1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/mm.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include "internal.h" 61 #include <net/sock.h> 62 #include <net/ip.h> 63 #include "slab.h" 64 65 #include <linux/uaccess.h> 66 67 #include <trace/events/vmscan.h> 68 69 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 70 EXPORT_SYMBOL(memory_cgrp_subsys); 71 72 struct mem_cgroup *root_mem_cgroup __read_mostly; 73 74 #define MEM_CGROUP_RECLAIM_RETRIES 5 75 76 /* Socket memory accounting disabled? */ 77 static bool cgroup_memory_nosocket; 78 79 /* Kernel memory accounting disabled? */ 80 static bool cgroup_memory_nokmem; 81 82 /* Whether the swap controller is active */ 83 #ifdef CONFIG_MEMCG_SWAP 84 int do_swap_account __read_mostly; 85 #else 86 #define do_swap_account 0 87 #endif 88 89 /* Whether legacy memory+swap accounting is active */ 90 static bool do_memsw_account(void) 91 { 92 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 93 } 94 95 static const char *const mem_cgroup_lru_names[] = { 96 "inactive_anon", 97 "active_anon", 98 "inactive_file", 99 "active_file", 100 "unevictable", 101 }; 102 103 #define THRESHOLDS_EVENTS_TARGET 128 104 #define SOFTLIMIT_EVENTS_TARGET 1024 105 #define NUMAINFO_EVENTS_TARGET 1024 106 107 /* 108 * Cgroups above their limits are maintained in a RB-Tree, independent of 109 * their hierarchy representation 110 */ 111 112 struct mem_cgroup_tree_per_node { 113 struct rb_root rb_root; 114 struct rb_node *rb_rightmost; 115 spinlock_t lock; 116 }; 117 118 struct mem_cgroup_tree { 119 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 120 }; 121 122 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 123 124 /* for OOM */ 125 struct mem_cgroup_eventfd_list { 126 struct list_head list; 127 struct eventfd_ctx *eventfd; 128 }; 129 130 /* 131 * cgroup_event represents events which userspace want to receive. 132 */ 133 struct mem_cgroup_event { 134 /* 135 * memcg which the event belongs to. 136 */ 137 struct mem_cgroup *memcg; 138 /* 139 * eventfd to signal userspace about the event. 140 */ 141 struct eventfd_ctx *eventfd; 142 /* 143 * Each of these stored in a list by the cgroup. 144 */ 145 struct list_head list; 146 /* 147 * register_event() callback will be used to add new userspace 148 * waiter for changes related to this event. Use eventfd_signal() 149 * on eventfd to send notification to userspace. 150 */ 151 int (*register_event)(struct mem_cgroup *memcg, 152 struct eventfd_ctx *eventfd, const char *args); 153 /* 154 * unregister_event() callback will be called when userspace closes 155 * the eventfd or on cgroup removing. This callback must be set, 156 * if you want provide notification functionality. 157 */ 158 void (*unregister_event)(struct mem_cgroup *memcg, 159 struct eventfd_ctx *eventfd); 160 /* 161 * All fields below needed to unregister event when 162 * userspace closes eventfd. 163 */ 164 poll_table pt; 165 wait_queue_head_t *wqh; 166 wait_queue_entry_t wait; 167 struct work_struct remove; 168 }; 169 170 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 171 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 172 173 /* Stuffs for move charges at task migration. */ 174 /* 175 * Types of charges to be moved. 176 */ 177 #define MOVE_ANON 0x1U 178 #define MOVE_FILE 0x2U 179 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 180 181 /* "mc" and its members are protected by cgroup_mutex */ 182 static struct move_charge_struct { 183 spinlock_t lock; /* for from, to */ 184 struct mm_struct *mm; 185 struct mem_cgroup *from; 186 struct mem_cgroup *to; 187 unsigned long flags; 188 unsigned long precharge; 189 unsigned long moved_charge; 190 unsigned long moved_swap; 191 struct task_struct *moving_task; /* a task moving charges */ 192 wait_queue_head_t waitq; /* a waitq for other context */ 193 } mc = { 194 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 195 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 196 }; 197 198 /* 199 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 200 * limit reclaim to prevent infinite loops, if they ever occur. 201 */ 202 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 203 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 204 205 enum charge_type { 206 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 207 MEM_CGROUP_CHARGE_TYPE_ANON, 208 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 209 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 210 NR_CHARGE_TYPE, 211 }; 212 213 /* for encoding cft->private value on file */ 214 enum res_type { 215 _MEM, 216 _MEMSWAP, 217 _OOM_TYPE, 218 _KMEM, 219 _TCP, 220 }; 221 222 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 223 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 224 #define MEMFILE_ATTR(val) ((val) & 0xffff) 225 /* Used for OOM nofiier */ 226 #define OOM_CONTROL (0) 227 228 /* 229 * Iteration constructs for visiting all cgroups (under a tree). If 230 * loops are exited prematurely (break), mem_cgroup_iter_break() must 231 * be used for reference counting. 232 */ 233 #define for_each_mem_cgroup_tree(iter, root) \ 234 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 235 iter != NULL; \ 236 iter = mem_cgroup_iter(root, iter, NULL)) 237 238 #define for_each_mem_cgroup(iter) \ 239 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 240 iter != NULL; \ 241 iter = mem_cgroup_iter(NULL, iter, NULL)) 242 243 static inline bool should_force_charge(void) 244 { 245 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 246 (current->flags & PF_EXITING); 247 } 248 249 /* Some nice accessors for the vmpressure. */ 250 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 251 { 252 if (!memcg) 253 memcg = root_mem_cgroup; 254 return &memcg->vmpressure; 255 } 256 257 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 258 { 259 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 260 } 261 262 #ifdef CONFIG_MEMCG_KMEM 263 /* 264 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 265 * The main reason for not using cgroup id for this: 266 * this works better in sparse environments, where we have a lot of memcgs, 267 * but only a few kmem-limited. Or also, if we have, for instance, 200 268 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 269 * 200 entry array for that. 270 * 271 * The current size of the caches array is stored in memcg_nr_cache_ids. It 272 * will double each time we have to increase it. 273 */ 274 static DEFINE_IDA(memcg_cache_ida); 275 int memcg_nr_cache_ids; 276 277 /* Protects memcg_nr_cache_ids */ 278 static DECLARE_RWSEM(memcg_cache_ids_sem); 279 280 void memcg_get_cache_ids(void) 281 { 282 down_read(&memcg_cache_ids_sem); 283 } 284 285 void memcg_put_cache_ids(void) 286 { 287 up_read(&memcg_cache_ids_sem); 288 } 289 290 /* 291 * MIN_SIZE is different than 1, because we would like to avoid going through 292 * the alloc/free process all the time. In a small machine, 4 kmem-limited 293 * cgroups is a reasonable guess. In the future, it could be a parameter or 294 * tunable, but that is strictly not necessary. 295 * 296 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 297 * this constant directly from cgroup, but it is understandable that this is 298 * better kept as an internal representation in cgroup.c. In any case, the 299 * cgrp_id space is not getting any smaller, and we don't have to necessarily 300 * increase ours as well if it increases. 301 */ 302 #define MEMCG_CACHES_MIN_SIZE 4 303 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 304 305 /* 306 * A lot of the calls to the cache allocation functions are expected to be 307 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 308 * conditional to this static branch, we'll have to allow modules that does 309 * kmem_cache_alloc and the such to see this symbol as well 310 */ 311 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 312 EXPORT_SYMBOL(memcg_kmem_enabled_key); 313 314 struct workqueue_struct *memcg_kmem_cache_wq; 315 316 static int memcg_shrinker_map_size; 317 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 318 319 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 320 { 321 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 322 } 323 324 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 325 int size, int old_size) 326 { 327 struct memcg_shrinker_map *new, *old; 328 int nid; 329 330 lockdep_assert_held(&memcg_shrinker_map_mutex); 331 332 for_each_node(nid) { 333 old = rcu_dereference_protected( 334 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 335 /* Not yet online memcg */ 336 if (!old) 337 return 0; 338 339 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); 340 if (!new) 341 return -ENOMEM; 342 343 /* Set all old bits, clear all new bits */ 344 memset(new->map, (int)0xff, old_size); 345 memset((void *)new->map + old_size, 0, size - old_size); 346 347 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 348 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 349 } 350 351 return 0; 352 } 353 354 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 355 { 356 struct mem_cgroup_per_node *pn; 357 struct memcg_shrinker_map *map; 358 int nid; 359 360 if (mem_cgroup_is_root(memcg)) 361 return; 362 363 for_each_node(nid) { 364 pn = mem_cgroup_nodeinfo(memcg, nid); 365 map = rcu_dereference_protected(pn->shrinker_map, true); 366 if (map) 367 kvfree(map); 368 rcu_assign_pointer(pn->shrinker_map, NULL); 369 } 370 } 371 372 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 373 { 374 struct memcg_shrinker_map *map; 375 int nid, size, ret = 0; 376 377 if (mem_cgroup_is_root(memcg)) 378 return 0; 379 380 mutex_lock(&memcg_shrinker_map_mutex); 381 size = memcg_shrinker_map_size; 382 for_each_node(nid) { 383 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); 384 if (!map) { 385 memcg_free_shrinker_maps(memcg); 386 ret = -ENOMEM; 387 break; 388 } 389 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 390 } 391 mutex_unlock(&memcg_shrinker_map_mutex); 392 393 return ret; 394 } 395 396 int memcg_expand_shrinker_maps(int new_id) 397 { 398 int size, old_size, ret = 0; 399 struct mem_cgroup *memcg; 400 401 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 402 old_size = memcg_shrinker_map_size; 403 if (size <= old_size) 404 return 0; 405 406 mutex_lock(&memcg_shrinker_map_mutex); 407 if (!root_mem_cgroup) 408 goto unlock; 409 410 for_each_mem_cgroup(memcg) { 411 if (mem_cgroup_is_root(memcg)) 412 continue; 413 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 414 if (ret) 415 goto unlock; 416 } 417 unlock: 418 if (!ret) 419 memcg_shrinker_map_size = size; 420 mutex_unlock(&memcg_shrinker_map_mutex); 421 return ret; 422 } 423 424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 425 { 426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 427 struct memcg_shrinker_map *map; 428 429 rcu_read_lock(); 430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 431 /* Pairs with smp mb in shrink_slab() */ 432 smp_mb__before_atomic(); 433 set_bit(shrinker_id, map->map); 434 rcu_read_unlock(); 435 } 436 } 437 438 #else /* CONFIG_MEMCG_KMEM */ 439 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 440 { 441 return 0; 442 } 443 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { } 444 #endif /* CONFIG_MEMCG_KMEM */ 445 446 /** 447 * mem_cgroup_css_from_page - css of the memcg associated with a page 448 * @page: page of interest 449 * 450 * If memcg is bound to the default hierarchy, css of the memcg associated 451 * with @page is returned. The returned css remains associated with @page 452 * until it is released. 453 * 454 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 455 * is returned. 456 */ 457 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 458 { 459 struct mem_cgroup *memcg; 460 461 memcg = page->mem_cgroup; 462 463 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 464 memcg = root_mem_cgroup; 465 466 return &memcg->css; 467 } 468 469 /** 470 * page_cgroup_ino - return inode number of the memcg a page is charged to 471 * @page: the page 472 * 473 * Look up the closest online ancestor of the memory cgroup @page is charged to 474 * and return its inode number or 0 if @page is not charged to any cgroup. It 475 * is safe to call this function without holding a reference to @page. 476 * 477 * Note, this function is inherently racy, because there is nothing to prevent 478 * the cgroup inode from getting torn down and potentially reallocated a moment 479 * after page_cgroup_ino() returns, so it only should be used by callers that 480 * do not care (such as procfs interfaces). 481 */ 482 ino_t page_cgroup_ino(struct page *page) 483 { 484 struct mem_cgroup *memcg; 485 unsigned long ino = 0; 486 487 rcu_read_lock(); 488 memcg = READ_ONCE(page->mem_cgroup); 489 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 490 memcg = parent_mem_cgroup(memcg); 491 if (memcg) 492 ino = cgroup_ino(memcg->css.cgroup); 493 rcu_read_unlock(); 494 return ino; 495 } 496 497 static struct mem_cgroup_per_node * 498 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 499 { 500 int nid = page_to_nid(page); 501 502 return memcg->nodeinfo[nid]; 503 } 504 505 static struct mem_cgroup_tree_per_node * 506 soft_limit_tree_node(int nid) 507 { 508 return soft_limit_tree.rb_tree_per_node[nid]; 509 } 510 511 static struct mem_cgroup_tree_per_node * 512 soft_limit_tree_from_page(struct page *page) 513 { 514 int nid = page_to_nid(page); 515 516 return soft_limit_tree.rb_tree_per_node[nid]; 517 } 518 519 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 520 struct mem_cgroup_tree_per_node *mctz, 521 unsigned long new_usage_in_excess) 522 { 523 struct rb_node **p = &mctz->rb_root.rb_node; 524 struct rb_node *parent = NULL; 525 struct mem_cgroup_per_node *mz_node; 526 bool rightmost = true; 527 528 if (mz->on_tree) 529 return; 530 531 mz->usage_in_excess = new_usage_in_excess; 532 if (!mz->usage_in_excess) 533 return; 534 while (*p) { 535 parent = *p; 536 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 537 tree_node); 538 if (mz->usage_in_excess < mz_node->usage_in_excess) { 539 p = &(*p)->rb_left; 540 rightmost = false; 541 } 542 543 /* 544 * We can't avoid mem cgroups that are over their soft 545 * limit by the same amount 546 */ 547 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 548 p = &(*p)->rb_right; 549 } 550 551 if (rightmost) 552 mctz->rb_rightmost = &mz->tree_node; 553 554 rb_link_node(&mz->tree_node, parent, p); 555 rb_insert_color(&mz->tree_node, &mctz->rb_root); 556 mz->on_tree = true; 557 } 558 559 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 560 struct mem_cgroup_tree_per_node *mctz) 561 { 562 if (!mz->on_tree) 563 return; 564 565 if (&mz->tree_node == mctz->rb_rightmost) 566 mctz->rb_rightmost = rb_prev(&mz->tree_node); 567 568 rb_erase(&mz->tree_node, &mctz->rb_root); 569 mz->on_tree = false; 570 } 571 572 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 573 struct mem_cgroup_tree_per_node *mctz) 574 { 575 unsigned long flags; 576 577 spin_lock_irqsave(&mctz->lock, flags); 578 __mem_cgroup_remove_exceeded(mz, mctz); 579 spin_unlock_irqrestore(&mctz->lock, flags); 580 } 581 582 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 583 { 584 unsigned long nr_pages = page_counter_read(&memcg->memory); 585 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 586 unsigned long excess = 0; 587 588 if (nr_pages > soft_limit) 589 excess = nr_pages - soft_limit; 590 591 return excess; 592 } 593 594 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 595 { 596 unsigned long excess; 597 struct mem_cgroup_per_node *mz; 598 struct mem_cgroup_tree_per_node *mctz; 599 600 mctz = soft_limit_tree_from_page(page); 601 if (!mctz) 602 return; 603 /* 604 * Necessary to update all ancestors when hierarchy is used. 605 * because their event counter is not touched. 606 */ 607 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 608 mz = mem_cgroup_page_nodeinfo(memcg, page); 609 excess = soft_limit_excess(memcg); 610 /* 611 * We have to update the tree if mz is on RB-tree or 612 * mem is over its softlimit. 613 */ 614 if (excess || mz->on_tree) { 615 unsigned long flags; 616 617 spin_lock_irqsave(&mctz->lock, flags); 618 /* if on-tree, remove it */ 619 if (mz->on_tree) 620 __mem_cgroup_remove_exceeded(mz, mctz); 621 /* 622 * Insert again. mz->usage_in_excess will be updated. 623 * If excess is 0, no tree ops. 624 */ 625 __mem_cgroup_insert_exceeded(mz, mctz, excess); 626 spin_unlock_irqrestore(&mctz->lock, flags); 627 } 628 } 629 } 630 631 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 632 { 633 struct mem_cgroup_tree_per_node *mctz; 634 struct mem_cgroup_per_node *mz; 635 int nid; 636 637 for_each_node(nid) { 638 mz = mem_cgroup_nodeinfo(memcg, nid); 639 mctz = soft_limit_tree_node(nid); 640 if (mctz) 641 mem_cgroup_remove_exceeded(mz, mctz); 642 } 643 } 644 645 static struct mem_cgroup_per_node * 646 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 647 { 648 struct mem_cgroup_per_node *mz; 649 650 retry: 651 mz = NULL; 652 if (!mctz->rb_rightmost) 653 goto done; /* Nothing to reclaim from */ 654 655 mz = rb_entry(mctz->rb_rightmost, 656 struct mem_cgroup_per_node, tree_node); 657 /* 658 * Remove the node now but someone else can add it back, 659 * we will to add it back at the end of reclaim to its correct 660 * position in the tree. 661 */ 662 __mem_cgroup_remove_exceeded(mz, mctz); 663 if (!soft_limit_excess(mz->memcg) || 664 !css_tryget_online(&mz->memcg->css)) 665 goto retry; 666 done: 667 return mz; 668 } 669 670 static struct mem_cgroup_per_node * 671 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 672 { 673 struct mem_cgroup_per_node *mz; 674 675 spin_lock_irq(&mctz->lock); 676 mz = __mem_cgroup_largest_soft_limit_node(mctz); 677 spin_unlock_irq(&mctz->lock); 678 return mz; 679 } 680 681 /** 682 * __mod_memcg_state - update cgroup memory statistics 683 * @memcg: the memory cgroup 684 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 685 * @val: delta to add to the counter, can be negative 686 */ 687 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 688 { 689 long x; 690 691 if (mem_cgroup_disabled()) 692 return; 693 694 __this_cpu_add(memcg->vmstats_local->stat[idx], val); 695 696 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 697 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 698 struct mem_cgroup *mi; 699 700 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 701 atomic_long_add(x, &mi->vmstats[idx]); 702 x = 0; 703 } 704 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 705 } 706 707 static struct mem_cgroup_per_node * 708 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 709 { 710 struct mem_cgroup *parent; 711 712 parent = parent_mem_cgroup(pn->memcg); 713 if (!parent) 714 return NULL; 715 return mem_cgroup_nodeinfo(parent, nid); 716 } 717 718 /** 719 * __mod_lruvec_state - update lruvec memory statistics 720 * @lruvec: the lruvec 721 * @idx: the stat item 722 * @val: delta to add to the counter, can be negative 723 * 724 * The lruvec is the intersection of the NUMA node and a cgroup. This 725 * function updates the all three counters that are affected by a 726 * change of state at this level: per-node, per-cgroup, per-lruvec. 727 */ 728 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 729 int val) 730 { 731 pg_data_t *pgdat = lruvec_pgdat(lruvec); 732 struct mem_cgroup_per_node *pn; 733 struct mem_cgroup *memcg; 734 long x; 735 736 /* Update node */ 737 __mod_node_page_state(pgdat, idx, val); 738 739 if (mem_cgroup_disabled()) 740 return; 741 742 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 743 memcg = pn->memcg; 744 745 /* Update memcg */ 746 __mod_memcg_state(memcg, idx, val); 747 748 /* Update lruvec */ 749 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 750 751 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 752 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 753 struct mem_cgroup_per_node *pi; 754 755 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 756 atomic_long_add(x, &pi->lruvec_stat[idx]); 757 x = 0; 758 } 759 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 760 } 761 762 /** 763 * __count_memcg_events - account VM events in a cgroup 764 * @memcg: the memory cgroup 765 * @idx: the event item 766 * @count: the number of events that occured 767 */ 768 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 769 unsigned long count) 770 { 771 unsigned long x; 772 773 if (mem_cgroup_disabled()) 774 return; 775 776 __this_cpu_add(memcg->vmstats_local->events[idx], count); 777 778 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 779 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 780 struct mem_cgroup *mi; 781 782 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 783 atomic_long_add(x, &mi->vmevents[idx]); 784 x = 0; 785 } 786 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 787 } 788 789 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 790 { 791 return atomic_long_read(&memcg->vmevents[event]); 792 } 793 794 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 795 { 796 long x = 0; 797 int cpu; 798 799 for_each_possible_cpu(cpu) 800 x += per_cpu(memcg->vmstats_local->events[event], cpu); 801 return x; 802 } 803 804 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 805 struct page *page, 806 bool compound, int nr_pages) 807 { 808 /* 809 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 810 * counted as CACHE even if it's on ANON LRU. 811 */ 812 if (PageAnon(page)) 813 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 814 else { 815 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 816 if (PageSwapBacked(page)) 817 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 818 } 819 820 if (compound) { 821 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 822 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 823 } 824 825 /* pagein of a big page is an event. So, ignore page size */ 826 if (nr_pages > 0) 827 __count_memcg_events(memcg, PGPGIN, 1); 828 else { 829 __count_memcg_events(memcg, PGPGOUT, 1); 830 nr_pages = -nr_pages; /* for event */ 831 } 832 833 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 834 } 835 836 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 837 enum mem_cgroup_events_target target) 838 { 839 unsigned long val, next; 840 841 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 842 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 843 /* from time_after() in jiffies.h */ 844 if ((long)(next - val) < 0) { 845 switch (target) { 846 case MEM_CGROUP_TARGET_THRESH: 847 next = val + THRESHOLDS_EVENTS_TARGET; 848 break; 849 case MEM_CGROUP_TARGET_SOFTLIMIT: 850 next = val + SOFTLIMIT_EVENTS_TARGET; 851 break; 852 case MEM_CGROUP_TARGET_NUMAINFO: 853 next = val + NUMAINFO_EVENTS_TARGET; 854 break; 855 default: 856 break; 857 } 858 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 859 return true; 860 } 861 return false; 862 } 863 864 /* 865 * Check events in order. 866 * 867 */ 868 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 869 { 870 /* threshold event is triggered in finer grain than soft limit */ 871 if (unlikely(mem_cgroup_event_ratelimit(memcg, 872 MEM_CGROUP_TARGET_THRESH))) { 873 bool do_softlimit; 874 bool do_numainfo __maybe_unused; 875 876 do_softlimit = mem_cgroup_event_ratelimit(memcg, 877 MEM_CGROUP_TARGET_SOFTLIMIT); 878 #if MAX_NUMNODES > 1 879 do_numainfo = mem_cgroup_event_ratelimit(memcg, 880 MEM_CGROUP_TARGET_NUMAINFO); 881 #endif 882 mem_cgroup_threshold(memcg); 883 if (unlikely(do_softlimit)) 884 mem_cgroup_update_tree(memcg, page); 885 #if MAX_NUMNODES > 1 886 if (unlikely(do_numainfo)) 887 atomic_inc(&memcg->numainfo_events); 888 #endif 889 } 890 } 891 892 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 893 { 894 /* 895 * mm_update_next_owner() may clear mm->owner to NULL 896 * if it races with swapoff, page migration, etc. 897 * So this can be called with p == NULL. 898 */ 899 if (unlikely(!p)) 900 return NULL; 901 902 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 903 } 904 EXPORT_SYMBOL(mem_cgroup_from_task); 905 906 /** 907 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 908 * @mm: mm from which memcg should be extracted. It can be NULL. 909 * 910 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 911 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 912 * returned. 913 */ 914 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 915 { 916 struct mem_cgroup *memcg; 917 918 if (mem_cgroup_disabled()) 919 return NULL; 920 921 rcu_read_lock(); 922 do { 923 /* 924 * Page cache insertions can happen withou an 925 * actual mm context, e.g. during disk probing 926 * on boot, loopback IO, acct() writes etc. 927 */ 928 if (unlikely(!mm)) 929 memcg = root_mem_cgroup; 930 else { 931 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 932 if (unlikely(!memcg)) 933 memcg = root_mem_cgroup; 934 } 935 } while (!css_tryget_online(&memcg->css)); 936 rcu_read_unlock(); 937 return memcg; 938 } 939 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 940 941 /** 942 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 943 * @page: page from which memcg should be extracted. 944 * 945 * Obtain a reference on page->memcg and returns it if successful. Otherwise 946 * root_mem_cgroup is returned. 947 */ 948 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 949 { 950 struct mem_cgroup *memcg = page->mem_cgroup; 951 952 if (mem_cgroup_disabled()) 953 return NULL; 954 955 rcu_read_lock(); 956 if (!memcg || !css_tryget_online(&memcg->css)) 957 memcg = root_mem_cgroup; 958 rcu_read_unlock(); 959 return memcg; 960 } 961 EXPORT_SYMBOL(get_mem_cgroup_from_page); 962 963 /** 964 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 965 */ 966 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 967 { 968 if (unlikely(current->active_memcg)) { 969 struct mem_cgroup *memcg = root_mem_cgroup; 970 971 rcu_read_lock(); 972 if (css_tryget_online(¤t->active_memcg->css)) 973 memcg = current->active_memcg; 974 rcu_read_unlock(); 975 return memcg; 976 } 977 return get_mem_cgroup_from_mm(current->mm); 978 } 979 980 /** 981 * mem_cgroup_iter - iterate over memory cgroup hierarchy 982 * @root: hierarchy root 983 * @prev: previously returned memcg, NULL on first invocation 984 * @reclaim: cookie for shared reclaim walks, NULL for full walks 985 * 986 * Returns references to children of the hierarchy below @root, or 987 * @root itself, or %NULL after a full round-trip. 988 * 989 * Caller must pass the return value in @prev on subsequent 990 * invocations for reference counting, or use mem_cgroup_iter_break() 991 * to cancel a hierarchy walk before the round-trip is complete. 992 * 993 * Reclaimers can specify a node and a priority level in @reclaim to 994 * divide up the memcgs in the hierarchy among all concurrent 995 * reclaimers operating on the same node and priority. 996 */ 997 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 998 struct mem_cgroup *prev, 999 struct mem_cgroup_reclaim_cookie *reclaim) 1000 { 1001 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1002 struct cgroup_subsys_state *css = NULL; 1003 struct mem_cgroup *memcg = NULL; 1004 struct mem_cgroup *pos = NULL; 1005 1006 if (mem_cgroup_disabled()) 1007 return NULL; 1008 1009 if (!root) 1010 root = root_mem_cgroup; 1011 1012 if (prev && !reclaim) 1013 pos = prev; 1014 1015 if (!root->use_hierarchy && root != root_mem_cgroup) { 1016 if (prev) 1017 goto out; 1018 return root; 1019 } 1020 1021 rcu_read_lock(); 1022 1023 if (reclaim) { 1024 struct mem_cgroup_per_node *mz; 1025 1026 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1027 iter = &mz->iter[reclaim->priority]; 1028 1029 if (prev && reclaim->generation != iter->generation) 1030 goto out_unlock; 1031 1032 while (1) { 1033 pos = READ_ONCE(iter->position); 1034 if (!pos || css_tryget(&pos->css)) 1035 break; 1036 /* 1037 * css reference reached zero, so iter->position will 1038 * be cleared by ->css_released. However, we should not 1039 * rely on this happening soon, because ->css_released 1040 * is called from a work queue, and by busy-waiting we 1041 * might block it. So we clear iter->position right 1042 * away. 1043 */ 1044 (void)cmpxchg(&iter->position, pos, NULL); 1045 } 1046 } 1047 1048 if (pos) 1049 css = &pos->css; 1050 1051 for (;;) { 1052 css = css_next_descendant_pre(css, &root->css); 1053 if (!css) { 1054 /* 1055 * Reclaimers share the hierarchy walk, and a 1056 * new one might jump in right at the end of 1057 * the hierarchy - make sure they see at least 1058 * one group and restart from the beginning. 1059 */ 1060 if (!prev) 1061 continue; 1062 break; 1063 } 1064 1065 /* 1066 * Verify the css and acquire a reference. The root 1067 * is provided by the caller, so we know it's alive 1068 * and kicking, and don't take an extra reference. 1069 */ 1070 memcg = mem_cgroup_from_css(css); 1071 1072 if (css == &root->css) 1073 break; 1074 1075 if (css_tryget(css)) 1076 break; 1077 1078 memcg = NULL; 1079 } 1080 1081 if (reclaim) { 1082 /* 1083 * The position could have already been updated by a competing 1084 * thread, so check that the value hasn't changed since we read 1085 * it to avoid reclaiming from the same cgroup twice. 1086 */ 1087 (void)cmpxchg(&iter->position, pos, memcg); 1088 1089 if (pos) 1090 css_put(&pos->css); 1091 1092 if (!memcg) 1093 iter->generation++; 1094 else if (!prev) 1095 reclaim->generation = iter->generation; 1096 } 1097 1098 out_unlock: 1099 rcu_read_unlock(); 1100 out: 1101 if (prev && prev != root) 1102 css_put(&prev->css); 1103 1104 return memcg; 1105 } 1106 1107 /** 1108 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1109 * @root: hierarchy root 1110 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1111 */ 1112 void mem_cgroup_iter_break(struct mem_cgroup *root, 1113 struct mem_cgroup *prev) 1114 { 1115 if (!root) 1116 root = root_mem_cgroup; 1117 if (prev && prev != root) 1118 css_put(&prev->css); 1119 } 1120 1121 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1122 { 1123 struct mem_cgroup *memcg = dead_memcg; 1124 struct mem_cgroup_reclaim_iter *iter; 1125 struct mem_cgroup_per_node *mz; 1126 int nid; 1127 int i; 1128 1129 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1130 for_each_node(nid) { 1131 mz = mem_cgroup_nodeinfo(memcg, nid); 1132 for (i = 0; i <= DEF_PRIORITY; i++) { 1133 iter = &mz->iter[i]; 1134 cmpxchg(&iter->position, 1135 dead_memcg, NULL); 1136 } 1137 } 1138 } 1139 } 1140 1141 /** 1142 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1143 * @memcg: hierarchy root 1144 * @fn: function to call for each task 1145 * @arg: argument passed to @fn 1146 * 1147 * This function iterates over tasks attached to @memcg or to any of its 1148 * descendants and calls @fn for each task. If @fn returns a non-zero 1149 * value, the function breaks the iteration loop and returns the value. 1150 * Otherwise, it will iterate over all tasks and return 0. 1151 * 1152 * This function must not be called for the root memory cgroup. 1153 */ 1154 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1155 int (*fn)(struct task_struct *, void *), void *arg) 1156 { 1157 struct mem_cgroup *iter; 1158 int ret = 0; 1159 1160 BUG_ON(memcg == root_mem_cgroup); 1161 1162 for_each_mem_cgroup_tree(iter, memcg) { 1163 struct css_task_iter it; 1164 struct task_struct *task; 1165 1166 css_task_iter_start(&iter->css, 0, &it); 1167 while (!ret && (task = css_task_iter_next(&it))) 1168 ret = fn(task, arg); 1169 css_task_iter_end(&it); 1170 if (ret) { 1171 mem_cgroup_iter_break(memcg, iter); 1172 break; 1173 } 1174 } 1175 return ret; 1176 } 1177 1178 /** 1179 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1180 * @page: the page 1181 * @pgdat: pgdat of the page 1182 * 1183 * This function is only safe when following the LRU page isolation 1184 * and putback protocol: the LRU lock must be held, and the page must 1185 * either be PageLRU() or the caller must have isolated/allocated it. 1186 */ 1187 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1188 { 1189 struct mem_cgroup_per_node *mz; 1190 struct mem_cgroup *memcg; 1191 struct lruvec *lruvec; 1192 1193 if (mem_cgroup_disabled()) { 1194 lruvec = &pgdat->lruvec; 1195 goto out; 1196 } 1197 1198 memcg = page->mem_cgroup; 1199 /* 1200 * Swapcache readahead pages are added to the LRU - and 1201 * possibly migrated - before they are charged. 1202 */ 1203 if (!memcg) 1204 memcg = root_mem_cgroup; 1205 1206 mz = mem_cgroup_page_nodeinfo(memcg, page); 1207 lruvec = &mz->lruvec; 1208 out: 1209 /* 1210 * Since a node can be onlined after the mem_cgroup was created, 1211 * we have to be prepared to initialize lruvec->zone here; 1212 * and if offlined then reonlined, we need to reinitialize it. 1213 */ 1214 if (unlikely(lruvec->pgdat != pgdat)) 1215 lruvec->pgdat = pgdat; 1216 return lruvec; 1217 } 1218 1219 /** 1220 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1221 * @lruvec: mem_cgroup per zone lru vector 1222 * @lru: index of lru list the page is sitting on 1223 * @zid: zone id of the accounted pages 1224 * @nr_pages: positive when adding or negative when removing 1225 * 1226 * This function must be called under lru_lock, just before a page is added 1227 * to or just after a page is removed from an lru list (that ordering being 1228 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1229 */ 1230 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1231 int zid, int nr_pages) 1232 { 1233 struct mem_cgroup_per_node *mz; 1234 unsigned long *lru_size; 1235 long size; 1236 1237 if (mem_cgroup_disabled()) 1238 return; 1239 1240 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1241 lru_size = &mz->lru_zone_size[zid][lru]; 1242 1243 if (nr_pages < 0) 1244 *lru_size += nr_pages; 1245 1246 size = *lru_size; 1247 if (WARN_ONCE(size < 0, 1248 "%s(%p, %d, %d): lru_size %ld\n", 1249 __func__, lruvec, lru, nr_pages, size)) { 1250 VM_BUG_ON(1); 1251 *lru_size = 0; 1252 } 1253 1254 if (nr_pages > 0) 1255 *lru_size += nr_pages; 1256 } 1257 1258 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1259 { 1260 struct mem_cgroup *task_memcg; 1261 struct task_struct *p; 1262 bool ret; 1263 1264 p = find_lock_task_mm(task); 1265 if (p) { 1266 task_memcg = get_mem_cgroup_from_mm(p->mm); 1267 task_unlock(p); 1268 } else { 1269 /* 1270 * All threads may have already detached their mm's, but the oom 1271 * killer still needs to detect if they have already been oom 1272 * killed to prevent needlessly killing additional tasks. 1273 */ 1274 rcu_read_lock(); 1275 task_memcg = mem_cgroup_from_task(task); 1276 css_get(&task_memcg->css); 1277 rcu_read_unlock(); 1278 } 1279 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1280 css_put(&task_memcg->css); 1281 return ret; 1282 } 1283 1284 /** 1285 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1286 * @memcg: the memory cgroup 1287 * 1288 * Returns the maximum amount of memory @mem can be charged with, in 1289 * pages. 1290 */ 1291 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1292 { 1293 unsigned long margin = 0; 1294 unsigned long count; 1295 unsigned long limit; 1296 1297 count = page_counter_read(&memcg->memory); 1298 limit = READ_ONCE(memcg->memory.max); 1299 if (count < limit) 1300 margin = limit - count; 1301 1302 if (do_memsw_account()) { 1303 count = page_counter_read(&memcg->memsw); 1304 limit = READ_ONCE(memcg->memsw.max); 1305 if (count <= limit) 1306 margin = min(margin, limit - count); 1307 else 1308 margin = 0; 1309 } 1310 1311 return margin; 1312 } 1313 1314 /* 1315 * A routine for checking "mem" is under move_account() or not. 1316 * 1317 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1318 * moving cgroups. This is for waiting at high-memory pressure 1319 * caused by "move". 1320 */ 1321 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1322 { 1323 struct mem_cgroup *from; 1324 struct mem_cgroup *to; 1325 bool ret = false; 1326 /* 1327 * Unlike task_move routines, we access mc.to, mc.from not under 1328 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1329 */ 1330 spin_lock(&mc.lock); 1331 from = mc.from; 1332 to = mc.to; 1333 if (!from) 1334 goto unlock; 1335 1336 ret = mem_cgroup_is_descendant(from, memcg) || 1337 mem_cgroup_is_descendant(to, memcg); 1338 unlock: 1339 spin_unlock(&mc.lock); 1340 return ret; 1341 } 1342 1343 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1344 { 1345 if (mc.moving_task && current != mc.moving_task) { 1346 if (mem_cgroup_under_move(memcg)) { 1347 DEFINE_WAIT(wait); 1348 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1349 /* moving charge context might have finished. */ 1350 if (mc.moving_task) 1351 schedule(); 1352 finish_wait(&mc.waitq, &wait); 1353 return true; 1354 } 1355 } 1356 return false; 1357 } 1358 1359 static const unsigned int memcg1_stats[] = { 1360 MEMCG_CACHE, 1361 MEMCG_RSS, 1362 MEMCG_RSS_HUGE, 1363 NR_SHMEM, 1364 NR_FILE_MAPPED, 1365 NR_FILE_DIRTY, 1366 NR_WRITEBACK, 1367 MEMCG_SWAP, 1368 }; 1369 1370 static const char *const memcg1_stat_names[] = { 1371 "cache", 1372 "rss", 1373 "rss_huge", 1374 "shmem", 1375 "mapped_file", 1376 "dirty", 1377 "writeback", 1378 "swap", 1379 }; 1380 1381 #define K(x) ((x) << (PAGE_SHIFT-10)) 1382 /** 1383 * mem_cgroup_print_oom_context: Print OOM information relevant to 1384 * memory controller. 1385 * @memcg: The memory cgroup that went over limit 1386 * @p: Task that is going to be killed 1387 * 1388 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1389 * enabled 1390 */ 1391 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1392 { 1393 rcu_read_lock(); 1394 1395 if (memcg) { 1396 pr_cont(",oom_memcg="); 1397 pr_cont_cgroup_path(memcg->css.cgroup); 1398 } else 1399 pr_cont(",global_oom"); 1400 if (p) { 1401 pr_cont(",task_memcg="); 1402 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1403 } 1404 rcu_read_unlock(); 1405 } 1406 1407 /** 1408 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1409 * memory controller. 1410 * @memcg: The memory cgroup that went over limit 1411 */ 1412 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1413 { 1414 struct mem_cgroup *iter; 1415 unsigned int i; 1416 1417 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1418 K((u64)page_counter_read(&memcg->memory)), 1419 K((u64)memcg->memory.max), memcg->memory.failcnt); 1420 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1421 K((u64)page_counter_read(&memcg->memsw)), 1422 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1423 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1424 K((u64)page_counter_read(&memcg->kmem)), 1425 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1426 1427 for_each_mem_cgroup_tree(iter, memcg) { 1428 pr_info("Memory cgroup stats for "); 1429 pr_cont_cgroup_path(iter->css.cgroup); 1430 pr_cont(":"); 1431 1432 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 1433 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account) 1434 continue; 1435 pr_cont(" %s:%luKB", memcg1_stat_names[i], 1436 K(memcg_page_state_local(iter, 1437 memcg1_stats[i]))); 1438 } 1439 1440 for (i = 0; i < NR_LRU_LISTS; i++) 1441 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1442 K(memcg_page_state_local(iter, 1443 NR_LRU_BASE + i))); 1444 1445 pr_cont("\n"); 1446 } 1447 } 1448 1449 /* 1450 * Return the memory (and swap, if configured) limit for a memcg. 1451 */ 1452 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1453 { 1454 unsigned long max; 1455 1456 max = memcg->memory.max; 1457 if (mem_cgroup_swappiness(memcg)) { 1458 unsigned long memsw_max; 1459 unsigned long swap_max; 1460 1461 memsw_max = memcg->memsw.max; 1462 swap_max = memcg->swap.max; 1463 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1464 max = min(max + swap_max, memsw_max); 1465 } 1466 return max; 1467 } 1468 1469 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1470 int order) 1471 { 1472 struct oom_control oc = { 1473 .zonelist = NULL, 1474 .nodemask = NULL, 1475 .memcg = memcg, 1476 .gfp_mask = gfp_mask, 1477 .order = order, 1478 }; 1479 bool ret; 1480 1481 if (mutex_lock_killable(&oom_lock)) 1482 return true; 1483 /* 1484 * A few threads which were not waiting at mutex_lock_killable() can 1485 * fail to bail out. Therefore, check again after holding oom_lock. 1486 */ 1487 ret = should_force_charge() || out_of_memory(&oc); 1488 mutex_unlock(&oom_lock); 1489 return ret; 1490 } 1491 1492 #if MAX_NUMNODES > 1 1493 1494 /** 1495 * test_mem_cgroup_node_reclaimable 1496 * @memcg: the target memcg 1497 * @nid: the node ID to be checked. 1498 * @noswap : specify true here if the user wants flle only information. 1499 * 1500 * This function returns whether the specified memcg contains any 1501 * reclaimable pages on a node. Returns true if there are any reclaimable 1502 * pages in the node. 1503 */ 1504 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1505 int nid, bool noswap) 1506 { 1507 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 1508 1509 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) || 1510 lruvec_page_state(lruvec, NR_ACTIVE_FILE)) 1511 return true; 1512 if (noswap || !total_swap_pages) 1513 return false; 1514 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) || 1515 lruvec_page_state(lruvec, NR_ACTIVE_ANON)) 1516 return true; 1517 return false; 1518 1519 } 1520 1521 /* 1522 * Always updating the nodemask is not very good - even if we have an empty 1523 * list or the wrong list here, we can start from some node and traverse all 1524 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1525 * 1526 */ 1527 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1528 { 1529 int nid; 1530 /* 1531 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1532 * pagein/pageout changes since the last update. 1533 */ 1534 if (!atomic_read(&memcg->numainfo_events)) 1535 return; 1536 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1537 return; 1538 1539 /* make a nodemask where this memcg uses memory from */ 1540 memcg->scan_nodes = node_states[N_MEMORY]; 1541 1542 for_each_node_mask(nid, node_states[N_MEMORY]) { 1543 1544 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1545 node_clear(nid, memcg->scan_nodes); 1546 } 1547 1548 atomic_set(&memcg->numainfo_events, 0); 1549 atomic_set(&memcg->numainfo_updating, 0); 1550 } 1551 1552 /* 1553 * Selecting a node where we start reclaim from. Because what we need is just 1554 * reducing usage counter, start from anywhere is O,K. Considering 1555 * memory reclaim from current node, there are pros. and cons. 1556 * 1557 * Freeing memory from current node means freeing memory from a node which 1558 * we'll use or we've used. So, it may make LRU bad. And if several threads 1559 * hit limits, it will see a contention on a node. But freeing from remote 1560 * node means more costs for memory reclaim because of memory latency. 1561 * 1562 * Now, we use round-robin. Better algorithm is welcomed. 1563 */ 1564 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1565 { 1566 int node; 1567 1568 mem_cgroup_may_update_nodemask(memcg); 1569 node = memcg->last_scanned_node; 1570 1571 node = next_node_in(node, memcg->scan_nodes); 1572 /* 1573 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1574 * last time it really checked all the LRUs due to rate limiting. 1575 * Fallback to the current node in that case for simplicity. 1576 */ 1577 if (unlikely(node == MAX_NUMNODES)) 1578 node = numa_node_id(); 1579 1580 memcg->last_scanned_node = node; 1581 return node; 1582 } 1583 #else 1584 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1585 { 1586 return 0; 1587 } 1588 #endif 1589 1590 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1591 pg_data_t *pgdat, 1592 gfp_t gfp_mask, 1593 unsigned long *total_scanned) 1594 { 1595 struct mem_cgroup *victim = NULL; 1596 int total = 0; 1597 int loop = 0; 1598 unsigned long excess; 1599 unsigned long nr_scanned; 1600 struct mem_cgroup_reclaim_cookie reclaim = { 1601 .pgdat = pgdat, 1602 .priority = 0, 1603 }; 1604 1605 excess = soft_limit_excess(root_memcg); 1606 1607 while (1) { 1608 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1609 if (!victim) { 1610 loop++; 1611 if (loop >= 2) { 1612 /* 1613 * If we have not been able to reclaim 1614 * anything, it might because there are 1615 * no reclaimable pages under this hierarchy 1616 */ 1617 if (!total) 1618 break; 1619 /* 1620 * We want to do more targeted reclaim. 1621 * excess >> 2 is not to excessive so as to 1622 * reclaim too much, nor too less that we keep 1623 * coming back to reclaim from this cgroup 1624 */ 1625 if (total >= (excess >> 2) || 1626 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1627 break; 1628 } 1629 continue; 1630 } 1631 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1632 pgdat, &nr_scanned); 1633 *total_scanned += nr_scanned; 1634 if (!soft_limit_excess(root_memcg)) 1635 break; 1636 } 1637 mem_cgroup_iter_break(root_memcg, victim); 1638 return total; 1639 } 1640 1641 #ifdef CONFIG_LOCKDEP 1642 static struct lockdep_map memcg_oom_lock_dep_map = { 1643 .name = "memcg_oom_lock", 1644 }; 1645 #endif 1646 1647 static DEFINE_SPINLOCK(memcg_oom_lock); 1648 1649 /* 1650 * Check OOM-Killer is already running under our hierarchy. 1651 * If someone is running, return false. 1652 */ 1653 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1654 { 1655 struct mem_cgroup *iter, *failed = NULL; 1656 1657 spin_lock(&memcg_oom_lock); 1658 1659 for_each_mem_cgroup_tree(iter, memcg) { 1660 if (iter->oom_lock) { 1661 /* 1662 * this subtree of our hierarchy is already locked 1663 * so we cannot give a lock. 1664 */ 1665 failed = iter; 1666 mem_cgroup_iter_break(memcg, iter); 1667 break; 1668 } else 1669 iter->oom_lock = true; 1670 } 1671 1672 if (failed) { 1673 /* 1674 * OK, we failed to lock the whole subtree so we have 1675 * to clean up what we set up to the failing subtree 1676 */ 1677 for_each_mem_cgroup_tree(iter, memcg) { 1678 if (iter == failed) { 1679 mem_cgroup_iter_break(memcg, iter); 1680 break; 1681 } 1682 iter->oom_lock = false; 1683 } 1684 } else 1685 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1686 1687 spin_unlock(&memcg_oom_lock); 1688 1689 return !failed; 1690 } 1691 1692 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1693 { 1694 struct mem_cgroup *iter; 1695 1696 spin_lock(&memcg_oom_lock); 1697 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1698 for_each_mem_cgroup_tree(iter, memcg) 1699 iter->oom_lock = false; 1700 spin_unlock(&memcg_oom_lock); 1701 } 1702 1703 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1704 { 1705 struct mem_cgroup *iter; 1706 1707 spin_lock(&memcg_oom_lock); 1708 for_each_mem_cgroup_tree(iter, memcg) 1709 iter->under_oom++; 1710 spin_unlock(&memcg_oom_lock); 1711 } 1712 1713 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1714 { 1715 struct mem_cgroup *iter; 1716 1717 /* 1718 * When a new child is created while the hierarchy is under oom, 1719 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1720 */ 1721 spin_lock(&memcg_oom_lock); 1722 for_each_mem_cgroup_tree(iter, memcg) 1723 if (iter->under_oom > 0) 1724 iter->under_oom--; 1725 spin_unlock(&memcg_oom_lock); 1726 } 1727 1728 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1729 1730 struct oom_wait_info { 1731 struct mem_cgroup *memcg; 1732 wait_queue_entry_t wait; 1733 }; 1734 1735 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1736 unsigned mode, int sync, void *arg) 1737 { 1738 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1739 struct mem_cgroup *oom_wait_memcg; 1740 struct oom_wait_info *oom_wait_info; 1741 1742 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1743 oom_wait_memcg = oom_wait_info->memcg; 1744 1745 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1746 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1747 return 0; 1748 return autoremove_wake_function(wait, mode, sync, arg); 1749 } 1750 1751 static void memcg_oom_recover(struct mem_cgroup *memcg) 1752 { 1753 /* 1754 * For the following lockless ->under_oom test, the only required 1755 * guarantee is that it must see the state asserted by an OOM when 1756 * this function is called as a result of userland actions 1757 * triggered by the notification of the OOM. This is trivially 1758 * achieved by invoking mem_cgroup_mark_under_oom() before 1759 * triggering notification. 1760 */ 1761 if (memcg && memcg->under_oom) 1762 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1763 } 1764 1765 enum oom_status { 1766 OOM_SUCCESS, 1767 OOM_FAILED, 1768 OOM_ASYNC, 1769 OOM_SKIPPED 1770 }; 1771 1772 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1773 { 1774 enum oom_status ret; 1775 bool locked; 1776 1777 if (order > PAGE_ALLOC_COSTLY_ORDER) 1778 return OOM_SKIPPED; 1779 1780 memcg_memory_event(memcg, MEMCG_OOM); 1781 1782 /* 1783 * We are in the middle of the charge context here, so we 1784 * don't want to block when potentially sitting on a callstack 1785 * that holds all kinds of filesystem and mm locks. 1786 * 1787 * cgroup1 allows disabling the OOM killer and waiting for outside 1788 * handling until the charge can succeed; remember the context and put 1789 * the task to sleep at the end of the page fault when all locks are 1790 * released. 1791 * 1792 * On the other hand, in-kernel OOM killer allows for an async victim 1793 * memory reclaim (oom_reaper) and that means that we are not solely 1794 * relying on the oom victim to make a forward progress and we can 1795 * invoke the oom killer here. 1796 * 1797 * Please note that mem_cgroup_out_of_memory might fail to find a 1798 * victim and then we have to bail out from the charge path. 1799 */ 1800 if (memcg->oom_kill_disable) { 1801 if (!current->in_user_fault) 1802 return OOM_SKIPPED; 1803 css_get(&memcg->css); 1804 current->memcg_in_oom = memcg; 1805 current->memcg_oom_gfp_mask = mask; 1806 current->memcg_oom_order = order; 1807 1808 return OOM_ASYNC; 1809 } 1810 1811 mem_cgroup_mark_under_oom(memcg); 1812 1813 locked = mem_cgroup_oom_trylock(memcg); 1814 1815 if (locked) 1816 mem_cgroup_oom_notify(memcg); 1817 1818 mem_cgroup_unmark_under_oom(memcg); 1819 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1820 ret = OOM_SUCCESS; 1821 else 1822 ret = OOM_FAILED; 1823 1824 if (locked) 1825 mem_cgroup_oom_unlock(memcg); 1826 1827 return ret; 1828 } 1829 1830 /** 1831 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1832 * @handle: actually kill/wait or just clean up the OOM state 1833 * 1834 * This has to be called at the end of a page fault if the memcg OOM 1835 * handler was enabled. 1836 * 1837 * Memcg supports userspace OOM handling where failed allocations must 1838 * sleep on a waitqueue until the userspace task resolves the 1839 * situation. Sleeping directly in the charge context with all kinds 1840 * of locks held is not a good idea, instead we remember an OOM state 1841 * in the task and mem_cgroup_oom_synchronize() has to be called at 1842 * the end of the page fault to complete the OOM handling. 1843 * 1844 * Returns %true if an ongoing memcg OOM situation was detected and 1845 * completed, %false otherwise. 1846 */ 1847 bool mem_cgroup_oom_synchronize(bool handle) 1848 { 1849 struct mem_cgroup *memcg = current->memcg_in_oom; 1850 struct oom_wait_info owait; 1851 bool locked; 1852 1853 /* OOM is global, do not handle */ 1854 if (!memcg) 1855 return false; 1856 1857 if (!handle) 1858 goto cleanup; 1859 1860 owait.memcg = memcg; 1861 owait.wait.flags = 0; 1862 owait.wait.func = memcg_oom_wake_function; 1863 owait.wait.private = current; 1864 INIT_LIST_HEAD(&owait.wait.entry); 1865 1866 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1867 mem_cgroup_mark_under_oom(memcg); 1868 1869 locked = mem_cgroup_oom_trylock(memcg); 1870 1871 if (locked) 1872 mem_cgroup_oom_notify(memcg); 1873 1874 if (locked && !memcg->oom_kill_disable) { 1875 mem_cgroup_unmark_under_oom(memcg); 1876 finish_wait(&memcg_oom_waitq, &owait.wait); 1877 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1878 current->memcg_oom_order); 1879 } else { 1880 schedule(); 1881 mem_cgroup_unmark_under_oom(memcg); 1882 finish_wait(&memcg_oom_waitq, &owait.wait); 1883 } 1884 1885 if (locked) { 1886 mem_cgroup_oom_unlock(memcg); 1887 /* 1888 * There is no guarantee that an OOM-lock contender 1889 * sees the wakeups triggered by the OOM kill 1890 * uncharges. Wake any sleepers explicitely. 1891 */ 1892 memcg_oom_recover(memcg); 1893 } 1894 cleanup: 1895 current->memcg_in_oom = NULL; 1896 css_put(&memcg->css); 1897 return true; 1898 } 1899 1900 /** 1901 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1902 * @victim: task to be killed by the OOM killer 1903 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1904 * 1905 * Returns a pointer to a memory cgroup, which has to be cleaned up 1906 * by killing all belonging OOM-killable tasks. 1907 * 1908 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1909 */ 1910 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1911 struct mem_cgroup *oom_domain) 1912 { 1913 struct mem_cgroup *oom_group = NULL; 1914 struct mem_cgroup *memcg; 1915 1916 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1917 return NULL; 1918 1919 if (!oom_domain) 1920 oom_domain = root_mem_cgroup; 1921 1922 rcu_read_lock(); 1923 1924 memcg = mem_cgroup_from_task(victim); 1925 if (memcg == root_mem_cgroup) 1926 goto out; 1927 1928 /* 1929 * Traverse the memory cgroup hierarchy from the victim task's 1930 * cgroup up to the OOMing cgroup (or root) to find the 1931 * highest-level memory cgroup with oom.group set. 1932 */ 1933 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1934 if (memcg->oom_group) 1935 oom_group = memcg; 1936 1937 if (memcg == oom_domain) 1938 break; 1939 } 1940 1941 if (oom_group) 1942 css_get(&oom_group->css); 1943 out: 1944 rcu_read_unlock(); 1945 1946 return oom_group; 1947 } 1948 1949 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1950 { 1951 pr_info("Tasks in "); 1952 pr_cont_cgroup_path(memcg->css.cgroup); 1953 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1954 } 1955 1956 /** 1957 * lock_page_memcg - lock a page->mem_cgroup binding 1958 * @page: the page 1959 * 1960 * This function protects unlocked LRU pages from being moved to 1961 * another cgroup. 1962 * 1963 * It ensures lifetime of the returned memcg. Caller is responsible 1964 * for the lifetime of the page; __unlock_page_memcg() is available 1965 * when @page might get freed inside the locked section. 1966 */ 1967 struct mem_cgroup *lock_page_memcg(struct page *page) 1968 { 1969 struct mem_cgroup *memcg; 1970 unsigned long flags; 1971 1972 /* 1973 * The RCU lock is held throughout the transaction. The fast 1974 * path can get away without acquiring the memcg->move_lock 1975 * because page moving starts with an RCU grace period. 1976 * 1977 * The RCU lock also protects the memcg from being freed when 1978 * the page state that is going to change is the only thing 1979 * preventing the page itself from being freed. E.g. writeback 1980 * doesn't hold a page reference and relies on PG_writeback to 1981 * keep off truncation, migration and so forth. 1982 */ 1983 rcu_read_lock(); 1984 1985 if (mem_cgroup_disabled()) 1986 return NULL; 1987 again: 1988 memcg = page->mem_cgroup; 1989 if (unlikely(!memcg)) 1990 return NULL; 1991 1992 if (atomic_read(&memcg->moving_account) <= 0) 1993 return memcg; 1994 1995 spin_lock_irqsave(&memcg->move_lock, flags); 1996 if (memcg != page->mem_cgroup) { 1997 spin_unlock_irqrestore(&memcg->move_lock, flags); 1998 goto again; 1999 } 2000 2001 /* 2002 * When charge migration first begins, we can have locked and 2003 * unlocked page stat updates happening concurrently. Track 2004 * the task who has the lock for unlock_page_memcg(). 2005 */ 2006 memcg->move_lock_task = current; 2007 memcg->move_lock_flags = flags; 2008 2009 return memcg; 2010 } 2011 EXPORT_SYMBOL(lock_page_memcg); 2012 2013 /** 2014 * __unlock_page_memcg - unlock and unpin a memcg 2015 * @memcg: the memcg 2016 * 2017 * Unlock and unpin a memcg returned by lock_page_memcg(). 2018 */ 2019 void __unlock_page_memcg(struct mem_cgroup *memcg) 2020 { 2021 if (memcg && memcg->move_lock_task == current) { 2022 unsigned long flags = memcg->move_lock_flags; 2023 2024 memcg->move_lock_task = NULL; 2025 memcg->move_lock_flags = 0; 2026 2027 spin_unlock_irqrestore(&memcg->move_lock, flags); 2028 } 2029 2030 rcu_read_unlock(); 2031 } 2032 2033 /** 2034 * unlock_page_memcg - unlock a page->mem_cgroup binding 2035 * @page: the page 2036 */ 2037 void unlock_page_memcg(struct page *page) 2038 { 2039 __unlock_page_memcg(page->mem_cgroup); 2040 } 2041 EXPORT_SYMBOL(unlock_page_memcg); 2042 2043 struct memcg_stock_pcp { 2044 struct mem_cgroup *cached; /* this never be root cgroup */ 2045 unsigned int nr_pages; 2046 struct work_struct work; 2047 unsigned long flags; 2048 #define FLUSHING_CACHED_CHARGE 0 2049 }; 2050 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2051 static DEFINE_MUTEX(percpu_charge_mutex); 2052 2053 /** 2054 * consume_stock: Try to consume stocked charge on this cpu. 2055 * @memcg: memcg to consume from. 2056 * @nr_pages: how many pages to charge. 2057 * 2058 * The charges will only happen if @memcg matches the current cpu's memcg 2059 * stock, and at least @nr_pages are available in that stock. Failure to 2060 * service an allocation will refill the stock. 2061 * 2062 * returns true if successful, false otherwise. 2063 */ 2064 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2065 { 2066 struct memcg_stock_pcp *stock; 2067 unsigned long flags; 2068 bool ret = false; 2069 2070 if (nr_pages > MEMCG_CHARGE_BATCH) 2071 return ret; 2072 2073 local_irq_save(flags); 2074 2075 stock = this_cpu_ptr(&memcg_stock); 2076 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2077 stock->nr_pages -= nr_pages; 2078 ret = true; 2079 } 2080 2081 local_irq_restore(flags); 2082 2083 return ret; 2084 } 2085 2086 /* 2087 * Returns stocks cached in percpu and reset cached information. 2088 */ 2089 static void drain_stock(struct memcg_stock_pcp *stock) 2090 { 2091 struct mem_cgroup *old = stock->cached; 2092 2093 if (stock->nr_pages) { 2094 page_counter_uncharge(&old->memory, stock->nr_pages); 2095 if (do_memsw_account()) 2096 page_counter_uncharge(&old->memsw, stock->nr_pages); 2097 css_put_many(&old->css, stock->nr_pages); 2098 stock->nr_pages = 0; 2099 } 2100 stock->cached = NULL; 2101 } 2102 2103 static void drain_local_stock(struct work_struct *dummy) 2104 { 2105 struct memcg_stock_pcp *stock; 2106 unsigned long flags; 2107 2108 /* 2109 * The only protection from memory hotplug vs. drain_stock races is 2110 * that we always operate on local CPU stock here with IRQ disabled 2111 */ 2112 local_irq_save(flags); 2113 2114 stock = this_cpu_ptr(&memcg_stock); 2115 drain_stock(stock); 2116 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2117 2118 local_irq_restore(flags); 2119 } 2120 2121 /* 2122 * Cache charges(val) to local per_cpu area. 2123 * This will be consumed by consume_stock() function, later. 2124 */ 2125 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2126 { 2127 struct memcg_stock_pcp *stock; 2128 unsigned long flags; 2129 2130 local_irq_save(flags); 2131 2132 stock = this_cpu_ptr(&memcg_stock); 2133 if (stock->cached != memcg) { /* reset if necessary */ 2134 drain_stock(stock); 2135 stock->cached = memcg; 2136 } 2137 stock->nr_pages += nr_pages; 2138 2139 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2140 drain_stock(stock); 2141 2142 local_irq_restore(flags); 2143 } 2144 2145 /* 2146 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2147 * of the hierarchy under it. 2148 */ 2149 static void drain_all_stock(struct mem_cgroup *root_memcg) 2150 { 2151 int cpu, curcpu; 2152 2153 /* If someone's already draining, avoid adding running more workers. */ 2154 if (!mutex_trylock(&percpu_charge_mutex)) 2155 return; 2156 /* 2157 * Notify other cpus that system-wide "drain" is running 2158 * We do not care about races with the cpu hotplug because cpu down 2159 * as well as workers from this path always operate on the local 2160 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2161 */ 2162 curcpu = get_cpu(); 2163 for_each_online_cpu(cpu) { 2164 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2165 struct mem_cgroup *memcg; 2166 2167 memcg = stock->cached; 2168 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css)) 2169 continue; 2170 if (!mem_cgroup_is_descendant(memcg, root_memcg)) { 2171 css_put(&memcg->css); 2172 continue; 2173 } 2174 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2175 if (cpu == curcpu) 2176 drain_local_stock(&stock->work); 2177 else 2178 schedule_work_on(cpu, &stock->work); 2179 } 2180 css_put(&memcg->css); 2181 } 2182 put_cpu(); 2183 mutex_unlock(&percpu_charge_mutex); 2184 } 2185 2186 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2187 { 2188 struct memcg_stock_pcp *stock; 2189 struct mem_cgroup *memcg, *mi; 2190 2191 stock = &per_cpu(memcg_stock, cpu); 2192 drain_stock(stock); 2193 2194 for_each_mem_cgroup(memcg) { 2195 int i; 2196 2197 for (i = 0; i < MEMCG_NR_STAT; i++) { 2198 int nid; 2199 long x; 2200 2201 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2202 if (x) 2203 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2204 atomic_long_add(x, &memcg->vmstats[i]); 2205 2206 if (i >= NR_VM_NODE_STAT_ITEMS) 2207 continue; 2208 2209 for_each_node(nid) { 2210 struct mem_cgroup_per_node *pn; 2211 2212 pn = mem_cgroup_nodeinfo(memcg, nid); 2213 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2214 if (x) 2215 do { 2216 atomic_long_add(x, &pn->lruvec_stat[i]); 2217 } while ((pn = parent_nodeinfo(pn, nid))); 2218 } 2219 } 2220 2221 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2222 long x; 2223 2224 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2225 if (x) 2226 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2227 atomic_long_add(x, &memcg->vmevents[i]); 2228 } 2229 } 2230 2231 return 0; 2232 } 2233 2234 static void reclaim_high(struct mem_cgroup *memcg, 2235 unsigned int nr_pages, 2236 gfp_t gfp_mask) 2237 { 2238 do { 2239 if (page_counter_read(&memcg->memory) <= memcg->high) 2240 continue; 2241 memcg_memory_event(memcg, MEMCG_HIGH); 2242 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2243 } while ((memcg = parent_mem_cgroup(memcg))); 2244 } 2245 2246 static void high_work_func(struct work_struct *work) 2247 { 2248 struct mem_cgroup *memcg; 2249 2250 memcg = container_of(work, struct mem_cgroup, high_work); 2251 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2252 } 2253 2254 /* 2255 * Scheduled by try_charge() to be executed from the userland return path 2256 * and reclaims memory over the high limit. 2257 */ 2258 void mem_cgroup_handle_over_high(void) 2259 { 2260 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2261 struct mem_cgroup *memcg; 2262 2263 if (likely(!nr_pages)) 2264 return; 2265 2266 memcg = get_mem_cgroup_from_mm(current->mm); 2267 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2268 css_put(&memcg->css); 2269 current->memcg_nr_pages_over_high = 0; 2270 } 2271 2272 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2273 unsigned int nr_pages) 2274 { 2275 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2276 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2277 struct mem_cgroup *mem_over_limit; 2278 struct page_counter *counter; 2279 unsigned long nr_reclaimed; 2280 bool may_swap = true; 2281 bool drained = false; 2282 bool oomed = false; 2283 enum oom_status oom_status; 2284 2285 if (mem_cgroup_is_root(memcg)) 2286 return 0; 2287 retry: 2288 if (consume_stock(memcg, nr_pages)) 2289 return 0; 2290 2291 if (!do_memsw_account() || 2292 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2293 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2294 goto done_restock; 2295 if (do_memsw_account()) 2296 page_counter_uncharge(&memcg->memsw, batch); 2297 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2298 } else { 2299 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2300 may_swap = false; 2301 } 2302 2303 if (batch > nr_pages) { 2304 batch = nr_pages; 2305 goto retry; 2306 } 2307 2308 /* 2309 * Unlike in global OOM situations, memcg is not in a physical 2310 * memory shortage. Allow dying and OOM-killed tasks to 2311 * bypass the last charges so that they can exit quickly and 2312 * free their memory. 2313 */ 2314 if (unlikely(should_force_charge())) 2315 goto force; 2316 2317 /* 2318 * Prevent unbounded recursion when reclaim operations need to 2319 * allocate memory. This might exceed the limits temporarily, 2320 * but we prefer facilitating memory reclaim and getting back 2321 * under the limit over triggering OOM kills in these cases. 2322 */ 2323 if (unlikely(current->flags & PF_MEMALLOC)) 2324 goto force; 2325 2326 if (unlikely(task_in_memcg_oom(current))) 2327 goto nomem; 2328 2329 if (!gfpflags_allow_blocking(gfp_mask)) 2330 goto nomem; 2331 2332 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2333 2334 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2335 gfp_mask, may_swap); 2336 2337 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2338 goto retry; 2339 2340 if (!drained) { 2341 drain_all_stock(mem_over_limit); 2342 drained = true; 2343 goto retry; 2344 } 2345 2346 if (gfp_mask & __GFP_NORETRY) 2347 goto nomem; 2348 /* 2349 * Even though the limit is exceeded at this point, reclaim 2350 * may have been able to free some pages. Retry the charge 2351 * before killing the task. 2352 * 2353 * Only for regular pages, though: huge pages are rather 2354 * unlikely to succeed so close to the limit, and we fall back 2355 * to regular pages anyway in case of failure. 2356 */ 2357 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2358 goto retry; 2359 /* 2360 * At task move, charge accounts can be doubly counted. So, it's 2361 * better to wait until the end of task_move if something is going on. 2362 */ 2363 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2364 goto retry; 2365 2366 if (nr_retries--) 2367 goto retry; 2368 2369 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed) 2370 goto nomem; 2371 2372 if (gfp_mask & __GFP_NOFAIL) 2373 goto force; 2374 2375 if (fatal_signal_pending(current)) 2376 goto force; 2377 2378 /* 2379 * keep retrying as long as the memcg oom killer is able to make 2380 * a forward progress or bypass the charge if the oom killer 2381 * couldn't make any progress. 2382 */ 2383 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2384 get_order(nr_pages * PAGE_SIZE)); 2385 switch (oom_status) { 2386 case OOM_SUCCESS: 2387 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2388 oomed = true; 2389 goto retry; 2390 case OOM_FAILED: 2391 goto force; 2392 default: 2393 goto nomem; 2394 } 2395 nomem: 2396 if (!(gfp_mask & __GFP_NOFAIL)) 2397 return -ENOMEM; 2398 force: 2399 /* 2400 * The allocation either can't fail or will lead to more memory 2401 * being freed very soon. Allow memory usage go over the limit 2402 * temporarily by force charging it. 2403 */ 2404 page_counter_charge(&memcg->memory, nr_pages); 2405 if (do_memsw_account()) 2406 page_counter_charge(&memcg->memsw, nr_pages); 2407 css_get_many(&memcg->css, nr_pages); 2408 2409 return 0; 2410 2411 done_restock: 2412 css_get_many(&memcg->css, batch); 2413 if (batch > nr_pages) 2414 refill_stock(memcg, batch - nr_pages); 2415 2416 /* 2417 * If the hierarchy is above the normal consumption range, schedule 2418 * reclaim on returning to userland. We can perform reclaim here 2419 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2420 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2421 * not recorded as it most likely matches current's and won't 2422 * change in the meantime. As high limit is checked again before 2423 * reclaim, the cost of mismatch is negligible. 2424 */ 2425 do { 2426 if (page_counter_read(&memcg->memory) > memcg->high) { 2427 /* Don't bother a random interrupted task */ 2428 if (in_interrupt()) { 2429 schedule_work(&memcg->high_work); 2430 break; 2431 } 2432 current->memcg_nr_pages_over_high += batch; 2433 set_notify_resume(current); 2434 break; 2435 } 2436 } while ((memcg = parent_mem_cgroup(memcg))); 2437 2438 return 0; 2439 } 2440 2441 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2442 { 2443 if (mem_cgroup_is_root(memcg)) 2444 return; 2445 2446 page_counter_uncharge(&memcg->memory, nr_pages); 2447 if (do_memsw_account()) 2448 page_counter_uncharge(&memcg->memsw, nr_pages); 2449 2450 css_put_many(&memcg->css, nr_pages); 2451 } 2452 2453 static void lock_page_lru(struct page *page, int *isolated) 2454 { 2455 pg_data_t *pgdat = page_pgdat(page); 2456 2457 spin_lock_irq(&pgdat->lru_lock); 2458 if (PageLRU(page)) { 2459 struct lruvec *lruvec; 2460 2461 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2462 ClearPageLRU(page); 2463 del_page_from_lru_list(page, lruvec, page_lru(page)); 2464 *isolated = 1; 2465 } else 2466 *isolated = 0; 2467 } 2468 2469 static void unlock_page_lru(struct page *page, int isolated) 2470 { 2471 pg_data_t *pgdat = page_pgdat(page); 2472 2473 if (isolated) { 2474 struct lruvec *lruvec; 2475 2476 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2477 VM_BUG_ON_PAGE(PageLRU(page), page); 2478 SetPageLRU(page); 2479 add_page_to_lru_list(page, lruvec, page_lru(page)); 2480 } 2481 spin_unlock_irq(&pgdat->lru_lock); 2482 } 2483 2484 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2485 bool lrucare) 2486 { 2487 int isolated; 2488 2489 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2490 2491 /* 2492 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2493 * may already be on some other mem_cgroup's LRU. Take care of it. 2494 */ 2495 if (lrucare) 2496 lock_page_lru(page, &isolated); 2497 2498 /* 2499 * Nobody should be changing or seriously looking at 2500 * page->mem_cgroup at this point: 2501 * 2502 * - the page is uncharged 2503 * 2504 * - the page is off-LRU 2505 * 2506 * - an anonymous fault has exclusive page access, except for 2507 * a locked page table 2508 * 2509 * - a page cache insertion, a swapin fault, or a migration 2510 * have the page locked 2511 */ 2512 page->mem_cgroup = memcg; 2513 2514 if (lrucare) 2515 unlock_page_lru(page, isolated); 2516 } 2517 2518 #ifdef CONFIG_MEMCG_KMEM 2519 static int memcg_alloc_cache_id(void) 2520 { 2521 int id, size; 2522 int err; 2523 2524 id = ida_simple_get(&memcg_cache_ida, 2525 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2526 if (id < 0) 2527 return id; 2528 2529 if (id < memcg_nr_cache_ids) 2530 return id; 2531 2532 /* 2533 * There's no space for the new id in memcg_caches arrays, 2534 * so we have to grow them. 2535 */ 2536 down_write(&memcg_cache_ids_sem); 2537 2538 size = 2 * (id + 1); 2539 if (size < MEMCG_CACHES_MIN_SIZE) 2540 size = MEMCG_CACHES_MIN_SIZE; 2541 else if (size > MEMCG_CACHES_MAX_SIZE) 2542 size = MEMCG_CACHES_MAX_SIZE; 2543 2544 err = memcg_update_all_caches(size); 2545 if (!err) 2546 err = memcg_update_all_list_lrus(size); 2547 if (!err) 2548 memcg_nr_cache_ids = size; 2549 2550 up_write(&memcg_cache_ids_sem); 2551 2552 if (err) { 2553 ida_simple_remove(&memcg_cache_ida, id); 2554 return err; 2555 } 2556 return id; 2557 } 2558 2559 static void memcg_free_cache_id(int id) 2560 { 2561 ida_simple_remove(&memcg_cache_ida, id); 2562 } 2563 2564 struct memcg_kmem_cache_create_work { 2565 struct mem_cgroup *memcg; 2566 struct kmem_cache *cachep; 2567 struct work_struct work; 2568 }; 2569 2570 static void memcg_kmem_cache_create_func(struct work_struct *w) 2571 { 2572 struct memcg_kmem_cache_create_work *cw = 2573 container_of(w, struct memcg_kmem_cache_create_work, work); 2574 struct mem_cgroup *memcg = cw->memcg; 2575 struct kmem_cache *cachep = cw->cachep; 2576 2577 memcg_create_kmem_cache(memcg, cachep); 2578 2579 css_put(&memcg->css); 2580 kfree(cw); 2581 } 2582 2583 /* 2584 * Enqueue the creation of a per-memcg kmem_cache. 2585 */ 2586 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2587 struct kmem_cache *cachep) 2588 { 2589 struct memcg_kmem_cache_create_work *cw; 2590 2591 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2592 if (!cw) 2593 return; 2594 2595 css_get(&memcg->css); 2596 2597 cw->memcg = memcg; 2598 cw->cachep = cachep; 2599 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2600 2601 queue_work(memcg_kmem_cache_wq, &cw->work); 2602 } 2603 2604 static inline bool memcg_kmem_bypass(void) 2605 { 2606 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2607 return true; 2608 return false; 2609 } 2610 2611 /** 2612 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2613 * @cachep: the original global kmem cache 2614 * 2615 * Return the kmem_cache we're supposed to use for a slab allocation. 2616 * We try to use the current memcg's version of the cache. 2617 * 2618 * If the cache does not exist yet, if we are the first user of it, we 2619 * create it asynchronously in a workqueue and let the current allocation 2620 * go through with the original cache. 2621 * 2622 * This function takes a reference to the cache it returns to assure it 2623 * won't get destroyed while we are working with it. Once the caller is 2624 * done with it, memcg_kmem_put_cache() must be called to release the 2625 * reference. 2626 */ 2627 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2628 { 2629 struct mem_cgroup *memcg; 2630 struct kmem_cache *memcg_cachep; 2631 int kmemcg_id; 2632 2633 VM_BUG_ON(!is_root_cache(cachep)); 2634 2635 if (memcg_kmem_bypass()) 2636 return cachep; 2637 2638 memcg = get_mem_cgroup_from_current(); 2639 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2640 if (kmemcg_id < 0) 2641 goto out; 2642 2643 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2644 if (likely(memcg_cachep)) 2645 return memcg_cachep; 2646 2647 /* 2648 * If we are in a safe context (can wait, and not in interrupt 2649 * context), we could be be predictable and return right away. 2650 * This would guarantee that the allocation being performed 2651 * already belongs in the new cache. 2652 * 2653 * However, there are some clashes that can arrive from locking. 2654 * For instance, because we acquire the slab_mutex while doing 2655 * memcg_create_kmem_cache, this means no further allocation 2656 * could happen with the slab_mutex held. So it's better to 2657 * defer everything. 2658 */ 2659 memcg_schedule_kmem_cache_create(memcg, cachep); 2660 out: 2661 css_put(&memcg->css); 2662 return cachep; 2663 } 2664 2665 /** 2666 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2667 * @cachep: the cache returned by memcg_kmem_get_cache 2668 */ 2669 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2670 { 2671 if (!is_root_cache(cachep)) 2672 css_put(&cachep->memcg_params.memcg->css); 2673 } 2674 2675 /** 2676 * __memcg_kmem_charge_memcg: charge a kmem page 2677 * @page: page to charge 2678 * @gfp: reclaim mode 2679 * @order: allocation order 2680 * @memcg: memory cgroup to charge 2681 * 2682 * Returns 0 on success, an error code on failure. 2683 */ 2684 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2685 struct mem_cgroup *memcg) 2686 { 2687 unsigned int nr_pages = 1 << order; 2688 struct page_counter *counter; 2689 int ret; 2690 2691 ret = try_charge(memcg, gfp, nr_pages); 2692 if (ret) 2693 return ret; 2694 2695 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2696 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2697 cancel_charge(memcg, nr_pages); 2698 return -ENOMEM; 2699 } 2700 2701 page->mem_cgroup = memcg; 2702 2703 return 0; 2704 } 2705 2706 /** 2707 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup 2708 * @page: page to charge 2709 * @gfp: reclaim mode 2710 * @order: allocation order 2711 * 2712 * Returns 0 on success, an error code on failure. 2713 */ 2714 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2715 { 2716 struct mem_cgroup *memcg; 2717 int ret = 0; 2718 2719 if (memcg_kmem_bypass()) 2720 return 0; 2721 2722 memcg = get_mem_cgroup_from_current(); 2723 if (!mem_cgroup_is_root(memcg)) { 2724 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2725 if (!ret) 2726 __SetPageKmemcg(page); 2727 } 2728 css_put(&memcg->css); 2729 return ret; 2730 } 2731 /** 2732 * __memcg_kmem_uncharge: uncharge a kmem page 2733 * @page: page to uncharge 2734 * @order: allocation order 2735 */ 2736 void __memcg_kmem_uncharge(struct page *page, int order) 2737 { 2738 struct mem_cgroup *memcg = page->mem_cgroup; 2739 unsigned int nr_pages = 1 << order; 2740 2741 if (!memcg) 2742 return; 2743 2744 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2745 2746 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2747 page_counter_uncharge(&memcg->kmem, nr_pages); 2748 2749 page_counter_uncharge(&memcg->memory, nr_pages); 2750 if (do_memsw_account()) 2751 page_counter_uncharge(&memcg->memsw, nr_pages); 2752 2753 page->mem_cgroup = NULL; 2754 2755 /* slab pages do not have PageKmemcg flag set */ 2756 if (PageKmemcg(page)) 2757 __ClearPageKmemcg(page); 2758 2759 css_put_many(&memcg->css, nr_pages); 2760 } 2761 #endif /* CONFIG_MEMCG_KMEM */ 2762 2763 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2764 2765 /* 2766 * Because tail pages are not marked as "used", set it. We're under 2767 * pgdat->lru_lock and migration entries setup in all page mappings. 2768 */ 2769 void mem_cgroup_split_huge_fixup(struct page *head) 2770 { 2771 int i; 2772 2773 if (mem_cgroup_disabled()) 2774 return; 2775 2776 for (i = 1; i < HPAGE_PMD_NR; i++) 2777 head[i].mem_cgroup = head->mem_cgroup; 2778 2779 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 2780 } 2781 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2782 2783 #ifdef CONFIG_MEMCG_SWAP 2784 /** 2785 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2786 * @entry: swap entry to be moved 2787 * @from: mem_cgroup which the entry is moved from 2788 * @to: mem_cgroup which the entry is moved to 2789 * 2790 * It succeeds only when the swap_cgroup's record for this entry is the same 2791 * as the mem_cgroup's id of @from. 2792 * 2793 * Returns 0 on success, -EINVAL on failure. 2794 * 2795 * The caller must have charged to @to, IOW, called page_counter_charge() about 2796 * both res and memsw, and called css_get(). 2797 */ 2798 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2799 struct mem_cgroup *from, struct mem_cgroup *to) 2800 { 2801 unsigned short old_id, new_id; 2802 2803 old_id = mem_cgroup_id(from); 2804 new_id = mem_cgroup_id(to); 2805 2806 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2807 mod_memcg_state(from, MEMCG_SWAP, -1); 2808 mod_memcg_state(to, MEMCG_SWAP, 1); 2809 return 0; 2810 } 2811 return -EINVAL; 2812 } 2813 #else 2814 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2815 struct mem_cgroup *from, struct mem_cgroup *to) 2816 { 2817 return -EINVAL; 2818 } 2819 #endif 2820 2821 static DEFINE_MUTEX(memcg_max_mutex); 2822 2823 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 2824 unsigned long max, bool memsw) 2825 { 2826 bool enlarge = false; 2827 bool drained = false; 2828 int ret; 2829 bool limits_invariant; 2830 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 2831 2832 do { 2833 if (signal_pending(current)) { 2834 ret = -EINTR; 2835 break; 2836 } 2837 2838 mutex_lock(&memcg_max_mutex); 2839 /* 2840 * Make sure that the new limit (memsw or memory limit) doesn't 2841 * break our basic invariant rule memory.max <= memsw.max. 2842 */ 2843 limits_invariant = memsw ? max >= memcg->memory.max : 2844 max <= memcg->memsw.max; 2845 if (!limits_invariant) { 2846 mutex_unlock(&memcg_max_mutex); 2847 ret = -EINVAL; 2848 break; 2849 } 2850 if (max > counter->max) 2851 enlarge = true; 2852 ret = page_counter_set_max(counter, max); 2853 mutex_unlock(&memcg_max_mutex); 2854 2855 if (!ret) 2856 break; 2857 2858 if (!drained) { 2859 drain_all_stock(memcg); 2860 drained = true; 2861 continue; 2862 } 2863 2864 if (!try_to_free_mem_cgroup_pages(memcg, 1, 2865 GFP_KERNEL, !memsw)) { 2866 ret = -EBUSY; 2867 break; 2868 } 2869 } while (true); 2870 2871 if (!ret && enlarge) 2872 memcg_oom_recover(memcg); 2873 2874 return ret; 2875 } 2876 2877 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 2878 gfp_t gfp_mask, 2879 unsigned long *total_scanned) 2880 { 2881 unsigned long nr_reclaimed = 0; 2882 struct mem_cgroup_per_node *mz, *next_mz = NULL; 2883 unsigned long reclaimed; 2884 int loop = 0; 2885 struct mem_cgroup_tree_per_node *mctz; 2886 unsigned long excess; 2887 unsigned long nr_scanned; 2888 2889 if (order > 0) 2890 return 0; 2891 2892 mctz = soft_limit_tree_node(pgdat->node_id); 2893 2894 /* 2895 * Do not even bother to check the largest node if the root 2896 * is empty. Do it lockless to prevent lock bouncing. Races 2897 * are acceptable as soft limit is best effort anyway. 2898 */ 2899 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 2900 return 0; 2901 2902 /* 2903 * This loop can run a while, specially if mem_cgroup's continuously 2904 * keep exceeding their soft limit and putting the system under 2905 * pressure 2906 */ 2907 do { 2908 if (next_mz) 2909 mz = next_mz; 2910 else 2911 mz = mem_cgroup_largest_soft_limit_node(mctz); 2912 if (!mz) 2913 break; 2914 2915 nr_scanned = 0; 2916 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 2917 gfp_mask, &nr_scanned); 2918 nr_reclaimed += reclaimed; 2919 *total_scanned += nr_scanned; 2920 spin_lock_irq(&mctz->lock); 2921 __mem_cgroup_remove_exceeded(mz, mctz); 2922 2923 /* 2924 * If we failed to reclaim anything from this memory cgroup 2925 * it is time to move on to the next cgroup 2926 */ 2927 next_mz = NULL; 2928 if (!reclaimed) 2929 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2930 2931 excess = soft_limit_excess(mz->memcg); 2932 /* 2933 * One school of thought says that we should not add 2934 * back the node to the tree if reclaim returns 0. 2935 * But our reclaim could return 0, simply because due 2936 * to priority we are exposing a smaller subset of 2937 * memory to reclaim from. Consider this as a longer 2938 * term TODO. 2939 */ 2940 /* If excess == 0, no tree ops */ 2941 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2942 spin_unlock_irq(&mctz->lock); 2943 css_put(&mz->memcg->css); 2944 loop++; 2945 /* 2946 * Could not reclaim anything and there are no more 2947 * mem cgroups to try or we seem to be looping without 2948 * reclaiming anything. 2949 */ 2950 if (!nr_reclaimed && 2951 (next_mz == NULL || 2952 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2953 break; 2954 } while (!nr_reclaimed); 2955 if (next_mz) 2956 css_put(&next_mz->memcg->css); 2957 return nr_reclaimed; 2958 } 2959 2960 /* 2961 * Test whether @memcg has children, dead or alive. Note that this 2962 * function doesn't care whether @memcg has use_hierarchy enabled and 2963 * returns %true if there are child csses according to the cgroup 2964 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2965 */ 2966 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2967 { 2968 bool ret; 2969 2970 rcu_read_lock(); 2971 ret = css_next_child(NULL, &memcg->css); 2972 rcu_read_unlock(); 2973 return ret; 2974 } 2975 2976 /* 2977 * Reclaims as many pages from the given memcg as possible. 2978 * 2979 * Caller is responsible for holding css reference for memcg. 2980 */ 2981 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2982 { 2983 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2984 2985 /* we call try-to-free pages for make this cgroup empty */ 2986 lru_add_drain_all(); 2987 2988 drain_all_stock(memcg); 2989 2990 /* try to free all pages in this cgroup */ 2991 while (nr_retries && page_counter_read(&memcg->memory)) { 2992 int progress; 2993 2994 if (signal_pending(current)) 2995 return -EINTR; 2996 2997 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2998 GFP_KERNEL, true); 2999 if (!progress) { 3000 nr_retries--; 3001 /* maybe some writeback is necessary */ 3002 congestion_wait(BLK_RW_ASYNC, HZ/10); 3003 } 3004 3005 } 3006 3007 return 0; 3008 } 3009 3010 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3011 char *buf, size_t nbytes, 3012 loff_t off) 3013 { 3014 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3015 3016 if (mem_cgroup_is_root(memcg)) 3017 return -EINVAL; 3018 return mem_cgroup_force_empty(memcg) ?: nbytes; 3019 } 3020 3021 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3022 struct cftype *cft) 3023 { 3024 return mem_cgroup_from_css(css)->use_hierarchy; 3025 } 3026 3027 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3028 struct cftype *cft, u64 val) 3029 { 3030 int retval = 0; 3031 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3032 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3033 3034 if (memcg->use_hierarchy == val) 3035 return 0; 3036 3037 /* 3038 * If parent's use_hierarchy is set, we can't make any modifications 3039 * in the child subtrees. If it is unset, then the change can 3040 * occur, provided the current cgroup has no children. 3041 * 3042 * For the root cgroup, parent_mem is NULL, we allow value to be 3043 * set if there are no children. 3044 */ 3045 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3046 (val == 1 || val == 0)) { 3047 if (!memcg_has_children(memcg)) 3048 memcg->use_hierarchy = val; 3049 else 3050 retval = -EBUSY; 3051 } else 3052 retval = -EINVAL; 3053 3054 return retval; 3055 } 3056 3057 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3058 { 3059 unsigned long val; 3060 3061 if (mem_cgroup_is_root(memcg)) { 3062 val = memcg_page_state(memcg, MEMCG_CACHE) + 3063 memcg_page_state(memcg, MEMCG_RSS); 3064 if (swap) 3065 val += memcg_page_state(memcg, MEMCG_SWAP); 3066 } else { 3067 if (!swap) 3068 val = page_counter_read(&memcg->memory); 3069 else 3070 val = page_counter_read(&memcg->memsw); 3071 } 3072 return val; 3073 } 3074 3075 enum { 3076 RES_USAGE, 3077 RES_LIMIT, 3078 RES_MAX_USAGE, 3079 RES_FAILCNT, 3080 RES_SOFT_LIMIT, 3081 }; 3082 3083 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3084 struct cftype *cft) 3085 { 3086 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3087 struct page_counter *counter; 3088 3089 switch (MEMFILE_TYPE(cft->private)) { 3090 case _MEM: 3091 counter = &memcg->memory; 3092 break; 3093 case _MEMSWAP: 3094 counter = &memcg->memsw; 3095 break; 3096 case _KMEM: 3097 counter = &memcg->kmem; 3098 break; 3099 case _TCP: 3100 counter = &memcg->tcpmem; 3101 break; 3102 default: 3103 BUG(); 3104 } 3105 3106 switch (MEMFILE_ATTR(cft->private)) { 3107 case RES_USAGE: 3108 if (counter == &memcg->memory) 3109 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3110 if (counter == &memcg->memsw) 3111 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3112 return (u64)page_counter_read(counter) * PAGE_SIZE; 3113 case RES_LIMIT: 3114 return (u64)counter->max * PAGE_SIZE; 3115 case RES_MAX_USAGE: 3116 return (u64)counter->watermark * PAGE_SIZE; 3117 case RES_FAILCNT: 3118 return counter->failcnt; 3119 case RES_SOFT_LIMIT: 3120 return (u64)memcg->soft_limit * PAGE_SIZE; 3121 default: 3122 BUG(); 3123 } 3124 } 3125 3126 #ifdef CONFIG_MEMCG_KMEM 3127 static int memcg_online_kmem(struct mem_cgroup *memcg) 3128 { 3129 int memcg_id; 3130 3131 if (cgroup_memory_nokmem) 3132 return 0; 3133 3134 BUG_ON(memcg->kmemcg_id >= 0); 3135 BUG_ON(memcg->kmem_state); 3136 3137 memcg_id = memcg_alloc_cache_id(); 3138 if (memcg_id < 0) 3139 return memcg_id; 3140 3141 static_branch_inc(&memcg_kmem_enabled_key); 3142 /* 3143 * A memory cgroup is considered kmem-online as soon as it gets 3144 * kmemcg_id. Setting the id after enabling static branching will 3145 * guarantee no one starts accounting before all call sites are 3146 * patched. 3147 */ 3148 memcg->kmemcg_id = memcg_id; 3149 memcg->kmem_state = KMEM_ONLINE; 3150 INIT_LIST_HEAD(&memcg->kmem_caches); 3151 3152 return 0; 3153 } 3154 3155 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3156 { 3157 struct cgroup_subsys_state *css; 3158 struct mem_cgroup *parent, *child; 3159 int kmemcg_id; 3160 3161 if (memcg->kmem_state != KMEM_ONLINE) 3162 return; 3163 /* 3164 * Clear the online state before clearing memcg_caches array 3165 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3166 * guarantees that no cache will be created for this cgroup 3167 * after we are done (see memcg_create_kmem_cache()). 3168 */ 3169 memcg->kmem_state = KMEM_ALLOCATED; 3170 3171 memcg_deactivate_kmem_caches(memcg); 3172 3173 kmemcg_id = memcg->kmemcg_id; 3174 BUG_ON(kmemcg_id < 0); 3175 3176 parent = parent_mem_cgroup(memcg); 3177 if (!parent) 3178 parent = root_mem_cgroup; 3179 3180 /* 3181 * Change kmemcg_id of this cgroup and all its descendants to the 3182 * parent's id, and then move all entries from this cgroup's list_lrus 3183 * to ones of the parent. After we have finished, all list_lrus 3184 * corresponding to this cgroup are guaranteed to remain empty. The 3185 * ordering is imposed by list_lru_node->lock taken by 3186 * memcg_drain_all_list_lrus(). 3187 */ 3188 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3189 css_for_each_descendant_pre(css, &memcg->css) { 3190 child = mem_cgroup_from_css(css); 3191 BUG_ON(child->kmemcg_id != kmemcg_id); 3192 child->kmemcg_id = parent->kmemcg_id; 3193 if (!memcg->use_hierarchy) 3194 break; 3195 } 3196 rcu_read_unlock(); 3197 3198 memcg_drain_all_list_lrus(kmemcg_id, parent); 3199 3200 memcg_free_cache_id(kmemcg_id); 3201 } 3202 3203 static void memcg_free_kmem(struct mem_cgroup *memcg) 3204 { 3205 /* css_alloc() failed, offlining didn't happen */ 3206 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3207 memcg_offline_kmem(memcg); 3208 3209 if (memcg->kmem_state == KMEM_ALLOCATED) { 3210 memcg_destroy_kmem_caches(memcg); 3211 static_branch_dec(&memcg_kmem_enabled_key); 3212 WARN_ON(page_counter_read(&memcg->kmem)); 3213 } 3214 } 3215 #else 3216 static int memcg_online_kmem(struct mem_cgroup *memcg) 3217 { 3218 return 0; 3219 } 3220 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3221 { 3222 } 3223 static void memcg_free_kmem(struct mem_cgroup *memcg) 3224 { 3225 } 3226 #endif /* CONFIG_MEMCG_KMEM */ 3227 3228 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3229 unsigned long max) 3230 { 3231 int ret; 3232 3233 mutex_lock(&memcg_max_mutex); 3234 ret = page_counter_set_max(&memcg->kmem, max); 3235 mutex_unlock(&memcg_max_mutex); 3236 return ret; 3237 } 3238 3239 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3240 { 3241 int ret; 3242 3243 mutex_lock(&memcg_max_mutex); 3244 3245 ret = page_counter_set_max(&memcg->tcpmem, max); 3246 if (ret) 3247 goto out; 3248 3249 if (!memcg->tcpmem_active) { 3250 /* 3251 * The active flag needs to be written after the static_key 3252 * update. This is what guarantees that the socket activation 3253 * function is the last one to run. See mem_cgroup_sk_alloc() 3254 * for details, and note that we don't mark any socket as 3255 * belonging to this memcg until that flag is up. 3256 * 3257 * We need to do this, because static_keys will span multiple 3258 * sites, but we can't control their order. If we mark a socket 3259 * as accounted, but the accounting functions are not patched in 3260 * yet, we'll lose accounting. 3261 * 3262 * We never race with the readers in mem_cgroup_sk_alloc(), 3263 * because when this value change, the code to process it is not 3264 * patched in yet. 3265 */ 3266 static_branch_inc(&memcg_sockets_enabled_key); 3267 memcg->tcpmem_active = true; 3268 } 3269 out: 3270 mutex_unlock(&memcg_max_mutex); 3271 return ret; 3272 } 3273 3274 /* 3275 * The user of this function is... 3276 * RES_LIMIT. 3277 */ 3278 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3279 char *buf, size_t nbytes, loff_t off) 3280 { 3281 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3282 unsigned long nr_pages; 3283 int ret; 3284 3285 buf = strstrip(buf); 3286 ret = page_counter_memparse(buf, "-1", &nr_pages); 3287 if (ret) 3288 return ret; 3289 3290 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3291 case RES_LIMIT: 3292 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3293 ret = -EINVAL; 3294 break; 3295 } 3296 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3297 case _MEM: 3298 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3299 break; 3300 case _MEMSWAP: 3301 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3302 break; 3303 case _KMEM: 3304 ret = memcg_update_kmem_max(memcg, nr_pages); 3305 break; 3306 case _TCP: 3307 ret = memcg_update_tcp_max(memcg, nr_pages); 3308 break; 3309 } 3310 break; 3311 case RES_SOFT_LIMIT: 3312 memcg->soft_limit = nr_pages; 3313 ret = 0; 3314 break; 3315 } 3316 return ret ?: nbytes; 3317 } 3318 3319 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3320 size_t nbytes, loff_t off) 3321 { 3322 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3323 struct page_counter *counter; 3324 3325 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3326 case _MEM: 3327 counter = &memcg->memory; 3328 break; 3329 case _MEMSWAP: 3330 counter = &memcg->memsw; 3331 break; 3332 case _KMEM: 3333 counter = &memcg->kmem; 3334 break; 3335 case _TCP: 3336 counter = &memcg->tcpmem; 3337 break; 3338 default: 3339 BUG(); 3340 } 3341 3342 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3343 case RES_MAX_USAGE: 3344 page_counter_reset_watermark(counter); 3345 break; 3346 case RES_FAILCNT: 3347 counter->failcnt = 0; 3348 break; 3349 default: 3350 BUG(); 3351 } 3352 3353 return nbytes; 3354 } 3355 3356 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3357 struct cftype *cft) 3358 { 3359 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3360 } 3361 3362 #ifdef CONFIG_MMU 3363 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3364 struct cftype *cft, u64 val) 3365 { 3366 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3367 3368 if (val & ~MOVE_MASK) 3369 return -EINVAL; 3370 3371 /* 3372 * No kind of locking is needed in here, because ->can_attach() will 3373 * check this value once in the beginning of the process, and then carry 3374 * on with stale data. This means that changes to this value will only 3375 * affect task migrations starting after the change. 3376 */ 3377 memcg->move_charge_at_immigrate = val; 3378 return 0; 3379 } 3380 #else 3381 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3382 struct cftype *cft, u64 val) 3383 { 3384 return -ENOSYS; 3385 } 3386 #endif 3387 3388 #ifdef CONFIG_NUMA 3389 3390 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3391 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3392 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3393 3394 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3395 int nid, unsigned int lru_mask) 3396 { 3397 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 3398 unsigned long nr = 0; 3399 enum lru_list lru; 3400 3401 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3402 3403 for_each_lru(lru) { 3404 if (!(BIT(lru) & lru_mask)) 3405 continue; 3406 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3407 } 3408 return nr; 3409 } 3410 3411 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3412 unsigned int lru_mask) 3413 { 3414 unsigned long nr = 0; 3415 enum lru_list lru; 3416 3417 for_each_lru(lru) { 3418 if (!(BIT(lru) & lru_mask)) 3419 continue; 3420 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3421 } 3422 return nr; 3423 } 3424 3425 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3426 { 3427 struct numa_stat { 3428 const char *name; 3429 unsigned int lru_mask; 3430 }; 3431 3432 static const struct numa_stat stats[] = { 3433 { "total", LRU_ALL }, 3434 { "file", LRU_ALL_FILE }, 3435 { "anon", LRU_ALL_ANON }, 3436 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3437 }; 3438 const struct numa_stat *stat; 3439 int nid; 3440 unsigned long nr; 3441 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3442 3443 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3444 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3445 seq_printf(m, "%s=%lu", stat->name, nr); 3446 for_each_node_state(nid, N_MEMORY) { 3447 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3448 stat->lru_mask); 3449 seq_printf(m, " N%d=%lu", nid, nr); 3450 } 3451 seq_putc(m, '\n'); 3452 } 3453 3454 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3455 struct mem_cgroup *iter; 3456 3457 nr = 0; 3458 for_each_mem_cgroup_tree(iter, memcg) 3459 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3460 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3461 for_each_node_state(nid, N_MEMORY) { 3462 nr = 0; 3463 for_each_mem_cgroup_tree(iter, memcg) 3464 nr += mem_cgroup_node_nr_lru_pages( 3465 iter, nid, stat->lru_mask); 3466 seq_printf(m, " N%d=%lu", nid, nr); 3467 } 3468 seq_putc(m, '\n'); 3469 } 3470 3471 return 0; 3472 } 3473 #endif /* CONFIG_NUMA */ 3474 3475 /* Universal VM events cgroup1 shows, original sort order */ 3476 static const unsigned int memcg1_events[] = { 3477 PGPGIN, 3478 PGPGOUT, 3479 PGFAULT, 3480 PGMAJFAULT, 3481 }; 3482 3483 static const char *const memcg1_event_names[] = { 3484 "pgpgin", 3485 "pgpgout", 3486 "pgfault", 3487 "pgmajfault", 3488 }; 3489 3490 static int memcg_stat_show(struct seq_file *m, void *v) 3491 { 3492 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3493 unsigned long memory, memsw; 3494 struct mem_cgroup *mi; 3495 unsigned int i; 3496 3497 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3498 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3499 3500 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3501 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3502 continue; 3503 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3504 memcg_page_state_local(memcg, memcg1_stats[i]) * 3505 PAGE_SIZE); 3506 } 3507 3508 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3509 seq_printf(m, "%s %lu\n", memcg1_event_names[i], 3510 memcg_events_local(memcg, memcg1_events[i])); 3511 3512 for (i = 0; i < NR_LRU_LISTS; i++) 3513 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3514 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3515 PAGE_SIZE); 3516 3517 /* Hierarchical information */ 3518 memory = memsw = PAGE_COUNTER_MAX; 3519 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3520 memory = min(memory, mi->memory.max); 3521 memsw = min(memsw, mi->memsw.max); 3522 } 3523 seq_printf(m, "hierarchical_memory_limit %llu\n", 3524 (u64)memory * PAGE_SIZE); 3525 if (do_memsw_account()) 3526 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3527 (u64)memsw * PAGE_SIZE); 3528 3529 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3530 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3531 continue; 3532 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3533 (u64)memcg_page_state(memcg, i) * PAGE_SIZE); 3534 } 3535 3536 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3537 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], 3538 (u64)memcg_events(memcg, i)); 3539 3540 for (i = 0; i < NR_LRU_LISTS; i++) 3541 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], 3542 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 3543 PAGE_SIZE); 3544 3545 #ifdef CONFIG_DEBUG_VM 3546 { 3547 pg_data_t *pgdat; 3548 struct mem_cgroup_per_node *mz; 3549 struct zone_reclaim_stat *rstat; 3550 unsigned long recent_rotated[2] = {0, 0}; 3551 unsigned long recent_scanned[2] = {0, 0}; 3552 3553 for_each_online_pgdat(pgdat) { 3554 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3555 rstat = &mz->lruvec.reclaim_stat; 3556 3557 recent_rotated[0] += rstat->recent_rotated[0]; 3558 recent_rotated[1] += rstat->recent_rotated[1]; 3559 recent_scanned[0] += rstat->recent_scanned[0]; 3560 recent_scanned[1] += rstat->recent_scanned[1]; 3561 } 3562 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3563 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3564 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3565 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3566 } 3567 #endif 3568 3569 return 0; 3570 } 3571 3572 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3573 struct cftype *cft) 3574 { 3575 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3576 3577 return mem_cgroup_swappiness(memcg); 3578 } 3579 3580 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3581 struct cftype *cft, u64 val) 3582 { 3583 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3584 3585 if (val > 100) 3586 return -EINVAL; 3587 3588 if (css->parent) 3589 memcg->swappiness = val; 3590 else 3591 vm_swappiness = val; 3592 3593 return 0; 3594 } 3595 3596 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3597 { 3598 struct mem_cgroup_threshold_ary *t; 3599 unsigned long usage; 3600 int i; 3601 3602 rcu_read_lock(); 3603 if (!swap) 3604 t = rcu_dereference(memcg->thresholds.primary); 3605 else 3606 t = rcu_dereference(memcg->memsw_thresholds.primary); 3607 3608 if (!t) 3609 goto unlock; 3610 3611 usage = mem_cgroup_usage(memcg, swap); 3612 3613 /* 3614 * current_threshold points to threshold just below or equal to usage. 3615 * If it's not true, a threshold was crossed after last 3616 * call of __mem_cgroup_threshold(). 3617 */ 3618 i = t->current_threshold; 3619 3620 /* 3621 * Iterate backward over array of thresholds starting from 3622 * current_threshold and check if a threshold is crossed. 3623 * If none of thresholds below usage is crossed, we read 3624 * only one element of the array here. 3625 */ 3626 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3627 eventfd_signal(t->entries[i].eventfd, 1); 3628 3629 /* i = current_threshold + 1 */ 3630 i++; 3631 3632 /* 3633 * Iterate forward over array of thresholds starting from 3634 * current_threshold+1 and check if a threshold is crossed. 3635 * If none of thresholds above usage is crossed, we read 3636 * only one element of the array here. 3637 */ 3638 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3639 eventfd_signal(t->entries[i].eventfd, 1); 3640 3641 /* Update current_threshold */ 3642 t->current_threshold = i - 1; 3643 unlock: 3644 rcu_read_unlock(); 3645 } 3646 3647 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3648 { 3649 while (memcg) { 3650 __mem_cgroup_threshold(memcg, false); 3651 if (do_memsw_account()) 3652 __mem_cgroup_threshold(memcg, true); 3653 3654 memcg = parent_mem_cgroup(memcg); 3655 } 3656 } 3657 3658 static int compare_thresholds(const void *a, const void *b) 3659 { 3660 const struct mem_cgroup_threshold *_a = a; 3661 const struct mem_cgroup_threshold *_b = b; 3662 3663 if (_a->threshold > _b->threshold) 3664 return 1; 3665 3666 if (_a->threshold < _b->threshold) 3667 return -1; 3668 3669 return 0; 3670 } 3671 3672 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3673 { 3674 struct mem_cgroup_eventfd_list *ev; 3675 3676 spin_lock(&memcg_oom_lock); 3677 3678 list_for_each_entry(ev, &memcg->oom_notify, list) 3679 eventfd_signal(ev->eventfd, 1); 3680 3681 spin_unlock(&memcg_oom_lock); 3682 return 0; 3683 } 3684 3685 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3686 { 3687 struct mem_cgroup *iter; 3688 3689 for_each_mem_cgroup_tree(iter, memcg) 3690 mem_cgroup_oom_notify_cb(iter); 3691 } 3692 3693 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3694 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3695 { 3696 struct mem_cgroup_thresholds *thresholds; 3697 struct mem_cgroup_threshold_ary *new; 3698 unsigned long threshold; 3699 unsigned long usage; 3700 int i, size, ret; 3701 3702 ret = page_counter_memparse(args, "-1", &threshold); 3703 if (ret) 3704 return ret; 3705 3706 mutex_lock(&memcg->thresholds_lock); 3707 3708 if (type == _MEM) { 3709 thresholds = &memcg->thresholds; 3710 usage = mem_cgroup_usage(memcg, false); 3711 } else if (type == _MEMSWAP) { 3712 thresholds = &memcg->memsw_thresholds; 3713 usage = mem_cgroup_usage(memcg, true); 3714 } else 3715 BUG(); 3716 3717 /* Check if a threshold crossed before adding a new one */ 3718 if (thresholds->primary) 3719 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3720 3721 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3722 3723 /* Allocate memory for new array of thresholds */ 3724 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 3725 if (!new) { 3726 ret = -ENOMEM; 3727 goto unlock; 3728 } 3729 new->size = size; 3730 3731 /* Copy thresholds (if any) to new array */ 3732 if (thresholds->primary) { 3733 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3734 sizeof(struct mem_cgroup_threshold)); 3735 } 3736 3737 /* Add new threshold */ 3738 new->entries[size - 1].eventfd = eventfd; 3739 new->entries[size - 1].threshold = threshold; 3740 3741 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3742 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3743 compare_thresholds, NULL); 3744 3745 /* Find current threshold */ 3746 new->current_threshold = -1; 3747 for (i = 0; i < size; i++) { 3748 if (new->entries[i].threshold <= usage) { 3749 /* 3750 * new->current_threshold will not be used until 3751 * rcu_assign_pointer(), so it's safe to increment 3752 * it here. 3753 */ 3754 ++new->current_threshold; 3755 } else 3756 break; 3757 } 3758 3759 /* Free old spare buffer and save old primary buffer as spare */ 3760 kfree(thresholds->spare); 3761 thresholds->spare = thresholds->primary; 3762 3763 rcu_assign_pointer(thresholds->primary, new); 3764 3765 /* To be sure that nobody uses thresholds */ 3766 synchronize_rcu(); 3767 3768 unlock: 3769 mutex_unlock(&memcg->thresholds_lock); 3770 3771 return ret; 3772 } 3773 3774 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3775 struct eventfd_ctx *eventfd, const char *args) 3776 { 3777 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3778 } 3779 3780 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3781 struct eventfd_ctx *eventfd, const char *args) 3782 { 3783 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3784 } 3785 3786 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3787 struct eventfd_ctx *eventfd, enum res_type type) 3788 { 3789 struct mem_cgroup_thresholds *thresholds; 3790 struct mem_cgroup_threshold_ary *new; 3791 unsigned long usage; 3792 int i, j, size; 3793 3794 mutex_lock(&memcg->thresholds_lock); 3795 3796 if (type == _MEM) { 3797 thresholds = &memcg->thresholds; 3798 usage = mem_cgroup_usage(memcg, false); 3799 } else if (type == _MEMSWAP) { 3800 thresholds = &memcg->memsw_thresholds; 3801 usage = mem_cgroup_usage(memcg, true); 3802 } else 3803 BUG(); 3804 3805 if (!thresholds->primary) 3806 goto unlock; 3807 3808 /* Check if a threshold crossed before removing */ 3809 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3810 3811 /* Calculate new number of threshold */ 3812 size = 0; 3813 for (i = 0; i < thresholds->primary->size; i++) { 3814 if (thresholds->primary->entries[i].eventfd != eventfd) 3815 size++; 3816 } 3817 3818 new = thresholds->spare; 3819 3820 /* Set thresholds array to NULL if we don't have thresholds */ 3821 if (!size) { 3822 kfree(new); 3823 new = NULL; 3824 goto swap_buffers; 3825 } 3826 3827 new->size = size; 3828 3829 /* Copy thresholds and find current threshold */ 3830 new->current_threshold = -1; 3831 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3832 if (thresholds->primary->entries[i].eventfd == eventfd) 3833 continue; 3834 3835 new->entries[j] = thresholds->primary->entries[i]; 3836 if (new->entries[j].threshold <= usage) { 3837 /* 3838 * new->current_threshold will not be used 3839 * until rcu_assign_pointer(), so it's safe to increment 3840 * it here. 3841 */ 3842 ++new->current_threshold; 3843 } 3844 j++; 3845 } 3846 3847 swap_buffers: 3848 /* Swap primary and spare array */ 3849 thresholds->spare = thresholds->primary; 3850 3851 rcu_assign_pointer(thresholds->primary, new); 3852 3853 /* To be sure that nobody uses thresholds */ 3854 synchronize_rcu(); 3855 3856 /* If all events are unregistered, free the spare array */ 3857 if (!new) { 3858 kfree(thresholds->spare); 3859 thresholds->spare = NULL; 3860 } 3861 unlock: 3862 mutex_unlock(&memcg->thresholds_lock); 3863 } 3864 3865 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3866 struct eventfd_ctx *eventfd) 3867 { 3868 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3869 } 3870 3871 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3872 struct eventfd_ctx *eventfd) 3873 { 3874 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3875 } 3876 3877 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3878 struct eventfd_ctx *eventfd, const char *args) 3879 { 3880 struct mem_cgroup_eventfd_list *event; 3881 3882 event = kmalloc(sizeof(*event), GFP_KERNEL); 3883 if (!event) 3884 return -ENOMEM; 3885 3886 spin_lock(&memcg_oom_lock); 3887 3888 event->eventfd = eventfd; 3889 list_add(&event->list, &memcg->oom_notify); 3890 3891 /* already in OOM ? */ 3892 if (memcg->under_oom) 3893 eventfd_signal(eventfd, 1); 3894 spin_unlock(&memcg_oom_lock); 3895 3896 return 0; 3897 } 3898 3899 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3900 struct eventfd_ctx *eventfd) 3901 { 3902 struct mem_cgroup_eventfd_list *ev, *tmp; 3903 3904 spin_lock(&memcg_oom_lock); 3905 3906 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3907 if (ev->eventfd == eventfd) { 3908 list_del(&ev->list); 3909 kfree(ev); 3910 } 3911 } 3912 3913 spin_unlock(&memcg_oom_lock); 3914 } 3915 3916 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3917 { 3918 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 3919 3920 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3921 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3922 seq_printf(sf, "oom_kill %lu\n", 3923 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 3924 return 0; 3925 } 3926 3927 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3928 struct cftype *cft, u64 val) 3929 { 3930 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3931 3932 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3933 if (!css->parent || !((val == 0) || (val == 1))) 3934 return -EINVAL; 3935 3936 memcg->oom_kill_disable = val; 3937 if (!val) 3938 memcg_oom_recover(memcg); 3939 3940 return 0; 3941 } 3942 3943 #ifdef CONFIG_CGROUP_WRITEBACK 3944 3945 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3946 { 3947 return wb_domain_init(&memcg->cgwb_domain, gfp); 3948 } 3949 3950 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3951 { 3952 wb_domain_exit(&memcg->cgwb_domain); 3953 } 3954 3955 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3956 { 3957 wb_domain_size_changed(&memcg->cgwb_domain); 3958 } 3959 3960 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3961 { 3962 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3963 3964 if (!memcg->css.parent) 3965 return NULL; 3966 3967 return &memcg->cgwb_domain; 3968 } 3969 3970 /* 3971 * idx can be of type enum memcg_stat_item or node_stat_item. 3972 * Keep in sync with memcg_exact_page(). 3973 */ 3974 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 3975 { 3976 long x = atomic_long_read(&memcg->vmstats[idx]); 3977 int cpu; 3978 3979 for_each_online_cpu(cpu) 3980 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 3981 if (x < 0) 3982 x = 0; 3983 return x; 3984 } 3985 3986 /** 3987 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3988 * @wb: bdi_writeback in question 3989 * @pfilepages: out parameter for number of file pages 3990 * @pheadroom: out parameter for number of allocatable pages according to memcg 3991 * @pdirty: out parameter for number of dirty pages 3992 * @pwriteback: out parameter for number of pages under writeback 3993 * 3994 * Determine the numbers of file, headroom, dirty, and writeback pages in 3995 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3996 * is a bit more involved. 3997 * 3998 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3999 * headroom is calculated as the lowest headroom of itself and the 4000 * ancestors. Note that this doesn't consider the actual amount of 4001 * available memory in the system. The caller should further cap 4002 * *@pheadroom accordingly. 4003 */ 4004 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4005 unsigned long *pheadroom, unsigned long *pdirty, 4006 unsigned long *pwriteback) 4007 { 4008 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4009 struct mem_cgroup *parent; 4010 4011 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4012 4013 /* this should eventually include NR_UNSTABLE_NFS */ 4014 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4015 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4016 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4017 *pheadroom = PAGE_COUNTER_MAX; 4018 4019 while ((parent = parent_mem_cgroup(memcg))) { 4020 unsigned long ceiling = min(memcg->memory.max, memcg->high); 4021 unsigned long used = page_counter_read(&memcg->memory); 4022 4023 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4024 memcg = parent; 4025 } 4026 } 4027 4028 #else /* CONFIG_CGROUP_WRITEBACK */ 4029 4030 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4031 { 4032 return 0; 4033 } 4034 4035 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4036 { 4037 } 4038 4039 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4040 { 4041 } 4042 4043 #endif /* CONFIG_CGROUP_WRITEBACK */ 4044 4045 /* 4046 * DO NOT USE IN NEW FILES. 4047 * 4048 * "cgroup.event_control" implementation. 4049 * 4050 * This is way over-engineered. It tries to support fully configurable 4051 * events for each user. Such level of flexibility is completely 4052 * unnecessary especially in the light of the planned unified hierarchy. 4053 * 4054 * Please deprecate this and replace with something simpler if at all 4055 * possible. 4056 */ 4057 4058 /* 4059 * Unregister event and free resources. 4060 * 4061 * Gets called from workqueue. 4062 */ 4063 static void memcg_event_remove(struct work_struct *work) 4064 { 4065 struct mem_cgroup_event *event = 4066 container_of(work, struct mem_cgroup_event, remove); 4067 struct mem_cgroup *memcg = event->memcg; 4068 4069 remove_wait_queue(event->wqh, &event->wait); 4070 4071 event->unregister_event(memcg, event->eventfd); 4072 4073 /* Notify userspace the event is going away. */ 4074 eventfd_signal(event->eventfd, 1); 4075 4076 eventfd_ctx_put(event->eventfd); 4077 kfree(event); 4078 css_put(&memcg->css); 4079 } 4080 4081 /* 4082 * Gets called on EPOLLHUP on eventfd when user closes it. 4083 * 4084 * Called with wqh->lock held and interrupts disabled. 4085 */ 4086 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4087 int sync, void *key) 4088 { 4089 struct mem_cgroup_event *event = 4090 container_of(wait, struct mem_cgroup_event, wait); 4091 struct mem_cgroup *memcg = event->memcg; 4092 __poll_t flags = key_to_poll(key); 4093 4094 if (flags & EPOLLHUP) { 4095 /* 4096 * If the event has been detached at cgroup removal, we 4097 * can simply return knowing the other side will cleanup 4098 * for us. 4099 * 4100 * We can't race against event freeing since the other 4101 * side will require wqh->lock via remove_wait_queue(), 4102 * which we hold. 4103 */ 4104 spin_lock(&memcg->event_list_lock); 4105 if (!list_empty(&event->list)) { 4106 list_del_init(&event->list); 4107 /* 4108 * We are in atomic context, but cgroup_event_remove() 4109 * may sleep, so we have to call it in workqueue. 4110 */ 4111 schedule_work(&event->remove); 4112 } 4113 spin_unlock(&memcg->event_list_lock); 4114 } 4115 4116 return 0; 4117 } 4118 4119 static void memcg_event_ptable_queue_proc(struct file *file, 4120 wait_queue_head_t *wqh, poll_table *pt) 4121 { 4122 struct mem_cgroup_event *event = 4123 container_of(pt, struct mem_cgroup_event, pt); 4124 4125 event->wqh = wqh; 4126 add_wait_queue(wqh, &event->wait); 4127 } 4128 4129 /* 4130 * DO NOT USE IN NEW FILES. 4131 * 4132 * Parse input and register new cgroup event handler. 4133 * 4134 * Input must be in format '<event_fd> <control_fd> <args>'. 4135 * Interpretation of args is defined by control file implementation. 4136 */ 4137 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4138 char *buf, size_t nbytes, loff_t off) 4139 { 4140 struct cgroup_subsys_state *css = of_css(of); 4141 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4142 struct mem_cgroup_event *event; 4143 struct cgroup_subsys_state *cfile_css; 4144 unsigned int efd, cfd; 4145 struct fd efile; 4146 struct fd cfile; 4147 const char *name; 4148 char *endp; 4149 int ret; 4150 4151 buf = strstrip(buf); 4152 4153 efd = simple_strtoul(buf, &endp, 10); 4154 if (*endp != ' ') 4155 return -EINVAL; 4156 buf = endp + 1; 4157 4158 cfd = simple_strtoul(buf, &endp, 10); 4159 if ((*endp != ' ') && (*endp != '\0')) 4160 return -EINVAL; 4161 buf = endp + 1; 4162 4163 event = kzalloc(sizeof(*event), GFP_KERNEL); 4164 if (!event) 4165 return -ENOMEM; 4166 4167 event->memcg = memcg; 4168 INIT_LIST_HEAD(&event->list); 4169 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4170 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4171 INIT_WORK(&event->remove, memcg_event_remove); 4172 4173 efile = fdget(efd); 4174 if (!efile.file) { 4175 ret = -EBADF; 4176 goto out_kfree; 4177 } 4178 4179 event->eventfd = eventfd_ctx_fileget(efile.file); 4180 if (IS_ERR(event->eventfd)) { 4181 ret = PTR_ERR(event->eventfd); 4182 goto out_put_efile; 4183 } 4184 4185 cfile = fdget(cfd); 4186 if (!cfile.file) { 4187 ret = -EBADF; 4188 goto out_put_eventfd; 4189 } 4190 4191 /* the process need read permission on control file */ 4192 /* AV: shouldn't we check that it's been opened for read instead? */ 4193 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4194 if (ret < 0) 4195 goto out_put_cfile; 4196 4197 /* 4198 * Determine the event callbacks and set them in @event. This used 4199 * to be done via struct cftype but cgroup core no longer knows 4200 * about these events. The following is crude but the whole thing 4201 * is for compatibility anyway. 4202 * 4203 * DO NOT ADD NEW FILES. 4204 */ 4205 name = cfile.file->f_path.dentry->d_name.name; 4206 4207 if (!strcmp(name, "memory.usage_in_bytes")) { 4208 event->register_event = mem_cgroup_usage_register_event; 4209 event->unregister_event = mem_cgroup_usage_unregister_event; 4210 } else if (!strcmp(name, "memory.oom_control")) { 4211 event->register_event = mem_cgroup_oom_register_event; 4212 event->unregister_event = mem_cgroup_oom_unregister_event; 4213 } else if (!strcmp(name, "memory.pressure_level")) { 4214 event->register_event = vmpressure_register_event; 4215 event->unregister_event = vmpressure_unregister_event; 4216 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4217 event->register_event = memsw_cgroup_usage_register_event; 4218 event->unregister_event = memsw_cgroup_usage_unregister_event; 4219 } else { 4220 ret = -EINVAL; 4221 goto out_put_cfile; 4222 } 4223 4224 /* 4225 * Verify @cfile should belong to @css. Also, remaining events are 4226 * automatically removed on cgroup destruction but the removal is 4227 * asynchronous, so take an extra ref on @css. 4228 */ 4229 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4230 &memory_cgrp_subsys); 4231 ret = -EINVAL; 4232 if (IS_ERR(cfile_css)) 4233 goto out_put_cfile; 4234 if (cfile_css != css) { 4235 css_put(cfile_css); 4236 goto out_put_cfile; 4237 } 4238 4239 ret = event->register_event(memcg, event->eventfd, buf); 4240 if (ret) 4241 goto out_put_css; 4242 4243 vfs_poll(efile.file, &event->pt); 4244 4245 spin_lock(&memcg->event_list_lock); 4246 list_add(&event->list, &memcg->event_list); 4247 spin_unlock(&memcg->event_list_lock); 4248 4249 fdput(cfile); 4250 fdput(efile); 4251 4252 return nbytes; 4253 4254 out_put_css: 4255 css_put(css); 4256 out_put_cfile: 4257 fdput(cfile); 4258 out_put_eventfd: 4259 eventfd_ctx_put(event->eventfd); 4260 out_put_efile: 4261 fdput(efile); 4262 out_kfree: 4263 kfree(event); 4264 4265 return ret; 4266 } 4267 4268 static struct cftype mem_cgroup_legacy_files[] = { 4269 { 4270 .name = "usage_in_bytes", 4271 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4272 .read_u64 = mem_cgroup_read_u64, 4273 }, 4274 { 4275 .name = "max_usage_in_bytes", 4276 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4277 .write = mem_cgroup_reset, 4278 .read_u64 = mem_cgroup_read_u64, 4279 }, 4280 { 4281 .name = "limit_in_bytes", 4282 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4283 .write = mem_cgroup_write, 4284 .read_u64 = mem_cgroup_read_u64, 4285 }, 4286 { 4287 .name = "soft_limit_in_bytes", 4288 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4289 .write = mem_cgroup_write, 4290 .read_u64 = mem_cgroup_read_u64, 4291 }, 4292 { 4293 .name = "failcnt", 4294 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4295 .write = mem_cgroup_reset, 4296 .read_u64 = mem_cgroup_read_u64, 4297 }, 4298 { 4299 .name = "stat", 4300 .seq_show = memcg_stat_show, 4301 }, 4302 { 4303 .name = "force_empty", 4304 .write = mem_cgroup_force_empty_write, 4305 }, 4306 { 4307 .name = "use_hierarchy", 4308 .write_u64 = mem_cgroup_hierarchy_write, 4309 .read_u64 = mem_cgroup_hierarchy_read, 4310 }, 4311 { 4312 .name = "cgroup.event_control", /* XXX: for compat */ 4313 .write = memcg_write_event_control, 4314 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4315 }, 4316 { 4317 .name = "swappiness", 4318 .read_u64 = mem_cgroup_swappiness_read, 4319 .write_u64 = mem_cgroup_swappiness_write, 4320 }, 4321 { 4322 .name = "move_charge_at_immigrate", 4323 .read_u64 = mem_cgroup_move_charge_read, 4324 .write_u64 = mem_cgroup_move_charge_write, 4325 }, 4326 { 4327 .name = "oom_control", 4328 .seq_show = mem_cgroup_oom_control_read, 4329 .write_u64 = mem_cgroup_oom_control_write, 4330 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4331 }, 4332 { 4333 .name = "pressure_level", 4334 }, 4335 #ifdef CONFIG_NUMA 4336 { 4337 .name = "numa_stat", 4338 .seq_show = memcg_numa_stat_show, 4339 }, 4340 #endif 4341 { 4342 .name = "kmem.limit_in_bytes", 4343 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4344 .write = mem_cgroup_write, 4345 .read_u64 = mem_cgroup_read_u64, 4346 }, 4347 { 4348 .name = "kmem.usage_in_bytes", 4349 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4350 .read_u64 = mem_cgroup_read_u64, 4351 }, 4352 { 4353 .name = "kmem.failcnt", 4354 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4355 .write = mem_cgroup_reset, 4356 .read_u64 = mem_cgroup_read_u64, 4357 }, 4358 { 4359 .name = "kmem.max_usage_in_bytes", 4360 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4361 .write = mem_cgroup_reset, 4362 .read_u64 = mem_cgroup_read_u64, 4363 }, 4364 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 4365 { 4366 .name = "kmem.slabinfo", 4367 .seq_start = memcg_slab_start, 4368 .seq_next = memcg_slab_next, 4369 .seq_stop = memcg_slab_stop, 4370 .seq_show = memcg_slab_show, 4371 }, 4372 #endif 4373 { 4374 .name = "kmem.tcp.limit_in_bytes", 4375 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4376 .write = mem_cgroup_write, 4377 .read_u64 = mem_cgroup_read_u64, 4378 }, 4379 { 4380 .name = "kmem.tcp.usage_in_bytes", 4381 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4382 .read_u64 = mem_cgroup_read_u64, 4383 }, 4384 { 4385 .name = "kmem.tcp.failcnt", 4386 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4387 .write = mem_cgroup_reset, 4388 .read_u64 = mem_cgroup_read_u64, 4389 }, 4390 { 4391 .name = "kmem.tcp.max_usage_in_bytes", 4392 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4393 .write = mem_cgroup_reset, 4394 .read_u64 = mem_cgroup_read_u64, 4395 }, 4396 { }, /* terminate */ 4397 }; 4398 4399 /* 4400 * Private memory cgroup IDR 4401 * 4402 * Swap-out records and page cache shadow entries need to store memcg 4403 * references in constrained space, so we maintain an ID space that is 4404 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4405 * memory-controlled cgroups to 64k. 4406 * 4407 * However, there usually are many references to the oflline CSS after 4408 * the cgroup has been destroyed, such as page cache or reclaimable 4409 * slab objects, that don't need to hang on to the ID. We want to keep 4410 * those dead CSS from occupying IDs, or we might quickly exhaust the 4411 * relatively small ID space and prevent the creation of new cgroups 4412 * even when there are much fewer than 64k cgroups - possibly none. 4413 * 4414 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4415 * be freed and recycled when it's no longer needed, which is usually 4416 * when the CSS is offlined. 4417 * 4418 * The only exception to that are records of swapped out tmpfs/shmem 4419 * pages that need to be attributed to live ancestors on swapin. But 4420 * those references are manageable from userspace. 4421 */ 4422 4423 static DEFINE_IDR(mem_cgroup_idr); 4424 4425 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4426 { 4427 if (memcg->id.id > 0) { 4428 idr_remove(&mem_cgroup_idr, memcg->id.id); 4429 memcg->id.id = 0; 4430 } 4431 } 4432 4433 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4434 { 4435 refcount_add(n, &memcg->id.ref); 4436 } 4437 4438 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4439 { 4440 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4441 mem_cgroup_id_remove(memcg); 4442 4443 /* Memcg ID pins CSS */ 4444 css_put(&memcg->css); 4445 } 4446 } 4447 4448 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) 4449 { 4450 mem_cgroup_id_get_many(memcg, 1); 4451 } 4452 4453 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4454 { 4455 mem_cgroup_id_put_many(memcg, 1); 4456 } 4457 4458 /** 4459 * mem_cgroup_from_id - look up a memcg from a memcg id 4460 * @id: the memcg id to look up 4461 * 4462 * Caller must hold rcu_read_lock(). 4463 */ 4464 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4465 { 4466 WARN_ON_ONCE(!rcu_read_lock_held()); 4467 return idr_find(&mem_cgroup_idr, id); 4468 } 4469 4470 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4471 { 4472 struct mem_cgroup_per_node *pn; 4473 int tmp = node; 4474 /* 4475 * This routine is called against possible nodes. 4476 * But it's BUG to call kmalloc() against offline node. 4477 * 4478 * TODO: this routine can waste much memory for nodes which will 4479 * never be onlined. It's better to use memory hotplug callback 4480 * function. 4481 */ 4482 if (!node_state(node, N_NORMAL_MEMORY)) 4483 tmp = -1; 4484 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4485 if (!pn) 4486 return 1; 4487 4488 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat); 4489 if (!pn->lruvec_stat_local) { 4490 kfree(pn); 4491 return 1; 4492 } 4493 4494 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4495 if (!pn->lruvec_stat_cpu) { 4496 free_percpu(pn->lruvec_stat_local); 4497 kfree(pn); 4498 return 1; 4499 } 4500 4501 lruvec_init(&pn->lruvec); 4502 pn->usage_in_excess = 0; 4503 pn->on_tree = false; 4504 pn->memcg = memcg; 4505 4506 memcg->nodeinfo[node] = pn; 4507 return 0; 4508 } 4509 4510 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4511 { 4512 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4513 4514 if (!pn) 4515 return; 4516 4517 free_percpu(pn->lruvec_stat_cpu); 4518 free_percpu(pn->lruvec_stat_local); 4519 kfree(pn); 4520 } 4521 4522 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4523 { 4524 int node; 4525 4526 for_each_node(node) 4527 free_mem_cgroup_per_node_info(memcg, node); 4528 free_percpu(memcg->vmstats_percpu); 4529 free_percpu(memcg->vmstats_local); 4530 kfree(memcg); 4531 } 4532 4533 static void mem_cgroup_free(struct mem_cgroup *memcg) 4534 { 4535 memcg_wb_domain_exit(memcg); 4536 __mem_cgroup_free(memcg); 4537 } 4538 4539 static struct mem_cgroup *mem_cgroup_alloc(void) 4540 { 4541 struct mem_cgroup *memcg; 4542 unsigned int size; 4543 int node; 4544 4545 size = sizeof(struct mem_cgroup); 4546 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4547 4548 memcg = kzalloc(size, GFP_KERNEL); 4549 if (!memcg) 4550 return NULL; 4551 4552 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4553 1, MEM_CGROUP_ID_MAX, 4554 GFP_KERNEL); 4555 if (memcg->id.id < 0) 4556 goto fail; 4557 4558 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu); 4559 if (!memcg->vmstats_local) 4560 goto fail; 4561 4562 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); 4563 if (!memcg->vmstats_percpu) 4564 goto fail; 4565 4566 for_each_node(node) 4567 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4568 goto fail; 4569 4570 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4571 goto fail; 4572 4573 INIT_WORK(&memcg->high_work, high_work_func); 4574 memcg->last_scanned_node = MAX_NUMNODES; 4575 INIT_LIST_HEAD(&memcg->oom_notify); 4576 mutex_init(&memcg->thresholds_lock); 4577 spin_lock_init(&memcg->move_lock); 4578 vmpressure_init(&memcg->vmpressure); 4579 INIT_LIST_HEAD(&memcg->event_list); 4580 spin_lock_init(&memcg->event_list_lock); 4581 memcg->socket_pressure = jiffies; 4582 #ifdef CONFIG_MEMCG_KMEM 4583 memcg->kmemcg_id = -1; 4584 #endif 4585 #ifdef CONFIG_CGROUP_WRITEBACK 4586 INIT_LIST_HEAD(&memcg->cgwb_list); 4587 #endif 4588 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4589 return memcg; 4590 fail: 4591 mem_cgroup_id_remove(memcg); 4592 __mem_cgroup_free(memcg); 4593 return NULL; 4594 } 4595 4596 static struct cgroup_subsys_state * __ref 4597 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4598 { 4599 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4600 struct mem_cgroup *memcg; 4601 long error = -ENOMEM; 4602 4603 memcg = mem_cgroup_alloc(); 4604 if (!memcg) 4605 return ERR_PTR(error); 4606 4607 memcg->high = PAGE_COUNTER_MAX; 4608 memcg->soft_limit = PAGE_COUNTER_MAX; 4609 if (parent) { 4610 memcg->swappiness = mem_cgroup_swappiness(parent); 4611 memcg->oom_kill_disable = parent->oom_kill_disable; 4612 } 4613 if (parent && parent->use_hierarchy) { 4614 memcg->use_hierarchy = true; 4615 page_counter_init(&memcg->memory, &parent->memory); 4616 page_counter_init(&memcg->swap, &parent->swap); 4617 page_counter_init(&memcg->memsw, &parent->memsw); 4618 page_counter_init(&memcg->kmem, &parent->kmem); 4619 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4620 } else { 4621 page_counter_init(&memcg->memory, NULL); 4622 page_counter_init(&memcg->swap, NULL); 4623 page_counter_init(&memcg->memsw, NULL); 4624 page_counter_init(&memcg->kmem, NULL); 4625 page_counter_init(&memcg->tcpmem, NULL); 4626 /* 4627 * Deeper hierachy with use_hierarchy == false doesn't make 4628 * much sense so let cgroup subsystem know about this 4629 * unfortunate state in our controller. 4630 */ 4631 if (parent != root_mem_cgroup) 4632 memory_cgrp_subsys.broken_hierarchy = true; 4633 } 4634 4635 /* The following stuff does not apply to the root */ 4636 if (!parent) { 4637 root_mem_cgroup = memcg; 4638 return &memcg->css; 4639 } 4640 4641 error = memcg_online_kmem(memcg); 4642 if (error) 4643 goto fail; 4644 4645 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4646 static_branch_inc(&memcg_sockets_enabled_key); 4647 4648 return &memcg->css; 4649 fail: 4650 mem_cgroup_id_remove(memcg); 4651 mem_cgroup_free(memcg); 4652 return ERR_PTR(-ENOMEM); 4653 } 4654 4655 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4656 { 4657 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4658 4659 /* 4660 * A memcg must be visible for memcg_expand_shrinker_maps() 4661 * by the time the maps are allocated. So, we allocate maps 4662 * here, when for_each_mem_cgroup() can't skip it. 4663 */ 4664 if (memcg_alloc_shrinker_maps(memcg)) { 4665 mem_cgroup_id_remove(memcg); 4666 return -ENOMEM; 4667 } 4668 4669 /* Online state pins memcg ID, memcg ID pins CSS */ 4670 refcount_set(&memcg->id.ref, 1); 4671 css_get(css); 4672 return 0; 4673 } 4674 4675 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4676 { 4677 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4678 struct mem_cgroup_event *event, *tmp; 4679 4680 /* 4681 * Unregister events and notify userspace. 4682 * Notify userspace about cgroup removing only after rmdir of cgroup 4683 * directory to avoid race between userspace and kernelspace. 4684 */ 4685 spin_lock(&memcg->event_list_lock); 4686 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4687 list_del_init(&event->list); 4688 schedule_work(&event->remove); 4689 } 4690 spin_unlock(&memcg->event_list_lock); 4691 4692 page_counter_set_min(&memcg->memory, 0); 4693 page_counter_set_low(&memcg->memory, 0); 4694 4695 memcg_offline_kmem(memcg); 4696 wb_memcg_offline(memcg); 4697 4698 drain_all_stock(memcg); 4699 4700 mem_cgroup_id_put(memcg); 4701 } 4702 4703 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4704 { 4705 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4706 4707 invalidate_reclaim_iterators(memcg); 4708 } 4709 4710 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4711 { 4712 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4713 4714 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4715 static_branch_dec(&memcg_sockets_enabled_key); 4716 4717 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4718 static_branch_dec(&memcg_sockets_enabled_key); 4719 4720 vmpressure_cleanup(&memcg->vmpressure); 4721 cancel_work_sync(&memcg->high_work); 4722 mem_cgroup_remove_from_trees(memcg); 4723 memcg_free_shrinker_maps(memcg); 4724 memcg_free_kmem(memcg); 4725 mem_cgroup_free(memcg); 4726 } 4727 4728 /** 4729 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4730 * @css: the target css 4731 * 4732 * Reset the states of the mem_cgroup associated with @css. This is 4733 * invoked when the userland requests disabling on the default hierarchy 4734 * but the memcg is pinned through dependency. The memcg should stop 4735 * applying policies and should revert to the vanilla state as it may be 4736 * made visible again. 4737 * 4738 * The current implementation only resets the essential configurations. 4739 * This needs to be expanded to cover all the visible parts. 4740 */ 4741 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4742 { 4743 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4744 4745 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 4746 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 4747 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 4748 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 4749 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 4750 page_counter_set_min(&memcg->memory, 0); 4751 page_counter_set_low(&memcg->memory, 0); 4752 memcg->high = PAGE_COUNTER_MAX; 4753 memcg->soft_limit = PAGE_COUNTER_MAX; 4754 memcg_wb_domain_size_changed(memcg); 4755 } 4756 4757 #ifdef CONFIG_MMU 4758 /* Handlers for move charge at task migration. */ 4759 static int mem_cgroup_do_precharge(unsigned long count) 4760 { 4761 int ret; 4762 4763 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4764 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4765 if (!ret) { 4766 mc.precharge += count; 4767 return ret; 4768 } 4769 4770 /* Try charges one by one with reclaim, but do not retry */ 4771 while (count--) { 4772 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 4773 if (ret) 4774 return ret; 4775 mc.precharge++; 4776 cond_resched(); 4777 } 4778 return 0; 4779 } 4780 4781 union mc_target { 4782 struct page *page; 4783 swp_entry_t ent; 4784 }; 4785 4786 enum mc_target_type { 4787 MC_TARGET_NONE = 0, 4788 MC_TARGET_PAGE, 4789 MC_TARGET_SWAP, 4790 MC_TARGET_DEVICE, 4791 }; 4792 4793 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4794 unsigned long addr, pte_t ptent) 4795 { 4796 struct page *page = _vm_normal_page(vma, addr, ptent, true); 4797 4798 if (!page || !page_mapped(page)) 4799 return NULL; 4800 if (PageAnon(page)) { 4801 if (!(mc.flags & MOVE_ANON)) 4802 return NULL; 4803 } else { 4804 if (!(mc.flags & MOVE_FILE)) 4805 return NULL; 4806 } 4807 if (!get_page_unless_zero(page)) 4808 return NULL; 4809 4810 return page; 4811 } 4812 4813 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 4814 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4815 pte_t ptent, swp_entry_t *entry) 4816 { 4817 struct page *page = NULL; 4818 swp_entry_t ent = pte_to_swp_entry(ptent); 4819 4820 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4821 return NULL; 4822 4823 /* 4824 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 4825 * a device and because they are not accessible by CPU they are store 4826 * as special swap entry in the CPU page table. 4827 */ 4828 if (is_device_private_entry(ent)) { 4829 page = device_private_entry_to_page(ent); 4830 /* 4831 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 4832 * a refcount of 1 when free (unlike normal page) 4833 */ 4834 if (!page_ref_add_unless(page, 1, 1)) 4835 return NULL; 4836 return page; 4837 } 4838 4839 /* 4840 * Because lookup_swap_cache() updates some statistics counter, 4841 * we call find_get_page() with swapper_space directly. 4842 */ 4843 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 4844 if (do_memsw_account()) 4845 entry->val = ent.val; 4846 4847 return page; 4848 } 4849 #else 4850 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4851 pte_t ptent, swp_entry_t *entry) 4852 { 4853 return NULL; 4854 } 4855 #endif 4856 4857 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4858 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4859 { 4860 struct page *page = NULL; 4861 struct address_space *mapping; 4862 pgoff_t pgoff; 4863 4864 if (!vma->vm_file) /* anonymous vma */ 4865 return NULL; 4866 if (!(mc.flags & MOVE_FILE)) 4867 return NULL; 4868 4869 mapping = vma->vm_file->f_mapping; 4870 pgoff = linear_page_index(vma, addr); 4871 4872 /* page is moved even if it's not RSS of this task(page-faulted). */ 4873 #ifdef CONFIG_SWAP 4874 /* shmem/tmpfs may report page out on swap: account for that too. */ 4875 if (shmem_mapping(mapping)) { 4876 page = find_get_entry(mapping, pgoff); 4877 if (xa_is_value(page)) { 4878 swp_entry_t swp = radix_to_swp_entry(page); 4879 if (do_memsw_account()) 4880 *entry = swp; 4881 page = find_get_page(swap_address_space(swp), 4882 swp_offset(swp)); 4883 } 4884 } else 4885 page = find_get_page(mapping, pgoff); 4886 #else 4887 page = find_get_page(mapping, pgoff); 4888 #endif 4889 return page; 4890 } 4891 4892 /** 4893 * mem_cgroup_move_account - move account of the page 4894 * @page: the page 4895 * @compound: charge the page as compound or small page 4896 * @from: mem_cgroup which the page is moved from. 4897 * @to: mem_cgroup which the page is moved to. @from != @to. 4898 * 4899 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4900 * 4901 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4902 * from old cgroup. 4903 */ 4904 static int mem_cgroup_move_account(struct page *page, 4905 bool compound, 4906 struct mem_cgroup *from, 4907 struct mem_cgroup *to) 4908 { 4909 unsigned long flags; 4910 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4911 int ret; 4912 bool anon; 4913 4914 VM_BUG_ON(from == to); 4915 VM_BUG_ON_PAGE(PageLRU(page), page); 4916 VM_BUG_ON(compound && !PageTransHuge(page)); 4917 4918 /* 4919 * Prevent mem_cgroup_migrate() from looking at 4920 * page->mem_cgroup of its source page while we change it. 4921 */ 4922 ret = -EBUSY; 4923 if (!trylock_page(page)) 4924 goto out; 4925 4926 ret = -EINVAL; 4927 if (page->mem_cgroup != from) 4928 goto out_unlock; 4929 4930 anon = PageAnon(page); 4931 4932 spin_lock_irqsave(&from->move_lock, flags); 4933 4934 if (!anon && page_mapped(page)) { 4935 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages); 4936 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages); 4937 } 4938 4939 /* 4940 * move_lock grabbed above and caller set from->moving_account, so 4941 * mod_memcg_page_state will serialize updates to PageDirty. 4942 * So mapping should be stable for dirty pages. 4943 */ 4944 if (!anon && PageDirty(page)) { 4945 struct address_space *mapping = page_mapping(page); 4946 4947 if (mapping_cap_account_dirty(mapping)) { 4948 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages); 4949 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages); 4950 } 4951 } 4952 4953 if (PageWriteback(page)) { 4954 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages); 4955 __mod_memcg_state(to, NR_WRITEBACK, nr_pages); 4956 } 4957 4958 /* 4959 * It is safe to change page->mem_cgroup here because the page 4960 * is referenced, charged, and isolated - we can't race with 4961 * uncharging, charging, migration, or LRU putback. 4962 */ 4963 4964 /* caller should have done css_get */ 4965 page->mem_cgroup = to; 4966 spin_unlock_irqrestore(&from->move_lock, flags); 4967 4968 ret = 0; 4969 4970 local_irq_disable(); 4971 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4972 memcg_check_events(to, page); 4973 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4974 memcg_check_events(from, page); 4975 local_irq_enable(); 4976 out_unlock: 4977 unlock_page(page); 4978 out: 4979 return ret; 4980 } 4981 4982 /** 4983 * get_mctgt_type - get target type of moving charge 4984 * @vma: the vma the pte to be checked belongs 4985 * @addr: the address corresponding to the pte to be checked 4986 * @ptent: the pte to be checked 4987 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4988 * 4989 * Returns 4990 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4991 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4992 * move charge. if @target is not NULL, the page is stored in target->page 4993 * with extra refcnt got(Callers should handle it). 4994 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4995 * target for charge migration. if @target is not NULL, the entry is stored 4996 * in target->ent. 4997 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC 4998 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru). 4999 * For now we such page is charge like a regular page would be as for all 5000 * intent and purposes it is just special memory taking the place of a 5001 * regular page. 5002 * 5003 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5004 * 5005 * Called with pte lock held. 5006 */ 5007 5008 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5009 unsigned long addr, pte_t ptent, union mc_target *target) 5010 { 5011 struct page *page = NULL; 5012 enum mc_target_type ret = MC_TARGET_NONE; 5013 swp_entry_t ent = { .val = 0 }; 5014 5015 if (pte_present(ptent)) 5016 page = mc_handle_present_pte(vma, addr, ptent); 5017 else if (is_swap_pte(ptent)) 5018 page = mc_handle_swap_pte(vma, ptent, &ent); 5019 else if (pte_none(ptent)) 5020 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5021 5022 if (!page && !ent.val) 5023 return ret; 5024 if (page) { 5025 /* 5026 * Do only loose check w/o serialization. 5027 * mem_cgroup_move_account() checks the page is valid or 5028 * not under LRU exclusion. 5029 */ 5030 if (page->mem_cgroup == mc.from) { 5031 ret = MC_TARGET_PAGE; 5032 if (is_device_private_page(page) || 5033 is_device_public_page(page)) 5034 ret = MC_TARGET_DEVICE; 5035 if (target) 5036 target->page = page; 5037 } 5038 if (!ret || !target) 5039 put_page(page); 5040 } 5041 /* 5042 * There is a swap entry and a page doesn't exist or isn't charged. 5043 * But we cannot move a tail-page in a THP. 5044 */ 5045 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5046 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5047 ret = MC_TARGET_SWAP; 5048 if (target) 5049 target->ent = ent; 5050 } 5051 return ret; 5052 } 5053 5054 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5055 /* 5056 * We don't consider PMD mapped swapping or file mapped pages because THP does 5057 * not support them for now. 5058 * Caller should make sure that pmd_trans_huge(pmd) is true. 5059 */ 5060 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5061 unsigned long addr, pmd_t pmd, union mc_target *target) 5062 { 5063 struct page *page = NULL; 5064 enum mc_target_type ret = MC_TARGET_NONE; 5065 5066 if (unlikely(is_swap_pmd(pmd))) { 5067 VM_BUG_ON(thp_migration_supported() && 5068 !is_pmd_migration_entry(pmd)); 5069 return ret; 5070 } 5071 page = pmd_page(pmd); 5072 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5073 if (!(mc.flags & MOVE_ANON)) 5074 return ret; 5075 if (page->mem_cgroup == mc.from) { 5076 ret = MC_TARGET_PAGE; 5077 if (target) { 5078 get_page(page); 5079 target->page = page; 5080 } 5081 } 5082 return ret; 5083 } 5084 #else 5085 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5086 unsigned long addr, pmd_t pmd, union mc_target *target) 5087 { 5088 return MC_TARGET_NONE; 5089 } 5090 #endif 5091 5092 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5093 unsigned long addr, unsigned long end, 5094 struct mm_walk *walk) 5095 { 5096 struct vm_area_struct *vma = walk->vma; 5097 pte_t *pte; 5098 spinlock_t *ptl; 5099 5100 ptl = pmd_trans_huge_lock(pmd, vma); 5101 if (ptl) { 5102 /* 5103 * Note their can not be MC_TARGET_DEVICE for now as we do not 5104 * support transparent huge page with MEMORY_DEVICE_PUBLIC or 5105 * MEMORY_DEVICE_PRIVATE but this might change. 5106 */ 5107 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5108 mc.precharge += HPAGE_PMD_NR; 5109 spin_unlock(ptl); 5110 return 0; 5111 } 5112 5113 if (pmd_trans_unstable(pmd)) 5114 return 0; 5115 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5116 for (; addr != end; pte++, addr += PAGE_SIZE) 5117 if (get_mctgt_type(vma, addr, *pte, NULL)) 5118 mc.precharge++; /* increment precharge temporarily */ 5119 pte_unmap_unlock(pte - 1, ptl); 5120 cond_resched(); 5121 5122 return 0; 5123 } 5124 5125 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5126 { 5127 unsigned long precharge; 5128 5129 struct mm_walk mem_cgroup_count_precharge_walk = { 5130 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5131 .mm = mm, 5132 }; 5133 down_read(&mm->mmap_sem); 5134 walk_page_range(0, mm->highest_vm_end, 5135 &mem_cgroup_count_precharge_walk); 5136 up_read(&mm->mmap_sem); 5137 5138 precharge = mc.precharge; 5139 mc.precharge = 0; 5140 5141 return precharge; 5142 } 5143 5144 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5145 { 5146 unsigned long precharge = mem_cgroup_count_precharge(mm); 5147 5148 VM_BUG_ON(mc.moving_task); 5149 mc.moving_task = current; 5150 return mem_cgroup_do_precharge(precharge); 5151 } 5152 5153 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5154 static void __mem_cgroup_clear_mc(void) 5155 { 5156 struct mem_cgroup *from = mc.from; 5157 struct mem_cgroup *to = mc.to; 5158 5159 /* we must uncharge all the leftover precharges from mc.to */ 5160 if (mc.precharge) { 5161 cancel_charge(mc.to, mc.precharge); 5162 mc.precharge = 0; 5163 } 5164 /* 5165 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5166 * we must uncharge here. 5167 */ 5168 if (mc.moved_charge) { 5169 cancel_charge(mc.from, mc.moved_charge); 5170 mc.moved_charge = 0; 5171 } 5172 /* we must fixup refcnts and charges */ 5173 if (mc.moved_swap) { 5174 /* uncharge swap account from the old cgroup */ 5175 if (!mem_cgroup_is_root(mc.from)) 5176 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5177 5178 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5179 5180 /* 5181 * we charged both to->memory and to->memsw, so we 5182 * should uncharge to->memory. 5183 */ 5184 if (!mem_cgroup_is_root(mc.to)) 5185 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5186 5187 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5188 css_put_many(&mc.to->css, mc.moved_swap); 5189 5190 mc.moved_swap = 0; 5191 } 5192 memcg_oom_recover(from); 5193 memcg_oom_recover(to); 5194 wake_up_all(&mc.waitq); 5195 } 5196 5197 static void mem_cgroup_clear_mc(void) 5198 { 5199 struct mm_struct *mm = mc.mm; 5200 5201 /* 5202 * we must clear moving_task before waking up waiters at the end of 5203 * task migration. 5204 */ 5205 mc.moving_task = NULL; 5206 __mem_cgroup_clear_mc(); 5207 spin_lock(&mc.lock); 5208 mc.from = NULL; 5209 mc.to = NULL; 5210 mc.mm = NULL; 5211 spin_unlock(&mc.lock); 5212 5213 mmput(mm); 5214 } 5215 5216 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5217 { 5218 struct cgroup_subsys_state *css; 5219 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5220 struct mem_cgroup *from; 5221 struct task_struct *leader, *p; 5222 struct mm_struct *mm; 5223 unsigned long move_flags; 5224 int ret = 0; 5225 5226 /* charge immigration isn't supported on the default hierarchy */ 5227 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5228 return 0; 5229 5230 /* 5231 * Multi-process migrations only happen on the default hierarchy 5232 * where charge immigration is not used. Perform charge 5233 * immigration if @tset contains a leader and whine if there are 5234 * multiple. 5235 */ 5236 p = NULL; 5237 cgroup_taskset_for_each_leader(leader, css, tset) { 5238 WARN_ON_ONCE(p); 5239 p = leader; 5240 memcg = mem_cgroup_from_css(css); 5241 } 5242 if (!p) 5243 return 0; 5244 5245 /* 5246 * We are now commited to this value whatever it is. Changes in this 5247 * tunable will only affect upcoming migrations, not the current one. 5248 * So we need to save it, and keep it going. 5249 */ 5250 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5251 if (!move_flags) 5252 return 0; 5253 5254 from = mem_cgroup_from_task(p); 5255 5256 VM_BUG_ON(from == memcg); 5257 5258 mm = get_task_mm(p); 5259 if (!mm) 5260 return 0; 5261 /* We move charges only when we move a owner of the mm */ 5262 if (mm->owner == p) { 5263 VM_BUG_ON(mc.from); 5264 VM_BUG_ON(mc.to); 5265 VM_BUG_ON(mc.precharge); 5266 VM_BUG_ON(mc.moved_charge); 5267 VM_BUG_ON(mc.moved_swap); 5268 5269 spin_lock(&mc.lock); 5270 mc.mm = mm; 5271 mc.from = from; 5272 mc.to = memcg; 5273 mc.flags = move_flags; 5274 spin_unlock(&mc.lock); 5275 /* We set mc.moving_task later */ 5276 5277 ret = mem_cgroup_precharge_mc(mm); 5278 if (ret) 5279 mem_cgroup_clear_mc(); 5280 } else { 5281 mmput(mm); 5282 } 5283 return ret; 5284 } 5285 5286 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5287 { 5288 if (mc.to) 5289 mem_cgroup_clear_mc(); 5290 } 5291 5292 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5293 unsigned long addr, unsigned long end, 5294 struct mm_walk *walk) 5295 { 5296 int ret = 0; 5297 struct vm_area_struct *vma = walk->vma; 5298 pte_t *pte; 5299 spinlock_t *ptl; 5300 enum mc_target_type target_type; 5301 union mc_target target; 5302 struct page *page; 5303 5304 ptl = pmd_trans_huge_lock(pmd, vma); 5305 if (ptl) { 5306 if (mc.precharge < HPAGE_PMD_NR) { 5307 spin_unlock(ptl); 5308 return 0; 5309 } 5310 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5311 if (target_type == MC_TARGET_PAGE) { 5312 page = target.page; 5313 if (!isolate_lru_page(page)) { 5314 if (!mem_cgroup_move_account(page, true, 5315 mc.from, mc.to)) { 5316 mc.precharge -= HPAGE_PMD_NR; 5317 mc.moved_charge += HPAGE_PMD_NR; 5318 } 5319 putback_lru_page(page); 5320 } 5321 put_page(page); 5322 } else if (target_type == MC_TARGET_DEVICE) { 5323 page = target.page; 5324 if (!mem_cgroup_move_account(page, true, 5325 mc.from, mc.to)) { 5326 mc.precharge -= HPAGE_PMD_NR; 5327 mc.moved_charge += HPAGE_PMD_NR; 5328 } 5329 put_page(page); 5330 } 5331 spin_unlock(ptl); 5332 return 0; 5333 } 5334 5335 if (pmd_trans_unstable(pmd)) 5336 return 0; 5337 retry: 5338 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5339 for (; addr != end; addr += PAGE_SIZE) { 5340 pte_t ptent = *(pte++); 5341 bool device = false; 5342 swp_entry_t ent; 5343 5344 if (!mc.precharge) 5345 break; 5346 5347 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5348 case MC_TARGET_DEVICE: 5349 device = true; 5350 /* fall through */ 5351 case MC_TARGET_PAGE: 5352 page = target.page; 5353 /* 5354 * We can have a part of the split pmd here. Moving it 5355 * can be done but it would be too convoluted so simply 5356 * ignore such a partial THP and keep it in original 5357 * memcg. There should be somebody mapping the head. 5358 */ 5359 if (PageTransCompound(page)) 5360 goto put; 5361 if (!device && isolate_lru_page(page)) 5362 goto put; 5363 if (!mem_cgroup_move_account(page, false, 5364 mc.from, mc.to)) { 5365 mc.precharge--; 5366 /* we uncharge from mc.from later. */ 5367 mc.moved_charge++; 5368 } 5369 if (!device) 5370 putback_lru_page(page); 5371 put: /* get_mctgt_type() gets the page */ 5372 put_page(page); 5373 break; 5374 case MC_TARGET_SWAP: 5375 ent = target.ent; 5376 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5377 mc.precharge--; 5378 /* we fixup refcnts and charges later. */ 5379 mc.moved_swap++; 5380 } 5381 break; 5382 default: 5383 break; 5384 } 5385 } 5386 pte_unmap_unlock(pte - 1, ptl); 5387 cond_resched(); 5388 5389 if (addr != end) { 5390 /* 5391 * We have consumed all precharges we got in can_attach(). 5392 * We try charge one by one, but don't do any additional 5393 * charges to mc.to if we have failed in charge once in attach() 5394 * phase. 5395 */ 5396 ret = mem_cgroup_do_precharge(1); 5397 if (!ret) 5398 goto retry; 5399 } 5400 5401 return ret; 5402 } 5403 5404 static void mem_cgroup_move_charge(void) 5405 { 5406 struct mm_walk mem_cgroup_move_charge_walk = { 5407 .pmd_entry = mem_cgroup_move_charge_pte_range, 5408 .mm = mc.mm, 5409 }; 5410 5411 lru_add_drain_all(); 5412 /* 5413 * Signal lock_page_memcg() to take the memcg's move_lock 5414 * while we're moving its pages to another memcg. Then wait 5415 * for already started RCU-only updates to finish. 5416 */ 5417 atomic_inc(&mc.from->moving_account); 5418 synchronize_rcu(); 5419 retry: 5420 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5421 /* 5422 * Someone who are holding the mmap_sem might be waiting in 5423 * waitq. So we cancel all extra charges, wake up all waiters, 5424 * and retry. Because we cancel precharges, we might not be able 5425 * to move enough charges, but moving charge is a best-effort 5426 * feature anyway, so it wouldn't be a big problem. 5427 */ 5428 __mem_cgroup_clear_mc(); 5429 cond_resched(); 5430 goto retry; 5431 } 5432 /* 5433 * When we have consumed all precharges and failed in doing 5434 * additional charge, the page walk just aborts. 5435 */ 5436 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk); 5437 5438 up_read(&mc.mm->mmap_sem); 5439 atomic_dec(&mc.from->moving_account); 5440 } 5441 5442 static void mem_cgroup_move_task(void) 5443 { 5444 if (mc.to) { 5445 mem_cgroup_move_charge(); 5446 mem_cgroup_clear_mc(); 5447 } 5448 } 5449 #else /* !CONFIG_MMU */ 5450 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5451 { 5452 return 0; 5453 } 5454 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5455 { 5456 } 5457 static void mem_cgroup_move_task(void) 5458 { 5459 } 5460 #endif 5461 5462 /* 5463 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5464 * to verify whether we're attached to the default hierarchy on each mount 5465 * attempt. 5466 */ 5467 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5468 { 5469 /* 5470 * use_hierarchy is forced on the default hierarchy. cgroup core 5471 * guarantees that @root doesn't have any children, so turning it 5472 * on for the root memcg is enough. 5473 */ 5474 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5475 root_mem_cgroup->use_hierarchy = true; 5476 else 5477 root_mem_cgroup->use_hierarchy = false; 5478 } 5479 5480 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 5481 { 5482 if (value == PAGE_COUNTER_MAX) 5483 seq_puts(m, "max\n"); 5484 else 5485 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 5486 5487 return 0; 5488 } 5489 5490 static u64 memory_current_read(struct cgroup_subsys_state *css, 5491 struct cftype *cft) 5492 { 5493 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5494 5495 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5496 } 5497 5498 static int memory_min_show(struct seq_file *m, void *v) 5499 { 5500 return seq_puts_memcg_tunable(m, 5501 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 5502 } 5503 5504 static ssize_t memory_min_write(struct kernfs_open_file *of, 5505 char *buf, size_t nbytes, loff_t off) 5506 { 5507 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5508 unsigned long min; 5509 int err; 5510 5511 buf = strstrip(buf); 5512 err = page_counter_memparse(buf, "max", &min); 5513 if (err) 5514 return err; 5515 5516 page_counter_set_min(&memcg->memory, min); 5517 5518 return nbytes; 5519 } 5520 5521 static int memory_low_show(struct seq_file *m, void *v) 5522 { 5523 return seq_puts_memcg_tunable(m, 5524 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 5525 } 5526 5527 static ssize_t memory_low_write(struct kernfs_open_file *of, 5528 char *buf, size_t nbytes, loff_t off) 5529 { 5530 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5531 unsigned long low; 5532 int err; 5533 5534 buf = strstrip(buf); 5535 err = page_counter_memparse(buf, "max", &low); 5536 if (err) 5537 return err; 5538 5539 page_counter_set_low(&memcg->memory, low); 5540 5541 return nbytes; 5542 } 5543 5544 static int memory_high_show(struct seq_file *m, void *v) 5545 { 5546 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); 5547 } 5548 5549 static ssize_t memory_high_write(struct kernfs_open_file *of, 5550 char *buf, size_t nbytes, loff_t off) 5551 { 5552 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5553 unsigned long nr_pages; 5554 unsigned long high; 5555 int err; 5556 5557 buf = strstrip(buf); 5558 err = page_counter_memparse(buf, "max", &high); 5559 if (err) 5560 return err; 5561 5562 memcg->high = high; 5563 5564 nr_pages = page_counter_read(&memcg->memory); 5565 if (nr_pages > high) 5566 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5567 GFP_KERNEL, true); 5568 5569 memcg_wb_domain_size_changed(memcg); 5570 return nbytes; 5571 } 5572 5573 static int memory_max_show(struct seq_file *m, void *v) 5574 { 5575 return seq_puts_memcg_tunable(m, 5576 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 5577 } 5578 5579 static ssize_t memory_max_write(struct kernfs_open_file *of, 5580 char *buf, size_t nbytes, loff_t off) 5581 { 5582 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5583 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5584 bool drained = false; 5585 unsigned long max; 5586 int err; 5587 5588 buf = strstrip(buf); 5589 err = page_counter_memparse(buf, "max", &max); 5590 if (err) 5591 return err; 5592 5593 xchg(&memcg->memory.max, max); 5594 5595 for (;;) { 5596 unsigned long nr_pages = page_counter_read(&memcg->memory); 5597 5598 if (nr_pages <= max) 5599 break; 5600 5601 if (signal_pending(current)) { 5602 err = -EINTR; 5603 break; 5604 } 5605 5606 if (!drained) { 5607 drain_all_stock(memcg); 5608 drained = true; 5609 continue; 5610 } 5611 5612 if (nr_reclaims) { 5613 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5614 GFP_KERNEL, true)) 5615 nr_reclaims--; 5616 continue; 5617 } 5618 5619 memcg_memory_event(memcg, MEMCG_OOM); 5620 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5621 break; 5622 } 5623 5624 memcg_wb_domain_size_changed(memcg); 5625 return nbytes; 5626 } 5627 5628 static int memory_events_show(struct seq_file *m, void *v) 5629 { 5630 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5631 5632 seq_printf(m, "low %lu\n", 5633 atomic_long_read(&memcg->memory_events[MEMCG_LOW])); 5634 seq_printf(m, "high %lu\n", 5635 atomic_long_read(&memcg->memory_events[MEMCG_HIGH])); 5636 seq_printf(m, "max %lu\n", 5637 atomic_long_read(&memcg->memory_events[MEMCG_MAX])); 5638 seq_printf(m, "oom %lu\n", 5639 atomic_long_read(&memcg->memory_events[MEMCG_OOM])); 5640 seq_printf(m, "oom_kill %lu\n", 5641 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 5642 5643 return 0; 5644 } 5645 5646 static int memory_stat_show(struct seq_file *m, void *v) 5647 { 5648 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5649 int i; 5650 5651 /* 5652 * Provide statistics on the state of the memory subsystem as 5653 * well as cumulative event counters that show past behavior. 5654 * 5655 * This list is ordered following a combination of these gradients: 5656 * 1) generic big picture -> specifics and details 5657 * 2) reflecting userspace activity -> reflecting kernel heuristics 5658 * 5659 * Current memory state: 5660 */ 5661 5662 seq_printf(m, "anon %llu\n", 5663 (u64)memcg_page_state(memcg, MEMCG_RSS) * PAGE_SIZE); 5664 seq_printf(m, "file %llu\n", 5665 (u64)memcg_page_state(memcg, MEMCG_CACHE) * PAGE_SIZE); 5666 seq_printf(m, "kernel_stack %llu\n", 5667 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1024); 5668 seq_printf(m, "slab %llu\n", 5669 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + 5670 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * 5671 PAGE_SIZE); 5672 seq_printf(m, "sock %llu\n", 5673 (u64)memcg_page_state(memcg, MEMCG_SOCK) * PAGE_SIZE); 5674 5675 seq_printf(m, "shmem %llu\n", 5676 (u64)memcg_page_state(memcg, NR_SHMEM) * PAGE_SIZE); 5677 seq_printf(m, "file_mapped %llu\n", 5678 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * PAGE_SIZE); 5679 seq_printf(m, "file_dirty %llu\n", 5680 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * PAGE_SIZE); 5681 seq_printf(m, "file_writeback %llu\n", 5682 (u64)memcg_page_state(memcg, NR_WRITEBACK) * PAGE_SIZE); 5683 5684 /* 5685 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter 5686 * with the NR_ANON_THP vm counter, but right now it's a pain in the 5687 * arse because it requires migrating the work out of rmap to a place 5688 * where the page->mem_cgroup is set up and stable. 5689 */ 5690 seq_printf(m, "anon_thp %llu\n", 5691 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * PAGE_SIZE); 5692 5693 for (i = 0; i < NR_LRU_LISTS; i++) 5694 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i], 5695 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 5696 PAGE_SIZE); 5697 5698 seq_printf(m, "slab_reclaimable %llu\n", 5699 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * 5700 PAGE_SIZE); 5701 seq_printf(m, "slab_unreclaimable %llu\n", 5702 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * 5703 PAGE_SIZE); 5704 5705 /* Accumulated memory events */ 5706 5707 seq_printf(m, "pgfault %lu\n", memcg_events(memcg, PGFAULT)); 5708 seq_printf(m, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT)); 5709 5710 seq_printf(m, "workingset_refault %lu\n", 5711 memcg_page_state(memcg, WORKINGSET_REFAULT)); 5712 seq_printf(m, "workingset_activate %lu\n", 5713 memcg_page_state(memcg, WORKINGSET_ACTIVATE)); 5714 seq_printf(m, "workingset_nodereclaim %lu\n", 5715 memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); 5716 5717 seq_printf(m, "pgrefill %lu\n", memcg_events(memcg, PGREFILL)); 5718 seq_printf(m, "pgscan %lu\n", memcg_events(memcg, PGSCAN_KSWAPD) + 5719 memcg_events(memcg, PGSCAN_DIRECT)); 5720 seq_printf(m, "pgsteal %lu\n", memcg_events(memcg, PGSTEAL_KSWAPD) + 5721 memcg_events(memcg, PGSTEAL_DIRECT)); 5722 seq_printf(m, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE)); 5723 seq_printf(m, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE)); 5724 seq_printf(m, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE)); 5725 seq_printf(m, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED)); 5726 5727 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5728 seq_printf(m, "thp_fault_alloc %lu\n", 5729 memcg_events(memcg, THP_FAULT_ALLOC)); 5730 seq_printf(m, "thp_collapse_alloc %lu\n", 5731 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 5732 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5733 5734 return 0; 5735 } 5736 5737 static int memory_oom_group_show(struct seq_file *m, void *v) 5738 { 5739 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5740 5741 seq_printf(m, "%d\n", memcg->oom_group); 5742 5743 return 0; 5744 } 5745 5746 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 5747 char *buf, size_t nbytes, loff_t off) 5748 { 5749 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5750 int ret, oom_group; 5751 5752 buf = strstrip(buf); 5753 if (!buf) 5754 return -EINVAL; 5755 5756 ret = kstrtoint(buf, 0, &oom_group); 5757 if (ret) 5758 return ret; 5759 5760 if (oom_group != 0 && oom_group != 1) 5761 return -EINVAL; 5762 5763 memcg->oom_group = oom_group; 5764 5765 return nbytes; 5766 } 5767 5768 static struct cftype memory_files[] = { 5769 { 5770 .name = "current", 5771 .flags = CFTYPE_NOT_ON_ROOT, 5772 .read_u64 = memory_current_read, 5773 }, 5774 { 5775 .name = "min", 5776 .flags = CFTYPE_NOT_ON_ROOT, 5777 .seq_show = memory_min_show, 5778 .write = memory_min_write, 5779 }, 5780 { 5781 .name = "low", 5782 .flags = CFTYPE_NOT_ON_ROOT, 5783 .seq_show = memory_low_show, 5784 .write = memory_low_write, 5785 }, 5786 { 5787 .name = "high", 5788 .flags = CFTYPE_NOT_ON_ROOT, 5789 .seq_show = memory_high_show, 5790 .write = memory_high_write, 5791 }, 5792 { 5793 .name = "max", 5794 .flags = CFTYPE_NOT_ON_ROOT, 5795 .seq_show = memory_max_show, 5796 .write = memory_max_write, 5797 }, 5798 { 5799 .name = "events", 5800 .flags = CFTYPE_NOT_ON_ROOT, 5801 .file_offset = offsetof(struct mem_cgroup, events_file), 5802 .seq_show = memory_events_show, 5803 }, 5804 { 5805 .name = "stat", 5806 .flags = CFTYPE_NOT_ON_ROOT, 5807 .seq_show = memory_stat_show, 5808 }, 5809 { 5810 .name = "oom.group", 5811 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 5812 .seq_show = memory_oom_group_show, 5813 .write = memory_oom_group_write, 5814 }, 5815 { } /* terminate */ 5816 }; 5817 5818 struct cgroup_subsys memory_cgrp_subsys = { 5819 .css_alloc = mem_cgroup_css_alloc, 5820 .css_online = mem_cgroup_css_online, 5821 .css_offline = mem_cgroup_css_offline, 5822 .css_released = mem_cgroup_css_released, 5823 .css_free = mem_cgroup_css_free, 5824 .css_reset = mem_cgroup_css_reset, 5825 .can_attach = mem_cgroup_can_attach, 5826 .cancel_attach = mem_cgroup_cancel_attach, 5827 .post_attach = mem_cgroup_move_task, 5828 .bind = mem_cgroup_bind, 5829 .dfl_cftypes = memory_files, 5830 .legacy_cftypes = mem_cgroup_legacy_files, 5831 .early_init = 0, 5832 }; 5833 5834 /** 5835 * mem_cgroup_protected - check if memory consumption is in the normal range 5836 * @root: the top ancestor of the sub-tree being checked 5837 * @memcg: the memory cgroup to check 5838 * 5839 * WARNING: This function is not stateless! It can only be used as part 5840 * of a top-down tree iteration, not for isolated queries. 5841 * 5842 * Returns one of the following: 5843 * MEMCG_PROT_NONE: cgroup memory is not protected 5844 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 5845 * an unprotected supply of reclaimable memory from other cgroups. 5846 * MEMCG_PROT_MIN: cgroup memory is protected 5847 * 5848 * @root is exclusive; it is never protected when looked at directly 5849 * 5850 * To provide a proper hierarchical behavior, effective memory.min/low values 5851 * are used. Below is the description of how effective memory.low is calculated. 5852 * Effective memory.min values is calculated in the same way. 5853 * 5854 * Effective memory.low is always equal or less than the original memory.low. 5855 * If there is no memory.low overcommittment (which is always true for 5856 * top-level memory cgroups), these two values are equal. 5857 * Otherwise, it's a part of parent's effective memory.low, 5858 * calculated as a cgroup's memory.low usage divided by sum of sibling's 5859 * memory.low usages, where memory.low usage is the size of actually 5860 * protected memory. 5861 * 5862 * low_usage 5863 * elow = min( memory.low, parent->elow * ------------------ ), 5864 * siblings_low_usage 5865 * 5866 * | memory.current, if memory.current < memory.low 5867 * low_usage = | 5868 * | 0, otherwise. 5869 * 5870 * 5871 * Such definition of the effective memory.low provides the expected 5872 * hierarchical behavior: parent's memory.low value is limiting 5873 * children, unprotected memory is reclaimed first and cgroups, 5874 * which are not using their guarantee do not affect actual memory 5875 * distribution. 5876 * 5877 * For example, if there are memcgs A, A/B, A/C, A/D and A/E: 5878 * 5879 * A A/memory.low = 2G, A/memory.current = 6G 5880 * //\\ 5881 * BC DE B/memory.low = 3G B/memory.current = 2G 5882 * C/memory.low = 1G C/memory.current = 2G 5883 * D/memory.low = 0 D/memory.current = 2G 5884 * E/memory.low = 10G E/memory.current = 0 5885 * 5886 * and the memory pressure is applied, the following memory distribution 5887 * is expected (approximately): 5888 * 5889 * A/memory.current = 2G 5890 * 5891 * B/memory.current = 1.3G 5892 * C/memory.current = 0.6G 5893 * D/memory.current = 0 5894 * E/memory.current = 0 5895 * 5896 * These calculations require constant tracking of the actual low usages 5897 * (see propagate_protected_usage()), as well as recursive calculation of 5898 * effective memory.low values. But as we do call mem_cgroup_protected() 5899 * path for each memory cgroup top-down from the reclaim, 5900 * it's possible to optimize this part, and save calculated elow 5901 * for next usage. This part is intentionally racy, but it's ok, 5902 * as memory.low is a best-effort mechanism. 5903 */ 5904 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 5905 struct mem_cgroup *memcg) 5906 { 5907 struct mem_cgroup *parent; 5908 unsigned long emin, parent_emin; 5909 unsigned long elow, parent_elow; 5910 unsigned long usage; 5911 5912 if (mem_cgroup_disabled()) 5913 return MEMCG_PROT_NONE; 5914 5915 if (!root) 5916 root = root_mem_cgroup; 5917 if (memcg == root) 5918 return MEMCG_PROT_NONE; 5919 5920 usage = page_counter_read(&memcg->memory); 5921 if (!usage) 5922 return MEMCG_PROT_NONE; 5923 5924 emin = memcg->memory.min; 5925 elow = memcg->memory.low; 5926 5927 parent = parent_mem_cgroup(memcg); 5928 /* No parent means a non-hierarchical mode on v1 memcg */ 5929 if (!parent) 5930 return MEMCG_PROT_NONE; 5931 5932 if (parent == root) 5933 goto exit; 5934 5935 parent_emin = READ_ONCE(parent->memory.emin); 5936 emin = min(emin, parent_emin); 5937 if (emin && parent_emin) { 5938 unsigned long min_usage, siblings_min_usage; 5939 5940 min_usage = min(usage, memcg->memory.min); 5941 siblings_min_usage = atomic_long_read( 5942 &parent->memory.children_min_usage); 5943 5944 if (min_usage && siblings_min_usage) 5945 emin = min(emin, parent_emin * min_usage / 5946 siblings_min_usage); 5947 } 5948 5949 parent_elow = READ_ONCE(parent->memory.elow); 5950 elow = min(elow, parent_elow); 5951 if (elow && parent_elow) { 5952 unsigned long low_usage, siblings_low_usage; 5953 5954 low_usage = min(usage, memcg->memory.low); 5955 siblings_low_usage = atomic_long_read( 5956 &parent->memory.children_low_usage); 5957 5958 if (low_usage && siblings_low_usage) 5959 elow = min(elow, parent_elow * low_usage / 5960 siblings_low_usage); 5961 } 5962 5963 exit: 5964 memcg->memory.emin = emin; 5965 memcg->memory.elow = elow; 5966 5967 if (usage <= emin) 5968 return MEMCG_PROT_MIN; 5969 else if (usage <= elow) 5970 return MEMCG_PROT_LOW; 5971 else 5972 return MEMCG_PROT_NONE; 5973 } 5974 5975 /** 5976 * mem_cgroup_try_charge - try charging a page 5977 * @page: page to charge 5978 * @mm: mm context of the victim 5979 * @gfp_mask: reclaim mode 5980 * @memcgp: charged memcg return 5981 * @compound: charge the page as compound or small page 5982 * 5983 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5984 * pages according to @gfp_mask if necessary. 5985 * 5986 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5987 * Otherwise, an error code is returned. 5988 * 5989 * After page->mapping has been set up, the caller must finalize the 5990 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5991 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5992 */ 5993 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5994 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5995 bool compound) 5996 { 5997 struct mem_cgroup *memcg = NULL; 5998 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5999 int ret = 0; 6000 6001 if (mem_cgroup_disabled()) 6002 goto out; 6003 6004 if (PageSwapCache(page)) { 6005 /* 6006 * Every swap fault against a single page tries to charge the 6007 * page, bail as early as possible. shmem_unuse() encounters 6008 * already charged pages, too. The USED bit is protected by 6009 * the page lock, which serializes swap cache removal, which 6010 * in turn serializes uncharging. 6011 */ 6012 VM_BUG_ON_PAGE(!PageLocked(page), page); 6013 if (compound_head(page)->mem_cgroup) 6014 goto out; 6015 6016 if (do_swap_account) { 6017 swp_entry_t ent = { .val = page_private(page), }; 6018 unsigned short id = lookup_swap_cgroup_id(ent); 6019 6020 rcu_read_lock(); 6021 memcg = mem_cgroup_from_id(id); 6022 if (memcg && !css_tryget_online(&memcg->css)) 6023 memcg = NULL; 6024 rcu_read_unlock(); 6025 } 6026 } 6027 6028 if (!memcg) 6029 memcg = get_mem_cgroup_from_mm(mm); 6030 6031 ret = try_charge(memcg, gfp_mask, nr_pages); 6032 6033 css_put(&memcg->css); 6034 out: 6035 *memcgp = memcg; 6036 return ret; 6037 } 6038 6039 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 6040 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6041 bool compound) 6042 { 6043 struct mem_cgroup *memcg; 6044 int ret; 6045 6046 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 6047 memcg = *memcgp; 6048 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 6049 return ret; 6050 } 6051 6052 /** 6053 * mem_cgroup_commit_charge - commit a page charge 6054 * @page: page to charge 6055 * @memcg: memcg to charge the page to 6056 * @lrucare: page might be on LRU already 6057 * @compound: charge the page as compound or small page 6058 * 6059 * Finalize a charge transaction started by mem_cgroup_try_charge(), 6060 * after page->mapping has been set up. This must happen atomically 6061 * as part of the page instantiation, i.e. under the page table lock 6062 * for anonymous pages, under the page lock for page and swap cache. 6063 * 6064 * In addition, the page must not be on the LRU during the commit, to 6065 * prevent racing with task migration. If it might be, use @lrucare. 6066 * 6067 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 6068 */ 6069 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 6070 bool lrucare, bool compound) 6071 { 6072 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6073 6074 VM_BUG_ON_PAGE(!page->mapping, page); 6075 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 6076 6077 if (mem_cgroup_disabled()) 6078 return; 6079 /* 6080 * Swap faults will attempt to charge the same page multiple 6081 * times. But reuse_swap_page() might have removed the page 6082 * from swapcache already, so we can't check PageSwapCache(). 6083 */ 6084 if (!memcg) 6085 return; 6086 6087 commit_charge(page, memcg, lrucare); 6088 6089 local_irq_disable(); 6090 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 6091 memcg_check_events(memcg, page); 6092 local_irq_enable(); 6093 6094 if (do_memsw_account() && PageSwapCache(page)) { 6095 swp_entry_t entry = { .val = page_private(page) }; 6096 /* 6097 * The swap entry might not get freed for a long time, 6098 * let's not wait for it. The page already received a 6099 * memory+swap charge, drop the swap entry duplicate. 6100 */ 6101 mem_cgroup_uncharge_swap(entry, nr_pages); 6102 } 6103 } 6104 6105 /** 6106 * mem_cgroup_cancel_charge - cancel a page charge 6107 * @page: page to charge 6108 * @memcg: memcg to charge the page to 6109 * @compound: charge the page as compound or small page 6110 * 6111 * Cancel a charge transaction started by mem_cgroup_try_charge(). 6112 */ 6113 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 6114 bool compound) 6115 { 6116 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6117 6118 if (mem_cgroup_disabled()) 6119 return; 6120 /* 6121 * Swap faults will attempt to charge the same page multiple 6122 * times. But reuse_swap_page() might have removed the page 6123 * from swapcache already, so we can't check PageSwapCache(). 6124 */ 6125 if (!memcg) 6126 return; 6127 6128 cancel_charge(memcg, nr_pages); 6129 } 6130 6131 struct uncharge_gather { 6132 struct mem_cgroup *memcg; 6133 unsigned long pgpgout; 6134 unsigned long nr_anon; 6135 unsigned long nr_file; 6136 unsigned long nr_kmem; 6137 unsigned long nr_huge; 6138 unsigned long nr_shmem; 6139 struct page *dummy_page; 6140 }; 6141 6142 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6143 { 6144 memset(ug, 0, sizeof(*ug)); 6145 } 6146 6147 static void uncharge_batch(const struct uncharge_gather *ug) 6148 { 6149 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6150 unsigned long flags; 6151 6152 if (!mem_cgroup_is_root(ug->memcg)) { 6153 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6154 if (do_memsw_account()) 6155 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6156 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6157 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6158 memcg_oom_recover(ug->memcg); 6159 } 6160 6161 local_irq_save(flags); 6162 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6163 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6164 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6165 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6166 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6167 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages); 6168 memcg_check_events(ug->memcg, ug->dummy_page); 6169 local_irq_restore(flags); 6170 6171 if (!mem_cgroup_is_root(ug->memcg)) 6172 css_put_many(&ug->memcg->css, nr_pages); 6173 } 6174 6175 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6176 { 6177 VM_BUG_ON_PAGE(PageLRU(page), page); 6178 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6179 !PageHWPoison(page) , page); 6180 6181 if (!page->mem_cgroup) 6182 return; 6183 6184 /* 6185 * Nobody should be changing or seriously looking at 6186 * page->mem_cgroup at this point, we have fully 6187 * exclusive access to the page. 6188 */ 6189 6190 if (ug->memcg != page->mem_cgroup) { 6191 if (ug->memcg) { 6192 uncharge_batch(ug); 6193 uncharge_gather_clear(ug); 6194 } 6195 ug->memcg = page->mem_cgroup; 6196 } 6197 6198 if (!PageKmemcg(page)) { 6199 unsigned int nr_pages = 1; 6200 6201 if (PageTransHuge(page)) { 6202 nr_pages <<= compound_order(page); 6203 ug->nr_huge += nr_pages; 6204 } 6205 if (PageAnon(page)) 6206 ug->nr_anon += nr_pages; 6207 else { 6208 ug->nr_file += nr_pages; 6209 if (PageSwapBacked(page)) 6210 ug->nr_shmem += nr_pages; 6211 } 6212 ug->pgpgout++; 6213 } else { 6214 ug->nr_kmem += 1 << compound_order(page); 6215 __ClearPageKmemcg(page); 6216 } 6217 6218 ug->dummy_page = page; 6219 page->mem_cgroup = NULL; 6220 } 6221 6222 static void uncharge_list(struct list_head *page_list) 6223 { 6224 struct uncharge_gather ug; 6225 struct list_head *next; 6226 6227 uncharge_gather_clear(&ug); 6228 6229 /* 6230 * Note that the list can be a single page->lru; hence the 6231 * do-while loop instead of a simple list_for_each_entry(). 6232 */ 6233 next = page_list->next; 6234 do { 6235 struct page *page; 6236 6237 page = list_entry(next, struct page, lru); 6238 next = page->lru.next; 6239 6240 uncharge_page(page, &ug); 6241 } while (next != page_list); 6242 6243 if (ug.memcg) 6244 uncharge_batch(&ug); 6245 } 6246 6247 /** 6248 * mem_cgroup_uncharge - uncharge a page 6249 * @page: page to uncharge 6250 * 6251 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6252 * mem_cgroup_commit_charge(). 6253 */ 6254 void mem_cgroup_uncharge(struct page *page) 6255 { 6256 struct uncharge_gather ug; 6257 6258 if (mem_cgroup_disabled()) 6259 return; 6260 6261 /* Don't touch page->lru of any random page, pre-check: */ 6262 if (!page->mem_cgroup) 6263 return; 6264 6265 uncharge_gather_clear(&ug); 6266 uncharge_page(page, &ug); 6267 uncharge_batch(&ug); 6268 } 6269 6270 /** 6271 * mem_cgroup_uncharge_list - uncharge a list of page 6272 * @page_list: list of pages to uncharge 6273 * 6274 * Uncharge a list of pages previously charged with 6275 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6276 */ 6277 void mem_cgroup_uncharge_list(struct list_head *page_list) 6278 { 6279 if (mem_cgroup_disabled()) 6280 return; 6281 6282 if (!list_empty(page_list)) 6283 uncharge_list(page_list); 6284 } 6285 6286 /** 6287 * mem_cgroup_migrate - charge a page's replacement 6288 * @oldpage: currently circulating page 6289 * @newpage: replacement page 6290 * 6291 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6292 * be uncharged upon free. 6293 * 6294 * Both pages must be locked, @newpage->mapping must be set up. 6295 */ 6296 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6297 { 6298 struct mem_cgroup *memcg; 6299 unsigned int nr_pages; 6300 bool compound; 6301 unsigned long flags; 6302 6303 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6304 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6305 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6306 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6307 newpage); 6308 6309 if (mem_cgroup_disabled()) 6310 return; 6311 6312 /* Page cache replacement: new page already charged? */ 6313 if (newpage->mem_cgroup) 6314 return; 6315 6316 /* Swapcache readahead pages can get replaced before being charged */ 6317 memcg = oldpage->mem_cgroup; 6318 if (!memcg) 6319 return; 6320 6321 /* Force-charge the new page. The old one will be freed soon */ 6322 compound = PageTransHuge(newpage); 6323 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 6324 6325 page_counter_charge(&memcg->memory, nr_pages); 6326 if (do_memsw_account()) 6327 page_counter_charge(&memcg->memsw, nr_pages); 6328 css_get_many(&memcg->css, nr_pages); 6329 6330 commit_charge(newpage, memcg, false); 6331 6332 local_irq_save(flags); 6333 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 6334 memcg_check_events(memcg, newpage); 6335 local_irq_restore(flags); 6336 } 6337 6338 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6339 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6340 6341 void mem_cgroup_sk_alloc(struct sock *sk) 6342 { 6343 struct mem_cgroup *memcg; 6344 6345 if (!mem_cgroup_sockets_enabled) 6346 return; 6347 6348 /* 6349 * Socket cloning can throw us here with sk_memcg already 6350 * filled. It won't however, necessarily happen from 6351 * process context. So the test for root memcg given 6352 * the current task's memcg won't help us in this case. 6353 * 6354 * Respecting the original socket's memcg is a better 6355 * decision in this case. 6356 */ 6357 if (sk->sk_memcg) { 6358 css_get(&sk->sk_memcg->css); 6359 return; 6360 } 6361 6362 rcu_read_lock(); 6363 memcg = mem_cgroup_from_task(current); 6364 if (memcg == root_mem_cgroup) 6365 goto out; 6366 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6367 goto out; 6368 if (css_tryget_online(&memcg->css)) 6369 sk->sk_memcg = memcg; 6370 out: 6371 rcu_read_unlock(); 6372 } 6373 6374 void mem_cgroup_sk_free(struct sock *sk) 6375 { 6376 if (sk->sk_memcg) 6377 css_put(&sk->sk_memcg->css); 6378 } 6379 6380 /** 6381 * mem_cgroup_charge_skmem - charge socket memory 6382 * @memcg: memcg to charge 6383 * @nr_pages: number of pages to charge 6384 * 6385 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6386 * @memcg's configured limit, %false if the charge had to be forced. 6387 */ 6388 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6389 { 6390 gfp_t gfp_mask = GFP_KERNEL; 6391 6392 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6393 struct page_counter *fail; 6394 6395 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6396 memcg->tcpmem_pressure = 0; 6397 return true; 6398 } 6399 page_counter_charge(&memcg->tcpmem, nr_pages); 6400 memcg->tcpmem_pressure = 1; 6401 return false; 6402 } 6403 6404 /* Don't block in the packet receive path */ 6405 if (in_softirq()) 6406 gfp_mask = GFP_NOWAIT; 6407 6408 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6409 6410 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6411 return true; 6412 6413 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6414 return false; 6415 } 6416 6417 /** 6418 * mem_cgroup_uncharge_skmem - uncharge socket memory 6419 * @memcg: memcg to uncharge 6420 * @nr_pages: number of pages to uncharge 6421 */ 6422 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6423 { 6424 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6425 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6426 return; 6427 } 6428 6429 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6430 6431 refill_stock(memcg, nr_pages); 6432 } 6433 6434 static int __init cgroup_memory(char *s) 6435 { 6436 char *token; 6437 6438 while ((token = strsep(&s, ",")) != NULL) { 6439 if (!*token) 6440 continue; 6441 if (!strcmp(token, "nosocket")) 6442 cgroup_memory_nosocket = true; 6443 if (!strcmp(token, "nokmem")) 6444 cgroup_memory_nokmem = true; 6445 } 6446 return 0; 6447 } 6448 __setup("cgroup.memory=", cgroup_memory); 6449 6450 /* 6451 * subsys_initcall() for memory controller. 6452 * 6453 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6454 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6455 * basically everything that doesn't depend on a specific mem_cgroup structure 6456 * should be initialized from here. 6457 */ 6458 static int __init mem_cgroup_init(void) 6459 { 6460 int cpu, node; 6461 6462 #ifdef CONFIG_MEMCG_KMEM 6463 /* 6464 * Kmem cache creation is mostly done with the slab_mutex held, 6465 * so use a workqueue with limited concurrency to avoid stalling 6466 * all worker threads in case lots of cgroups are created and 6467 * destroyed simultaneously. 6468 */ 6469 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6470 BUG_ON(!memcg_kmem_cache_wq); 6471 #endif 6472 6473 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6474 memcg_hotplug_cpu_dead); 6475 6476 for_each_possible_cpu(cpu) 6477 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6478 drain_local_stock); 6479 6480 for_each_node(node) { 6481 struct mem_cgroup_tree_per_node *rtpn; 6482 6483 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6484 node_online(node) ? node : NUMA_NO_NODE); 6485 6486 rtpn->rb_root = RB_ROOT; 6487 rtpn->rb_rightmost = NULL; 6488 spin_lock_init(&rtpn->lock); 6489 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6490 } 6491 6492 return 0; 6493 } 6494 subsys_initcall(mem_cgroup_init); 6495 6496 #ifdef CONFIG_MEMCG_SWAP 6497 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6498 { 6499 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6500 /* 6501 * The root cgroup cannot be destroyed, so it's refcount must 6502 * always be >= 1. 6503 */ 6504 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6505 VM_BUG_ON(1); 6506 break; 6507 } 6508 memcg = parent_mem_cgroup(memcg); 6509 if (!memcg) 6510 memcg = root_mem_cgroup; 6511 } 6512 return memcg; 6513 } 6514 6515 /** 6516 * mem_cgroup_swapout - transfer a memsw charge to swap 6517 * @page: page whose memsw charge to transfer 6518 * @entry: swap entry to move the charge to 6519 * 6520 * Transfer the memsw charge of @page to @entry. 6521 */ 6522 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6523 { 6524 struct mem_cgroup *memcg, *swap_memcg; 6525 unsigned int nr_entries; 6526 unsigned short oldid; 6527 6528 VM_BUG_ON_PAGE(PageLRU(page), page); 6529 VM_BUG_ON_PAGE(page_count(page), page); 6530 6531 if (!do_memsw_account()) 6532 return; 6533 6534 memcg = page->mem_cgroup; 6535 6536 /* Readahead page, never charged */ 6537 if (!memcg) 6538 return; 6539 6540 /* 6541 * In case the memcg owning these pages has been offlined and doesn't 6542 * have an ID allocated to it anymore, charge the closest online 6543 * ancestor for the swap instead and transfer the memory+swap charge. 6544 */ 6545 swap_memcg = mem_cgroup_id_get_online(memcg); 6546 nr_entries = hpage_nr_pages(page); 6547 /* Get references for the tail pages, too */ 6548 if (nr_entries > 1) 6549 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6550 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6551 nr_entries); 6552 VM_BUG_ON_PAGE(oldid, page); 6553 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6554 6555 page->mem_cgroup = NULL; 6556 6557 if (!mem_cgroup_is_root(memcg)) 6558 page_counter_uncharge(&memcg->memory, nr_entries); 6559 6560 if (memcg != swap_memcg) { 6561 if (!mem_cgroup_is_root(swap_memcg)) 6562 page_counter_charge(&swap_memcg->memsw, nr_entries); 6563 page_counter_uncharge(&memcg->memsw, nr_entries); 6564 } 6565 6566 /* 6567 * Interrupts should be disabled here because the caller holds the 6568 * i_pages lock which is taken with interrupts-off. It is 6569 * important here to have the interrupts disabled because it is the 6570 * only synchronisation we have for updating the per-CPU variables. 6571 */ 6572 VM_BUG_ON(!irqs_disabled()); 6573 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 6574 -nr_entries); 6575 memcg_check_events(memcg, page); 6576 6577 if (!mem_cgroup_is_root(memcg)) 6578 css_put_many(&memcg->css, nr_entries); 6579 } 6580 6581 /** 6582 * mem_cgroup_try_charge_swap - try charging swap space for a page 6583 * @page: page being added to swap 6584 * @entry: swap entry to charge 6585 * 6586 * Try to charge @page's memcg for the swap space at @entry. 6587 * 6588 * Returns 0 on success, -ENOMEM on failure. 6589 */ 6590 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 6591 { 6592 unsigned int nr_pages = hpage_nr_pages(page); 6593 struct page_counter *counter; 6594 struct mem_cgroup *memcg; 6595 unsigned short oldid; 6596 6597 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 6598 return 0; 6599 6600 memcg = page->mem_cgroup; 6601 6602 /* Readahead page, never charged */ 6603 if (!memcg) 6604 return 0; 6605 6606 if (!entry.val) { 6607 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6608 return 0; 6609 } 6610 6611 memcg = mem_cgroup_id_get_online(memcg); 6612 6613 if (!mem_cgroup_is_root(memcg) && 6614 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 6615 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 6616 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6617 mem_cgroup_id_put(memcg); 6618 return -ENOMEM; 6619 } 6620 6621 /* Get references for the tail pages, too */ 6622 if (nr_pages > 1) 6623 mem_cgroup_id_get_many(memcg, nr_pages - 1); 6624 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 6625 VM_BUG_ON_PAGE(oldid, page); 6626 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 6627 6628 return 0; 6629 } 6630 6631 /** 6632 * mem_cgroup_uncharge_swap - uncharge swap space 6633 * @entry: swap entry to uncharge 6634 * @nr_pages: the amount of swap space to uncharge 6635 */ 6636 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 6637 { 6638 struct mem_cgroup *memcg; 6639 unsigned short id; 6640 6641 if (!do_swap_account) 6642 return; 6643 6644 id = swap_cgroup_record(entry, 0, nr_pages); 6645 rcu_read_lock(); 6646 memcg = mem_cgroup_from_id(id); 6647 if (memcg) { 6648 if (!mem_cgroup_is_root(memcg)) { 6649 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6650 page_counter_uncharge(&memcg->swap, nr_pages); 6651 else 6652 page_counter_uncharge(&memcg->memsw, nr_pages); 6653 } 6654 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 6655 mem_cgroup_id_put_many(memcg, nr_pages); 6656 } 6657 rcu_read_unlock(); 6658 } 6659 6660 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 6661 { 6662 long nr_swap_pages = get_nr_swap_pages(); 6663 6664 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6665 return nr_swap_pages; 6666 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6667 nr_swap_pages = min_t(long, nr_swap_pages, 6668 READ_ONCE(memcg->swap.max) - 6669 page_counter_read(&memcg->swap)); 6670 return nr_swap_pages; 6671 } 6672 6673 bool mem_cgroup_swap_full(struct page *page) 6674 { 6675 struct mem_cgroup *memcg; 6676 6677 VM_BUG_ON_PAGE(!PageLocked(page), page); 6678 6679 if (vm_swap_full()) 6680 return true; 6681 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6682 return false; 6683 6684 memcg = page->mem_cgroup; 6685 if (!memcg) 6686 return false; 6687 6688 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6689 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) 6690 return true; 6691 6692 return false; 6693 } 6694 6695 /* for remember boot option*/ 6696 #ifdef CONFIG_MEMCG_SWAP_ENABLED 6697 static int really_do_swap_account __initdata = 1; 6698 #else 6699 static int really_do_swap_account __initdata; 6700 #endif 6701 6702 static int __init enable_swap_account(char *s) 6703 { 6704 if (!strcmp(s, "1")) 6705 really_do_swap_account = 1; 6706 else if (!strcmp(s, "0")) 6707 really_do_swap_account = 0; 6708 return 1; 6709 } 6710 __setup("swapaccount=", enable_swap_account); 6711 6712 static u64 swap_current_read(struct cgroup_subsys_state *css, 6713 struct cftype *cft) 6714 { 6715 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6716 6717 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 6718 } 6719 6720 static int swap_max_show(struct seq_file *m, void *v) 6721 { 6722 return seq_puts_memcg_tunable(m, 6723 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 6724 } 6725 6726 static ssize_t swap_max_write(struct kernfs_open_file *of, 6727 char *buf, size_t nbytes, loff_t off) 6728 { 6729 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6730 unsigned long max; 6731 int err; 6732 6733 buf = strstrip(buf); 6734 err = page_counter_memparse(buf, "max", &max); 6735 if (err) 6736 return err; 6737 6738 xchg(&memcg->swap.max, max); 6739 6740 return nbytes; 6741 } 6742 6743 static int swap_events_show(struct seq_file *m, void *v) 6744 { 6745 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6746 6747 seq_printf(m, "max %lu\n", 6748 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 6749 seq_printf(m, "fail %lu\n", 6750 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 6751 6752 return 0; 6753 } 6754 6755 static struct cftype swap_files[] = { 6756 { 6757 .name = "swap.current", 6758 .flags = CFTYPE_NOT_ON_ROOT, 6759 .read_u64 = swap_current_read, 6760 }, 6761 { 6762 .name = "swap.max", 6763 .flags = CFTYPE_NOT_ON_ROOT, 6764 .seq_show = swap_max_show, 6765 .write = swap_max_write, 6766 }, 6767 { 6768 .name = "swap.events", 6769 .flags = CFTYPE_NOT_ON_ROOT, 6770 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 6771 .seq_show = swap_events_show, 6772 }, 6773 { } /* terminate */ 6774 }; 6775 6776 static struct cftype memsw_cgroup_files[] = { 6777 { 6778 .name = "memsw.usage_in_bytes", 6779 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6780 .read_u64 = mem_cgroup_read_u64, 6781 }, 6782 { 6783 .name = "memsw.max_usage_in_bytes", 6784 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6785 .write = mem_cgroup_reset, 6786 .read_u64 = mem_cgroup_read_u64, 6787 }, 6788 { 6789 .name = "memsw.limit_in_bytes", 6790 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6791 .write = mem_cgroup_write, 6792 .read_u64 = mem_cgroup_read_u64, 6793 }, 6794 { 6795 .name = "memsw.failcnt", 6796 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6797 .write = mem_cgroup_reset, 6798 .read_u64 = mem_cgroup_read_u64, 6799 }, 6800 { }, /* terminate */ 6801 }; 6802 6803 static int __init mem_cgroup_swap_init(void) 6804 { 6805 if (!mem_cgroup_disabled() && really_do_swap_account) { 6806 do_swap_account = 1; 6807 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6808 swap_files)); 6809 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6810 memsw_cgroup_files)); 6811 } 6812 return 0; 6813 } 6814 subsys_initcall(mem_cgroup_swap_init); 6815 6816 #endif /* CONFIG_MEMCG_SWAP */ 6817