHED_CHARGE	0
1871 };
1872 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1873 static DEFINE_MUTEX(percpu_charge_mutex);
1874 
1875 /**
1876  * consume_stock: Try to consume stocked charge on this cpu.
1877  * @memcg: memcg to consume from.
1878  * @nr_pages: how many pages to charge.
1879  *
1880  * The charges will only happen if @memcg matches the current cpu's memcg
1881  * stock, and at least @nr_pages are available in that stock.  Failure to
1882  * service an allocation will refill the stock.
1883  *
1884  * returns true if successful, false otherwise.
1885  */
1886 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1887 {
1888 	struct memcg_stock_pcp *stock;
1889 	bool ret = false;
1890 
1891 	if (nr_pages > CHARGE_BATCH)
1892 		return ret;
1893 
1894 	stock = &get_cpu_var(memcg_stock);
1895 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1896 		stock->nr_pages -= nr_pages;
1897 		ret = true;
1898 	}
1899 	put_cpu_var(memcg_stock);
1900 	return ret;
1901 }
1902 
1903 /*
1904  * Returns stocks cached in percpu and reset cached information.
1905  */
1906 static void drain_stock(struct memcg_stock_pcp *stock)
1907 {
1908 	struct mem_cgroup *old = stock->cached;
1909 
1910 	if (stock->nr_pages) {
1911 		page_counter_uncharge(&old->memory, stock->nr_pages);
1912 		if (do_swap_account)
1913 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1914 		css_put_many(&old->css, stock->nr_pages);
1915 		stock->nr_pages = 0;
1916 	}
1917 	stock->cached = NULL;
1918 }
1919 
1920 /*
1921  * This must be called under preempt disabled or must be called by
1922  * a thread which is pinned to local cpu.
1923  */
1924 static void drain_local_stock(struct work_struct *dummy)
1925 {
1926 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1927 	drain_stock(stock);
1928 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1929 }
1930 
1931 /*
1932  * Cache charges(val) to local per_cpu area.
1933  * This will be consumed by consume_stock() function, later.
1934  */
1935 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1936 {
1937 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1938 
1939 	if (stock->cached != memcg) { /* reset if necessary */
1940 		drain_stock(stock);
1941 		stock->cached = memcg;
1942 	}
1943 	stock->nr_pages += nr_pages;
1944 	put_cpu_var(memcg_stock);
1945 }
1946 
1947 /*
1948  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1949  * of the hierarchy under it.
1950  */
1951 static void drain_all_stock(struct mem_cgroup *root_memcg)
1952 {
1953 	int cpu, curcpu;
1954 
1955 	/* If someone's already draining, avoid adding running more workers. */
1956 	if (!mutex_trylock(&percpu_charge_mutex))
1957 		return;
1958 	/* Notify other cpus that system-wide "drain" is running */
1959 	get_online_cpus();
1960 	curcpu = get_cpu();
1961 	for_each_online_cpu(cpu) {
1962 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1963 		struct mem_cgroup *memcg;
1964 
1965 		memcg = stock->cached;
1966 		if (!memcg || !stock->nr_pages)
1967 			continue;
1968 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1969 			continue;
1970 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1971 			if (cpu == curcpu)
1972 				drain_local_stock(&stock->work);
1973 			else
1974 				schedule_work_on(cpu, &stock->work);
1975 		}
1976 	}
1977 	put_cpu();
1978 	put_online_cpus();
1979 	mutex_unlock(&percpu_charge_mutex);
1980 }
1981 
1982 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1983 					unsigned long action,
1984 					void *hcpu)
1985 {
1986 	int cpu = (unsigned long)hcpu;
1987 	struct memcg_stock_pcp *stock;
1988 
1989 	if (action == CPU_ONLINE)
1990 		return NOTIFY_OK;
1991 
1992 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1993 		return NOTIFY_OK;
1994 
1995 	stock = &per_cpu(memcg_stock, cpu);
1996 	drain_stock(stock);
1997 	return NOTIFY_OK;
1998 }
1999 
2000 /*
2001  * Scheduled by try_charge() to be executed from the userland return path
2002  * and reclaims memory over the high limit.
2003  */
2004 void mem_cgroup_handle_over_high(void)
2005 {
2006 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2007 	struct mem_cgroup *memcg, *pos;
2008 
2009 	if (likely(!nr_pages))
2010 		return;
2011 
2012 	pos = memcg = get_mem_cgroup_from_mm(current->mm);
2013 
2014 	do {
2015 		if (page_counter_read(&pos->memory) <= pos->high)
2016 			continue;
2017 		mem_cgroup_events(pos, MEMCG_HIGH, 1);
2018 		try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
2019 	} while ((pos = parent_mem_cgroup(pos)));
2020 
2021 	css_put(&memcg->css);
2022 	current->memcg_nr_pages_over_high = 0;
2023 }
2024 
2025 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2026 		      unsigned int nr_pages)
2027 {
2028 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2029 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2030 	struct mem_cgroup *mem_over_limit;
2031 	struct page_counter *counter;
2032 	unsigned long nr_reclaimed;
2033 	bool may_swap = true;
2034 	bool drained = false;
2035 
2036 	if (mem_cgroup_is_root(memcg))
2037 		return 0;
2038 retry:
2039 	if (consume_stock(memcg, nr_pages))
2040 		return 0;
2041 
2042 	if (!do_swap_account ||
2043 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2044 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2045 			goto done_restock;
2046 		if (do_swap_account)
2047 			page_counter_uncharge(&memcg->memsw, batch);
2048 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2049 	} else {
2050 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2051 		may_swap = false;
2052 	}
2053 
2054 	if (batch > nr_pages) {
2055 		batch = nr_pages;
2056 		goto retry;
2057 	}
2058 
2059 	/*
2060 	 * Unlike in global OOM situations, memcg is not in a physical
2061 	 * memory shortage.  Allow dying and OOM-killed tasks to
2062 	 * bypass the last charges so that they can exit quickly and
2063 	 * free their memory.
2064 	 */
2065 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2066 		     fatal_signal_pending(current) ||
2067 		     current->flags & PF_EXITING))
2068 		goto force;
2069 
2070 	if (unlikely(task_in_memcg_oom(current)))
2071 		goto nomem;
2072 
2073 	if (!gfpflags_allow_blocking(gfp_mask))
2074 		goto nomem;
2075 
2076 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2077 
2078 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2079 						    gfp_mask, may_swap);
2080 
2081 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2082 		goto retry;
2083 
2084 	if (!drained) {
2085 		drain_all_stock(mem_over_limit);
2086 		drained = true;
2087 		goto retry;
2088 	}
2089 
2090 	if (gfp_mask & __GFP_NORETRY)
2091 		goto nomem;
2092 	/*
2093 	 * Even though the limit is exceeded at this point, reclaim
2094 	 * may have been able to free some pages.  Retry the charge
2095 	 * before killing the task.
2096 	 *
2097 	 * Only for regular pages, though: huge pages are rather
2098 	 * unlikely to succeed so close to the limit, and we fall back
2099 	 * to regular pages anyway in case of failure.
2100 	 */
2101 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2102 		goto retry;
2103 	/*
2104 	 * At task move, charge accounts can be doubly counted. So, it's
2105 	 * better to wait until the end of task_move if something is going on.
2106 	 */
2107 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2108 		goto retry;
2109 
2110 	if (nr_retries--)
2111 		goto retry;
2112 
2113 	if (gfp_mask & __GFP_NOFAIL)
2114 		goto force;
2115 
2116 	if (fatal_signal_pending(current))
2117 		goto force;
2118 
2119 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2120 
2121 	mem_cgroup_oom(mem_over_limit, gfp_mask,
2122 		       get_order(nr_pages * PAGE_SIZE));
2123 nomem:
2124 	if (!(gfp_mask & __GFP_NOFAIL))
2125 		return -ENOMEM;
2126 force:
2127 	/*
2128 	 * The allocation either can't fail or will lead to more memory
2129 	 * being freed very soon.  Allow memory usage go over the limit
2130 	 * temporarily by force charging it.
2131 	 */
2132 	page_counter_charge(&memcg->memory, nr_pages);
2133 	if (do_swap_account)
2134 		page_counter_charge(&memcg->memsw, nr_pages);
2135 	css_get_many(&memcg->css, nr_pages);
2136 
2137 	return 0;
2138 
2139 done_restock:
2140 	css_get_many(&memcg->css, batch);
2141 	if (batch > nr_pages)
2142 		refill_stock(memcg, batch - nr_pages);
2143 
2144 	/*
2145 	 * If the hierarchy is above the normal consumption range, schedule
2146 	 * reclaim on returning to userland.  We can perform reclaim here
2147 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2148 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2149 	 * not recorded as it most likely matches current's and won't
2150 	 * change in the meantime.  As high limit is checked again before
2151 	 * reclaim, the cost of mismatch is negligible.
2152 	 */
2153 	do {
2154 		if (page_counter_read(&memcg->memory) > memcg->high) {
2155 			current->memcg_nr_pages_over_high += batch;
2156 			set_notify_resume(current);
2157 			break;
2158 		}
2159 	} while ((memcg = parent_mem_cgroup(memcg)));
2160 
2161 	return 0;
2162 }
2163 
2164 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2165 {
2166 	if (mem_cgroup_is_root(memcg))
2167 		return;
2168 
2169 	page_counter_uncharge(&memcg->memory, nr_pages);
2170 	if (do_swap_account)
2171 		page_counter_uncharge(&memcg->memsw, nr_pages);
2172 
2173 	css_put_many(&memcg->css, nr_pages);
2174 }
2175 
2176 static void lock_page_lru(struct page *page, int *isolated)
2177 {
2178 	struct zone *zone = page_zone(page);
2179 
2180 	spin_lock_irq(&zone->lru_lock);
2181 	if (PageLRU(page)) {
2182 		struct lruvec *lruvec;
2183 
2184 		lruvec = mem_cgroup_page_lruvec(page, zone);
2185 		ClearPageLRU(page);
2186 		del_page_from_lru_list(page, lruvec, page_lru(page));
2187 		*isolated = 1;
2188 	} else
2189 		*isolated = 0;
2190 }
2191 
2192 static void unlock_page_lru(struct page *page, int isolated)
2193 {
2194 	struct zone *zone = page_zone(page);
2195 
2196 	if (isolated) {
2197 		struct lruvec *lruvec;
2198 
2199 		lruvec = mem_cgroup_page_lruvec(page, zone);
2200 		VM_BUG_ON_PAGE(PageLRU(page), page);
2201 		SetPageLRU(page);
2202 		add_page_to_lru_list(page, lruvec, page_lru(page));
2203 	}
2204 	spin_unlock_irq(&zone->lru_lock);
2205 }
2206 
2207 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2208 			  bool lrucare)
2209 {
2210 	int isolated;
2211 
2212 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2213 
2214 	/*
2215 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2216 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2217 	 */
2218 	if (lrucare)
2219 		lock_page_lru(page, &isolated);
2220 
2221 	/*
2222 	 * Nobody should be changing or seriously looking at
2223 	 * page->mem_cgroup at this point:
2224 	 *
2225 	 * - the page is uncharged
2226 	 *
2227 	 * - the page is off-LRU
2228 	 *
2229 	 * - an anonymous fault has exclusive page access, except for
2230 	 *   a locked page table
2231 	 *
2232 	 * - a page cache insertion, a swapin fault, or a migration
2233 	 *   have the page locked
2234 	 */
2235 	page->mem_cgroup = memcg;
2236 
2237 	if (lrucare)
2238 		unlock_page_lru(page, isolated);
2239 }
2240 
2241 #ifdef CONFIG_MEMCG_KMEM
2242 static int memcg_alloc_cache_id(void)
2243 {
2244 	int id, size;
2245 	int err;
2246 
2247 	id = ida_simple_get(&memcg_cache_ida,
2248 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2249 	if (id < 0)
2250 		return id;
2251 
2252 	if (id < memcg_nr_cache_ids)
2253 		return id;
2254 
2255 	/*
2256 	 * There's no space for the new id in memcg_caches arrays,
2257 	 * so we have to grow them.
2258 	 */
2259 	down_write(&memcg_cache_ids_sem);
2260 
2261 	size = 2 * (id + 1);
2262 	if (size < MEMCG_CACHES_MIN_SIZE)
2263 		size = MEMCG_CACHES_MIN_SIZE;
2264 	else if (size > MEMCG_CACHES_MAX_SIZE)
2265 		size = MEMCG_CACHES_MAX_SIZE;
2266 
2267 	err = memcg_update_all_caches(size);
2268 	if (!err)
2269 		err = memcg_update_all_list_lrus(size);
2270 	if (!err)
2271 		memcg_nr_cache_ids = size;
2272 
2273 	up_write(&memcg_cache_ids_sem);
2274 
2275 	if (err) {
2276 		ida_simple_remove(&memcg_cache_ida, id);
2277 		return err;
2278 	}
2279 	return id;
2280 }
2281 
2282 static void memcg_free_cache_id(int id)
2283 {
2284 	ida_simple_remove(&memcg_cache_ida, id);
2285 }
2286 
2287 struct memcg_kmem_cache_create_work {
2288 	struct mem_cgroup *memcg;
2289 	struct kmem_cache *cachep;
2290 	struct work_struct work;
2291 };
2292 
2293 static void memcg_kmem_cache_create_func(struct work_struct *w)
2294 {
2295 	struct memcg_kmem_cache_create_work *cw =
2296 		container_of(w, struct memcg_kmem_cache_create_work, work);
2297 	struct mem_cgroup *memcg = cw->memcg;
2298 	struct kmem_cache *cachep = cw->cachep;
2299 
2300 	memcg_create_kmem_cache(memcg, cachep);
2301 
2302 	css_put(&memcg->css);
2303 	kfree(cw);
2304 }
2305 
2306 /*
2307  * Enqueue the creation of a per-memcg kmem_cache.
2308  */
2309 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2310 					       struct kmem_cache *cachep)
2311 {
2312 	struct memcg_kmem_cache_create_work *cw;
2313 
2314 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2315 	if (!cw)
2316 		return;
2317 
2318 	css_get(&memcg->css);
2319 
2320 	cw->memcg = memcg;
2321 	cw->cachep = cachep;
2322 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2323 
2324 	schedule_work(&cw->work);
2325 }
2326 
2327 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2328 					     struct kmem_cache *cachep)
2329 {
2330 	/*
2331 	 * We need to stop accounting when we kmalloc, because if the
2332 	 * corresponding kmalloc cache is not yet created, the first allocation
2333 	 * in __memcg_schedule_kmem_cache_create will recurse.
2334 	 *
2335 	 * However, it is better to enclose the whole function. Depending on
2336 	 * the debugging options enabled, INIT_WORK(), for instance, can
2337 	 * trigger an allocation. This too, will make us recurse. Because at
2338 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2339 	 * the safest choice is to do it like this, wrapping the whole function.
2340 	 */
2341 	current->memcg_kmem_skip_account = 1;
2342 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2343 	current->memcg_kmem_skip_account = 0;
2344 }
2345 
2346 /*
2347  * Return the kmem_cache we're supposed to use for a slab allocation.
2348  * We try to use the current memcg's version of the cache.
2349  *
2350  * If the cache does not exist yet, if we are the first user of it,
2351  * we either create it immediately, if possible, or create it asynchronously
2352  * in a workqueue.
2353  * In the latter case, we will let the current allocation go through with
2354  * the original cache.
2355  *
2356  * Can't be called in interrupt context or from kernel threads.
2357  * This function needs to be called with rcu_read_lock() held.
2358  */
2359 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2360 {
2361 	struct mem_cgroup *memcg;
2362 	struct kmem_cache *memcg_cachep;
2363 	int kmemcg_id;
2364 
2365 	VM_BUG_ON(!is_root_cache(cachep));
2366 
2367 	if (current->memcg_kmem_skip_account)
2368 		return cachep;
2369 
2370 	memcg = get_mem_cgroup_from_mm(current->mm);
2371 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2372 	if (kmemcg_id < 0)
2373 		goto out;
2374 
2375 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2376 	if (likely(memcg_cachep))
2377 		return memcg_cachep;
2378 
2379 	/*
2380 	 * If we are in a safe context (can wait, and not in interrupt
2381 	 * context), we could be be predictable and return right away.
2382 	 * This would guarantee that the allocation being performed
2383 	 * already belongs in the new cache.
2384 	 *
2385 	 * However, there are some clashes that can arrive from locking.
2386 	 * For instance, because we acquire the slab_mutex while doing
2387 	 * memcg_create_kmem_cache, this means no further allocation
2388 	 * could happen with the slab_mutex held. So it's better to
2389 	 * defer everything.
2390 	 */
2391 	memcg_schedule_kmem_cache_create(memcg, cachep);
2392 out:
2393 	css_put(&memcg->css);
2394 	return cachep;
2395 }
2396 
2397 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2398 {
2399 	if (!is_root_cache(cachep))
2400 		css_put(&cachep->memcg_params.memcg->css);
2401 }
2402 
2403 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2404 			      struct mem_cgroup *memcg)
2405 {
2406 	unsigned int nr_pages = 1 << order;
2407 	struct page_counter *counter;
2408 	int ret;
2409 
2410 	if (!memcg_kmem_is_active(memcg))
2411 		return 0;
2412 
2413 	if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2414 		return -ENOMEM;
2415 
2416 	ret = try_charge(memcg, gfp, nr_pages);
2417 	if (ret) {
2418 		page_counter_uncharge(&memcg->kmem, nr_pages);
2419 		return ret;
2420 	}
2421 
2422 	page->mem_cgroup = memcg;
2423 
2424 	return 0;
2425 }
2426 
2427 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2428 {
2429 	struct mem_cgroup *memcg;
2430 	int ret;
2431 
2432 	memcg = get_mem_cgroup_from_mm(current->mm);
2433 	ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2434 	css_put(&memcg->css);
2435 	return ret;
2436 }
2437 
2438 void __memcg_kmem_uncharge(struct page *page, int order)
2439 {
2440 	struct mem_cgroup *memcg = page->mem_cgroup;
2441 	unsigned int nr_pages = 1 << order;
2442 
2443 	if (!memcg)
2444 		return;
2445 
2446 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2447 
2448 	page_counter_uncharge(&memcg->kmem, nr_pages);
2449 	page_counter_uncharge(&memcg->memory, nr_pages);
2450 	if (do_swap_account)
2451 		page_counter_uncharge(&memcg->memsw, nr_pages);
2452 
2453 	page->mem_cgroup = NULL;
2454 	css_put_many(&memcg->css, nr_pages);
2455 }
2456 #endif /* CONFIG_MEMCG_KMEM */
2457 
2458 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2459 
2460 /*
2461  * Because tail pages are not marked as "used", set it. We're under
2462  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2463  * charge/uncharge will be never happen and move_account() is done under
2464  * compound_lock(), so we don't have to take care of races.
2465  */
2466 void mem_cgroup_split_huge_fixup(struct page *head)
2467 {
2468 	int i;
2469 
2470 	if (mem_cgroup_disabled())
2471 		return;
2472 
2473 	for (i = 1; i < HPAGE_PMD_NR; i++)
2474 		head[i].mem_cgroup = head->mem_cgroup;
2475 
2476 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2477 		       HPAGE_PMD_NR);
2478 }
2479 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2480 
2481 #ifdef CONFIG_MEMCG_SWAP
2482 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2483 					 bool charge)
2484 {
2485 	int val = (charge) ? 1 : -1;
2486 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2487 }
2488 
2489 /**
2490  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2491  * @entry: swap entry to be moved
2492  * @from:  mem_cgroup which the entry is moved from
2493  * @to:  mem_cgroup which the entry is moved to
2494  *
2495  * It succeeds only when the swap_cgroup's record for this entry is the same
2496  * as the mem_cgroup's id of @from.
2497  *
2498  * Returns 0 on success, -EINVAL on failure.
2499  *
2500  * The caller must have charged to @to, IOW, called page_counter_charge() about
2501  * both res and memsw, and called css_get().
2502  */
2503 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2504 				struct mem_cgroup *from, struct mem_cgroup *to)
2505 {
2506 	unsigned short old_id, new_id;
2507 
2508 	old_id = mem_cgroup_id(from);
2509 	new_id = mem_cgroup_id(to);
2510 
2511 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2512 		mem_cgroup_swap_statistics(from, false);
2513 		mem_cgroup_swap_statistics(to, true);
2514 		return 0;
2515 	}
2516 	return -EINVAL;
2517 }
2518 #else
2519 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2520 				struct mem_cgroup *from, struct mem_cgroup *to)
2521 {
2522 	return -EINVAL;
2523 }
2524 #endif
2525 
2526 static DEFINE_MUTEX(memcg_limit_mutex);
2527 
2528 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2529 				   unsigned long limit)
2530 {
2531 	unsigned long curusage;
2532 	unsigned long oldusage;
2533 	bool enlarge = false;
2534 	int retry_count;
2535 	int ret;
2536 
2537 	/*
2538 	 * For keeping hierarchical_reclaim simple, how long we should retry
2539 	 * is depends on callers. We set our retry-count to be function
2540 	 * of # of children which we should visit in this loop.
2541 	 */
2542 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2543 		      mem_cgroup_count_children(memcg);
2544 
2545 	oldusage = page_counter_read(&memcg->memory);
2546 
2547 	do {
2548 		if (signal_pending(current)) {
2549 			ret = -EINTR;
2550 			break;
2551 		}
2552 
2553 		mutex_lock(&memcg_limit_mutex);
2554 		if (limit > memcg->memsw.limit) {
2555 			mutex_unlock(&memcg_limit_mutex);
2556 			ret = -EINVAL;
2557 			break;
2558 		}
2559 		if (limit > memcg->memory.limit)
2560 			enlarge = true;
2561 		ret = page_counter_limit(&memcg->memory, limit);
2562 		mutex_unlock(&memcg_limit_mutex);
2563 
2564 		if (!ret)
2565 			break;
2566 
2567 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2568 
2569 		curusage = page_counter_read(&memcg->memory);
2570 		/* Usage is reduced ? */
2571 		if (curusage >= oldusage)
2572 			retry_count--;
2573 		else
2574 			oldusage = curusage;
2575 	} while (retry_count);
2576 
2577 	if (!ret && enlarge)
2578 		memcg_oom_recover(memcg);
2579 
2580 	return ret;
2581 }
2582 
2583 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2584 					 unsigned long limit)
2585 {
2586 	unsigned long curusage;
2587 	unsigned long oldusage;
2588 	bool enlarge = false;
2589 	int retry_count;
2590 	int ret;
2591 
2592 	/* see mem_cgroup_resize_res_limit */
2593 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2594 		      mem_cgroup_count_children(memcg);
2595 
2596 	oldusage = page_counter_read(&memcg->memsw);
2597 
2598 	do {
2599 		if (signal_pending(current)) {
2600 			ret = -EINTR;
2601 			break;
2602 		}
2603 
2604 		mutex_lock(&memcg_limit_mutex);
2605 		if (limit < memcg->memory.limit) {
2606 			mutex_unlock(&memcg_limit_mutex);
2607 			ret = -EINVAL;
2608 			break;
2609 		}
2610 		if (limit > memcg->memsw.limit)
2611 			enlarge = true;
2612 		ret = page_counter_limit(&memcg->memsw, limit);
2613 		mutex_unlock(&memcg_limit_mutex);
2614 
2615 		if (!ret)
2616 			break;
2617 
2618 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2619 
2620 		curusage = page_counter_read(&memcg->memsw);
2621 		/* Usage is reduced ? */
2622 		if (curusage >= oldusage)
2623 			retry_count--;
2624 		else
2625 			oldusage = curusage;
2626 	} while (retry_count);
2627 
2628 	if (!ret && enlarge)
2629 		memcg_oom_recover(memcg);
2630 
2631 	return ret;
2632 }
2633 
2634 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2635 					    gfp_t gfp_mask,
2636 					    unsigned long *total_scanned)
2637 {
2638 	unsigned long nr_reclaimed = 0;
2639 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2640 	unsigned long reclaimed;
2641 	int loop = 0;
2642 	struct mem_cgroup_tree_per_zone *mctz;
2643 	unsigned long excess;
2644 	unsigned long nr_scanned;
2645 
2646 	if (order > 0)
2647 		return 0;
2648 
2649 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2650 	/*
2651 	 * This loop can run a while, specially if mem_cgroup's continuously
2652 	 * keep exceeding their soft limit and putting the system under
2653 	 * pressure
2654 	 */
2655 	do {
2656 		if (next_mz)
2657 			mz = next_mz;
2658 		else
2659 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2660 		if (!mz)
2661 			break;
2662 
2663 		nr_scanned = 0;
2664 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2665 						    gfp_mask, &nr_scanned);
2666 		nr_reclaimed += reclaimed;
2667 		*total_scanned += nr_scanned;
2668 		spin_lock_irq(&mctz->lock);
2669 		__mem_cgroup_remove_exceeded(mz, mctz);
2670 
2671 		/*
2672 		 * If we failed to reclaim anything from this memory cgroup
2673 		 * it is time to move on to the next cgroup
2674 		 */
2675 		next_mz = NULL;
2676 		if (!reclaimed)
2677 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2678 
2679 		excess = soft_limit_excess(mz->memcg);
2680 		/*
2681 		 * One school of thought says that we should not add
2682 		 * back the node to the tree if reclaim returns 0.
2683 		 * But our reclaim could return 0, simply because due
2684 		 * to priority we are exposing a smaller subset of
2685 		 * memory to reclaim from. Consider this as a longer
2686 		 * term TODO.
2687 		 */
2688 		/* If excess == 0, no tree ops */
2689 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2690 		spin_unlock_irq(&mctz->lock);
2691 		css_put(&mz->memcg->css);
2692 		loop++;
2693 		/*
2694 		 * Could not reclaim anything and there are no more
2695 		 * mem cgroups to try or we seem to be looping without
2696 		 * reclaiming anything.
2697 		 */
2698 		if (!nr_reclaimed &&
2699 			(next_mz == NULL ||
2700 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2701 			break;
2702 	} while (!nr_reclaimed);
2703 	if (next_mz)
2704 		css_put(&next_mz->memcg->css);
2705 	return nr_reclaimed;
2706 }
2707 
2708 /*
2709  * Test whether @memcg has children, dead or alive.  Note that this
2710  * function doesn't care whether @memcg has use_hierarchy enabled and
2711  * returns %true if there are child csses according to the cgroup
2712  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2713  */
2714 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2715 {
2716 	bool ret;
2717 
2718 	/*
2719 	 * The lock does not prevent addition or deletion of children, but
2720 	 * it prevents a new child from being initialized based on this
2721 	 * parent in css_online(), so it's enough to decide whether
2722 	 * hierarchically inherited attributes can still be changed or not.
2723 	 */
2724 	lockdep_assert_held(&memcg_create_mutex);
2725 
2726 	rcu_read_lock();
2727 	ret = css_next_child(NULL, &memcg->css);
2728 	rcu_read_unlock();
2729 	return ret;
2730 }
2731 
2732 /*
2733  * Reclaims as many pages from the given memcg as possible and moves
2734  * the rest to the parent.
2735  *
2736  * Caller is responsible for holding css reference for memcg.
2737  */
2738 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2739 {
2740 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2741 
2742 	/* we call try-to-free pages for make this cgroup empty */
2743 	lru_add_drain_all();
2744 	/* try to free all pages in this cgroup */
2745 	while (nr_retries && page_counter_read(&memcg->memory)) {
2746 		int progress;
2747 
2748 		if (signal_pending(current))
2749 			return -EINTR;
2750 
2751 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2752 							GFP_KERNEL, true);
2753 		if (!progress) {
2754 			nr_retries--;
2755 			/* maybe some writeback is necessary */
2756 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2757 		}
2758 
2759 	}
2760 
2761 	return 0;
2762 }
2763 
2764 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2765 					    char *buf, size_t nbytes,
2766 					    loff_t off)
2767 {
2768 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2769 
2770 	if (mem_cgroup_is_root(memcg))
2771 		return -EINVAL;
2772 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2773 }
2774 
2775 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2776 				     struct cftype *cft)
2777 {
2778 	return mem_cgroup_from_css(css)->use_hierarchy;
2779 }
2780 
2781 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2782 				      struct cftype *cft, u64 val)
2783 {
2784 	int retval = 0;
2785 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2786 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2787 
2788 	mutex_lock(&memcg_create_mutex);
2789 
2790 	if (memcg->use_hierarchy == val)
2791 		goto out;
2792 
2793 	/*
2794 	 * If parent's use_hierarchy is set, we can't make any modifications
2795 	 * in the child subtrees. If it is unset, then the change can
2796 	 * occur, provided the current cgroup has no children.
2797 	 *
2798 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2799 	 * set if there are no children.
2800 	 */
2801 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2802 				(val == 1 || val == 0)) {
2803 		if (!memcg_has_children(memcg))
2804 			memcg->use_hierarchy = val;
2805 		else
2806 			retval = -EBUSY;
2807 	} else
2808 		retval = -EINVAL;
2809 
2810 out:
2811 	mutex_unlock(&memcg_create_mutex);
2812 
2813 	return retval;
2814 }
2815 
2816 static unsigned long tree_stat(struct mem_cgroup *memcg,
2817 			       enum mem_cgroup_stat_index idx)
2818 {
2819 	struct mem_cgroup *iter;
2820 	unsigned long val = 0;
2821 
2822 	for_each_mem_cgroup_tree(iter, memcg)
2823 		val += mem_cgroup_read_stat(iter, idx);
2824 
2825 	return val;
2826 }
2827 
2828 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2829 {
2830 	unsigned long val;
2831 
2832 	if (mem_cgroup_is_root(memcg)) {
2833 		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2834 		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2835 		if (swap)
2836 			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2837 	} else {
2838 		if (!swap)
2839 			val = page_counter_read(&memcg->memory);
2840 		else
2841 			val = page_counter_read(&memcg->memsw);
2842 	}
2843 	return val;
2844 }
2845 
2846 enum {
2847 	RES_USAGE,
2848 	RES_LIMIT,
2849 	RES_MAX_USAGE,
2850 	RES_FAILCNT,
2851 	RES_SOFT_LIMIT,
2852 };
2853 
2854 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2855 			       struct cftype *cft)
2856 {
2857 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2858 	struct page_counter *counter;
2859 
2860 	switch (MEMFILE_TYPE(cft->private)) {
2861 	case _MEM:
2862 		counter = &memcg->memory;
2863 		break;
2864 	case _MEMSWAP:
2865 		counter = &memcg->memsw;
2866 		break;
2867 	case _KMEM:
2868 		counter = &memcg->kmem;
2869 		break;
2870 	default:
2871 		BUG();
2872 	}
2873 
2874 	switch (MEMFILE_ATTR(cft->private)) {
2875 	case RES_USAGE:
2876 		if (counter == &memcg->memory)
2877 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2878 		if (counter == &memcg->memsw)
2879 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2880 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2881 	case RES_LIMIT:
2882 		return (u64)counter->limit * PAGE_SIZE;
2883 	case RES_MAX_USAGE:
2884 		return (u64)counter->watermark * PAGE_SIZE;
2885 	case RES_FAILCNT:
2886 		return counter->failcnt;
2887 	case RES_SOFT_LIMIT:
2888 		return (u64)memcg->soft_limit * PAGE_SIZE;
2889 	default:
2890 		BUG();
2891 	}
2892 }
2893 
2894 #ifdef CONFIG_MEMCG_KMEM
2895 static int memcg_activate_kmem(struct mem_cgroup *memcg,
2896 			       unsigned long nr_pages)
2897 {
2898 	int err = 0;
2899 	int memcg_id;
2900 
2901 	BUG_ON(memcg->kmemcg_id >= 0);
2902 	BUG_ON(memcg->kmem_acct_activated);
2903 	BUG_ON(memcg->kmem_acct_active);
2904 
2905 	/*
2906 	 * For simplicity, we won't allow this to be disabled.  It also can't
2907 	 * be changed if the cgroup has children already, or if tasks had
2908 	 * already joined.
2909 	 *
2910 	 * If tasks join before we set the limit, a person looking at
2911 	 * kmem.usage_in_bytes will have no way to determine when it took
2912 	 * place, which makes the value quite meaningless.
2913 	 *
2914 	 * After it first became limited, changes in the value of the limit are
2915 	 * of course permitted.
2916 	 */
2917 	mutex_lock(&memcg_create_mutex);
2918 	if (cgroup_is_populated(memcg->css.cgroup) ||
2919 	    (memcg->use_hierarchy && memcg_has_children(memcg)))
2920 		err = -EBUSY;
2921 	mutex_unlock(&memcg_create_mutex);
2922 	if (err)
2923 		goto out;
2924 
2925 	memcg_id = memcg_alloc_cache_id();
2926 	if (memcg_id < 0) {
2927 		err = memcg_id;
2928 		goto out;
2929 	}
2930 
2931 	/*
2932 	 * We couldn't have accounted to this cgroup, because it hasn't got
2933 	 * activated yet, so this should succeed.
2934 	 */
2935 	err = page_counter_limit(&memcg->kmem, nr_pages);
2936 	VM_BUG_ON(err);
2937 
2938 	static_key_slow_inc(&memcg_kmem_enabled_key);
2939 	/*
2940 	 * A memory cgroup is considered kmem-active as soon as it gets
2941 	 * kmemcg_id. Setting the id after enabling static branching will
2942 	 * guarantee no one starts accounting before all call sites are
2943 	 * patched.
2944 	 */
2945 	memcg->kmemcg_id = memcg_id;
2946 	memcg->kmem_acct_activated = true;
2947 	memcg->kmem_acct_active = true;
2948 out:
2949 	return err;
2950 }
2951 
2952 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2953 				   unsigned long limit)
2954 {
2955 	int ret;
2956 
2957 	mutex_lock(&memcg_limit_mutex);
2958 	if (!memcg_kmem_is_active(memcg))
2959 		ret = memcg_activate_kmem(memcg, limit);
2960 	else
2961 		ret = page_counter_limit(&memcg->kmem, limit);
2962 	mutex_unlock(&memcg_limit_mutex);
2963 	return ret;
2964 }
2965 
2966 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2967 {
2968 	int ret = 0;
2969 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2970 
2971 	if (!parent)
2972 		return 0;
2973 
2974 	mutex_lock(&memcg_limit_mutex);
2975 	/*
2976 	 * If the parent cgroup is not kmem-active now, it cannot be activated
2977 	 * after this point, because it has at least one child already.
2978 	 */
2979 	if (memcg_kmem_is_active(parent))
2980 		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2981 	mutex_unlock(&memcg_limit_mutex);
2982 	return ret;
2983 }
2984 #else
2985 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2986 				   unsigned long limit)
2987 {
2988 	return -EINVAL;
2989 }
2990 #endif /* CONFIG_MEMCG_KMEM */
2991 
2992 /*
2993  * The user of this function is...
2994  * RES_LIMIT.
2995  */
2996 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2997 				char *buf, size_t nbytes, loff_t off)
2998 {
2999 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3000 	unsigned long nr_pages;
3001 	int ret;
3002 
3003 	buf = strstrip(buf);
3004 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3005 	if (ret)
3006 		return ret;
3007 
3008 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3009 	case RES_LIMIT:
3010 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3011 			ret = -EINVAL;
3012 			break;
3013 		}
3014 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015 		case _MEM:
3016 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3017 			break;
3018 		case _MEMSWAP:
3019 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3020 			break;
3021 		case _KMEM:
3022 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3023 			break;
3024 		}
3025 		break;
3026 	case RES_SOFT_LIMIT:
3027 		memcg->soft_limit = nr_pages;
3028 		ret = 0;
3029 		break;
3030 	}
3031 	return ret ?: nbytes;
3032 }
3033 
3034 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3035 				size_t nbytes, loff_t off)
3036 {
3037 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3038 	struct page_counter *counter;
3039 
3040 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3041 	case _MEM:
3042 		counter = &memcg->memory;
3043 		break;
3044 	case _MEMSWAP:
3045 		counter = &memcg->memsw;
3046 		break;
3047 	case _KMEM:
3048 		counter = &memcg->kmem;
3049 		break;
3050 	default:
3051 		BUG();
3052 	}
3053 
3054 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3055 	case RES_MAX_USAGE:
3056 		page_counter_reset_watermark(counter);
3057 		break;
3058 	case RES_FAILCNT:
3059 		counter->failcnt = 0;
3060 		break;
3061 	default:
3062 		BUG();
3063 	}
3064 
3065 	return nbytes;
3066 }
3067 
3068 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3069 					struct cftype *cft)
3070 {
3071 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3072 }
3073 
3074 #ifdef CONFIG_MMU
3075 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3076 					struct cftype *cft, u64 val)
3077 {
3078 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3079 
3080 	if (val & ~MOVE_MASK)
3081 		return -EINVAL;
3082 
3083 	/*
3084 	 * No kind of locking is needed in here, because ->can_attach() will
3085 	 * check this value once in the beginning of the process, and then carry
3086 	 * on with stale data. This means that changes to this value will only
3087 	 * affect task migrations starting after the change.
3088 	 */
3089 	memcg->move_charge_at_immigrate = val;
3090 	return 0;
3091 }
3092 #else
3093 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3094 					struct cftype *cft, u64 val)
3095 {
3096 	return -ENOSYS;
3097 }
3098 #endif
3099 
3100 #ifdef CONFIG_NUMA
3101 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3102 {
3103 	struct numa_stat {
3104 		const char *name;
3105 		unsigned int lru_mask;
3106 	};
3107 
3108 	static const struct numa_stat stats[] = {
3109 		{ "total", LRU_ALL },
3110 		{ "file", LRU_ALL_FILE },
3111 		{ "anon", LRU_ALL_ANON },
3112 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3113 	};
3114 	const struct numa_stat *stat;
3115 	int nid;
3116 	unsigned long nr;
3117 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3118 
3119 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3120 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3121 		seq_printf(m, "%s=%lu", stat->name, nr);
3122 		for_each_node_state(nid, N_MEMORY) {
3123 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3124 							  stat->lru_mask);
3125 			seq_printf(m, " N%d=%lu", nid, nr);
3126 		}
3127 		seq_putc(m, '\n');
3128 	}
3129 
3130 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3131 		struct mem_cgroup *iter;
3132 
3133 		nr = 0;
3134 		for_each_mem_cgroup_tree(iter, memcg)
3135 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3136 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3137 		for_each_node_state(nid, N_MEMORY) {
3138 			nr = 0;
3139 			for_each_mem_cgroup_tree(iter, memcg)
3140 				nr += mem_cgroup_node_nr_lru_pages(
3141 					iter, nid, stat->lru_mask);
3142 			seq_printf(m, " N%d=%lu", nid, nr);
3143 		}
3144 		seq_putc(m, '\n');
3145 	}
3146 
3147 	return 0;
3148 }
3149 #endif /* CONFIG_NUMA */
3150 
3151 static int memcg_stat_show(struct seq_file *m, void *v)
3152 {
3153 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3154 	unsigned long memory, memsw;
3155 	struct mem_cgroup *mi;
3156 	unsigned int i;
3157 
3158 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3159 		     MEM_CGROUP_STAT_NSTATS);
3160 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3161 		     MEM_CGROUP_EVENTS_NSTATS);
3162 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3163 
3164 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3165 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3166 			continue;
3167 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3168 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3169 	}
3170 
3171 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3172 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3173 			   mem_cgroup_read_events(memcg, i));
3174 
3175 	for (i = 0; i < NR_LRU_LISTS; i++)
3176 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3177 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3178 
3179 	/* Hierarchical information */
3180 	memory = memsw = PAGE_COUNTER_MAX;
3181 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3182 		memory = min(memory, mi->memory.limit);
3183 		memsw = min(memsw, mi->memsw.limit);
3184 	}
3185 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3186 		   (u64)memory * PAGE_SIZE);
3187 	if (do_swap_account)
3188 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3189 			   (u64)memsw * PAGE_SIZE);
3190 
3191 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3192 		unsigned long long val = 0;
3193 
3194 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3195 			continue;
3196 		for_each_mem_cgroup_tree(mi, memcg)
3197 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3198 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3199 	}
3200 
3201 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3202 		unsigned long long val = 0;
3203 
3204 		for_each_mem_cgroup_tree(mi, memcg)
3205 			val += mem_cgroup_read_events(mi, i);
3206 		seq_printf(m, "total_%s %llu\n",
3207 			   mem_cgroup_events_names[i], val);
3208 	}
3209 
3210 	for (i = 0; i < NR_LRU_LISTS; i++) {
3211 		unsigned long long val = 0;
3212 
3213 		for_each_mem_cgroup_tree(mi, memcg)
3214 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3215 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3216 	}
3217 
3218 #ifdef CONFIG_DEBUG_VM
3219 	{
3220 		int nid, zid;
3221 		struct mem_cgroup_per_zone *mz;
3222 		struct zone_reclaim_stat *rstat;
3223 		unsigned long recent_rotated[2] = {0, 0};
3224 		unsigned long recent_scanned[2] = {0, 0};
3225 
3226 		for_each_online_node(nid)
3227 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3228 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3229 				rstat = &mz->lruvec.reclaim_stat;
3230 
3231 				recent_rotated[0] += rstat->recent_rotated[0];
3232 				recent_rotated[1] += rstat->recent_rotated[1];
3233 				recent_scanned[0] += rstat->recent_scanned[0];
3234 				recent_scanned[1] += rstat->recent_scanned[1];
3235 			}
3236 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3237 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3238 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3239 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3240 	}
3241 #endif
3242 
3243 	return 0;
3244 }
3245 
3246 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3247 				      struct cftype *cft)
3248 {
3249 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3250 
3251 	return mem_cgroup_swappiness(memcg);
3252 }
3253 
3254 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3255 				       struct cftype *cft, u64 val)
3256 {
3257 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3258 
3259 	if (val > 100)
3260 		return -EINVAL;
3261 
3262 	if (css->parent)
3263 		memcg->swappiness = val;
3264 	else
3265 		vm_swappiness = val;
3266 
3267 	return 0;
3268 }
3269 
3270 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3271 {
3272 	struct mem_cgroup_threshold_ary *t;
3273 	unsigned long usage;
3274 	int i;
3275 
3276 	rcu_read_lock();
3277 	if (!swap)
3278 		t = rcu_dereference(memcg->thresholds.primary);
3279 	else
3280 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3281 
3282 	if (!t)
3283 		goto unlock;
3284 
3285 	usage = mem_cgroup_usage(memcg, swap);
3286 
3287 	/*
3288 	 * current_threshold points to threshold just below or equal to usage.
3289 	 * If it's not true, a threshold was crossed after last
3290 	 * call of __mem_cgroup_threshold().
3291 	 */
3292 	i = t->current_threshold;
3293 
3294 	/*
3295 	 * Iterate backward over array of thresholds starting from
3296 	 * current_threshold and check if a threshold is crossed.
3297 	 * If none of thresholds below usage is crossed, we read
3298 	 * only one element of the array here.
3299 	 */
3300 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3301 		eventfd_signal(t->entries[i].eventfd, 1);
3302 
3303 	/* i = current_threshold + 1 */
3304 	i++;
3305 
3306 	/*
3307 	 * Iterate forward over array of thresholds starting from
3308 	 * current_threshold+1 and check if a threshold is crossed.
3309 	 * If none of thresholds above usage is crossed, we read
3310 	 * only one element of the array here.
3311 	 */
3312 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3313 		eventfd_signal(t->entries[i].eventfd, 1);
3314 
3315 	/* Update current_threshold */
3316 	t->current_threshold = i - 1;
3317 unlock:
3318 	rcu_read_unlock();
3319 }
3320 
3321 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3322 {
3323 	while (memcg) {
3324 		__mem_cgroup_threshold(memcg, false);
3325 		if (do_swap_account)
3326 			__mem_cgroup_threshold(memcg, true);
3327 
3328 		memcg = parent_mem_cgroup(memcg);
3329 	}
3330 }
3331 
3332 static int compare_thresholds(const void *a, const void *b)
3333 {
3334 	const struct mem_cgroup_threshold *_a = a;
3335 	const struct mem_cgroup_threshold *_b = b;
3336 
3337 	if (_a->threshold > _b->threshold)
3338 		return 1;
3339 
3340 	if (_a->threshold < _b->threshold)
3341 		return -1;
3342 
3343 	return 0;
3344 }
3345 
3346 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3347 {
3348 	struct mem_cgroup_eventfd_list *ev;
3349 
3350 	spin_lock(&memcg_oom_lock);
3351 
3352 	list_for_each_entry(ev, &memcg->oom_notify, list)
3353 		eventfd_signal(ev->eventfd, 1);
3354 
3355 	spin_unlock(&memcg_oom_lock);
3356 	return 0;
3357 }
3358 
3359 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3360 {
3361 	struct mem_cgroup *iter;
3362 
3363 	for_each_mem_cgroup_tree(iter, memcg)
3364 		mem_cgroup_oom_notify_cb(iter);
3365 }
3366 
3367 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3368 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3369 {
3370 	struct mem_cgroup_thresholds *thresholds;
3371 	struct mem_cgroup_threshold_ary *new;
3372 	unsigned long threshold;
3373 	unsigned long usage;
3374 	int i, size, ret;
3375 
3376 	ret = page_counter_memparse(args, "-1", &threshold);
3377 	if (ret)
3378 		return ret;
3379 
3380 	mutex_lock(&memcg->thresholds_lock);
3381 
3382 	if (type == _MEM) {
3383 		thresholds = &memcg->thresholds;
3384 		usage = mem_cgroup_usage(memcg, false);
3385 	} else if (type == _MEMSWAP) {
3386 		thresholds = &memcg->memsw_thresholds;
3387 		usage = mem_cgroup_usage(memcg, true);
3388 	} else
3389 		BUG();
3390 
3391 	/* Check if a threshold crossed before adding a new one */
3392 	if (thresholds->primary)
3393 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3394 
3395 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3396 
3397 	/* Allocate memory for new array of thresholds */
3398 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3399 			GFP_KERNEL);
3400 	if (!new) {
3401 		ret = -ENOMEM;
3402 		goto unlock;
3403 	}
3404 	new->size = size;
3405 
3406 	/* Copy thresholds (if any) to new array */
3407 	if (thresholds->primary) {
3408 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3409 				sizeof(struct mem_cgroup_threshold));
3410 	}
3411 
3412 	/* Add new threshold */
3413 	new->entries[size - 1].eventfd = eventfd;
3414 	new->entries[size - 1].threshold = threshold;
3415 
3416 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3417 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3418 			compare_thresholds, NULL);
3419 
3420 	/* Find current threshold */
3421 	new->current_threshold = -1;
3422 	for (i = 0; i < size; i++) {
3423 		if (new->entries[i].threshold <= usage) {
3424 			/*
3425 			 * new->current_threshold will not be used until
3426 			 * rcu_assign_pointer(), so it's safe to increment
3427 			 * it here.
3428 			 */
3429 			++new->current_threshold;
3430 		} else
3431 			break;
3432 	}
3433 
3434 	/* Free old spare buffer and save old primary buffer as spare */
3435 	kfree(thresholds->spare);
3436 	thresholds->spare = thresholds->primary;
3437 
3438 	rcu_assign_pointer(thresholds->primary, new);
3439 
3440 	/* To be sure that nobody uses thresholds */
3441 	synchronize_rcu();
3442 
3443 unlock:
3444 	mutex_unlock(&memcg->thresholds_lock);
3445 
3446 	return ret;
3447 }
3448 
3449 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3450 	struct eventfd_ctx *eventfd, const char *args)
3451 {
3452 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3453 }
3454 
3455 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3456 	struct eventfd_ctx *eventfd, const char *args)
3457 {
3458 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3459 }
3460 
3461 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3462 	struct eventfd_ctx *eventfd, enum res_type type)
3463 {
3464 	struct mem_cgroup_thresholds *thresholds;
3465 	struct mem_cgroup_threshold_ary *new;
3466 	unsigned long usage;
3467 	int i, j, size;
3468 
3469 	mutex_lock(&memcg->thresholds_lock);
3470 
3471 	if (type == _MEM) {
3472 		thresholds = &memcg->thresholds;
3473 		usage = mem_cgroup_usage(memcg, false);
3474 	} else if (type == _MEMSWAP) {
3475 		thresholds = &memcg->memsw_thresholds;
3476 		usage = mem_cgroup_usage(memcg, true);
3477 	} else
3478 		BUG();
3479 
3480 	if (!thresholds->primary)
3481 		goto unlock;
3482 
3483 	/* Check if a threshold crossed before removing */
3484 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3485 
3486 	/* Calculate new number of threshold */
3487 	size = 0;
3488 	for (i = 0; i < thresholds->primary->size; i++) {
3489 		if (thresholds->primary->entries[i].eventfd != eventfd)
3490 			size++;
3491 	}
3492 
3493 	new = thresholds->spare;
3494 
3495 	/* Set thresholds array to NULL if we don't have thresholds */
3496 	if (!size) {
3497 		kfree(new);
3498 		new = NULL;
3499 		goto swap_buffers;
3500 	}
3501 
3502 	new->size = size;
3503 
3504 	/* Copy thresholds and find current threshold */
3505 	new->current_threshold = -1;
3506 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3507 		if (thresholds->primary->entries[i].eventfd == eventfd)
3508 			continue;
3509 
3510 		new->entries[j] = thresholds->primary->entries[i];
3511 		if (new->entries[j].threshold <= usage) {
3512 			/*
3513 			 * new->current_threshold will not be used
3514 			 * until rcu_assign_pointer(), so it's safe to increment
3515 			 * it here.
3516 			 */
3517 			++new->current_threshold;
3518 		}
3519 		j++;
3520 	}
3521 
3522 swap_buffers:
3523 	/* Swap primary and spare array */
3524 	thresholds->spare = thresholds->primary;
3525 	/* If all events are unregistered, free the spare array */
3526 	if (!new) {
3527 		kfree(thresholds->spare);
3528 		thresholds->spare = NULL;
3529 	}
3530 
3531 	rcu_assign_pointer(thresholds->primary, new);
3532 
3533 	/* To be sure that nobody uses thresholds */
3534 	synchronize_rcu();
3535 unlock:
3536 	mutex_unlock(&memcg->thresholds_lock);
3537 }
3538 
3539 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3540 	struct eventfd_ctx *eventfd)
3541 {
3542 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3543 }
3544 
3545 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3546 	struct eventfd_ctx *eventfd)
3547 {
3548 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3549 }
3550 
3551 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3552 	struct eventfd_ctx *eventfd, const char *args)
3553 {
3554 	struct mem_cgroup_eventfd_list *event;
3555 
3556 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3557 	if (!event)
3558 		return -ENOMEM;
3559 
3560 	spin_lock(&memcg_oom_lock);
3561 
3562 	event->eventfd = eventfd;
3563 	list_add(&event->list, &memcg->oom_notify);
3564 
3565 	/* already in OOM ? */
3566 	if (memcg->under_oom)
3567 		eventfd_signal(eventfd, 1);
3568 	spin_unlock(&memcg_oom_lock);
3569 
3570 	return 0;
3571 }
3572 
3573 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3574 	struct eventfd_ctx *eventfd)
3575 {
3576 	struct mem_cgroup_eventfd_list *ev, *tmp;
3577 
3578 	spin_lock(&memcg_oom_lock);
3579 
3580 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3581 		if (ev->eventfd == eventfd) {
3582 			list_del(&ev->list);
3583 			kfree(ev);
3584 		}
3585 	}
3586 
3587 	spin_unlock(&memcg_oom_lock);
3588 }
3589 
3590 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3591 {
3592 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3593 
3594 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3595 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3596 	return 0;
3597 }
3598 
3599 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3600 	struct cftype *cft, u64 val)
3601 {
3602 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3603 
3604 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3605 	if (!css->parent || !((val == 0) || (val == 1)))
3606 		return -EINVAL;
3607 
3608 	memcg->oom_kill_disable = val;
3609 	if (!val)
3610 		memcg_oom_recover(memcg);
3611 
3612 	return 0;
3613 }
3614 
3615 #ifdef CONFIG_MEMCG_KMEM
3616 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3617 {
3618 	int ret;
3619 
3620 	ret = memcg_propagate_kmem(memcg);
3621 	if (ret)
3622 		return ret;
3623 
3624 	return mem_cgroup_sockets_init(memcg, ss);
3625 }
3626 
3627 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3628 {
3629 	struct cgroup_subsys_state *css;
3630 	struct mem_cgroup *parent, *child;
3631 	int kmemcg_id;
3632 
3633 	if (!memcg->kmem_acct_active)
3634 		return;
3635 
3636 	/*
3637 	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3638 	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3639 	 * guarantees no cache will be created for this cgroup after we are
3640 	 * done (see memcg_create_kmem_cache()).
3641 	 */
3642 	memcg->kmem_acct_active = false;
3643 
3644 	memcg_deactivate_kmem_caches(memcg);
3645 
3646 	kmemcg_id = memcg->kmemcg_id;
3647 	BUG_ON(kmemcg_id < 0);
3648 
3649 	parent = parent_mem_cgroup(memcg);
3650 	if (!parent)
3651 		parent = root_mem_cgroup;
3652 
3653 	/*
3654 	 * Change kmemcg_id of this cgroup and all its descendants to the
3655 	 * parent's id, and then move all entries from this cgroup's list_lrus
3656 	 * to ones of the parent. After we have finished, all list_lrus
3657 	 * corresponding to this cgroup are guaranteed to remain empty. The
3658 	 * ordering is imposed by list_lru_node->lock taken by
3659 	 * memcg_drain_all_list_lrus().
3660 	 */
3661 	css_for_each_descendant_pre(css, &memcg->css) {
3662 		child = mem_cgroup_from_css(css);
3663 		BUG_ON(child->kmemcg_id != kmemcg_id);
3664 		child->kmemcg_id = parent->kmemcg_id;
3665 		if (!memcg->use_hierarchy)
3666 			break;
3667 	}
3668 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3669 
3670 	memcg_free_cache_id(kmemcg_id);
3671 }
3672 
3673 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3674 {
3675 	if (memcg->kmem_acct_activated) {
3676 		memcg_destroy_kmem_caches(memcg);
3677 		static_key_slow_dec(&memcg_kmem_enabled_key);
3678 		WARN_ON(page_counter_read(&memcg->kmem));
3679 	}
3680 	mem_cgroup_sockets_destroy(memcg);
3681 }
3682 #else
3683 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3684 {
3685 	return 0;
3686 }
3687 
3688 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3689 {
3690 }
3691 
3692 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3693 {
3694 }
3695 #endif
3696 
3697 #ifdef CONFIG_CGROUP_WRITEBACK
3698 
3699 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3700 {
3701 	return &memcg->cgwb_list;
3702 }
3703 
3704 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3705 {
3706 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3707 }
3708 
3709 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3710 {
3711 	wb_domain_exit(&memcg->cgwb_domain);
3712 }
3713 
3714 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3715 {
3716 	wb_domain_size_changed(&memcg->cgwb_domain);
3717 }
3718 
3719 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3720 {
3721 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3722 
3723 	if (!memcg->css.parent)
3724 		return NULL;
3725 
3726 	return &memcg->cgwb_domain;
3727 }
3728 
3729 /**
3730  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3731  * @wb: bdi_writeback in question
3732  * @pfilepages: out parameter for number of file pages
3733  * @pheadroom: out parameter for number of allocatable pages according to memcg
3734  * @pdirty: out parameter for number of dirty pages
3735  * @pwriteback: out parameter for number of pages under writeback
3736  *
3737  * Determine the numbers of file, headroom, dirty, and writeback pages in
3738  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3739  * is a bit more involved.
3740  *
3741  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3742  * headroom is calculated as the lowest headroom of itself and the
3743  * ancestors.  Note that this doesn't consider the actual amount of
3744  * available memory in the system.  The caller should further cap
3745  * *@pheadroom accordingly.
3746  */
3747 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3748 			 unsigned long *pheadroom, unsigned long *pdirty,
3749 			 unsigned long *pwriteback)
3750 {
3751 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3752 	struct mem_cgroup *parent;
3753 
3754 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3755 
3756 	/* this should eventually include NR_UNSTABLE_NFS */
3757 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3758 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3759 						     (1 << LRU_ACTIVE_FILE));
3760 	*pheadroom = PAGE_COUNTER_MAX;
3761 
3762 	while ((parent = parent_mem_cgroup(memcg))) {
3763 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3764 		unsigned long used = page_counter_read(&memcg->memory);
3765 
3766 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3767 		memcg = parent;
3768 	}
3769 }
3770 
3771 #else	/* CONFIG_CGROUP_WRITEBACK */
3772 
3773 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3774 {
3775 	return 0;
3776 }
3777 
3778 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3779 {
3780 }
3781 
3782 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3783 {
3784 }
3785 
3786 #endif	/* CONFIG_CGROUP_WRITEBACK */
3787 
3788 /*
3789  * DO NOT USE IN NEW FILES.
3790  *
3791  * "cgroup.event_control" implementation.
3792  *
3793  * This is way over-engineered.  It tries to support fully configurable
3794  * events for each user.  Such level of flexibility is completely
3795  * unnecessary especially in the light of the planned unified hierarchy.
3796  *
3797  * Please deprecate this and replace with something simpler if at all
3798  * possible.
3799  */
3800 
3801 /*
3802  * Unregister event and free resources.
3803  *
3804  * Gets called from workqueue.
3805  */
3806 static void memcg_event_remove(struct work_struct *work)
3807 {
3808 	struct mem_cgroup_event *event =
3809 		container_of(work, struct mem_cgroup_event, remove);
3810 	struct mem_cgroup *memcg = event->memcg;
3811 
3812 	remove_wait_queue(event->wqh, &event->wait);
3813 
3814 	event->unregister_event(memcg, event->eventfd);
3815 
3816 	/* Notify userspace the event is going away. */
3817 	eventfd_signal(event->eventfd, 1);
3818 
3819 	eventfd_ctx_put(event->eventfd);
3820 	kfree(event);
3821 	css_put(&memcg->css);
3822 }
3823 
3824 /*
3825  * Gets called on POLLHUP on eventfd when user closes it.
3826  *
3827  * Called with wqh->lock held and interrupts disabled.
3828  */
3829 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3830 			    int sync, void *key)
3831 {
3832 	struct mem_cgroup_event *event =
3833 		container_of(wait, struct mem_cgroup_event, wait);
3834 	struct mem_cgroup *memcg = event->memcg;
3835 	unsigned long flags = (unsigned long)key;
3836 
3837 	if (flags & POLLHUP) {
3838 		/*
3839 		 * If the event has been detached at cgroup removal, we
3840 		 * can simply return knowing the other side will cleanup
3841 		 * for us.
3842 		 *
3843 		 * We can't race against event freeing since the other
3844 		 * side will require wqh->lock via remove_wait_queue(),
3845 		 * which we hold.
3846 		 */
3847 		spin_lock(&memcg->event_list_lock);
3848 		if (!list_empty(&event->list)) {
3849 			list_del_init(&event->list);
3850 			/*
3851 			 * We are in atomic context, but cgroup_event_remove()
3852 			 * may sleep, so we have to call it in workqueue.
3853 			 */
3854 			schedule_work(&event->remove);
3855 		}
3856 		spin_unlock(&memcg->event_list_lock);
3857 	}
3858 
3859 	return 0;
3860 }
3861 
3862 static void memcg_event_ptable_queue_proc(struct file *file,
3863 		wait_queue_head_t *wqh, poll_table *pt)
3864 {
3865 	struct mem_cgroup_event *event =
3866 		container_of(pt, struct mem_cgroup_event, pt);
3867 
3868 	event->wqh = wqh;
3869 	add_wait_queue(wqh, &event->wait);
3870 }
3871 
3872 /*
3873  * DO NOT USE IN NEW FILES.
3874  *
3875  * Parse input and register new cgroup event handler.
3876  *
3877  * Input must be in format '<event_fd> <control_fd> <args>'.
3878  * Interpretation of args is defined by control file implementation.
3879  */
3880 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3881 					 char *buf, size_t nbytes, loff_t off)
3882 {
3883 	struct cgroup_subsys_state *css = of_css(of);
3884 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3885 	struct mem_cgroup_event *event;
3886 	struct cgroup_subsys_state *cfile_css;
3887 	unsigned int efd, cfd;
3888 	struct fd efile;
3889 	struct fd cfile;
3890 	const char *name;
3891 	char *endp;
3892 	int ret;
3893 
3894 	buf = strstrip(buf);
3895 
3896 	efd = simple_strtoul(buf, &endp, 10);
3897 	if (*endp != ' ')
3898 		return -EINVAL;
3899 	buf = endp + 1;
3900 
3901 	cfd = simple_strtoul(buf, &endp, 10);
3902 	if ((*endp != ' ') && (*endp != '\0'))
3903 		return -EINVAL;
3904 	buf = endp + 1;
3905 
3906 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3907 	if (!event)
3908 		return -ENOMEM;
3909 
3910 	event->memcg = memcg;
3911 	INIT_LIST_HEAD(&event->list);
3912 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3913 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3914 	INIT_WORK(&event->remove, memcg_event_remove);
3915 
3916 	efile = fdget(efd);
3917 	if (!efile.file) {
3918 		ret = -EBADF;
3919 		goto out_kfree;
3920 	}
3921 
3922 	event->eventfd = eventfd_ctx_fileget(efile.file);
3923 	if (IS_ERR(event->eventfd)) {
3924 		ret = PTR_ERR(event->eventfd);
3925 		goto out_put_efile;
3926 	}
3927 
3928 	cfile = fdget(cfd);
3929 	if (!cfile.file) {
3930 		ret = -EBADF;
3931 		goto out_put_eventfd;
3932 	}
3933 
3934 	/* the process need read permission on control file */
3935 	/* AV: shouldn't we check that it's been opened for read instead? */
3936 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3937 	if (ret < 0)
3938 		goto out_put_cfile;
3939 
3940 	/*
3941 	 * Determine the event callbacks and set them in @event.  This used
3942 	 * to be done via struct cftype but cgroup core no longer knows
3943 	 * about these events.  The following is crude but the whole thing
3944 	 * is for compatibility anyway.
3945 	 *
3946 	 * DO NOT ADD NEW FILES.
3947 	 */
3948 	name = cfile.file->f_path.dentry->d_name.name;
3949 
3950 	if (!strcmp(name, "memory.usage_in_bytes")) {
3951 		event->register_event = mem_cgroup_usage_register_event;
3952 		event->unregister_event = mem_cgroup_usage_unregister_event;
3953 	} else if (!strcmp(name, "memory.oom_control")) {
3954 		event->register_event = mem_cgroup_oom_register_event;
3955 		event->unregister_event = mem_cgroup_oom_unregister_event;
3956 	} else if (!strcmp(name, "memory.pressure_level")) {
3957 		event->register_event = vmpressure_register_event;
3958 		event->unregister_event = vmpressure_unregister_event;
3959 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3960 		event->register_event = memsw_cgroup_usage_register_event;
3961 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3962 	} else {
3963 		ret = -EINVAL;
3964 		goto out_put_cfile;
3965 	}
3966 
3967 	/*
3968 	 * Verify @cfile should belong to @css.  Also, remaining events are
3969 	 * automatically removed on cgroup destruction but the removal is
3970 	 * asynchronous, so take an extra ref on @css.
3971 	 */
3972 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3973 					       &memory_cgrp_subsys);
3974 	ret = -EINVAL;
3975 	if (IS_ERR(cfile_css))
3976 		goto out_put_cfile;
3977 	if (cfile_css != css) {
3978 		css_put(cfile_css);
3979 		goto out_put_cfile;
3980 	}
3981 
3982 	ret = event->register_event(memcg, event->eventfd, buf);
3983 	if (ret)
3984 		goto out_put_css;
3985 
3986 	efile.file->f_op->poll(efile.file, &event->pt);
3987 
3988 	spin_lock(&memcg->event_list_lock);
3989 	list_add(&event->list, &memcg->event_list);
3990 	spin_unlock(&memcg->event_list_lock);
3991 
3992 	fdput(cfile);
3993 	fdput(efile);
3994 
3995 	return nbytes;
3996 
3997 out_put_css:
3998 	css_put(css);
3999 out_put_cfile:
4000 	fdput(cfile);
4001 out_put_eventfd:
4002 	eventfd_ctx_put(event->eventfd);
4003 out_put_efile:
4004 	fdput(efile);
4005 out_kfree:
4006 	kfree(event);
4007 
4008 	return ret;
4009 }
4010 
4011 static struct cftype mem_cgroup_legacy_files[] = {
4012 	{
4013 		.name = "usage_in_bytes",
4014 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4015 		.read_u64 = mem_cgroup_read_u64,
4016 	},
4017 	{
4018 		.name = "max_usage_in_bytes",
4019 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4020 		.write = mem_cgroup_reset,
4021 		.read_u64 = mem_cgroup_read_u64,
4022 	},
4023 	{
4024 		.name = "limit_in_bytes",
4025 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4026 		.write = mem_cgroup_write,
4027 		.read_u64 = mem_cgroup_read_u64,
4028 	},
4029 	{
4030 		.name = "soft_limit_in_bytes",
4031 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4032 		.write = mem_cgroup_write,
4033 		.read_u64 = mem_cgroup_read_u64,
4034 	},
4035 	{
4036 		.name = "failcnt",
4037 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4038 		.write = mem_cgroup_reset,
4039 		.read_u64 = mem_cgroup_read_u64,
4040 	},
4041 	{
4042 		.name = "stat",
4043 		.seq_show = memcg_stat_show,
4044 	},
4045 	{
4046 		.name = "force_empty",
4047 		.write = mem_cgroup_force_empty_write,
4048 	},
4049 	{
4050 		.name = "use_hierarchy",
4051 		.write_u64 = mem_cgroup_hierarchy_write,
4052 		.read_u64 = mem_cgroup_hierarchy_read,
4053 	},
4054 	{
4055 		.name = "cgroup.event_control",		/* XXX: for compat */
4056 		.write = memcg_write_event_control,
4057 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4058 	},
4059 	{
4060 		.name = "swappiness",
4061 		.read_u64 = mem_cgroup_swappiness_read,
4062 		.write_u64 = mem_cgroup_swappiness_write,
4063 	},
4064 	{
4065 		.name = "move_charge_at_immigrate",
4066 		.read_u64 = mem_cgroup_move_charge_read,
4067 		.write_u64 = mem_cgroup_move_charge_write,
4068 	},
4069 	{
4070 		.name = "oom_control",
4071 		.seq_show = mem_cgroup_oom_control_read,
4072 		.write_u64 = mem_cgroup_oom_control_write,
4073 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4074 	},
4075 	{
4076 		.name = "pressure_level",
4077 	},
4078 #ifdef CONFIG_NUMA
4079 	{
4080 		.name = "numa_stat",
4081 		.seq_show = memcg_numa_stat_show,
4082 	},
4083 #endif
4084 #ifdef CONFIG_MEMCG_KMEM
4085 	{
4086 		.name = "kmem.limit_in_bytes",
4087 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4088 		.write = mem_cgroup_write,
4089 		.read_u64 = mem_cgroup_read_u64,
4090 	},
4091 	{
4092 		.name = "kmem.usage_in_bytes",
4093 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4094 		.read_u64 = mem_cgroup_read_u64,
4095 	},
4096 	{
4097 		.name = "kmem.failcnt",
4098 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4099 		.write = mem_cgroup_reset,
4100 		.read_u64 = mem_cgroup_read_u64,
4101 	},
4102 	{
4103 		.name = "kmem.max_usage_in_bytes",
4104 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4105 		.write = mem_cgroup_reset,
4106 		.read_u64 = mem_cgroup_read_u64,
4107 	},
4108 #ifdef CONFIG_SLABINFO
4109 	{
4110 		.name = "kmem.slabinfo",
4111 		.seq_start = slab_start,
4112 		.seq_next = slab_next,
4113 		.seq_stop = slab_stop,
4114 		.seq_show = memcg_slab_show,
4115 	},
4116 #endif
4117 #endif
4118 	{ },	/* terminate */
4119 };
4120 
4121 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4122 {
4123 	struct mem_cgroup_per_node *pn;
4124 	struct mem_cgroup_per_zone *mz;
4125 	int zone, tmp = node;
4126 	/*
4127 	 * This routine is called against possible nodes.
4128 	 * But it's BUG to call kmalloc() against offline node.
4129 	 *
4130 	 * TODO: this routine can waste much memory for nodes which will
4131 	 *       never be onlined. It's better to use memory hotplug callback
4132 	 *       function.
4133 	 */
4134 	if (!node_state(node, N_NORMAL_MEMORY))
4135 		tmp = -1;
4136 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4137 	if (!pn)
4138 		return 1;
4139 
4140 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4141 		mz = &pn->zoneinfo[zone];
4142 		lruvec_init(&mz->lruvec);
4143 		mz->usage_in_excess = 0;
4144 		mz->on_tree = false;
4145 		mz->memcg = memcg;
4146 	}
4147 	memcg->nodeinfo[node] = pn;
4148 	return 0;
4149 }
4150 
4151 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4152 {
4153 	kfree(memcg->nodeinfo[node]);
4154 }
4155 
4156 static struct mem_cgroup *mem_cgroup_alloc(void)
4157 {
4158 	struct mem_cgroup *memcg;
4159 	size_t size;
4160 
4161 	size = sizeof(struct mem_cgroup);
4162 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4163 
4164 	memcg = kzalloc(size, GFP_KERNEL);
4165 	if (!memcg)
4166 		return NULL;
4167 
4168 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4169 	if (!memcg->stat)
4170 		goto out_free;
4171 
4172 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4173 		goto out_free_stat;
4174 
4175 	return memcg;
4176 
4177 out_free_stat:
4178 	free_percpu(memcg->stat);
4179 out_free:
4180 	kfree(memcg);
4181 	return NULL;
4182 }
4183 
4184 /*
4185  * At destroying mem_cgroup, references from swap_cgroup can remain.
4186  * (scanning all at force_empty is too costly...)
4187  *
4188  * Instead of clearing all references at force_empty, we remember
4189  * the number of reference from swap_cgroup and free mem_cgroup when
4190  * it goes down to 0.
4191  *
4192  * Removal of cgroup itself succeeds regardless of refs from swap.
4193  */
4194 
4195 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4196 {
4197 	int node;
4198 
4199 	mem_cgroup_remove_from_trees(memcg);
4200 
4201 	for_each_node(node)
4202 		free_mem_cgroup_per_zone_info(memcg, node);
4203 
4204 	free_percpu(memcg->stat);
4205 	memcg_wb_domain_exit(memcg);
4206 	kfree(memcg);
4207 }
4208 
4209 /*
4210  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4211  */
4212 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4213 {
4214 	if (!memcg->memory.parent)
4215 		return NULL;
4216 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4217 }
4218 EXPORT_SYMBOL(parent_mem_cgroup);
4219 
4220 static struct cgroup_subsys_state * __ref
4221 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4222 {
4223 	struct mem_cgroup *memcg;
4224 	long error = -ENOMEM;
4225 	int node;
4226 
4227 	memcg = mem_cgroup_alloc();
4228 	if (!memcg)
4229 		return ERR_PTR(error);
4230 
4231 	for_each_node(node)
4232 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4233 			goto free_out;
4234 
4235 	/* root ? */
4236 	if (parent_css == NULL) {
4237 		root_mem_cgroup = memcg;
4238 		mem_cgroup_root_css = &memcg->css;
4239 		page_counter_init(&memcg->memory, NULL);
4240 		memcg->high = PAGE_COUNTER_MAX;
4241 		memcg->soft_limit = PAGE_COUNTER_MAX;
4242 		page_counter_init(&memcg->memsw, NULL);
4243 		page_counter_init(&memcg->kmem, NULL);
4244 	}
4245 
4246 	memcg->last_scanned_node = MAX_NUMNODES;
4247 	INIT_LIST_HEAD(&memcg->oom_notify);
4248 	memcg->move_charge_at_immigrate = 0;
4249 	mutex_init(&memcg->thresholds_lock);
4250 	spin_lock_init(&memcg->move_lock);
4251 	vmpressure_init(&memcg->vmpressure);
4252 	INIT_LIST_HEAD(&memcg->event_list);
4253 	spin_lock_init(&memcg->event_list_lock);
4254 #ifdef CONFIG_MEMCG_KMEM
4255 	memcg->kmemcg_id = -1;
4256 #endif
4257 #ifdef CONFIG_CGROUP_WRITEBACK
4258 	INIT_LIST_HEAD(&memcg->cgwb_list);
4259 #endif
4260 	return &memcg->css;
4261 
4262 free_out:
4263 	__mem_cgroup_free(memcg);
4264 	return ERR_PTR(error);
4265 }
4266 
4267 static int
4268 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4269 {
4270 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4271 	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4272 	int ret;
4273 
4274 	if (css->id > MEM_CGROUP_ID_MAX)
4275 		return -ENOSPC;
4276 
4277 	if (!parent)
4278 		return 0;
4279 
4280 	mutex_lock(&memcg_create_mutex);
4281 
4282 	memcg->use_hierarchy = parent->use_hierarchy;
4283 	memcg->oom_kill_disable = parent->oom_kill_disable;
4284 	memcg->swappiness = mem_cgroup_swappiness(parent);
4285 
4286 	if (parent->use_hierarchy) {
4287 		page_counter_init(&memcg->memory, &parent->memory);
4288 		memcg->high = PAGE_COUNTER_MAX;
4289 		memcg->soft_limit = PAGE_COUNTER_MAX;
4290 		page_counter_init(&memcg->memsw, &parent->memsw);
4291 		page_counter_init(&memcg->kmem, &parent->kmem);
4292 
4293 		/*
4294 		 * No need to take a reference to the parent because cgroup
4295 		 * core guarantees its existence.
4296 		 */
4297 	} else {
4298 		page_counter_init(&memcg->memory, NULL);
4299 		memcg->high = PAGE_COUNTER_MAX;
4300 		memcg->soft_limit = PAGE_COUNTER_MAX;
4301 		page_counter_init(&memcg->memsw, NULL);
4302 		page_counter_init(&memcg->kmem, NULL);
4303 		/*
4304 		 * Deeper hierachy with use_hierarchy == false doesn't make
4305 		 * much sense so let cgroup subsystem know about this
4306 		 * unfortunate state in our controller.
4307 		 */
4308 		if (parent != root_mem_cgroup)
4309 			memory_cgrp_subsys.broken_hierarchy = true;
4310 	}
4311 	mutex_unlock(&memcg_create_mutex);
4312 
4313 	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4314 	if (ret)
4315 		return ret;
4316 
4317 	/*
4318 	 * Make sure the memcg is initialized: mem_cgroup_iter()
4319 	 * orders reading memcg->initialized against its callers
4320 	 * reading the memcg members.
4321 	 */
4322 	smp_store_release(&memcg->initialized, 1);
4323 
4324 	return 0;
4325 }
4326 
4327 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4328 {
4329 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4330 	struct mem_cgroup_event *event, *tmp;
4331 
4332 	/*
4333 	 * Unregister events and notify userspace.
4334 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4335 	 * directory to avoid race between userspace and kernelspace.
4336 	 */
4337 	spin_lock(&memcg->event_list_lock);
4338 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4339 		list_del_init(&event->list);
4340 		schedule_work(&event->remove);
4341 	}
4342 	spin_unlock(&memcg->event_list_lock);
4343 
4344 	vmpressure_cleanup(&memcg->vmpressure);
4345 
4346 	memcg_deactivate_kmem(memcg);
4347 
4348 	wb_memcg_offline(memcg);
4349 }
4350 
4351 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4352 {
4353 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4354 
4355 	invalidate_reclaim_iterators(memcg);
4356 }
4357 
4358 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4359 {
4360 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4361 
4362 	memcg_destroy_kmem(memcg);
4363 	__mem_cgroup_free(memcg);
4364 }
4365 
4366 /**
4367  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4368  * @css: the target css
4369  *
4370  * Reset the states of the mem_cgroup associated with @css.  This is
4371  * invoked when the userland requests disabling on the default hierarchy
4372  * but the memcg is pinned through dependency.  The memcg should stop
4373  * applying policies and should revert to the vanilla state as it may be
4374  * made visible again.
4375  *
4376  * The current implementation only resets the essential configurations.
4377  * This needs to be expanded to cover all the visible parts.
4378  */
4379 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4380 {
4381 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4382 
4383 	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4384 	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4385 	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4386 	memcg->low = 0;
4387 	memcg->high = PAGE_COUNTER_MAX;
4388 	memcg->soft_limit = PAGE_COUNTER_MAX;
4389 	memcg_wb_domain_size_changed(memcg);
4390 }
4391 
4392 #ifdef CONFIG_MMU
4393 /* Handlers for move charge at task migration. */
4394 static int mem_cgroup_do_precharge(unsigned long count)
4395 {
4396 	int ret;
4397 
4398 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4399 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4400 	if (!ret) {
4401 		mc.precharge += count;
4402 		return ret;
4403 	}
4404 
4405 	/* Try charges one by one with reclaim */
4406 	while (count--) {
4407 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4408 		if (ret)
4409 			return ret;
4410 		mc.precharge++;
4411 		cond_resched();
4412 	}
4413 	return 0;
4414 }
4415 
4416 /**
4417  * get_mctgt_type - get target type of moving charge
4418  * @vma: the vma the pte to be checked belongs
4419  * @addr: the address corresponding to the pte to be checked
4420  * @ptent: the pte to be checked
4421  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4422  *
4423  * Returns
4424  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4425  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4426  *     move charge. if @target is not NULL, the page is stored in target->page
4427  *     with extra refcnt got(Callers should handle it).
4428  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4429  *     target for charge migration. if @target is not NULL, the entry is stored
4430  *     in target->ent.
4431  *
4432  * Called with pte lock held.
4433  */
4434 union mc_target {
4435 	struct page	*page;
4436 	swp_entry_t	ent;
4437 };
4438 
4439 enum mc_target_type {
4440 	MC_TARGET_NONE = 0,
4441 	MC_TARGET_PAGE,
4442 	MC_TARGET_SWAP,
4443 };
4444 
4445 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4446 						unsigned long addr, pte_t ptent)
4447 {
4448 	struct page *page = vm_normal_page(vma, addr, ptent);
4449 
4450 	if (!page || !page_mapped(page))
4451 		return NULL;
4452 	if (PageAnon(page)) {
4453 		if (!(mc.flags & MOVE_ANON))
4454 			return NULL;
4455 	} else {
4456 		if (!(mc.flags & MOVE_FILE))
4457 			return NULL;
4458 	}
4459 	if (!get_page_unless_zero(page))
4460 		return NULL;
4461 
4462 	return page;
4463 }
4464 
4465 #ifdef CONFIG_SWAP
4466 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4467 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4468 {
4469 	struct page *page = NULL;
4470 	swp_entry_t ent = pte_to_swp_entry(ptent);
4471 
4472 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4473 		return NULL;
4474 	/*
4475 	 * Because lookup_swap_cache() updates some statistics counter,
4476 	 * we call find_get_page() with swapper_space directly.
4477 	 */
4478 	page = find_get_page(swap_address_space(ent), ent.val);
4479 	if (do_swap_account)
4480 		entry->val = ent.val;
4481 
4482 	return page;
4483 }
4484 #else
4485 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4486 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4487 {
4488 	return NULL;
4489 }
4490 #endif
4491 
4492 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4493 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4494 {
4495 	struct page *page = NULL;
4496 	struct address_space *mapping;
4497 	pgoff_t pgoff;
4498 
4499 	if (!vma->vm_file) /* anonymous vma */
4500 		return NULL;
4501 	if (!(mc.flags & MOVE_FILE))
4502 		return NULL;
4503 
4504 	mapping = vma->vm_file->f_mapping;
4505 	pgoff = linear_page_index(vma, addr);
4506 
4507 	/* page is moved even if it's not RSS of this task(page-faulted). */
4508 #ifdef CONFIG_SWAP
4509 	/* shmem/tmpfs may report page out on swap: account for that too. */
4510 	if (shmem_mapping(mapping)) {
4511 		page = find_get_entry(mapping, pgoff);
4512 		if (radix_tree_exceptional_entry(page)) {
4513 			swp_entry_t swp = radix_to_swp_entry(page);
4514 			if (do_swap_account)
4515 				*entry = swp;
4516 			page = find_get_page(swap_address_space(swp), swp.val);
4517 		}
4518 	} else
4519 		page = find_get_page(mapping, pgoff);
4520 #else
4521 	page = find_get_page(mapping, pgoff);
4522 #endif
4523 	return page;
4524 }
4525 
4526 /**
4527  * mem_cgroup_move_account - move account of the page
4528  * @page: the page
4529  * @nr_pages: number of regular pages (>1 for huge pages)
4530  * @from: mem_cgroup which the page is moved from.
4531  * @to:	mem_cgroup which the page is moved to. @from != @to.
4532  *
4533  * The caller must confirm following.
4534  * - page is not on LRU (isolate_page() is useful.)
4535  * - compound_lock is held when nr_pages > 1
4536  *
4537  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4538  * from old cgroup.
4539  */
4540 static int mem_cgroup_move_account(struct page *page,
4541 				   unsigned int nr_pages,
4542 				   struct mem_cgroup *from,
4543 				   struct mem_cgroup *to)
4544 {
4545 	unsigned long flags;
4546 	int ret;
4547 	bool anon;
4548 
4549 	VM_BUG_ON(from == to);
4550 	VM_BUG_ON_PAGE(PageLRU(page), page);
4551 	/*
4552 	 * The page is isolated from LRU. So, collapse function
4553 	 * will not handle this page. But page splitting can happen.
4554 	 * Do this check under compound_page_lock(). The caller should
4555 	 * hold it.
4556 	 */
4557 	ret = -EBUSY;
4558 	if (nr_pages > 1 && !PageTransHuge(page))
4559 		goto out;
4560 
4561 	/*
4562 	 * Prevent mem_cgroup_replace_page() from looking at
4563 	 * page->mem_cgroup of its source page while we change it.
4564 	 */
4565 	if (!trylock_page(page))
4566 		goto out;
4567 
4568 	ret = -EINVAL;
4569 	if (page->mem_cgroup != from)
4570 		goto out_unlock;
4571 
4572 	anon = PageAnon(page);
4573 
4574 	spin_lock_irqsave(&from->move_lock, flags);
4575 
4576 	if (!anon && page_mapped(page)) {
4577 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4578 			       nr_pages);
4579 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4580 			       nr_pages);
4581 	}
4582 
4583 	/*
4584 	 * move_lock grabbed above and caller set from->moving_account, so
4585 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4586 	 * So mapping should be stable for dirty pages.
4587 	 */
4588 	if (!anon && PageDirty(page)) {
4589 		struct address_space *mapping = page_mapping(page);
4590 
4591 		if (mapping_cap_account_dirty(mapping)) {
4592 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4593 				       nr_pages);
4594 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4595 				       nr_pages);
4596 		}
4597 	}
4598 
4599 	if (PageWriteback(page)) {
4600 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4601 			       nr_pages);
4602 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4603 			       nr_pages);
4604 	}
4605 
4606 	/*
4607 	 * It is safe to change page->mem_cgroup here because the page
4608 	 * is referenced, charged, and isolated - we can't race with
4609 	 * uncharging, charging, migration, or LRU putback.
4610 	 */
4611 
4612 	/* caller should have done css_get */
4613 	page->mem_cgroup = to;
4614 	spin_unlock_irqrestore(&from->move_lock, flags);
4615 
4616 	ret = 0;
4617 
4618 	local_irq_disable();
4619 	mem_cgroup_charge_statistics(to, page, nr_pages);
4620 	memcg_check_events(to, page);
4621 	mem_cgroup_charge_statistics(from, page, -nr_pages);
4622 	memcg_check_events(from, page);
4623 	local_irq_enable();
4624 out_unlock:
4625 	unlock_page(page);
4626 out:
4627 	return ret;
4628 }
4629 
4630 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4631 		unsigned long addr, pte_t ptent, union mc_target *target)
4632 {
4633 	struct page *page = NULL;
4634 	enum mc_target_type ret = MC_TARGET_NONE;
4635 	swp_entry_t ent = { .val = 0 };
4636 
4637 	if (pte_present(ptent))
4638 		page = mc_handle_present_pte(vma, addr, ptent);
4639 	else if (is_swap_pte(ptent))
4640 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4641 	else if (pte_none(ptent))
4642 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4643 
4644 	if (!page && !ent.val)
4645 		return ret;
4646 	if (page) {
4647 		/*
4648 		 * Do only loose check w/o serialization.
4649 		 * mem_cgroup_move_account() checks the page is valid or
4650 		 * not under LRU exclusion.
4651 		 */
4652 		if (page->mem_cgroup == mc.from) {
4653 			ret = MC_TARGET_PAGE;
4654 			if (target)
4655 				target->page = page;
4656 		}
4657 		if (!ret || !target)
4658 			put_page(page);
4659 	}
4660 	/* There is a swap entry and a page doesn't exist or isn't charged */
4661 	if (ent.val && !ret &&
4662 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4663 		ret = MC_TARGET_SWAP;
4664 		if (target)
4665 			target->ent = ent;
4666 	}
4667 	return ret;
4668 }
4669 
4670 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4671 /*
4672  * We don't consider swapping or file mapped pages because THP does not
4673  * support them for now.
4674  * Caller should make sure that pmd_trans_huge(pmd) is true.
4675  */
4676 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4677 		unsigned long addr, pmd_t pmd, union mc_target *target)
4678 {
4679 	struct page *page = NULL;
4680 	enum mc_target_type ret = MC_TARGET_NONE;
4681 
4682 	page = pmd_page(pmd);
4683 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4684 	if (!(mc.flags & MOVE_ANON))
4685 		return ret;
4686 	if (page->mem_cgroup == mc.from) {
4687 		ret = MC_TARGET_PAGE;
4688 		if (target) {
4689 			get_page(page);
4690 			target->page = page;
4691 		}
4692 	}
4693 	return ret;
4694 }
4695 #else
4696 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4697 		unsigned long addr, pmd_t pmd, union mc_target *target)
4698 {
4699 	return MC_TARGET_NONE;
4700 }
4701 #endif
4702 
4703 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4704 					unsigned long addr, unsigned long end,
4705 					struct mm_walk *walk)
4706 {
4707 	struct vm_area_struct *vma = walk->vma;
4708 	pte_t *pte;
4709 	spinlock_t *ptl;
4710 
4711 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4712 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4713 			mc.precharge += HPAGE_PMD_NR;
4714 		spin_unlock(ptl);
4715 		return 0;
4716 	}
4717 
4718 	if (pmd_trans_unstable(pmd))
4719 		return 0;
4720 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4721 	for (; addr != end; pte++, addr += PAGE_SIZE)
4722 		if (get_mctgt_type(vma, addr, *pte, NULL))
4723 			mc.precharge++;	/* increment precharge temporarily */
4724 	pte_unmap_unlock(pte - 1, ptl);
4725 	cond_resched();
4726 
4727 	return 0;
4728 }
4729 
4730 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4731 {
4732 	unsigned long precharge;
4733 
4734 	struct mm_walk mem_cgroup_count_precharge_walk = {
4735 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4736 		.mm = mm,
4737 	};
4738 	down_read(&mm->mmap_sem);
4739 	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4740 	up_read(&mm->mmap_sem);
4741 
4742 	precharge = mc.precharge;
4743 	mc.precharge = 0;
4744 
4745 	return precharge;
4746 }
4747 
4748 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4749 {
4750 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4751 
4752 	VM_BUG_ON(mc.moving_task);
4753 	mc.moving_task = current;
4754 	return mem_cgroup_do_precharge(precharge);
4755 }
4756 
4757 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4758 static void __mem_cgroup_clear_mc(void)
4759 {
4760 	struct mem_cgroup *from = mc.from;
4761 	struct mem_cgroup *to = mc.to;
4762 
4763 	/* we must uncharge all the leftover precharges from mc.to */
4764 	if (mc.precharge) {
4765 		cancel_charge(mc.to, mc.precharge);
4766 		mc.precharge = 0;
4767 	}
4768 	/*
4769 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4770 	 * we must uncharge here.
4771 	 */
4772 	if (mc.moved_charge) {
4773 		cancel_charge(mc.from, mc.moved_charge);
4774 		mc.moved_charge = 0;
4775 	}
4776 	/* we must fixup refcnts and charges */
4777 	if (mc.moved_swap) {
4778 		/* uncharge swap account from the old cgroup */
4779 		if (!mem_cgroup_is_root(mc.from))
4780 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4781 
4782 		/*
4783 		 * we charged both to->memory and to->memsw, so we
4784 		 * should uncharge to->memory.
4785 		 */
4786 		if (!mem_cgroup_is_root(mc.to))
4787 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4788 
4789 		css_put_many(&mc.from->css, mc.moved_swap);
4790 
4791 		/* we've already done css_get(mc.to) */
4792 		mc.moved_swap = 0;
4793 	}
4794 	memcg_oom_recover(from);
4795 	memcg_oom_recover(to);
4796 	wake_up_all(&mc.waitq);
4797 }
4798 
4799 static void mem_cgroup_clear_mc(void)
4800 {
4801 	/*
4802 	 * we must clear moving_task before waking up waiters at the end of
4803 	 * task migration.
4804 	 */
4805 	mc.moving_task = NULL;
4806 	__mem_cgroup_clear_mc();
4807 	spin_lock(&mc.lock);
4808 	mc.from = NULL;
4809 	mc.to = NULL;
4810 	spin_unlock(&mc.lock);
4811 }
4812 
4813 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4814 {
4815 	struct cgroup_subsys_state *css;
4816 	struct mem_cgroup *memcg;
4817 	struct mem_cgroup *from;
4818 	struct task_struct *leader, *p;
4819 	struct mm_struct *mm;
4820 	unsigned long move_flags;
4821 	int ret = 0;
4822 
4823 	/* charge immigration isn't supported on the default hierarchy */
4824 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4825 		return 0;
4826 
4827 	/*
4828 	 * Multi-process migrations only happen on the default hierarchy
4829 	 * where charge immigration is not used.  Perform charge
4830 	 * immigration if @tset contains a leader and whine if there are
4831 	 * multiple.
4832 	 */
4833 	p = NULL;
4834 	cgroup_taskset_for_each_leader(leader, css, tset) {
4835 		WARN_ON_ONCE(p);
4836 		p = leader;
4837 		memcg = mem_cgroup_from_css(css);
4838 	}
4839 	if (!p)
4840 		return 0;
4841 
4842 	/*
4843 	 * We are now commited to this value whatever it is. Changes in this
4844 	 * tunable will only affect upcoming migrations, not the current one.
4845 	 * So we need to save it, and keep it going.
4846 	 */
4847 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4848 	if (!move_flags)
4849 		return 0;
4850 
4851 	from = mem_cgroup_from_task(p);
4852 
4853 	VM_BUG_ON(from == memcg);
4854 
4855 	mm = get_task_mm(p);
4856 	if (!mm)
4857 		return 0;
4858 	/* We move charges only when we move a owner of the mm */
4859 	if (mm->owner == p) {
4860 		VM_BUG_ON(mc.from);
4861 		VM_BUG_ON(mc.to);
4862 		VM_BUG_ON(mc.precharge);
4863 		VM_BUG_ON(mc.moved_charge);
4864 		VM_BUG_ON(mc.moved_swap);
4865 
4866 		spin_lock(&mc.lock);
4867 		mc.from = from;
4868 		mc.to = memcg;
4869 		mc.flags = move_flags;
4870 		spin_unlock(&mc.lock);
4871 		/* We set mc.moving_task later */
4872 
4873 		ret = mem_cgroup_precharge_mc(mm);
4874 		if (ret)
4875 			mem_cgroup_clear_mc();
4876 	}
4877 	mmput(mm);
4878 	return ret;
4879 }
4880 
4881 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4882 {
4883 	if (mc.to)
4884 		mem_cgroup_clear_mc();
4885 }
4886 
4887 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4888 				unsigned long addr, unsigned long end,
4889 				struct mm_walk *walk)
4890 {
4891 	int ret = 0;
4892 	struct vm_area_struct *vma = walk->vma;
4893 	pte_t *pte;
4894 	spinlock_t *ptl;
4895 	enum mc_target_type target_type;
4896 	union mc_target target;
4897 	struct page *page;
4898 
4899 	/*
4900 	 * We don't take compound_lock() here but no race with splitting thp
4901 	 * happens because:
4902 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4903 	 *    under splitting, which means there's no concurrent thp split,
4904 	 *  - if another thread runs into split_huge_page() just after we
4905 	 *    entered this if-block, the thread must wait for page table lock
4906 	 *    to be unlocked in __split_huge_page_splitting(), where the main
4907 	 *    part of thp split is not executed yet.
4908 	 */
4909 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4910 		if (mc.precharge < HPAGE_PMD_NR) {
4911 			spin_unlock(ptl);
4912 			return 0;
4913 		}
4914 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4915 		if (target_type == MC_TARGET_PAGE) {
4916 			page = target.page;
4917 			if (!isolate_lru_page(page)) {
4918 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4919 							     mc.from, mc.to)) {
4920 					mc.precharge -= HPAGE_PMD_NR;
4921 					mc.moved_charge += HPAGE_PMD_NR;
4922 				}
4923 				putback_lru_page(page);
4924 			}
4925 			put_page(page);
4926 		}
4927 		spin_unlock(ptl);
4928 		return 0;
4929 	}
4930 
4931 	if (pmd_trans_unstable(pmd))
4932 		return 0;
4933 retry:
4934 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4935 	for (; addr != end; addr += PAGE_SIZE) {
4936 		pte_t ptent = *(pte++);
4937 		swp_entry_t ent;
4938 
4939 		if (!mc.precharge)
4940 			break;
4941 
4942 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4943 		case MC_TARGET_PAGE:
4944 			page = target.page;
4945 			if (isolate_lru_page(page))
4946 				goto put;
4947 			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4948 				mc.precharge--;
4949 				/* we uncharge from mc.from later. */
4950 				mc.moved_charge++;
4951 			}
4952 			putback_lru_page(page);
4953 put:			/* get_mctgt_type() gets the page */
4954 			put_page(page);
4955 			break;
4956 		case MC_TARGET_SWAP:
4957 			ent = target.ent;
4958 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4959 				mc.precharge--;
4960 				/* we fixup refcnts and charges later. */
4961 				mc.moved_swap++;
4962 			}
4963 			break;
4964 		default:
4965 			break;
4966 		}
4967 	}
4968 	pte_unmap_unlock(pte - 1, ptl);
4969 	cond_resched();
4970 
4971 	if (addr != end) {
4972 		/*
4973 		 * We have consumed all precharges we got in can_attach().
4974 		 * We try charge one by one, but don't do any additional
4975 		 * charges to mc.to if we have failed in charge once in attach()
4976 		 * phase.
4977 		 */
4978 		ret = mem_cgroup_do_precharge(1);
4979 		if (!ret)
4980 			goto retry;
4981 	}
4982 
4983 	return ret;
4984 }
4985 
4986 static void mem_cgroup_move_charge(struct mm_struct *mm)
4987 {
4988 	struct mm_walk mem_cgroup_move_charge_walk = {
4989 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4990 		.mm = mm,
4991 	};
4992 
4993 	lru_add_drain_all();
4994 	/*
4995 	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4996 	 * move_lock while we're moving its pages to another memcg.
4997 	 * Then wait for already started RCU-only updates to finish.
4998 	 */
4999 	atomic_inc(&mc.from->moving_account);
5000 	synchronize_rcu();
5001 retry:
5002 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5003 		/*
5004 		 * Someone who are holding the mmap_sem might be waiting in
5005 		 * waitq. So we cancel all extra charges, wake up all waiters,
5006 		 * and retry. Because we cancel precharges, we might not be able
5007 		 * to move enough charges, but moving charge is a best-effort
5008 		 * feature anyway, so it wouldn't be a big problem.
5009 		 */
5010 		__mem_cgroup_clear_mc();
5011 		cond_resched();
5012 		goto retry;
5013 	}
5014 	/*
5015 	 * When we have consumed all precharges and failed in doing
5016 	 * additional charge, the page walk just aborts.
5017 	 */
5018 	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5019 	up_read(&mm->mmap_sem);
5020 	atomic_dec(&mc.from->moving_account);
5021 }
5022 
5023 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5024 {
5025 	struct cgroup_subsys_state *css;
5026 	struct task_struct *p = cgroup_taskset_first(tset, &css);
5027 	struct mm_struct *mm = get_task_mm(p);
5028 
5029 	if (mm) {
5030 		if (mc.to)
5031 			mem_cgroup_move_charge(mm);
5032 		mmput(mm);
5033 	}
5034 	if (mc.to)
5035 		mem_cgroup_clear_mc();
5036 }
5037 #else	/* !CONFIG_MMU */
5038 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5039 {
5040 	return 0;
5041 }
5042 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5043 {
5044 }
5045 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5046 {
5047 }
5048 #endif
5049 
5050 /*
5051  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5052  * to verify whether we're attached to the default hierarchy on each mount
5053  * attempt.
5054  */
5055 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5056 {
5057 	/*
5058 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5059 	 * guarantees that @root doesn't have any children, so turning it
5060 	 * on for the root memcg is enough.
5061 	 */
5062 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5063 		root_mem_cgroup->use_hierarchy = true;
5064 	else
5065 		root_mem_cgroup->use_hierarchy = false;
5066 }
5067 
5068 static u64 memory_current_read(struct cgroup_subsys_state *css,
5069 			       struct cftype *cft)
5070 {
5071 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5072 
5073 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5074 }
5075 
5076 static int memory_low_show(struct seq_file *m, void *v)
5077 {
5078 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5079 	unsigned long low = READ_ONCE(memcg->low);
5080 
5081 	if (low == PAGE_COUNTER_MAX)
5082 		seq_puts(m, "max\n");
5083 	else
5084 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5085 
5086 	return 0;
5087 }
5088 
5089 static ssize_t memory_low_write(struct kernfs_open_file *of,
5090 				char *buf, size_t nbytes, loff_t off)
5091 {
5092 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5093 	unsigned long low;
5094 	int err;
5095 
5096 	buf = strstrip(buf);
5097 	err = page_counter_memparse(buf, "max", &low);
5098 	if (err)
5099 		return err;
5100 
5101 	memcg->low = low;
5102 
5103 	return nbytes;
5104 }
5105 
5106 static int memory_high_show(struct seq_file *m, void *v)
5107 {
5108 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5109 	unsigned long high = READ_ONCE(memcg->high);
5110 
5111 	if (high == PAGE_COUNTER_MAX)
5112 		seq_puts(m, "max\n");
5113 	else
5114 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5115 
5116 	return 0;
5117 }
5118 
5119 static ssize_t memory_high_write(struct kernfs_open_file *of,
5120 				 char *buf, size_t nbytes, loff_t off)
5121 {
5122 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5123 	unsigned long high;
5124 	int err;
5125 
5126 	buf = strstrip(buf);
5127 	err = page_counter_memparse(buf, "max", &high);
5128 	if (err)
5129 		return err;
5130 
5131 	memcg->high = high;
5132 
5133 	memcg_wb_domain_size_changed(memcg);
5134 	return nbytes;
5135 }
5136 
5137 static int memory_max_show(struct seq_file *m, void *v)
5138 {
5139 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5140 	unsigned long max = READ_ONCE(memcg->memory.limit);
5141 
5142 	if (max == PAGE_COUNTER_MAX)
5143 		seq_puts(m, "max\n");
5144 	else
5145 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5146 
5147 	return 0;
5148 }
5149 
5150 static ssize_t memory_max_write(struct kernfs_open_file *of,
5151 				char *buf, size_t nbytes, loff_t off)
5152 {
5153 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5154 	unsigned long max;
5155 	int err;
5156 
5157 	buf = strstrip(buf);
5158 	err = page_counter_memparse(buf, "max", &max);
5159 	if (err)
5160 		return err;
5161 
5162 	err = mem_cgroup_resize_limit(memcg, max);
5163 	if (err)
5164 		return err;
5165 
5166 	memcg_wb_domain_size_changed(memcg);
5167 	return nbytes;
5168 }
5169 
5170 static int memory_events_show(struct seq_file *m, void *v)
5171 {
5172 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5173 
5174 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5175 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5176 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5177 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5178 
5179 	return 0;
5180 }
5181 
5182 static struct cftype memory_files[] = {
5183 	{
5184 		.name = "current",
5185 		.flags = CFTYPE_NOT_ON_ROOT,
5186 		.read_u64 = memory_current_read,
5187 	},
5188 	{
5189 		.name = "low",
5190 		.flags = CFTYPE_NOT_ON_ROOT,
5191 		.seq_show = memory_low_show,
5192 		.write = memory_low_write,
5193 	},
5194 	{
5195 		.name = "high",
5196 		.flags = CFTYPE_NOT_ON_ROOT,
5197 		.seq_show = memory_high_show,
5198 		.write = memory_high_write,
5199 	},
5200 	{
5201 		.name = "max",
5202 		.flags = CFTYPE_NOT_ON_ROOT,
5203 		.seq_show = memory_max_show,
5204 		.write = memory_max_write,
5205 	},
5206 	{
5207 		.name = "events",
5208 		.flags = CFTYPE_NOT_ON_ROOT,
5209 		.file_offset = offsetof(struct mem_cgroup, events_file),
5210 		.seq_show = memory_events_show,
5211 	},
5212 	{ }	/* terminate */
5213 };
5214 
5215 struct cgroup_subsys memory_cgrp_subsys = {
5216 	.css_alloc = mem_cgroup_css_alloc,
5217 	.css_online = mem_cgroup_css_online,
5218 	.css_offline = mem_cgroup_css_offline,
5219 	.css_released = mem_cgroup_css_released,
5220 	.css_free = mem_cgroup_css_free,
5221 	.css_reset = mem_cgroup_css_reset,
5222 	.can_attach = mem_cgroup_can_attach,
5223 	.cancel_attach = mem_cgroup_cancel_attach,
5224 	.attach = mem_cgroup_move_task,
5225 	.bind = mem_cgroup_bind,
5226 	.dfl_cftypes = memory_files,
5227 	.legacy_cftypes = mem_cgroup_legacy_files,
5228 	.early_init = 0,
5229 };
5230 
5231 /**
5232  * mem_cgroup_low - check if memory consumption is below the normal range
5233  * @root: the highest ancestor to consider
5234  * @memcg: the memory cgroup to check
5235  *
5236  * Returns %true if memory consumption of @memcg, and that of all
5237  * configurable ancestors up to @root, is below the normal range.
5238  */
5239 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5240 {
5241 	if (mem_cgroup_disabled())
5242 		return false;
5243 
5244 	/*
5245 	 * The toplevel group doesn't have a configurable range, so
5246 	 * it's never low when looked at directly, and it is not
5247 	 * considered an ancestor when assessing the hierarchy.
5248 	 */
5249 
5250 	if (memcg == root_mem_cgroup)
5251 		return false;
5252 
5253 	if (page_counter_read(&memcg->memory) >= memcg->low)
5254 		return false;
5255 
5256 	while (memcg != root) {
5257 		memcg = parent_mem_cgroup(memcg);
5258 
5259 		if (memcg == root_mem_cgroup)
5260 			break;
5261 
5262 		if (page_counter_read(&memcg->memory) >= memcg->low)
5263 			return false;
5264 	}
5265 	return true;
5266 }
5267 
5268 /**
5269  * mem_cgroup_try_charge - try charging a page
5270  * @page: page to charge
5271  * @mm: mm context of the victim
5272  * @gfp_mask: reclaim mode
5273  * @memcgp: charged memcg return
5274  *
5275  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5276  * pages according to @gfp_mask if necessary.
5277  *
5278  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5279  * Otherwise, an error code is returned.
5280  *
5281  * After page->mapping has been set up, the caller must finalize the
5282  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5283  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5284  */
5285 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5286 			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
5287 {
5288 	struct mem_cgroup *memcg = NULL;
5289 	unsigned int nr_pages = 1;
5290 	int ret = 0;
5291 
5292 	if (mem_cgroup_disabled())
5293 		goto out;
5294 
5295 	if (PageSwapCache(page)) {
5296 		/*
5297 		 * Every swap fault against a single page tries to charge the
5298 		 * page, bail as early as possible.  shmem_unuse() encounters
5299 		 * already charged pages, too.  The USED bit is protected by
5300 		 * the page lock, which serializes swap cache removal, which
5301 		 * in turn serializes uncharging.
5302 		 */
5303 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5304 		if (page->mem_cgroup)
5305 			goto out;
5306 
5307 		if (do_swap_account) {
5308 			swp_entry_t ent = { .val = page_private(page), };
5309 			unsigned short id = lookup_swap_cgroup_id(ent);
5310 
5311 			rcu_read_lock();
5312 			memcg = mem_cgroup_from_id(id);
5313 			if (memcg && !css_tryget_online(&memcg->css))
5314 				memcg = NULL;
5315 			rcu_read_unlock();
5316 		}
5317 	}
5318 
5319 	if (PageTransHuge(page)) {
5320 		nr_pages <<= compound_order(page);
5321 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5322 	}
5323 
5324 	if (!memcg)
5325 		memcg = get_mem_cgroup_from_mm(mm);
5326 
5327 	ret = try_charge(memcg, gfp_mask, nr_pages);
5328 
5329 	css_put(&memcg->css);
5330 out:
5331 	*memcgp = memcg;
5332 	return ret;
5333 }
5334 
5335 /**
5336  * mem_cgroup_commit_charge - commit a page charge
5337  * @page: page to charge
5338  * @memcg: memcg to charge the page to
5339  * @lrucare: page might be on LRU already
5340  *
5341  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5342  * after page->mapping has been set up.  This must happen atomically
5343  * as part of the page instantiation, i.e. under the page table lock
5344  * for anonymous pages, under the page lock for page and swap cache.
5345  *
5346  * In addition, the page must not be on the LRU during the commit, to
5347  * prevent racing with task migration.  If it might be, use @lrucare.
5348  *
5349  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5350  */
5351 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5352 			      bool lrucare)
5353 {
5354 	unsigned int nr_pages = 1;
5355 
5356 	VM_BUG_ON_PAGE(!page->mapping, page);
5357 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5358 
5359 	if (mem_cgroup_disabled())
5360 		return;
5361 	/*
5362 	 * Swap faults will attempt to charge the same page multiple
5363 	 * times.  But reuse_swap_page() might have removed the page
5364 	 * from swapcache already, so we can't check PageSwapCache().
5365 	 */
5366 	if (!memcg)
5367 		return;
5368 
5369 	commit_charge(page, memcg, lrucare);
5370 
5371 	if (PageTransHuge(page)) {
5372 		nr_pages <<= compound_order(page);
5373 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5374 	}
5375 
5376 	local_irq_disable();
5377 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
5378 	memcg_check_events(memcg, page);
5379 	local_irq_enable();
5380 
5381 	if (do_swap_account && PageSwapCache(page)) {
5382 		swp_entry_t entry = { .val = page_private(page) };
5383 		/*
5384 		 * The swap entry might not get freed for a long time,
5385 		 * let's not wait for it.  The page already received a
5386 		 * memory+swap charge, drop the swap entry duplicate.
5387 		 */
5388 		mem_cgroup_uncharge_swap(entry);
5389 	}
5390 }
5391 
5392 /**
5393  * mem_cgroup_cancel_charge - cancel a page charge
5394  * @page: page to charge
5395  * @memcg: memcg to charge the page to
5396  *
5397  * Cancel a charge transaction started by mem_cgroup_try_charge().
5398  */
5399 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5400 {
5401 	unsigned int nr_pages = 1;
5402 
5403 	if (mem_cgroup_disabled())
5404 		return;
5405 	/*
5406 	 * Swap faults will attempt to charge the same page multiple
5407 	 * times.  But reuse_swap_page() might have removed the page
5408 	 * from swapcache already, so we can't check PageSwapCache().
5409 	 */
5410 	if (!memcg)
5411 		return;
5412 
5413 	if (PageTransHuge(page)) {
5414 		nr_pages <<= compound_order(page);
5415 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5416 	}
5417 
5418 	cancel_charge(memcg, nr_pages);
5419 }
5420 
5421 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5422 			   unsigned long nr_anon, unsigned long nr_file,
5423 			   unsigned long nr_huge, struct page *dummy_page)
5424 {
5425 	unsigned long nr_pages = nr_anon + nr_file;
5426 	unsigned long flags;
5427 
5428 	if (!mem_cgroup_is_root(memcg)) {
5429 		page_counter_uncharge(&memcg->memory, nr_pages);
5430 		if (do_swap_account)
5431 			page_counter_uncharge(&memcg->memsw, nr_pages);
5432 		memcg_oom_recover(memcg);
5433 	}
5434 
5435 	local_irq_save(flags);
5436 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5437 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5438 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5439 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5440 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5441 	memcg_check_events(memcg, dummy_page);
5442 	local_irq_restore(flags);
5443 
5444 	if (!mem_cgroup_is_root(memcg))
5445 		css_put_many(&memcg->css, nr_pages);
5446 }
5447 
5448 static void uncharge_list(struct list_head *page_list)
5449 {
5450 	struct mem_cgroup *memcg = NULL;
5451 	unsigned long nr_anon = 0;
5452 	unsigned long nr_file = 0;
5453 	unsigned long nr_huge = 0;
5454 	unsigned long pgpgout = 0;
5455 	struct list_head *next;
5456 	struct page *page;
5457 
5458 	next = page_list->next;
5459 	do {
5460 		unsigned int nr_pages = 1;
5461 
5462 		page = list_entry(next, struct page, lru);
5463 		next = page->lru.next;
5464 
5465 		VM_BUG_ON_PAGE(PageLRU(page), page);
5466 		VM_BUG_ON_PAGE(page_count(page), page);
5467 
5468 		if (!page->mem_cgroup)
5469 			continue;
5470 
5471 		/*
5472 		 * Nobody should be changing or seriously looking at
5473 		 * page->mem_cgroup at this point, we have fully
5474 		 * exclusive access to the page.
5475 		 */
5476 
5477 		if (memcg != page->mem_cgroup) {
5478 			if (memcg) {
5479 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5480 					       nr_huge, page);
5481 				pgpgout = nr_anon = nr_file = nr_huge = 0;
5482 			}
5483 			memcg = page->mem_cgroup;
5484 		}
5485 
5486 		if (PageTransHuge(page)) {
5487 			nr_pages <<= compound_order(page);
5488 			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5489 			nr_huge += nr_pages;
5490 		}
5491 
5492 		if (PageAnon(page))
5493 			nr_anon += nr_pages;
5494 		else
5495 			nr_file += nr_pages;
5496 
5497 		page->mem_cgroup = NULL;
5498 
5499 		pgpgout++;
5500 	} while (next != page_list);
5501 
5502 	if (memcg)
5503 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5504 			       nr_huge, page);
5505 }
5506 
5507 /**
5508  * mem_cgroup_uncharge - uncharge a page
5509  * @page: page to uncharge
5510  *
5511  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5512  * mem_cgroup_commit_charge().
5513  */
5514 void mem_cgroup_uncharge(struct page *page)
5515 {
5516 	if (mem_cgroup_disabled())
5517 		return;
5518 
5519 	/* Don't touch page->lru of any random page, pre-check: */
5520 	if (!page->mem_cgroup)
5521 		return;
5522 
5523 	INIT_LIST_HEAD(&page->lru);
5524 	uncharge_list(&page->lru);
5525 }
5526 
5527 /**
5528  * mem_cgroup_uncharge_list - uncharge a list of page
5529  * @page_list: list of pages to uncharge
5530  *
5531  * Uncharge a list of pages previously charged with
5532  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5533  */
5534 void mem_cgroup_uncharge_list(struct list_head *page_list)
5535 {
5536 	if (mem_cgroup_disabled())
5537 		return;
5538 
5539 	if (!list_empty(page_list))
5540 		uncharge_list(page_list);
5541 }
5542 
5543 /**
5544  * mem_cgroup_replace_page - migrate a charge to another page
5545  * @oldpage: currently charged page
5546  * @newpage: page to transfer the charge to
5547  *
5548  * Migrate the charge from @oldpage to @newpage.
5549  *
5550  * Both pages must be locked, @newpage->mapping must be set up.
5551  * Either or both pages might be on the LRU already.
5552  */
5553 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5554 {
5555 	struct mem_cgroup *memcg;
5556 	int isolated;
5557 
5558 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5559 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5560 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5561 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5562 		       newpage);
5563 
5564 	if (mem_cgroup_disabled())
5565 		return;
5566 
5567 	/* Page cache replacement: new page already charged? */
5568 	if (newpage->mem_cgroup)
5569 		return;
5570 
5571 	/* Swapcache readahead pages can get replaced before being charged */
5572 	memcg = oldpage->mem_cgroup;
5573 	if (!memcg)
5574 		return;
5575 
5576 	lock_page_lru(oldpage, &isolated);
5577 	oldpage->mem_cgroup = NULL;
5578 	unlock_page_lru(oldpage, isolated);
5579 
5580 	commit_charge(newpage, memcg, true);
5581 }
5582 
5583 /*
5584  * subsys_initcall() for memory controller.
5585  *
5586  * Some parts like hotcpu_notifier() have to be initialized from this context
5587  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5588  * everything that doesn't depend on a specific mem_cgroup structure should
5589  * be initialized from here.
5590  */
5591 static int __init mem_cgroup_init(void)
5592 {
5593 	int cpu, node;
5594 
5595 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5596 
5597 	for_each_possible_cpu(cpu)
5598 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5599 			  drain_local_stock);
5600 
5601 	for_each_node(node) {
5602 		struct mem_cgroup_tree_per_node *rtpn;
5603 		int zone;
5604 
5605 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5606 				    node_online(node) ? node : NUMA_NO_NODE);
5607 
5608 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5609 			struct mem_cgroup_tree_per_zone *rtpz;
5610 
5611 			rtpz = &rtpn->rb_tree_per_zone[zone];
5612 			rtpz->rb_root = RB_ROOT;
5613 			spin_lock_init(&rtpz->lock);
5614 		}
5615 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5616 	}
5617 
5618 	return 0;
5619 }
5620 subsys_initcall(mem_cgroup_init);
5621 
5622 #ifdef CONFIG_MEMCG_SWAP
5623 /**
5624  * mem_cgroup_swapout - transfer a memsw charge to swap
5625  * @page: page whose memsw charge to transfer
5626  * @entry: swap entry to move the charge to
5627  *
5628  * Transfer the memsw charge of @page to @entry.
5629  */
5630 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5631 {
5632 	struct mem_cgroup *memcg;
5633 	unsigned short oldid;
5634 
5635 	VM_BUG_ON_PAGE(PageLRU(page), page);
5636 	VM_BUG_ON_PAGE(page_count(page), page);
5637 
5638 	if (!do_swap_account)
5639 		return;
5640 
5641 	memcg = page->mem_cgroup;
5642 
5643 	/* Readahead page, never charged */
5644 	if (!memcg)
5645 		return;
5646 
5647 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5648 	VM_BUG_ON_PAGE(oldid, page);
5649 	mem_cgroup_swap_statistics(memcg, true);
5650 
5651 	page->mem_cgroup = NULL;
5652 
5653 	if (!mem_cgroup_is_root(memcg))
5654 		page_counter_uncharge(&memcg->memory, 1);
5655 
5656 	/*
5657 	 * Interrupts should be disabled here because the caller holds the
5658 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5659 	 * important here to have the interrupts disabled because it is the
5660 	 * only synchronisation we have for udpating the per-CPU variables.
5661 	 */
5662 	VM_BUG_ON(!irqs_disabled());
5663 	mem_cgroup_charge_statistics(memcg, page, -1);
5664 	memcg_check_events(memcg, page);
5665 }
5666 
5667 /**
5668  * mem_cgroup_uncharge_swap - uncharge a swap entry
5669  * @entry: swap entry to uncharge
5670  *
5671  * Drop the memsw charge associated with @entry.
5672  */
5673 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5674 {
5675 	struct mem_cgroup *memcg;
5676 	unsigned short id;
5677 
5678 	if (!do_swap_account)
5679 		return;
5680 
5681 	id = swap_cgroup_record(entry, 0);
5682 	rcu_read_lock();
5683 	memcg = mem_cgroup_from_id(id);
5684 	if (memcg) {
5685 		if (!mem_cgroup_is_root(memcg))
5686 			page_counter_uncharge(&memcg->memsw, 1);
5687 		mem_cgroup_swap_statistics(memcg, false);
5688 		css_put(&memcg->css);
5689 	}
5690 	rcu_read_unlock();
5691 }
5692 
5693 /* for remember boot option*/
5694 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5695 static int really_do_swap_account __initdata = 1;
5696 #else
5697 static int really_do_swap_account __initdata;
5698 #endif
5699 
5700 static int __init enable_swap_account(char *s)
5701 {
5702 	if (!strcmp(s, "1"))
5703 		really_do_swap_account = 1;
5704 	else if (!strcmp(s, "0"))
5705 		really_do_swap_account = 0;
5706 	return 1;
5707 }
5708 __setup("swapaccount=", enable_swap_account);
5709 
5710 static struct cftype memsw_cgroup_files[] = {
5711 	{
5712 		.name = "memsw.usage_in_bytes",
5713 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5714 		.read_u64 = mem_cgroup_read_u64,
5715 	},
5716 	{
5717 		.name = "memsw.max_usage_in_bytes",
5718 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5719 		.write = mem_cgroup_reset,
5720 		.read_u64 = mem_cgroup_read_u64,
5721 	},
5722 	{
5723 		.name = "memsw.limit_in_bytes",
5724 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5725 		.write = mem_cgroup_write,
5726 		.read_u64 = mem_cgroup_read_u64,
5727 	},
5728 	{
5729 		.name = "memsw.failcnt",
5730 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5731 		.write = mem_cgroup_reset,
5732 		.read_u64 = mem_cgroup_read_u64,
5733 	},
5734 	{ },	/* terminate */
5735 };
5736 
5737 static int __init mem_cgroup_swap_init(void)
5738 {
5739 	if (!mem_cgroup_disabled() && really_do_swap_account) {
5740 		do_swap_account = 1;
5741 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5742 						  memsw_cgroup_files));
5743 	}
5744 	return 0;
5745 }
5746 subsys_initcall(mem_cgroup_swap_init);
5747 
5748 #endif /* CONFIG_MEMCG_SWAP */
5749