xref: /openbmc/linux/mm/memcontrol.c (revision 22c03398)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69 
70 #include <linux/uaccess.h>
71 
72 #include <trace/events/vmscan.h>
73 
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76 
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78 
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82 
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket __ro_after_init;
85 
86 /* Kernel memory accounting disabled? */
87 bool cgroup_memory_nokmem __ro_after_init;
88 
89 /* Whether the swap controller is active */
90 #ifdef CONFIG_MEMCG_SWAP
91 bool cgroup_memory_noswap __ro_after_init;
92 #else
93 #define cgroup_memory_noswap		1
94 #endif
95 
96 #ifdef CONFIG_CGROUP_WRITEBACK
97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98 #endif
99 
100 /* Whether legacy memory+swap accounting is active */
101 static bool do_memsw_account(void)
102 {
103 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104 }
105 
106 #define THRESHOLDS_EVENTS_TARGET 128
107 #define SOFTLIMIT_EVENTS_TARGET 1024
108 
109 /*
110  * Cgroups above their limits are maintained in a RB-Tree, independent of
111  * their hierarchy representation
112  */
113 
114 struct mem_cgroup_tree_per_node {
115 	struct rb_root rb_root;
116 	struct rb_node *rb_rightmost;
117 	spinlock_t lock;
118 };
119 
120 struct mem_cgroup_tree {
121 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122 };
123 
124 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125 
126 /* for OOM */
127 struct mem_cgroup_eventfd_list {
128 	struct list_head list;
129 	struct eventfd_ctx *eventfd;
130 };
131 
132 /*
133  * cgroup_event represents events which userspace want to receive.
134  */
135 struct mem_cgroup_event {
136 	/*
137 	 * memcg which the event belongs to.
138 	 */
139 	struct mem_cgroup *memcg;
140 	/*
141 	 * eventfd to signal userspace about the event.
142 	 */
143 	struct eventfd_ctx *eventfd;
144 	/*
145 	 * Each of these stored in a list by the cgroup.
146 	 */
147 	struct list_head list;
148 	/*
149 	 * register_event() callback will be used to add new userspace
150 	 * waiter for changes related to this event.  Use eventfd_signal()
151 	 * on eventfd to send notification to userspace.
152 	 */
153 	int (*register_event)(struct mem_cgroup *memcg,
154 			      struct eventfd_ctx *eventfd, const char *args);
155 	/*
156 	 * unregister_event() callback will be called when userspace closes
157 	 * the eventfd or on cgroup removing.  This callback must be set,
158 	 * if you want provide notification functionality.
159 	 */
160 	void (*unregister_event)(struct mem_cgroup *memcg,
161 				 struct eventfd_ctx *eventfd);
162 	/*
163 	 * All fields below needed to unregister event when
164 	 * userspace closes eventfd.
165 	 */
166 	poll_table pt;
167 	wait_queue_head_t *wqh;
168 	wait_queue_entry_t wait;
169 	struct work_struct remove;
170 };
171 
172 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174 
175 /* Stuffs for move charges at task migration. */
176 /*
177  * Types of charges to be moved.
178  */
179 #define MOVE_ANON	0x1U
180 #define MOVE_FILE	0x2U
181 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
182 
183 /* "mc" and its members are protected by cgroup_mutex */
184 static struct move_charge_struct {
185 	spinlock_t	  lock; /* for from, to */
186 	struct mm_struct  *mm;
187 	struct mem_cgroup *from;
188 	struct mem_cgroup *to;
189 	unsigned long flags;
190 	unsigned long precharge;
191 	unsigned long moved_charge;
192 	unsigned long moved_swap;
193 	struct task_struct *moving_task;	/* a task moving charges */
194 	wait_queue_head_t waitq;		/* a waitq for other context */
195 } mc = {
196 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198 };
199 
200 /*
201  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
202  * limit reclaim to prevent infinite loops, if they ever occur.
203  */
204 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
205 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
206 
207 /* for encoding cft->private value on file */
208 enum res_type {
209 	_MEM,
210 	_MEMSWAP,
211 	_OOM_TYPE,
212 	_KMEM,
213 	_TCP,
214 };
215 
216 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
217 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
218 #define MEMFILE_ATTR(val)	((val) & 0xffff)
219 /* Used for OOM notifier */
220 #define OOM_CONTROL		(0)
221 
222 /*
223  * Iteration constructs for visiting all cgroups (under a tree).  If
224  * loops are exited prematurely (break), mem_cgroup_iter_break() must
225  * be used for reference counting.
226  */
227 #define for_each_mem_cgroup_tree(iter, root)		\
228 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
229 	     iter != NULL;				\
230 	     iter = mem_cgroup_iter(root, iter, NULL))
231 
232 #define for_each_mem_cgroup(iter)			\
233 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
234 	     iter != NULL;				\
235 	     iter = mem_cgroup_iter(NULL, iter, NULL))
236 
237 static inline bool task_is_dying(void)
238 {
239 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
240 		(current->flags & PF_EXITING);
241 }
242 
243 /* Some nice accessors for the vmpressure. */
244 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
245 {
246 	if (!memcg)
247 		memcg = root_mem_cgroup;
248 	return &memcg->vmpressure;
249 }
250 
251 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
252 {
253 	return container_of(vmpr, struct mem_cgroup, vmpressure);
254 }
255 
256 #ifdef CONFIG_MEMCG_KMEM
257 extern spinlock_t css_set_lock;
258 
259 bool mem_cgroup_kmem_disabled(void)
260 {
261 	return cgroup_memory_nokmem;
262 }
263 
264 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
265 				      unsigned int nr_pages);
266 
267 static void obj_cgroup_release(struct percpu_ref *ref)
268 {
269 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
270 	unsigned int nr_bytes;
271 	unsigned int nr_pages;
272 	unsigned long flags;
273 
274 	/*
275 	 * At this point all allocated objects are freed, and
276 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
277 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
278 	 *
279 	 * The following sequence can lead to it:
280 	 * 1) CPU0: objcg == stock->cached_objcg
281 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
282 	 *          PAGE_SIZE bytes are charged
283 	 * 3) CPU1: a process from another memcg is allocating something,
284 	 *          the stock if flushed,
285 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
286 	 * 5) CPU0: we do release this object,
287 	 *          92 bytes are added to stock->nr_bytes
288 	 * 6) CPU0: stock is flushed,
289 	 *          92 bytes are added to objcg->nr_charged_bytes
290 	 *
291 	 * In the result, nr_charged_bytes == PAGE_SIZE.
292 	 * This page will be uncharged in obj_cgroup_release().
293 	 */
294 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
295 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
296 	nr_pages = nr_bytes >> PAGE_SHIFT;
297 
298 	if (nr_pages)
299 		obj_cgroup_uncharge_pages(objcg, nr_pages);
300 
301 	spin_lock_irqsave(&css_set_lock, flags);
302 	list_del(&objcg->list);
303 	spin_unlock_irqrestore(&css_set_lock, flags);
304 
305 	percpu_ref_exit(ref);
306 	kfree_rcu(objcg, rcu);
307 }
308 
309 static struct obj_cgroup *obj_cgroup_alloc(void)
310 {
311 	struct obj_cgroup *objcg;
312 	int ret;
313 
314 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
315 	if (!objcg)
316 		return NULL;
317 
318 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
319 			      GFP_KERNEL);
320 	if (ret) {
321 		kfree(objcg);
322 		return NULL;
323 	}
324 	INIT_LIST_HEAD(&objcg->list);
325 	return objcg;
326 }
327 
328 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
329 				  struct mem_cgroup *parent)
330 {
331 	struct obj_cgroup *objcg, *iter;
332 
333 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
334 
335 	spin_lock_irq(&css_set_lock);
336 
337 	/* 1) Ready to reparent active objcg. */
338 	list_add(&objcg->list, &memcg->objcg_list);
339 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
340 	list_for_each_entry(iter, &memcg->objcg_list, list)
341 		WRITE_ONCE(iter->memcg, parent);
342 	/* 3) Move already reparented objcgs to the parent's list */
343 	list_splice(&memcg->objcg_list, &parent->objcg_list);
344 
345 	spin_unlock_irq(&css_set_lock);
346 
347 	percpu_ref_kill(&objcg->refcnt);
348 }
349 
350 /*
351  * This will be used as a shrinker list's index.
352  * The main reason for not using cgroup id for this:
353  *  this works better in sparse environments, where we have a lot of memcgs,
354  *  but only a few kmem-limited. Or also, if we have, for instance, 200
355  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
356  *  200 entry array for that.
357  *
358  * The current size of the caches array is stored in memcg_nr_cache_ids. It
359  * will double each time we have to increase it.
360  */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363 
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366 
367 void memcg_get_cache_ids(void)
368 {
369 	down_read(&memcg_cache_ids_sem);
370 }
371 
372 void memcg_put_cache_ids(void)
373 {
374 	up_read(&memcg_cache_ids_sem);
375 }
376 
377 /*
378  * MIN_SIZE is different than 1, because we would like to avoid going through
379  * the alloc/free process all the time. In a small machine, 4 kmem-limited
380  * cgroups is a reasonable guess. In the future, it could be a parameter or
381  * tunable, but that is strictly not necessary.
382  *
383  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384  * this constant directly from cgroup, but it is understandable that this is
385  * better kept as an internal representation in cgroup.c. In any case, the
386  * cgrp_id space is not getting any smaller, and we don't have to necessarily
387  * increase ours as well if it increases.
388  */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391 
392 /*
393  * A lot of the calls to the cache allocation functions are expected to be
394  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395  * conditional to this static branch, we'll have to allow modules that does
396  * kmem_cache_alloc and the such to see this symbol as well
397  */
398 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 #endif
401 
402 /**
403  * mem_cgroup_css_from_page - css of the memcg associated with a page
404  * @page: page of interest
405  *
406  * If memcg is bound to the default hierarchy, css of the memcg associated
407  * with @page is returned.  The returned css remains associated with @page
408  * until it is released.
409  *
410  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
411  * is returned.
412  */
413 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
414 {
415 	struct mem_cgroup *memcg;
416 
417 	memcg = page_memcg(page);
418 
419 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
420 		memcg = root_mem_cgroup;
421 
422 	return &memcg->css;
423 }
424 
425 /**
426  * page_cgroup_ino - return inode number of the memcg a page is charged to
427  * @page: the page
428  *
429  * Look up the closest online ancestor of the memory cgroup @page is charged to
430  * and return its inode number or 0 if @page is not charged to any cgroup. It
431  * is safe to call this function without holding a reference to @page.
432  *
433  * Note, this function is inherently racy, because there is nothing to prevent
434  * the cgroup inode from getting torn down and potentially reallocated a moment
435  * after page_cgroup_ino() returns, so it only should be used by callers that
436  * do not care (such as procfs interfaces).
437  */
438 ino_t page_cgroup_ino(struct page *page)
439 {
440 	struct mem_cgroup *memcg;
441 	unsigned long ino = 0;
442 
443 	rcu_read_lock();
444 	memcg = page_memcg_check(page);
445 
446 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
447 		memcg = parent_mem_cgroup(memcg);
448 	if (memcg)
449 		ino = cgroup_ino(memcg->css.cgroup);
450 	rcu_read_unlock();
451 	return ino;
452 }
453 
454 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
455 					 struct mem_cgroup_tree_per_node *mctz,
456 					 unsigned long new_usage_in_excess)
457 {
458 	struct rb_node **p = &mctz->rb_root.rb_node;
459 	struct rb_node *parent = NULL;
460 	struct mem_cgroup_per_node *mz_node;
461 	bool rightmost = true;
462 
463 	if (mz->on_tree)
464 		return;
465 
466 	mz->usage_in_excess = new_usage_in_excess;
467 	if (!mz->usage_in_excess)
468 		return;
469 	while (*p) {
470 		parent = *p;
471 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
472 					tree_node);
473 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
474 			p = &(*p)->rb_left;
475 			rightmost = false;
476 		} else {
477 			p = &(*p)->rb_right;
478 		}
479 	}
480 
481 	if (rightmost)
482 		mctz->rb_rightmost = &mz->tree_node;
483 
484 	rb_link_node(&mz->tree_node, parent, p);
485 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
486 	mz->on_tree = true;
487 }
488 
489 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
490 					 struct mem_cgroup_tree_per_node *mctz)
491 {
492 	if (!mz->on_tree)
493 		return;
494 
495 	if (&mz->tree_node == mctz->rb_rightmost)
496 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
497 
498 	rb_erase(&mz->tree_node, &mctz->rb_root);
499 	mz->on_tree = false;
500 }
501 
502 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
503 				       struct mem_cgroup_tree_per_node *mctz)
504 {
505 	unsigned long flags;
506 
507 	spin_lock_irqsave(&mctz->lock, flags);
508 	__mem_cgroup_remove_exceeded(mz, mctz);
509 	spin_unlock_irqrestore(&mctz->lock, flags);
510 }
511 
512 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
513 {
514 	unsigned long nr_pages = page_counter_read(&memcg->memory);
515 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
516 	unsigned long excess = 0;
517 
518 	if (nr_pages > soft_limit)
519 		excess = nr_pages - soft_limit;
520 
521 	return excess;
522 }
523 
524 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
525 {
526 	unsigned long excess;
527 	struct mem_cgroup_per_node *mz;
528 	struct mem_cgroup_tree_per_node *mctz;
529 
530 	mctz = soft_limit_tree.rb_tree_per_node[nid];
531 	if (!mctz)
532 		return;
533 	/*
534 	 * Necessary to update all ancestors when hierarchy is used.
535 	 * because their event counter is not touched.
536 	 */
537 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
538 		mz = memcg->nodeinfo[nid];
539 		excess = soft_limit_excess(memcg);
540 		/*
541 		 * We have to update the tree if mz is on RB-tree or
542 		 * mem is over its softlimit.
543 		 */
544 		if (excess || mz->on_tree) {
545 			unsigned long flags;
546 
547 			spin_lock_irqsave(&mctz->lock, flags);
548 			/* if on-tree, remove it */
549 			if (mz->on_tree)
550 				__mem_cgroup_remove_exceeded(mz, mctz);
551 			/*
552 			 * Insert again. mz->usage_in_excess will be updated.
553 			 * If excess is 0, no tree ops.
554 			 */
555 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
556 			spin_unlock_irqrestore(&mctz->lock, flags);
557 		}
558 	}
559 }
560 
561 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
562 {
563 	struct mem_cgroup_tree_per_node *mctz;
564 	struct mem_cgroup_per_node *mz;
565 	int nid;
566 
567 	for_each_node(nid) {
568 		mz = memcg->nodeinfo[nid];
569 		mctz = soft_limit_tree.rb_tree_per_node[nid];
570 		if (mctz)
571 			mem_cgroup_remove_exceeded(mz, mctz);
572 	}
573 }
574 
575 static struct mem_cgroup_per_node *
576 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
577 {
578 	struct mem_cgroup_per_node *mz;
579 
580 retry:
581 	mz = NULL;
582 	if (!mctz->rb_rightmost)
583 		goto done;		/* Nothing to reclaim from */
584 
585 	mz = rb_entry(mctz->rb_rightmost,
586 		      struct mem_cgroup_per_node, tree_node);
587 	/*
588 	 * Remove the node now but someone else can add it back,
589 	 * we will to add it back at the end of reclaim to its correct
590 	 * position in the tree.
591 	 */
592 	__mem_cgroup_remove_exceeded(mz, mctz);
593 	if (!soft_limit_excess(mz->memcg) ||
594 	    !css_tryget(&mz->memcg->css))
595 		goto retry;
596 done:
597 	return mz;
598 }
599 
600 static struct mem_cgroup_per_node *
601 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
602 {
603 	struct mem_cgroup_per_node *mz;
604 
605 	spin_lock_irq(&mctz->lock);
606 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
607 	spin_unlock_irq(&mctz->lock);
608 	return mz;
609 }
610 
611 /*
612  * memcg and lruvec stats flushing
613  *
614  * Many codepaths leading to stats update or read are performance sensitive and
615  * adding stats flushing in such codepaths is not desirable. So, to optimize the
616  * flushing the kernel does:
617  *
618  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
619  *    rstat update tree grow unbounded.
620  *
621  * 2) Flush the stats synchronously on reader side only when there are more than
622  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
623  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
624  *    only for 2 seconds due to (1).
625  */
626 static void flush_memcg_stats_dwork(struct work_struct *w);
627 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
628 static DEFINE_SPINLOCK(stats_flush_lock);
629 static DEFINE_PER_CPU(unsigned int, stats_updates);
630 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
631 
632 static inline void memcg_rstat_updated(struct mem_cgroup *memcg)
633 {
634 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
635 	if (!(__this_cpu_inc_return(stats_updates) % MEMCG_CHARGE_BATCH))
636 		atomic_inc(&stats_flush_threshold);
637 }
638 
639 static void __mem_cgroup_flush_stats(void)
640 {
641 	unsigned long flag;
642 
643 	if (!spin_trylock_irqsave(&stats_flush_lock, flag))
644 		return;
645 
646 	cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
647 	atomic_set(&stats_flush_threshold, 0);
648 	spin_unlock_irqrestore(&stats_flush_lock, flag);
649 }
650 
651 void mem_cgroup_flush_stats(void)
652 {
653 	if (atomic_read(&stats_flush_threshold) > num_online_cpus())
654 		__mem_cgroup_flush_stats();
655 }
656 
657 static void flush_memcg_stats_dwork(struct work_struct *w)
658 {
659 	mem_cgroup_flush_stats();
660 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
661 }
662 
663 /**
664  * __mod_memcg_state - update cgroup memory statistics
665  * @memcg: the memory cgroup
666  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
667  * @val: delta to add to the counter, can be negative
668  */
669 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
670 {
671 	if (mem_cgroup_disabled())
672 		return;
673 
674 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
675 	memcg_rstat_updated(memcg);
676 }
677 
678 /* idx can be of type enum memcg_stat_item or node_stat_item. */
679 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
680 {
681 	long x = 0;
682 	int cpu;
683 
684 	for_each_possible_cpu(cpu)
685 		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
686 #ifdef CONFIG_SMP
687 	if (x < 0)
688 		x = 0;
689 #endif
690 	return x;
691 }
692 
693 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
694 			      int val)
695 {
696 	struct mem_cgroup_per_node *pn;
697 	struct mem_cgroup *memcg;
698 
699 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
700 	memcg = pn->memcg;
701 
702 	/* Update memcg */
703 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
704 
705 	/* Update lruvec */
706 	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
707 
708 	memcg_rstat_updated(memcg);
709 }
710 
711 /**
712  * __mod_lruvec_state - update lruvec memory statistics
713  * @lruvec: the lruvec
714  * @idx: the stat item
715  * @val: delta to add to the counter, can be negative
716  *
717  * The lruvec is the intersection of the NUMA node and a cgroup. This
718  * function updates the all three counters that are affected by a
719  * change of state at this level: per-node, per-cgroup, per-lruvec.
720  */
721 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
722 			int val)
723 {
724 	/* Update node */
725 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
726 
727 	/* Update memcg and lruvec */
728 	if (!mem_cgroup_disabled())
729 		__mod_memcg_lruvec_state(lruvec, idx, val);
730 }
731 
732 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
733 			     int val)
734 {
735 	struct page *head = compound_head(page); /* rmap on tail pages */
736 	struct mem_cgroup *memcg;
737 	pg_data_t *pgdat = page_pgdat(page);
738 	struct lruvec *lruvec;
739 
740 	rcu_read_lock();
741 	memcg = page_memcg(head);
742 	/* Untracked pages have no memcg, no lruvec. Update only the node */
743 	if (!memcg) {
744 		rcu_read_unlock();
745 		__mod_node_page_state(pgdat, idx, val);
746 		return;
747 	}
748 
749 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
750 	__mod_lruvec_state(lruvec, idx, val);
751 	rcu_read_unlock();
752 }
753 EXPORT_SYMBOL(__mod_lruvec_page_state);
754 
755 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
756 {
757 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
758 	struct mem_cgroup *memcg;
759 	struct lruvec *lruvec;
760 
761 	rcu_read_lock();
762 	memcg = mem_cgroup_from_obj(p);
763 
764 	/*
765 	 * Untracked pages have no memcg, no lruvec. Update only the
766 	 * node. If we reparent the slab objects to the root memcg,
767 	 * when we free the slab object, we need to update the per-memcg
768 	 * vmstats to keep it correct for the root memcg.
769 	 */
770 	if (!memcg) {
771 		__mod_node_page_state(pgdat, idx, val);
772 	} else {
773 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 		__mod_lruvec_state(lruvec, idx, val);
775 	}
776 	rcu_read_unlock();
777 }
778 
779 /**
780  * __count_memcg_events - account VM events in a cgroup
781  * @memcg: the memory cgroup
782  * @idx: the event item
783  * @count: the number of events that occurred
784  */
785 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
786 			  unsigned long count)
787 {
788 	if (mem_cgroup_disabled())
789 		return;
790 
791 	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
792 	memcg_rstat_updated(memcg);
793 }
794 
795 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
796 {
797 	return READ_ONCE(memcg->vmstats.events[event]);
798 }
799 
800 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
801 {
802 	long x = 0;
803 	int cpu;
804 
805 	for_each_possible_cpu(cpu)
806 		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
807 	return x;
808 }
809 
810 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
811 					 int nr_pages)
812 {
813 	/* pagein of a big page is an event. So, ignore page size */
814 	if (nr_pages > 0)
815 		__count_memcg_events(memcg, PGPGIN, 1);
816 	else {
817 		__count_memcg_events(memcg, PGPGOUT, 1);
818 		nr_pages = -nr_pages; /* for event */
819 	}
820 
821 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
822 }
823 
824 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
825 				       enum mem_cgroup_events_target target)
826 {
827 	unsigned long val, next;
828 
829 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
830 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
831 	/* from time_after() in jiffies.h */
832 	if ((long)(next - val) < 0) {
833 		switch (target) {
834 		case MEM_CGROUP_TARGET_THRESH:
835 			next = val + THRESHOLDS_EVENTS_TARGET;
836 			break;
837 		case MEM_CGROUP_TARGET_SOFTLIMIT:
838 			next = val + SOFTLIMIT_EVENTS_TARGET;
839 			break;
840 		default:
841 			break;
842 		}
843 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
844 		return true;
845 	}
846 	return false;
847 }
848 
849 /*
850  * Check events in order.
851  *
852  */
853 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
854 {
855 	/* threshold event is triggered in finer grain than soft limit */
856 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
857 						MEM_CGROUP_TARGET_THRESH))) {
858 		bool do_softlimit;
859 
860 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
861 						MEM_CGROUP_TARGET_SOFTLIMIT);
862 		mem_cgroup_threshold(memcg);
863 		if (unlikely(do_softlimit))
864 			mem_cgroup_update_tree(memcg, nid);
865 	}
866 }
867 
868 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
869 {
870 	/*
871 	 * mm_update_next_owner() may clear mm->owner to NULL
872 	 * if it races with swapoff, page migration, etc.
873 	 * So this can be called with p == NULL.
874 	 */
875 	if (unlikely(!p))
876 		return NULL;
877 
878 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
879 }
880 EXPORT_SYMBOL(mem_cgroup_from_task);
881 
882 static __always_inline struct mem_cgroup *active_memcg(void)
883 {
884 	if (!in_task())
885 		return this_cpu_read(int_active_memcg);
886 	else
887 		return current->active_memcg;
888 }
889 
890 /**
891  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
892  * @mm: mm from which memcg should be extracted. It can be NULL.
893  *
894  * Obtain a reference on mm->memcg and returns it if successful. If mm
895  * is NULL, then the memcg is chosen as follows:
896  * 1) The active memcg, if set.
897  * 2) current->mm->memcg, if available
898  * 3) root memcg
899  * If mem_cgroup is disabled, NULL is returned.
900  */
901 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
902 {
903 	struct mem_cgroup *memcg;
904 
905 	if (mem_cgroup_disabled())
906 		return NULL;
907 
908 	/*
909 	 * Page cache insertions can happen without an
910 	 * actual mm context, e.g. during disk probing
911 	 * on boot, loopback IO, acct() writes etc.
912 	 *
913 	 * No need to css_get on root memcg as the reference
914 	 * counting is disabled on the root level in the
915 	 * cgroup core. See CSS_NO_REF.
916 	 */
917 	if (unlikely(!mm)) {
918 		memcg = active_memcg();
919 		if (unlikely(memcg)) {
920 			/* remote memcg must hold a ref */
921 			css_get(&memcg->css);
922 			return memcg;
923 		}
924 		mm = current->mm;
925 		if (unlikely(!mm))
926 			return root_mem_cgroup;
927 	}
928 
929 	rcu_read_lock();
930 	do {
931 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
932 		if (unlikely(!memcg))
933 			memcg = root_mem_cgroup;
934 	} while (!css_tryget(&memcg->css));
935 	rcu_read_unlock();
936 	return memcg;
937 }
938 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
939 
940 static __always_inline bool memcg_kmem_bypass(void)
941 {
942 	/* Allow remote memcg charging from any context. */
943 	if (unlikely(active_memcg()))
944 		return false;
945 
946 	/* Memcg to charge can't be determined. */
947 	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
948 		return true;
949 
950 	return false;
951 }
952 
953 /**
954  * mem_cgroup_iter - iterate over memory cgroup hierarchy
955  * @root: hierarchy root
956  * @prev: previously returned memcg, NULL on first invocation
957  * @reclaim: cookie for shared reclaim walks, NULL for full walks
958  *
959  * Returns references to children of the hierarchy below @root, or
960  * @root itself, or %NULL after a full round-trip.
961  *
962  * Caller must pass the return value in @prev on subsequent
963  * invocations for reference counting, or use mem_cgroup_iter_break()
964  * to cancel a hierarchy walk before the round-trip is complete.
965  *
966  * Reclaimers can specify a node in @reclaim to divide up the memcgs
967  * in the hierarchy among all concurrent reclaimers operating on the
968  * same node.
969  */
970 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
971 				   struct mem_cgroup *prev,
972 				   struct mem_cgroup_reclaim_cookie *reclaim)
973 {
974 	struct mem_cgroup_reclaim_iter *iter;
975 	struct cgroup_subsys_state *css = NULL;
976 	struct mem_cgroup *memcg = NULL;
977 	struct mem_cgroup *pos = NULL;
978 
979 	if (mem_cgroup_disabled())
980 		return NULL;
981 
982 	if (!root)
983 		root = root_mem_cgroup;
984 
985 	if (prev && !reclaim)
986 		pos = prev;
987 
988 	rcu_read_lock();
989 
990 	if (reclaim) {
991 		struct mem_cgroup_per_node *mz;
992 
993 		mz = root->nodeinfo[reclaim->pgdat->node_id];
994 		iter = &mz->iter;
995 
996 		if (prev && reclaim->generation != iter->generation)
997 			goto out_unlock;
998 
999 		while (1) {
1000 			pos = READ_ONCE(iter->position);
1001 			if (!pos || css_tryget(&pos->css))
1002 				break;
1003 			/*
1004 			 * css reference reached zero, so iter->position will
1005 			 * be cleared by ->css_released. However, we should not
1006 			 * rely on this happening soon, because ->css_released
1007 			 * is called from a work queue, and by busy-waiting we
1008 			 * might block it. So we clear iter->position right
1009 			 * away.
1010 			 */
1011 			(void)cmpxchg(&iter->position, pos, NULL);
1012 		}
1013 	}
1014 
1015 	if (pos)
1016 		css = &pos->css;
1017 
1018 	for (;;) {
1019 		css = css_next_descendant_pre(css, &root->css);
1020 		if (!css) {
1021 			/*
1022 			 * Reclaimers share the hierarchy walk, and a
1023 			 * new one might jump in right at the end of
1024 			 * the hierarchy - make sure they see at least
1025 			 * one group and restart from the beginning.
1026 			 */
1027 			if (!prev)
1028 				continue;
1029 			break;
1030 		}
1031 
1032 		/*
1033 		 * Verify the css and acquire a reference.  The root
1034 		 * is provided by the caller, so we know it's alive
1035 		 * and kicking, and don't take an extra reference.
1036 		 */
1037 		memcg = mem_cgroup_from_css(css);
1038 
1039 		if (css == &root->css)
1040 			break;
1041 
1042 		if (css_tryget(css))
1043 			break;
1044 
1045 		memcg = NULL;
1046 	}
1047 
1048 	if (reclaim) {
1049 		/*
1050 		 * The position could have already been updated by a competing
1051 		 * thread, so check that the value hasn't changed since we read
1052 		 * it to avoid reclaiming from the same cgroup twice.
1053 		 */
1054 		(void)cmpxchg(&iter->position, pos, memcg);
1055 
1056 		if (pos)
1057 			css_put(&pos->css);
1058 
1059 		if (!memcg)
1060 			iter->generation++;
1061 		else if (!prev)
1062 			reclaim->generation = iter->generation;
1063 	}
1064 
1065 out_unlock:
1066 	rcu_read_unlock();
1067 	if (prev && prev != root)
1068 		css_put(&prev->css);
1069 
1070 	return memcg;
1071 }
1072 
1073 /**
1074  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1075  * @root: hierarchy root
1076  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1077  */
1078 void mem_cgroup_iter_break(struct mem_cgroup *root,
1079 			   struct mem_cgroup *prev)
1080 {
1081 	if (!root)
1082 		root = root_mem_cgroup;
1083 	if (prev && prev != root)
1084 		css_put(&prev->css);
1085 }
1086 
1087 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1088 					struct mem_cgroup *dead_memcg)
1089 {
1090 	struct mem_cgroup_reclaim_iter *iter;
1091 	struct mem_cgroup_per_node *mz;
1092 	int nid;
1093 
1094 	for_each_node(nid) {
1095 		mz = from->nodeinfo[nid];
1096 		iter = &mz->iter;
1097 		cmpxchg(&iter->position, dead_memcg, NULL);
1098 	}
1099 }
1100 
1101 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1102 {
1103 	struct mem_cgroup *memcg = dead_memcg;
1104 	struct mem_cgroup *last;
1105 
1106 	do {
1107 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1108 		last = memcg;
1109 	} while ((memcg = parent_mem_cgroup(memcg)));
1110 
1111 	/*
1112 	 * When cgruop1 non-hierarchy mode is used,
1113 	 * parent_mem_cgroup() does not walk all the way up to the
1114 	 * cgroup root (root_mem_cgroup). So we have to handle
1115 	 * dead_memcg from cgroup root separately.
1116 	 */
1117 	if (last != root_mem_cgroup)
1118 		__invalidate_reclaim_iterators(root_mem_cgroup,
1119 						dead_memcg);
1120 }
1121 
1122 /**
1123  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1124  * @memcg: hierarchy root
1125  * @fn: function to call for each task
1126  * @arg: argument passed to @fn
1127  *
1128  * This function iterates over tasks attached to @memcg or to any of its
1129  * descendants and calls @fn for each task. If @fn returns a non-zero
1130  * value, the function breaks the iteration loop and returns the value.
1131  * Otherwise, it will iterate over all tasks and return 0.
1132  *
1133  * This function must not be called for the root memory cgroup.
1134  */
1135 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1136 			  int (*fn)(struct task_struct *, void *), void *arg)
1137 {
1138 	struct mem_cgroup *iter;
1139 	int ret = 0;
1140 
1141 	BUG_ON(memcg == root_mem_cgroup);
1142 
1143 	for_each_mem_cgroup_tree(iter, memcg) {
1144 		struct css_task_iter it;
1145 		struct task_struct *task;
1146 
1147 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1148 		while (!ret && (task = css_task_iter_next(&it)))
1149 			ret = fn(task, arg);
1150 		css_task_iter_end(&it);
1151 		if (ret) {
1152 			mem_cgroup_iter_break(memcg, iter);
1153 			break;
1154 		}
1155 	}
1156 	return ret;
1157 }
1158 
1159 #ifdef CONFIG_DEBUG_VM
1160 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1161 {
1162 	struct mem_cgroup *memcg;
1163 
1164 	if (mem_cgroup_disabled())
1165 		return;
1166 
1167 	memcg = folio_memcg(folio);
1168 
1169 	if (!memcg)
1170 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1171 	else
1172 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1173 }
1174 #endif
1175 
1176 /**
1177  * folio_lruvec_lock - Lock the lruvec for a folio.
1178  * @folio: Pointer to the folio.
1179  *
1180  * These functions are safe to use under any of the following conditions:
1181  * - folio locked
1182  * - folio_test_lru false
1183  * - folio_memcg_lock()
1184  * - folio frozen (refcount of 0)
1185  *
1186  * Return: The lruvec this folio is on with its lock held.
1187  */
1188 struct lruvec *folio_lruvec_lock(struct folio *folio)
1189 {
1190 	struct lruvec *lruvec = folio_lruvec(folio);
1191 
1192 	spin_lock(&lruvec->lru_lock);
1193 	lruvec_memcg_debug(lruvec, folio);
1194 
1195 	return lruvec;
1196 }
1197 
1198 /**
1199  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1200  * @folio: Pointer to the folio.
1201  *
1202  * These functions are safe to use under any of the following conditions:
1203  * - folio locked
1204  * - folio_test_lru false
1205  * - folio_memcg_lock()
1206  * - folio frozen (refcount of 0)
1207  *
1208  * Return: The lruvec this folio is on with its lock held and interrupts
1209  * disabled.
1210  */
1211 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1212 {
1213 	struct lruvec *lruvec = folio_lruvec(folio);
1214 
1215 	spin_lock_irq(&lruvec->lru_lock);
1216 	lruvec_memcg_debug(lruvec, folio);
1217 
1218 	return lruvec;
1219 }
1220 
1221 /**
1222  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1223  * @folio: Pointer to the folio.
1224  * @flags: Pointer to irqsave flags.
1225  *
1226  * These functions are safe to use under any of the following conditions:
1227  * - folio locked
1228  * - folio_test_lru false
1229  * - folio_memcg_lock()
1230  * - folio frozen (refcount of 0)
1231  *
1232  * Return: The lruvec this folio is on with its lock held and interrupts
1233  * disabled.
1234  */
1235 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1236 		unsigned long *flags)
1237 {
1238 	struct lruvec *lruvec = folio_lruvec(folio);
1239 
1240 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1241 	lruvec_memcg_debug(lruvec, folio);
1242 
1243 	return lruvec;
1244 }
1245 
1246 /**
1247  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1248  * @lruvec: mem_cgroup per zone lru vector
1249  * @lru: index of lru list the page is sitting on
1250  * @zid: zone id of the accounted pages
1251  * @nr_pages: positive when adding or negative when removing
1252  *
1253  * This function must be called under lru_lock, just before a page is added
1254  * to or just after a page is removed from an lru list (that ordering being
1255  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1256  */
1257 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1258 				int zid, int nr_pages)
1259 {
1260 	struct mem_cgroup_per_node *mz;
1261 	unsigned long *lru_size;
1262 	long size;
1263 
1264 	if (mem_cgroup_disabled())
1265 		return;
1266 
1267 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1268 	lru_size = &mz->lru_zone_size[zid][lru];
1269 
1270 	if (nr_pages < 0)
1271 		*lru_size += nr_pages;
1272 
1273 	size = *lru_size;
1274 	if (WARN_ONCE(size < 0,
1275 		"%s(%p, %d, %d): lru_size %ld\n",
1276 		__func__, lruvec, lru, nr_pages, size)) {
1277 		VM_BUG_ON(1);
1278 		*lru_size = 0;
1279 	}
1280 
1281 	if (nr_pages > 0)
1282 		*lru_size += nr_pages;
1283 }
1284 
1285 /**
1286  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1287  * @memcg: the memory cgroup
1288  *
1289  * Returns the maximum amount of memory @mem can be charged with, in
1290  * pages.
1291  */
1292 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1293 {
1294 	unsigned long margin = 0;
1295 	unsigned long count;
1296 	unsigned long limit;
1297 
1298 	count = page_counter_read(&memcg->memory);
1299 	limit = READ_ONCE(memcg->memory.max);
1300 	if (count < limit)
1301 		margin = limit - count;
1302 
1303 	if (do_memsw_account()) {
1304 		count = page_counter_read(&memcg->memsw);
1305 		limit = READ_ONCE(memcg->memsw.max);
1306 		if (count < limit)
1307 			margin = min(margin, limit - count);
1308 		else
1309 			margin = 0;
1310 	}
1311 
1312 	return margin;
1313 }
1314 
1315 /*
1316  * A routine for checking "mem" is under move_account() or not.
1317  *
1318  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1319  * moving cgroups. This is for waiting at high-memory pressure
1320  * caused by "move".
1321  */
1322 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1323 {
1324 	struct mem_cgroup *from;
1325 	struct mem_cgroup *to;
1326 	bool ret = false;
1327 	/*
1328 	 * Unlike task_move routines, we access mc.to, mc.from not under
1329 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1330 	 */
1331 	spin_lock(&mc.lock);
1332 	from = mc.from;
1333 	to = mc.to;
1334 	if (!from)
1335 		goto unlock;
1336 
1337 	ret = mem_cgroup_is_descendant(from, memcg) ||
1338 		mem_cgroup_is_descendant(to, memcg);
1339 unlock:
1340 	spin_unlock(&mc.lock);
1341 	return ret;
1342 }
1343 
1344 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1345 {
1346 	if (mc.moving_task && current != mc.moving_task) {
1347 		if (mem_cgroup_under_move(memcg)) {
1348 			DEFINE_WAIT(wait);
1349 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1350 			/* moving charge context might have finished. */
1351 			if (mc.moving_task)
1352 				schedule();
1353 			finish_wait(&mc.waitq, &wait);
1354 			return true;
1355 		}
1356 	}
1357 	return false;
1358 }
1359 
1360 struct memory_stat {
1361 	const char *name;
1362 	unsigned int idx;
1363 };
1364 
1365 static const struct memory_stat memory_stats[] = {
1366 	{ "anon",			NR_ANON_MAPPED			},
1367 	{ "file",			NR_FILE_PAGES			},
1368 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1369 	{ "pagetables",			NR_PAGETABLE			},
1370 	{ "percpu",			MEMCG_PERCPU_B			},
1371 	{ "sock",			MEMCG_SOCK			},
1372 	{ "shmem",			NR_SHMEM			},
1373 	{ "file_mapped",		NR_FILE_MAPPED			},
1374 	{ "file_dirty",			NR_FILE_DIRTY			},
1375 	{ "file_writeback",		NR_WRITEBACK			},
1376 #ifdef CONFIG_SWAP
1377 	{ "swapcached",			NR_SWAPCACHE			},
1378 #endif
1379 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1380 	{ "anon_thp",			NR_ANON_THPS			},
1381 	{ "file_thp",			NR_FILE_THPS			},
1382 	{ "shmem_thp",			NR_SHMEM_THPS			},
1383 #endif
1384 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1385 	{ "active_anon",		NR_ACTIVE_ANON			},
1386 	{ "inactive_file",		NR_INACTIVE_FILE		},
1387 	{ "active_file",		NR_ACTIVE_FILE			},
1388 	{ "unevictable",		NR_UNEVICTABLE			},
1389 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1390 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1391 
1392 	/* The memory events */
1393 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1394 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1395 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1396 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1397 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1398 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1399 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1400 };
1401 
1402 /* Translate stat items to the correct unit for memory.stat output */
1403 static int memcg_page_state_unit(int item)
1404 {
1405 	switch (item) {
1406 	case MEMCG_PERCPU_B:
1407 	case NR_SLAB_RECLAIMABLE_B:
1408 	case NR_SLAB_UNRECLAIMABLE_B:
1409 	case WORKINGSET_REFAULT_ANON:
1410 	case WORKINGSET_REFAULT_FILE:
1411 	case WORKINGSET_ACTIVATE_ANON:
1412 	case WORKINGSET_ACTIVATE_FILE:
1413 	case WORKINGSET_RESTORE_ANON:
1414 	case WORKINGSET_RESTORE_FILE:
1415 	case WORKINGSET_NODERECLAIM:
1416 		return 1;
1417 	case NR_KERNEL_STACK_KB:
1418 		return SZ_1K;
1419 	default:
1420 		return PAGE_SIZE;
1421 	}
1422 }
1423 
1424 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1425 						    int item)
1426 {
1427 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1428 }
1429 
1430 static char *memory_stat_format(struct mem_cgroup *memcg)
1431 {
1432 	struct seq_buf s;
1433 	int i;
1434 
1435 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1436 	if (!s.buffer)
1437 		return NULL;
1438 
1439 	/*
1440 	 * Provide statistics on the state of the memory subsystem as
1441 	 * well as cumulative event counters that show past behavior.
1442 	 *
1443 	 * This list is ordered following a combination of these gradients:
1444 	 * 1) generic big picture -> specifics and details
1445 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1446 	 *
1447 	 * Current memory state:
1448 	 */
1449 	mem_cgroup_flush_stats();
1450 
1451 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1452 		u64 size;
1453 
1454 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1455 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1456 
1457 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1458 			size += memcg_page_state_output(memcg,
1459 							NR_SLAB_RECLAIMABLE_B);
1460 			seq_buf_printf(&s, "slab %llu\n", size);
1461 		}
1462 	}
1463 
1464 	/* Accumulated memory events */
1465 
1466 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1467 		       memcg_events(memcg, PGFAULT));
1468 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1469 		       memcg_events(memcg, PGMAJFAULT));
1470 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1471 		       memcg_events(memcg, PGREFILL));
1472 	seq_buf_printf(&s, "pgscan %lu\n",
1473 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1474 		       memcg_events(memcg, PGSCAN_DIRECT));
1475 	seq_buf_printf(&s, "pgsteal %lu\n",
1476 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1477 		       memcg_events(memcg, PGSTEAL_DIRECT));
1478 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1479 		       memcg_events(memcg, PGACTIVATE));
1480 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1481 		       memcg_events(memcg, PGDEACTIVATE));
1482 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1483 		       memcg_events(memcg, PGLAZYFREE));
1484 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1485 		       memcg_events(memcg, PGLAZYFREED));
1486 
1487 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1489 		       memcg_events(memcg, THP_FAULT_ALLOC));
1490 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1491 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1492 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1493 
1494 	/* The above should easily fit into one page */
1495 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1496 
1497 	return s.buffer;
1498 }
1499 
1500 #define K(x) ((x) << (PAGE_SHIFT-10))
1501 /**
1502  * mem_cgroup_print_oom_context: Print OOM information relevant to
1503  * memory controller.
1504  * @memcg: The memory cgroup that went over limit
1505  * @p: Task that is going to be killed
1506  *
1507  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1508  * enabled
1509  */
1510 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1511 {
1512 	rcu_read_lock();
1513 
1514 	if (memcg) {
1515 		pr_cont(",oom_memcg=");
1516 		pr_cont_cgroup_path(memcg->css.cgroup);
1517 	} else
1518 		pr_cont(",global_oom");
1519 	if (p) {
1520 		pr_cont(",task_memcg=");
1521 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1522 	}
1523 	rcu_read_unlock();
1524 }
1525 
1526 /**
1527  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1528  * memory controller.
1529  * @memcg: The memory cgroup that went over limit
1530  */
1531 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1532 {
1533 	char *buf;
1534 
1535 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1536 		K((u64)page_counter_read(&memcg->memory)),
1537 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1538 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1539 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1540 			K((u64)page_counter_read(&memcg->swap)),
1541 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1542 	else {
1543 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1544 			K((u64)page_counter_read(&memcg->memsw)),
1545 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1546 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1547 			K((u64)page_counter_read(&memcg->kmem)),
1548 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1549 	}
1550 
1551 	pr_info("Memory cgroup stats for ");
1552 	pr_cont_cgroup_path(memcg->css.cgroup);
1553 	pr_cont(":");
1554 	buf = memory_stat_format(memcg);
1555 	if (!buf)
1556 		return;
1557 	pr_info("%s", buf);
1558 	kfree(buf);
1559 }
1560 
1561 /*
1562  * Return the memory (and swap, if configured) limit for a memcg.
1563  */
1564 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1565 {
1566 	unsigned long max = READ_ONCE(memcg->memory.max);
1567 
1568 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1569 		if (mem_cgroup_swappiness(memcg))
1570 			max += min(READ_ONCE(memcg->swap.max),
1571 				   (unsigned long)total_swap_pages);
1572 	} else { /* v1 */
1573 		if (mem_cgroup_swappiness(memcg)) {
1574 			/* Calculate swap excess capacity from memsw limit */
1575 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1576 
1577 			max += min(swap, (unsigned long)total_swap_pages);
1578 		}
1579 	}
1580 	return max;
1581 }
1582 
1583 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1584 {
1585 	return page_counter_read(&memcg->memory);
1586 }
1587 
1588 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1589 				     int order)
1590 {
1591 	struct oom_control oc = {
1592 		.zonelist = NULL,
1593 		.nodemask = NULL,
1594 		.memcg = memcg,
1595 		.gfp_mask = gfp_mask,
1596 		.order = order,
1597 	};
1598 	bool ret = true;
1599 
1600 	if (mutex_lock_killable(&oom_lock))
1601 		return true;
1602 
1603 	if (mem_cgroup_margin(memcg) >= (1 << order))
1604 		goto unlock;
1605 
1606 	/*
1607 	 * A few threads which were not waiting at mutex_lock_killable() can
1608 	 * fail to bail out. Therefore, check again after holding oom_lock.
1609 	 */
1610 	ret = task_is_dying() || out_of_memory(&oc);
1611 
1612 unlock:
1613 	mutex_unlock(&oom_lock);
1614 	return ret;
1615 }
1616 
1617 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1618 				   pg_data_t *pgdat,
1619 				   gfp_t gfp_mask,
1620 				   unsigned long *total_scanned)
1621 {
1622 	struct mem_cgroup *victim = NULL;
1623 	int total = 0;
1624 	int loop = 0;
1625 	unsigned long excess;
1626 	unsigned long nr_scanned;
1627 	struct mem_cgroup_reclaim_cookie reclaim = {
1628 		.pgdat = pgdat,
1629 	};
1630 
1631 	excess = soft_limit_excess(root_memcg);
1632 
1633 	while (1) {
1634 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1635 		if (!victim) {
1636 			loop++;
1637 			if (loop >= 2) {
1638 				/*
1639 				 * If we have not been able to reclaim
1640 				 * anything, it might because there are
1641 				 * no reclaimable pages under this hierarchy
1642 				 */
1643 				if (!total)
1644 					break;
1645 				/*
1646 				 * We want to do more targeted reclaim.
1647 				 * excess >> 2 is not to excessive so as to
1648 				 * reclaim too much, nor too less that we keep
1649 				 * coming back to reclaim from this cgroup
1650 				 */
1651 				if (total >= (excess >> 2) ||
1652 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1653 					break;
1654 			}
1655 			continue;
1656 		}
1657 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1658 					pgdat, &nr_scanned);
1659 		*total_scanned += nr_scanned;
1660 		if (!soft_limit_excess(root_memcg))
1661 			break;
1662 	}
1663 	mem_cgroup_iter_break(root_memcg, victim);
1664 	return total;
1665 }
1666 
1667 #ifdef CONFIG_LOCKDEP
1668 static struct lockdep_map memcg_oom_lock_dep_map = {
1669 	.name = "memcg_oom_lock",
1670 };
1671 #endif
1672 
1673 static DEFINE_SPINLOCK(memcg_oom_lock);
1674 
1675 /*
1676  * Check OOM-Killer is already running under our hierarchy.
1677  * If someone is running, return false.
1678  */
1679 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1680 {
1681 	struct mem_cgroup *iter, *failed = NULL;
1682 
1683 	spin_lock(&memcg_oom_lock);
1684 
1685 	for_each_mem_cgroup_tree(iter, memcg) {
1686 		if (iter->oom_lock) {
1687 			/*
1688 			 * this subtree of our hierarchy is already locked
1689 			 * so we cannot give a lock.
1690 			 */
1691 			failed = iter;
1692 			mem_cgroup_iter_break(memcg, iter);
1693 			break;
1694 		} else
1695 			iter->oom_lock = true;
1696 	}
1697 
1698 	if (failed) {
1699 		/*
1700 		 * OK, we failed to lock the whole subtree so we have
1701 		 * to clean up what we set up to the failing subtree
1702 		 */
1703 		for_each_mem_cgroup_tree(iter, memcg) {
1704 			if (iter == failed) {
1705 				mem_cgroup_iter_break(memcg, iter);
1706 				break;
1707 			}
1708 			iter->oom_lock = false;
1709 		}
1710 	} else
1711 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1712 
1713 	spin_unlock(&memcg_oom_lock);
1714 
1715 	return !failed;
1716 }
1717 
1718 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1719 {
1720 	struct mem_cgroup *iter;
1721 
1722 	spin_lock(&memcg_oom_lock);
1723 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1724 	for_each_mem_cgroup_tree(iter, memcg)
1725 		iter->oom_lock = false;
1726 	spin_unlock(&memcg_oom_lock);
1727 }
1728 
1729 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1730 {
1731 	struct mem_cgroup *iter;
1732 
1733 	spin_lock(&memcg_oom_lock);
1734 	for_each_mem_cgroup_tree(iter, memcg)
1735 		iter->under_oom++;
1736 	spin_unlock(&memcg_oom_lock);
1737 }
1738 
1739 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1740 {
1741 	struct mem_cgroup *iter;
1742 
1743 	/*
1744 	 * Be careful about under_oom underflows because a child memcg
1745 	 * could have been added after mem_cgroup_mark_under_oom.
1746 	 */
1747 	spin_lock(&memcg_oom_lock);
1748 	for_each_mem_cgroup_tree(iter, memcg)
1749 		if (iter->under_oom > 0)
1750 			iter->under_oom--;
1751 	spin_unlock(&memcg_oom_lock);
1752 }
1753 
1754 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1755 
1756 struct oom_wait_info {
1757 	struct mem_cgroup *memcg;
1758 	wait_queue_entry_t	wait;
1759 };
1760 
1761 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1762 	unsigned mode, int sync, void *arg)
1763 {
1764 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1765 	struct mem_cgroup *oom_wait_memcg;
1766 	struct oom_wait_info *oom_wait_info;
1767 
1768 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1769 	oom_wait_memcg = oom_wait_info->memcg;
1770 
1771 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1772 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1773 		return 0;
1774 	return autoremove_wake_function(wait, mode, sync, arg);
1775 }
1776 
1777 static void memcg_oom_recover(struct mem_cgroup *memcg)
1778 {
1779 	/*
1780 	 * For the following lockless ->under_oom test, the only required
1781 	 * guarantee is that it must see the state asserted by an OOM when
1782 	 * this function is called as a result of userland actions
1783 	 * triggered by the notification of the OOM.  This is trivially
1784 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1785 	 * triggering notification.
1786 	 */
1787 	if (memcg && memcg->under_oom)
1788 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1789 }
1790 
1791 enum oom_status {
1792 	OOM_SUCCESS,
1793 	OOM_FAILED,
1794 	OOM_ASYNC,
1795 	OOM_SKIPPED
1796 };
1797 
1798 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1799 {
1800 	enum oom_status ret;
1801 	bool locked;
1802 
1803 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1804 		return OOM_SKIPPED;
1805 
1806 	memcg_memory_event(memcg, MEMCG_OOM);
1807 
1808 	/*
1809 	 * We are in the middle of the charge context here, so we
1810 	 * don't want to block when potentially sitting on a callstack
1811 	 * that holds all kinds of filesystem and mm locks.
1812 	 *
1813 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1814 	 * handling until the charge can succeed; remember the context and put
1815 	 * the task to sleep at the end of the page fault when all locks are
1816 	 * released.
1817 	 *
1818 	 * On the other hand, in-kernel OOM killer allows for an async victim
1819 	 * memory reclaim (oom_reaper) and that means that we are not solely
1820 	 * relying on the oom victim to make a forward progress and we can
1821 	 * invoke the oom killer here.
1822 	 *
1823 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1824 	 * victim and then we have to bail out from the charge path.
1825 	 */
1826 	if (memcg->oom_kill_disable) {
1827 		if (!current->in_user_fault)
1828 			return OOM_SKIPPED;
1829 		css_get(&memcg->css);
1830 		current->memcg_in_oom = memcg;
1831 		current->memcg_oom_gfp_mask = mask;
1832 		current->memcg_oom_order = order;
1833 
1834 		return OOM_ASYNC;
1835 	}
1836 
1837 	mem_cgroup_mark_under_oom(memcg);
1838 
1839 	locked = mem_cgroup_oom_trylock(memcg);
1840 
1841 	if (locked)
1842 		mem_cgroup_oom_notify(memcg);
1843 
1844 	mem_cgroup_unmark_under_oom(memcg);
1845 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1846 		ret = OOM_SUCCESS;
1847 	else
1848 		ret = OOM_FAILED;
1849 
1850 	if (locked)
1851 		mem_cgroup_oom_unlock(memcg);
1852 
1853 	return ret;
1854 }
1855 
1856 /**
1857  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1858  * @handle: actually kill/wait or just clean up the OOM state
1859  *
1860  * This has to be called at the end of a page fault if the memcg OOM
1861  * handler was enabled.
1862  *
1863  * Memcg supports userspace OOM handling where failed allocations must
1864  * sleep on a waitqueue until the userspace task resolves the
1865  * situation.  Sleeping directly in the charge context with all kinds
1866  * of locks held is not a good idea, instead we remember an OOM state
1867  * in the task and mem_cgroup_oom_synchronize() has to be called at
1868  * the end of the page fault to complete the OOM handling.
1869  *
1870  * Returns %true if an ongoing memcg OOM situation was detected and
1871  * completed, %false otherwise.
1872  */
1873 bool mem_cgroup_oom_synchronize(bool handle)
1874 {
1875 	struct mem_cgroup *memcg = current->memcg_in_oom;
1876 	struct oom_wait_info owait;
1877 	bool locked;
1878 
1879 	/* OOM is global, do not handle */
1880 	if (!memcg)
1881 		return false;
1882 
1883 	if (!handle)
1884 		goto cleanup;
1885 
1886 	owait.memcg = memcg;
1887 	owait.wait.flags = 0;
1888 	owait.wait.func = memcg_oom_wake_function;
1889 	owait.wait.private = current;
1890 	INIT_LIST_HEAD(&owait.wait.entry);
1891 
1892 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1893 	mem_cgroup_mark_under_oom(memcg);
1894 
1895 	locked = mem_cgroup_oom_trylock(memcg);
1896 
1897 	if (locked)
1898 		mem_cgroup_oom_notify(memcg);
1899 
1900 	if (locked && !memcg->oom_kill_disable) {
1901 		mem_cgroup_unmark_under_oom(memcg);
1902 		finish_wait(&memcg_oom_waitq, &owait.wait);
1903 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1904 					 current->memcg_oom_order);
1905 	} else {
1906 		schedule();
1907 		mem_cgroup_unmark_under_oom(memcg);
1908 		finish_wait(&memcg_oom_waitq, &owait.wait);
1909 	}
1910 
1911 	if (locked) {
1912 		mem_cgroup_oom_unlock(memcg);
1913 		/*
1914 		 * There is no guarantee that an OOM-lock contender
1915 		 * sees the wakeups triggered by the OOM kill
1916 		 * uncharges.  Wake any sleepers explicitly.
1917 		 */
1918 		memcg_oom_recover(memcg);
1919 	}
1920 cleanup:
1921 	current->memcg_in_oom = NULL;
1922 	css_put(&memcg->css);
1923 	return true;
1924 }
1925 
1926 /**
1927  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1928  * @victim: task to be killed by the OOM killer
1929  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1930  *
1931  * Returns a pointer to a memory cgroup, which has to be cleaned up
1932  * by killing all belonging OOM-killable tasks.
1933  *
1934  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1935  */
1936 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1937 					    struct mem_cgroup *oom_domain)
1938 {
1939 	struct mem_cgroup *oom_group = NULL;
1940 	struct mem_cgroup *memcg;
1941 
1942 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1943 		return NULL;
1944 
1945 	if (!oom_domain)
1946 		oom_domain = root_mem_cgroup;
1947 
1948 	rcu_read_lock();
1949 
1950 	memcg = mem_cgroup_from_task(victim);
1951 	if (memcg == root_mem_cgroup)
1952 		goto out;
1953 
1954 	/*
1955 	 * If the victim task has been asynchronously moved to a different
1956 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1957 	 * In this case it's better to ignore memory.group.oom.
1958 	 */
1959 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1960 		goto out;
1961 
1962 	/*
1963 	 * Traverse the memory cgroup hierarchy from the victim task's
1964 	 * cgroup up to the OOMing cgroup (or root) to find the
1965 	 * highest-level memory cgroup with oom.group set.
1966 	 */
1967 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1968 		if (memcg->oom_group)
1969 			oom_group = memcg;
1970 
1971 		if (memcg == oom_domain)
1972 			break;
1973 	}
1974 
1975 	if (oom_group)
1976 		css_get(&oom_group->css);
1977 out:
1978 	rcu_read_unlock();
1979 
1980 	return oom_group;
1981 }
1982 
1983 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1984 {
1985 	pr_info("Tasks in ");
1986 	pr_cont_cgroup_path(memcg->css.cgroup);
1987 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1988 }
1989 
1990 /**
1991  * folio_memcg_lock - Bind a folio to its memcg.
1992  * @folio: The folio.
1993  *
1994  * This function prevents unlocked LRU folios from being moved to
1995  * another cgroup.
1996  *
1997  * It ensures lifetime of the bound memcg.  The caller is responsible
1998  * for the lifetime of the folio.
1999  */
2000 void folio_memcg_lock(struct folio *folio)
2001 {
2002 	struct mem_cgroup *memcg;
2003 	unsigned long flags;
2004 
2005 	/*
2006 	 * The RCU lock is held throughout the transaction.  The fast
2007 	 * path can get away without acquiring the memcg->move_lock
2008 	 * because page moving starts with an RCU grace period.
2009          */
2010 	rcu_read_lock();
2011 
2012 	if (mem_cgroup_disabled())
2013 		return;
2014 again:
2015 	memcg = folio_memcg(folio);
2016 	if (unlikely(!memcg))
2017 		return;
2018 
2019 #ifdef CONFIG_PROVE_LOCKING
2020 	local_irq_save(flags);
2021 	might_lock(&memcg->move_lock);
2022 	local_irq_restore(flags);
2023 #endif
2024 
2025 	if (atomic_read(&memcg->moving_account) <= 0)
2026 		return;
2027 
2028 	spin_lock_irqsave(&memcg->move_lock, flags);
2029 	if (memcg != folio_memcg(folio)) {
2030 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2031 		goto again;
2032 	}
2033 
2034 	/*
2035 	 * When charge migration first begins, we can have multiple
2036 	 * critical sections holding the fast-path RCU lock and one
2037 	 * holding the slowpath move_lock. Track the task who has the
2038 	 * move_lock for unlock_page_memcg().
2039 	 */
2040 	memcg->move_lock_task = current;
2041 	memcg->move_lock_flags = flags;
2042 }
2043 
2044 void lock_page_memcg(struct page *page)
2045 {
2046 	folio_memcg_lock(page_folio(page));
2047 }
2048 
2049 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2050 {
2051 	if (memcg && memcg->move_lock_task == current) {
2052 		unsigned long flags = memcg->move_lock_flags;
2053 
2054 		memcg->move_lock_task = NULL;
2055 		memcg->move_lock_flags = 0;
2056 
2057 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2058 	}
2059 
2060 	rcu_read_unlock();
2061 }
2062 
2063 /**
2064  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2065  * @folio: The folio.
2066  *
2067  * This releases the binding created by folio_memcg_lock().  This does
2068  * not change the accounting of this folio to its memcg, but it does
2069  * permit others to change it.
2070  */
2071 void folio_memcg_unlock(struct folio *folio)
2072 {
2073 	__folio_memcg_unlock(folio_memcg(folio));
2074 }
2075 
2076 void unlock_page_memcg(struct page *page)
2077 {
2078 	folio_memcg_unlock(page_folio(page));
2079 }
2080 
2081 struct obj_stock {
2082 #ifdef CONFIG_MEMCG_KMEM
2083 	struct obj_cgroup *cached_objcg;
2084 	struct pglist_data *cached_pgdat;
2085 	unsigned int nr_bytes;
2086 	int nr_slab_reclaimable_b;
2087 	int nr_slab_unreclaimable_b;
2088 #else
2089 	int dummy[0];
2090 #endif
2091 };
2092 
2093 struct memcg_stock_pcp {
2094 	struct mem_cgroup *cached; /* this never be root cgroup */
2095 	unsigned int nr_pages;
2096 	struct obj_stock task_obj;
2097 	struct obj_stock irq_obj;
2098 
2099 	struct work_struct work;
2100 	unsigned long flags;
2101 #define FLUSHING_CACHED_CHARGE	0
2102 };
2103 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2104 static DEFINE_MUTEX(percpu_charge_mutex);
2105 
2106 #ifdef CONFIG_MEMCG_KMEM
2107 static void drain_obj_stock(struct obj_stock *stock);
2108 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2109 				     struct mem_cgroup *root_memcg);
2110 
2111 #else
2112 static inline void drain_obj_stock(struct obj_stock *stock)
2113 {
2114 }
2115 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2116 				     struct mem_cgroup *root_memcg)
2117 {
2118 	return false;
2119 }
2120 #endif
2121 
2122 /**
2123  * consume_stock: Try to consume stocked charge on this cpu.
2124  * @memcg: memcg to consume from.
2125  * @nr_pages: how many pages to charge.
2126  *
2127  * The charges will only happen if @memcg matches the current cpu's memcg
2128  * stock, and at least @nr_pages are available in that stock.  Failure to
2129  * service an allocation will refill the stock.
2130  *
2131  * returns true if successful, false otherwise.
2132  */
2133 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2134 {
2135 	struct memcg_stock_pcp *stock;
2136 	unsigned long flags;
2137 	bool ret = false;
2138 
2139 	if (nr_pages > MEMCG_CHARGE_BATCH)
2140 		return ret;
2141 
2142 	local_irq_save(flags);
2143 
2144 	stock = this_cpu_ptr(&memcg_stock);
2145 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2146 		stock->nr_pages -= nr_pages;
2147 		ret = true;
2148 	}
2149 
2150 	local_irq_restore(flags);
2151 
2152 	return ret;
2153 }
2154 
2155 /*
2156  * Returns stocks cached in percpu and reset cached information.
2157  */
2158 static void drain_stock(struct memcg_stock_pcp *stock)
2159 {
2160 	struct mem_cgroup *old = stock->cached;
2161 
2162 	if (!old)
2163 		return;
2164 
2165 	if (stock->nr_pages) {
2166 		page_counter_uncharge(&old->memory, stock->nr_pages);
2167 		if (do_memsw_account())
2168 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2169 		stock->nr_pages = 0;
2170 	}
2171 
2172 	css_put(&old->css);
2173 	stock->cached = NULL;
2174 }
2175 
2176 static void drain_local_stock(struct work_struct *dummy)
2177 {
2178 	struct memcg_stock_pcp *stock;
2179 	unsigned long flags;
2180 
2181 	/*
2182 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2183 	 * drain_stock races is that we always operate on local CPU stock
2184 	 * here with IRQ disabled
2185 	 */
2186 	local_irq_save(flags);
2187 
2188 	stock = this_cpu_ptr(&memcg_stock);
2189 	drain_obj_stock(&stock->irq_obj);
2190 	if (in_task())
2191 		drain_obj_stock(&stock->task_obj);
2192 	drain_stock(stock);
2193 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2194 
2195 	local_irq_restore(flags);
2196 }
2197 
2198 /*
2199  * Cache charges(val) to local per_cpu area.
2200  * This will be consumed by consume_stock() function, later.
2201  */
2202 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2203 {
2204 	struct memcg_stock_pcp *stock;
2205 	unsigned long flags;
2206 
2207 	local_irq_save(flags);
2208 
2209 	stock = this_cpu_ptr(&memcg_stock);
2210 	if (stock->cached != memcg) { /* reset if necessary */
2211 		drain_stock(stock);
2212 		css_get(&memcg->css);
2213 		stock->cached = memcg;
2214 	}
2215 	stock->nr_pages += nr_pages;
2216 
2217 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2218 		drain_stock(stock);
2219 
2220 	local_irq_restore(flags);
2221 }
2222 
2223 /*
2224  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2225  * of the hierarchy under it.
2226  */
2227 static void drain_all_stock(struct mem_cgroup *root_memcg)
2228 {
2229 	int cpu, curcpu;
2230 
2231 	/* If someone's already draining, avoid adding running more workers. */
2232 	if (!mutex_trylock(&percpu_charge_mutex))
2233 		return;
2234 	/*
2235 	 * Notify other cpus that system-wide "drain" is running
2236 	 * We do not care about races with the cpu hotplug because cpu down
2237 	 * as well as workers from this path always operate on the local
2238 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2239 	 */
2240 	curcpu = get_cpu();
2241 	for_each_online_cpu(cpu) {
2242 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2243 		struct mem_cgroup *memcg;
2244 		bool flush = false;
2245 
2246 		rcu_read_lock();
2247 		memcg = stock->cached;
2248 		if (memcg && stock->nr_pages &&
2249 		    mem_cgroup_is_descendant(memcg, root_memcg))
2250 			flush = true;
2251 		else if (obj_stock_flush_required(stock, root_memcg))
2252 			flush = true;
2253 		rcu_read_unlock();
2254 
2255 		if (flush &&
2256 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2257 			if (cpu == curcpu)
2258 				drain_local_stock(&stock->work);
2259 			else
2260 				schedule_work_on(cpu, &stock->work);
2261 		}
2262 	}
2263 	put_cpu();
2264 	mutex_unlock(&percpu_charge_mutex);
2265 }
2266 
2267 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2268 {
2269 	struct memcg_stock_pcp *stock;
2270 
2271 	stock = &per_cpu(memcg_stock, cpu);
2272 	drain_stock(stock);
2273 
2274 	return 0;
2275 }
2276 
2277 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2278 				  unsigned int nr_pages,
2279 				  gfp_t gfp_mask)
2280 {
2281 	unsigned long nr_reclaimed = 0;
2282 
2283 	do {
2284 		unsigned long pflags;
2285 
2286 		if (page_counter_read(&memcg->memory) <=
2287 		    READ_ONCE(memcg->memory.high))
2288 			continue;
2289 
2290 		memcg_memory_event(memcg, MEMCG_HIGH);
2291 
2292 		psi_memstall_enter(&pflags);
2293 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2294 							     gfp_mask, true);
2295 		psi_memstall_leave(&pflags);
2296 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2297 		 !mem_cgroup_is_root(memcg));
2298 
2299 	return nr_reclaimed;
2300 }
2301 
2302 static void high_work_func(struct work_struct *work)
2303 {
2304 	struct mem_cgroup *memcg;
2305 
2306 	memcg = container_of(work, struct mem_cgroup, high_work);
2307 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2308 }
2309 
2310 /*
2311  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2312  * enough to still cause a significant slowdown in most cases, while still
2313  * allowing diagnostics and tracing to proceed without becoming stuck.
2314  */
2315 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2316 
2317 /*
2318  * When calculating the delay, we use these either side of the exponentiation to
2319  * maintain precision and scale to a reasonable number of jiffies (see the table
2320  * below.
2321  *
2322  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2323  *   overage ratio to a delay.
2324  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2325  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2326  *   to produce a reasonable delay curve.
2327  *
2328  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2329  * reasonable delay curve compared to precision-adjusted overage, not
2330  * penalising heavily at first, but still making sure that growth beyond the
2331  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2332  * example, with a high of 100 megabytes:
2333  *
2334  *  +-------+------------------------+
2335  *  | usage | time to allocate in ms |
2336  *  +-------+------------------------+
2337  *  | 100M  |                      0 |
2338  *  | 101M  |                      6 |
2339  *  | 102M  |                     25 |
2340  *  | 103M  |                     57 |
2341  *  | 104M  |                    102 |
2342  *  | 105M  |                    159 |
2343  *  | 106M  |                    230 |
2344  *  | 107M  |                    313 |
2345  *  | 108M  |                    409 |
2346  *  | 109M  |                    518 |
2347  *  | 110M  |                    639 |
2348  *  | 111M  |                    774 |
2349  *  | 112M  |                    921 |
2350  *  | 113M  |                   1081 |
2351  *  | 114M  |                   1254 |
2352  *  | 115M  |                   1439 |
2353  *  | 116M  |                   1638 |
2354  *  | 117M  |                   1849 |
2355  *  | 118M  |                   2000 |
2356  *  | 119M  |                   2000 |
2357  *  | 120M  |                   2000 |
2358  *  +-------+------------------------+
2359  */
2360  #define MEMCG_DELAY_PRECISION_SHIFT 20
2361  #define MEMCG_DELAY_SCALING_SHIFT 14
2362 
2363 static u64 calculate_overage(unsigned long usage, unsigned long high)
2364 {
2365 	u64 overage;
2366 
2367 	if (usage <= high)
2368 		return 0;
2369 
2370 	/*
2371 	 * Prevent division by 0 in overage calculation by acting as if
2372 	 * it was a threshold of 1 page
2373 	 */
2374 	high = max(high, 1UL);
2375 
2376 	overage = usage - high;
2377 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2378 	return div64_u64(overage, high);
2379 }
2380 
2381 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2382 {
2383 	u64 overage, max_overage = 0;
2384 
2385 	do {
2386 		overage = calculate_overage(page_counter_read(&memcg->memory),
2387 					    READ_ONCE(memcg->memory.high));
2388 		max_overage = max(overage, max_overage);
2389 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2390 		 !mem_cgroup_is_root(memcg));
2391 
2392 	return max_overage;
2393 }
2394 
2395 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2396 {
2397 	u64 overage, max_overage = 0;
2398 
2399 	do {
2400 		overage = calculate_overage(page_counter_read(&memcg->swap),
2401 					    READ_ONCE(memcg->swap.high));
2402 		if (overage)
2403 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2404 		max_overage = max(overage, max_overage);
2405 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2406 		 !mem_cgroup_is_root(memcg));
2407 
2408 	return max_overage;
2409 }
2410 
2411 /*
2412  * Get the number of jiffies that we should penalise a mischievous cgroup which
2413  * is exceeding its memory.high by checking both it and its ancestors.
2414  */
2415 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2416 					  unsigned int nr_pages,
2417 					  u64 max_overage)
2418 {
2419 	unsigned long penalty_jiffies;
2420 
2421 	if (!max_overage)
2422 		return 0;
2423 
2424 	/*
2425 	 * We use overage compared to memory.high to calculate the number of
2426 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2427 	 * fairly lenient on small overages, and increasingly harsh when the
2428 	 * memcg in question makes it clear that it has no intention of stopping
2429 	 * its crazy behaviour, so we exponentially increase the delay based on
2430 	 * overage amount.
2431 	 */
2432 	penalty_jiffies = max_overage * max_overage * HZ;
2433 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2434 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2435 
2436 	/*
2437 	 * Factor in the task's own contribution to the overage, such that four
2438 	 * N-sized allocations are throttled approximately the same as one
2439 	 * 4N-sized allocation.
2440 	 *
2441 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2442 	 * larger the current charge patch is than that.
2443 	 */
2444 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2445 }
2446 
2447 /*
2448  * Scheduled by try_charge() to be executed from the userland return path
2449  * and reclaims memory over the high limit.
2450  */
2451 void mem_cgroup_handle_over_high(void)
2452 {
2453 	unsigned long penalty_jiffies;
2454 	unsigned long pflags;
2455 	unsigned long nr_reclaimed;
2456 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2457 	int nr_retries = MAX_RECLAIM_RETRIES;
2458 	struct mem_cgroup *memcg;
2459 	bool in_retry = false;
2460 
2461 	if (likely(!nr_pages))
2462 		return;
2463 
2464 	memcg = get_mem_cgroup_from_mm(current->mm);
2465 	current->memcg_nr_pages_over_high = 0;
2466 
2467 retry_reclaim:
2468 	/*
2469 	 * The allocating task should reclaim at least the batch size, but for
2470 	 * subsequent retries we only want to do what's necessary to prevent oom
2471 	 * or breaching resource isolation.
2472 	 *
2473 	 * This is distinct from memory.max or page allocator behaviour because
2474 	 * memory.high is currently batched, whereas memory.max and the page
2475 	 * allocator run every time an allocation is made.
2476 	 */
2477 	nr_reclaimed = reclaim_high(memcg,
2478 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2479 				    GFP_KERNEL);
2480 
2481 	/*
2482 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2483 	 * allocators proactively to slow down excessive growth.
2484 	 */
2485 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2486 					       mem_find_max_overage(memcg));
2487 
2488 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2489 						swap_find_max_overage(memcg));
2490 
2491 	/*
2492 	 * Clamp the max delay per usermode return so as to still keep the
2493 	 * application moving forwards and also permit diagnostics, albeit
2494 	 * extremely slowly.
2495 	 */
2496 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2497 
2498 	/*
2499 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2500 	 * that it's not even worth doing, in an attempt to be nice to those who
2501 	 * go only a small amount over their memory.high value and maybe haven't
2502 	 * been aggressively reclaimed enough yet.
2503 	 */
2504 	if (penalty_jiffies <= HZ / 100)
2505 		goto out;
2506 
2507 	/*
2508 	 * If reclaim is making forward progress but we're still over
2509 	 * memory.high, we want to encourage that rather than doing allocator
2510 	 * throttling.
2511 	 */
2512 	if (nr_reclaimed || nr_retries--) {
2513 		in_retry = true;
2514 		goto retry_reclaim;
2515 	}
2516 
2517 	/*
2518 	 * If we exit early, we're guaranteed to die (since
2519 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2520 	 * need to account for any ill-begotten jiffies to pay them off later.
2521 	 */
2522 	psi_memstall_enter(&pflags);
2523 	schedule_timeout_killable(penalty_jiffies);
2524 	psi_memstall_leave(&pflags);
2525 
2526 out:
2527 	css_put(&memcg->css);
2528 }
2529 
2530 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2531 			unsigned int nr_pages)
2532 {
2533 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2534 	int nr_retries = MAX_RECLAIM_RETRIES;
2535 	struct mem_cgroup *mem_over_limit;
2536 	struct page_counter *counter;
2537 	enum oom_status oom_status;
2538 	unsigned long nr_reclaimed;
2539 	bool passed_oom = false;
2540 	bool may_swap = true;
2541 	bool drained = false;
2542 	unsigned long pflags;
2543 
2544 retry:
2545 	if (consume_stock(memcg, nr_pages))
2546 		return 0;
2547 
2548 	if (!do_memsw_account() ||
2549 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2550 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2551 			goto done_restock;
2552 		if (do_memsw_account())
2553 			page_counter_uncharge(&memcg->memsw, batch);
2554 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2555 	} else {
2556 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2557 		may_swap = false;
2558 	}
2559 
2560 	if (batch > nr_pages) {
2561 		batch = nr_pages;
2562 		goto retry;
2563 	}
2564 
2565 	/*
2566 	 * Memcg doesn't have a dedicated reserve for atomic
2567 	 * allocations. But like the global atomic pool, we need to
2568 	 * put the burden of reclaim on regular allocation requests
2569 	 * and let these go through as privileged allocations.
2570 	 */
2571 	if (gfp_mask & __GFP_ATOMIC)
2572 		goto force;
2573 
2574 	/*
2575 	 * Prevent unbounded recursion when reclaim operations need to
2576 	 * allocate memory. This might exceed the limits temporarily,
2577 	 * but we prefer facilitating memory reclaim and getting back
2578 	 * under the limit over triggering OOM kills in these cases.
2579 	 */
2580 	if (unlikely(current->flags & PF_MEMALLOC))
2581 		goto force;
2582 
2583 	if (unlikely(task_in_memcg_oom(current)))
2584 		goto nomem;
2585 
2586 	if (!gfpflags_allow_blocking(gfp_mask))
2587 		goto nomem;
2588 
2589 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2590 
2591 	psi_memstall_enter(&pflags);
2592 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2593 						    gfp_mask, may_swap);
2594 	psi_memstall_leave(&pflags);
2595 
2596 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2597 		goto retry;
2598 
2599 	if (!drained) {
2600 		drain_all_stock(mem_over_limit);
2601 		drained = true;
2602 		goto retry;
2603 	}
2604 
2605 	if (gfp_mask & __GFP_NORETRY)
2606 		goto nomem;
2607 	/*
2608 	 * Even though the limit is exceeded at this point, reclaim
2609 	 * may have been able to free some pages.  Retry the charge
2610 	 * before killing the task.
2611 	 *
2612 	 * Only for regular pages, though: huge pages are rather
2613 	 * unlikely to succeed so close to the limit, and we fall back
2614 	 * to regular pages anyway in case of failure.
2615 	 */
2616 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2617 		goto retry;
2618 	/*
2619 	 * At task move, charge accounts can be doubly counted. So, it's
2620 	 * better to wait until the end of task_move if something is going on.
2621 	 */
2622 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2623 		goto retry;
2624 
2625 	if (nr_retries--)
2626 		goto retry;
2627 
2628 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2629 		goto nomem;
2630 
2631 	/* Avoid endless loop for tasks bypassed by the oom killer */
2632 	if (passed_oom && task_is_dying())
2633 		goto nomem;
2634 
2635 	/*
2636 	 * keep retrying as long as the memcg oom killer is able to make
2637 	 * a forward progress or bypass the charge if the oom killer
2638 	 * couldn't make any progress.
2639 	 */
2640 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2641 		       get_order(nr_pages * PAGE_SIZE));
2642 	if (oom_status == OOM_SUCCESS) {
2643 		passed_oom = true;
2644 		nr_retries = MAX_RECLAIM_RETRIES;
2645 		goto retry;
2646 	}
2647 nomem:
2648 	if (!(gfp_mask & __GFP_NOFAIL))
2649 		return -ENOMEM;
2650 force:
2651 	/*
2652 	 * The allocation either can't fail or will lead to more memory
2653 	 * being freed very soon.  Allow memory usage go over the limit
2654 	 * temporarily by force charging it.
2655 	 */
2656 	page_counter_charge(&memcg->memory, nr_pages);
2657 	if (do_memsw_account())
2658 		page_counter_charge(&memcg->memsw, nr_pages);
2659 
2660 	return 0;
2661 
2662 done_restock:
2663 	if (batch > nr_pages)
2664 		refill_stock(memcg, batch - nr_pages);
2665 
2666 	/*
2667 	 * If the hierarchy is above the normal consumption range, schedule
2668 	 * reclaim on returning to userland.  We can perform reclaim here
2669 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2670 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2671 	 * not recorded as it most likely matches current's and won't
2672 	 * change in the meantime.  As high limit is checked again before
2673 	 * reclaim, the cost of mismatch is negligible.
2674 	 */
2675 	do {
2676 		bool mem_high, swap_high;
2677 
2678 		mem_high = page_counter_read(&memcg->memory) >
2679 			READ_ONCE(memcg->memory.high);
2680 		swap_high = page_counter_read(&memcg->swap) >
2681 			READ_ONCE(memcg->swap.high);
2682 
2683 		/* Don't bother a random interrupted task */
2684 		if (in_interrupt()) {
2685 			if (mem_high) {
2686 				schedule_work(&memcg->high_work);
2687 				break;
2688 			}
2689 			continue;
2690 		}
2691 
2692 		if (mem_high || swap_high) {
2693 			/*
2694 			 * The allocating tasks in this cgroup will need to do
2695 			 * reclaim or be throttled to prevent further growth
2696 			 * of the memory or swap footprints.
2697 			 *
2698 			 * Target some best-effort fairness between the tasks,
2699 			 * and distribute reclaim work and delay penalties
2700 			 * based on how much each task is actually allocating.
2701 			 */
2702 			current->memcg_nr_pages_over_high += batch;
2703 			set_notify_resume(current);
2704 			break;
2705 		}
2706 	} while ((memcg = parent_mem_cgroup(memcg)));
2707 
2708 	return 0;
2709 }
2710 
2711 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2712 			     unsigned int nr_pages)
2713 {
2714 	if (mem_cgroup_is_root(memcg))
2715 		return 0;
2716 
2717 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2718 }
2719 
2720 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2721 {
2722 	if (mem_cgroup_is_root(memcg))
2723 		return;
2724 
2725 	page_counter_uncharge(&memcg->memory, nr_pages);
2726 	if (do_memsw_account())
2727 		page_counter_uncharge(&memcg->memsw, nr_pages);
2728 }
2729 
2730 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2731 {
2732 	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2733 	/*
2734 	 * Any of the following ensures page's memcg stability:
2735 	 *
2736 	 * - the page lock
2737 	 * - LRU isolation
2738 	 * - lock_page_memcg()
2739 	 * - exclusive reference
2740 	 */
2741 	folio->memcg_data = (unsigned long)memcg;
2742 }
2743 
2744 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2745 {
2746 	struct mem_cgroup *memcg;
2747 
2748 	rcu_read_lock();
2749 retry:
2750 	memcg = obj_cgroup_memcg(objcg);
2751 	if (unlikely(!css_tryget(&memcg->css)))
2752 		goto retry;
2753 	rcu_read_unlock();
2754 
2755 	return memcg;
2756 }
2757 
2758 #ifdef CONFIG_MEMCG_KMEM
2759 /*
2760  * The allocated objcg pointers array is not accounted directly.
2761  * Moreover, it should not come from DMA buffer and is not readily
2762  * reclaimable. So those GFP bits should be masked off.
2763  */
2764 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2765 
2766 /*
2767  * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2768  * sequence used in this case to access content from object stock is slow.
2769  * To optimize for user context access, there are now two object stocks for
2770  * task context and interrupt context access respectively.
2771  *
2772  * The task context object stock can be accessed by disabling preemption only
2773  * which is cheap in non-preempt kernel. The interrupt context object stock
2774  * can only be accessed after disabling interrupt. User context code can
2775  * access interrupt object stock, but not vice versa.
2776  */
2777 static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2778 {
2779 	struct memcg_stock_pcp *stock;
2780 
2781 	if (likely(in_task())) {
2782 		*pflags = 0UL;
2783 		preempt_disable();
2784 		stock = this_cpu_ptr(&memcg_stock);
2785 		return &stock->task_obj;
2786 	}
2787 
2788 	local_irq_save(*pflags);
2789 	stock = this_cpu_ptr(&memcg_stock);
2790 	return &stock->irq_obj;
2791 }
2792 
2793 static inline void put_obj_stock(unsigned long flags)
2794 {
2795 	if (likely(in_task()))
2796 		preempt_enable();
2797 	else
2798 		local_irq_restore(flags);
2799 }
2800 
2801 /*
2802  * mod_objcg_mlstate() may be called with irq enabled, so
2803  * mod_memcg_lruvec_state() should be used.
2804  */
2805 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2806 				     struct pglist_data *pgdat,
2807 				     enum node_stat_item idx, int nr)
2808 {
2809 	struct mem_cgroup *memcg;
2810 	struct lruvec *lruvec;
2811 
2812 	rcu_read_lock();
2813 	memcg = obj_cgroup_memcg(objcg);
2814 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2815 	mod_memcg_lruvec_state(lruvec, idx, nr);
2816 	rcu_read_unlock();
2817 }
2818 
2819 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2820 				 gfp_t gfp, bool new_page)
2821 {
2822 	unsigned int objects = objs_per_slab_page(s, page);
2823 	unsigned long memcg_data;
2824 	void *vec;
2825 
2826 	gfp &= ~OBJCGS_CLEAR_MASK;
2827 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2828 			   page_to_nid(page));
2829 	if (!vec)
2830 		return -ENOMEM;
2831 
2832 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2833 	if (new_page) {
2834 		/*
2835 		 * If the slab page is brand new and nobody can yet access
2836 		 * it's memcg_data, no synchronization is required and
2837 		 * memcg_data can be simply assigned.
2838 		 */
2839 		page->memcg_data = memcg_data;
2840 	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2841 		/*
2842 		 * If the slab page is already in use, somebody can allocate
2843 		 * and assign obj_cgroups in parallel. In this case the existing
2844 		 * objcg vector should be reused.
2845 		 */
2846 		kfree(vec);
2847 		return 0;
2848 	}
2849 
2850 	kmemleak_not_leak(vec);
2851 	return 0;
2852 }
2853 
2854 /*
2855  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2856  *
2857  * A passed kernel object can be a slab object or a generic kernel page, so
2858  * different mechanisms for getting the memory cgroup pointer should be used.
2859  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2860  * can not know for sure how the kernel object is implemented.
2861  * mem_cgroup_from_obj() can be safely used in such cases.
2862  *
2863  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2864  * cgroup_mutex, etc.
2865  */
2866 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2867 {
2868 	struct page *page;
2869 
2870 	if (mem_cgroup_disabled())
2871 		return NULL;
2872 
2873 	page = virt_to_head_page(p);
2874 
2875 	/*
2876 	 * Slab objects are accounted individually, not per-page.
2877 	 * Memcg membership data for each individual object is saved in
2878 	 * the page->obj_cgroups.
2879 	 */
2880 	if (page_objcgs_check(page)) {
2881 		struct obj_cgroup *objcg;
2882 		unsigned int off;
2883 
2884 		off = obj_to_index(page->slab_cache, page, p);
2885 		objcg = page_objcgs(page)[off];
2886 		if (objcg)
2887 			return obj_cgroup_memcg(objcg);
2888 
2889 		return NULL;
2890 	}
2891 
2892 	/*
2893 	 * page_memcg_check() is used here, because page_has_obj_cgroups()
2894 	 * check above could fail because the object cgroups vector wasn't set
2895 	 * at that moment, but it can be set concurrently.
2896 	 * page_memcg_check(page) will guarantee that a proper memory
2897 	 * cgroup pointer or NULL will be returned.
2898 	 */
2899 	return page_memcg_check(page);
2900 }
2901 
2902 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2903 {
2904 	struct obj_cgroup *objcg = NULL;
2905 	struct mem_cgroup *memcg;
2906 
2907 	if (memcg_kmem_bypass())
2908 		return NULL;
2909 
2910 	rcu_read_lock();
2911 	if (unlikely(active_memcg()))
2912 		memcg = active_memcg();
2913 	else
2914 		memcg = mem_cgroup_from_task(current);
2915 
2916 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2917 		objcg = rcu_dereference(memcg->objcg);
2918 		if (objcg && obj_cgroup_tryget(objcg))
2919 			break;
2920 		objcg = NULL;
2921 	}
2922 	rcu_read_unlock();
2923 
2924 	return objcg;
2925 }
2926 
2927 static int memcg_alloc_cache_id(void)
2928 {
2929 	int id, size;
2930 	int err;
2931 
2932 	id = ida_simple_get(&memcg_cache_ida,
2933 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2934 	if (id < 0)
2935 		return id;
2936 
2937 	if (id < memcg_nr_cache_ids)
2938 		return id;
2939 
2940 	/*
2941 	 * There's no space for the new id in memcg_caches arrays,
2942 	 * so we have to grow them.
2943 	 */
2944 	down_write(&memcg_cache_ids_sem);
2945 
2946 	size = 2 * (id + 1);
2947 	if (size < MEMCG_CACHES_MIN_SIZE)
2948 		size = MEMCG_CACHES_MIN_SIZE;
2949 	else if (size > MEMCG_CACHES_MAX_SIZE)
2950 		size = MEMCG_CACHES_MAX_SIZE;
2951 
2952 	err = memcg_update_all_list_lrus(size);
2953 	if (!err)
2954 		memcg_nr_cache_ids = size;
2955 
2956 	up_write(&memcg_cache_ids_sem);
2957 
2958 	if (err) {
2959 		ida_simple_remove(&memcg_cache_ida, id);
2960 		return err;
2961 	}
2962 	return id;
2963 }
2964 
2965 static void memcg_free_cache_id(int id)
2966 {
2967 	ida_simple_remove(&memcg_cache_ida, id);
2968 }
2969 
2970 /*
2971  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2972  * @objcg: object cgroup to uncharge
2973  * @nr_pages: number of pages to uncharge
2974  */
2975 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2976 				      unsigned int nr_pages)
2977 {
2978 	struct mem_cgroup *memcg;
2979 
2980 	memcg = get_mem_cgroup_from_objcg(objcg);
2981 
2982 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2983 		page_counter_uncharge(&memcg->kmem, nr_pages);
2984 	refill_stock(memcg, nr_pages);
2985 
2986 	css_put(&memcg->css);
2987 }
2988 
2989 /*
2990  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2991  * @objcg: object cgroup to charge
2992  * @gfp: reclaim mode
2993  * @nr_pages: number of pages to charge
2994  *
2995  * Returns 0 on success, an error code on failure.
2996  */
2997 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2998 				   unsigned int nr_pages)
2999 {
3000 	struct mem_cgroup *memcg;
3001 	int ret;
3002 
3003 	memcg = get_mem_cgroup_from_objcg(objcg);
3004 
3005 	ret = try_charge_memcg(memcg, gfp, nr_pages);
3006 	if (ret)
3007 		goto out;
3008 
3009 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3010 		page_counter_charge(&memcg->kmem, nr_pages);
3011 out:
3012 	css_put(&memcg->css);
3013 
3014 	return ret;
3015 }
3016 
3017 /**
3018  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3019  * @page: page to charge
3020  * @gfp: reclaim mode
3021  * @order: allocation order
3022  *
3023  * Returns 0 on success, an error code on failure.
3024  */
3025 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3026 {
3027 	struct obj_cgroup *objcg;
3028 	int ret = 0;
3029 
3030 	objcg = get_obj_cgroup_from_current();
3031 	if (objcg) {
3032 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3033 		if (!ret) {
3034 			page->memcg_data = (unsigned long)objcg |
3035 				MEMCG_DATA_KMEM;
3036 			return 0;
3037 		}
3038 		obj_cgroup_put(objcg);
3039 	}
3040 	return ret;
3041 }
3042 
3043 /**
3044  * __memcg_kmem_uncharge_page: uncharge a kmem page
3045  * @page: page to uncharge
3046  * @order: allocation order
3047  */
3048 void __memcg_kmem_uncharge_page(struct page *page, int order)
3049 {
3050 	struct folio *folio = page_folio(page);
3051 	struct obj_cgroup *objcg;
3052 	unsigned int nr_pages = 1 << order;
3053 
3054 	if (!folio_memcg_kmem(folio))
3055 		return;
3056 
3057 	objcg = __folio_objcg(folio);
3058 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3059 	folio->memcg_data = 0;
3060 	obj_cgroup_put(objcg);
3061 }
3062 
3063 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3064 		     enum node_stat_item idx, int nr)
3065 {
3066 	unsigned long flags;
3067 	struct obj_stock *stock = get_obj_stock(&flags);
3068 	int *bytes;
3069 
3070 	/*
3071 	 * Save vmstat data in stock and skip vmstat array update unless
3072 	 * accumulating over a page of vmstat data or when pgdat or idx
3073 	 * changes.
3074 	 */
3075 	if (stock->cached_objcg != objcg) {
3076 		drain_obj_stock(stock);
3077 		obj_cgroup_get(objcg);
3078 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3079 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3080 		stock->cached_objcg = objcg;
3081 		stock->cached_pgdat = pgdat;
3082 	} else if (stock->cached_pgdat != pgdat) {
3083 		/* Flush the existing cached vmstat data */
3084 		struct pglist_data *oldpg = stock->cached_pgdat;
3085 
3086 		if (stock->nr_slab_reclaimable_b) {
3087 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3088 					  stock->nr_slab_reclaimable_b);
3089 			stock->nr_slab_reclaimable_b = 0;
3090 		}
3091 		if (stock->nr_slab_unreclaimable_b) {
3092 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3093 					  stock->nr_slab_unreclaimable_b);
3094 			stock->nr_slab_unreclaimable_b = 0;
3095 		}
3096 		stock->cached_pgdat = pgdat;
3097 	}
3098 
3099 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3100 					       : &stock->nr_slab_unreclaimable_b;
3101 	/*
3102 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3103 	 * cached locally at least once before pushing it out.
3104 	 */
3105 	if (!*bytes) {
3106 		*bytes = nr;
3107 		nr = 0;
3108 	} else {
3109 		*bytes += nr;
3110 		if (abs(*bytes) > PAGE_SIZE) {
3111 			nr = *bytes;
3112 			*bytes = 0;
3113 		} else {
3114 			nr = 0;
3115 		}
3116 	}
3117 	if (nr)
3118 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3119 
3120 	put_obj_stock(flags);
3121 }
3122 
3123 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3124 {
3125 	unsigned long flags;
3126 	struct obj_stock *stock = get_obj_stock(&flags);
3127 	bool ret = false;
3128 
3129 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3130 		stock->nr_bytes -= nr_bytes;
3131 		ret = true;
3132 	}
3133 
3134 	put_obj_stock(flags);
3135 
3136 	return ret;
3137 }
3138 
3139 static void drain_obj_stock(struct obj_stock *stock)
3140 {
3141 	struct obj_cgroup *old = stock->cached_objcg;
3142 
3143 	if (!old)
3144 		return;
3145 
3146 	if (stock->nr_bytes) {
3147 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3148 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3149 
3150 		if (nr_pages)
3151 			obj_cgroup_uncharge_pages(old, nr_pages);
3152 
3153 		/*
3154 		 * The leftover is flushed to the centralized per-memcg value.
3155 		 * On the next attempt to refill obj stock it will be moved
3156 		 * to a per-cpu stock (probably, on an other CPU), see
3157 		 * refill_obj_stock().
3158 		 *
3159 		 * How often it's flushed is a trade-off between the memory
3160 		 * limit enforcement accuracy and potential CPU contention,
3161 		 * so it might be changed in the future.
3162 		 */
3163 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3164 		stock->nr_bytes = 0;
3165 	}
3166 
3167 	/*
3168 	 * Flush the vmstat data in current stock
3169 	 */
3170 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3171 		if (stock->nr_slab_reclaimable_b) {
3172 			mod_objcg_mlstate(old, stock->cached_pgdat,
3173 					  NR_SLAB_RECLAIMABLE_B,
3174 					  stock->nr_slab_reclaimable_b);
3175 			stock->nr_slab_reclaimable_b = 0;
3176 		}
3177 		if (stock->nr_slab_unreclaimable_b) {
3178 			mod_objcg_mlstate(old, stock->cached_pgdat,
3179 					  NR_SLAB_UNRECLAIMABLE_B,
3180 					  stock->nr_slab_unreclaimable_b);
3181 			stock->nr_slab_unreclaimable_b = 0;
3182 		}
3183 		stock->cached_pgdat = NULL;
3184 	}
3185 
3186 	obj_cgroup_put(old);
3187 	stock->cached_objcg = NULL;
3188 }
3189 
3190 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3191 				     struct mem_cgroup *root_memcg)
3192 {
3193 	struct mem_cgroup *memcg;
3194 
3195 	if (in_task() && stock->task_obj.cached_objcg) {
3196 		memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3197 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3198 			return true;
3199 	}
3200 	if (stock->irq_obj.cached_objcg) {
3201 		memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3202 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3203 			return true;
3204 	}
3205 
3206 	return false;
3207 }
3208 
3209 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3210 			     bool allow_uncharge)
3211 {
3212 	unsigned long flags;
3213 	struct obj_stock *stock = get_obj_stock(&flags);
3214 	unsigned int nr_pages = 0;
3215 
3216 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3217 		drain_obj_stock(stock);
3218 		obj_cgroup_get(objcg);
3219 		stock->cached_objcg = objcg;
3220 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3221 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3222 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3223 	}
3224 	stock->nr_bytes += nr_bytes;
3225 
3226 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3227 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3228 		stock->nr_bytes &= (PAGE_SIZE - 1);
3229 	}
3230 
3231 	put_obj_stock(flags);
3232 
3233 	if (nr_pages)
3234 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3235 }
3236 
3237 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3238 {
3239 	unsigned int nr_pages, nr_bytes;
3240 	int ret;
3241 
3242 	if (consume_obj_stock(objcg, size))
3243 		return 0;
3244 
3245 	/*
3246 	 * In theory, objcg->nr_charged_bytes can have enough
3247 	 * pre-charged bytes to satisfy the allocation. However,
3248 	 * flushing objcg->nr_charged_bytes requires two atomic
3249 	 * operations, and objcg->nr_charged_bytes can't be big.
3250 	 * The shared objcg->nr_charged_bytes can also become a
3251 	 * performance bottleneck if all tasks of the same memcg are
3252 	 * trying to update it. So it's better to ignore it and try
3253 	 * grab some new pages. The stock's nr_bytes will be flushed to
3254 	 * objcg->nr_charged_bytes later on when objcg changes.
3255 	 *
3256 	 * The stock's nr_bytes may contain enough pre-charged bytes
3257 	 * to allow one less page from being charged, but we can't rely
3258 	 * on the pre-charged bytes not being changed outside of
3259 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3260 	 * pre-charged bytes as well when charging pages. To avoid a
3261 	 * page uncharge right after a page charge, we set the
3262 	 * allow_uncharge flag to false when calling refill_obj_stock()
3263 	 * to temporarily allow the pre-charged bytes to exceed the page
3264 	 * size limit. The maximum reachable value of the pre-charged
3265 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3266 	 * race.
3267 	 */
3268 	nr_pages = size >> PAGE_SHIFT;
3269 	nr_bytes = size & (PAGE_SIZE - 1);
3270 
3271 	if (nr_bytes)
3272 		nr_pages += 1;
3273 
3274 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3275 	if (!ret && nr_bytes)
3276 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3277 
3278 	return ret;
3279 }
3280 
3281 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3282 {
3283 	refill_obj_stock(objcg, size, true);
3284 }
3285 
3286 #endif /* CONFIG_MEMCG_KMEM */
3287 
3288 /*
3289  * Because page_memcg(head) is not set on tails, set it now.
3290  */
3291 void split_page_memcg(struct page *head, unsigned int nr)
3292 {
3293 	struct folio *folio = page_folio(head);
3294 	struct mem_cgroup *memcg = folio_memcg(folio);
3295 	int i;
3296 
3297 	if (mem_cgroup_disabled() || !memcg)
3298 		return;
3299 
3300 	for (i = 1; i < nr; i++)
3301 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3302 
3303 	if (folio_memcg_kmem(folio))
3304 		obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3305 	else
3306 		css_get_many(&memcg->css, nr - 1);
3307 }
3308 
3309 #ifdef CONFIG_MEMCG_SWAP
3310 /**
3311  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3312  * @entry: swap entry to be moved
3313  * @from:  mem_cgroup which the entry is moved from
3314  * @to:  mem_cgroup which the entry is moved to
3315  *
3316  * It succeeds only when the swap_cgroup's record for this entry is the same
3317  * as the mem_cgroup's id of @from.
3318  *
3319  * Returns 0 on success, -EINVAL on failure.
3320  *
3321  * The caller must have charged to @to, IOW, called page_counter_charge() about
3322  * both res and memsw, and called css_get().
3323  */
3324 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3325 				struct mem_cgroup *from, struct mem_cgroup *to)
3326 {
3327 	unsigned short old_id, new_id;
3328 
3329 	old_id = mem_cgroup_id(from);
3330 	new_id = mem_cgroup_id(to);
3331 
3332 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3333 		mod_memcg_state(from, MEMCG_SWAP, -1);
3334 		mod_memcg_state(to, MEMCG_SWAP, 1);
3335 		return 0;
3336 	}
3337 	return -EINVAL;
3338 }
3339 #else
3340 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3341 				struct mem_cgroup *from, struct mem_cgroup *to)
3342 {
3343 	return -EINVAL;
3344 }
3345 #endif
3346 
3347 static DEFINE_MUTEX(memcg_max_mutex);
3348 
3349 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3350 				 unsigned long max, bool memsw)
3351 {
3352 	bool enlarge = false;
3353 	bool drained = false;
3354 	int ret;
3355 	bool limits_invariant;
3356 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3357 
3358 	do {
3359 		if (signal_pending(current)) {
3360 			ret = -EINTR;
3361 			break;
3362 		}
3363 
3364 		mutex_lock(&memcg_max_mutex);
3365 		/*
3366 		 * Make sure that the new limit (memsw or memory limit) doesn't
3367 		 * break our basic invariant rule memory.max <= memsw.max.
3368 		 */
3369 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3370 					   max <= memcg->memsw.max;
3371 		if (!limits_invariant) {
3372 			mutex_unlock(&memcg_max_mutex);
3373 			ret = -EINVAL;
3374 			break;
3375 		}
3376 		if (max > counter->max)
3377 			enlarge = true;
3378 		ret = page_counter_set_max(counter, max);
3379 		mutex_unlock(&memcg_max_mutex);
3380 
3381 		if (!ret)
3382 			break;
3383 
3384 		if (!drained) {
3385 			drain_all_stock(memcg);
3386 			drained = true;
3387 			continue;
3388 		}
3389 
3390 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3391 					GFP_KERNEL, !memsw)) {
3392 			ret = -EBUSY;
3393 			break;
3394 		}
3395 	} while (true);
3396 
3397 	if (!ret && enlarge)
3398 		memcg_oom_recover(memcg);
3399 
3400 	return ret;
3401 }
3402 
3403 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3404 					    gfp_t gfp_mask,
3405 					    unsigned long *total_scanned)
3406 {
3407 	unsigned long nr_reclaimed = 0;
3408 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3409 	unsigned long reclaimed;
3410 	int loop = 0;
3411 	struct mem_cgroup_tree_per_node *mctz;
3412 	unsigned long excess;
3413 	unsigned long nr_scanned;
3414 
3415 	if (order > 0)
3416 		return 0;
3417 
3418 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3419 
3420 	/*
3421 	 * Do not even bother to check the largest node if the root
3422 	 * is empty. Do it lockless to prevent lock bouncing. Races
3423 	 * are acceptable as soft limit is best effort anyway.
3424 	 */
3425 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3426 		return 0;
3427 
3428 	/*
3429 	 * This loop can run a while, specially if mem_cgroup's continuously
3430 	 * keep exceeding their soft limit and putting the system under
3431 	 * pressure
3432 	 */
3433 	do {
3434 		if (next_mz)
3435 			mz = next_mz;
3436 		else
3437 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3438 		if (!mz)
3439 			break;
3440 
3441 		nr_scanned = 0;
3442 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3443 						    gfp_mask, &nr_scanned);
3444 		nr_reclaimed += reclaimed;
3445 		*total_scanned += nr_scanned;
3446 		spin_lock_irq(&mctz->lock);
3447 		__mem_cgroup_remove_exceeded(mz, mctz);
3448 
3449 		/*
3450 		 * If we failed to reclaim anything from this memory cgroup
3451 		 * it is time to move on to the next cgroup
3452 		 */
3453 		next_mz = NULL;
3454 		if (!reclaimed)
3455 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3456 
3457 		excess = soft_limit_excess(mz->memcg);
3458 		/*
3459 		 * One school of thought says that we should not add
3460 		 * back the node to the tree if reclaim returns 0.
3461 		 * But our reclaim could return 0, simply because due
3462 		 * to priority we are exposing a smaller subset of
3463 		 * memory to reclaim from. Consider this as a longer
3464 		 * term TODO.
3465 		 */
3466 		/* If excess == 0, no tree ops */
3467 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3468 		spin_unlock_irq(&mctz->lock);
3469 		css_put(&mz->memcg->css);
3470 		loop++;
3471 		/*
3472 		 * Could not reclaim anything and there are no more
3473 		 * mem cgroups to try or we seem to be looping without
3474 		 * reclaiming anything.
3475 		 */
3476 		if (!nr_reclaimed &&
3477 			(next_mz == NULL ||
3478 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3479 			break;
3480 	} while (!nr_reclaimed);
3481 	if (next_mz)
3482 		css_put(&next_mz->memcg->css);
3483 	return nr_reclaimed;
3484 }
3485 
3486 /*
3487  * Reclaims as many pages from the given memcg as possible.
3488  *
3489  * Caller is responsible for holding css reference for memcg.
3490  */
3491 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3492 {
3493 	int nr_retries = MAX_RECLAIM_RETRIES;
3494 
3495 	/* we call try-to-free pages for make this cgroup empty */
3496 	lru_add_drain_all();
3497 
3498 	drain_all_stock(memcg);
3499 
3500 	/* try to free all pages in this cgroup */
3501 	while (nr_retries && page_counter_read(&memcg->memory)) {
3502 		if (signal_pending(current))
3503 			return -EINTR;
3504 
3505 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true))
3506 			nr_retries--;
3507 	}
3508 
3509 	return 0;
3510 }
3511 
3512 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3513 					    char *buf, size_t nbytes,
3514 					    loff_t off)
3515 {
3516 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3517 
3518 	if (mem_cgroup_is_root(memcg))
3519 		return -EINVAL;
3520 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3521 }
3522 
3523 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3524 				     struct cftype *cft)
3525 {
3526 	return 1;
3527 }
3528 
3529 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3530 				      struct cftype *cft, u64 val)
3531 {
3532 	if (val == 1)
3533 		return 0;
3534 
3535 	pr_warn_once("Non-hierarchical mode is deprecated. "
3536 		     "Please report your usecase to linux-mm@kvack.org if you "
3537 		     "depend on this functionality.\n");
3538 
3539 	return -EINVAL;
3540 }
3541 
3542 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3543 {
3544 	unsigned long val;
3545 
3546 	if (mem_cgroup_is_root(memcg)) {
3547 		mem_cgroup_flush_stats();
3548 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3549 			memcg_page_state(memcg, NR_ANON_MAPPED);
3550 		if (swap)
3551 			val += memcg_page_state(memcg, MEMCG_SWAP);
3552 	} else {
3553 		if (!swap)
3554 			val = page_counter_read(&memcg->memory);
3555 		else
3556 			val = page_counter_read(&memcg->memsw);
3557 	}
3558 	return val;
3559 }
3560 
3561 enum {
3562 	RES_USAGE,
3563 	RES_LIMIT,
3564 	RES_MAX_USAGE,
3565 	RES_FAILCNT,
3566 	RES_SOFT_LIMIT,
3567 };
3568 
3569 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3570 			       struct cftype *cft)
3571 {
3572 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3573 	struct page_counter *counter;
3574 
3575 	switch (MEMFILE_TYPE(cft->private)) {
3576 	case _MEM:
3577 		counter = &memcg->memory;
3578 		break;
3579 	case _MEMSWAP:
3580 		counter = &memcg->memsw;
3581 		break;
3582 	case _KMEM:
3583 		counter = &memcg->kmem;
3584 		break;
3585 	case _TCP:
3586 		counter = &memcg->tcpmem;
3587 		break;
3588 	default:
3589 		BUG();
3590 	}
3591 
3592 	switch (MEMFILE_ATTR(cft->private)) {
3593 	case RES_USAGE:
3594 		if (counter == &memcg->memory)
3595 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3596 		if (counter == &memcg->memsw)
3597 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3598 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3599 	case RES_LIMIT:
3600 		return (u64)counter->max * PAGE_SIZE;
3601 	case RES_MAX_USAGE:
3602 		return (u64)counter->watermark * PAGE_SIZE;
3603 	case RES_FAILCNT:
3604 		return counter->failcnt;
3605 	case RES_SOFT_LIMIT:
3606 		return (u64)memcg->soft_limit * PAGE_SIZE;
3607 	default:
3608 		BUG();
3609 	}
3610 }
3611 
3612 #ifdef CONFIG_MEMCG_KMEM
3613 static int memcg_online_kmem(struct mem_cgroup *memcg)
3614 {
3615 	struct obj_cgroup *objcg;
3616 	int memcg_id;
3617 
3618 	if (cgroup_memory_nokmem)
3619 		return 0;
3620 
3621 	BUG_ON(memcg->kmemcg_id >= 0);
3622 
3623 	memcg_id = memcg_alloc_cache_id();
3624 	if (memcg_id < 0)
3625 		return memcg_id;
3626 
3627 	objcg = obj_cgroup_alloc();
3628 	if (!objcg) {
3629 		memcg_free_cache_id(memcg_id);
3630 		return -ENOMEM;
3631 	}
3632 	objcg->memcg = memcg;
3633 	rcu_assign_pointer(memcg->objcg, objcg);
3634 
3635 	static_branch_enable(&memcg_kmem_enabled_key);
3636 
3637 	memcg->kmemcg_id = memcg_id;
3638 
3639 	return 0;
3640 }
3641 
3642 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3643 {
3644 	struct mem_cgroup *parent;
3645 	int kmemcg_id;
3646 
3647 	if (memcg->kmemcg_id == -1)
3648 		return;
3649 
3650 	parent = parent_mem_cgroup(memcg);
3651 	if (!parent)
3652 		parent = root_mem_cgroup;
3653 
3654 	memcg_reparent_objcgs(memcg, parent);
3655 
3656 	kmemcg_id = memcg->kmemcg_id;
3657 	BUG_ON(kmemcg_id < 0);
3658 
3659 	/*
3660 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3661 	 * corresponding to this cgroup are guaranteed to remain empty.
3662 	 * The ordering is imposed by list_lru_node->lock taken by
3663 	 * memcg_drain_all_list_lrus().
3664 	 */
3665 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3666 
3667 	memcg_free_cache_id(kmemcg_id);
3668 	memcg->kmemcg_id = -1;
3669 }
3670 #else
3671 static int memcg_online_kmem(struct mem_cgroup *memcg)
3672 {
3673 	return 0;
3674 }
3675 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3676 {
3677 }
3678 #endif /* CONFIG_MEMCG_KMEM */
3679 
3680 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3681 {
3682 	int ret;
3683 
3684 	mutex_lock(&memcg_max_mutex);
3685 
3686 	ret = page_counter_set_max(&memcg->tcpmem, max);
3687 	if (ret)
3688 		goto out;
3689 
3690 	if (!memcg->tcpmem_active) {
3691 		/*
3692 		 * The active flag needs to be written after the static_key
3693 		 * update. This is what guarantees that the socket activation
3694 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3695 		 * for details, and note that we don't mark any socket as
3696 		 * belonging to this memcg until that flag is up.
3697 		 *
3698 		 * We need to do this, because static_keys will span multiple
3699 		 * sites, but we can't control their order. If we mark a socket
3700 		 * as accounted, but the accounting functions are not patched in
3701 		 * yet, we'll lose accounting.
3702 		 *
3703 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3704 		 * because when this value change, the code to process it is not
3705 		 * patched in yet.
3706 		 */
3707 		static_branch_inc(&memcg_sockets_enabled_key);
3708 		memcg->tcpmem_active = true;
3709 	}
3710 out:
3711 	mutex_unlock(&memcg_max_mutex);
3712 	return ret;
3713 }
3714 
3715 /*
3716  * The user of this function is...
3717  * RES_LIMIT.
3718  */
3719 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3720 				char *buf, size_t nbytes, loff_t off)
3721 {
3722 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3723 	unsigned long nr_pages;
3724 	int ret;
3725 
3726 	buf = strstrip(buf);
3727 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3728 	if (ret)
3729 		return ret;
3730 
3731 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3732 	case RES_LIMIT:
3733 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3734 			ret = -EINVAL;
3735 			break;
3736 		}
3737 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3738 		case _MEM:
3739 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3740 			break;
3741 		case _MEMSWAP:
3742 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3743 			break;
3744 		case _KMEM:
3745 			/* kmem.limit_in_bytes is deprecated. */
3746 			ret = -EOPNOTSUPP;
3747 			break;
3748 		case _TCP:
3749 			ret = memcg_update_tcp_max(memcg, nr_pages);
3750 			break;
3751 		}
3752 		break;
3753 	case RES_SOFT_LIMIT:
3754 		memcg->soft_limit = nr_pages;
3755 		ret = 0;
3756 		break;
3757 	}
3758 	return ret ?: nbytes;
3759 }
3760 
3761 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3762 				size_t nbytes, loff_t off)
3763 {
3764 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3765 	struct page_counter *counter;
3766 
3767 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3768 	case _MEM:
3769 		counter = &memcg->memory;
3770 		break;
3771 	case _MEMSWAP:
3772 		counter = &memcg->memsw;
3773 		break;
3774 	case _KMEM:
3775 		counter = &memcg->kmem;
3776 		break;
3777 	case _TCP:
3778 		counter = &memcg->tcpmem;
3779 		break;
3780 	default:
3781 		BUG();
3782 	}
3783 
3784 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3785 	case RES_MAX_USAGE:
3786 		page_counter_reset_watermark(counter);
3787 		break;
3788 	case RES_FAILCNT:
3789 		counter->failcnt = 0;
3790 		break;
3791 	default:
3792 		BUG();
3793 	}
3794 
3795 	return nbytes;
3796 }
3797 
3798 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3799 					struct cftype *cft)
3800 {
3801 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3802 }
3803 
3804 #ifdef CONFIG_MMU
3805 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3806 					struct cftype *cft, u64 val)
3807 {
3808 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3809 
3810 	if (val & ~MOVE_MASK)
3811 		return -EINVAL;
3812 
3813 	/*
3814 	 * No kind of locking is needed in here, because ->can_attach() will
3815 	 * check this value once in the beginning of the process, and then carry
3816 	 * on with stale data. This means that changes to this value will only
3817 	 * affect task migrations starting after the change.
3818 	 */
3819 	memcg->move_charge_at_immigrate = val;
3820 	return 0;
3821 }
3822 #else
3823 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3824 					struct cftype *cft, u64 val)
3825 {
3826 	return -ENOSYS;
3827 }
3828 #endif
3829 
3830 #ifdef CONFIG_NUMA
3831 
3832 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3833 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3834 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3835 
3836 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3837 				int nid, unsigned int lru_mask, bool tree)
3838 {
3839 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3840 	unsigned long nr = 0;
3841 	enum lru_list lru;
3842 
3843 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3844 
3845 	for_each_lru(lru) {
3846 		if (!(BIT(lru) & lru_mask))
3847 			continue;
3848 		if (tree)
3849 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3850 		else
3851 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3852 	}
3853 	return nr;
3854 }
3855 
3856 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3857 					     unsigned int lru_mask,
3858 					     bool tree)
3859 {
3860 	unsigned long nr = 0;
3861 	enum lru_list lru;
3862 
3863 	for_each_lru(lru) {
3864 		if (!(BIT(lru) & lru_mask))
3865 			continue;
3866 		if (tree)
3867 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3868 		else
3869 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3870 	}
3871 	return nr;
3872 }
3873 
3874 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3875 {
3876 	struct numa_stat {
3877 		const char *name;
3878 		unsigned int lru_mask;
3879 	};
3880 
3881 	static const struct numa_stat stats[] = {
3882 		{ "total", LRU_ALL },
3883 		{ "file", LRU_ALL_FILE },
3884 		{ "anon", LRU_ALL_ANON },
3885 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3886 	};
3887 	const struct numa_stat *stat;
3888 	int nid;
3889 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3890 
3891 	mem_cgroup_flush_stats();
3892 
3893 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3894 		seq_printf(m, "%s=%lu", stat->name,
3895 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3896 						   false));
3897 		for_each_node_state(nid, N_MEMORY)
3898 			seq_printf(m, " N%d=%lu", nid,
3899 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3900 							stat->lru_mask, false));
3901 		seq_putc(m, '\n');
3902 	}
3903 
3904 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3905 
3906 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3907 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3908 						   true));
3909 		for_each_node_state(nid, N_MEMORY)
3910 			seq_printf(m, " N%d=%lu", nid,
3911 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3912 							stat->lru_mask, true));
3913 		seq_putc(m, '\n');
3914 	}
3915 
3916 	return 0;
3917 }
3918 #endif /* CONFIG_NUMA */
3919 
3920 static const unsigned int memcg1_stats[] = {
3921 	NR_FILE_PAGES,
3922 	NR_ANON_MAPPED,
3923 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3924 	NR_ANON_THPS,
3925 #endif
3926 	NR_SHMEM,
3927 	NR_FILE_MAPPED,
3928 	NR_FILE_DIRTY,
3929 	NR_WRITEBACK,
3930 	MEMCG_SWAP,
3931 };
3932 
3933 static const char *const memcg1_stat_names[] = {
3934 	"cache",
3935 	"rss",
3936 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3937 	"rss_huge",
3938 #endif
3939 	"shmem",
3940 	"mapped_file",
3941 	"dirty",
3942 	"writeback",
3943 	"swap",
3944 };
3945 
3946 /* Universal VM events cgroup1 shows, original sort order */
3947 static const unsigned int memcg1_events[] = {
3948 	PGPGIN,
3949 	PGPGOUT,
3950 	PGFAULT,
3951 	PGMAJFAULT,
3952 };
3953 
3954 static int memcg_stat_show(struct seq_file *m, void *v)
3955 {
3956 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3957 	unsigned long memory, memsw;
3958 	struct mem_cgroup *mi;
3959 	unsigned int i;
3960 
3961 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3962 
3963 	mem_cgroup_flush_stats();
3964 
3965 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3966 		unsigned long nr;
3967 
3968 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3969 			continue;
3970 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3971 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3972 	}
3973 
3974 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3975 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3976 			   memcg_events_local(memcg, memcg1_events[i]));
3977 
3978 	for (i = 0; i < NR_LRU_LISTS; i++)
3979 		seq_printf(m, "%s %lu\n", lru_list_name(i),
3980 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3981 			   PAGE_SIZE);
3982 
3983 	/* Hierarchical information */
3984 	memory = memsw = PAGE_COUNTER_MAX;
3985 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3986 		memory = min(memory, READ_ONCE(mi->memory.max));
3987 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
3988 	}
3989 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3990 		   (u64)memory * PAGE_SIZE);
3991 	if (do_memsw_account())
3992 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3993 			   (u64)memsw * PAGE_SIZE);
3994 
3995 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3996 		unsigned long nr;
3997 
3998 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3999 			continue;
4000 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4001 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4002 						(u64)nr * PAGE_SIZE);
4003 	}
4004 
4005 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4006 		seq_printf(m, "total_%s %llu\n",
4007 			   vm_event_name(memcg1_events[i]),
4008 			   (u64)memcg_events(memcg, memcg1_events[i]));
4009 
4010 	for (i = 0; i < NR_LRU_LISTS; i++)
4011 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4012 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4013 			   PAGE_SIZE);
4014 
4015 #ifdef CONFIG_DEBUG_VM
4016 	{
4017 		pg_data_t *pgdat;
4018 		struct mem_cgroup_per_node *mz;
4019 		unsigned long anon_cost = 0;
4020 		unsigned long file_cost = 0;
4021 
4022 		for_each_online_pgdat(pgdat) {
4023 			mz = memcg->nodeinfo[pgdat->node_id];
4024 
4025 			anon_cost += mz->lruvec.anon_cost;
4026 			file_cost += mz->lruvec.file_cost;
4027 		}
4028 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4029 		seq_printf(m, "file_cost %lu\n", file_cost);
4030 	}
4031 #endif
4032 
4033 	return 0;
4034 }
4035 
4036 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4037 				      struct cftype *cft)
4038 {
4039 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4040 
4041 	return mem_cgroup_swappiness(memcg);
4042 }
4043 
4044 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4045 				       struct cftype *cft, u64 val)
4046 {
4047 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4048 
4049 	if (val > 200)
4050 		return -EINVAL;
4051 
4052 	if (!mem_cgroup_is_root(memcg))
4053 		memcg->swappiness = val;
4054 	else
4055 		vm_swappiness = val;
4056 
4057 	return 0;
4058 }
4059 
4060 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4061 {
4062 	struct mem_cgroup_threshold_ary *t;
4063 	unsigned long usage;
4064 	int i;
4065 
4066 	rcu_read_lock();
4067 	if (!swap)
4068 		t = rcu_dereference(memcg->thresholds.primary);
4069 	else
4070 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4071 
4072 	if (!t)
4073 		goto unlock;
4074 
4075 	usage = mem_cgroup_usage(memcg, swap);
4076 
4077 	/*
4078 	 * current_threshold points to threshold just below or equal to usage.
4079 	 * If it's not true, a threshold was crossed after last
4080 	 * call of __mem_cgroup_threshold().
4081 	 */
4082 	i = t->current_threshold;
4083 
4084 	/*
4085 	 * Iterate backward over array of thresholds starting from
4086 	 * current_threshold and check if a threshold is crossed.
4087 	 * If none of thresholds below usage is crossed, we read
4088 	 * only one element of the array here.
4089 	 */
4090 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4091 		eventfd_signal(t->entries[i].eventfd, 1);
4092 
4093 	/* i = current_threshold + 1 */
4094 	i++;
4095 
4096 	/*
4097 	 * Iterate forward over array of thresholds starting from
4098 	 * current_threshold+1 and check if a threshold is crossed.
4099 	 * If none of thresholds above usage is crossed, we read
4100 	 * only one element of the array here.
4101 	 */
4102 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4103 		eventfd_signal(t->entries[i].eventfd, 1);
4104 
4105 	/* Update current_threshold */
4106 	t->current_threshold = i - 1;
4107 unlock:
4108 	rcu_read_unlock();
4109 }
4110 
4111 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4112 {
4113 	while (memcg) {
4114 		__mem_cgroup_threshold(memcg, false);
4115 		if (do_memsw_account())
4116 			__mem_cgroup_threshold(memcg, true);
4117 
4118 		memcg = parent_mem_cgroup(memcg);
4119 	}
4120 }
4121 
4122 static int compare_thresholds(const void *a, const void *b)
4123 {
4124 	const struct mem_cgroup_threshold *_a = a;
4125 	const struct mem_cgroup_threshold *_b = b;
4126 
4127 	if (_a->threshold > _b->threshold)
4128 		return 1;
4129 
4130 	if (_a->threshold < _b->threshold)
4131 		return -1;
4132 
4133 	return 0;
4134 }
4135 
4136 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4137 {
4138 	struct mem_cgroup_eventfd_list *ev;
4139 
4140 	spin_lock(&memcg_oom_lock);
4141 
4142 	list_for_each_entry(ev, &memcg->oom_notify, list)
4143 		eventfd_signal(ev->eventfd, 1);
4144 
4145 	spin_unlock(&memcg_oom_lock);
4146 	return 0;
4147 }
4148 
4149 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4150 {
4151 	struct mem_cgroup *iter;
4152 
4153 	for_each_mem_cgroup_tree(iter, memcg)
4154 		mem_cgroup_oom_notify_cb(iter);
4155 }
4156 
4157 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4158 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4159 {
4160 	struct mem_cgroup_thresholds *thresholds;
4161 	struct mem_cgroup_threshold_ary *new;
4162 	unsigned long threshold;
4163 	unsigned long usage;
4164 	int i, size, ret;
4165 
4166 	ret = page_counter_memparse(args, "-1", &threshold);
4167 	if (ret)
4168 		return ret;
4169 
4170 	mutex_lock(&memcg->thresholds_lock);
4171 
4172 	if (type == _MEM) {
4173 		thresholds = &memcg->thresholds;
4174 		usage = mem_cgroup_usage(memcg, false);
4175 	} else if (type == _MEMSWAP) {
4176 		thresholds = &memcg->memsw_thresholds;
4177 		usage = mem_cgroup_usage(memcg, true);
4178 	} else
4179 		BUG();
4180 
4181 	/* Check if a threshold crossed before adding a new one */
4182 	if (thresholds->primary)
4183 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4184 
4185 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4186 
4187 	/* Allocate memory for new array of thresholds */
4188 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4189 	if (!new) {
4190 		ret = -ENOMEM;
4191 		goto unlock;
4192 	}
4193 	new->size = size;
4194 
4195 	/* Copy thresholds (if any) to new array */
4196 	if (thresholds->primary)
4197 		memcpy(new->entries, thresholds->primary->entries,
4198 		       flex_array_size(new, entries, size - 1));
4199 
4200 	/* Add new threshold */
4201 	new->entries[size - 1].eventfd = eventfd;
4202 	new->entries[size - 1].threshold = threshold;
4203 
4204 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4205 	sort(new->entries, size, sizeof(*new->entries),
4206 			compare_thresholds, NULL);
4207 
4208 	/* Find current threshold */
4209 	new->current_threshold = -1;
4210 	for (i = 0; i < size; i++) {
4211 		if (new->entries[i].threshold <= usage) {
4212 			/*
4213 			 * new->current_threshold will not be used until
4214 			 * rcu_assign_pointer(), so it's safe to increment
4215 			 * it here.
4216 			 */
4217 			++new->current_threshold;
4218 		} else
4219 			break;
4220 	}
4221 
4222 	/* Free old spare buffer and save old primary buffer as spare */
4223 	kfree(thresholds->spare);
4224 	thresholds->spare = thresholds->primary;
4225 
4226 	rcu_assign_pointer(thresholds->primary, new);
4227 
4228 	/* To be sure that nobody uses thresholds */
4229 	synchronize_rcu();
4230 
4231 unlock:
4232 	mutex_unlock(&memcg->thresholds_lock);
4233 
4234 	return ret;
4235 }
4236 
4237 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4238 	struct eventfd_ctx *eventfd, const char *args)
4239 {
4240 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4241 }
4242 
4243 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4244 	struct eventfd_ctx *eventfd, const char *args)
4245 {
4246 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4247 }
4248 
4249 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4250 	struct eventfd_ctx *eventfd, enum res_type type)
4251 {
4252 	struct mem_cgroup_thresholds *thresholds;
4253 	struct mem_cgroup_threshold_ary *new;
4254 	unsigned long usage;
4255 	int i, j, size, entries;
4256 
4257 	mutex_lock(&memcg->thresholds_lock);
4258 
4259 	if (type == _MEM) {
4260 		thresholds = &memcg->thresholds;
4261 		usage = mem_cgroup_usage(memcg, false);
4262 	} else if (type == _MEMSWAP) {
4263 		thresholds = &memcg->memsw_thresholds;
4264 		usage = mem_cgroup_usage(memcg, true);
4265 	} else
4266 		BUG();
4267 
4268 	if (!thresholds->primary)
4269 		goto unlock;
4270 
4271 	/* Check if a threshold crossed before removing */
4272 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4273 
4274 	/* Calculate new number of threshold */
4275 	size = entries = 0;
4276 	for (i = 0; i < thresholds->primary->size; i++) {
4277 		if (thresholds->primary->entries[i].eventfd != eventfd)
4278 			size++;
4279 		else
4280 			entries++;
4281 	}
4282 
4283 	new = thresholds->spare;
4284 
4285 	/* If no items related to eventfd have been cleared, nothing to do */
4286 	if (!entries)
4287 		goto unlock;
4288 
4289 	/* Set thresholds array to NULL if we don't have thresholds */
4290 	if (!size) {
4291 		kfree(new);
4292 		new = NULL;
4293 		goto swap_buffers;
4294 	}
4295 
4296 	new->size = size;
4297 
4298 	/* Copy thresholds and find current threshold */
4299 	new->current_threshold = -1;
4300 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4301 		if (thresholds->primary->entries[i].eventfd == eventfd)
4302 			continue;
4303 
4304 		new->entries[j] = thresholds->primary->entries[i];
4305 		if (new->entries[j].threshold <= usage) {
4306 			/*
4307 			 * new->current_threshold will not be used
4308 			 * until rcu_assign_pointer(), so it's safe to increment
4309 			 * it here.
4310 			 */
4311 			++new->current_threshold;
4312 		}
4313 		j++;
4314 	}
4315 
4316 swap_buffers:
4317 	/* Swap primary and spare array */
4318 	thresholds->spare = thresholds->primary;
4319 
4320 	rcu_assign_pointer(thresholds->primary, new);
4321 
4322 	/* To be sure that nobody uses thresholds */
4323 	synchronize_rcu();
4324 
4325 	/* If all events are unregistered, free the spare array */
4326 	if (!new) {
4327 		kfree(thresholds->spare);
4328 		thresholds->spare = NULL;
4329 	}
4330 unlock:
4331 	mutex_unlock(&memcg->thresholds_lock);
4332 }
4333 
4334 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4335 	struct eventfd_ctx *eventfd)
4336 {
4337 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4338 }
4339 
4340 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4341 	struct eventfd_ctx *eventfd)
4342 {
4343 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4344 }
4345 
4346 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4347 	struct eventfd_ctx *eventfd, const char *args)
4348 {
4349 	struct mem_cgroup_eventfd_list *event;
4350 
4351 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4352 	if (!event)
4353 		return -ENOMEM;
4354 
4355 	spin_lock(&memcg_oom_lock);
4356 
4357 	event->eventfd = eventfd;
4358 	list_add(&event->list, &memcg->oom_notify);
4359 
4360 	/* already in OOM ? */
4361 	if (memcg->under_oom)
4362 		eventfd_signal(eventfd, 1);
4363 	spin_unlock(&memcg_oom_lock);
4364 
4365 	return 0;
4366 }
4367 
4368 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4369 	struct eventfd_ctx *eventfd)
4370 {
4371 	struct mem_cgroup_eventfd_list *ev, *tmp;
4372 
4373 	spin_lock(&memcg_oom_lock);
4374 
4375 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4376 		if (ev->eventfd == eventfd) {
4377 			list_del(&ev->list);
4378 			kfree(ev);
4379 		}
4380 	}
4381 
4382 	spin_unlock(&memcg_oom_lock);
4383 }
4384 
4385 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4386 {
4387 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4388 
4389 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4390 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4391 	seq_printf(sf, "oom_kill %lu\n",
4392 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4393 	return 0;
4394 }
4395 
4396 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4397 	struct cftype *cft, u64 val)
4398 {
4399 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4400 
4401 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4402 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4403 		return -EINVAL;
4404 
4405 	memcg->oom_kill_disable = val;
4406 	if (!val)
4407 		memcg_oom_recover(memcg);
4408 
4409 	return 0;
4410 }
4411 
4412 #ifdef CONFIG_CGROUP_WRITEBACK
4413 
4414 #include <trace/events/writeback.h>
4415 
4416 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4417 {
4418 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4419 }
4420 
4421 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4422 {
4423 	wb_domain_exit(&memcg->cgwb_domain);
4424 }
4425 
4426 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4427 {
4428 	wb_domain_size_changed(&memcg->cgwb_domain);
4429 }
4430 
4431 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4432 {
4433 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4434 
4435 	if (!memcg->css.parent)
4436 		return NULL;
4437 
4438 	return &memcg->cgwb_domain;
4439 }
4440 
4441 /**
4442  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4443  * @wb: bdi_writeback in question
4444  * @pfilepages: out parameter for number of file pages
4445  * @pheadroom: out parameter for number of allocatable pages according to memcg
4446  * @pdirty: out parameter for number of dirty pages
4447  * @pwriteback: out parameter for number of pages under writeback
4448  *
4449  * Determine the numbers of file, headroom, dirty, and writeback pages in
4450  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4451  * is a bit more involved.
4452  *
4453  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4454  * headroom is calculated as the lowest headroom of itself and the
4455  * ancestors.  Note that this doesn't consider the actual amount of
4456  * available memory in the system.  The caller should further cap
4457  * *@pheadroom accordingly.
4458  */
4459 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4460 			 unsigned long *pheadroom, unsigned long *pdirty,
4461 			 unsigned long *pwriteback)
4462 {
4463 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4464 	struct mem_cgroup *parent;
4465 
4466 	mem_cgroup_flush_stats();
4467 
4468 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4469 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4470 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4471 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4472 
4473 	*pheadroom = PAGE_COUNTER_MAX;
4474 	while ((parent = parent_mem_cgroup(memcg))) {
4475 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4476 					    READ_ONCE(memcg->memory.high));
4477 		unsigned long used = page_counter_read(&memcg->memory);
4478 
4479 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4480 		memcg = parent;
4481 	}
4482 }
4483 
4484 /*
4485  * Foreign dirty flushing
4486  *
4487  * There's an inherent mismatch between memcg and writeback.  The former
4488  * tracks ownership per-page while the latter per-inode.  This was a
4489  * deliberate design decision because honoring per-page ownership in the
4490  * writeback path is complicated, may lead to higher CPU and IO overheads
4491  * and deemed unnecessary given that write-sharing an inode across
4492  * different cgroups isn't a common use-case.
4493  *
4494  * Combined with inode majority-writer ownership switching, this works well
4495  * enough in most cases but there are some pathological cases.  For
4496  * example, let's say there are two cgroups A and B which keep writing to
4497  * different but confined parts of the same inode.  B owns the inode and
4498  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4499  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4500  * triggering background writeback.  A will be slowed down without a way to
4501  * make writeback of the dirty pages happen.
4502  *
4503  * Conditions like the above can lead to a cgroup getting repeatedly and
4504  * severely throttled after making some progress after each
4505  * dirty_expire_interval while the underlying IO device is almost
4506  * completely idle.
4507  *
4508  * Solving this problem completely requires matching the ownership tracking
4509  * granularities between memcg and writeback in either direction.  However,
4510  * the more egregious behaviors can be avoided by simply remembering the
4511  * most recent foreign dirtying events and initiating remote flushes on
4512  * them when local writeback isn't enough to keep the memory clean enough.
4513  *
4514  * The following two functions implement such mechanism.  When a foreign
4515  * page - a page whose memcg and writeback ownerships don't match - is
4516  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4517  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4518  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4519  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4520  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4521  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4522  * limited to MEMCG_CGWB_FRN_CNT.
4523  *
4524  * The mechanism only remembers IDs and doesn't hold any object references.
4525  * As being wrong occasionally doesn't matter, updates and accesses to the
4526  * records are lockless and racy.
4527  */
4528 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4529 					     struct bdi_writeback *wb)
4530 {
4531 	struct mem_cgroup *memcg = folio_memcg(folio);
4532 	struct memcg_cgwb_frn *frn;
4533 	u64 now = get_jiffies_64();
4534 	u64 oldest_at = now;
4535 	int oldest = -1;
4536 	int i;
4537 
4538 	trace_track_foreign_dirty(folio, wb);
4539 
4540 	/*
4541 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4542 	 * using it.  If not replace the oldest one which isn't being
4543 	 * written out.
4544 	 */
4545 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4546 		frn = &memcg->cgwb_frn[i];
4547 		if (frn->bdi_id == wb->bdi->id &&
4548 		    frn->memcg_id == wb->memcg_css->id)
4549 			break;
4550 		if (time_before64(frn->at, oldest_at) &&
4551 		    atomic_read(&frn->done.cnt) == 1) {
4552 			oldest = i;
4553 			oldest_at = frn->at;
4554 		}
4555 	}
4556 
4557 	if (i < MEMCG_CGWB_FRN_CNT) {
4558 		/*
4559 		 * Re-using an existing one.  Update timestamp lazily to
4560 		 * avoid making the cacheline hot.  We want them to be
4561 		 * reasonably up-to-date and significantly shorter than
4562 		 * dirty_expire_interval as that's what expires the record.
4563 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4564 		 */
4565 		unsigned long update_intv =
4566 			min_t(unsigned long, HZ,
4567 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4568 
4569 		if (time_before64(frn->at, now - update_intv))
4570 			frn->at = now;
4571 	} else if (oldest >= 0) {
4572 		/* replace the oldest free one */
4573 		frn = &memcg->cgwb_frn[oldest];
4574 		frn->bdi_id = wb->bdi->id;
4575 		frn->memcg_id = wb->memcg_css->id;
4576 		frn->at = now;
4577 	}
4578 }
4579 
4580 /* issue foreign writeback flushes for recorded foreign dirtying events */
4581 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4582 {
4583 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4584 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4585 	u64 now = jiffies_64;
4586 	int i;
4587 
4588 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4589 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4590 
4591 		/*
4592 		 * If the record is older than dirty_expire_interval,
4593 		 * writeback on it has already started.  No need to kick it
4594 		 * off again.  Also, don't start a new one if there's
4595 		 * already one in flight.
4596 		 */
4597 		if (time_after64(frn->at, now - intv) &&
4598 		    atomic_read(&frn->done.cnt) == 1) {
4599 			frn->at = 0;
4600 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4601 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4602 					       WB_REASON_FOREIGN_FLUSH,
4603 					       &frn->done);
4604 		}
4605 	}
4606 }
4607 
4608 #else	/* CONFIG_CGROUP_WRITEBACK */
4609 
4610 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4611 {
4612 	return 0;
4613 }
4614 
4615 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4616 {
4617 }
4618 
4619 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4620 {
4621 }
4622 
4623 #endif	/* CONFIG_CGROUP_WRITEBACK */
4624 
4625 /*
4626  * DO NOT USE IN NEW FILES.
4627  *
4628  * "cgroup.event_control" implementation.
4629  *
4630  * This is way over-engineered.  It tries to support fully configurable
4631  * events for each user.  Such level of flexibility is completely
4632  * unnecessary especially in the light of the planned unified hierarchy.
4633  *
4634  * Please deprecate this and replace with something simpler if at all
4635  * possible.
4636  */
4637 
4638 /*
4639  * Unregister event and free resources.
4640  *
4641  * Gets called from workqueue.
4642  */
4643 static void memcg_event_remove(struct work_struct *work)
4644 {
4645 	struct mem_cgroup_event *event =
4646 		container_of(work, struct mem_cgroup_event, remove);
4647 	struct mem_cgroup *memcg = event->memcg;
4648 
4649 	remove_wait_queue(event->wqh, &event->wait);
4650 
4651 	event->unregister_event(memcg, event->eventfd);
4652 
4653 	/* Notify userspace the event is going away. */
4654 	eventfd_signal(event->eventfd, 1);
4655 
4656 	eventfd_ctx_put(event->eventfd);
4657 	kfree(event);
4658 	css_put(&memcg->css);
4659 }
4660 
4661 /*
4662  * Gets called on EPOLLHUP on eventfd when user closes it.
4663  *
4664  * Called with wqh->lock held and interrupts disabled.
4665  */
4666 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4667 			    int sync, void *key)
4668 {
4669 	struct mem_cgroup_event *event =
4670 		container_of(wait, struct mem_cgroup_event, wait);
4671 	struct mem_cgroup *memcg = event->memcg;
4672 	__poll_t flags = key_to_poll(key);
4673 
4674 	if (flags & EPOLLHUP) {
4675 		/*
4676 		 * If the event has been detached at cgroup removal, we
4677 		 * can simply return knowing the other side will cleanup
4678 		 * for us.
4679 		 *
4680 		 * We can't race against event freeing since the other
4681 		 * side will require wqh->lock via remove_wait_queue(),
4682 		 * which we hold.
4683 		 */
4684 		spin_lock(&memcg->event_list_lock);
4685 		if (!list_empty(&event->list)) {
4686 			list_del_init(&event->list);
4687 			/*
4688 			 * We are in atomic context, but cgroup_event_remove()
4689 			 * may sleep, so we have to call it in workqueue.
4690 			 */
4691 			schedule_work(&event->remove);
4692 		}
4693 		spin_unlock(&memcg->event_list_lock);
4694 	}
4695 
4696 	return 0;
4697 }
4698 
4699 static void memcg_event_ptable_queue_proc(struct file *file,
4700 		wait_queue_head_t *wqh, poll_table *pt)
4701 {
4702 	struct mem_cgroup_event *event =
4703 		container_of(pt, struct mem_cgroup_event, pt);
4704 
4705 	event->wqh = wqh;
4706 	add_wait_queue(wqh, &event->wait);
4707 }
4708 
4709 /*
4710  * DO NOT USE IN NEW FILES.
4711  *
4712  * Parse input and register new cgroup event handler.
4713  *
4714  * Input must be in format '<event_fd> <control_fd> <args>'.
4715  * Interpretation of args is defined by control file implementation.
4716  */
4717 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4718 					 char *buf, size_t nbytes, loff_t off)
4719 {
4720 	struct cgroup_subsys_state *css = of_css(of);
4721 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4722 	struct mem_cgroup_event *event;
4723 	struct cgroup_subsys_state *cfile_css;
4724 	unsigned int efd, cfd;
4725 	struct fd efile;
4726 	struct fd cfile;
4727 	const char *name;
4728 	char *endp;
4729 	int ret;
4730 
4731 	buf = strstrip(buf);
4732 
4733 	efd = simple_strtoul(buf, &endp, 10);
4734 	if (*endp != ' ')
4735 		return -EINVAL;
4736 	buf = endp + 1;
4737 
4738 	cfd = simple_strtoul(buf, &endp, 10);
4739 	if ((*endp != ' ') && (*endp != '\0'))
4740 		return -EINVAL;
4741 	buf = endp + 1;
4742 
4743 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4744 	if (!event)
4745 		return -ENOMEM;
4746 
4747 	event->memcg = memcg;
4748 	INIT_LIST_HEAD(&event->list);
4749 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4750 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4751 	INIT_WORK(&event->remove, memcg_event_remove);
4752 
4753 	efile = fdget(efd);
4754 	if (!efile.file) {
4755 		ret = -EBADF;
4756 		goto out_kfree;
4757 	}
4758 
4759 	event->eventfd = eventfd_ctx_fileget(efile.file);
4760 	if (IS_ERR(event->eventfd)) {
4761 		ret = PTR_ERR(event->eventfd);
4762 		goto out_put_efile;
4763 	}
4764 
4765 	cfile = fdget(cfd);
4766 	if (!cfile.file) {
4767 		ret = -EBADF;
4768 		goto out_put_eventfd;
4769 	}
4770 
4771 	/* the process need read permission on control file */
4772 	/* AV: shouldn't we check that it's been opened for read instead? */
4773 	ret = file_permission(cfile.file, MAY_READ);
4774 	if (ret < 0)
4775 		goto out_put_cfile;
4776 
4777 	/*
4778 	 * Determine the event callbacks and set them in @event.  This used
4779 	 * to be done via struct cftype but cgroup core no longer knows
4780 	 * about these events.  The following is crude but the whole thing
4781 	 * is for compatibility anyway.
4782 	 *
4783 	 * DO NOT ADD NEW FILES.
4784 	 */
4785 	name = cfile.file->f_path.dentry->d_name.name;
4786 
4787 	if (!strcmp(name, "memory.usage_in_bytes")) {
4788 		event->register_event = mem_cgroup_usage_register_event;
4789 		event->unregister_event = mem_cgroup_usage_unregister_event;
4790 	} else if (!strcmp(name, "memory.oom_control")) {
4791 		event->register_event = mem_cgroup_oom_register_event;
4792 		event->unregister_event = mem_cgroup_oom_unregister_event;
4793 	} else if (!strcmp(name, "memory.pressure_level")) {
4794 		event->register_event = vmpressure_register_event;
4795 		event->unregister_event = vmpressure_unregister_event;
4796 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4797 		event->register_event = memsw_cgroup_usage_register_event;
4798 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4799 	} else {
4800 		ret = -EINVAL;
4801 		goto out_put_cfile;
4802 	}
4803 
4804 	/*
4805 	 * Verify @cfile should belong to @css.  Also, remaining events are
4806 	 * automatically removed on cgroup destruction but the removal is
4807 	 * asynchronous, so take an extra ref on @css.
4808 	 */
4809 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4810 					       &memory_cgrp_subsys);
4811 	ret = -EINVAL;
4812 	if (IS_ERR(cfile_css))
4813 		goto out_put_cfile;
4814 	if (cfile_css != css) {
4815 		css_put(cfile_css);
4816 		goto out_put_cfile;
4817 	}
4818 
4819 	ret = event->register_event(memcg, event->eventfd, buf);
4820 	if (ret)
4821 		goto out_put_css;
4822 
4823 	vfs_poll(efile.file, &event->pt);
4824 
4825 	spin_lock_irq(&memcg->event_list_lock);
4826 	list_add(&event->list, &memcg->event_list);
4827 	spin_unlock_irq(&memcg->event_list_lock);
4828 
4829 	fdput(cfile);
4830 	fdput(efile);
4831 
4832 	return nbytes;
4833 
4834 out_put_css:
4835 	css_put(css);
4836 out_put_cfile:
4837 	fdput(cfile);
4838 out_put_eventfd:
4839 	eventfd_ctx_put(event->eventfd);
4840 out_put_efile:
4841 	fdput(efile);
4842 out_kfree:
4843 	kfree(event);
4844 
4845 	return ret;
4846 }
4847 
4848 static struct cftype mem_cgroup_legacy_files[] = {
4849 	{
4850 		.name = "usage_in_bytes",
4851 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4852 		.read_u64 = mem_cgroup_read_u64,
4853 	},
4854 	{
4855 		.name = "max_usage_in_bytes",
4856 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4857 		.write = mem_cgroup_reset,
4858 		.read_u64 = mem_cgroup_read_u64,
4859 	},
4860 	{
4861 		.name = "limit_in_bytes",
4862 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4863 		.write = mem_cgroup_write,
4864 		.read_u64 = mem_cgroup_read_u64,
4865 	},
4866 	{
4867 		.name = "soft_limit_in_bytes",
4868 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4869 		.write = mem_cgroup_write,
4870 		.read_u64 = mem_cgroup_read_u64,
4871 	},
4872 	{
4873 		.name = "failcnt",
4874 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4875 		.write = mem_cgroup_reset,
4876 		.read_u64 = mem_cgroup_read_u64,
4877 	},
4878 	{
4879 		.name = "stat",
4880 		.seq_show = memcg_stat_show,
4881 	},
4882 	{
4883 		.name = "force_empty",
4884 		.write = mem_cgroup_force_empty_write,
4885 	},
4886 	{
4887 		.name = "use_hierarchy",
4888 		.write_u64 = mem_cgroup_hierarchy_write,
4889 		.read_u64 = mem_cgroup_hierarchy_read,
4890 	},
4891 	{
4892 		.name = "cgroup.event_control",		/* XXX: for compat */
4893 		.write = memcg_write_event_control,
4894 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4895 	},
4896 	{
4897 		.name = "swappiness",
4898 		.read_u64 = mem_cgroup_swappiness_read,
4899 		.write_u64 = mem_cgroup_swappiness_write,
4900 	},
4901 	{
4902 		.name = "move_charge_at_immigrate",
4903 		.read_u64 = mem_cgroup_move_charge_read,
4904 		.write_u64 = mem_cgroup_move_charge_write,
4905 	},
4906 	{
4907 		.name = "oom_control",
4908 		.seq_show = mem_cgroup_oom_control_read,
4909 		.write_u64 = mem_cgroup_oom_control_write,
4910 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4911 	},
4912 	{
4913 		.name = "pressure_level",
4914 	},
4915 #ifdef CONFIG_NUMA
4916 	{
4917 		.name = "numa_stat",
4918 		.seq_show = memcg_numa_stat_show,
4919 	},
4920 #endif
4921 	{
4922 		.name = "kmem.limit_in_bytes",
4923 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4924 		.write = mem_cgroup_write,
4925 		.read_u64 = mem_cgroup_read_u64,
4926 	},
4927 	{
4928 		.name = "kmem.usage_in_bytes",
4929 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4930 		.read_u64 = mem_cgroup_read_u64,
4931 	},
4932 	{
4933 		.name = "kmem.failcnt",
4934 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4935 		.write = mem_cgroup_reset,
4936 		.read_u64 = mem_cgroup_read_u64,
4937 	},
4938 	{
4939 		.name = "kmem.max_usage_in_bytes",
4940 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4941 		.write = mem_cgroup_reset,
4942 		.read_u64 = mem_cgroup_read_u64,
4943 	},
4944 #if defined(CONFIG_MEMCG_KMEM) && \
4945 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4946 	{
4947 		.name = "kmem.slabinfo",
4948 		.seq_show = memcg_slab_show,
4949 	},
4950 #endif
4951 	{
4952 		.name = "kmem.tcp.limit_in_bytes",
4953 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4954 		.write = mem_cgroup_write,
4955 		.read_u64 = mem_cgroup_read_u64,
4956 	},
4957 	{
4958 		.name = "kmem.tcp.usage_in_bytes",
4959 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4960 		.read_u64 = mem_cgroup_read_u64,
4961 	},
4962 	{
4963 		.name = "kmem.tcp.failcnt",
4964 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4965 		.write = mem_cgroup_reset,
4966 		.read_u64 = mem_cgroup_read_u64,
4967 	},
4968 	{
4969 		.name = "kmem.tcp.max_usage_in_bytes",
4970 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4971 		.write = mem_cgroup_reset,
4972 		.read_u64 = mem_cgroup_read_u64,
4973 	},
4974 	{ },	/* terminate */
4975 };
4976 
4977 /*
4978  * Private memory cgroup IDR
4979  *
4980  * Swap-out records and page cache shadow entries need to store memcg
4981  * references in constrained space, so we maintain an ID space that is
4982  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4983  * memory-controlled cgroups to 64k.
4984  *
4985  * However, there usually are many references to the offline CSS after
4986  * the cgroup has been destroyed, such as page cache or reclaimable
4987  * slab objects, that don't need to hang on to the ID. We want to keep
4988  * those dead CSS from occupying IDs, or we might quickly exhaust the
4989  * relatively small ID space and prevent the creation of new cgroups
4990  * even when there are much fewer than 64k cgroups - possibly none.
4991  *
4992  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4993  * be freed and recycled when it's no longer needed, which is usually
4994  * when the CSS is offlined.
4995  *
4996  * The only exception to that are records of swapped out tmpfs/shmem
4997  * pages that need to be attributed to live ancestors on swapin. But
4998  * those references are manageable from userspace.
4999  */
5000 
5001 static DEFINE_IDR(mem_cgroup_idr);
5002 
5003 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5004 {
5005 	if (memcg->id.id > 0) {
5006 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5007 		memcg->id.id = 0;
5008 	}
5009 }
5010 
5011 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5012 						  unsigned int n)
5013 {
5014 	refcount_add(n, &memcg->id.ref);
5015 }
5016 
5017 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5018 {
5019 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5020 		mem_cgroup_id_remove(memcg);
5021 
5022 		/* Memcg ID pins CSS */
5023 		css_put(&memcg->css);
5024 	}
5025 }
5026 
5027 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5028 {
5029 	mem_cgroup_id_put_many(memcg, 1);
5030 }
5031 
5032 /**
5033  * mem_cgroup_from_id - look up a memcg from a memcg id
5034  * @id: the memcg id to look up
5035  *
5036  * Caller must hold rcu_read_lock().
5037  */
5038 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5039 {
5040 	WARN_ON_ONCE(!rcu_read_lock_held());
5041 	return idr_find(&mem_cgroup_idr, id);
5042 }
5043 
5044 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5045 {
5046 	struct mem_cgroup_per_node *pn;
5047 	int tmp = node;
5048 	/*
5049 	 * This routine is called against possible nodes.
5050 	 * But it's BUG to call kmalloc() against offline node.
5051 	 *
5052 	 * TODO: this routine can waste much memory for nodes which will
5053 	 *       never be onlined. It's better to use memory hotplug callback
5054 	 *       function.
5055 	 */
5056 	if (!node_state(node, N_NORMAL_MEMORY))
5057 		tmp = -1;
5058 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5059 	if (!pn)
5060 		return 1;
5061 
5062 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5063 						   GFP_KERNEL_ACCOUNT);
5064 	if (!pn->lruvec_stats_percpu) {
5065 		kfree(pn);
5066 		return 1;
5067 	}
5068 
5069 	lruvec_init(&pn->lruvec);
5070 	pn->usage_in_excess = 0;
5071 	pn->on_tree = false;
5072 	pn->memcg = memcg;
5073 
5074 	memcg->nodeinfo[node] = pn;
5075 	return 0;
5076 }
5077 
5078 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5079 {
5080 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5081 
5082 	if (!pn)
5083 		return;
5084 
5085 	free_percpu(pn->lruvec_stats_percpu);
5086 	kfree(pn);
5087 }
5088 
5089 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5090 {
5091 	int node;
5092 
5093 	for_each_node(node)
5094 		free_mem_cgroup_per_node_info(memcg, node);
5095 	free_percpu(memcg->vmstats_percpu);
5096 	kfree(memcg);
5097 }
5098 
5099 static void mem_cgroup_free(struct mem_cgroup *memcg)
5100 {
5101 	memcg_wb_domain_exit(memcg);
5102 	__mem_cgroup_free(memcg);
5103 }
5104 
5105 static struct mem_cgroup *mem_cgroup_alloc(void)
5106 {
5107 	struct mem_cgroup *memcg;
5108 	unsigned int size;
5109 	int node;
5110 	int __maybe_unused i;
5111 	long error = -ENOMEM;
5112 
5113 	size = sizeof(struct mem_cgroup);
5114 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5115 
5116 	memcg = kzalloc(size, GFP_KERNEL);
5117 	if (!memcg)
5118 		return ERR_PTR(error);
5119 
5120 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5121 				 1, MEM_CGROUP_ID_MAX,
5122 				 GFP_KERNEL);
5123 	if (memcg->id.id < 0) {
5124 		error = memcg->id.id;
5125 		goto fail;
5126 	}
5127 
5128 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5129 						 GFP_KERNEL_ACCOUNT);
5130 	if (!memcg->vmstats_percpu)
5131 		goto fail;
5132 
5133 	for_each_node(node)
5134 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5135 			goto fail;
5136 
5137 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5138 		goto fail;
5139 
5140 	INIT_WORK(&memcg->high_work, high_work_func);
5141 	INIT_LIST_HEAD(&memcg->oom_notify);
5142 	mutex_init(&memcg->thresholds_lock);
5143 	spin_lock_init(&memcg->move_lock);
5144 	vmpressure_init(&memcg->vmpressure);
5145 	INIT_LIST_HEAD(&memcg->event_list);
5146 	spin_lock_init(&memcg->event_list_lock);
5147 	memcg->socket_pressure = jiffies;
5148 #ifdef CONFIG_MEMCG_KMEM
5149 	memcg->kmemcg_id = -1;
5150 	INIT_LIST_HEAD(&memcg->objcg_list);
5151 #endif
5152 #ifdef CONFIG_CGROUP_WRITEBACK
5153 	INIT_LIST_HEAD(&memcg->cgwb_list);
5154 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5155 		memcg->cgwb_frn[i].done =
5156 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5157 #endif
5158 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5159 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5160 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5161 	memcg->deferred_split_queue.split_queue_len = 0;
5162 #endif
5163 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5164 	return memcg;
5165 fail:
5166 	mem_cgroup_id_remove(memcg);
5167 	__mem_cgroup_free(memcg);
5168 	return ERR_PTR(error);
5169 }
5170 
5171 static struct cgroup_subsys_state * __ref
5172 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5173 {
5174 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5175 	struct mem_cgroup *memcg, *old_memcg;
5176 	long error = -ENOMEM;
5177 
5178 	old_memcg = set_active_memcg(parent);
5179 	memcg = mem_cgroup_alloc();
5180 	set_active_memcg(old_memcg);
5181 	if (IS_ERR(memcg))
5182 		return ERR_CAST(memcg);
5183 
5184 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5185 	memcg->soft_limit = PAGE_COUNTER_MAX;
5186 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5187 	if (parent) {
5188 		memcg->swappiness = mem_cgroup_swappiness(parent);
5189 		memcg->oom_kill_disable = parent->oom_kill_disable;
5190 
5191 		page_counter_init(&memcg->memory, &parent->memory);
5192 		page_counter_init(&memcg->swap, &parent->swap);
5193 		page_counter_init(&memcg->kmem, &parent->kmem);
5194 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5195 	} else {
5196 		page_counter_init(&memcg->memory, NULL);
5197 		page_counter_init(&memcg->swap, NULL);
5198 		page_counter_init(&memcg->kmem, NULL);
5199 		page_counter_init(&memcg->tcpmem, NULL);
5200 
5201 		root_mem_cgroup = memcg;
5202 		return &memcg->css;
5203 	}
5204 
5205 	/* The following stuff does not apply to the root */
5206 	error = memcg_online_kmem(memcg);
5207 	if (error)
5208 		goto fail;
5209 
5210 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5211 		static_branch_inc(&memcg_sockets_enabled_key);
5212 
5213 	return &memcg->css;
5214 fail:
5215 	mem_cgroup_id_remove(memcg);
5216 	mem_cgroup_free(memcg);
5217 	return ERR_PTR(error);
5218 }
5219 
5220 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5221 {
5222 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5223 
5224 	/*
5225 	 * A memcg must be visible for expand_shrinker_info()
5226 	 * by the time the maps are allocated. So, we allocate maps
5227 	 * here, when for_each_mem_cgroup() can't skip it.
5228 	 */
5229 	if (alloc_shrinker_info(memcg)) {
5230 		mem_cgroup_id_remove(memcg);
5231 		return -ENOMEM;
5232 	}
5233 
5234 	/* Online state pins memcg ID, memcg ID pins CSS */
5235 	refcount_set(&memcg->id.ref, 1);
5236 	css_get(css);
5237 
5238 	if (unlikely(mem_cgroup_is_root(memcg)))
5239 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5240 				   2UL*HZ);
5241 	return 0;
5242 }
5243 
5244 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5245 {
5246 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5247 	struct mem_cgroup_event *event, *tmp;
5248 
5249 	/*
5250 	 * Unregister events and notify userspace.
5251 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5252 	 * directory to avoid race between userspace and kernelspace.
5253 	 */
5254 	spin_lock_irq(&memcg->event_list_lock);
5255 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5256 		list_del_init(&event->list);
5257 		schedule_work(&event->remove);
5258 	}
5259 	spin_unlock_irq(&memcg->event_list_lock);
5260 
5261 	page_counter_set_min(&memcg->memory, 0);
5262 	page_counter_set_low(&memcg->memory, 0);
5263 
5264 	memcg_offline_kmem(memcg);
5265 	reparent_shrinker_deferred(memcg);
5266 	wb_memcg_offline(memcg);
5267 
5268 	drain_all_stock(memcg);
5269 
5270 	mem_cgroup_id_put(memcg);
5271 }
5272 
5273 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5274 {
5275 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5276 
5277 	invalidate_reclaim_iterators(memcg);
5278 }
5279 
5280 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5281 {
5282 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5283 	int __maybe_unused i;
5284 
5285 #ifdef CONFIG_CGROUP_WRITEBACK
5286 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5287 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5288 #endif
5289 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5290 		static_branch_dec(&memcg_sockets_enabled_key);
5291 
5292 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5293 		static_branch_dec(&memcg_sockets_enabled_key);
5294 
5295 	vmpressure_cleanup(&memcg->vmpressure);
5296 	cancel_work_sync(&memcg->high_work);
5297 	mem_cgroup_remove_from_trees(memcg);
5298 	free_shrinker_info(memcg);
5299 
5300 	/* Need to offline kmem if online_css() fails */
5301 	memcg_offline_kmem(memcg);
5302 	mem_cgroup_free(memcg);
5303 }
5304 
5305 /**
5306  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5307  * @css: the target css
5308  *
5309  * Reset the states of the mem_cgroup associated with @css.  This is
5310  * invoked when the userland requests disabling on the default hierarchy
5311  * but the memcg is pinned through dependency.  The memcg should stop
5312  * applying policies and should revert to the vanilla state as it may be
5313  * made visible again.
5314  *
5315  * The current implementation only resets the essential configurations.
5316  * This needs to be expanded to cover all the visible parts.
5317  */
5318 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5319 {
5320 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5321 
5322 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5323 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5324 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5325 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5326 	page_counter_set_min(&memcg->memory, 0);
5327 	page_counter_set_low(&memcg->memory, 0);
5328 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5329 	memcg->soft_limit = PAGE_COUNTER_MAX;
5330 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5331 	memcg_wb_domain_size_changed(memcg);
5332 }
5333 
5334 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5335 {
5336 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5337 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5338 	struct memcg_vmstats_percpu *statc;
5339 	long delta, v;
5340 	int i, nid;
5341 
5342 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5343 
5344 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5345 		/*
5346 		 * Collect the aggregated propagation counts of groups
5347 		 * below us. We're in a per-cpu loop here and this is
5348 		 * a global counter, so the first cycle will get them.
5349 		 */
5350 		delta = memcg->vmstats.state_pending[i];
5351 		if (delta)
5352 			memcg->vmstats.state_pending[i] = 0;
5353 
5354 		/* Add CPU changes on this level since the last flush */
5355 		v = READ_ONCE(statc->state[i]);
5356 		if (v != statc->state_prev[i]) {
5357 			delta += v - statc->state_prev[i];
5358 			statc->state_prev[i] = v;
5359 		}
5360 
5361 		if (!delta)
5362 			continue;
5363 
5364 		/* Aggregate counts on this level and propagate upwards */
5365 		memcg->vmstats.state[i] += delta;
5366 		if (parent)
5367 			parent->vmstats.state_pending[i] += delta;
5368 	}
5369 
5370 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5371 		delta = memcg->vmstats.events_pending[i];
5372 		if (delta)
5373 			memcg->vmstats.events_pending[i] = 0;
5374 
5375 		v = READ_ONCE(statc->events[i]);
5376 		if (v != statc->events_prev[i]) {
5377 			delta += v - statc->events_prev[i];
5378 			statc->events_prev[i] = v;
5379 		}
5380 
5381 		if (!delta)
5382 			continue;
5383 
5384 		memcg->vmstats.events[i] += delta;
5385 		if (parent)
5386 			parent->vmstats.events_pending[i] += delta;
5387 	}
5388 
5389 	for_each_node_state(nid, N_MEMORY) {
5390 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5391 		struct mem_cgroup_per_node *ppn = NULL;
5392 		struct lruvec_stats_percpu *lstatc;
5393 
5394 		if (parent)
5395 			ppn = parent->nodeinfo[nid];
5396 
5397 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5398 
5399 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5400 			delta = pn->lruvec_stats.state_pending[i];
5401 			if (delta)
5402 				pn->lruvec_stats.state_pending[i] = 0;
5403 
5404 			v = READ_ONCE(lstatc->state[i]);
5405 			if (v != lstatc->state_prev[i]) {
5406 				delta += v - lstatc->state_prev[i];
5407 				lstatc->state_prev[i] = v;
5408 			}
5409 
5410 			if (!delta)
5411 				continue;
5412 
5413 			pn->lruvec_stats.state[i] += delta;
5414 			if (ppn)
5415 				ppn->lruvec_stats.state_pending[i] += delta;
5416 		}
5417 	}
5418 }
5419 
5420 #ifdef CONFIG_MMU
5421 /* Handlers for move charge at task migration. */
5422 static int mem_cgroup_do_precharge(unsigned long count)
5423 {
5424 	int ret;
5425 
5426 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5427 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5428 	if (!ret) {
5429 		mc.precharge += count;
5430 		return ret;
5431 	}
5432 
5433 	/* Try charges one by one with reclaim, but do not retry */
5434 	while (count--) {
5435 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5436 		if (ret)
5437 			return ret;
5438 		mc.precharge++;
5439 		cond_resched();
5440 	}
5441 	return 0;
5442 }
5443 
5444 union mc_target {
5445 	struct page	*page;
5446 	swp_entry_t	ent;
5447 };
5448 
5449 enum mc_target_type {
5450 	MC_TARGET_NONE = 0,
5451 	MC_TARGET_PAGE,
5452 	MC_TARGET_SWAP,
5453 	MC_TARGET_DEVICE,
5454 };
5455 
5456 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5457 						unsigned long addr, pte_t ptent)
5458 {
5459 	struct page *page = vm_normal_page(vma, addr, ptent);
5460 
5461 	if (!page || !page_mapped(page))
5462 		return NULL;
5463 	if (PageAnon(page)) {
5464 		if (!(mc.flags & MOVE_ANON))
5465 			return NULL;
5466 	} else {
5467 		if (!(mc.flags & MOVE_FILE))
5468 			return NULL;
5469 	}
5470 	if (!get_page_unless_zero(page))
5471 		return NULL;
5472 
5473 	return page;
5474 }
5475 
5476 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5477 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5478 			pte_t ptent, swp_entry_t *entry)
5479 {
5480 	struct page *page = NULL;
5481 	swp_entry_t ent = pte_to_swp_entry(ptent);
5482 
5483 	if (!(mc.flags & MOVE_ANON))
5484 		return NULL;
5485 
5486 	/*
5487 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5488 	 * a device and because they are not accessible by CPU they are store
5489 	 * as special swap entry in the CPU page table.
5490 	 */
5491 	if (is_device_private_entry(ent)) {
5492 		page = pfn_swap_entry_to_page(ent);
5493 		/*
5494 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5495 		 * a refcount of 1 when free (unlike normal page)
5496 		 */
5497 		if (!page_ref_add_unless(page, 1, 1))
5498 			return NULL;
5499 		return page;
5500 	}
5501 
5502 	if (non_swap_entry(ent))
5503 		return NULL;
5504 
5505 	/*
5506 	 * Because lookup_swap_cache() updates some statistics counter,
5507 	 * we call find_get_page() with swapper_space directly.
5508 	 */
5509 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5510 	entry->val = ent.val;
5511 
5512 	return page;
5513 }
5514 #else
5515 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5516 			pte_t ptent, swp_entry_t *entry)
5517 {
5518 	return NULL;
5519 }
5520 #endif
5521 
5522 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5523 			unsigned long addr, pte_t ptent)
5524 {
5525 	if (!vma->vm_file) /* anonymous vma */
5526 		return NULL;
5527 	if (!(mc.flags & MOVE_FILE))
5528 		return NULL;
5529 
5530 	/* page is moved even if it's not RSS of this task(page-faulted). */
5531 	/* shmem/tmpfs may report page out on swap: account for that too. */
5532 	return find_get_incore_page(vma->vm_file->f_mapping,
5533 			linear_page_index(vma, addr));
5534 }
5535 
5536 /**
5537  * mem_cgroup_move_account - move account of the page
5538  * @page: the page
5539  * @compound: charge the page as compound or small page
5540  * @from: mem_cgroup which the page is moved from.
5541  * @to:	mem_cgroup which the page is moved to. @from != @to.
5542  *
5543  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5544  *
5545  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5546  * from old cgroup.
5547  */
5548 static int mem_cgroup_move_account(struct page *page,
5549 				   bool compound,
5550 				   struct mem_cgroup *from,
5551 				   struct mem_cgroup *to)
5552 {
5553 	struct folio *folio = page_folio(page);
5554 	struct lruvec *from_vec, *to_vec;
5555 	struct pglist_data *pgdat;
5556 	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5557 	int nid, ret;
5558 
5559 	VM_BUG_ON(from == to);
5560 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5561 	VM_BUG_ON(compound && !folio_test_large(folio));
5562 
5563 	/*
5564 	 * Prevent mem_cgroup_migrate() from looking at
5565 	 * page's memory cgroup of its source page while we change it.
5566 	 */
5567 	ret = -EBUSY;
5568 	if (!folio_trylock(folio))
5569 		goto out;
5570 
5571 	ret = -EINVAL;
5572 	if (folio_memcg(folio) != from)
5573 		goto out_unlock;
5574 
5575 	pgdat = folio_pgdat(folio);
5576 	from_vec = mem_cgroup_lruvec(from, pgdat);
5577 	to_vec = mem_cgroup_lruvec(to, pgdat);
5578 
5579 	folio_memcg_lock(folio);
5580 
5581 	if (folio_test_anon(folio)) {
5582 		if (folio_mapped(folio)) {
5583 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5584 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5585 			if (folio_test_transhuge(folio)) {
5586 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5587 						   -nr_pages);
5588 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5589 						   nr_pages);
5590 			}
5591 		}
5592 	} else {
5593 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5594 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5595 
5596 		if (folio_test_swapbacked(folio)) {
5597 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5598 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5599 		}
5600 
5601 		if (folio_mapped(folio)) {
5602 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5603 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5604 		}
5605 
5606 		if (folio_test_dirty(folio)) {
5607 			struct address_space *mapping = folio_mapping(folio);
5608 
5609 			if (mapping_can_writeback(mapping)) {
5610 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5611 						   -nr_pages);
5612 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5613 						   nr_pages);
5614 			}
5615 		}
5616 	}
5617 
5618 	if (folio_test_writeback(folio)) {
5619 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5620 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5621 	}
5622 
5623 	/*
5624 	 * All state has been migrated, let's switch to the new memcg.
5625 	 *
5626 	 * It is safe to change page's memcg here because the page
5627 	 * is referenced, charged, isolated, and locked: we can't race
5628 	 * with (un)charging, migration, LRU putback, or anything else
5629 	 * that would rely on a stable page's memory cgroup.
5630 	 *
5631 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5632 	 * to save space. As soon as we switch page's memory cgroup to a
5633 	 * new memcg that isn't locked, the above state can change
5634 	 * concurrently again. Make sure we're truly done with it.
5635 	 */
5636 	smp_mb();
5637 
5638 	css_get(&to->css);
5639 	css_put(&from->css);
5640 
5641 	folio->memcg_data = (unsigned long)to;
5642 
5643 	__folio_memcg_unlock(from);
5644 
5645 	ret = 0;
5646 	nid = folio_nid(folio);
5647 
5648 	local_irq_disable();
5649 	mem_cgroup_charge_statistics(to, nr_pages);
5650 	memcg_check_events(to, nid);
5651 	mem_cgroup_charge_statistics(from, -nr_pages);
5652 	memcg_check_events(from, nid);
5653 	local_irq_enable();
5654 out_unlock:
5655 	folio_unlock(folio);
5656 out:
5657 	return ret;
5658 }
5659 
5660 /**
5661  * get_mctgt_type - get target type of moving charge
5662  * @vma: the vma the pte to be checked belongs
5663  * @addr: the address corresponding to the pte to be checked
5664  * @ptent: the pte to be checked
5665  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5666  *
5667  * Returns
5668  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5669  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5670  *     move charge. if @target is not NULL, the page is stored in target->page
5671  *     with extra refcnt got(Callers should handle it).
5672  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5673  *     target for charge migration. if @target is not NULL, the entry is stored
5674  *     in target->ent.
5675  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5676  *     (so ZONE_DEVICE page and thus not on the lru).
5677  *     For now we such page is charge like a regular page would be as for all
5678  *     intent and purposes it is just special memory taking the place of a
5679  *     regular page.
5680  *
5681  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5682  *
5683  * Called with pte lock held.
5684  */
5685 
5686 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5687 		unsigned long addr, pte_t ptent, union mc_target *target)
5688 {
5689 	struct page *page = NULL;
5690 	enum mc_target_type ret = MC_TARGET_NONE;
5691 	swp_entry_t ent = { .val = 0 };
5692 
5693 	if (pte_present(ptent))
5694 		page = mc_handle_present_pte(vma, addr, ptent);
5695 	else if (is_swap_pte(ptent))
5696 		page = mc_handle_swap_pte(vma, ptent, &ent);
5697 	else if (pte_none(ptent))
5698 		page = mc_handle_file_pte(vma, addr, ptent);
5699 
5700 	if (!page && !ent.val)
5701 		return ret;
5702 	if (page) {
5703 		/*
5704 		 * Do only loose check w/o serialization.
5705 		 * mem_cgroup_move_account() checks the page is valid or
5706 		 * not under LRU exclusion.
5707 		 */
5708 		if (page_memcg(page) == mc.from) {
5709 			ret = MC_TARGET_PAGE;
5710 			if (is_device_private_page(page))
5711 				ret = MC_TARGET_DEVICE;
5712 			if (target)
5713 				target->page = page;
5714 		}
5715 		if (!ret || !target)
5716 			put_page(page);
5717 	}
5718 	/*
5719 	 * There is a swap entry and a page doesn't exist or isn't charged.
5720 	 * But we cannot move a tail-page in a THP.
5721 	 */
5722 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5723 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5724 		ret = MC_TARGET_SWAP;
5725 		if (target)
5726 			target->ent = ent;
5727 	}
5728 	return ret;
5729 }
5730 
5731 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5732 /*
5733  * We don't consider PMD mapped swapping or file mapped pages because THP does
5734  * not support them for now.
5735  * Caller should make sure that pmd_trans_huge(pmd) is true.
5736  */
5737 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5738 		unsigned long addr, pmd_t pmd, union mc_target *target)
5739 {
5740 	struct page *page = NULL;
5741 	enum mc_target_type ret = MC_TARGET_NONE;
5742 
5743 	if (unlikely(is_swap_pmd(pmd))) {
5744 		VM_BUG_ON(thp_migration_supported() &&
5745 				  !is_pmd_migration_entry(pmd));
5746 		return ret;
5747 	}
5748 	page = pmd_page(pmd);
5749 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5750 	if (!(mc.flags & MOVE_ANON))
5751 		return ret;
5752 	if (page_memcg(page) == mc.from) {
5753 		ret = MC_TARGET_PAGE;
5754 		if (target) {
5755 			get_page(page);
5756 			target->page = page;
5757 		}
5758 	}
5759 	return ret;
5760 }
5761 #else
5762 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5763 		unsigned long addr, pmd_t pmd, union mc_target *target)
5764 {
5765 	return MC_TARGET_NONE;
5766 }
5767 #endif
5768 
5769 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5770 					unsigned long addr, unsigned long end,
5771 					struct mm_walk *walk)
5772 {
5773 	struct vm_area_struct *vma = walk->vma;
5774 	pte_t *pte;
5775 	spinlock_t *ptl;
5776 
5777 	ptl = pmd_trans_huge_lock(pmd, vma);
5778 	if (ptl) {
5779 		/*
5780 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5781 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5782 		 * this might change.
5783 		 */
5784 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5785 			mc.precharge += HPAGE_PMD_NR;
5786 		spin_unlock(ptl);
5787 		return 0;
5788 	}
5789 
5790 	if (pmd_trans_unstable(pmd))
5791 		return 0;
5792 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5793 	for (; addr != end; pte++, addr += PAGE_SIZE)
5794 		if (get_mctgt_type(vma, addr, *pte, NULL))
5795 			mc.precharge++;	/* increment precharge temporarily */
5796 	pte_unmap_unlock(pte - 1, ptl);
5797 	cond_resched();
5798 
5799 	return 0;
5800 }
5801 
5802 static const struct mm_walk_ops precharge_walk_ops = {
5803 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5804 };
5805 
5806 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5807 {
5808 	unsigned long precharge;
5809 
5810 	mmap_read_lock(mm);
5811 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5812 	mmap_read_unlock(mm);
5813 
5814 	precharge = mc.precharge;
5815 	mc.precharge = 0;
5816 
5817 	return precharge;
5818 }
5819 
5820 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5821 {
5822 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5823 
5824 	VM_BUG_ON(mc.moving_task);
5825 	mc.moving_task = current;
5826 	return mem_cgroup_do_precharge(precharge);
5827 }
5828 
5829 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5830 static void __mem_cgroup_clear_mc(void)
5831 {
5832 	struct mem_cgroup *from = mc.from;
5833 	struct mem_cgroup *to = mc.to;
5834 
5835 	/* we must uncharge all the leftover precharges from mc.to */
5836 	if (mc.precharge) {
5837 		cancel_charge(mc.to, mc.precharge);
5838 		mc.precharge = 0;
5839 	}
5840 	/*
5841 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5842 	 * we must uncharge here.
5843 	 */
5844 	if (mc.moved_charge) {
5845 		cancel_charge(mc.from, mc.moved_charge);
5846 		mc.moved_charge = 0;
5847 	}
5848 	/* we must fixup refcnts and charges */
5849 	if (mc.moved_swap) {
5850 		/* uncharge swap account from the old cgroup */
5851 		if (!mem_cgroup_is_root(mc.from))
5852 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5853 
5854 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5855 
5856 		/*
5857 		 * we charged both to->memory and to->memsw, so we
5858 		 * should uncharge to->memory.
5859 		 */
5860 		if (!mem_cgroup_is_root(mc.to))
5861 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5862 
5863 		mc.moved_swap = 0;
5864 	}
5865 	memcg_oom_recover(from);
5866 	memcg_oom_recover(to);
5867 	wake_up_all(&mc.waitq);
5868 }
5869 
5870 static void mem_cgroup_clear_mc(void)
5871 {
5872 	struct mm_struct *mm = mc.mm;
5873 
5874 	/*
5875 	 * we must clear moving_task before waking up waiters at the end of
5876 	 * task migration.
5877 	 */
5878 	mc.moving_task = NULL;
5879 	__mem_cgroup_clear_mc();
5880 	spin_lock(&mc.lock);
5881 	mc.from = NULL;
5882 	mc.to = NULL;
5883 	mc.mm = NULL;
5884 	spin_unlock(&mc.lock);
5885 
5886 	mmput(mm);
5887 }
5888 
5889 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5890 {
5891 	struct cgroup_subsys_state *css;
5892 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5893 	struct mem_cgroup *from;
5894 	struct task_struct *leader, *p;
5895 	struct mm_struct *mm;
5896 	unsigned long move_flags;
5897 	int ret = 0;
5898 
5899 	/* charge immigration isn't supported on the default hierarchy */
5900 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5901 		return 0;
5902 
5903 	/*
5904 	 * Multi-process migrations only happen on the default hierarchy
5905 	 * where charge immigration is not used.  Perform charge
5906 	 * immigration if @tset contains a leader and whine if there are
5907 	 * multiple.
5908 	 */
5909 	p = NULL;
5910 	cgroup_taskset_for_each_leader(leader, css, tset) {
5911 		WARN_ON_ONCE(p);
5912 		p = leader;
5913 		memcg = mem_cgroup_from_css(css);
5914 	}
5915 	if (!p)
5916 		return 0;
5917 
5918 	/*
5919 	 * We are now committed to this value whatever it is. Changes in this
5920 	 * tunable will only affect upcoming migrations, not the current one.
5921 	 * So we need to save it, and keep it going.
5922 	 */
5923 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5924 	if (!move_flags)
5925 		return 0;
5926 
5927 	from = mem_cgroup_from_task(p);
5928 
5929 	VM_BUG_ON(from == memcg);
5930 
5931 	mm = get_task_mm(p);
5932 	if (!mm)
5933 		return 0;
5934 	/* We move charges only when we move a owner of the mm */
5935 	if (mm->owner == p) {
5936 		VM_BUG_ON(mc.from);
5937 		VM_BUG_ON(mc.to);
5938 		VM_BUG_ON(mc.precharge);
5939 		VM_BUG_ON(mc.moved_charge);
5940 		VM_BUG_ON(mc.moved_swap);
5941 
5942 		spin_lock(&mc.lock);
5943 		mc.mm = mm;
5944 		mc.from = from;
5945 		mc.to = memcg;
5946 		mc.flags = move_flags;
5947 		spin_unlock(&mc.lock);
5948 		/* We set mc.moving_task later */
5949 
5950 		ret = mem_cgroup_precharge_mc(mm);
5951 		if (ret)
5952 			mem_cgroup_clear_mc();
5953 	} else {
5954 		mmput(mm);
5955 	}
5956 	return ret;
5957 }
5958 
5959 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5960 {
5961 	if (mc.to)
5962 		mem_cgroup_clear_mc();
5963 }
5964 
5965 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5966 				unsigned long addr, unsigned long end,
5967 				struct mm_walk *walk)
5968 {
5969 	int ret = 0;
5970 	struct vm_area_struct *vma = walk->vma;
5971 	pte_t *pte;
5972 	spinlock_t *ptl;
5973 	enum mc_target_type target_type;
5974 	union mc_target target;
5975 	struct page *page;
5976 
5977 	ptl = pmd_trans_huge_lock(pmd, vma);
5978 	if (ptl) {
5979 		if (mc.precharge < HPAGE_PMD_NR) {
5980 			spin_unlock(ptl);
5981 			return 0;
5982 		}
5983 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5984 		if (target_type == MC_TARGET_PAGE) {
5985 			page = target.page;
5986 			if (!isolate_lru_page(page)) {
5987 				if (!mem_cgroup_move_account(page, true,
5988 							     mc.from, mc.to)) {
5989 					mc.precharge -= HPAGE_PMD_NR;
5990 					mc.moved_charge += HPAGE_PMD_NR;
5991 				}
5992 				putback_lru_page(page);
5993 			}
5994 			put_page(page);
5995 		} else if (target_type == MC_TARGET_DEVICE) {
5996 			page = target.page;
5997 			if (!mem_cgroup_move_account(page, true,
5998 						     mc.from, mc.to)) {
5999 				mc.precharge -= HPAGE_PMD_NR;
6000 				mc.moved_charge += HPAGE_PMD_NR;
6001 			}
6002 			put_page(page);
6003 		}
6004 		spin_unlock(ptl);
6005 		return 0;
6006 	}
6007 
6008 	if (pmd_trans_unstable(pmd))
6009 		return 0;
6010 retry:
6011 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6012 	for (; addr != end; addr += PAGE_SIZE) {
6013 		pte_t ptent = *(pte++);
6014 		bool device = false;
6015 		swp_entry_t ent;
6016 
6017 		if (!mc.precharge)
6018 			break;
6019 
6020 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6021 		case MC_TARGET_DEVICE:
6022 			device = true;
6023 			fallthrough;
6024 		case MC_TARGET_PAGE:
6025 			page = target.page;
6026 			/*
6027 			 * We can have a part of the split pmd here. Moving it
6028 			 * can be done but it would be too convoluted so simply
6029 			 * ignore such a partial THP and keep it in original
6030 			 * memcg. There should be somebody mapping the head.
6031 			 */
6032 			if (PageTransCompound(page))
6033 				goto put;
6034 			if (!device && isolate_lru_page(page))
6035 				goto put;
6036 			if (!mem_cgroup_move_account(page, false,
6037 						mc.from, mc.to)) {
6038 				mc.precharge--;
6039 				/* we uncharge from mc.from later. */
6040 				mc.moved_charge++;
6041 			}
6042 			if (!device)
6043 				putback_lru_page(page);
6044 put:			/* get_mctgt_type() gets the page */
6045 			put_page(page);
6046 			break;
6047 		case MC_TARGET_SWAP:
6048 			ent = target.ent;
6049 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6050 				mc.precharge--;
6051 				mem_cgroup_id_get_many(mc.to, 1);
6052 				/* we fixup other refcnts and charges later. */
6053 				mc.moved_swap++;
6054 			}
6055 			break;
6056 		default:
6057 			break;
6058 		}
6059 	}
6060 	pte_unmap_unlock(pte - 1, ptl);
6061 	cond_resched();
6062 
6063 	if (addr != end) {
6064 		/*
6065 		 * We have consumed all precharges we got in can_attach().
6066 		 * We try charge one by one, but don't do any additional
6067 		 * charges to mc.to if we have failed in charge once in attach()
6068 		 * phase.
6069 		 */
6070 		ret = mem_cgroup_do_precharge(1);
6071 		if (!ret)
6072 			goto retry;
6073 	}
6074 
6075 	return ret;
6076 }
6077 
6078 static const struct mm_walk_ops charge_walk_ops = {
6079 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6080 };
6081 
6082 static void mem_cgroup_move_charge(void)
6083 {
6084 	lru_add_drain_all();
6085 	/*
6086 	 * Signal lock_page_memcg() to take the memcg's move_lock
6087 	 * while we're moving its pages to another memcg. Then wait
6088 	 * for already started RCU-only updates to finish.
6089 	 */
6090 	atomic_inc(&mc.from->moving_account);
6091 	synchronize_rcu();
6092 retry:
6093 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6094 		/*
6095 		 * Someone who are holding the mmap_lock might be waiting in
6096 		 * waitq. So we cancel all extra charges, wake up all waiters,
6097 		 * and retry. Because we cancel precharges, we might not be able
6098 		 * to move enough charges, but moving charge is a best-effort
6099 		 * feature anyway, so it wouldn't be a big problem.
6100 		 */
6101 		__mem_cgroup_clear_mc();
6102 		cond_resched();
6103 		goto retry;
6104 	}
6105 	/*
6106 	 * When we have consumed all precharges and failed in doing
6107 	 * additional charge, the page walk just aborts.
6108 	 */
6109 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6110 			NULL);
6111 
6112 	mmap_read_unlock(mc.mm);
6113 	atomic_dec(&mc.from->moving_account);
6114 }
6115 
6116 static void mem_cgroup_move_task(void)
6117 {
6118 	if (mc.to) {
6119 		mem_cgroup_move_charge();
6120 		mem_cgroup_clear_mc();
6121 	}
6122 }
6123 #else	/* !CONFIG_MMU */
6124 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6125 {
6126 	return 0;
6127 }
6128 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6129 {
6130 }
6131 static void mem_cgroup_move_task(void)
6132 {
6133 }
6134 #endif
6135 
6136 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6137 {
6138 	if (value == PAGE_COUNTER_MAX)
6139 		seq_puts(m, "max\n");
6140 	else
6141 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6142 
6143 	return 0;
6144 }
6145 
6146 static u64 memory_current_read(struct cgroup_subsys_state *css,
6147 			       struct cftype *cft)
6148 {
6149 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6150 
6151 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6152 }
6153 
6154 static int memory_min_show(struct seq_file *m, void *v)
6155 {
6156 	return seq_puts_memcg_tunable(m,
6157 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6158 }
6159 
6160 static ssize_t memory_min_write(struct kernfs_open_file *of,
6161 				char *buf, size_t nbytes, loff_t off)
6162 {
6163 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6164 	unsigned long min;
6165 	int err;
6166 
6167 	buf = strstrip(buf);
6168 	err = page_counter_memparse(buf, "max", &min);
6169 	if (err)
6170 		return err;
6171 
6172 	page_counter_set_min(&memcg->memory, min);
6173 
6174 	return nbytes;
6175 }
6176 
6177 static int memory_low_show(struct seq_file *m, void *v)
6178 {
6179 	return seq_puts_memcg_tunable(m,
6180 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6181 }
6182 
6183 static ssize_t memory_low_write(struct kernfs_open_file *of,
6184 				char *buf, size_t nbytes, loff_t off)
6185 {
6186 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6187 	unsigned long low;
6188 	int err;
6189 
6190 	buf = strstrip(buf);
6191 	err = page_counter_memparse(buf, "max", &low);
6192 	if (err)
6193 		return err;
6194 
6195 	page_counter_set_low(&memcg->memory, low);
6196 
6197 	return nbytes;
6198 }
6199 
6200 static int memory_high_show(struct seq_file *m, void *v)
6201 {
6202 	return seq_puts_memcg_tunable(m,
6203 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6204 }
6205 
6206 static ssize_t memory_high_write(struct kernfs_open_file *of,
6207 				 char *buf, size_t nbytes, loff_t off)
6208 {
6209 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6210 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6211 	bool drained = false;
6212 	unsigned long high;
6213 	int err;
6214 
6215 	buf = strstrip(buf);
6216 	err = page_counter_memparse(buf, "max", &high);
6217 	if (err)
6218 		return err;
6219 
6220 	page_counter_set_high(&memcg->memory, high);
6221 
6222 	for (;;) {
6223 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6224 		unsigned long reclaimed;
6225 
6226 		if (nr_pages <= high)
6227 			break;
6228 
6229 		if (signal_pending(current))
6230 			break;
6231 
6232 		if (!drained) {
6233 			drain_all_stock(memcg);
6234 			drained = true;
6235 			continue;
6236 		}
6237 
6238 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6239 							 GFP_KERNEL, true);
6240 
6241 		if (!reclaimed && !nr_retries--)
6242 			break;
6243 	}
6244 
6245 	memcg_wb_domain_size_changed(memcg);
6246 	return nbytes;
6247 }
6248 
6249 static int memory_max_show(struct seq_file *m, void *v)
6250 {
6251 	return seq_puts_memcg_tunable(m,
6252 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6253 }
6254 
6255 static ssize_t memory_max_write(struct kernfs_open_file *of,
6256 				char *buf, size_t nbytes, loff_t off)
6257 {
6258 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6259 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6260 	bool drained = false;
6261 	unsigned long max;
6262 	int err;
6263 
6264 	buf = strstrip(buf);
6265 	err = page_counter_memparse(buf, "max", &max);
6266 	if (err)
6267 		return err;
6268 
6269 	xchg(&memcg->memory.max, max);
6270 
6271 	for (;;) {
6272 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6273 
6274 		if (nr_pages <= max)
6275 			break;
6276 
6277 		if (signal_pending(current))
6278 			break;
6279 
6280 		if (!drained) {
6281 			drain_all_stock(memcg);
6282 			drained = true;
6283 			continue;
6284 		}
6285 
6286 		if (nr_reclaims) {
6287 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6288 							  GFP_KERNEL, true))
6289 				nr_reclaims--;
6290 			continue;
6291 		}
6292 
6293 		memcg_memory_event(memcg, MEMCG_OOM);
6294 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6295 			break;
6296 	}
6297 
6298 	memcg_wb_domain_size_changed(memcg);
6299 	return nbytes;
6300 }
6301 
6302 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6303 {
6304 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6305 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6306 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6307 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6308 	seq_printf(m, "oom_kill %lu\n",
6309 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6310 }
6311 
6312 static int memory_events_show(struct seq_file *m, void *v)
6313 {
6314 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6315 
6316 	__memory_events_show(m, memcg->memory_events);
6317 	return 0;
6318 }
6319 
6320 static int memory_events_local_show(struct seq_file *m, void *v)
6321 {
6322 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6323 
6324 	__memory_events_show(m, memcg->memory_events_local);
6325 	return 0;
6326 }
6327 
6328 static int memory_stat_show(struct seq_file *m, void *v)
6329 {
6330 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6331 	char *buf;
6332 
6333 	buf = memory_stat_format(memcg);
6334 	if (!buf)
6335 		return -ENOMEM;
6336 	seq_puts(m, buf);
6337 	kfree(buf);
6338 	return 0;
6339 }
6340 
6341 #ifdef CONFIG_NUMA
6342 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6343 						     int item)
6344 {
6345 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6346 }
6347 
6348 static int memory_numa_stat_show(struct seq_file *m, void *v)
6349 {
6350 	int i;
6351 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6352 
6353 	mem_cgroup_flush_stats();
6354 
6355 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6356 		int nid;
6357 
6358 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6359 			continue;
6360 
6361 		seq_printf(m, "%s", memory_stats[i].name);
6362 		for_each_node_state(nid, N_MEMORY) {
6363 			u64 size;
6364 			struct lruvec *lruvec;
6365 
6366 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6367 			size = lruvec_page_state_output(lruvec,
6368 							memory_stats[i].idx);
6369 			seq_printf(m, " N%d=%llu", nid, size);
6370 		}
6371 		seq_putc(m, '\n');
6372 	}
6373 
6374 	return 0;
6375 }
6376 #endif
6377 
6378 static int memory_oom_group_show(struct seq_file *m, void *v)
6379 {
6380 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6381 
6382 	seq_printf(m, "%d\n", memcg->oom_group);
6383 
6384 	return 0;
6385 }
6386 
6387 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6388 				      char *buf, size_t nbytes, loff_t off)
6389 {
6390 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6391 	int ret, oom_group;
6392 
6393 	buf = strstrip(buf);
6394 	if (!buf)
6395 		return -EINVAL;
6396 
6397 	ret = kstrtoint(buf, 0, &oom_group);
6398 	if (ret)
6399 		return ret;
6400 
6401 	if (oom_group != 0 && oom_group != 1)
6402 		return -EINVAL;
6403 
6404 	memcg->oom_group = oom_group;
6405 
6406 	return nbytes;
6407 }
6408 
6409 static struct cftype memory_files[] = {
6410 	{
6411 		.name = "current",
6412 		.flags = CFTYPE_NOT_ON_ROOT,
6413 		.read_u64 = memory_current_read,
6414 	},
6415 	{
6416 		.name = "min",
6417 		.flags = CFTYPE_NOT_ON_ROOT,
6418 		.seq_show = memory_min_show,
6419 		.write = memory_min_write,
6420 	},
6421 	{
6422 		.name = "low",
6423 		.flags = CFTYPE_NOT_ON_ROOT,
6424 		.seq_show = memory_low_show,
6425 		.write = memory_low_write,
6426 	},
6427 	{
6428 		.name = "high",
6429 		.flags = CFTYPE_NOT_ON_ROOT,
6430 		.seq_show = memory_high_show,
6431 		.write = memory_high_write,
6432 	},
6433 	{
6434 		.name = "max",
6435 		.flags = CFTYPE_NOT_ON_ROOT,
6436 		.seq_show = memory_max_show,
6437 		.write = memory_max_write,
6438 	},
6439 	{
6440 		.name = "events",
6441 		.flags = CFTYPE_NOT_ON_ROOT,
6442 		.file_offset = offsetof(struct mem_cgroup, events_file),
6443 		.seq_show = memory_events_show,
6444 	},
6445 	{
6446 		.name = "events.local",
6447 		.flags = CFTYPE_NOT_ON_ROOT,
6448 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6449 		.seq_show = memory_events_local_show,
6450 	},
6451 	{
6452 		.name = "stat",
6453 		.seq_show = memory_stat_show,
6454 	},
6455 #ifdef CONFIG_NUMA
6456 	{
6457 		.name = "numa_stat",
6458 		.seq_show = memory_numa_stat_show,
6459 	},
6460 #endif
6461 	{
6462 		.name = "oom.group",
6463 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6464 		.seq_show = memory_oom_group_show,
6465 		.write = memory_oom_group_write,
6466 	},
6467 	{ }	/* terminate */
6468 };
6469 
6470 struct cgroup_subsys memory_cgrp_subsys = {
6471 	.css_alloc = mem_cgroup_css_alloc,
6472 	.css_online = mem_cgroup_css_online,
6473 	.css_offline = mem_cgroup_css_offline,
6474 	.css_released = mem_cgroup_css_released,
6475 	.css_free = mem_cgroup_css_free,
6476 	.css_reset = mem_cgroup_css_reset,
6477 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6478 	.can_attach = mem_cgroup_can_attach,
6479 	.cancel_attach = mem_cgroup_cancel_attach,
6480 	.post_attach = mem_cgroup_move_task,
6481 	.dfl_cftypes = memory_files,
6482 	.legacy_cftypes = mem_cgroup_legacy_files,
6483 	.early_init = 0,
6484 };
6485 
6486 /*
6487  * This function calculates an individual cgroup's effective
6488  * protection which is derived from its own memory.min/low, its
6489  * parent's and siblings' settings, as well as the actual memory
6490  * distribution in the tree.
6491  *
6492  * The following rules apply to the effective protection values:
6493  *
6494  * 1. At the first level of reclaim, effective protection is equal to
6495  *    the declared protection in memory.min and memory.low.
6496  *
6497  * 2. To enable safe delegation of the protection configuration, at
6498  *    subsequent levels the effective protection is capped to the
6499  *    parent's effective protection.
6500  *
6501  * 3. To make complex and dynamic subtrees easier to configure, the
6502  *    user is allowed to overcommit the declared protection at a given
6503  *    level. If that is the case, the parent's effective protection is
6504  *    distributed to the children in proportion to how much protection
6505  *    they have declared and how much of it they are utilizing.
6506  *
6507  *    This makes distribution proportional, but also work-conserving:
6508  *    if one cgroup claims much more protection than it uses memory,
6509  *    the unused remainder is available to its siblings.
6510  *
6511  * 4. Conversely, when the declared protection is undercommitted at a
6512  *    given level, the distribution of the larger parental protection
6513  *    budget is NOT proportional. A cgroup's protection from a sibling
6514  *    is capped to its own memory.min/low setting.
6515  *
6516  * 5. However, to allow protecting recursive subtrees from each other
6517  *    without having to declare each individual cgroup's fixed share
6518  *    of the ancestor's claim to protection, any unutilized -
6519  *    "floating" - protection from up the tree is distributed in
6520  *    proportion to each cgroup's *usage*. This makes the protection
6521  *    neutral wrt sibling cgroups and lets them compete freely over
6522  *    the shared parental protection budget, but it protects the
6523  *    subtree as a whole from neighboring subtrees.
6524  *
6525  * Note that 4. and 5. are not in conflict: 4. is about protecting
6526  * against immediate siblings whereas 5. is about protecting against
6527  * neighboring subtrees.
6528  */
6529 static unsigned long effective_protection(unsigned long usage,
6530 					  unsigned long parent_usage,
6531 					  unsigned long setting,
6532 					  unsigned long parent_effective,
6533 					  unsigned long siblings_protected)
6534 {
6535 	unsigned long protected;
6536 	unsigned long ep;
6537 
6538 	protected = min(usage, setting);
6539 	/*
6540 	 * If all cgroups at this level combined claim and use more
6541 	 * protection then what the parent affords them, distribute
6542 	 * shares in proportion to utilization.
6543 	 *
6544 	 * We are using actual utilization rather than the statically
6545 	 * claimed protection in order to be work-conserving: claimed
6546 	 * but unused protection is available to siblings that would
6547 	 * otherwise get a smaller chunk than what they claimed.
6548 	 */
6549 	if (siblings_protected > parent_effective)
6550 		return protected * parent_effective / siblings_protected;
6551 
6552 	/*
6553 	 * Ok, utilized protection of all children is within what the
6554 	 * parent affords them, so we know whatever this child claims
6555 	 * and utilizes is effectively protected.
6556 	 *
6557 	 * If there is unprotected usage beyond this value, reclaim
6558 	 * will apply pressure in proportion to that amount.
6559 	 *
6560 	 * If there is unutilized protection, the cgroup will be fully
6561 	 * shielded from reclaim, but we do return a smaller value for
6562 	 * protection than what the group could enjoy in theory. This
6563 	 * is okay. With the overcommit distribution above, effective
6564 	 * protection is always dependent on how memory is actually
6565 	 * consumed among the siblings anyway.
6566 	 */
6567 	ep = protected;
6568 
6569 	/*
6570 	 * If the children aren't claiming (all of) the protection
6571 	 * afforded to them by the parent, distribute the remainder in
6572 	 * proportion to the (unprotected) memory of each cgroup. That
6573 	 * way, cgroups that aren't explicitly prioritized wrt each
6574 	 * other compete freely over the allowance, but they are
6575 	 * collectively protected from neighboring trees.
6576 	 *
6577 	 * We're using unprotected memory for the weight so that if
6578 	 * some cgroups DO claim explicit protection, we don't protect
6579 	 * the same bytes twice.
6580 	 *
6581 	 * Check both usage and parent_usage against the respective
6582 	 * protected values. One should imply the other, but they
6583 	 * aren't read atomically - make sure the division is sane.
6584 	 */
6585 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6586 		return ep;
6587 	if (parent_effective > siblings_protected &&
6588 	    parent_usage > siblings_protected &&
6589 	    usage > protected) {
6590 		unsigned long unclaimed;
6591 
6592 		unclaimed = parent_effective - siblings_protected;
6593 		unclaimed *= usage - protected;
6594 		unclaimed /= parent_usage - siblings_protected;
6595 
6596 		ep += unclaimed;
6597 	}
6598 
6599 	return ep;
6600 }
6601 
6602 /**
6603  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6604  * @root: the top ancestor of the sub-tree being checked
6605  * @memcg: the memory cgroup to check
6606  *
6607  * WARNING: This function is not stateless! It can only be used as part
6608  *          of a top-down tree iteration, not for isolated queries.
6609  */
6610 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6611 				     struct mem_cgroup *memcg)
6612 {
6613 	unsigned long usage, parent_usage;
6614 	struct mem_cgroup *parent;
6615 
6616 	if (mem_cgroup_disabled())
6617 		return;
6618 
6619 	if (!root)
6620 		root = root_mem_cgroup;
6621 
6622 	/*
6623 	 * Effective values of the reclaim targets are ignored so they
6624 	 * can be stale. Have a look at mem_cgroup_protection for more
6625 	 * details.
6626 	 * TODO: calculation should be more robust so that we do not need
6627 	 * that special casing.
6628 	 */
6629 	if (memcg == root)
6630 		return;
6631 
6632 	usage = page_counter_read(&memcg->memory);
6633 	if (!usage)
6634 		return;
6635 
6636 	parent = parent_mem_cgroup(memcg);
6637 	/* No parent means a non-hierarchical mode on v1 memcg */
6638 	if (!parent)
6639 		return;
6640 
6641 	if (parent == root) {
6642 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6643 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6644 		return;
6645 	}
6646 
6647 	parent_usage = page_counter_read(&parent->memory);
6648 
6649 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6650 			READ_ONCE(memcg->memory.min),
6651 			READ_ONCE(parent->memory.emin),
6652 			atomic_long_read(&parent->memory.children_min_usage)));
6653 
6654 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6655 			READ_ONCE(memcg->memory.low),
6656 			READ_ONCE(parent->memory.elow),
6657 			atomic_long_read(&parent->memory.children_low_usage)));
6658 }
6659 
6660 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6661 			gfp_t gfp)
6662 {
6663 	long nr_pages = folio_nr_pages(folio);
6664 	int ret;
6665 
6666 	ret = try_charge(memcg, gfp, nr_pages);
6667 	if (ret)
6668 		goto out;
6669 
6670 	css_get(&memcg->css);
6671 	commit_charge(folio, memcg);
6672 
6673 	local_irq_disable();
6674 	mem_cgroup_charge_statistics(memcg, nr_pages);
6675 	memcg_check_events(memcg, folio_nid(folio));
6676 	local_irq_enable();
6677 out:
6678 	return ret;
6679 }
6680 
6681 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6682 {
6683 	struct mem_cgroup *memcg;
6684 	int ret;
6685 
6686 	memcg = get_mem_cgroup_from_mm(mm);
6687 	ret = charge_memcg(folio, memcg, gfp);
6688 	css_put(&memcg->css);
6689 
6690 	return ret;
6691 }
6692 
6693 /**
6694  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6695  * @page: page to charge
6696  * @mm: mm context of the victim
6697  * @gfp: reclaim mode
6698  * @entry: swap entry for which the page is allocated
6699  *
6700  * This function charges a page allocated for swapin. Please call this before
6701  * adding the page to the swapcache.
6702  *
6703  * Returns 0 on success. Otherwise, an error code is returned.
6704  */
6705 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6706 				  gfp_t gfp, swp_entry_t entry)
6707 {
6708 	struct folio *folio = page_folio(page);
6709 	struct mem_cgroup *memcg;
6710 	unsigned short id;
6711 	int ret;
6712 
6713 	if (mem_cgroup_disabled())
6714 		return 0;
6715 
6716 	id = lookup_swap_cgroup_id(entry);
6717 	rcu_read_lock();
6718 	memcg = mem_cgroup_from_id(id);
6719 	if (!memcg || !css_tryget_online(&memcg->css))
6720 		memcg = get_mem_cgroup_from_mm(mm);
6721 	rcu_read_unlock();
6722 
6723 	ret = charge_memcg(folio, memcg, gfp);
6724 
6725 	css_put(&memcg->css);
6726 	return ret;
6727 }
6728 
6729 /*
6730  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6731  * @entry: swap entry for which the page is charged
6732  *
6733  * Call this function after successfully adding the charged page to swapcache.
6734  *
6735  * Note: This function assumes the page for which swap slot is being uncharged
6736  * is order 0 page.
6737  */
6738 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6739 {
6740 	/*
6741 	 * Cgroup1's unified memory+swap counter has been charged with the
6742 	 * new swapcache page, finish the transfer by uncharging the swap
6743 	 * slot. The swap slot would also get uncharged when it dies, but
6744 	 * it can stick around indefinitely and we'd count the page twice
6745 	 * the entire time.
6746 	 *
6747 	 * Cgroup2 has separate resource counters for memory and swap,
6748 	 * so this is a non-issue here. Memory and swap charge lifetimes
6749 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6750 	 * page to memory here, and uncharge swap when the slot is freed.
6751 	 */
6752 	if (!mem_cgroup_disabled() && do_memsw_account()) {
6753 		/*
6754 		 * The swap entry might not get freed for a long time,
6755 		 * let's not wait for it.  The page already received a
6756 		 * memory+swap charge, drop the swap entry duplicate.
6757 		 */
6758 		mem_cgroup_uncharge_swap(entry, 1);
6759 	}
6760 }
6761 
6762 struct uncharge_gather {
6763 	struct mem_cgroup *memcg;
6764 	unsigned long nr_memory;
6765 	unsigned long pgpgout;
6766 	unsigned long nr_kmem;
6767 	int nid;
6768 };
6769 
6770 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6771 {
6772 	memset(ug, 0, sizeof(*ug));
6773 }
6774 
6775 static void uncharge_batch(const struct uncharge_gather *ug)
6776 {
6777 	unsigned long flags;
6778 
6779 	if (ug->nr_memory) {
6780 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6781 		if (do_memsw_account())
6782 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6783 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6784 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6785 		memcg_oom_recover(ug->memcg);
6786 	}
6787 
6788 	local_irq_save(flags);
6789 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6790 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6791 	memcg_check_events(ug->memcg, ug->nid);
6792 	local_irq_restore(flags);
6793 
6794 	/* drop reference from uncharge_folio */
6795 	css_put(&ug->memcg->css);
6796 }
6797 
6798 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6799 {
6800 	long nr_pages;
6801 	struct mem_cgroup *memcg;
6802 	struct obj_cgroup *objcg;
6803 	bool use_objcg = folio_memcg_kmem(folio);
6804 
6805 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6806 
6807 	/*
6808 	 * Nobody should be changing or seriously looking at
6809 	 * folio memcg or objcg at this point, we have fully
6810 	 * exclusive access to the folio.
6811 	 */
6812 	if (use_objcg) {
6813 		objcg = __folio_objcg(folio);
6814 		/*
6815 		 * This get matches the put at the end of the function and
6816 		 * kmem pages do not hold memcg references anymore.
6817 		 */
6818 		memcg = get_mem_cgroup_from_objcg(objcg);
6819 	} else {
6820 		memcg = __folio_memcg(folio);
6821 	}
6822 
6823 	if (!memcg)
6824 		return;
6825 
6826 	if (ug->memcg != memcg) {
6827 		if (ug->memcg) {
6828 			uncharge_batch(ug);
6829 			uncharge_gather_clear(ug);
6830 		}
6831 		ug->memcg = memcg;
6832 		ug->nid = folio_nid(folio);
6833 
6834 		/* pairs with css_put in uncharge_batch */
6835 		css_get(&memcg->css);
6836 	}
6837 
6838 	nr_pages = folio_nr_pages(folio);
6839 
6840 	if (use_objcg) {
6841 		ug->nr_memory += nr_pages;
6842 		ug->nr_kmem += nr_pages;
6843 
6844 		folio->memcg_data = 0;
6845 		obj_cgroup_put(objcg);
6846 	} else {
6847 		/* LRU pages aren't accounted at the root level */
6848 		if (!mem_cgroup_is_root(memcg))
6849 			ug->nr_memory += nr_pages;
6850 		ug->pgpgout++;
6851 
6852 		folio->memcg_data = 0;
6853 	}
6854 
6855 	css_put(&memcg->css);
6856 }
6857 
6858 void __mem_cgroup_uncharge(struct folio *folio)
6859 {
6860 	struct uncharge_gather ug;
6861 
6862 	/* Don't touch folio->lru of any random page, pre-check: */
6863 	if (!folio_memcg(folio))
6864 		return;
6865 
6866 	uncharge_gather_clear(&ug);
6867 	uncharge_folio(folio, &ug);
6868 	uncharge_batch(&ug);
6869 }
6870 
6871 /**
6872  * __mem_cgroup_uncharge_list - uncharge a list of page
6873  * @page_list: list of pages to uncharge
6874  *
6875  * Uncharge a list of pages previously charged with
6876  * __mem_cgroup_charge().
6877  */
6878 void __mem_cgroup_uncharge_list(struct list_head *page_list)
6879 {
6880 	struct uncharge_gather ug;
6881 	struct folio *folio;
6882 
6883 	uncharge_gather_clear(&ug);
6884 	list_for_each_entry(folio, page_list, lru)
6885 		uncharge_folio(folio, &ug);
6886 	if (ug.memcg)
6887 		uncharge_batch(&ug);
6888 }
6889 
6890 /**
6891  * mem_cgroup_migrate - Charge a folio's replacement.
6892  * @old: Currently circulating folio.
6893  * @new: Replacement folio.
6894  *
6895  * Charge @new as a replacement folio for @old. @old will
6896  * be uncharged upon free.
6897  *
6898  * Both folios must be locked, @new->mapping must be set up.
6899  */
6900 void mem_cgroup_migrate(struct folio *old, struct folio *new)
6901 {
6902 	struct mem_cgroup *memcg;
6903 	long nr_pages = folio_nr_pages(new);
6904 	unsigned long flags;
6905 
6906 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
6907 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
6908 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
6909 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
6910 
6911 	if (mem_cgroup_disabled())
6912 		return;
6913 
6914 	/* Page cache replacement: new folio already charged? */
6915 	if (folio_memcg(new))
6916 		return;
6917 
6918 	memcg = folio_memcg(old);
6919 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
6920 	if (!memcg)
6921 		return;
6922 
6923 	/* Force-charge the new page. The old one will be freed soon */
6924 	if (!mem_cgroup_is_root(memcg)) {
6925 		page_counter_charge(&memcg->memory, nr_pages);
6926 		if (do_memsw_account())
6927 			page_counter_charge(&memcg->memsw, nr_pages);
6928 	}
6929 
6930 	css_get(&memcg->css);
6931 	commit_charge(new, memcg);
6932 
6933 	local_irq_save(flags);
6934 	mem_cgroup_charge_statistics(memcg, nr_pages);
6935 	memcg_check_events(memcg, folio_nid(new));
6936 	local_irq_restore(flags);
6937 }
6938 
6939 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6940 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6941 
6942 void mem_cgroup_sk_alloc(struct sock *sk)
6943 {
6944 	struct mem_cgroup *memcg;
6945 
6946 	if (!mem_cgroup_sockets_enabled)
6947 		return;
6948 
6949 	/* Do not associate the sock with unrelated interrupted task's memcg. */
6950 	if (in_interrupt())
6951 		return;
6952 
6953 	rcu_read_lock();
6954 	memcg = mem_cgroup_from_task(current);
6955 	if (memcg == root_mem_cgroup)
6956 		goto out;
6957 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6958 		goto out;
6959 	if (css_tryget(&memcg->css))
6960 		sk->sk_memcg = memcg;
6961 out:
6962 	rcu_read_unlock();
6963 }
6964 
6965 void mem_cgroup_sk_free(struct sock *sk)
6966 {
6967 	if (sk->sk_memcg)
6968 		css_put(&sk->sk_memcg->css);
6969 }
6970 
6971 /**
6972  * mem_cgroup_charge_skmem - charge socket memory
6973  * @memcg: memcg to charge
6974  * @nr_pages: number of pages to charge
6975  * @gfp_mask: reclaim mode
6976  *
6977  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6978  * @memcg's configured limit, %false if it doesn't.
6979  */
6980 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
6981 			     gfp_t gfp_mask)
6982 {
6983 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6984 		struct page_counter *fail;
6985 
6986 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6987 			memcg->tcpmem_pressure = 0;
6988 			return true;
6989 		}
6990 		memcg->tcpmem_pressure = 1;
6991 		if (gfp_mask & __GFP_NOFAIL) {
6992 			page_counter_charge(&memcg->tcpmem, nr_pages);
6993 			return true;
6994 		}
6995 		return false;
6996 	}
6997 
6998 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
6999 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7000 		return true;
7001 	}
7002 
7003 	return false;
7004 }
7005 
7006 /**
7007  * mem_cgroup_uncharge_skmem - uncharge socket memory
7008  * @memcg: memcg to uncharge
7009  * @nr_pages: number of pages to uncharge
7010  */
7011 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7012 {
7013 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7014 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7015 		return;
7016 	}
7017 
7018 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7019 
7020 	refill_stock(memcg, nr_pages);
7021 }
7022 
7023 static int __init cgroup_memory(char *s)
7024 {
7025 	char *token;
7026 
7027 	while ((token = strsep(&s, ",")) != NULL) {
7028 		if (!*token)
7029 			continue;
7030 		if (!strcmp(token, "nosocket"))
7031 			cgroup_memory_nosocket = true;
7032 		if (!strcmp(token, "nokmem"))
7033 			cgroup_memory_nokmem = true;
7034 	}
7035 	return 0;
7036 }
7037 __setup("cgroup.memory=", cgroup_memory);
7038 
7039 /*
7040  * subsys_initcall() for memory controller.
7041  *
7042  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7043  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7044  * basically everything that doesn't depend on a specific mem_cgroup structure
7045  * should be initialized from here.
7046  */
7047 static int __init mem_cgroup_init(void)
7048 {
7049 	int cpu, node;
7050 
7051 	/*
7052 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7053 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7054 	 * to work fine, we should make sure that the overfill threshold can't
7055 	 * exceed S32_MAX / PAGE_SIZE.
7056 	 */
7057 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7058 
7059 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7060 				  memcg_hotplug_cpu_dead);
7061 
7062 	for_each_possible_cpu(cpu)
7063 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7064 			  drain_local_stock);
7065 
7066 	for_each_node(node) {
7067 		struct mem_cgroup_tree_per_node *rtpn;
7068 
7069 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7070 				    node_online(node) ? node : NUMA_NO_NODE);
7071 
7072 		rtpn->rb_root = RB_ROOT;
7073 		rtpn->rb_rightmost = NULL;
7074 		spin_lock_init(&rtpn->lock);
7075 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7076 	}
7077 
7078 	return 0;
7079 }
7080 subsys_initcall(mem_cgroup_init);
7081 
7082 #ifdef CONFIG_MEMCG_SWAP
7083 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7084 {
7085 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7086 		/*
7087 		 * The root cgroup cannot be destroyed, so it's refcount must
7088 		 * always be >= 1.
7089 		 */
7090 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7091 			VM_BUG_ON(1);
7092 			break;
7093 		}
7094 		memcg = parent_mem_cgroup(memcg);
7095 		if (!memcg)
7096 			memcg = root_mem_cgroup;
7097 	}
7098 	return memcg;
7099 }
7100 
7101 /**
7102  * mem_cgroup_swapout - transfer a memsw charge to swap
7103  * @page: page whose memsw charge to transfer
7104  * @entry: swap entry to move the charge to
7105  *
7106  * Transfer the memsw charge of @page to @entry.
7107  */
7108 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7109 {
7110 	struct mem_cgroup *memcg, *swap_memcg;
7111 	unsigned int nr_entries;
7112 	unsigned short oldid;
7113 
7114 	VM_BUG_ON_PAGE(PageLRU(page), page);
7115 	VM_BUG_ON_PAGE(page_count(page), page);
7116 
7117 	if (mem_cgroup_disabled())
7118 		return;
7119 
7120 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7121 		return;
7122 
7123 	memcg = page_memcg(page);
7124 
7125 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7126 	if (!memcg)
7127 		return;
7128 
7129 	/*
7130 	 * In case the memcg owning these pages has been offlined and doesn't
7131 	 * have an ID allocated to it anymore, charge the closest online
7132 	 * ancestor for the swap instead and transfer the memory+swap charge.
7133 	 */
7134 	swap_memcg = mem_cgroup_id_get_online(memcg);
7135 	nr_entries = thp_nr_pages(page);
7136 	/* Get references for the tail pages, too */
7137 	if (nr_entries > 1)
7138 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7139 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7140 				   nr_entries);
7141 	VM_BUG_ON_PAGE(oldid, page);
7142 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7143 
7144 	page->memcg_data = 0;
7145 
7146 	if (!mem_cgroup_is_root(memcg))
7147 		page_counter_uncharge(&memcg->memory, nr_entries);
7148 
7149 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7150 		if (!mem_cgroup_is_root(swap_memcg))
7151 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7152 		page_counter_uncharge(&memcg->memsw, nr_entries);
7153 	}
7154 
7155 	/*
7156 	 * Interrupts should be disabled here because the caller holds the
7157 	 * i_pages lock which is taken with interrupts-off. It is
7158 	 * important here to have the interrupts disabled because it is the
7159 	 * only synchronisation we have for updating the per-CPU variables.
7160 	 */
7161 	VM_BUG_ON(!irqs_disabled());
7162 	mem_cgroup_charge_statistics(memcg, -nr_entries);
7163 	memcg_check_events(memcg, page_to_nid(page));
7164 
7165 	css_put(&memcg->css);
7166 }
7167 
7168 /**
7169  * __mem_cgroup_try_charge_swap - try charging swap space for a page
7170  * @page: page being added to swap
7171  * @entry: swap entry to charge
7172  *
7173  * Try to charge @page's memcg for the swap space at @entry.
7174  *
7175  * Returns 0 on success, -ENOMEM on failure.
7176  */
7177 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7178 {
7179 	unsigned int nr_pages = thp_nr_pages(page);
7180 	struct page_counter *counter;
7181 	struct mem_cgroup *memcg;
7182 	unsigned short oldid;
7183 
7184 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7185 		return 0;
7186 
7187 	memcg = page_memcg(page);
7188 
7189 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7190 	if (!memcg)
7191 		return 0;
7192 
7193 	if (!entry.val) {
7194 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7195 		return 0;
7196 	}
7197 
7198 	memcg = mem_cgroup_id_get_online(memcg);
7199 
7200 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7201 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7202 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7203 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7204 		mem_cgroup_id_put(memcg);
7205 		return -ENOMEM;
7206 	}
7207 
7208 	/* Get references for the tail pages, too */
7209 	if (nr_pages > 1)
7210 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7211 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7212 	VM_BUG_ON_PAGE(oldid, page);
7213 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7214 
7215 	return 0;
7216 }
7217 
7218 /**
7219  * __mem_cgroup_uncharge_swap - uncharge swap space
7220  * @entry: swap entry to uncharge
7221  * @nr_pages: the amount of swap space to uncharge
7222  */
7223 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7224 {
7225 	struct mem_cgroup *memcg;
7226 	unsigned short id;
7227 
7228 	id = swap_cgroup_record(entry, 0, nr_pages);
7229 	rcu_read_lock();
7230 	memcg = mem_cgroup_from_id(id);
7231 	if (memcg) {
7232 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7233 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7234 				page_counter_uncharge(&memcg->swap, nr_pages);
7235 			else
7236 				page_counter_uncharge(&memcg->memsw, nr_pages);
7237 		}
7238 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7239 		mem_cgroup_id_put_many(memcg, nr_pages);
7240 	}
7241 	rcu_read_unlock();
7242 }
7243 
7244 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7245 {
7246 	long nr_swap_pages = get_nr_swap_pages();
7247 
7248 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7249 		return nr_swap_pages;
7250 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7251 		nr_swap_pages = min_t(long, nr_swap_pages,
7252 				      READ_ONCE(memcg->swap.max) -
7253 				      page_counter_read(&memcg->swap));
7254 	return nr_swap_pages;
7255 }
7256 
7257 bool mem_cgroup_swap_full(struct page *page)
7258 {
7259 	struct mem_cgroup *memcg;
7260 
7261 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7262 
7263 	if (vm_swap_full())
7264 		return true;
7265 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7266 		return false;
7267 
7268 	memcg = page_memcg(page);
7269 	if (!memcg)
7270 		return false;
7271 
7272 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7273 		unsigned long usage = page_counter_read(&memcg->swap);
7274 
7275 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7276 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7277 			return true;
7278 	}
7279 
7280 	return false;
7281 }
7282 
7283 static int __init setup_swap_account(char *s)
7284 {
7285 	if (!strcmp(s, "1"))
7286 		cgroup_memory_noswap = false;
7287 	else if (!strcmp(s, "0"))
7288 		cgroup_memory_noswap = true;
7289 	return 1;
7290 }
7291 __setup("swapaccount=", setup_swap_account);
7292 
7293 static u64 swap_current_read(struct cgroup_subsys_state *css,
7294 			     struct cftype *cft)
7295 {
7296 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7297 
7298 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7299 }
7300 
7301 static int swap_high_show(struct seq_file *m, void *v)
7302 {
7303 	return seq_puts_memcg_tunable(m,
7304 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7305 }
7306 
7307 static ssize_t swap_high_write(struct kernfs_open_file *of,
7308 			       char *buf, size_t nbytes, loff_t off)
7309 {
7310 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7311 	unsigned long high;
7312 	int err;
7313 
7314 	buf = strstrip(buf);
7315 	err = page_counter_memparse(buf, "max", &high);
7316 	if (err)
7317 		return err;
7318 
7319 	page_counter_set_high(&memcg->swap, high);
7320 
7321 	return nbytes;
7322 }
7323 
7324 static int swap_max_show(struct seq_file *m, void *v)
7325 {
7326 	return seq_puts_memcg_tunable(m,
7327 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7328 }
7329 
7330 static ssize_t swap_max_write(struct kernfs_open_file *of,
7331 			      char *buf, size_t nbytes, loff_t off)
7332 {
7333 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7334 	unsigned long max;
7335 	int err;
7336 
7337 	buf = strstrip(buf);
7338 	err = page_counter_memparse(buf, "max", &max);
7339 	if (err)
7340 		return err;
7341 
7342 	xchg(&memcg->swap.max, max);
7343 
7344 	return nbytes;
7345 }
7346 
7347 static int swap_events_show(struct seq_file *m, void *v)
7348 {
7349 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7350 
7351 	seq_printf(m, "high %lu\n",
7352 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7353 	seq_printf(m, "max %lu\n",
7354 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7355 	seq_printf(m, "fail %lu\n",
7356 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7357 
7358 	return 0;
7359 }
7360 
7361 static struct cftype swap_files[] = {
7362 	{
7363 		.name = "swap.current",
7364 		.flags = CFTYPE_NOT_ON_ROOT,
7365 		.read_u64 = swap_current_read,
7366 	},
7367 	{
7368 		.name = "swap.high",
7369 		.flags = CFTYPE_NOT_ON_ROOT,
7370 		.seq_show = swap_high_show,
7371 		.write = swap_high_write,
7372 	},
7373 	{
7374 		.name = "swap.max",
7375 		.flags = CFTYPE_NOT_ON_ROOT,
7376 		.seq_show = swap_max_show,
7377 		.write = swap_max_write,
7378 	},
7379 	{
7380 		.name = "swap.events",
7381 		.flags = CFTYPE_NOT_ON_ROOT,
7382 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7383 		.seq_show = swap_events_show,
7384 	},
7385 	{ }	/* terminate */
7386 };
7387 
7388 static struct cftype memsw_files[] = {
7389 	{
7390 		.name = "memsw.usage_in_bytes",
7391 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7392 		.read_u64 = mem_cgroup_read_u64,
7393 	},
7394 	{
7395 		.name = "memsw.max_usage_in_bytes",
7396 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7397 		.write = mem_cgroup_reset,
7398 		.read_u64 = mem_cgroup_read_u64,
7399 	},
7400 	{
7401 		.name = "memsw.limit_in_bytes",
7402 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7403 		.write = mem_cgroup_write,
7404 		.read_u64 = mem_cgroup_read_u64,
7405 	},
7406 	{
7407 		.name = "memsw.failcnt",
7408 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7409 		.write = mem_cgroup_reset,
7410 		.read_u64 = mem_cgroup_read_u64,
7411 	},
7412 	{ },	/* terminate */
7413 };
7414 
7415 /*
7416  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7417  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7418  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7419  * boot parameter. This may result in premature OOPS inside
7420  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7421  */
7422 static int __init mem_cgroup_swap_init(void)
7423 {
7424 	/* No memory control -> no swap control */
7425 	if (mem_cgroup_disabled())
7426 		cgroup_memory_noswap = true;
7427 
7428 	if (cgroup_memory_noswap)
7429 		return 0;
7430 
7431 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7432 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7433 
7434 	return 0;
7435 }
7436 core_initcall(mem_cgroup_swap_init);
7437 
7438 #endif /* CONFIG_MEMCG_SWAP */
7439