xref: /openbmc/linux/mm/memcontrol.c (revision 21615365)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/mm.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include "internal.h"
61 #include <net/sock.h>
62 #include <net/ip.h>
63 #include "slab.h"
64 
65 #include <linux/uaccess.h>
66 
67 #include <trace/events/vmscan.h>
68 
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71 
72 struct mem_cgroup *root_mem_cgroup __read_mostly;
73 
74 #define MEM_CGROUP_RECLAIM_RETRIES	5
75 
76 /* Socket memory accounting disabled? */
77 static bool cgroup_memory_nosocket;
78 
79 /* Kernel memory accounting disabled? */
80 static bool cgroup_memory_nokmem;
81 
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 int do_swap_account __read_mostly;
85 #else
86 #define do_swap_account		0
87 #endif
88 
89 /* Whether legacy memory+swap accounting is active */
90 static bool do_memsw_account(void)
91 {
92 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
93 }
94 
95 static const char *const mem_cgroup_lru_names[] = {
96 	"inactive_anon",
97 	"active_anon",
98 	"inactive_file",
99 	"active_file",
100 	"unevictable",
101 };
102 
103 #define THRESHOLDS_EVENTS_TARGET 128
104 #define SOFTLIMIT_EVENTS_TARGET 1024
105 #define NUMAINFO_EVENTS_TARGET	1024
106 
107 /*
108  * Cgroups above their limits are maintained in a RB-Tree, independent of
109  * their hierarchy representation
110  */
111 
112 struct mem_cgroup_tree_per_node {
113 	struct rb_root rb_root;
114 	struct rb_node *rb_rightmost;
115 	spinlock_t lock;
116 };
117 
118 struct mem_cgroup_tree {
119 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
120 };
121 
122 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
123 
124 /* for OOM */
125 struct mem_cgroup_eventfd_list {
126 	struct list_head list;
127 	struct eventfd_ctx *eventfd;
128 };
129 
130 /*
131  * cgroup_event represents events which userspace want to receive.
132  */
133 struct mem_cgroup_event {
134 	/*
135 	 * memcg which the event belongs to.
136 	 */
137 	struct mem_cgroup *memcg;
138 	/*
139 	 * eventfd to signal userspace about the event.
140 	 */
141 	struct eventfd_ctx *eventfd;
142 	/*
143 	 * Each of these stored in a list by the cgroup.
144 	 */
145 	struct list_head list;
146 	/*
147 	 * register_event() callback will be used to add new userspace
148 	 * waiter for changes related to this event.  Use eventfd_signal()
149 	 * on eventfd to send notification to userspace.
150 	 */
151 	int (*register_event)(struct mem_cgroup *memcg,
152 			      struct eventfd_ctx *eventfd, const char *args);
153 	/*
154 	 * unregister_event() callback will be called when userspace closes
155 	 * the eventfd or on cgroup removing.  This callback must be set,
156 	 * if you want provide notification functionality.
157 	 */
158 	void (*unregister_event)(struct mem_cgroup *memcg,
159 				 struct eventfd_ctx *eventfd);
160 	/*
161 	 * All fields below needed to unregister event when
162 	 * userspace closes eventfd.
163 	 */
164 	poll_table pt;
165 	wait_queue_head_t *wqh;
166 	wait_queue_entry_t wait;
167 	struct work_struct remove;
168 };
169 
170 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
171 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
172 
173 /* Stuffs for move charges at task migration. */
174 /*
175  * Types of charges to be moved.
176  */
177 #define MOVE_ANON	0x1U
178 #define MOVE_FILE	0x2U
179 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
180 
181 /* "mc" and its members are protected by cgroup_mutex */
182 static struct move_charge_struct {
183 	spinlock_t	  lock; /* for from, to */
184 	struct mm_struct  *mm;
185 	struct mem_cgroup *from;
186 	struct mem_cgroup *to;
187 	unsigned long flags;
188 	unsigned long precharge;
189 	unsigned long moved_charge;
190 	unsigned long moved_swap;
191 	struct task_struct *moving_task;	/* a task moving charges */
192 	wait_queue_head_t waitq;		/* a waitq for other context */
193 } mc = {
194 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
195 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
196 };
197 
198 /*
199  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
200  * limit reclaim to prevent infinite loops, if they ever occur.
201  */
202 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
203 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
204 
205 enum charge_type {
206 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
207 	MEM_CGROUP_CHARGE_TYPE_ANON,
208 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
209 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
210 	NR_CHARGE_TYPE,
211 };
212 
213 /* for encoding cft->private value on file */
214 enum res_type {
215 	_MEM,
216 	_MEMSWAP,
217 	_OOM_TYPE,
218 	_KMEM,
219 	_TCP,
220 };
221 
222 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
223 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
224 #define MEMFILE_ATTR(val)	((val) & 0xffff)
225 /* Used for OOM nofiier */
226 #define OOM_CONTROL		(0)
227 
228 /*
229  * Iteration constructs for visiting all cgroups (under a tree).  If
230  * loops are exited prematurely (break), mem_cgroup_iter_break() must
231  * be used for reference counting.
232  */
233 #define for_each_mem_cgroup_tree(iter, root)		\
234 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
235 	     iter != NULL;				\
236 	     iter = mem_cgroup_iter(root, iter, NULL))
237 
238 #define for_each_mem_cgroup(iter)			\
239 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
240 	     iter != NULL;				\
241 	     iter = mem_cgroup_iter(NULL, iter, NULL))
242 
243 static inline bool should_force_charge(void)
244 {
245 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
246 		(current->flags & PF_EXITING);
247 }
248 
249 /* Some nice accessors for the vmpressure. */
250 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
251 {
252 	if (!memcg)
253 		memcg = root_mem_cgroup;
254 	return &memcg->vmpressure;
255 }
256 
257 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
258 {
259 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
260 }
261 
262 #ifdef CONFIG_MEMCG_KMEM
263 /*
264  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
265  * The main reason for not using cgroup id for this:
266  *  this works better in sparse environments, where we have a lot of memcgs,
267  *  but only a few kmem-limited. Or also, if we have, for instance, 200
268  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
269  *  200 entry array for that.
270  *
271  * The current size of the caches array is stored in memcg_nr_cache_ids. It
272  * will double each time we have to increase it.
273  */
274 static DEFINE_IDA(memcg_cache_ida);
275 int memcg_nr_cache_ids;
276 
277 /* Protects memcg_nr_cache_ids */
278 static DECLARE_RWSEM(memcg_cache_ids_sem);
279 
280 void memcg_get_cache_ids(void)
281 {
282 	down_read(&memcg_cache_ids_sem);
283 }
284 
285 void memcg_put_cache_ids(void)
286 {
287 	up_read(&memcg_cache_ids_sem);
288 }
289 
290 /*
291  * MIN_SIZE is different than 1, because we would like to avoid going through
292  * the alloc/free process all the time. In a small machine, 4 kmem-limited
293  * cgroups is a reasonable guess. In the future, it could be a parameter or
294  * tunable, but that is strictly not necessary.
295  *
296  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
297  * this constant directly from cgroup, but it is understandable that this is
298  * better kept as an internal representation in cgroup.c. In any case, the
299  * cgrp_id space is not getting any smaller, and we don't have to necessarily
300  * increase ours as well if it increases.
301  */
302 #define MEMCG_CACHES_MIN_SIZE 4
303 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
304 
305 /*
306  * A lot of the calls to the cache allocation functions are expected to be
307  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
308  * conditional to this static branch, we'll have to allow modules that does
309  * kmem_cache_alloc and the such to see this symbol as well
310  */
311 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
312 EXPORT_SYMBOL(memcg_kmem_enabled_key);
313 
314 struct workqueue_struct *memcg_kmem_cache_wq;
315 
316 static int memcg_shrinker_map_size;
317 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
318 
319 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
320 {
321 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
322 }
323 
324 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
325 					 int size, int old_size)
326 {
327 	struct memcg_shrinker_map *new, *old;
328 	int nid;
329 
330 	lockdep_assert_held(&memcg_shrinker_map_mutex);
331 
332 	for_each_node(nid) {
333 		old = rcu_dereference_protected(
334 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
335 		/* Not yet online memcg */
336 		if (!old)
337 			return 0;
338 
339 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
340 		if (!new)
341 			return -ENOMEM;
342 
343 		/* Set all old bits, clear all new bits */
344 		memset(new->map, (int)0xff, old_size);
345 		memset((void *)new->map + old_size, 0, size - old_size);
346 
347 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
348 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
349 	}
350 
351 	return 0;
352 }
353 
354 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
355 {
356 	struct mem_cgroup_per_node *pn;
357 	struct memcg_shrinker_map *map;
358 	int nid;
359 
360 	if (mem_cgroup_is_root(memcg))
361 		return;
362 
363 	for_each_node(nid) {
364 		pn = mem_cgroup_nodeinfo(memcg, nid);
365 		map = rcu_dereference_protected(pn->shrinker_map, true);
366 		if (map)
367 			kvfree(map);
368 		rcu_assign_pointer(pn->shrinker_map, NULL);
369 	}
370 }
371 
372 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
373 {
374 	struct memcg_shrinker_map *map;
375 	int nid, size, ret = 0;
376 
377 	if (mem_cgroup_is_root(memcg))
378 		return 0;
379 
380 	mutex_lock(&memcg_shrinker_map_mutex);
381 	size = memcg_shrinker_map_size;
382 	for_each_node(nid) {
383 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
384 		if (!map) {
385 			memcg_free_shrinker_maps(memcg);
386 			ret = -ENOMEM;
387 			break;
388 		}
389 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
390 	}
391 	mutex_unlock(&memcg_shrinker_map_mutex);
392 
393 	return ret;
394 }
395 
396 int memcg_expand_shrinker_maps(int new_id)
397 {
398 	int size, old_size, ret = 0;
399 	struct mem_cgroup *memcg;
400 
401 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
402 	old_size = memcg_shrinker_map_size;
403 	if (size <= old_size)
404 		return 0;
405 
406 	mutex_lock(&memcg_shrinker_map_mutex);
407 	if (!root_mem_cgroup)
408 		goto unlock;
409 
410 	for_each_mem_cgroup(memcg) {
411 		if (mem_cgroup_is_root(memcg))
412 			continue;
413 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
414 		if (ret)
415 			goto unlock;
416 	}
417 unlock:
418 	if (!ret)
419 		memcg_shrinker_map_size = size;
420 	mutex_unlock(&memcg_shrinker_map_mutex);
421 	return ret;
422 }
423 
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425 {
426 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 		struct memcg_shrinker_map *map;
428 
429 		rcu_read_lock();
430 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 		/* Pairs with smp mb in shrink_slab() */
432 		smp_mb__before_atomic();
433 		set_bit(shrinker_id, map->map);
434 		rcu_read_unlock();
435 	}
436 }
437 
438 #else /* CONFIG_MEMCG_KMEM */
439 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
440 {
441 	return 0;
442 }
443 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
444 #endif /* CONFIG_MEMCG_KMEM */
445 
446 /**
447  * mem_cgroup_css_from_page - css of the memcg associated with a page
448  * @page: page of interest
449  *
450  * If memcg is bound to the default hierarchy, css of the memcg associated
451  * with @page is returned.  The returned css remains associated with @page
452  * until it is released.
453  *
454  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
455  * is returned.
456  */
457 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
458 {
459 	struct mem_cgroup *memcg;
460 
461 	memcg = page->mem_cgroup;
462 
463 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
464 		memcg = root_mem_cgroup;
465 
466 	return &memcg->css;
467 }
468 
469 /**
470  * page_cgroup_ino - return inode number of the memcg a page is charged to
471  * @page: the page
472  *
473  * Look up the closest online ancestor of the memory cgroup @page is charged to
474  * and return its inode number or 0 if @page is not charged to any cgroup. It
475  * is safe to call this function without holding a reference to @page.
476  *
477  * Note, this function is inherently racy, because there is nothing to prevent
478  * the cgroup inode from getting torn down and potentially reallocated a moment
479  * after page_cgroup_ino() returns, so it only should be used by callers that
480  * do not care (such as procfs interfaces).
481  */
482 ino_t page_cgroup_ino(struct page *page)
483 {
484 	struct mem_cgroup *memcg;
485 	unsigned long ino = 0;
486 
487 	rcu_read_lock();
488 	memcg = READ_ONCE(page->mem_cgroup);
489 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
490 		memcg = parent_mem_cgroup(memcg);
491 	if (memcg)
492 		ino = cgroup_ino(memcg->css.cgroup);
493 	rcu_read_unlock();
494 	return ino;
495 }
496 
497 static struct mem_cgroup_per_node *
498 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
499 {
500 	int nid = page_to_nid(page);
501 
502 	return memcg->nodeinfo[nid];
503 }
504 
505 static struct mem_cgroup_tree_per_node *
506 soft_limit_tree_node(int nid)
507 {
508 	return soft_limit_tree.rb_tree_per_node[nid];
509 }
510 
511 static struct mem_cgroup_tree_per_node *
512 soft_limit_tree_from_page(struct page *page)
513 {
514 	int nid = page_to_nid(page);
515 
516 	return soft_limit_tree.rb_tree_per_node[nid];
517 }
518 
519 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
520 					 struct mem_cgroup_tree_per_node *mctz,
521 					 unsigned long new_usage_in_excess)
522 {
523 	struct rb_node **p = &mctz->rb_root.rb_node;
524 	struct rb_node *parent = NULL;
525 	struct mem_cgroup_per_node *mz_node;
526 	bool rightmost = true;
527 
528 	if (mz->on_tree)
529 		return;
530 
531 	mz->usage_in_excess = new_usage_in_excess;
532 	if (!mz->usage_in_excess)
533 		return;
534 	while (*p) {
535 		parent = *p;
536 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
537 					tree_node);
538 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
539 			p = &(*p)->rb_left;
540 			rightmost = false;
541 		}
542 
543 		/*
544 		 * We can't avoid mem cgroups that are over their soft
545 		 * limit by the same amount
546 		 */
547 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
548 			p = &(*p)->rb_right;
549 	}
550 
551 	if (rightmost)
552 		mctz->rb_rightmost = &mz->tree_node;
553 
554 	rb_link_node(&mz->tree_node, parent, p);
555 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
556 	mz->on_tree = true;
557 }
558 
559 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
560 					 struct mem_cgroup_tree_per_node *mctz)
561 {
562 	if (!mz->on_tree)
563 		return;
564 
565 	if (&mz->tree_node == mctz->rb_rightmost)
566 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
567 
568 	rb_erase(&mz->tree_node, &mctz->rb_root);
569 	mz->on_tree = false;
570 }
571 
572 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
573 				       struct mem_cgroup_tree_per_node *mctz)
574 {
575 	unsigned long flags;
576 
577 	spin_lock_irqsave(&mctz->lock, flags);
578 	__mem_cgroup_remove_exceeded(mz, mctz);
579 	spin_unlock_irqrestore(&mctz->lock, flags);
580 }
581 
582 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
583 {
584 	unsigned long nr_pages = page_counter_read(&memcg->memory);
585 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
586 	unsigned long excess = 0;
587 
588 	if (nr_pages > soft_limit)
589 		excess = nr_pages - soft_limit;
590 
591 	return excess;
592 }
593 
594 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
595 {
596 	unsigned long excess;
597 	struct mem_cgroup_per_node *mz;
598 	struct mem_cgroup_tree_per_node *mctz;
599 
600 	mctz = soft_limit_tree_from_page(page);
601 	if (!mctz)
602 		return;
603 	/*
604 	 * Necessary to update all ancestors when hierarchy is used.
605 	 * because their event counter is not touched.
606 	 */
607 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
608 		mz = mem_cgroup_page_nodeinfo(memcg, page);
609 		excess = soft_limit_excess(memcg);
610 		/*
611 		 * We have to update the tree if mz is on RB-tree or
612 		 * mem is over its softlimit.
613 		 */
614 		if (excess || mz->on_tree) {
615 			unsigned long flags;
616 
617 			spin_lock_irqsave(&mctz->lock, flags);
618 			/* if on-tree, remove it */
619 			if (mz->on_tree)
620 				__mem_cgroup_remove_exceeded(mz, mctz);
621 			/*
622 			 * Insert again. mz->usage_in_excess will be updated.
623 			 * If excess is 0, no tree ops.
624 			 */
625 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
626 			spin_unlock_irqrestore(&mctz->lock, flags);
627 		}
628 	}
629 }
630 
631 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
632 {
633 	struct mem_cgroup_tree_per_node *mctz;
634 	struct mem_cgroup_per_node *mz;
635 	int nid;
636 
637 	for_each_node(nid) {
638 		mz = mem_cgroup_nodeinfo(memcg, nid);
639 		mctz = soft_limit_tree_node(nid);
640 		if (mctz)
641 			mem_cgroup_remove_exceeded(mz, mctz);
642 	}
643 }
644 
645 static struct mem_cgroup_per_node *
646 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
647 {
648 	struct mem_cgroup_per_node *mz;
649 
650 retry:
651 	mz = NULL;
652 	if (!mctz->rb_rightmost)
653 		goto done;		/* Nothing to reclaim from */
654 
655 	mz = rb_entry(mctz->rb_rightmost,
656 		      struct mem_cgroup_per_node, tree_node);
657 	/*
658 	 * Remove the node now but someone else can add it back,
659 	 * we will to add it back at the end of reclaim to its correct
660 	 * position in the tree.
661 	 */
662 	__mem_cgroup_remove_exceeded(mz, mctz);
663 	if (!soft_limit_excess(mz->memcg) ||
664 	    !css_tryget_online(&mz->memcg->css))
665 		goto retry;
666 done:
667 	return mz;
668 }
669 
670 static struct mem_cgroup_per_node *
671 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
672 {
673 	struct mem_cgroup_per_node *mz;
674 
675 	spin_lock_irq(&mctz->lock);
676 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
677 	spin_unlock_irq(&mctz->lock);
678 	return mz;
679 }
680 
681 /**
682  * __mod_memcg_state - update cgroup memory statistics
683  * @memcg: the memory cgroup
684  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
685  * @val: delta to add to the counter, can be negative
686  */
687 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
688 {
689 	long x;
690 
691 	if (mem_cgroup_disabled())
692 		return;
693 
694 	__this_cpu_add(memcg->vmstats_local->stat[idx], val);
695 
696 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
697 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
698 		struct mem_cgroup *mi;
699 
700 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
701 			atomic_long_add(x, &mi->vmstats[idx]);
702 		x = 0;
703 	}
704 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
705 }
706 
707 static struct mem_cgroup_per_node *
708 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
709 {
710 	struct mem_cgroup *parent;
711 
712 	parent = parent_mem_cgroup(pn->memcg);
713 	if (!parent)
714 		return NULL;
715 	return mem_cgroup_nodeinfo(parent, nid);
716 }
717 
718 /**
719  * __mod_lruvec_state - update lruvec memory statistics
720  * @lruvec: the lruvec
721  * @idx: the stat item
722  * @val: delta to add to the counter, can be negative
723  *
724  * The lruvec is the intersection of the NUMA node and a cgroup. This
725  * function updates the all three counters that are affected by a
726  * change of state at this level: per-node, per-cgroup, per-lruvec.
727  */
728 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
729 			int val)
730 {
731 	pg_data_t *pgdat = lruvec_pgdat(lruvec);
732 	struct mem_cgroup_per_node *pn;
733 	struct mem_cgroup *memcg;
734 	long x;
735 
736 	/* Update node */
737 	__mod_node_page_state(pgdat, idx, val);
738 
739 	if (mem_cgroup_disabled())
740 		return;
741 
742 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
743 	memcg = pn->memcg;
744 
745 	/* Update memcg */
746 	__mod_memcg_state(memcg, idx, val);
747 
748 	/* Update lruvec */
749 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
750 
751 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
752 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
753 		struct mem_cgroup_per_node *pi;
754 
755 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
756 			atomic_long_add(x, &pi->lruvec_stat[idx]);
757 		x = 0;
758 	}
759 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
760 }
761 
762 /**
763  * __count_memcg_events - account VM events in a cgroup
764  * @memcg: the memory cgroup
765  * @idx: the event item
766  * @count: the number of events that occured
767  */
768 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
769 			  unsigned long count)
770 {
771 	unsigned long x;
772 
773 	if (mem_cgroup_disabled())
774 		return;
775 
776 	__this_cpu_add(memcg->vmstats_local->events[idx], count);
777 
778 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
779 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
780 		struct mem_cgroup *mi;
781 
782 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
783 			atomic_long_add(x, &mi->vmevents[idx]);
784 		x = 0;
785 	}
786 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
787 }
788 
789 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
790 {
791 	return atomic_long_read(&memcg->vmevents[event]);
792 }
793 
794 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
795 {
796 	long x = 0;
797 	int cpu;
798 
799 	for_each_possible_cpu(cpu)
800 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
801 	return x;
802 }
803 
804 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
805 					 struct page *page,
806 					 bool compound, int nr_pages)
807 {
808 	/*
809 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
810 	 * counted as CACHE even if it's on ANON LRU.
811 	 */
812 	if (PageAnon(page))
813 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
814 	else {
815 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
816 		if (PageSwapBacked(page))
817 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
818 	}
819 
820 	if (compound) {
821 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
822 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
823 	}
824 
825 	/* pagein of a big page is an event. So, ignore page size */
826 	if (nr_pages > 0)
827 		__count_memcg_events(memcg, PGPGIN, 1);
828 	else {
829 		__count_memcg_events(memcg, PGPGOUT, 1);
830 		nr_pages = -nr_pages; /* for event */
831 	}
832 
833 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
834 }
835 
836 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
837 				       enum mem_cgroup_events_target target)
838 {
839 	unsigned long val, next;
840 
841 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
842 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
843 	/* from time_after() in jiffies.h */
844 	if ((long)(next - val) < 0) {
845 		switch (target) {
846 		case MEM_CGROUP_TARGET_THRESH:
847 			next = val + THRESHOLDS_EVENTS_TARGET;
848 			break;
849 		case MEM_CGROUP_TARGET_SOFTLIMIT:
850 			next = val + SOFTLIMIT_EVENTS_TARGET;
851 			break;
852 		case MEM_CGROUP_TARGET_NUMAINFO:
853 			next = val + NUMAINFO_EVENTS_TARGET;
854 			break;
855 		default:
856 			break;
857 		}
858 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
859 		return true;
860 	}
861 	return false;
862 }
863 
864 /*
865  * Check events in order.
866  *
867  */
868 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
869 {
870 	/* threshold event is triggered in finer grain than soft limit */
871 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
872 						MEM_CGROUP_TARGET_THRESH))) {
873 		bool do_softlimit;
874 		bool do_numainfo __maybe_unused;
875 
876 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
877 						MEM_CGROUP_TARGET_SOFTLIMIT);
878 #if MAX_NUMNODES > 1
879 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
880 						MEM_CGROUP_TARGET_NUMAINFO);
881 #endif
882 		mem_cgroup_threshold(memcg);
883 		if (unlikely(do_softlimit))
884 			mem_cgroup_update_tree(memcg, page);
885 #if MAX_NUMNODES > 1
886 		if (unlikely(do_numainfo))
887 			atomic_inc(&memcg->numainfo_events);
888 #endif
889 	}
890 }
891 
892 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
893 {
894 	/*
895 	 * mm_update_next_owner() may clear mm->owner to NULL
896 	 * if it races with swapoff, page migration, etc.
897 	 * So this can be called with p == NULL.
898 	 */
899 	if (unlikely(!p))
900 		return NULL;
901 
902 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
903 }
904 EXPORT_SYMBOL(mem_cgroup_from_task);
905 
906 /**
907  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
908  * @mm: mm from which memcg should be extracted. It can be NULL.
909  *
910  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
911  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
912  * returned.
913  */
914 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
915 {
916 	struct mem_cgroup *memcg;
917 
918 	if (mem_cgroup_disabled())
919 		return NULL;
920 
921 	rcu_read_lock();
922 	do {
923 		/*
924 		 * Page cache insertions can happen withou an
925 		 * actual mm context, e.g. during disk probing
926 		 * on boot, loopback IO, acct() writes etc.
927 		 */
928 		if (unlikely(!mm))
929 			memcg = root_mem_cgroup;
930 		else {
931 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
932 			if (unlikely(!memcg))
933 				memcg = root_mem_cgroup;
934 		}
935 	} while (!css_tryget_online(&memcg->css));
936 	rcu_read_unlock();
937 	return memcg;
938 }
939 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
940 
941 /**
942  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
943  * @page: page from which memcg should be extracted.
944  *
945  * Obtain a reference on page->memcg and returns it if successful. Otherwise
946  * root_mem_cgroup is returned.
947  */
948 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
949 {
950 	struct mem_cgroup *memcg = page->mem_cgroup;
951 
952 	if (mem_cgroup_disabled())
953 		return NULL;
954 
955 	rcu_read_lock();
956 	if (!memcg || !css_tryget_online(&memcg->css))
957 		memcg = root_mem_cgroup;
958 	rcu_read_unlock();
959 	return memcg;
960 }
961 EXPORT_SYMBOL(get_mem_cgroup_from_page);
962 
963 /**
964  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
965  */
966 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
967 {
968 	if (unlikely(current->active_memcg)) {
969 		struct mem_cgroup *memcg = root_mem_cgroup;
970 
971 		rcu_read_lock();
972 		if (css_tryget_online(&current->active_memcg->css))
973 			memcg = current->active_memcg;
974 		rcu_read_unlock();
975 		return memcg;
976 	}
977 	return get_mem_cgroup_from_mm(current->mm);
978 }
979 
980 /**
981  * mem_cgroup_iter - iterate over memory cgroup hierarchy
982  * @root: hierarchy root
983  * @prev: previously returned memcg, NULL on first invocation
984  * @reclaim: cookie for shared reclaim walks, NULL for full walks
985  *
986  * Returns references to children of the hierarchy below @root, or
987  * @root itself, or %NULL after a full round-trip.
988  *
989  * Caller must pass the return value in @prev on subsequent
990  * invocations for reference counting, or use mem_cgroup_iter_break()
991  * to cancel a hierarchy walk before the round-trip is complete.
992  *
993  * Reclaimers can specify a node and a priority level in @reclaim to
994  * divide up the memcgs in the hierarchy among all concurrent
995  * reclaimers operating on the same node and priority.
996  */
997 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
998 				   struct mem_cgroup *prev,
999 				   struct mem_cgroup_reclaim_cookie *reclaim)
1000 {
1001 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1002 	struct cgroup_subsys_state *css = NULL;
1003 	struct mem_cgroup *memcg = NULL;
1004 	struct mem_cgroup *pos = NULL;
1005 
1006 	if (mem_cgroup_disabled())
1007 		return NULL;
1008 
1009 	if (!root)
1010 		root = root_mem_cgroup;
1011 
1012 	if (prev && !reclaim)
1013 		pos = prev;
1014 
1015 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1016 		if (prev)
1017 			goto out;
1018 		return root;
1019 	}
1020 
1021 	rcu_read_lock();
1022 
1023 	if (reclaim) {
1024 		struct mem_cgroup_per_node *mz;
1025 
1026 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1027 		iter = &mz->iter[reclaim->priority];
1028 
1029 		if (prev && reclaim->generation != iter->generation)
1030 			goto out_unlock;
1031 
1032 		while (1) {
1033 			pos = READ_ONCE(iter->position);
1034 			if (!pos || css_tryget(&pos->css))
1035 				break;
1036 			/*
1037 			 * css reference reached zero, so iter->position will
1038 			 * be cleared by ->css_released. However, we should not
1039 			 * rely on this happening soon, because ->css_released
1040 			 * is called from a work queue, and by busy-waiting we
1041 			 * might block it. So we clear iter->position right
1042 			 * away.
1043 			 */
1044 			(void)cmpxchg(&iter->position, pos, NULL);
1045 		}
1046 	}
1047 
1048 	if (pos)
1049 		css = &pos->css;
1050 
1051 	for (;;) {
1052 		css = css_next_descendant_pre(css, &root->css);
1053 		if (!css) {
1054 			/*
1055 			 * Reclaimers share the hierarchy walk, and a
1056 			 * new one might jump in right at the end of
1057 			 * the hierarchy - make sure they see at least
1058 			 * one group and restart from the beginning.
1059 			 */
1060 			if (!prev)
1061 				continue;
1062 			break;
1063 		}
1064 
1065 		/*
1066 		 * Verify the css and acquire a reference.  The root
1067 		 * is provided by the caller, so we know it's alive
1068 		 * and kicking, and don't take an extra reference.
1069 		 */
1070 		memcg = mem_cgroup_from_css(css);
1071 
1072 		if (css == &root->css)
1073 			break;
1074 
1075 		if (css_tryget(css))
1076 			break;
1077 
1078 		memcg = NULL;
1079 	}
1080 
1081 	if (reclaim) {
1082 		/*
1083 		 * The position could have already been updated by a competing
1084 		 * thread, so check that the value hasn't changed since we read
1085 		 * it to avoid reclaiming from the same cgroup twice.
1086 		 */
1087 		(void)cmpxchg(&iter->position, pos, memcg);
1088 
1089 		if (pos)
1090 			css_put(&pos->css);
1091 
1092 		if (!memcg)
1093 			iter->generation++;
1094 		else if (!prev)
1095 			reclaim->generation = iter->generation;
1096 	}
1097 
1098 out_unlock:
1099 	rcu_read_unlock();
1100 out:
1101 	if (prev && prev != root)
1102 		css_put(&prev->css);
1103 
1104 	return memcg;
1105 }
1106 
1107 /**
1108  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1109  * @root: hierarchy root
1110  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1111  */
1112 void mem_cgroup_iter_break(struct mem_cgroup *root,
1113 			   struct mem_cgroup *prev)
1114 {
1115 	if (!root)
1116 		root = root_mem_cgroup;
1117 	if (prev && prev != root)
1118 		css_put(&prev->css);
1119 }
1120 
1121 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1122 {
1123 	struct mem_cgroup *memcg = dead_memcg;
1124 	struct mem_cgroup_reclaim_iter *iter;
1125 	struct mem_cgroup_per_node *mz;
1126 	int nid;
1127 	int i;
1128 
1129 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1130 		for_each_node(nid) {
1131 			mz = mem_cgroup_nodeinfo(memcg, nid);
1132 			for (i = 0; i <= DEF_PRIORITY; i++) {
1133 				iter = &mz->iter[i];
1134 				cmpxchg(&iter->position,
1135 					dead_memcg, NULL);
1136 			}
1137 		}
1138 	}
1139 }
1140 
1141 /**
1142  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1143  * @memcg: hierarchy root
1144  * @fn: function to call for each task
1145  * @arg: argument passed to @fn
1146  *
1147  * This function iterates over tasks attached to @memcg or to any of its
1148  * descendants and calls @fn for each task. If @fn returns a non-zero
1149  * value, the function breaks the iteration loop and returns the value.
1150  * Otherwise, it will iterate over all tasks and return 0.
1151  *
1152  * This function must not be called for the root memory cgroup.
1153  */
1154 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1155 			  int (*fn)(struct task_struct *, void *), void *arg)
1156 {
1157 	struct mem_cgroup *iter;
1158 	int ret = 0;
1159 
1160 	BUG_ON(memcg == root_mem_cgroup);
1161 
1162 	for_each_mem_cgroup_tree(iter, memcg) {
1163 		struct css_task_iter it;
1164 		struct task_struct *task;
1165 
1166 		css_task_iter_start(&iter->css, 0, &it);
1167 		while (!ret && (task = css_task_iter_next(&it)))
1168 			ret = fn(task, arg);
1169 		css_task_iter_end(&it);
1170 		if (ret) {
1171 			mem_cgroup_iter_break(memcg, iter);
1172 			break;
1173 		}
1174 	}
1175 	return ret;
1176 }
1177 
1178 /**
1179  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1180  * @page: the page
1181  * @pgdat: pgdat of the page
1182  *
1183  * This function is only safe when following the LRU page isolation
1184  * and putback protocol: the LRU lock must be held, and the page must
1185  * either be PageLRU() or the caller must have isolated/allocated it.
1186  */
1187 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1188 {
1189 	struct mem_cgroup_per_node *mz;
1190 	struct mem_cgroup *memcg;
1191 	struct lruvec *lruvec;
1192 
1193 	if (mem_cgroup_disabled()) {
1194 		lruvec = &pgdat->lruvec;
1195 		goto out;
1196 	}
1197 
1198 	memcg = page->mem_cgroup;
1199 	/*
1200 	 * Swapcache readahead pages are added to the LRU - and
1201 	 * possibly migrated - before they are charged.
1202 	 */
1203 	if (!memcg)
1204 		memcg = root_mem_cgroup;
1205 
1206 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1207 	lruvec = &mz->lruvec;
1208 out:
1209 	/*
1210 	 * Since a node can be onlined after the mem_cgroup was created,
1211 	 * we have to be prepared to initialize lruvec->zone here;
1212 	 * and if offlined then reonlined, we need to reinitialize it.
1213 	 */
1214 	if (unlikely(lruvec->pgdat != pgdat))
1215 		lruvec->pgdat = pgdat;
1216 	return lruvec;
1217 }
1218 
1219 /**
1220  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1221  * @lruvec: mem_cgroup per zone lru vector
1222  * @lru: index of lru list the page is sitting on
1223  * @zid: zone id of the accounted pages
1224  * @nr_pages: positive when adding or negative when removing
1225  *
1226  * This function must be called under lru_lock, just before a page is added
1227  * to or just after a page is removed from an lru list (that ordering being
1228  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1229  */
1230 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1231 				int zid, int nr_pages)
1232 {
1233 	struct mem_cgroup_per_node *mz;
1234 	unsigned long *lru_size;
1235 	long size;
1236 
1237 	if (mem_cgroup_disabled())
1238 		return;
1239 
1240 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1241 	lru_size = &mz->lru_zone_size[zid][lru];
1242 
1243 	if (nr_pages < 0)
1244 		*lru_size += nr_pages;
1245 
1246 	size = *lru_size;
1247 	if (WARN_ONCE(size < 0,
1248 		"%s(%p, %d, %d): lru_size %ld\n",
1249 		__func__, lruvec, lru, nr_pages, size)) {
1250 		VM_BUG_ON(1);
1251 		*lru_size = 0;
1252 	}
1253 
1254 	if (nr_pages > 0)
1255 		*lru_size += nr_pages;
1256 }
1257 
1258 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1259 {
1260 	struct mem_cgroup *task_memcg;
1261 	struct task_struct *p;
1262 	bool ret;
1263 
1264 	p = find_lock_task_mm(task);
1265 	if (p) {
1266 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1267 		task_unlock(p);
1268 	} else {
1269 		/*
1270 		 * All threads may have already detached their mm's, but the oom
1271 		 * killer still needs to detect if they have already been oom
1272 		 * killed to prevent needlessly killing additional tasks.
1273 		 */
1274 		rcu_read_lock();
1275 		task_memcg = mem_cgroup_from_task(task);
1276 		css_get(&task_memcg->css);
1277 		rcu_read_unlock();
1278 	}
1279 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1280 	css_put(&task_memcg->css);
1281 	return ret;
1282 }
1283 
1284 /**
1285  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1286  * @memcg: the memory cgroup
1287  *
1288  * Returns the maximum amount of memory @mem can be charged with, in
1289  * pages.
1290  */
1291 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1292 {
1293 	unsigned long margin = 0;
1294 	unsigned long count;
1295 	unsigned long limit;
1296 
1297 	count = page_counter_read(&memcg->memory);
1298 	limit = READ_ONCE(memcg->memory.max);
1299 	if (count < limit)
1300 		margin = limit - count;
1301 
1302 	if (do_memsw_account()) {
1303 		count = page_counter_read(&memcg->memsw);
1304 		limit = READ_ONCE(memcg->memsw.max);
1305 		if (count <= limit)
1306 			margin = min(margin, limit - count);
1307 		else
1308 			margin = 0;
1309 	}
1310 
1311 	return margin;
1312 }
1313 
1314 /*
1315  * A routine for checking "mem" is under move_account() or not.
1316  *
1317  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1318  * moving cgroups. This is for waiting at high-memory pressure
1319  * caused by "move".
1320  */
1321 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1322 {
1323 	struct mem_cgroup *from;
1324 	struct mem_cgroup *to;
1325 	bool ret = false;
1326 	/*
1327 	 * Unlike task_move routines, we access mc.to, mc.from not under
1328 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1329 	 */
1330 	spin_lock(&mc.lock);
1331 	from = mc.from;
1332 	to = mc.to;
1333 	if (!from)
1334 		goto unlock;
1335 
1336 	ret = mem_cgroup_is_descendant(from, memcg) ||
1337 		mem_cgroup_is_descendant(to, memcg);
1338 unlock:
1339 	spin_unlock(&mc.lock);
1340 	return ret;
1341 }
1342 
1343 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1344 {
1345 	if (mc.moving_task && current != mc.moving_task) {
1346 		if (mem_cgroup_under_move(memcg)) {
1347 			DEFINE_WAIT(wait);
1348 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1349 			/* moving charge context might have finished. */
1350 			if (mc.moving_task)
1351 				schedule();
1352 			finish_wait(&mc.waitq, &wait);
1353 			return true;
1354 		}
1355 	}
1356 	return false;
1357 }
1358 
1359 static const unsigned int memcg1_stats[] = {
1360 	MEMCG_CACHE,
1361 	MEMCG_RSS,
1362 	MEMCG_RSS_HUGE,
1363 	NR_SHMEM,
1364 	NR_FILE_MAPPED,
1365 	NR_FILE_DIRTY,
1366 	NR_WRITEBACK,
1367 	MEMCG_SWAP,
1368 };
1369 
1370 static const char *const memcg1_stat_names[] = {
1371 	"cache",
1372 	"rss",
1373 	"rss_huge",
1374 	"shmem",
1375 	"mapped_file",
1376 	"dirty",
1377 	"writeback",
1378 	"swap",
1379 };
1380 
1381 #define K(x) ((x) << (PAGE_SHIFT-10))
1382 /**
1383  * mem_cgroup_print_oom_context: Print OOM information relevant to
1384  * memory controller.
1385  * @memcg: The memory cgroup that went over limit
1386  * @p: Task that is going to be killed
1387  *
1388  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1389  * enabled
1390  */
1391 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1392 {
1393 	rcu_read_lock();
1394 
1395 	if (memcg) {
1396 		pr_cont(",oom_memcg=");
1397 		pr_cont_cgroup_path(memcg->css.cgroup);
1398 	} else
1399 		pr_cont(",global_oom");
1400 	if (p) {
1401 		pr_cont(",task_memcg=");
1402 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1403 	}
1404 	rcu_read_unlock();
1405 }
1406 
1407 /**
1408  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1409  * memory controller.
1410  * @memcg: The memory cgroup that went over limit
1411  */
1412 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1413 {
1414 	struct mem_cgroup *iter;
1415 	unsigned int i;
1416 
1417 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1418 		K((u64)page_counter_read(&memcg->memory)),
1419 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1420 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1421 		K((u64)page_counter_read(&memcg->memsw)),
1422 		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1423 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1424 		K((u64)page_counter_read(&memcg->kmem)),
1425 		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1426 
1427 	for_each_mem_cgroup_tree(iter, memcg) {
1428 		pr_info("Memory cgroup stats for ");
1429 		pr_cont_cgroup_path(iter->css.cgroup);
1430 		pr_cont(":");
1431 
1432 		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1433 			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1434 				continue;
1435 			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1436 				K(memcg_page_state_local(iter,
1437 							 memcg1_stats[i])));
1438 		}
1439 
1440 		for (i = 0; i < NR_LRU_LISTS; i++)
1441 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1442 				K(memcg_page_state_local(iter,
1443 							 NR_LRU_BASE + i)));
1444 
1445 		pr_cont("\n");
1446 	}
1447 }
1448 
1449 /*
1450  * Return the memory (and swap, if configured) limit for a memcg.
1451  */
1452 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1453 {
1454 	unsigned long max;
1455 
1456 	max = memcg->memory.max;
1457 	if (mem_cgroup_swappiness(memcg)) {
1458 		unsigned long memsw_max;
1459 		unsigned long swap_max;
1460 
1461 		memsw_max = memcg->memsw.max;
1462 		swap_max = memcg->swap.max;
1463 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1464 		max = min(max + swap_max, memsw_max);
1465 	}
1466 	return max;
1467 }
1468 
1469 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1470 				     int order)
1471 {
1472 	struct oom_control oc = {
1473 		.zonelist = NULL,
1474 		.nodemask = NULL,
1475 		.memcg = memcg,
1476 		.gfp_mask = gfp_mask,
1477 		.order = order,
1478 	};
1479 	bool ret;
1480 
1481 	if (mutex_lock_killable(&oom_lock))
1482 		return true;
1483 	/*
1484 	 * A few threads which were not waiting at mutex_lock_killable() can
1485 	 * fail to bail out. Therefore, check again after holding oom_lock.
1486 	 */
1487 	ret = should_force_charge() || out_of_memory(&oc);
1488 	mutex_unlock(&oom_lock);
1489 	return ret;
1490 }
1491 
1492 #if MAX_NUMNODES > 1
1493 
1494 /**
1495  * test_mem_cgroup_node_reclaimable
1496  * @memcg: the target memcg
1497  * @nid: the node ID to be checked.
1498  * @noswap : specify true here if the user wants flle only information.
1499  *
1500  * This function returns whether the specified memcg contains any
1501  * reclaimable pages on a node. Returns true if there are any reclaimable
1502  * pages in the node.
1503  */
1504 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1505 		int nid, bool noswap)
1506 {
1507 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1508 
1509 	if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1510 	    lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1511 		return true;
1512 	if (noswap || !total_swap_pages)
1513 		return false;
1514 	if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1515 	    lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1516 		return true;
1517 	return false;
1518 
1519 }
1520 
1521 /*
1522  * Always updating the nodemask is not very good - even if we have an empty
1523  * list or the wrong list here, we can start from some node and traverse all
1524  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1525  *
1526  */
1527 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1528 {
1529 	int nid;
1530 	/*
1531 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1532 	 * pagein/pageout changes since the last update.
1533 	 */
1534 	if (!atomic_read(&memcg->numainfo_events))
1535 		return;
1536 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1537 		return;
1538 
1539 	/* make a nodemask where this memcg uses memory from */
1540 	memcg->scan_nodes = node_states[N_MEMORY];
1541 
1542 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1543 
1544 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1545 			node_clear(nid, memcg->scan_nodes);
1546 	}
1547 
1548 	atomic_set(&memcg->numainfo_events, 0);
1549 	atomic_set(&memcg->numainfo_updating, 0);
1550 }
1551 
1552 /*
1553  * Selecting a node where we start reclaim from. Because what we need is just
1554  * reducing usage counter, start from anywhere is O,K. Considering
1555  * memory reclaim from current node, there are pros. and cons.
1556  *
1557  * Freeing memory from current node means freeing memory from a node which
1558  * we'll use or we've used. So, it may make LRU bad. And if several threads
1559  * hit limits, it will see a contention on a node. But freeing from remote
1560  * node means more costs for memory reclaim because of memory latency.
1561  *
1562  * Now, we use round-robin. Better algorithm is welcomed.
1563  */
1564 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1565 {
1566 	int node;
1567 
1568 	mem_cgroup_may_update_nodemask(memcg);
1569 	node = memcg->last_scanned_node;
1570 
1571 	node = next_node_in(node, memcg->scan_nodes);
1572 	/*
1573 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1574 	 * last time it really checked all the LRUs due to rate limiting.
1575 	 * Fallback to the current node in that case for simplicity.
1576 	 */
1577 	if (unlikely(node == MAX_NUMNODES))
1578 		node = numa_node_id();
1579 
1580 	memcg->last_scanned_node = node;
1581 	return node;
1582 }
1583 #else
1584 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1585 {
1586 	return 0;
1587 }
1588 #endif
1589 
1590 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1591 				   pg_data_t *pgdat,
1592 				   gfp_t gfp_mask,
1593 				   unsigned long *total_scanned)
1594 {
1595 	struct mem_cgroup *victim = NULL;
1596 	int total = 0;
1597 	int loop = 0;
1598 	unsigned long excess;
1599 	unsigned long nr_scanned;
1600 	struct mem_cgroup_reclaim_cookie reclaim = {
1601 		.pgdat = pgdat,
1602 		.priority = 0,
1603 	};
1604 
1605 	excess = soft_limit_excess(root_memcg);
1606 
1607 	while (1) {
1608 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1609 		if (!victim) {
1610 			loop++;
1611 			if (loop >= 2) {
1612 				/*
1613 				 * If we have not been able to reclaim
1614 				 * anything, it might because there are
1615 				 * no reclaimable pages under this hierarchy
1616 				 */
1617 				if (!total)
1618 					break;
1619 				/*
1620 				 * We want to do more targeted reclaim.
1621 				 * excess >> 2 is not to excessive so as to
1622 				 * reclaim too much, nor too less that we keep
1623 				 * coming back to reclaim from this cgroup
1624 				 */
1625 				if (total >= (excess >> 2) ||
1626 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1627 					break;
1628 			}
1629 			continue;
1630 		}
1631 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1632 					pgdat, &nr_scanned);
1633 		*total_scanned += nr_scanned;
1634 		if (!soft_limit_excess(root_memcg))
1635 			break;
1636 	}
1637 	mem_cgroup_iter_break(root_memcg, victim);
1638 	return total;
1639 }
1640 
1641 #ifdef CONFIG_LOCKDEP
1642 static struct lockdep_map memcg_oom_lock_dep_map = {
1643 	.name = "memcg_oom_lock",
1644 };
1645 #endif
1646 
1647 static DEFINE_SPINLOCK(memcg_oom_lock);
1648 
1649 /*
1650  * Check OOM-Killer is already running under our hierarchy.
1651  * If someone is running, return false.
1652  */
1653 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1654 {
1655 	struct mem_cgroup *iter, *failed = NULL;
1656 
1657 	spin_lock(&memcg_oom_lock);
1658 
1659 	for_each_mem_cgroup_tree(iter, memcg) {
1660 		if (iter->oom_lock) {
1661 			/*
1662 			 * this subtree of our hierarchy is already locked
1663 			 * so we cannot give a lock.
1664 			 */
1665 			failed = iter;
1666 			mem_cgroup_iter_break(memcg, iter);
1667 			break;
1668 		} else
1669 			iter->oom_lock = true;
1670 	}
1671 
1672 	if (failed) {
1673 		/*
1674 		 * OK, we failed to lock the whole subtree so we have
1675 		 * to clean up what we set up to the failing subtree
1676 		 */
1677 		for_each_mem_cgroup_tree(iter, memcg) {
1678 			if (iter == failed) {
1679 				mem_cgroup_iter_break(memcg, iter);
1680 				break;
1681 			}
1682 			iter->oom_lock = false;
1683 		}
1684 	} else
1685 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1686 
1687 	spin_unlock(&memcg_oom_lock);
1688 
1689 	return !failed;
1690 }
1691 
1692 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1693 {
1694 	struct mem_cgroup *iter;
1695 
1696 	spin_lock(&memcg_oom_lock);
1697 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1698 	for_each_mem_cgroup_tree(iter, memcg)
1699 		iter->oom_lock = false;
1700 	spin_unlock(&memcg_oom_lock);
1701 }
1702 
1703 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1704 {
1705 	struct mem_cgroup *iter;
1706 
1707 	spin_lock(&memcg_oom_lock);
1708 	for_each_mem_cgroup_tree(iter, memcg)
1709 		iter->under_oom++;
1710 	spin_unlock(&memcg_oom_lock);
1711 }
1712 
1713 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1714 {
1715 	struct mem_cgroup *iter;
1716 
1717 	/*
1718 	 * When a new child is created while the hierarchy is under oom,
1719 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1720 	 */
1721 	spin_lock(&memcg_oom_lock);
1722 	for_each_mem_cgroup_tree(iter, memcg)
1723 		if (iter->under_oom > 0)
1724 			iter->under_oom--;
1725 	spin_unlock(&memcg_oom_lock);
1726 }
1727 
1728 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1729 
1730 struct oom_wait_info {
1731 	struct mem_cgroup *memcg;
1732 	wait_queue_entry_t	wait;
1733 };
1734 
1735 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1736 	unsigned mode, int sync, void *arg)
1737 {
1738 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1739 	struct mem_cgroup *oom_wait_memcg;
1740 	struct oom_wait_info *oom_wait_info;
1741 
1742 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1743 	oom_wait_memcg = oom_wait_info->memcg;
1744 
1745 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1746 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1747 		return 0;
1748 	return autoremove_wake_function(wait, mode, sync, arg);
1749 }
1750 
1751 static void memcg_oom_recover(struct mem_cgroup *memcg)
1752 {
1753 	/*
1754 	 * For the following lockless ->under_oom test, the only required
1755 	 * guarantee is that it must see the state asserted by an OOM when
1756 	 * this function is called as a result of userland actions
1757 	 * triggered by the notification of the OOM.  This is trivially
1758 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1759 	 * triggering notification.
1760 	 */
1761 	if (memcg && memcg->under_oom)
1762 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1763 }
1764 
1765 enum oom_status {
1766 	OOM_SUCCESS,
1767 	OOM_FAILED,
1768 	OOM_ASYNC,
1769 	OOM_SKIPPED
1770 };
1771 
1772 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1773 {
1774 	enum oom_status ret;
1775 	bool locked;
1776 
1777 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1778 		return OOM_SKIPPED;
1779 
1780 	memcg_memory_event(memcg, MEMCG_OOM);
1781 
1782 	/*
1783 	 * We are in the middle of the charge context here, so we
1784 	 * don't want to block when potentially sitting on a callstack
1785 	 * that holds all kinds of filesystem and mm locks.
1786 	 *
1787 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1788 	 * handling until the charge can succeed; remember the context and put
1789 	 * the task to sleep at the end of the page fault when all locks are
1790 	 * released.
1791 	 *
1792 	 * On the other hand, in-kernel OOM killer allows for an async victim
1793 	 * memory reclaim (oom_reaper) and that means that we are not solely
1794 	 * relying on the oom victim to make a forward progress and we can
1795 	 * invoke the oom killer here.
1796 	 *
1797 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1798 	 * victim and then we have to bail out from the charge path.
1799 	 */
1800 	if (memcg->oom_kill_disable) {
1801 		if (!current->in_user_fault)
1802 			return OOM_SKIPPED;
1803 		css_get(&memcg->css);
1804 		current->memcg_in_oom = memcg;
1805 		current->memcg_oom_gfp_mask = mask;
1806 		current->memcg_oom_order = order;
1807 
1808 		return OOM_ASYNC;
1809 	}
1810 
1811 	mem_cgroup_mark_under_oom(memcg);
1812 
1813 	locked = mem_cgroup_oom_trylock(memcg);
1814 
1815 	if (locked)
1816 		mem_cgroup_oom_notify(memcg);
1817 
1818 	mem_cgroup_unmark_under_oom(memcg);
1819 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1820 		ret = OOM_SUCCESS;
1821 	else
1822 		ret = OOM_FAILED;
1823 
1824 	if (locked)
1825 		mem_cgroup_oom_unlock(memcg);
1826 
1827 	return ret;
1828 }
1829 
1830 /**
1831  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1832  * @handle: actually kill/wait or just clean up the OOM state
1833  *
1834  * This has to be called at the end of a page fault if the memcg OOM
1835  * handler was enabled.
1836  *
1837  * Memcg supports userspace OOM handling where failed allocations must
1838  * sleep on a waitqueue until the userspace task resolves the
1839  * situation.  Sleeping directly in the charge context with all kinds
1840  * of locks held is not a good idea, instead we remember an OOM state
1841  * in the task and mem_cgroup_oom_synchronize() has to be called at
1842  * the end of the page fault to complete the OOM handling.
1843  *
1844  * Returns %true if an ongoing memcg OOM situation was detected and
1845  * completed, %false otherwise.
1846  */
1847 bool mem_cgroup_oom_synchronize(bool handle)
1848 {
1849 	struct mem_cgroup *memcg = current->memcg_in_oom;
1850 	struct oom_wait_info owait;
1851 	bool locked;
1852 
1853 	/* OOM is global, do not handle */
1854 	if (!memcg)
1855 		return false;
1856 
1857 	if (!handle)
1858 		goto cleanup;
1859 
1860 	owait.memcg = memcg;
1861 	owait.wait.flags = 0;
1862 	owait.wait.func = memcg_oom_wake_function;
1863 	owait.wait.private = current;
1864 	INIT_LIST_HEAD(&owait.wait.entry);
1865 
1866 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1867 	mem_cgroup_mark_under_oom(memcg);
1868 
1869 	locked = mem_cgroup_oom_trylock(memcg);
1870 
1871 	if (locked)
1872 		mem_cgroup_oom_notify(memcg);
1873 
1874 	if (locked && !memcg->oom_kill_disable) {
1875 		mem_cgroup_unmark_under_oom(memcg);
1876 		finish_wait(&memcg_oom_waitq, &owait.wait);
1877 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1878 					 current->memcg_oom_order);
1879 	} else {
1880 		schedule();
1881 		mem_cgroup_unmark_under_oom(memcg);
1882 		finish_wait(&memcg_oom_waitq, &owait.wait);
1883 	}
1884 
1885 	if (locked) {
1886 		mem_cgroup_oom_unlock(memcg);
1887 		/*
1888 		 * There is no guarantee that an OOM-lock contender
1889 		 * sees the wakeups triggered by the OOM kill
1890 		 * uncharges.  Wake any sleepers explicitely.
1891 		 */
1892 		memcg_oom_recover(memcg);
1893 	}
1894 cleanup:
1895 	current->memcg_in_oom = NULL;
1896 	css_put(&memcg->css);
1897 	return true;
1898 }
1899 
1900 /**
1901  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1902  * @victim: task to be killed by the OOM killer
1903  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1904  *
1905  * Returns a pointer to a memory cgroup, which has to be cleaned up
1906  * by killing all belonging OOM-killable tasks.
1907  *
1908  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1909  */
1910 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1911 					    struct mem_cgroup *oom_domain)
1912 {
1913 	struct mem_cgroup *oom_group = NULL;
1914 	struct mem_cgroup *memcg;
1915 
1916 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1917 		return NULL;
1918 
1919 	if (!oom_domain)
1920 		oom_domain = root_mem_cgroup;
1921 
1922 	rcu_read_lock();
1923 
1924 	memcg = mem_cgroup_from_task(victim);
1925 	if (memcg == root_mem_cgroup)
1926 		goto out;
1927 
1928 	/*
1929 	 * Traverse the memory cgroup hierarchy from the victim task's
1930 	 * cgroup up to the OOMing cgroup (or root) to find the
1931 	 * highest-level memory cgroup with oom.group set.
1932 	 */
1933 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1934 		if (memcg->oom_group)
1935 			oom_group = memcg;
1936 
1937 		if (memcg == oom_domain)
1938 			break;
1939 	}
1940 
1941 	if (oom_group)
1942 		css_get(&oom_group->css);
1943 out:
1944 	rcu_read_unlock();
1945 
1946 	return oom_group;
1947 }
1948 
1949 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1950 {
1951 	pr_info("Tasks in ");
1952 	pr_cont_cgroup_path(memcg->css.cgroup);
1953 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1954 }
1955 
1956 /**
1957  * lock_page_memcg - lock a page->mem_cgroup binding
1958  * @page: the page
1959  *
1960  * This function protects unlocked LRU pages from being moved to
1961  * another cgroup.
1962  *
1963  * It ensures lifetime of the returned memcg. Caller is responsible
1964  * for the lifetime of the page; __unlock_page_memcg() is available
1965  * when @page might get freed inside the locked section.
1966  */
1967 struct mem_cgroup *lock_page_memcg(struct page *page)
1968 {
1969 	struct mem_cgroup *memcg;
1970 	unsigned long flags;
1971 
1972 	/*
1973 	 * The RCU lock is held throughout the transaction.  The fast
1974 	 * path can get away without acquiring the memcg->move_lock
1975 	 * because page moving starts with an RCU grace period.
1976 	 *
1977 	 * The RCU lock also protects the memcg from being freed when
1978 	 * the page state that is going to change is the only thing
1979 	 * preventing the page itself from being freed. E.g. writeback
1980 	 * doesn't hold a page reference and relies on PG_writeback to
1981 	 * keep off truncation, migration and so forth.
1982          */
1983 	rcu_read_lock();
1984 
1985 	if (mem_cgroup_disabled())
1986 		return NULL;
1987 again:
1988 	memcg = page->mem_cgroup;
1989 	if (unlikely(!memcg))
1990 		return NULL;
1991 
1992 	if (atomic_read(&memcg->moving_account) <= 0)
1993 		return memcg;
1994 
1995 	spin_lock_irqsave(&memcg->move_lock, flags);
1996 	if (memcg != page->mem_cgroup) {
1997 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1998 		goto again;
1999 	}
2000 
2001 	/*
2002 	 * When charge migration first begins, we can have locked and
2003 	 * unlocked page stat updates happening concurrently.  Track
2004 	 * the task who has the lock for unlock_page_memcg().
2005 	 */
2006 	memcg->move_lock_task = current;
2007 	memcg->move_lock_flags = flags;
2008 
2009 	return memcg;
2010 }
2011 EXPORT_SYMBOL(lock_page_memcg);
2012 
2013 /**
2014  * __unlock_page_memcg - unlock and unpin a memcg
2015  * @memcg: the memcg
2016  *
2017  * Unlock and unpin a memcg returned by lock_page_memcg().
2018  */
2019 void __unlock_page_memcg(struct mem_cgroup *memcg)
2020 {
2021 	if (memcg && memcg->move_lock_task == current) {
2022 		unsigned long flags = memcg->move_lock_flags;
2023 
2024 		memcg->move_lock_task = NULL;
2025 		memcg->move_lock_flags = 0;
2026 
2027 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2028 	}
2029 
2030 	rcu_read_unlock();
2031 }
2032 
2033 /**
2034  * unlock_page_memcg - unlock a page->mem_cgroup binding
2035  * @page: the page
2036  */
2037 void unlock_page_memcg(struct page *page)
2038 {
2039 	__unlock_page_memcg(page->mem_cgroup);
2040 }
2041 EXPORT_SYMBOL(unlock_page_memcg);
2042 
2043 struct memcg_stock_pcp {
2044 	struct mem_cgroup *cached; /* this never be root cgroup */
2045 	unsigned int nr_pages;
2046 	struct work_struct work;
2047 	unsigned long flags;
2048 #define FLUSHING_CACHED_CHARGE	0
2049 };
2050 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2051 static DEFINE_MUTEX(percpu_charge_mutex);
2052 
2053 /**
2054  * consume_stock: Try to consume stocked charge on this cpu.
2055  * @memcg: memcg to consume from.
2056  * @nr_pages: how many pages to charge.
2057  *
2058  * The charges will only happen if @memcg matches the current cpu's memcg
2059  * stock, and at least @nr_pages are available in that stock.  Failure to
2060  * service an allocation will refill the stock.
2061  *
2062  * returns true if successful, false otherwise.
2063  */
2064 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2065 {
2066 	struct memcg_stock_pcp *stock;
2067 	unsigned long flags;
2068 	bool ret = false;
2069 
2070 	if (nr_pages > MEMCG_CHARGE_BATCH)
2071 		return ret;
2072 
2073 	local_irq_save(flags);
2074 
2075 	stock = this_cpu_ptr(&memcg_stock);
2076 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2077 		stock->nr_pages -= nr_pages;
2078 		ret = true;
2079 	}
2080 
2081 	local_irq_restore(flags);
2082 
2083 	return ret;
2084 }
2085 
2086 /*
2087  * Returns stocks cached in percpu and reset cached information.
2088  */
2089 static void drain_stock(struct memcg_stock_pcp *stock)
2090 {
2091 	struct mem_cgroup *old = stock->cached;
2092 
2093 	if (stock->nr_pages) {
2094 		page_counter_uncharge(&old->memory, stock->nr_pages);
2095 		if (do_memsw_account())
2096 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2097 		css_put_many(&old->css, stock->nr_pages);
2098 		stock->nr_pages = 0;
2099 	}
2100 	stock->cached = NULL;
2101 }
2102 
2103 static void drain_local_stock(struct work_struct *dummy)
2104 {
2105 	struct memcg_stock_pcp *stock;
2106 	unsigned long flags;
2107 
2108 	/*
2109 	 * The only protection from memory hotplug vs. drain_stock races is
2110 	 * that we always operate on local CPU stock here with IRQ disabled
2111 	 */
2112 	local_irq_save(flags);
2113 
2114 	stock = this_cpu_ptr(&memcg_stock);
2115 	drain_stock(stock);
2116 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2117 
2118 	local_irq_restore(flags);
2119 }
2120 
2121 /*
2122  * Cache charges(val) to local per_cpu area.
2123  * This will be consumed by consume_stock() function, later.
2124  */
2125 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2126 {
2127 	struct memcg_stock_pcp *stock;
2128 	unsigned long flags;
2129 
2130 	local_irq_save(flags);
2131 
2132 	stock = this_cpu_ptr(&memcg_stock);
2133 	if (stock->cached != memcg) { /* reset if necessary */
2134 		drain_stock(stock);
2135 		stock->cached = memcg;
2136 	}
2137 	stock->nr_pages += nr_pages;
2138 
2139 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2140 		drain_stock(stock);
2141 
2142 	local_irq_restore(flags);
2143 }
2144 
2145 /*
2146  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2147  * of the hierarchy under it.
2148  */
2149 static void drain_all_stock(struct mem_cgroup *root_memcg)
2150 {
2151 	int cpu, curcpu;
2152 
2153 	/* If someone's already draining, avoid adding running more workers. */
2154 	if (!mutex_trylock(&percpu_charge_mutex))
2155 		return;
2156 	/*
2157 	 * Notify other cpus that system-wide "drain" is running
2158 	 * We do not care about races with the cpu hotplug because cpu down
2159 	 * as well as workers from this path always operate on the local
2160 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2161 	 */
2162 	curcpu = get_cpu();
2163 	for_each_online_cpu(cpu) {
2164 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2165 		struct mem_cgroup *memcg;
2166 
2167 		memcg = stock->cached;
2168 		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2169 			continue;
2170 		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2171 			css_put(&memcg->css);
2172 			continue;
2173 		}
2174 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2175 			if (cpu == curcpu)
2176 				drain_local_stock(&stock->work);
2177 			else
2178 				schedule_work_on(cpu, &stock->work);
2179 		}
2180 		css_put(&memcg->css);
2181 	}
2182 	put_cpu();
2183 	mutex_unlock(&percpu_charge_mutex);
2184 }
2185 
2186 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2187 {
2188 	struct memcg_stock_pcp *stock;
2189 	struct mem_cgroup *memcg, *mi;
2190 
2191 	stock = &per_cpu(memcg_stock, cpu);
2192 	drain_stock(stock);
2193 
2194 	for_each_mem_cgroup(memcg) {
2195 		int i;
2196 
2197 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2198 			int nid;
2199 			long x;
2200 
2201 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2202 			if (x)
2203 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2204 					atomic_long_add(x, &memcg->vmstats[i]);
2205 
2206 			if (i >= NR_VM_NODE_STAT_ITEMS)
2207 				continue;
2208 
2209 			for_each_node(nid) {
2210 				struct mem_cgroup_per_node *pn;
2211 
2212 				pn = mem_cgroup_nodeinfo(memcg, nid);
2213 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2214 				if (x)
2215 					do {
2216 						atomic_long_add(x, &pn->lruvec_stat[i]);
2217 					} while ((pn = parent_nodeinfo(pn, nid)));
2218 			}
2219 		}
2220 
2221 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2222 			long x;
2223 
2224 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2225 			if (x)
2226 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2227 					atomic_long_add(x, &memcg->vmevents[i]);
2228 		}
2229 	}
2230 
2231 	return 0;
2232 }
2233 
2234 static void reclaim_high(struct mem_cgroup *memcg,
2235 			 unsigned int nr_pages,
2236 			 gfp_t gfp_mask)
2237 {
2238 	do {
2239 		if (page_counter_read(&memcg->memory) <= memcg->high)
2240 			continue;
2241 		memcg_memory_event(memcg, MEMCG_HIGH);
2242 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2243 	} while ((memcg = parent_mem_cgroup(memcg)));
2244 }
2245 
2246 static void high_work_func(struct work_struct *work)
2247 {
2248 	struct mem_cgroup *memcg;
2249 
2250 	memcg = container_of(work, struct mem_cgroup, high_work);
2251 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2252 }
2253 
2254 /*
2255  * Scheduled by try_charge() to be executed from the userland return path
2256  * and reclaims memory over the high limit.
2257  */
2258 void mem_cgroup_handle_over_high(void)
2259 {
2260 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2261 	struct mem_cgroup *memcg;
2262 
2263 	if (likely(!nr_pages))
2264 		return;
2265 
2266 	memcg = get_mem_cgroup_from_mm(current->mm);
2267 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2268 	css_put(&memcg->css);
2269 	current->memcg_nr_pages_over_high = 0;
2270 }
2271 
2272 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2273 		      unsigned int nr_pages)
2274 {
2275 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2276 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2277 	struct mem_cgroup *mem_over_limit;
2278 	struct page_counter *counter;
2279 	unsigned long nr_reclaimed;
2280 	bool may_swap = true;
2281 	bool drained = false;
2282 	bool oomed = false;
2283 	enum oom_status oom_status;
2284 
2285 	if (mem_cgroup_is_root(memcg))
2286 		return 0;
2287 retry:
2288 	if (consume_stock(memcg, nr_pages))
2289 		return 0;
2290 
2291 	if (!do_memsw_account() ||
2292 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2293 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2294 			goto done_restock;
2295 		if (do_memsw_account())
2296 			page_counter_uncharge(&memcg->memsw, batch);
2297 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2298 	} else {
2299 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2300 		may_swap = false;
2301 	}
2302 
2303 	if (batch > nr_pages) {
2304 		batch = nr_pages;
2305 		goto retry;
2306 	}
2307 
2308 	/*
2309 	 * Unlike in global OOM situations, memcg is not in a physical
2310 	 * memory shortage.  Allow dying and OOM-killed tasks to
2311 	 * bypass the last charges so that they can exit quickly and
2312 	 * free their memory.
2313 	 */
2314 	if (unlikely(should_force_charge()))
2315 		goto force;
2316 
2317 	/*
2318 	 * Prevent unbounded recursion when reclaim operations need to
2319 	 * allocate memory. This might exceed the limits temporarily,
2320 	 * but we prefer facilitating memory reclaim and getting back
2321 	 * under the limit over triggering OOM kills in these cases.
2322 	 */
2323 	if (unlikely(current->flags & PF_MEMALLOC))
2324 		goto force;
2325 
2326 	if (unlikely(task_in_memcg_oom(current)))
2327 		goto nomem;
2328 
2329 	if (!gfpflags_allow_blocking(gfp_mask))
2330 		goto nomem;
2331 
2332 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2333 
2334 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2335 						    gfp_mask, may_swap);
2336 
2337 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2338 		goto retry;
2339 
2340 	if (!drained) {
2341 		drain_all_stock(mem_over_limit);
2342 		drained = true;
2343 		goto retry;
2344 	}
2345 
2346 	if (gfp_mask & __GFP_NORETRY)
2347 		goto nomem;
2348 	/*
2349 	 * Even though the limit is exceeded at this point, reclaim
2350 	 * may have been able to free some pages.  Retry the charge
2351 	 * before killing the task.
2352 	 *
2353 	 * Only for regular pages, though: huge pages are rather
2354 	 * unlikely to succeed so close to the limit, and we fall back
2355 	 * to regular pages anyway in case of failure.
2356 	 */
2357 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2358 		goto retry;
2359 	/*
2360 	 * At task move, charge accounts can be doubly counted. So, it's
2361 	 * better to wait until the end of task_move if something is going on.
2362 	 */
2363 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2364 		goto retry;
2365 
2366 	if (nr_retries--)
2367 		goto retry;
2368 
2369 	if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2370 		goto nomem;
2371 
2372 	if (gfp_mask & __GFP_NOFAIL)
2373 		goto force;
2374 
2375 	if (fatal_signal_pending(current))
2376 		goto force;
2377 
2378 	/*
2379 	 * keep retrying as long as the memcg oom killer is able to make
2380 	 * a forward progress or bypass the charge if the oom killer
2381 	 * couldn't make any progress.
2382 	 */
2383 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2384 		       get_order(nr_pages * PAGE_SIZE));
2385 	switch (oom_status) {
2386 	case OOM_SUCCESS:
2387 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2388 		oomed = true;
2389 		goto retry;
2390 	case OOM_FAILED:
2391 		goto force;
2392 	default:
2393 		goto nomem;
2394 	}
2395 nomem:
2396 	if (!(gfp_mask & __GFP_NOFAIL))
2397 		return -ENOMEM;
2398 force:
2399 	/*
2400 	 * The allocation either can't fail or will lead to more memory
2401 	 * being freed very soon.  Allow memory usage go over the limit
2402 	 * temporarily by force charging it.
2403 	 */
2404 	page_counter_charge(&memcg->memory, nr_pages);
2405 	if (do_memsw_account())
2406 		page_counter_charge(&memcg->memsw, nr_pages);
2407 	css_get_many(&memcg->css, nr_pages);
2408 
2409 	return 0;
2410 
2411 done_restock:
2412 	css_get_many(&memcg->css, batch);
2413 	if (batch > nr_pages)
2414 		refill_stock(memcg, batch - nr_pages);
2415 
2416 	/*
2417 	 * If the hierarchy is above the normal consumption range, schedule
2418 	 * reclaim on returning to userland.  We can perform reclaim here
2419 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2420 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2421 	 * not recorded as it most likely matches current's and won't
2422 	 * change in the meantime.  As high limit is checked again before
2423 	 * reclaim, the cost of mismatch is negligible.
2424 	 */
2425 	do {
2426 		if (page_counter_read(&memcg->memory) > memcg->high) {
2427 			/* Don't bother a random interrupted task */
2428 			if (in_interrupt()) {
2429 				schedule_work(&memcg->high_work);
2430 				break;
2431 			}
2432 			current->memcg_nr_pages_over_high += batch;
2433 			set_notify_resume(current);
2434 			break;
2435 		}
2436 	} while ((memcg = parent_mem_cgroup(memcg)));
2437 
2438 	return 0;
2439 }
2440 
2441 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2442 {
2443 	if (mem_cgroup_is_root(memcg))
2444 		return;
2445 
2446 	page_counter_uncharge(&memcg->memory, nr_pages);
2447 	if (do_memsw_account())
2448 		page_counter_uncharge(&memcg->memsw, nr_pages);
2449 
2450 	css_put_many(&memcg->css, nr_pages);
2451 }
2452 
2453 static void lock_page_lru(struct page *page, int *isolated)
2454 {
2455 	pg_data_t *pgdat = page_pgdat(page);
2456 
2457 	spin_lock_irq(&pgdat->lru_lock);
2458 	if (PageLRU(page)) {
2459 		struct lruvec *lruvec;
2460 
2461 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2462 		ClearPageLRU(page);
2463 		del_page_from_lru_list(page, lruvec, page_lru(page));
2464 		*isolated = 1;
2465 	} else
2466 		*isolated = 0;
2467 }
2468 
2469 static void unlock_page_lru(struct page *page, int isolated)
2470 {
2471 	pg_data_t *pgdat = page_pgdat(page);
2472 
2473 	if (isolated) {
2474 		struct lruvec *lruvec;
2475 
2476 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2477 		VM_BUG_ON_PAGE(PageLRU(page), page);
2478 		SetPageLRU(page);
2479 		add_page_to_lru_list(page, lruvec, page_lru(page));
2480 	}
2481 	spin_unlock_irq(&pgdat->lru_lock);
2482 }
2483 
2484 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2485 			  bool lrucare)
2486 {
2487 	int isolated;
2488 
2489 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2490 
2491 	/*
2492 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2493 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2494 	 */
2495 	if (lrucare)
2496 		lock_page_lru(page, &isolated);
2497 
2498 	/*
2499 	 * Nobody should be changing or seriously looking at
2500 	 * page->mem_cgroup at this point:
2501 	 *
2502 	 * - the page is uncharged
2503 	 *
2504 	 * - the page is off-LRU
2505 	 *
2506 	 * - an anonymous fault has exclusive page access, except for
2507 	 *   a locked page table
2508 	 *
2509 	 * - a page cache insertion, a swapin fault, or a migration
2510 	 *   have the page locked
2511 	 */
2512 	page->mem_cgroup = memcg;
2513 
2514 	if (lrucare)
2515 		unlock_page_lru(page, isolated);
2516 }
2517 
2518 #ifdef CONFIG_MEMCG_KMEM
2519 static int memcg_alloc_cache_id(void)
2520 {
2521 	int id, size;
2522 	int err;
2523 
2524 	id = ida_simple_get(&memcg_cache_ida,
2525 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2526 	if (id < 0)
2527 		return id;
2528 
2529 	if (id < memcg_nr_cache_ids)
2530 		return id;
2531 
2532 	/*
2533 	 * There's no space for the new id in memcg_caches arrays,
2534 	 * so we have to grow them.
2535 	 */
2536 	down_write(&memcg_cache_ids_sem);
2537 
2538 	size = 2 * (id + 1);
2539 	if (size < MEMCG_CACHES_MIN_SIZE)
2540 		size = MEMCG_CACHES_MIN_SIZE;
2541 	else if (size > MEMCG_CACHES_MAX_SIZE)
2542 		size = MEMCG_CACHES_MAX_SIZE;
2543 
2544 	err = memcg_update_all_caches(size);
2545 	if (!err)
2546 		err = memcg_update_all_list_lrus(size);
2547 	if (!err)
2548 		memcg_nr_cache_ids = size;
2549 
2550 	up_write(&memcg_cache_ids_sem);
2551 
2552 	if (err) {
2553 		ida_simple_remove(&memcg_cache_ida, id);
2554 		return err;
2555 	}
2556 	return id;
2557 }
2558 
2559 static void memcg_free_cache_id(int id)
2560 {
2561 	ida_simple_remove(&memcg_cache_ida, id);
2562 }
2563 
2564 struct memcg_kmem_cache_create_work {
2565 	struct mem_cgroup *memcg;
2566 	struct kmem_cache *cachep;
2567 	struct work_struct work;
2568 };
2569 
2570 static void memcg_kmem_cache_create_func(struct work_struct *w)
2571 {
2572 	struct memcg_kmem_cache_create_work *cw =
2573 		container_of(w, struct memcg_kmem_cache_create_work, work);
2574 	struct mem_cgroup *memcg = cw->memcg;
2575 	struct kmem_cache *cachep = cw->cachep;
2576 
2577 	memcg_create_kmem_cache(memcg, cachep);
2578 
2579 	css_put(&memcg->css);
2580 	kfree(cw);
2581 }
2582 
2583 /*
2584  * Enqueue the creation of a per-memcg kmem_cache.
2585  */
2586 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2587 					       struct kmem_cache *cachep)
2588 {
2589 	struct memcg_kmem_cache_create_work *cw;
2590 
2591 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2592 	if (!cw)
2593 		return;
2594 
2595 	css_get(&memcg->css);
2596 
2597 	cw->memcg = memcg;
2598 	cw->cachep = cachep;
2599 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2600 
2601 	queue_work(memcg_kmem_cache_wq, &cw->work);
2602 }
2603 
2604 static inline bool memcg_kmem_bypass(void)
2605 {
2606 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2607 		return true;
2608 	return false;
2609 }
2610 
2611 /**
2612  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2613  * @cachep: the original global kmem cache
2614  *
2615  * Return the kmem_cache we're supposed to use for a slab allocation.
2616  * We try to use the current memcg's version of the cache.
2617  *
2618  * If the cache does not exist yet, if we are the first user of it, we
2619  * create it asynchronously in a workqueue and let the current allocation
2620  * go through with the original cache.
2621  *
2622  * This function takes a reference to the cache it returns to assure it
2623  * won't get destroyed while we are working with it. Once the caller is
2624  * done with it, memcg_kmem_put_cache() must be called to release the
2625  * reference.
2626  */
2627 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2628 {
2629 	struct mem_cgroup *memcg;
2630 	struct kmem_cache *memcg_cachep;
2631 	int kmemcg_id;
2632 
2633 	VM_BUG_ON(!is_root_cache(cachep));
2634 
2635 	if (memcg_kmem_bypass())
2636 		return cachep;
2637 
2638 	memcg = get_mem_cgroup_from_current();
2639 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2640 	if (kmemcg_id < 0)
2641 		goto out;
2642 
2643 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2644 	if (likely(memcg_cachep))
2645 		return memcg_cachep;
2646 
2647 	/*
2648 	 * If we are in a safe context (can wait, and not in interrupt
2649 	 * context), we could be be predictable and return right away.
2650 	 * This would guarantee that the allocation being performed
2651 	 * already belongs in the new cache.
2652 	 *
2653 	 * However, there are some clashes that can arrive from locking.
2654 	 * For instance, because we acquire the slab_mutex while doing
2655 	 * memcg_create_kmem_cache, this means no further allocation
2656 	 * could happen with the slab_mutex held. So it's better to
2657 	 * defer everything.
2658 	 */
2659 	memcg_schedule_kmem_cache_create(memcg, cachep);
2660 out:
2661 	css_put(&memcg->css);
2662 	return cachep;
2663 }
2664 
2665 /**
2666  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2667  * @cachep: the cache returned by memcg_kmem_get_cache
2668  */
2669 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2670 {
2671 	if (!is_root_cache(cachep))
2672 		css_put(&cachep->memcg_params.memcg->css);
2673 }
2674 
2675 /**
2676  * __memcg_kmem_charge_memcg: charge a kmem page
2677  * @page: page to charge
2678  * @gfp: reclaim mode
2679  * @order: allocation order
2680  * @memcg: memory cgroup to charge
2681  *
2682  * Returns 0 on success, an error code on failure.
2683  */
2684 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2685 			    struct mem_cgroup *memcg)
2686 {
2687 	unsigned int nr_pages = 1 << order;
2688 	struct page_counter *counter;
2689 	int ret;
2690 
2691 	ret = try_charge(memcg, gfp, nr_pages);
2692 	if (ret)
2693 		return ret;
2694 
2695 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2696 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2697 		cancel_charge(memcg, nr_pages);
2698 		return -ENOMEM;
2699 	}
2700 
2701 	page->mem_cgroup = memcg;
2702 
2703 	return 0;
2704 }
2705 
2706 /**
2707  * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2708  * @page: page to charge
2709  * @gfp: reclaim mode
2710  * @order: allocation order
2711  *
2712  * Returns 0 on success, an error code on failure.
2713  */
2714 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2715 {
2716 	struct mem_cgroup *memcg;
2717 	int ret = 0;
2718 
2719 	if (memcg_kmem_bypass())
2720 		return 0;
2721 
2722 	memcg = get_mem_cgroup_from_current();
2723 	if (!mem_cgroup_is_root(memcg)) {
2724 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2725 		if (!ret)
2726 			__SetPageKmemcg(page);
2727 	}
2728 	css_put(&memcg->css);
2729 	return ret;
2730 }
2731 /**
2732  * __memcg_kmem_uncharge: uncharge a kmem page
2733  * @page: page to uncharge
2734  * @order: allocation order
2735  */
2736 void __memcg_kmem_uncharge(struct page *page, int order)
2737 {
2738 	struct mem_cgroup *memcg = page->mem_cgroup;
2739 	unsigned int nr_pages = 1 << order;
2740 
2741 	if (!memcg)
2742 		return;
2743 
2744 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2745 
2746 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2747 		page_counter_uncharge(&memcg->kmem, nr_pages);
2748 
2749 	page_counter_uncharge(&memcg->memory, nr_pages);
2750 	if (do_memsw_account())
2751 		page_counter_uncharge(&memcg->memsw, nr_pages);
2752 
2753 	page->mem_cgroup = NULL;
2754 
2755 	/* slab pages do not have PageKmemcg flag set */
2756 	if (PageKmemcg(page))
2757 		__ClearPageKmemcg(page);
2758 
2759 	css_put_many(&memcg->css, nr_pages);
2760 }
2761 #endif /* CONFIG_MEMCG_KMEM */
2762 
2763 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2764 
2765 /*
2766  * Because tail pages are not marked as "used", set it. We're under
2767  * pgdat->lru_lock and migration entries setup in all page mappings.
2768  */
2769 void mem_cgroup_split_huge_fixup(struct page *head)
2770 {
2771 	int i;
2772 
2773 	if (mem_cgroup_disabled())
2774 		return;
2775 
2776 	for (i = 1; i < HPAGE_PMD_NR; i++)
2777 		head[i].mem_cgroup = head->mem_cgroup;
2778 
2779 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2780 }
2781 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2782 
2783 #ifdef CONFIG_MEMCG_SWAP
2784 /**
2785  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2786  * @entry: swap entry to be moved
2787  * @from:  mem_cgroup which the entry is moved from
2788  * @to:  mem_cgroup which the entry is moved to
2789  *
2790  * It succeeds only when the swap_cgroup's record for this entry is the same
2791  * as the mem_cgroup's id of @from.
2792  *
2793  * Returns 0 on success, -EINVAL on failure.
2794  *
2795  * The caller must have charged to @to, IOW, called page_counter_charge() about
2796  * both res and memsw, and called css_get().
2797  */
2798 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2799 				struct mem_cgroup *from, struct mem_cgroup *to)
2800 {
2801 	unsigned short old_id, new_id;
2802 
2803 	old_id = mem_cgroup_id(from);
2804 	new_id = mem_cgroup_id(to);
2805 
2806 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2807 		mod_memcg_state(from, MEMCG_SWAP, -1);
2808 		mod_memcg_state(to, MEMCG_SWAP, 1);
2809 		return 0;
2810 	}
2811 	return -EINVAL;
2812 }
2813 #else
2814 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2815 				struct mem_cgroup *from, struct mem_cgroup *to)
2816 {
2817 	return -EINVAL;
2818 }
2819 #endif
2820 
2821 static DEFINE_MUTEX(memcg_max_mutex);
2822 
2823 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2824 				 unsigned long max, bool memsw)
2825 {
2826 	bool enlarge = false;
2827 	bool drained = false;
2828 	int ret;
2829 	bool limits_invariant;
2830 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2831 
2832 	do {
2833 		if (signal_pending(current)) {
2834 			ret = -EINTR;
2835 			break;
2836 		}
2837 
2838 		mutex_lock(&memcg_max_mutex);
2839 		/*
2840 		 * Make sure that the new limit (memsw or memory limit) doesn't
2841 		 * break our basic invariant rule memory.max <= memsw.max.
2842 		 */
2843 		limits_invariant = memsw ? max >= memcg->memory.max :
2844 					   max <= memcg->memsw.max;
2845 		if (!limits_invariant) {
2846 			mutex_unlock(&memcg_max_mutex);
2847 			ret = -EINVAL;
2848 			break;
2849 		}
2850 		if (max > counter->max)
2851 			enlarge = true;
2852 		ret = page_counter_set_max(counter, max);
2853 		mutex_unlock(&memcg_max_mutex);
2854 
2855 		if (!ret)
2856 			break;
2857 
2858 		if (!drained) {
2859 			drain_all_stock(memcg);
2860 			drained = true;
2861 			continue;
2862 		}
2863 
2864 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
2865 					GFP_KERNEL, !memsw)) {
2866 			ret = -EBUSY;
2867 			break;
2868 		}
2869 	} while (true);
2870 
2871 	if (!ret && enlarge)
2872 		memcg_oom_recover(memcg);
2873 
2874 	return ret;
2875 }
2876 
2877 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2878 					    gfp_t gfp_mask,
2879 					    unsigned long *total_scanned)
2880 {
2881 	unsigned long nr_reclaimed = 0;
2882 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2883 	unsigned long reclaimed;
2884 	int loop = 0;
2885 	struct mem_cgroup_tree_per_node *mctz;
2886 	unsigned long excess;
2887 	unsigned long nr_scanned;
2888 
2889 	if (order > 0)
2890 		return 0;
2891 
2892 	mctz = soft_limit_tree_node(pgdat->node_id);
2893 
2894 	/*
2895 	 * Do not even bother to check the largest node if the root
2896 	 * is empty. Do it lockless to prevent lock bouncing. Races
2897 	 * are acceptable as soft limit is best effort anyway.
2898 	 */
2899 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2900 		return 0;
2901 
2902 	/*
2903 	 * This loop can run a while, specially if mem_cgroup's continuously
2904 	 * keep exceeding their soft limit and putting the system under
2905 	 * pressure
2906 	 */
2907 	do {
2908 		if (next_mz)
2909 			mz = next_mz;
2910 		else
2911 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2912 		if (!mz)
2913 			break;
2914 
2915 		nr_scanned = 0;
2916 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2917 						    gfp_mask, &nr_scanned);
2918 		nr_reclaimed += reclaimed;
2919 		*total_scanned += nr_scanned;
2920 		spin_lock_irq(&mctz->lock);
2921 		__mem_cgroup_remove_exceeded(mz, mctz);
2922 
2923 		/*
2924 		 * If we failed to reclaim anything from this memory cgroup
2925 		 * it is time to move on to the next cgroup
2926 		 */
2927 		next_mz = NULL;
2928 		if (!reclaimed)
2929 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2930 
2931 		excess = soft_limit_excess(mz->memcg);
2932 		/*
2933 		 * One school of thought says that we should not add
2934 		 * back the node to the tree if reclaim returns 0.
2935 		 * But our reclaim could return 0, simply because due
2936 		 * to priority we are exposing a smaller subset of
2937 		 * memory to reclaim from. Consider this as a longer
2938 		 * term TODO.
2939 		 */
2940 		/* If excess == 0, no tree ops */
2941 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2942 		spin_unlock_irq(&mctz->lock);
2943 		css_put(&mz->memcg->css);
2944 		loop++;
2945 		/*
2946 		 * Could not reclaim anything and there are no more
2947 		 * mem cgroups to try or we seem to be looping without
2948 		 * reclaiming anything.
2949 		 */
2950 		if (!nr_reclaimed &&
2951 			(next_mz == NULL ||
2952 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2953 			break;
2954 	} while (!nr_reclaimed);
2955 	if (next_mz)
2956 		css_put(&next_mz->memcg->css);
2957 	return nr_reclaimed;
2958 }
2959 
2960 /*
2961  * Test whether @memcg has children, dead or alive.  Note that this
2962  * function doesn't care whether @memcg has use_hierarchy enabled and
2963  * returns %true if there are child csses according to the cgroup
2964  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2965  */
2966 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2967 {
2968 	bool ret;
2969 
2970 	rcu_read_lock();
2971 	ret = css_next_child(NULL, &memcg->css);
2972 	rcu_read_unlock();
2973 	return ret;
2974 }
2975 
2976 /*
2977  * Reclaims as many pages from the given memcg as possible.
2978  *
2979  * Caller is responsible for holding css reference for memcg.
2980  */
2981 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2982 {
2983 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2984 
2985 	/* we call try-to-free pages for make this cgroup empty */
2986 	lru_add_drain_all();
2987 
2988 	drain_all_stock(memcg);
2989 
2990 	/* try to free all pages in this cgroup */
2991 	while (nr_retries && page_counter_read(&memcg->memory)) {
2992 		int progress;
2993 
2994 		if (signal_pending(current))
2995 			return -EINTR;
2996 
2997 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2998 							GFP_KERNEL, true);
2999 		if (!progress) {
3000 			nr_retries--;
3001 			/* maybe some writeback is necessary */
3002 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3003 		}
3004 
3005 	}
3006 
3007 	return 0;
3008 }
3009 
3010 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3011 					    char *buf, size_t nbytes,
3012 					    loff_t off)
3013 {
3014 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3015 
3016 	if (mem_cgroup_is_root(memcg))
3017 		return -EINVAL;
3018 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3019 }
3020 
3021 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3022 				     struct cftype *cft)
3023 {
3024 	return mem_cgroup_from_css(css)->use_hierarchy;
3025 }
3026 
3027 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3028 				      struct cftype *cft, u64 val)
3029 {
3030 	int retval = 0;
3031 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3032 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3033 
3034 	if (memcg->use_hierarchy == val)
3035 		return 0;
3036 
3037 	/*
3038 	 * If parent's use_hierarchy is set, we can't make any modifications
3039 	 * in the child subtrees. If it is unset, then the change can
3040 	 * occur, provided the current cgroup has no children.
3041 	 *
3042 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3043 	 * set if there are no children.
3044 	 */
3045 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3046 				(val == 1 || val == 0)) {
3047 		if (!memcg_has_children(memcg))
3048 			memcg->use_hierarchy = val;
3049 		else
3050 			retval = -EBUSY;
3051 	} else
3052 		retval = -EINVAL;
3053 
3054 	return retval;
3055 }
3056 
3057 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3058 {
3059 	unsigned long val;
3060 
3061 	if (mem_cgroup_is_root(memcg)) {
3062 		val = memcg_page_state(memcg, MEMCG_CACHE) +
3063 			memcg_page_state(memcg, MEMCG_RSS);
3064 		if (swap)
3065 			val += memcg_page_state(memcg, MEMCG_SWAP);
3066 	} else {
3067 		if (!swap)
3068 			val = page_counter_read(&memcg->memory);
3069 		else
3070 			val = page_counter_read(&memcg->memsw);
3071 	}
3072 	return val;
3073 }
3074 
3075 enum {
3076 	RES_USAGE,
3077 	RES_LIMIT,
3078 	RES_MAX_USAGE,
3079 	RES_FAILCNT,
3080 	RES_SOFT_LIMIT,
3081 };
3082 
3083 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3084 			       struct cftype *cft)
3085 {
3086 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3087 	struct page_counter *counter;
3088 
3089 	switch (MEMFILE_TYPE(cft->private)) {
3090 	case _MEM:
3091 		counter = &memcg->memory;
3092 		break;
3093 	case _MEMSWAP:
3094 		counter = &memcg->memsw;
3095 		break;
3096 	case _KMEM:
3097 		counter = &memcg->kmem;
3098 		break;
3099 	case _TCP:
3100 		counter = &memcg->tcpmem;
3101 		break;
3102 	default:
3103 		BUG();
3104 	}
3105 
3106 	switch (MEMFILE_ATTR(cft->private)) {
3107 	case RES_USAGE:
3108 		if (counter == &memcg->memory)
3109 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3110 		if (counter == &memcg->memsw)
3111 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3112 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3113 	case RES_LIMIT:
3114 		return (u64)counter->max * PAGE_SIZE;
3115 	case RES_MAX_USAGE:
3116 		return (u64)counter->watermark * PAGE_SIZE;
3117 	case RES_FAILCNT:
3118 		return counter->failcnt;
3119 	case RES_SOFT_LIMIT:
3120 		return (u64)memcg->soft_limit * PAGE_SIZE;
3121 	default:
3122 		BUG();
3123 	}
3124 }
3125 
3126 #ifdef CONFIG_MEMCG_KMEM
3127 static int memcg_online_kmem(struct mem_cgroup *memcg)
3128 {
3129 	int memcg_id;
3130 
3131 	if (cgroup_memory_nokmem)
3132 		return 0;
3133 
3134 	BUG_ON(memcg->kmemcg_id >= 0);
3135 	BUG_ON(memcg->kmem_state);
3136 
3137 	memcg_id = memcg_alloc_cache_id();
3138 	if (memcg_id < 0)
3139 		return memcg_id;
3140 
3141 	static_branch_inc(&memcg_kmem_enabled_key);
3142 	/*
3143 	 * A memory cgroup is considered kmem-online as soon as it gets
3144 	 * kmemcg_id. Setting the id after enabling static branching will
3145 	 * guarantee no one starts accounting before all call sites are
3146 	 * patched.
3147 	 */
3148 	memcg->kmemcg_id = memcg_id;
3149 	memcg->kmem_state = KMEM_ONLINE;
3150 	INIT_LIST_HEAD(&memcg->kmem_caches);
3151 
3152 	return 0;
3153 }
3154 
3155 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3156 {
3157 	struct cgroup_subsys_state *css;
3158 	struct mem_cgroup *parent, *child;
3159 	int kmemcg_id;
3160 
3161 	if (memcg->kmem_state != KMEM_ONLINE)
3162 		return;
3163 	/*
3164 	 * Clear the online state before clearing memcg_caches array
3165 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3166 	 * guarantees that no cache will be created for this cgroup
3167 	 * after we are done (see memcg_create_kmem_cache()).
3168 	 */
3169 	memcg->kmem_state = KMEM_ALLOCATED;
3170 
3171 	memcg_deactivate_kmem_caches(memcg);
3172 
3173 	kmemcg_id = memcg->kmemcg_id;
3174 	BUG_ON(kmemcg_id < 0);
3175 
3176 	parent = parent_mem_cgroup(memcg);
3177 	if (!parent)
3178 		parent = root_mem_cgroup;
3179 
3180 	/*
3181 	 * Change kmemcg_id of this cgroup and all its descendants to the
3182 	 * parent's id, and then move all entries from this cgroup's list_lrus
3183 	 * to ones of the parent. After we have finished, all list_lrus
3184 	 * corresponding to this cgroup are guaranteed to remain empty. The
3185 	 * ordering is imposed by list_lru_node->lock taken by
3186 	 * memcg_drain_all_list_lrus().
3187 	 */
3188 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3189 	css_for_each_descendant_pre(css, &memcg->css) {
3190 		child = mem_cgroup_from_css(css);
3191 		BUG_ON(child->kmemcg_id != kmemcg_id);
3192 		child->kmemcg_id = parent->kmemcg_id;
3193 		if (!memcg->use_hierarchy)
3194 			break;
3195 	}
3196 	rcu_read_unlock();
3197 
3198 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3199 
3200 	memcg_free_cache_id(kmemcg_id);
3201 }
3202 
3203 static void memcg_free_kmem(struct mem_cgroup *memcg)
3204 {
3205 	/* css_alloc() failed, offlining didn't happen */
3206 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3207 		memcg_offline_kmem(memcg);
3208 
3209 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3210 		memcg_destroy_kmem_caches(memcg);
3211 		static_branch_dec(&memcg_kmem_enabled_key);
3212 		WARN_ON(page_counter_read(&memcg->kmem));
3213 	}
3214 }
3215 #else
3216 static int memcg_online_kmem(struct mem_cgroup *memcg)
3217 {
3218 	return 0;
3219 }
3220 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3221 {
3222 }
3223 static void memcg_free_kmem(struct mem_cgroup *memcg)
3224 {
3225 }
3226 #endif /* CONFIG_MEMCG_KMEM */
3227 
3228 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3229 				 unsigned long max)
3230 {
3231 	int ret;
3232 
3233 	mutex_lock(&memcg_max_mutex);
3234 	ret = page_counter_set_max(&memcg->kmem, max);
3235 	mutex_unlock(&memcg_max_mutex);
3236 	return ret;
3237 }
3238 
3239 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3240 {
3241 	int ret;
3242 
3243 	mutex_lock(&memcg_max_mutex);
3244 
3245 	ret = page_counter_set_max(&memcg->tcpmem, max);
3246 	if (ret)
3247 		goto out;
3248 
3249 	if (!memcg->tcpmem_active) {
3250 		/*
3251 		 * The active flag needs to be written after the static_key
3252 		 * update. This is what guarantees that the socket activation
3253 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3254 		 * for details, and note that we don't mark any socket as
3255 		 * belonging to this memcg until that flag is up.
3256 		 *
3257 		 * We need to do this, because static_keys will span multiple
3258 		 * sites, but we can't control their order. If we mark a socket
3259 		 * as accounted, but the accounting functions are not patched in
3260 		 * yet, we'll lose accounting.
3261 		 *
3262 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3263 		 * because when this value change, the code to process it is not
3264 		 * patched in yet.
3265 		 */
3266 		static_branch_inc(&memcg_sockets_enabled_key);
3267 		memcg->tcpmem_active = true;
3268 	}
3269 out:
3270 	mutex_unlock(&memcg_max_mutex);
3271 	return ret;
3272 }
3273 
3274 /*
3275  * The user of this function is...
3276  * RES_LIMIT.
3277  */
3278 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3279 				char *buf, size_t nbytes, loff_t off)
3280 {
3281 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3282 	unsigned long nr_pages;
3283 	int ret;
3284 
3285 	buf = strstrip(buf);
3286 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3287 	if (ret)
3288 		return ret;
3289 
3290 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3291 	case RES_LIMIT:
3292 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3293 			ret = -EINVAL;
3294 			break;
3295 		}
3296 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3297 		case _MEM:
3298 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3299 			break;
3300 		case _MEMSWAP:
3301 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3302 			break;
3303 		case _KMEM:
3304 			ret = memcg_update_kmem_max(memcg, nr_pages);
3305 			break;
3306 		case _TCP:
3307 			ret = memcg_update_tcp_max(memcg, nr_pages);
3308 			break;
3309 		}
3310 		break;
3311 	case RES_SOFT_LIMIT:
3312 		memcg->soft_limit = nr_pages;
3313 		ret = 0;
3314 		break;
3315 	}
3316 	return ret ?: nbytes;
3317 }
3318 
3319 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3320 				size_t nbytes, loff_t off)
3321 {
3322 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3323 	struct page_counter *counter;
3324 
3325 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3326 	case _MEM:
3327 		counter = &memcg->memory;
3328 		break;
3329 	case _MEMSWAP:
3330 		counter = &memcg->memsw;
3331 		break;
3332 	case _KMEM:
3333 		counter = &memcg->kmem;
3334 		break;
3335 	case _TCP:
3336 		counter = &memcg->tcpmem;
3337 		break;
3338 	default:
3339 		BUG();
3340 	}
3341 
3342 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3343 	case RES_MAX_USAGE:
3344 		page_counter_reset_watermark(counter);
3345 		break;
3346 	case RES_FAILCNT:
3347 		counter->failcnt = 0;
3348 		break;
3349 	default:
3350 		BUG();
3351 	}
3352 
3353 	return nbytes;
3354 }
3355 
3356 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3357 					struct cftype *cft)
3358 {
3359 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3360 }
3361 
3362 #ifdef CONFIG_MMU
3363 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3364 					struct cftype *cft, u64 val)
3365 {
3366 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3367 
3368 	if (val & ~MOVE_MASK)
3369 		return -EINVAL;
3370 
3371 	/*
3372 	 * No kind of locking is needed in here, because ->can_attach() will
3373 	 * check this value once in the beginning of the process, and then carry
3374 	 * on with stale data. This means that changes to this value will only
3375 	 * affect task migrations starting after the change.
3376 	 */
3377 	memcg->move_charge_at_immigrate = val;
3378 	return 0;
3379 }
3380 #else
3381 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3382 					struct cftype *cft, u64 val)
3383 {
3384 	return -ENOSYS;
3385 }
3386 #endif
3387 
3388 #ifdef CONFIG_NUMA
3389 
3390 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3391 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3392 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3393 
3394 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3395 					   int nid, unsigned int lru_mask)
3396 {
3397 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3398 	unsigned long nr = 0;
3399 	enum lru_list lru;
3400 
3401 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3402 
3403 	for_each_lru(lru) {
3404 		if (!(BIT(lru) & lru_mask))
3405 			continue;
3406 		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3407 	}
3408 	return nr;
3409 }
3410 
3411 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3412 					     unsigned int lru_mask)
3413 {
3414 	unsigned long nr = 0;
3415 	enum lru_list lru;
3416 
3417 	for_each_lru(lru) {
3418 		if (!(BIT(lru) & lru_mask))
3419 			continue;
3420 		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3421 	}
3422 	return nr;
3423 }
3424 
3425 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3426 {
3427 	struct numa_stat {
3428 		const char *name;
3429 		unsigned int lru_mask;
3430 	};
3431 
3432 	static const struct numa_stat stats[] = {
3433 		{ "total", LRU_ALL },
3434 		{ "file", LRU_ALL_FILE },
3435 		{ "anon", LRU_ALL_ANON },
3436 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3437 	};
3438 	const struct numa_stat *stat;
3439 	int nid;
3440 	unsigned long nr;
3441 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3442 
3443 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3444 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3445 		seq_printf(m, "%s=%lu", stat->name, nr);
3446 		for_each_node_state(nid, N_MEMORY) {
3447 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3448 							  stat->lru_mask);
3449 			seq_printf(m, " N%d=%lu", nid, nr);
3450 		}
3451 		seq_putc(m, '\n');
3452 	}
3453 
3454 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3455 		struct mem_cgroup *iter;
3456 
3457 		nr = 0;
3458 		for_each_mem_cgroup_tree(iter, memcg)
3459 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3460 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3461 		for_each_node_state(nid, N_MEMORY) {
3462 			nr = 0;
3463 			for_each_mem_cgroup_tree(iter, memcg)
3464 				nr += mem_cgroup_node_nr_lru_pages(
3465 					iter, nid, stat->lru_mask);
3466 			seq_printf(m, " N%d=%lu", nid, nr);
3467 		}
3468 		seq_putc(m, '\n');
3469 	}
3470 
3471 	return 0;
3472 }
3473 #endif /* CONFIG_NUMA */
3474 
3475 /* Universal VM events cgroup1 shows, original sort order */
3476 static const unsigned int memcg1_events[] = {
3477 	PGPGIN,
3478 	PGPGOUT,
3479 	PGFAULT,
3480 	PGMAJFAULT,
3481 };
3482 
3483 static const char *const memcg1_event_names[] = {
3484 	"pgpgin",
3485 	"pgpgout",
3486 	"pgfault",
3487 	"pgmajfault",
3488 };
3489 
3490 static int memcg_stat_show(struct seq_file *m, void *v)
3491 {
3492 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3493 	unsigned long memory, memsw;
3494 	struct mem_cgroup *mi;
3495 	unsigned int i;
3496 
3497 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3498 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3499 
3500 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3501 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3502 			continue;
3503 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3504 			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3505 			   PAGE_SIZE);
3506 	}
3507 
3508 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3509 		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3510 			   memcg_events_local(memcg, memcg1_events[i]));
3511 
3512 	for (i = 0; i < NR_LRU_LISTS; i++)
3513 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3514 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3515 			   PAGE_SIZE);
3516 
3517 	/* Hierarchical information */
3518 	memory = memsw = PAGE_COUNTER_MAX;
3519 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3520 		memory = min(memory, mi->memory.max);
3521 		memsw = min(memsw, mi->memsw.max);
3522 	}
3523 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3524 		   (u64)memory * PAGE_SIZE);
3525 	if (do_memsw_account())
3526 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3527 			   (u64)memsw * PAGE_SIZE);
3528 
3529 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3530 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3531 			continue;
3532 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3533 			   (u64)memcg_page_state(memcg, i) * PAGE_SIZE);
3534 	}
3535 
3536 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3537 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3538 			   (u64)memcg_events(memcg, i));
3539 
3540 	for (i = 0; i < NR_LRU_LISTS; i++)
3541 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3542 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3543 			   PAGE_SIZE);
3544 
3545 #ifdef CONFIG_DEBUG_VM
3546 	{
3547 		pg_data_t *pgdat;
3548 		struct mem_cgroup_per_node *mz;
3549 		struct zone_reclaim_stat *rstat;
3550 		unsigned long recent_rotated[2] = {0, 0};
3551 		unsigned long recent_scanned[2] = {0, 0};
3552 
3553 		for_each_online_pgdat(pgdat) {
3554 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3555 			rstat = &mz->lruvec.reclaim_stat;
3556 
3557 			recent_rotated[0] += rstat->recent_rotated[0];
3558 			recent_rotated[1] += rstat->recent_rotated[1];
3559 			recent_scanned[0] += rstat->recent_scanned[0];
3560 			recent_scanned[1] += rstat->recent_scanned[1];
3561 		}
3562 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3563 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3564 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3565 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3566 	}
3567 #endif
3568 
3569 	return 0;
3570 }
3571 
3572 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3573 				      struct cftype *cft)
3574 {
3575 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3576 
3577 	return mem_cgroup_swappiness(memcg);
3578 }
3579 
3580 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3581 				       struct cftype *cft, u64 val)
3582 {
3583 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3584 
3585 	if (val > 100)
3586 		return -EINVAL;
3587 
3588 	if (css->parent)
3589 		memcg->swappiness = val;
3590 	else
3591 		vm_swappiness = val;
3592 
3593 	return 0;
3594 }
3595 
3596 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3597 {
3598 	struct mem_cgroup_threshold_ary *t;
3599 	unsigned long usage;
3600 	int i;
3601 
3602 	rcu_read_lock();
3603 	if (!swap)
3604 		t = rcu_dereference(memcg->thresholds.primary);
3605 	else
3606 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3607 
3608 	if (!t)
3609 		goto unlock;
3610 
3611 	usage = mem_cgroup_usage(memcg, swap);
3612 
3613 	/*
3614 	 * current_threshold points to threshold just below or equal to usage.
3615 	 * If it's not true, a threshold was crossed after last
3616 	 * call of __mem_cgroup_threshold().
3617 	 */
3618 	i = t->current_threshold;
3619 
3620 	/*
3621 	 * Iterate backward over array of thresholds starting from
3622 	 * current_threshold and check if a threshold is crossed.
3623 	 * If none of thresholds below usage is crossed, we read
3624 	 * only one element of the array here.
3625 	 */
3626 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3627 		eventfd_signal(t->entries[i].eventfd, 1);
3628 
3629 	/* i = current_threshold + 1 */
3630 	i++;
3631 
3632 	/*
3633 	 * Iterate forward over array of thresholds starting from
3634 	 * current_threshold+1 and check if a threshold is crossed.
3635 	 * If none of thresholds above usage is crossed, we read
3636 	 * only one element of the array here.
3637 	 */
3638 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3639 		eventfd_signal(t->entries[i].eventfd, 1);
3640 
3641 	/* Update current_threshold */
3642 	t->current_threshold = i - 1;
3643 unlock:
3644 	rcu_read_unlock();
3645 }
3646 
3647 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3648 {
3649 	while (memcg) {
3650 		__mem_cgroup_threshold(memcg, false);
3651 		if (do_memsw_account())
3652 			__mem_cgroup_threshold(memcg, true);
3653 
3654 		memcg = parent_mem_cgroup(memcg);
3655 	}
3656 }
3657 
3658 static int compare_thresholds(const void *a, const void *b)
3659 {
3660 	const struct mem_cgroup_threshold *_a = a;
3661 	const struct mem_cgroup_threshold *_b = b;
3662 
3663 	if (_a->threshold > _b->threshold)
3664 		return 1;
3665 
3666 	if (_a->threshold < _b->threshold)
3667 		return -1;
3668 
3669 	return 0;
3670 }
3671 
3672 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3673 {
3674 	struct mem_cgroup_eventfd_list *ev;
3675 
3676 	spin_lock(&memcg_oom_lock);
3677 
3678 	list_for_each_entry(ev, &memcg->oom_notify, list)
3679 		eventfd_signal(ev->eventfd, 1);
3680 
3681 	spin_unlock(&memcg_oom_lock);
3682 	return 0;
3683 }
3684 
3685 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3686 {
3687 	struct mem_cgroup *iter;
3688 
3689 	for_each_mem_cgroup_tree(iter, memcg)
3690 		mem_cgroup_oom_notify_cb(iter);
3691 }
3692 
3693 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3694 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3695 {
3696 	struct mem_cgroup_thresholds *thresholds;
3697 	struct mem_cgroup_threshold_ary *new;
3698 	unsigned long threshold;
3699 	unsigned long usage;
3700 	int i, size, ret;
3701 
3702 	ret = page_counter_memparse(args, "-1", &threshold);
3703 	if (ret)
3704 		return ret;
3705 
3706 	mutex_lock(&memcg->thresholds_lock);
3707 
3708 	if (type == _MEM) {
3709 		thresholds = &memcg->thresholds;
3710 		usage = mem_cgroup_usage(memcg, false);
3711 	} else if (type == _MEMSWAP) {
3712 		thresholds = &memcg->memsw_thresholds;
3713 		usage = mem_cgroup_usage(memcg, true);
3714 	} else
3715 		BUG();
3716 
3717 	/* Check if a threshold crossed before adding a new one */
3718 	if (thresholds->primary)
3719 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3720 
3721 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3722 
3723 	/* Allocate memory for new array of thresholds */
3724 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3725 	if (!new) {
3726 		ret = -ENOMEM;
3727 		goto unlock;
3728 	}
3729 	new->size = size;
3730 
3731 	/* Copy thresholds (if any) to new array */
3732 	if (thresholds->primary) {
3733 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3734 				sizeof(struct mem_cgroup_threshold));
3735 	}
3736 
3737 	/* Add new threshold */
3738 	new->entries[size - 1].eventfd = eventfd;
3739 	new->entries[size - 1].threshold = threshold;
3740 
3741 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3742 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3743 			compare_thresholds, NULL);
3744 
3745 	/* Find current threshold */
3746 	new->current_threshold = -1;
3747 	for (i = 0; i < size; i++) {
3748 		if (new->entries[i].threshold <= usage) {
3749 			/*
3750 			 * new->current_threshold will not be used until
3751 			 * rcu_assign_pointer(), so it's safe to increment
3752 			 * it here.
3753 			 */
3754 			++new->current_threshold;
3755 		} else
3756 			break;
3757 	}
3758 
3759 	/* Free old spare buffer and save old primary buffer as spare */
3760 	kfree(thresholds->spare);
3761 	thresholds->spare = thresholds->primary;
3762 
3763 	rcu_assign_pointer(thresholds->primary, new);
3764 
3765 	/* To be sure that nobody uses thresholds */
3766 	synchronize_rcu();
3767 
3768 unlock:
3769 	mutex_unlock(&memcg->thresholds_lock);
3770 
3771 	return ret;
3772 }
3773 
3774 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3775 	struct eventfd_ctx *eventfd, const char *args)
3776 {
3777 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3778 }
3779 
3780 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3781 	struct eventfd_ctx *eventfd, const char *args)
3782 {
3783 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3784 }
3785 
3786 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3787 	struct eventfd_ctx *eventfd, enum res_type type)
3788 {
3789 	struct mem_cgroup_thresholds *thresholds;
3790 	struct mem_cgroup_threshold_ary *new;
3791 	unsigned long usage;
3792 	int i, j, size;
3793 
3794 	mutex_lock(&memcg->thresholds_lock);
3795 
3796 	if (type == _MEM) {
3797 		thresholds = &memcg->thresholds;
3798 		usage = mem_cgroup_usage(memcg, false);
3799 	} else if (type == _MEMSWAP) {
3800 		thresholds = &memcg->memsw_thresholds;
3801 		usage = mem_cgroup_usage(memcg, true);
3802 	} else
3803 		BUG();
3804 
3805 	if (!thresholds->primary)
3806 		goto unlock;
3807 
3808 	/* Check if a threshold crossed before removing */
3809 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3810 
3811 	/* Calculate new number of threshold */
3812 	size = 0;
3813 	for (i = 0; i < thresholds->primary->size; i++) {
3814 		if (thresholds->primary->entries[i].eventfd != eventfd)
3815 			size++;
3816 	}
3817 
3818 	new = thresholds->spare;
3819 
3820 	/* Set thresholds array to NULL if we don't have thresholds */
3821 	if (!size) {
3822 		kfree(new);
3823 		new = NULL;
3824 		goto swap_buffers;
3825 	}
3826 
3827 	new->size = size;
3828 
3829 	/* Copy thresholds and find current threshold */
3830 	new->current_threshold = -1;
3831 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3832 		if (thresholds->primary->entries[i].eventfd == eventfd)
3833 			continue;
3834 
3835 		new->entries[j] = thresholds->primary->entries[i];
3836 		if (new->entries[j].threshold <= usage) {
3837 			/*
3838 			 * new->current_threshold will not be used
3839 			 * until rcu_assign_pointer(), so it's safe to increment
3840 			 * it here.
3841 			 */
3842 			++new->current_threshold;
3843 		}
3844 		j++;
3845 	}
3846 
3847 swap_buffers:
3848 	/* Swap primary and spare array */
3849 	thresholds->spare = thresholds->primary;
3850 
3851 	rcu_assign_pointer(thresholds->primary, new);
3852 
3853 	/* To be sure that nobody uses thresholds */
3854 	synchronize_rcu();
3855 
3856 	/* If all events are unregistered, free the spare array */
3857 	if (!new) {
3858 		kfree(thresholds->spare);
3859 		thresholds->spare = NULL;
3860 	}
3861 unlock:
3862 	mutex_unlock(&memcg->thresholds_lock);
3863 }
3864 
3865 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3866 	struct eventfd_ctx *eventfd)
3867 {
3868 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3869 }
3870 
3871 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3872 	struct eventfd_ctx *eventfd)
3873 {
3874 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3875 }
3876 
3877 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3878 	struct eventfd_ctx *eventfd, const char *args)
3879 {
3880 	struct mem_cgroup_eventfd_list *event;
3881 
3882 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3883 	if (!event)
3884 		return -ENOMEM;
3885 
3886 	spin_lock(&memcg_oom_lock);
3887 
3888 	event->eventfd = eventfd;
3889 	list_add(&event->list, &memcg->oom_notify);
3890 
3891 	/* already in OOM ? */
3892 	if (memcg->under_oom)
3893 		eventfd_signal(eventfd, 1);
3894 	spin_unlock(&memcg_oom_lock);
3895 
3896 	return 0;
3897 }
3898 
3899 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3900 	struct eventfd_ctx *eventfd)
3901 {
3902 	struct mem_cgroup_eventfd_list *ev, *tmp;
3903 
3904 	spin_lock(&memcg_oom_lock);
3905 
3906 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3907 		if (ev->eventfd == eventfd) {
3908 			list_del(&ev->list);
3909 			kfree(ev);
3910 		}
3911 	}
3912 
3913 	spin_unlock(&memcg_oom_lock);
3914 }
3915 
3916 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3917 {
3918 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3919 
3920 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3921 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3922 	seq_printf(sf, "oom_kill %lu\n",
3923 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3924 	return 0;
3925 }
3926 
3927 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3928 	struct cftype *cft, u64 val)
3929 {
3930 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3931 
3932 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3933 	if (!css->parent || !((val == 0) || (val == 1)))
3934 		return -EINVAL;
3935 
3936 	memcg->oom_kill_disable = val;
3937 	if (!val)
3938 		memcg_oom_recover(memcg);
3939 
3940 	return 0;
3941 }
3942 
3943 #ifdef CONFIG_CGROUP_WRITEBACK
3944 
3945 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3946 {
3947 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3948 }
3949 
3950 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3951 {
3952 	wb_domain_exit(&memcg->cgwb_domain);
3953 }
3954 
3955 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3956 {
3957 	wb_domain_size_changed(&memcg->cgwb_domain);
3958 }
3959 
3960 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3961 {
3962 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3963 
3964 	if (!memcg->css.parent)
3965 		return NULL;
3966 
3967 	return &memcg->cgwb_domain;
3968 }
3969 
3970 /*
3971  * idx can be of type enum memcg_stat_item or node_stat_item.
3972  * Keep in sync with memcg_exact_page().
3973  */
3974 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
3975 {
3976 	long x = atomic_long_read(&memcg->vmstats[idx]);
3977 	int cpu;
3978 
3979 	for_each_online_cpu(cpu)
3980 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
3981 	if (x < 0)
3982 		x = 0;
3983 	return x;
3984 }
3985 
3986 /**
3987  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3988  * @wb: bdi_writeback in question
3989  * @pfilepages: out parameter for number of file pages
3990  * @pheadroom: out parameter for number of allocatable pages according to memcg
3991  * @pdirty: out parameter for number of dirty pages
3992  * @pwriteback: out parameter for number of pages under writeback
3993  *
3994  * Determine the numbers of file, headroom, dirty, and writeback pages in
3995  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3996  * is a bit more involved.
3997  *
3998  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3999  * headroom is calculated as the lowest headroom of itself and the
4000  * ancestors.  Note that this doesn't consider the actual amount of
4001  * available memory in the system.  The caller should further cap
4002  * *@pheadroom accordingly.
4003  */
4004 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4005 			 unsigned long *pheadroom, unsigned long *pdirty,
4006 			 unsigned long *pwriteback)
4007 {
4008 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4009 	struct mem_cgroup *parent;
4010 
4011 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4012 
4013 	/* this should eventually include NR_UNSTABLE_NFS */
4014 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4015 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4016 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4017 	*pheadroom = PAGE_COUNTER_MAX;
4018 
4019 	while ((parent = parent_mem_cgroup(memcg))) {
4020 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4021 		unsigned long used = page_counter_read(&memcg->memory);
4022 
4023 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4024 		memcg = parent;
4025 	}
4026 }
4027 
4028 #else	/* CONFIG_CGROUP_WRITEBACK */
4029 
4030 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4031 {
4032 	return 0;
4033 }
4034 
4035 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4036 {
4037 }
4038 
4039 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4040 {
4041 }
4042 
4043 #endif	/* CONFIG_CGROUP_WRITEBACK */
4044 
4045 /*
4046  * DO NOT USE IN NEW FILES.
4047  *
4048  * "cgroup.event_control" implementation.
4049  *
4050  * This is way over-engineered.  It tries to support fully configurable
4051  * events for each user.  Such level of flexibility is completely
4052  * unnecessary especially in the light of the planned unified hierarchy.
4053  *
4054  * Please deprecate this and replace with something simpler if at all
4055  * possible.
4056  */
4057 
4058 /*
4059  * Unregister event and free resources.
4060  *
4061  * Gets called from workqueue.
4062  */
4063 static void memcg_event_remove(struct work_struct *work)
4064 {
4065 	struct mem_cgroup_event *event =
4066 		container_of(work, struct mem_cgroup_event, remove);
4067 	struct mem_cgroup *memcg = event->memcg;
4068 
4069 	remove_wait_queue(event->wqh, &event->wait);
4070 
4071 	event->unregister_event(memcg, event->eventfd);
4072 
4073 	/* Notify userspace the event is going away. */
4074 	eventfd_signal(event->eventfd, 1);
4075 
4076 	eventfd_ctx_put(event->eventfd);
4077 	kfree(event);
4078 	css_put(&memcg->css);
4079 }
4080 
4081 /*
4082  * Gets called on EPOLLHUP on eventfd when user closes it.
4083  *
4084  * Called with wqh->lock held and interrupts disabled.
4085  */
4086 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4087 			    int sync, void *key)
4088 {
4089 	struct mem_cgroup_event *event =
4090 		container_of(wait, struct mem_cgroup_event, wait);
4091 	struct mem_cgroup *memcg = event->memcg;
4092 	__poll_t flags = key_to_poll(key);
4093 
4094 	if (flags & EPOLLHUP) {
4095 		/*
4096 		 * If the event has been detached at cgroup removal, we
4097 		 * can simply return knowing the other side will cleanup
4098 		 * for us.
4099 		 *
4100 		 * We can't race against event freeing since the other
4101 		 * side will require wqh->lock via remove_wait_queue(),
4102 		 * which we hold.
4103 		 */
4104 		spin_lock(&memcg->event_list_lock);
4105 		if (!list_empty(&event->list)) {
4106 			list_del_init(&event->list);
4107 			/*
4108 			 * We are in atomic context, but cgroup_event_remove()
4109 			 * may sleep, so we have to call it in workqueue.
4110 			 */
4111 			schedule_work(&event->remove);
4112 		}
4113 		spin_unlock(&memcg->event_list_lock);
4114 	}
4115 
4116 	return 0;
4117 }
4118 
4119 static void memcg_event_ptable_queue_proc(struct file *file,
4120 		wait_queue_head_t *wqh, poll_table *pt)
4121 {
4122 	struct mem_cgroup_event *event =
4123 		container_of(pt, struct mem_cgroup_event, pt);
4124 
4125 	event->wqh = wqh;
4126 	add_wait_queue(wqh, &event->wait);
4127 }
4128 
4129 /*
4130  * DO NOT USE IN NEW FILES.
4131  *
4132  * Parse input and register new cgroup event handler.
4133  *
4134  * Input must be in format '<event_fd> <control_fd> <args>'.
4135  * Interpretation of args is defined by control file implementation.
4136  */
4137 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4138 					 char *buf, size_t nbytes, loff_t off)
4139 {
4140 	struct cgroup_subsys_state *css = of_css(of);
4141 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4142 	struct mem_cgroup_event *event;
4143 	struct cgroup_subsys_state *cfile_css;
4144 	unsigned int efd, cfd;
4145 	struct fd efile;
4146 	struct fd cfile;
4147 	const char *name;
4148 	char *endp;
4149 	int ret;
4150 
4151 	buf = strstrip(buf);
4152 
4153 	efd = simple_strtoul(buf, &endp, 10);
4154 	if (*endp != ' ')
4155 		return -EINVAL;
4156 	buf = endp + 1;
4157 
4158 	cfd = simple_strtoul(buf, &endp, 10);
4159 	if ((*endp != ' ') && (*endp != '\0'))
4160 		return -EINVAL;
4161 	buf = endp + 1;
4162 
4163 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4164 	if (!event)
4165 		return -ENOMEM;
4166 
4167 	event->memcg = memcg;
4168 	INIT_LIST_HEAD(&event->list);
4169 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4170 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4171 	INIT_WORK(&event->remove, memcg_event_remove);
4172 
4173 	efile = fdget(efd);
4174 	if (!efile.file) {
4175 		ret = -EBADF;
4176 		goto out_kfree;
4177 	}
4178 
4179 	event->eventfd = eventfd_ctx_fileget(efile.file);
4180 	if (IS_ERR(event->eventfd)) {
4181 		ret = PTR_ERR(event->eventfd);
4182 		goto out_put_efile;
4183 	}
4184 
4185 	cfile = fdget(cfd);
4186 	if (!cfile.file) {
4187 		ret = -EBADF;
4188 		goto out_put_eventfd;
4189 	}
4190 
4191 	/* the process need read permission on control file */
4192 	/* AV: shouldn't we check that it's been opened for read instead? */
4193 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4194 	if (ret < 0)
4195 		goto out_put_cfile;
4196 
4197 	/*
4198 	 * Determine the event callbacks and set them in @event.  This used
4199 	 * to be done via struct cftype but cgroup core no longer knows
4200 	 * about these events.  The following is crude but the whole thing
4201 	 * is for compatibility anyway.
4202 	 *
4203 	 * DO NOT ADD NEW FILES.
4204 	 */
4205 	name = cfile.file->f_path.dentry->d_name.name;
4206 
4207 	if (!strcmp(name, "memory.usage_in_bytes")) {
4208 		event->register_event = mem_cgroup_usage_register_event;
4209 		event->unregister_event = mem_cgroup_usage_unregister_event;
4210 	} else if (!strcmp(name, "memory.oom_control")) {
4211 		event->register_event = mem_cgroup_oom_register_event;
4212 		event->unregister_event = mem_cgroup_oom_unregister_event;
4213 	} else if (!strcmp(name, "memory.pressure_level")) {
4214 		event->register_event = vmpressure_register_event;
4215 		event->unregister_event = vmpressure_unregister_event;
4216 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4217 		event->register_event = memsw_cgroup_usage_register_event;
4218 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4219 	} else {
4220 		ret = -EINVAL;
4221 		goto out_put_cfile;
4222 	}
4223 
4224 	/*
4225 	 * Verify @cfile should belong to @css.  Also, remaining events are
4226 	 * automatically removed on cgroup destruction but the removal is
4227 	 * asynchronous, so take an extra ref on @css.
4228 	 */
4229 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4230 					       &memory_cgrp_subsys);
4231 	ret = -EINVAL;
4232 	if (IS_ERR(cfile_css))
4233 		goto out_put_cfile;
4234 	if (cfile_css != css) {
4235 		css_put(cfile_css);
4236 		goto out_put_cfile;
4237 	}
4238 
4239 	ret = event->register_event(memcg, event->eventfd, buf);
4240 	if (ret)
4241 		goto out_put_css;
4242 
4243 	vfs_poll(efile.file, &event->pt);
4244 
4245 	spin_lock(&memcg->event_list_lock);
4246 	list_add(&event->list, &memcg->event_list);
4247 	spin_unlock(&memcg->event_list_lock);
4248 
4249 	fdput(cfile);
4250 	fdput(efile);
4251 
4252 	return nbytes;
4253 
4254 out_put_css:
4255 	css_put(css);
4256 out_put_cfile:
4257 	fdput(cfile);
4258 out_put_eventfd:
4259 	eventfd_ctx_put(event->eventfd);
4260 out_put_efile:
4261 	fdput(efile);
4262 out_kfree:
4263 	kfree(event);
4264 
4265 	return ret;
4266 }
4267 
4268 static struct cftype mem_cgroup_legacy_files[] = {
4269 	{
4270 		.name = "usage_in_bytes",
4271 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4272 		.read_u64 = mem_cgroup_read_u64,
4273 	},
4274 	{
4275 		.name = "max_usage_in_bytes",
4276 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4277 		.write = mem_cgroup_reset,
4278 		.read_u64 = mem_cgroup_read_u64,
4279 	},
4280 	{
4281 		.name = "limit_in_bytes",
4282 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4283 		.write = mem_cgroup_write,
4284 		.read_u64 = mem_cgroup_read_u64,
4285 	},
4286 	{
4287 		.name = "soft_limit_in_bytes",
4288 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4289 		.write = mem_cgroup_write,
4290 		.read_u64 = mem_cgroup_read_u64,
4291 	},
4292 	{
4293 		.name = "failcnt",
4294 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4295 		.write = mem_cgroup_reset,
4296 		.read_u64 = mem_cgroup_read_u64,
4297 	},
4298 	{
4299 		.name = "stat",
4300 		.seq_show = memcg_stat_show,
4301 	},
4302 	{
4303 		.name = "force_empty",
4304 		.write = mem_cgroup_force_empty_write,
4305 	},
4306 	{
4307 		.name = "use_hierarchy",
4308 		.write_u64 = mem_cgroup_hierarchy_write,
4309 		.read_u64 = mem_cgroup_hierarchy_read,
4310 	},
4311 	{
4312 		.name = "cgroup.event_control",		/* XXX: for compat */
4313 		.write = memcg_write_event_control,
4314 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4315 	},
4316 	{
4317 		.name = "swappiness",
4318 		.read_u64 = mem_cgroup_swappiness_read,
4319 		.write_u64 = mem_cgroup_swappiness_write,
4320 	},
4321 	{
4322 		.name = "move_charge_at_immigrate",
4323 		.read_u64 = mem_cgroup_move_charge_read,
4324 		.write_u64 = mem_cgroup_move_charge_write,
4325 	},
4326 	{
4327 		.name = "oom_control",
4328 		.seq_show = mem_cgroup_oom_control_read,
4329 		.write_u64 = mem_cgroup_oom_control_write,
4330 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4331 	},
4332 	{
4333 		.name = "pressure_level",
4334 	},
4335 #ifdef CONFIG_NUMA
4336 	{
4337 		.name = "numa_stat",
4338 		.seq_show = memcg_numa_stat_show,
4339 	},
4340 #endif
4341 	{
4342 		.name = "kmem.limit_in_bytes",
4343 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4344 		.write = mem_cgroup_write,
4345 		.read_u64 = mem_cgroup_read_u64,
4346 	},
4347 	{
4348 		.name = "kmem.usage_in_bytes",
4349 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4350 		.read_u64 = mem_cgroup_read_u64,
4351 	},
4352 	{
4353 		.name = "kmem.failcnt",
4354 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4355 		.write = mem_cgroup_reset,
4356 		.read_u64 = mem_cgroup_read_u64,
4357 	},
4358 	{
4359 		.name = "kmem.max_usage_in_bytes",
4360 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4361 		.write = mem_cgroup_reset,
4362 		.read_u64 = mem_cgroup_read_u64,
4363 	},
4364 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4365 	{
4366 		.name = "kmem.slabinfo",
4367 		.seq_start = memcg_slab_start,
4368 		.seq_next = memcg_slab_next,
4369 		.seq_stop = memcg_slab_stop,
4370 		.seq_show = memcg_slab_show,
4371 	},
4372 #endif
4373 	{
4374 		.name = "kmem.tcp.limit_in_bytes",
4375 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4376 		.write = mem_cgroup_write,
4377 		.read_u64 = mem_cgroup_read_u64,
4378 	},
4379 	{
4380 		.name = "kmem.tcp.usage_in_bytes",
4381 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4382 		.read_u64 = mem_cgroup_read_u64,
4383 	},
4384 	{
4385 		.name = "kmem.tcp.failcnt",
4386 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4387 		.write = mem_cgroup_reset,
4388 		.read_u64 = mem_cgroup_read_u64,
4389 	},
4390 	{
4391 		.name = "kmem.tcp.max_usage_in_bytes",
4392 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4393 		.write = mem_cgroup_reset,
4394 		.read_u64 = mem_cgroup_read_u64,
4395 	},
4396 	{ },	/* terminate */
4397 };
4398 
4399 /*
4400  * Private memory cgroup IDR
4401  *
4402  * Swap-out records and page cache shadow entries need to store memcg
4403  * references in constrained space, so we maintain an ID space that is
4404  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4405  * memory-controlled cgroups to 64k.
4406  *
4407  * However, there usually are many references to the oflline CSS after
4408  * the cgroup has been destroyed, such as page cache or reclaimable
4409  * slab objects, that don't need to hang on to the ID. We want to keep
4410  * those dead CSS from occupying IDs, or we might quickly exhaust the
4411  * relatively small ID space and prevent the creation of new cgroups
4412  * even when there are much fewer than 64k cgroups - possibly none.
4413  *
4414  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4415  * be freed and recycled when it's no longer needed, which is usually
4416  * when the CSS is offlined.
4417  *
4418  * The only exception to that are records of swapped out tmpfs/shmem
4419  * pages that need to be attributed to live ancestors on swapin. But
4420  * those references are manageable from userspace.
4421  */
4422 
4423 static DEFINE_IDR(mem_cgroup_idr);
4424 
4425 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4426 {
4427 	if (memcg->id.id > 0) {
4428 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4429 		memcg->id.id = 0;
4430 	}
4431 }
4432 
4433 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4434 {
4435 	refcount_add(n, &memcg->id.ref);
4436 }
4437 
4438 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4439 {
4440 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4441 		mem_cgroup_id_remove(memcg);
4442 
4443 		/* Memcg ID pins CSS */
4444 		css_put(&memcg->css);
4445 	}
4446 }
4447 
4448 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4449 {
4450 	mem_cgroup_id_get_many(memcg, 1);
4451 }
4452 
4453 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4454 {
4455 	mem_cgroup_id_put_many(memcg, 1);
4456 }
4457 
4458 /**
4459  * mem_cgroup_from_id - look up a memcg from a memcg id
4460  * @id: the memcg id to look up
4461  *
4462  * Caller must hold rcu_read_lock().
4463  */
4464 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4465 {
4466 	WARN_ON_ONCE(!rcu_read_lock_held());
4467 	return idr_find(&mem_cgroup_idr, id);
4468 }
4469 
4470 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4471 {
4472 	struct mem_cgroup_per_node *pn;
4473 	int tmp = node;
4474 	/*
4475 	 * This routine is called against possible nodes.
4476 	 * But it's BUG to call kmalloc() against offline node.
4477 	 *
4478 	 * TODO: this routine can waste much memory for nodes which will
4479 	 *       never be onlined. It's better to use memory hotplug callback
4480 	 *       function.
4481 	 */
4482 	if (!node_state(node, N_NORMAL_MEMORY))
4483 		tmp = -1;
4484 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4485 	if (!pn)
4486 		return 1;
4487 
4488 	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4489 	if (!pn->lruvec_stat_local) {
4490 		kfree(pn);
4491 		return 1;
4492 	}
4493 
4494 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4495 	if (!pn->lruvec_stat_cpu) {
4496 		free_percpu(pn->lruvec_stat_local);
4497 		kfree(pn);
4498 		return 1;
4499 	}
4500 
4501 	lruvec_init(&pn->lruvec);
4502 	pn->usage_in_excess = 0;
4503 	pn->on_tree = false;
4504 	pn->memcg = memcg;
4505 
4506 	memcg->nodeinfo[node] = pn;
4507 	return 0;
4508 }
4509 
4510 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4511 {
4512 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4513 
4514 	if (!pn)
4515 		return;
4516 
4517 	free_percpu(pn->lruvec_stat_cpu);
4518 	free_percpu(pn->lruvec_stat_local);
4519 	kfree(pn);
4520 }
4521 
4522 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4523 {
4524 	int node;
4525 
4526 	for_each_node(node)
4527 		free_mem_cgroup_per_node_info(memcg, node);
4528 	free_percpu(memcg->vmstats_percpu);
4529 	free_percpu(memcg->vmstats_local);
4530 	kfree(memcg);
4531 }
4532 
4533 static void mem_cgroup_free(struct mem_cgroup *memcg)
4534 {
4535 	memcg_wb_domain_exit(memcg);
4536 	__mem_cgroup_free(memcg);
4537 }
4538 
4539 static struct mem_cgroup *mem_cgroup_alloc(void)
4540 {
4541 	struct mem_cgroup *memcg;
4542 	unsigned int size;
4543 	int node;
4544 
4545 	size = sizeof(struct mem_cgroup);
4546 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4547 
4548 	memcg = kzalloc(size, GFP_KERNEL);
4549 	if (!memcg)
4550 		return NULL;
4551 
4552 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4553 				 1, MEM_CGROUP_ID_MAX,
4554 				 GFP_KERNEL);
4555 	if (memcg->id.id < 0)
4556 		goto fail;
4557 
4558 	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4559 	if (!memcg->vmstats_local)
4560 		goto fail;
4561 
4562 	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4563 	if (!memcg->vmstats_percpu)
4564 		goto fail;
4565 
4566 	for_each_node(node)
4567 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4568 			goto fail;
4569 
4570 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4571 		goto fail;
4572 
4573 	INIT_WORK(&memcg->high_work, high_work_func);
4574 	memcg->last_scanned_node = MAX_NUMNODES;
4575 	INIT_LIST_HEAD(&memcg->oom_notify);
4576 	mutex_init(&memcg->thresholds_lock);
4577 	spin_lock_init(&memcg->move_lock);
4578 	vmpressure_init(&memcg->vmpressure);
4579 	INIT_LIST_HEAD(&memcg->event_list);
4580 	spin_lock_init(&memcg->event_list_lock);
4581 	memcg->socket_pressure = jiffies;
4582 #ifdef CONFIG_MEMCG_KMEM
4583 	memcg->kmemcg_id = -1;
4584 #endif
4585 #ifdef CONFIG_CGROUP_WRITEBACK
4586 	INIT_LIST_HEAD(&memcg->cgwb_list);
4587 #endif
4588 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4589 	return memcg;
4590 fail:
4591 	mem_cgroup_id_remove(memcg);
4592 	__mem_cgroup_free(memcg);
4593 	return NULL;
4594 }
4595 
4596 static struct cgroup_subsys_state * __ref
4597 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4598 {
4599 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4600 	struct mem_cgroup *memcg;
4601 	long error = -ENOMEM;
4602 
4603 	memcg = mem_cgroup_alloc();
4604 	if (!memcg)
4605 		return ERR_PTR(error);
4606 
4607 	memcg->high = PAGE_COUNTER_MAX;
4608 	memcg->soft_limit = PAGE_COUNTER_MAX;
4609 	if (parent) {
4610 		memcg->swappiness = mem_cgroup_swappiness(parent);
4611 		memcg->oom_kill_disable = parent->oom_kill_disable;
4612 	}
4613 	if (parent && parent->use_hierarchy) {
4614 		memcg->use_hierarchy = true;
4615 		page_counter_init(&memcg->memory, &parent->memory);
4616 		page_counter_init(&memcg->swap, &parent->swap);
4617 		page_counter_init(&memcg->memsw, &parent->memsw);
4618 		page_counter_init(&memcg->kmem, &parent->kmem);
4619 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4620 	} else {
4621 		page_counter_init(&memcg->memory, NULL);
4622 		page_counter_init(&memcg->swap, NULL);
4623 		page_counter_init(&memcg->memsw, NULL);
4624 		page_counter_init(&memcg->kmem, NULL);
4625 		page_counter_init(&memcg->tcpmem, NULL);
4626 		/*
4627 		 * Deeper hierachy with use_hierarchy == false doesn't make
4628 		 * much sense so let cgroup subsystem know about this
4629 		 * unfortunate state in our controller.
4630 		 */
4631 		if (parent != root_mem_cgroup)
4632 			memory_cgrp_subsys.broken_hierarchy = true;
4633 	}
4634 
4635 	/* The following stuff does not apply to the root */
4636 	if (!parent) {
4637 		root_mem_cgroup = memcg;
4638 		return &memcg->css;
4639 	}
4640 
4641 	error = memcg_online_kmem(memcg);
4642 	if (error)
4643 		goto fail;
4644 
4645 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4646 		static_branch_inc(&memcg_sockets_enabled_key);
4647 
4648 	return &memcg->css;
4649 fail:
4650 	mem_cgroup_id_remove(memcg);
4651 	mem_cgroup_free(memcg);
4652 	return ERR_PTR(-ENOMEM);
4653 }
4654 
4655 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4656 {
4657 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4658 
4659 	/*
4660 	 * A memcg must be visible for memcg_expand_shrinker_maps()
4661 	 * by the time the maps are allocated. So, we allocate maps
4662 	 * here, when for_each_mem_cgroup() can't skip it.
4663 	 */
4664 	if (memcg_alloc_shrinker_maps(memcg)) {
4665 		mem_cgroup_id_remove(memcg);
4666 		return -ENOMEM;
4667 	}
4668 
4669 	/* Online state pins memcg ID, memcg ID pins CSS */
4670 	refcount_set(&memcg->id.ref, 1);
4671 	css_get(css);
4672 	return 0;
4673 }
4674 
4675 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4676 {
4677 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4678 	struct mem_cgroup_event *event, *tmp;
4679 
4680 	/*
4681 	 * Unregister events and notify userspace.
4682 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4683 	 * directory to avoid race between userspace and kernelspace.
4684 	 */
4685 	spin_lock(&memcg->event_list_lock);
4686 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4687 		list_del_init(&event->list);
4688 		schedule_work(&event->remove);
4689 	}
4690 	spin_unlock(&memcg->event_list_lock);
4691 
4692 	page_counter_set_min(&memcg->memory, 0);
4693 	page_counter_set_low(&memcg->memory, 0);
4694 
4695 	memcg_offline_kmem(memcg);
4696 	wb_memcg_offline(memcg);
4697 
4698 	drain_all_stock(memcg);
4699 
4700 	mem_cgroup_id_put(memcg);
4701 }
4702 
4703 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4704 {
4705 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4706 
4707 	invalidate_reclaim_iterators(memcg);
4708 }
4709 
4710 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4711 {
4712 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4713 
4714 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4715 		static_branch_dec(&memcg_sockets_enabled_key);
4716 
4717 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4718 		static_branch_dec(&memcg_sockets_enabled_key);
4719 
4720 	vmpressure_cleanup(&memcg->vmpressure);
4721 	cancel_work_sync(&memcg->high_work);
4722 	mem_cgroup_remove_from_trees(memcg);
4723 	memcg_free_shrinker_maps(memcg);
4724 	memcg_free_kmem(memcg);
4725 	mem_cgroup_free(memcg);
4726 }
4727 
4728 /**
4729  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4730  * @css: the target css
4731  *
4732  * Reset the states of the mem_cgroup associated with @css.  This is
4733  * invoked when the userland requests disabling on the default hierarchy
4734  * but the memcg is pinned through dependency.  The memcg should stop
4735  * applying policies and should revert to the vanilla state as it may be
4736  * made visible again.
4737  *
4738  * The current implementation only resets the essential configurations.
4739  * This needs to be expanded to cover all the visible parts.
4740  */
4741 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4742 {
4743 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4744 
4745 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4746 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4747 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4748 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4749 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4750 	page_counter_set_min(&memcg->memory, 0);
4751 	page_counter_set_low(&memcg->memory, 0);
4752 	memcg->high = PAGE_COUNTER_MAX;
4753 	memcg->soft_limit = PAGE_COUNTER_MAX;
4754 	memcg_wb_domain_size_changed(memcg);
4755 }
4756 
4757 #ifdef CONFIG_MMU
4758 /* Handlers for move charge at task migration. */
4759 static int mem_cgroup_do_precharge(unsigned long count)
4760 {
4761 	int ret;
4762 
4763 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4764 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4765 	if (!ret) {
4766 		mc.precharge += count;
4767 		return ret;
4768 	}
4769 
4770 	/* Try charges one by one with reclaim, but do not retry */
4771 	while (count--) {
4772 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4773 		if (ret)
4774 			return ret;
4775 		mc.precharge++;
4776 		cond_resched();
4777 	}
4778 	return 0;
4779 }
4780 
4781 union mc_target {
4782 	struct page	*page;
4783 	swp_entry_t	ent;
4784 };
4785 
4786 enum mc_target_type {
4787 	MC_TARGET_NONE = 0,
4788 	MC_TARGET_PAGE,
4789 	MC_TARGET_SWAP,
4790 	MC_TARGET_DEVICE,
4791 };
4792 
4793 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4794 						unsigned long addr, pte_t ptent)
4795 {
4796 	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4797 
4798 	if (!page || !page_mapped(page))
4799 		return NULL;
4800 	if (PageAnon(page)) {
4801 		if (!(mc.flags & MOVE_ANON))
4802 			return NULL;
4803 	} else {
4804 		if (!(mc.flags & MOVE_FILE))
4805 			return NULL;
4806 	}
4807 	if (!get_page_unless_zero(page))
4808 		return NULL;
4809 
4810 	return page;
4811 }
4812 
4813 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4814 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4815 			pte_t ptent, swp_entry_t *entry)
4816 {
4817 	struct page *page = NULL;
4818 	swp_entry_t ent = pte_to_swp_entry(ptent);
4819 
4820 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4821 		return NULL;
4822 
4823 	/*
4824 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4825 	 * a device and because they are not accessible by CPU they are store
4826 	 * as special swap entry in the CPU page table.
4827 	 */
4828 	if (is_device_private_entry(ent)) {
4829 		page = device_private_entry_to_page(ent);
4830 		/*
4831 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4832 		 * a refcount of 1 when free (unlike normal page)
4833 		 */
4834 		if (!page_ref_add_unless(page, 1, 1))
4835 			return NULL;
4836 		return page;
4837 	}
4838 
4839 	/*
4840 	 * Because lookup_swap_cache() updates some statistics counter,
4841 	 * we call find_get_page() with swapper_space directly.
4842 	 */
4843 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4844 	if (do_memsw_account())
4845 		entry->val = ent.val;
4846 
4847 	return page;
4848 }
4849 #else
4850 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4851 			pte_t ptent, swp_entry_t *entry)
4852 {
4853 	return NULL;
4854 }
4855 #endif
4856 
4857 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4858 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4859 {
4860 	struct page *page = NULL;
4861 	struct address_space *mapping;
4862 	pgoff_t pgoff;
4863 
4864 	if (!vma->vm_file) /* anonymous vma */
4865 		return NULL;
4866 	if (!(mc.flags & MOVE_FILE))
4867 		return NULL;
4868 
4869 	mapping = vma->vm_file->f_mapping;
4870 	pgoff = linear_page_index(vma, addr);
4871 
4872 	/* page is moved even if it's not RSS of this task(page-faulted). */
4873 #ifdef CONFIG_SWAP
4874 	/* shmem/tmpfs may report page out on swap: account for that too. */
4875 	if (shmem_mapping(mapping)) {
4876 		page = find_get_entry(mapping, pgoff);
4877 		if (xa_is_value(page)) {
4878 			swp_entry_t swp = radix_to_swp_entry(page);
4879 			if (do_memsw_account())
4880 				*entry = swp;
4881 			page = find_get_page(swap_address_space(swp),
4882 					     swp_offset(swp));
4883 		}
4884 	} else
4885 		page = find_get_page(mapping, pgoff);
4886 #else
4887 	page = find_get_page(mapping, pgoff);
4888 #endif
4889 	return page;
4890 }
4891 
4892 /**
4893  * mem_cgroup_move_account - move account of the page
4894  * @page: the page
4895  * @compound: charge the page as compound or small page
4896  * @from: mem_cgroup which the page is moved from.
4897  * @to:	mem_cgroup which the page is moved to. @from != @to.
4898  *
4899  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4900  *
4901  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4902  * from old cgroup.
4903  */
4904 static int mem_cgroup_move_account(struct page *page,
4905 				   bool compound,
4906 				   struct mem_cgroup *from,
4907 				   struct mem_cgroup *to)
4908 {
4909 	unsigned long flags;
4910 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4911 	int ret;
4912 	bool anon;
4913 
4914 	VM_BUG_ON(from == to);
4915 	VM_BUG_ON_PAGE(PageLRU(page), page);
4916 	VM_BUG_ON(compound && !PageTransHuge(page));
4917 
4918 	/*
4919 	 * Prevent mem_cgroup_migrate() from looking at
4920 	 * page->mem_cgroup of its source page while we change it.
4921 	 */
4922 	ret = -EBUSY;
4923 	if (!trylock_page(page))
4924 		goto out;
4925 
4926 	ret = -EINVAL;
4927 	if (page->mem_cgroup != from)
4928 		goto out_unlock;
4929 
4930 	anon = PageAnon(page);
4931 
4932 	spin_lock_irqsave(&from->move_lock, flags);
4933 
4934 	if (!anon && page_mapped(page)) {
4935 		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4936 		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4937 	}
4938 
4939 	/*
4940 	 * move_lock grabbed above and caller set from->moving_account, so
4941 	 * mod_memcg_page_state will serialize updates to PageDirty.
4942 	 * So mapping should be stable for dirty pages.
4943 	 */
4944 	if (!anon && PageDirty(page)) {
4945 		struct address_space *mapping = page_mapping(page);
4946 
4947 		if (mapping_cap_account_dirty(mapping)) {
4948 			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4949 			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4950 		}
4951 	}
4952 
4953 	if (PageWriteback(page)) {
4954 		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4955 		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4956 	}
4957 
4958 	/*
4959 	 * It is safe to change page->mem_cgroup here because the page
4960 	 * is referenced, charged, and isolated - we can't race with
4961 	 * uncharging, charging, migration, or LRU putback.
4962 	 */
4963 
4964 	/* caller should have done css_get */
4965 	page->mem_cgroup = to;
4966 	spin_unlock_irqrestore(&from->move_lock, flags);
4967 
4968 	ret = 0;
4969 
4970 	local_irq_disable();
4971 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4972 	memcg_check_events(to, page);
4973 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4974 	memcg_check_events(from, page);
4975 	local_irq_enable();
4976 out_unlock:
4977 	unlock_page(page);
4978 out:
4979 	return ret;
4980 }
4981 
4982 /**
4983  * get_mctgt_type - get target type of moving charge
4984  * @vma: the vma the pte to be checked belongs
4985  * @addr: the address corresponding to the pte to be checked
4986  * @ptent: the pte to be checked
4987  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4988  *
4989  * Returns
4990  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4991  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4992  *     move charge. if @target is not NULL, the page is stored in target->page
4993  *     with extra refcnt got(Callers should handle it).
4994  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4995  *     target for charge migration. if @target is not NULL, the entry is stored
4996  *     in target->ent.
4997  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
4998  *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4999  *     For now we such page is charge like a regular page would be as for all
5000  *     intent and purposes it is just special memory taking the place of a
5001  *     regular page.
5002  *
5003  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5004  *
5005  * Called with pte lock held.
5006  */
5007 
5008 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5009 		unsigned long addr, pte_t ptent, union mc_target *target)
5010 {
5011 	struct page *page = NULL;
5012 	enum mc_target_type ret = MC_TARGET_NONE;
5013 	swp_entry_t ent = { .val = 0 };
5014 
5015 	if (pte_present(ptent))
5016 		page = mc_handle_present_pte(vma, addr, ptent);
5017 	else if (is_swap_pte(ptent))
5018 		page = mc_handle_swap_pte(vma, ptent, &ent);
5019 	else if (pte_none(ptent))
5020 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5021 
5022 	if (!page && !ent.val)
5023 		return ret;
5024 	if (page) {
5025 		/*
5026 		 * Do only loose check w/o serialization.
5027 		 * mem_cgroup_move_account() checks the page is valid or
5028 		 * not under LRU exclusion.
5029 		 */
5030 		if (page->mem_cgroup == mc.from) {
5031 			ret = MC_TARGET_PAGE;
5032 			if (is_device_private_page(page) ||
5033 			    is_device_public_page(page))
5034 				ret = MC_TARGET_DEVICE;
5035 			if (target)
5036 				target->page = page;
5037 		}
5038 		if (!ret || !target)
5039 			put_page(page);
5040 	}
5041 	/*
5042 	 * There is a swap entry and a page doesn't exist or isn't charged.
5043 	 * But we cannot move a tail-page in a THP.
5044 	 */
5045 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5046 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5047 		ret = MC_TARGET_SWAP;
5048 		if (target)
5049 			target->ent = ent;
5050 	}
5051 	return ret;
5052 }
5053 
5054 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5055 /*
5056  * We don't consider PMD mapped swapping or file mapped pages because THP does
5057  * not support them for now.
5058  * Caller should make sure that pmd_trans_huge(pmd) is true.
5059  */
5060 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5061 		unsigned long addr, pmd_t pmd, union mc_target *target)
5062 {
5063 	struct page *page = NULL;
5064 	enum mc_target_type ret = MC_TARGET_NONE;
5065 
5066 	if (unlikely(is_swap_pmd(pmd))) {
5067 		VM_BUG_ON(thp_migration_supported() &&
5068 				  !is_pmd_migration_entry(pmd));
5069 		return ret;
5070 	}
5071 	page = pmd_page(pmd);
5072 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5073 	if (!(mc.flags & MOVE_ANON))
5074 		return ret;
5075 	if (page->mem_cgroup == mc.from) {
5076 		ret = MC_TARGET_PAGE;
5077 		if (target) {
5078 			get_page(page);
5079 			target->page = page;
5080 		}
5081 	}
5082 	return ret;
5083 }
5084 #else
5085 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5086 		unsigned long addr, pmd_t pmd, union mc_target *target)
5087 {
5088 	return MC_TARGET_NONE;
5089 }
5090 #endif
5091 
5092 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5093 					unsigned long addr, unsigned long end,
5094 					struct mm_walk *walk)
5095 {
5096 	struct vm_area_struct *vma = walk->vma;
5097 	pte_t *pte;
5098 	spinlock_t *ptl;
5099 
5100 	ptl = pmd_trans_huge_lock(pmd, vma);
5101 	if (ptl) {
5102 		/*
5103 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5104 		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
5105 		 * MEMORY_DEVICE_PRIVATE but this might change.
5106 		 */
5107 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5108 			mc.precharge += HPAGE_PMD_NR;
5109 		spin_unlock(ptl);
5110 		return 0;
5111 	}
5112 
5113 	if (pmd_trans_unstable(pmd))
5114 		return 0;
5115 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5116 	for (; addr != end; pte++, addr += PAGE_SIZE)
5117 		if (get_mctgt_type(vma, addr, *pte, NULL))
5118 			mc.precharge++;	/* increment precharge temporarily */
5119 	pte_unmap_unlock(pte - 1, ptl);
5120 	cond_resched();
5121 
5122 	return 0;
5123 }
5124 
5125 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5126 {
5127 	unsigned long precharge;
5128 
5129 	struct mm_walk mem_cgroup_count_precharge_walk = {
5130 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
5131 		.mm = mm,
5132 	};
5133 	down_read(&mm->mmap_sem);
5134 	walk_page_range(0, mm->highest_vm_end,
5135 			&mem_cgroup_count_precharge_walk);
5136 	up_read(&mm->mmap_sem);
5137 
5138 	precharge = mc.precharge;
5139 	mc.precharge = 0;
5140 
5141 	return precharge;
5142 }
5143 
5144 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5145 {
5146 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5147 
5148 	VM_BUG_ON(mc.moving_task);
5149 	mc.moving_task = current;
5150 	return mem_cgroup_do_precharge(precharge);
5151 }
5152 
5153 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5154 static void __mem_cgroup_clear_mc(void)
5155 {
5156 	struct mem_cgroup *from = mc.from;
5157 	struct mem_cgroup *to = mc.to;
5158 
5159 	/* we must uncharge all the leftover precharges from mc.to */
5160 	if (mc.precharge) {
5161 		cancel_charge(mc.to, mc.precharge);
5162 		mc.precharge = 0;
5163 	}
5164 	/*
5165 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5166 	 * we must uncharge here.
5167 	 */
5168 	if (mc.moved_charge) {
5169 		cancel_charge(mc.from, mc.moved_charge);
5170 		mc.moved_charge = 0;
5171 	}
5172 	/* we must fixup refcnts and charges */
5173 	if (mc.moved_swap) {
5174 		/* uncharge swap account from the old cgroup */
5175 		if (!mem_cgroup_is_root(mc.from))
5176 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5177 
5178 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5179 
5180 		/*
5181 		 * we charged both to->memory and to->memsw, so we
5182 		 * should uncharge to->memory.
5183 		 */
5184 		if (!mem_cgroup_is_root(mc.to))
5185 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5186 
5187 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5188 		css_put_many(&mc.to->css, mc.moved_swap);
5189 
5190 		mc.moved_swap = 0;
5191 	}
5192 	memcg_oom_recover(from);
5193 	memcg_oom_recover(to);
5194 	wake_up_all(&mc.waitq);
5195 }
5196 
5197 static void mem_cgroup_clear_mc(void)
5198 {
5199 	struct mm_struct *mm = mc.mm;
5200 
5201 	/*
5202 	 * we must clear moving_task before waking up waiters at the end of
5203 	 * task migration.
5204 	 */
5205 	mc.moving_task = NULL;
5206 	__mem_cgroup_clear_mc();
5207 	spin_lock(&mc.lock);
5208 	mc.from = NULL;
5209 	mc.to = NULL;
5210 	mc.mm = NULL;
5211 	spin_unlock(&mc.lock);
5212 
5213 	mmput(mm);
5214 }
5215 
5216 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5217 {
5218 	struct cgroup_subsys_state *css;
5219 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5220 	struct mem_cgroup *from;
5221 	struct task_struct *leader, *p;
5222 	struct mm_struct *mm;
5223 	unsigned long move_flags;
5224 	int ret = 0;
5225 
5226 	/* charge immigration isn't supported on the default hierarchy */
5227 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5228 		return 0;
5229 
5230 	/*
5231 	 * Multi-process migrations only happen on the default hierarchy
5232 	 * where charge immigration is not used.  Perform charge
5233 	 * immigration if @tset contains a leader and whine if there are
5234 	 * multiple.
5235 	 */
5236 	p = NULL;
5237 	cgroup_taskset_for_each_leader(leader, css, tset) {
5238 		WARN_ON_ONCE(p);
5239 		p = leader;
5240 		memcg = mem_cgroup_from_css(css);
5241 	}
5242 	if (!p)
5243 		return 0;
5244 
5245 	/*
5246 	 * We are now commited to this value whatever it is. Changes in this
5247 	 * tunable will only affect upcoming migrations, not the current one.
5248 	 * So we need to save it, and keep it going.
5249 	 */
5250 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5251 	if (!move_flags)
5252 		return 0;
5253 
5254 	from = mem_cgroup_from_task(p);
5255 
5256 	VM_BUG_ON(from == memcg);
5257 
5258 	mm = get_task_mm(p);
5259 	if (!mm)
5260 		return 0;
5261 	/* We move charges only when we move a owner of the mm */
5262 	if (mm->owner == p) {
5263 		VM_BUG_ON(mc.from);
5264 		VM_BUG_ON(mc.to);
5265 		VM_BUG_ON(mc.precharge);
5266 		VM_BUG_ON(mc.moved_charge);
5267 		VM_BUG_ON(mc.moved_swap);
5268 
5269 		spin_lock(&mc.lock);
5270 		mc.mm = mm;
5271 		mc.from = from;
5272 		mc.to = memcg;
5273 		mc.flags = move_flags;
5274 		spin_unlock(&mc.lock);
5275 		/* We set mc.moving_task later */
5276 
5277 		ret = mem_cgroup_precharge_mc(mm);
5278 		if (ret)
5279 			mem_cgroup_clear_mc();
5280 	} else {
5281 		mmput(mm);
5282 	}
5283 	return ret;
5284 }
5285 
5286 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5287 {
5288 	if (mc.to)
5289 		mem_cgroup_clear_mc();
5290 }
5291 
5292 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5293 				unsigned long addr, unsigned long end,
5294 				struct mm_walk *walk)
5295 {
5296 	int ret = 0;
5297 	struct vm_area_struct *vma = walk->vma;
5298 	pte_t *pte;
5299 	spinlock_t *ptl;
5300 	enum mc_target_type target_type;
5301 	union mc_target target;
5302 	struct page *page;
5303 
5304 	ptl = pmd_trans_huge_lock(pmd, vma);
5305 	if (ptl) {
5306 		if (mc.precharge < HPAGE_PMD_NR) {
5307 			spin_unlock(ptl);
5308 			return 0;
5309 		}
5310 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5311 		if (target_type == MC_TARGET_PAGE) {
5312 			page = target.page;
5313 			if (!isolate_lru_page(page)) {
5314 				if (!mem_cgroup_move_account(page, true,
5315 							     mc.from, mc.to)) {
5316 					mc.precharge -= HPAGE_PMD_NR;
5317 					mc.moved_charge += HPAGE_PMD_NR;
5318 				}
5319 				putback_lru_page(page);
5320 			}
5321 			put_page(page);
5322 		} else if (target_type == MC_TARGET_DEVICE) {
5323 			page = target.page;
5324 			if (!mem_cgroup_move_account(page, true,
5325 						     mc.from, mc.to)) {
5326 				mc.precharge -= HPAGE_PMD_NR;
5327 				mc.moved_charge += HPAGE_PMD_NR;
5328 			}
5329 			put_page(page);
5330 		}
5331 		spin_unlock(ptl);
5332 		return 0;
5333 	}
5334 
5335 	if (pmd_trans_unstable(pmd))
5336 		return 0;
5337 retry:
5338 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5339 	for (; addr != end; addr += PAGE_SIZE) {
5340 		pte_t ptent = *(pte++);
5341 		bool device = false;
5342 		swp_entry_t ent;
5343 
5344 		if (!mc.precharge)
5345 			break;
5346 
5347 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5348 		case MC_TARGET_DEVICE:
5349 			device = true;
5350 			/* fall through */
5351 		case MC_TARGET_PAGE:
5352 			page = target.page;
5353 			/*
5354 			 * We can have a part of the split pmd here. Moving it
5355 			 * can be done but it would be too convoluted so simply
5356 			 * ignore such a partial THP and keep it in original
5357 			 * memcg. There should be somebody mapping the head.
5358 			 */
5359 			if (PageTransCompound(page))
5360 				goto put;
5361 			if (!device && isolate_lru_page(page))
5362 				goto put;
5363 			if (!mem_cgroup_move_account(page, false,
5364 						mc.from, mc.to)) {
5365 				mc.precharge--;
5366 				/* we uncharge from mc.from later. */
5367 				mc.moved_charge++;
5368 			}
5369 			if (!device)
5370 				putback_lru_page(page);
5371 put:			/* get_mctgt_type() gets the page */
5372 			put_page(page);
5373 			break;
5374 		case MC_TARGET_SWAP:
5375 			ent = target.ent;
5376 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5377 				mc.precharge--;
5378 				/* we fixup refcnts and charges later. */
5379 				mc.moved_swap++;
5380 			}
5381 			break;
5382 		default:
5383 			break;
5384 		}
5385 	}
5386 	pte_unmap_unlock(pte - 1, ptl);
5387 	cond_resched();
5388 
5389 	if (addr != end) {
5390 		/*
5391 		 * We have consumed all precharges we got in can_attach().
5392 		 * We try charge one by one, but don't do any additional
5393 		 * charges to mc.to if we have failed in charge once in attach()
5394 		 * phase.
5395 		 */
5396 		ret = mem_cgroup_do_precharge(1);
5397 		if (!ret)
5398 			goto retry;
5399 	}
5400 
5401 	return ret;
5402 }
5403 
5404 static void mem_cgroup_move_charge(void)
5405 {
5406 	struct mm_walk mem_cgroup_move_charge_walk = {
5407 		.pmd_entry = mem_cgroup_move_charge_pte_range,
5408 		.mm = mc.mm,
5409 	};
5410 
5411 	lru_add_drain_all();
5412 	/*
5413 	 * Signal lock_page_memcg() to take the memcg's move_lock
5414 	 * while we're moving its pages to another memcg. Then wait
5415 	 * for already started RCU-only updates to finish.
5416 	 */
5417 	atomic_inc(&mc.from->moving_account);
5418 	synchronize_rcu();
5419 retry:
5420 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5421 		/*
5422 		 * Someone who are holding the mmap_sem might be waiting in
5423 		 * waitq. So we cancel all extra charges, wake up all waiters,
5424 		 * and retry. Because we cancel precharges, we might not be able
5425 		 * to move enough charges, but moving charge is a best-effort
5426 		 * feature anyway, so it wouldn't be a big problem.
5427 		 */
5428 		__mem_cgroup_clear_mc();
5429 		cond_resched();
5430 		goto retry;
5431 	}
5432 	/*
5433 	 * When we have consumed all precharges and failed in doing
5434 	 * additional charge, the page walk just aborts.
5435 	 */
5436 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5437 
5438 	up_read(&mc.mm->mmap_sem);
5439 	atomic_dec(&mc.from->moving_account);
5440 }
5441 
5442 static void mem_cgroup_move_task(void)
5443 {
5444 	if (mc.to) {
5445 		mem_cgroup_move_charge();
5446 		mem_cgroup_clear_mc();
5447 	}
5448 }
5449 #else	/* !CONFIG_MMU */
5450 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5451 {
5452 	return 0;
5453 }
5454 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5455 {
5456 }
5457 static void mem_cgroup_move_task(void)
5458 {
5459 }
5460 #endif
5461 
5462 /*
5463  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5464  * to verify whether we're attached to the default hierarchy on each mount
5465  * attempt.
5466  */
5467 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5468 {
5469 	/*
5470 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5471 	 * guarantees that @root doesn't have any children, so turning it
5472 	 * on for the root memcg is enough.
5473 	 */
5474 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5475 		root_mem_cgroup->use_hierarchy = true;
5476 	else
5477 		root_mem_cgroup->use_hierarchy = false;
5478 }
5479 
5480 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5481 {
5482 	if (value == PAGE_COUNTER_MAX)
5483 		seq_puts(m, "max\n");
5484 	else
5485 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5486 
5487 	return 0;
5488 }
5489 
5490 static u64 memory_current_read(struct cgroup_subsys_state *css,
5491 			       struct cftype *cft)
5492 {
5493 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5494 
5495 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5496 }
5497 
5498 static int memory_min_show(struct seq_file *m, void *v)
5499 {
5500 	return seq_puts_memcg_tunable(m,
5501 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5502 }
5503 
5504 static ssize_t memory_min_write(struct kernfs_open_file *of,
5505 				char *buf, size_t nbytes, loff_t off)
5506 {
5507 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5508 	unsigned long min;
5509 	int err;
5510 
5511 	buf = strstrip(buf);
5512 	err = page_counter_memparse(buf, "max", &min);
5513 	if (err)
5514 		return err;
5515 
5516 	page_counter_set_min(&memcg->memory, min);
5517 
5518 	return nbytes;
5519 }
5520 
5521 static int memory_low_show(struct seq_file *m, void *v)
5522 {
5523 	return seq_puts_memcg_tunable(m,
5524 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5525 }
5526 
5527 static ssize_t memory_low_write(struct kernfs_open_file *of,
5528 				char *buf, size_t nbytes, loff_t off)
5529 {
5530 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5531 	unsigned long low;
5532 	int err;
5533 
5534 	buf = strstrip(buf);
5535 	err = page_counter_memparse(buf, "max", &low);
5536 	if (err)
5537 		return err;
5538 
5539 	page_counter_set_low(&memcg->memory, low);
5540 
5541 	return nbytes;
5542 }
5543 
5544 static int memory_high_show(struct seq_file *m, void *v)
5545 {
5546 	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5547 }
5548 
5549 static ssize_t memory_high_write(struct kernfs_open_file *of,
5550 				 char *buf, size_t nbytes, loff_t off)
5551 {
5552 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5553 	unsigned long nr_pages;
5554 	unsigned long high;
5555 	int err;
5556 
5557 	buf = strstrip(buf);
5558 	err = page_counter_memparse(buf, "max", &high);
5559 	if (err)
5560 		return err;
5561 
5562 	memcg->high = high;
5563 
5564 	nr_pages = page_counter_read(&memcg->memory);
5565 	if (nr_pages > high)
5566 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5567 					     GFP_KERNEL, true);
5568 
5569 	memcg_wb_domain_size_changed(memcg);
5570 	return nbytes;
5571 }
5572 
5573 static int memory_max_show(struct seq_file *m, void *v)
5574 {
5575 	return seq_puts_memcg_tunable(m,
5576 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5577 }
5578 
5579 static ssize_t memory_max_write(struct kernfs_open_file *of,
5580 				char *buf, size_t nbytes, loff_t off)
5581 {
5582 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5583 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5584 	bool drained = false;
5585 	unsigned long max;
5586 	int err;
5587 
5588 	buf = strstrip(buf);
5589 	err = page_counter_memparse(buf, "max", &max);
5590 	if (err)
5591 		return err;
5592 
5593 	xchg(&memcg->memory.max, max);
5594 
5595 	for (;;) {
5596 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5597 
5598 		if (nr_pages <= max)
5599 			break;
5600 
5601 		if (signal_pending(current)) {
5602 			err = -EINTR;
5603 			break;
5604 		}
5605 
5606 		if (!drained) {
5607 			drain_all_stock(memcg);
5608 			drained = true;
5609 			continue;
5610 		}
5611 
5612 		if (nr_reclaims) {
5613 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5614 							  GFP_KERNEL, true))
5615 				nr_reclaims--;
5616 			continue;
5617 		}
5618 
5619 		memcg_memory_event(memcg, MEMCG_OOM);
5620 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5621 			break;
5622 	}
5623 
5624 	memcg_wb_domain_size_changed(memcg);
5625 	return nbytes;
5626 }
5627 
5628 static int memory_events_show(struct seq_file *m, void *v)
5629 {
5630 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5631 
5632 	seq_printf(m, "low %lu\n",
5633 		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5634 	seq_printf(m, "high %lu\n",
5635 		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5636 	seq_printf(m, "max %lu\n",
5637 		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5638 	seq_printf(m, "oom %lu\n",
5639 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5640 	seq_printf(m, "oom_kill %lu\n",
5641 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5642 
5643 	return 0;
5644 }
5645 
5646 static int memory_stat_show(struct seq_file *m, void *v)
5647 {
5648 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5649 	int i;
5650 
5651 	/*
5652 	 * Provide statistics on the state of the memory subsystem as
5653 	 * well as cumulative event counters that show past behavior.
5654 	 *
5655 	 * This list is ordered following a combination of these gradients:
5656 	 * 1) generic big picture -> specifics and details
5657 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5658 	 *
5659 	 * Current memory state:
5660 	 */
5661 
5662 	seq_printf(m, "anon %llu\n",
5663 		   (u64)memcg_page_state(memcg, MEMCG_RSS) * PAGE_SIZE);
5664 	seq_printf(m, "file %llu\n",
5665 		   (u64)memcg_page_state(memcg, MEMCG_CACHE) * PAGE_SIZE);
5666 	seq_printf(m, "kernel_stack %llu\n",
5667 		   (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1024);
5668 	seq_printf(m, "slab %llu\n",
5669 		   (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
5670 			 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
5671 		   PAGE_SIZE);
5672 	seq_printf(m, "sock %llu\n",
5673 		   (u64)memcg_page_state(memcg, MEMCG_SOCK) * PAGE_SIZE);
5674 
5675 	seq_printf(m, "shmem %llu\n",
5676 		   (u64)memcg_page_state(memcg, NR_SHMEM) * PAGE_SIZE);
5677 	seq_printf(m, "file_mapped %llu\n",
5678 		   (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * PAGE_SIZE);
5679 	seq_printf(m, "file_dirty %llu\n",
5680 		   (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * PAGE_SIZE);
5681 	seq_printf(m, "file_writeback %llu\n",
5682 		   (u64)memcg_page_state(memcg, NR_WRITEBACK) * PAGE_SIZE);
5683 
5684 	/*
5685 	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
5686 	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
5687 	 * arse because it requires migrating the work out of rmap to a place
5688 	 * where the page->mem_cgroup is set up and stable.
5689 	 */
5690 	seq_printf(m, "anon_thp %llu\n",
5691 		   (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * PAGE_SIZE);
5692 
5693 	for (i = 0; i < NR_LRU_LISTS; i++)
5694 		seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5695 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
5696 			   PAGE_SIZE);
5697 
5698 	seq_printf(m, "slab_reclaimable %llu\n",
5699 		   (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
5700 		   PAGE_SIZE);
5701 	seq_printf(m, "slab_unreclaimable %llu\n",
5702 		   (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
5703 		   PAGE_SIZE);
5704 
5705 	/* Accumulated memory events */
5706 
5707 	seq_printf(m, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
5708 	seq_printf(m, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
5709 
5710 	seq_printf(m, "workingset_refault %lu\n",
5711 		   memcg_page_state(memcg, WORKINGSET_REFAULT));
5712 	seq_printf(m, "workingset_activate %lu\n",
5713 		   memcg_page_state(memcg, WORKINGSET_ACTIVATE));
5714 	seq_printf(m, "workingset_nodereclaim %lu\n",
5715 		   memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
5716 
5717 	seq_printf(m, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
5718 	seq_printf(m, "pgscan %lu\n", memcg_events(memcg, PGSCAN_KSWAPD) +
5719 		   memcg_events(memcg, PGSCAN_DIRECT));
5720 	seq_printf(m, "pgsteal %lu\n", memcg_events(memcg, PGSTEAL_KSWAPD) +
5721 		   memcg_events(memcg, PGSTEAL_DIRECT));
5722 	seq_printf(m, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
5723 	seq_printf(m, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
5724 	seq_printf(m, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
5725 	seq_printf(m, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
5726 
5727 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5728 	seq_printf(m, "thp_fault_alloc %lu\n",
5729 		   memcg_events(memcg, THP_FAULT_ALLOC));
5730 	seq_printf(m, "thp_collapse_alloc %lu\n",
5731 		   memcg_events(memcg, THP_COLLAPSE_ALLOC));
5732 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5733 
5734 	return 0;
5735 }
5736 
5737 static int memory_oom_group_show(struct seq_file *m, void *v)
5738 {
5739 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5740 
5741 	seq_printf(m, "%d\n", memcg->oom_group);
5742 
5743 	return 0;
5744 }
5745 
5746 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5747 				      char *buf, size_t nbytes, loff_t off)
5748 {
5749 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5750 	int ret, oom_group;
5751 
5752 	buf = strstrip(buf);
5753 	if (!buf)
5754 		return -EINVAL;
5755 
5756 	ret = kstrtoint(buf, 0, &oom_group);
5757 	if (ret)
5758 		return ret;
5759 
5760 	if (oom_group != 0 && oom_group != 1)
5761 		return -EINVAL;
5762 
5763 	memcg->oom_group = oom_group;
5764 
5765 	return nbytes;
5766 }
5767 
5768 static struct cftype memory_files[] = {
5769 	{
5770 		.name = "current",
5771 		.flags = CFTYPE_NOT_ON_ROOT,
5772 		.read_u64 = memory_current_read,
5773 	},
5774 	{
5775 		.name = "min",
5776 		.flags = CFTYPE_NOT_ON_ROOT,
5777 		.seq_show = memory_min_show,
5778 		.write = memory_min_write,
5779 	},
5780 	{
5781 		.name = "low",
5782 		.flags = CFTYPE_NOT_ON_ROOT,
5783 		.seq_show = memory_low_show,
5784 		.write = memory_low_write,
5785 	},
5786 	{
5787 		.name = "high",
5788 		.flags = CFTYPE_NOT_ON_ROOT,
5789 		.seq_show = memory_high_show,
5790 		.write = memory_high_write,
5791 	},
5792 	{
5793 		.name = "max",
5794 		.flags = CFTYPE_NOT_ON_ROOT,
5795 		.seq_show = memory_max_show,
5796 		.write = memory_max_write,
5797 	},
5798 	{
5799 		.name = "events",
5800 		.flags = CFTYPE_NOT_ON_ROOT,
5801 		.file_offset = offsetof(struct mem_cgroup, events_file),
5802 		.seq_show = memory_events_show,
5803 	},
5804 	{
5805 		.name = "stat",
5806 		.flags = CFTYPE_NOT_ON_ROOT,
5807 		.seq_show = memory_stat_show,
5808 	},
5809 	{
5810 		.name = "oom.group",
5811 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5812 		.seq_show = memory_oom_group_show,
5813 		.write = memory_oom_group_write,
5814 	},
5815 	{ }	/* terminate */
5816 };
5817 
5818 struct cgroup_subsys memory_cgrp_subsys = {
5819 	.css_alloc = mem_cgroup_css_alloc,
5820 	.css_online = mem_cgroup_css_online,
5821 	.css_offline = mem_cgroup_css_offline,
5822 	.css_released = mem_cgroup_css_released,
5823 	.css_free = mem_cgroup_css_free,
5824 	.css_reset = mem_cgroup_css_reset,
5825 	.can_attach = mem_cgroup_can_attach,
5826 	.cancel_attach = mem_cgroup_cancel_attach,
5827 	.post_attach = mem_cgroup_move_task,
5828 	.bind = mem_cgroup_bind,
5829 	.dfl_cftypes = memory_files,
5830 	.legacy_cftypes = mem_cgroup_legacy_files,
5831 	.early_init = 0,
5832 };
5833 
5834 /**
5835  * mem_cgroup_protected - check if memory consumption is in the normal range
5836  * @root: the top ancestor of the sub-tree being checked
5837  * @memcg: the memory cgroup to check
5838  *
5839  * WARNING: This function is not stateless! It can only be used as part
5840  *          of a top-down tree iteration, not for isolated queries.
5841  *
5842  * Returns one of the following:
5843  *   MEMCG_PROT_NONE: cgroup memory is not protected
5844  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
5845  *     an unprotected supply of reclaimable memory from other cgroups.
5846  *   MEMCG_PROT_MIN: cgroup memory is protected
5847  *
5848  * @root is exclusive; it is never protected when looked at directly
5849  *
5850  * To provide a proper hierarchical behavior, effective memory.min/low values
5851  * are used. Below is the description of how effective memory.low is calculated.
5852  * Effective memory.min values is calculated in the same way.
5853  *
5854  * Effective memory.low is always equal or less than the original memory.low.
5855  * If there is no memory.low overcommittment (which is always true for
5856  * top-level memory cgroups), these two values are equal.
5857  * Otherwise, it's a part of parent's effective memory.low,
5858  * calculated as a cgroup's memory.low usage divided by sum of sibling's
5859  * memory.low usages, where memory.low usage is the size of actually
5860  * protected memory.
5861  *
5862  *                                             low_usage
5863  * elow = min( memory.low, parent->elow * ------------------ ),
5864  *                                        siblings_low_usage
5865  *
5866  *             | memory.current, if memory.current < memory.low
5867  * low_usage = |
5868  *	       | 0, otherwise.
5869  *
5870  *
5871  * Such definition of the effective memory.low provides the expected
5872  * hierarchical behavior: parent's memory.low value is limiting
5873  * children, unprotected memory is reclaimed first and cgroups,
5874  * which are not using their guarantee do not affect actual memory
5875  * distribution.
5876  *
5877  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5878  *
5879  *     A      A/memory.low = 2G, A/memory.current = 6G
5880  *    //\\
5881  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
5882  *            C/memory.low = 1G  C/memory.current = 2G
5883  *            D/memory.low = 0   D/memory.current = 2G
5884  *            E/memory.low = 10G E/memory.current = 0
5885  *
5886  * and the memory pressure is applied, the following memory distribution
5887  * is expected (approximately):
5888  *
5889  *     A/memory.current = 2G
5890  *
5891  *     B/memory.current = 1.3G
5892  *     C/memory.current = 0.6G
5893  *     D/memory.current = 0
5894  *     E/memory.current = 0
5895  *
5896  * These calculations require constant tracking of the actual low usages
5897  * (see propagate_protected_usage()), as well as recursive calculation of
5898  * effective memory.low values. But as we do call mem_cgroup_protected()
5899  * path for each memory cgroup top-down from the reclaim,
5900  * it's possible to optimize this part, and save calculated elow
5901  * for next usage. This part is intentionally racy, but it's ok,
5902  * as memory.low is a best-effort mechanism.
5903  */
5904 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5905 						struct mem_cgroup *memcg)
5906 {
5907 	struct mem_cgroup *parent;
5908 	unsigned long emin, parent_emin;
5909 	unsigned long elow, parent_elow;
5910 	unsigned long usage;
5911 
5912 	if (mem_cgroup_disabled())
5913 		return MEMCG_PROT_NONE;
5914 
5915 	if (!root)
5916 		root = root_mem_cgroup;
5917 	if (memcg == root)
5918 		return MEMCG_PROT_NONE;
5919 
5920 	usage = page_counter_read(&memcg->memory);
5921 	if (!usage)
5922 		return MEMCG_PROT_NONE;
5923 
5924 	emin = memcg->memory.min;
5925 	elow = memcg->memory.low;
5926 
5927 	parent = parent_mem_cgroup(memcg);
5928 	/* No parent means a non-hierarchical mode on v1 memcg */
5929 	if (!parent)
5930 		return MEMCG_PROT_NONE;
5931 
5932 	if (parent == root)
5933 		goto exit;
5934 
5935 	parent_emin = READ_ONCE(parent->memory.emin);
5936 	emin = min(emin, parent_emin);
5937 	if (emin && parent_emin) {
5938 		unsigned long min_usage, siblings_min_usage;
5939 
5940 		min_usage = min(usage, memcg->memory.min);
5941 		siblings_min_usage = atomic_long_read(
5942 			&parent->memory.children_min_usage);
5943 
5944 		if (min_usage && siblings_min_usage)
5945 			emin = min(emin, parent_emin * min_usage /
5946 				   siblings_min_usage);
5947 	}
5948 
5949 	parent_elow = READ_ONCE(parent->memory.elow);
5950 	elow = min(elow, parent_elow);
5951 	if (elow && parent_elow) {
5952 		unsigned long low_usage, siblings_low_usage;
5953 
5954 		low_usage = min(usage, memcg->memory.low);
5955 		siblings_low_usage = atomic_long_read(
5956 			&parent->memory.children_low_usage);
5957 
5958 		if (low_usage && siblings_low_usage)
5959 			elow = min(elow, parent_elow * low_usage /
5960 				   siblings_low_usage);
5961 	}
5962 
5963 exit:
5964 	memcg->memory.emin = emin;
5965 	memcg->memory.elow = elow;
5966 
5967 	if (usage <= emin)
5968 		return MEMCG_PROT_MIN;
5969 	else if (usage <= elow)
5970 		return MEMCG_PROT_LOW;
5971 	else
5972 		return MEMCG_PROT_NONE;
5973 }
5974 
5975 /**
5976  * mem_cgroup_try_charge - try charging a page
5977  * @page: page to charge
5978  * @mm: mm context of the victim
5979  * @gfp_mask: reclaim mode
5980  * @memcgp: charged memcg return
5981  * @compound: charge the page as compound or small page
5982  *
5983  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5984  * pages according to @gfp_mask if necessary.
5985  *
5986  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5987  * Otherwise, an error code is returned.
5988  *
5989  * After page->mapping has been set up, the caller must finalize the
5990  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5991  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5992  */
5993 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5994 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5995 			  bool compound)
5996 {
5997 	struct mem_cgroup *memcg = NULL;
5998 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5999 	int ret = 0;
6000 
6001 	if (mem_cgroup_disabled())
6002 		goto out;
6003 
6004 	if (PageSwapCache(page)) {
6005 		/*
6006 		 * Every swap fault against a single page tries to charge the
6007 		 * page, bail as early as possible.  shmem_unuse() encounters
6008 		 * already charged pages, too.  The USED bit is protected by
6009 		 * the page lock, which serializes swap cache removal, which
6010 		 * in turn serializes uncharging.
6011 		 */
6012 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6013 		if (compound_head(page)->mem_cgroup)
6014 			goto out;
6015 
6016 		if (do_swap_account) {
6017 			swp_entry_t ent = { .val = page_private(page), };
6018 			unsigned short id = lookup_swap_cgroup_id(ent);
6019 
6020 			rcu_read_lock();
6021 			memcg = mem_cgroup_from_id(id);
6022 			if (memcg && !css_tryget_online(&memcg->css))
6023 				memcg = NULL;
6024 			rcu_read_unlock();
6025 		}
6026 	}
6027 
6028 	if (!memcg)
6029 		memcg = get_mem_cgroup_from_mm(mm);
6030 
6031 	ret = try_charge(memcg, gfp_mask, nr_pages);
6032 
6033 	css_put(&memcg->css);
6034 out:
6035 	*memcgp = memcg;
6036 	return ret;
6037 }
6038 
6039 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6040 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6041 			  bool compound)
6042 {
6043 	struct mem_cgroup *memcg;
6044 	int ret;
6045 
6046 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6047 	memcg = *memcgp;
6048 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6049 	return ret;
6050 }
6051 
6052 /**
6053  * mem_cgroup_commit_charge - commit a page charge
6054  * @page: page to charge
6055  * @memcg: memcg to charge the page to
6056  * @lrucare: page might be on LRU already
6057  * @compound: charge the page as compound or small page
6058  *
6059  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6060  * after page->mapping has been set up.  This must happen atomically
6061  * as part of the page instantiation, i.e. under the page table lock
6062  * for anonymous pages, under the page lock for page and swap cache.
6063  *
6064  * In addition, the page must not be on the LRU during the commit, to
6065  * prevent racing with task migration.  If it might be, use @lrucare.
6066  *
6067  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6068  */
6069 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6070 			      bool lrucare, bool compound)
6071 {
6072 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6073 
6074 	VM_BUG_ON_PAGE(!page->mapping, page);
6075 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6076 
6077 	if (mem_cgroup_disabled())
6078 		return;
6079 	/*
6080 	 * Swap faults will attempt to charge the same page multiple
6081 	 * times.  But reuse_swap_page() might have removed the page
6082 	 * from swapcache already, so we can't check PageSwapCache().
6083 	 */
6084 	if (!memcg)
6085 		return;
6086 
6087 	commit_charge(page, memcg, lrucare);
6088 
6089 	local_irq_disable();
6090 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6091 	memcg_check_events(memcg, page);
6092 	local_irq_enable();
6093 
6094 	if (do_memsw_account() && PageSwapCache(page)) {
6095 		swp_entry_t entry = { .val = page_private(page) };
6096 		/*
6097 		 * The swap entry might not get freed for a long time,
6098 		 * let's not wait for it.  The page already received a
6099 		 * memory+swap charge, drop the swap entry duplicate.
6100 		 */
6101 		mem_cgroup_uncharge_swap(entry, nr_pages);
6102 	}
6103 }
6104 
6105 /**
6106  * mem_cgroup_cancel_charge - cancel a page charge
6107  * @page: page to charge
6108  * @memcg: memcg to charge the page to
6109  * @compound: charge the page as compound or small page
6110  *
6111  * Cancel a charge transaction started by mem_cgroup_try_charge().
6112  */
6113 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6114 		bool compound)
6115 {
6116 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6117 
6118 	if (mem_cgroup_disabled())
6119 		return;
6120 	/*
6121 	 * Swap faults will attempt to charge the same page multiple
6122 	 * times.  But reuse_swap_page() might have removed the page
6123 	 * from swapcache already, so we can't check PageSwapCache().
6124 	 */
6125 	if (!memcg)
6126 		return;
6127 
6128 	cancel_charge(memcg, nr_pages);
6129 }
6130 
6131 struct uncharge_gather {
6132 	struct mem_cgroup *memcg;
6133 	unsigned long pgpgout;
6134 	unsigned long nr_anon;
6135 	unsigned long nr_file;
6136 	unsigned long nr_kmem;
6137 	unsigned long nr_huge;
6138 	unsigned long nr_shmem;
6139 	struct page *dummy_page;
6140 };
6141 
6142 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6143 {
6144 	memset(ug, 0, sizeof(*ug));
6145 }
6146 
6147 static void uncharge_batch(const struct uncharge_gather *ug)
6148 {
6149 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6150 	unsigned long flags;
6151 
6152 	if (!mem_cgroup_is_root(ug->memcg)) {
6153 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6154 		if (do_memsw_account())
6155 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6156 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6157 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6158 		memcg_oom_recover(ug->memcg);
6159 	}
6160 
6161 	local_irq_save(flags);
6162 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6163 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6164 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6165 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6166 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6167 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6168 	memcg_check_events(ug->memcg, ug->dummy_page);
6169 	local_irq_restore(flags);
6170 
6171 	if (!mem_cgroup_is_root(ug->memcg))
6172 		css_put_many(&ug->memcg->css, nr_pages);
6173 }
6174 
6175 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6176 {
6177 	VM_BUG_ON_PAGE(PageLRU(page), page);
6178 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6179 			!PageHWPoison(page) , page);
6180 
6181 	if (!page->mem_cgroup)
6182 		return;
6183 
6184 	/*
6185 	 * Nobody should be changing or seriously looking at
6186 	 * page->mem_cgroup at this point, we have fully
6187 	 * exclusive access to the page.
6188 	 */
6189 
6190 	if (ug->memcg != page->mem_cgroup) {
6191 		if (ug->memcg) {
6192 			uncharge_batch(ug);
6193 			uncharge_gather_clear(ug);
6194 		}
6195 		ug->memcg = page->mem_cgroup;
6196 	}
6197 
6198 	if (!PageKmemcg(page)) {
6199 		unsigned int nr_pages = 1;
6200 
6201 		if (PageTransHuge(page)) {
6202 			nr_pages <<= compound_order(page);
6203 			ug->nr_huge += nr_pages;
6204 		}
6205 		if (PageAnon(page))
6206 			ug->nr_anon += nr_pages;
6207 		else {
6208 			ug->nr_file += nr_pages;
6209 			if (PageSwapBacked(page))
6210 				ug->nr_shmem += nr_pages;
6211 		}
6212 		ug->pgpgout++;
6213 	} else {
6214 		ug->nr_kmem += 1 << compound_order(page);
6215 		__ClearPageKmemcg(page);
6216 	}
6217 
6218 	ug->dummy_page = page;
6219 	page->mem_cgroup = NULL;
6220 }
6221 
6222 static void uncharge_list(struct list_head *page_list)
6223 {
6224 	struct uncharge_gather ug;
6225 	struct list_head *next;
6226 
6227 	uncharge_gather_clear(&ug);
6228 
6229 	/*
6230 	 * Note that the list can be a single page->lru; hence the
6231 	 * do-while loop instead of a simple list_for_each_entry().
6232 	 */
6233 	next = page_list->next;
6234 	do {
6235 		struct page *page;
6236 
6237 		page = list_entry(next, struct page, lru);
6238 		next = page->lru.next;
6239 
6240 		uncharge_page(page, &ug);
6241 	} while (next != page_list);
6242 
6243 	if (ug.memcg)
6244 		uncharge_batch(&ug);
6245 }
6246 
6247 /**
6248  * mem_cgroup_uncharge - uncharge a page
6249  * @page: page to uncharge
6250  *
6251  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6252  * mem_cgroup_commit_charge().
6253  */
6254 void mem_cgroup_uncharge(struct page *page)
6255 {
6256 	struct uncharge_gather ug;
6257 
6258 	if (mem_cgroup_disabled())
6259 		return;
6260 
6261 	/* Don't touch page->lru of any random page, pre-check: */
6262 	if (!page->mem_cgroup)
6263 		return;
6264 
6265 	uncharge_gather_clear(&ug);
6266 	uncharge_page(page, &ug);
6267 	uncharge_batch(&ug);
6268 }
6269 
6270 /**
6271  * mem_cgroup_uncharge_list - uncharge a list of page
6272  * @page_list: list of pages to uncharge
6273  *
6274  * Uncharge a list of pages previously charged with
6275  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6276  */
6277 void mem_cgroup_uncharge_list(struct list_head *page_list)
6278 {
6279 	if (mem_cgroup_disabled())
6280 		return;
6281 
6282 	if (!list_empty(page_list))
6283 		uncharge_list(page_list);
6284 }
6285 
6286 /**
6287  * mem_cgroup_migrate - charge a page's replacement
6288  * @oldpage: currently circulating page
6289  * @newpage: replacement page
6290  *
6291  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6292  * be uncharged upon free.
6293  *
6294  * Both pages must be locked, @newpage->mapping must be set up.
6295  */
6296 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6297 {
6298 	struct mem_cgroup *memcg;
6299 	unsigned int nr_pages;
6300 	bool compound;
6301 	unsigned long flags;
6302 
6303 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6304 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6305 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6306 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6307 		       newpage);
6308 
6309 	if (mem_cgroup_disabled())
6310 		return;
6311 
6312 	/* Page cache replacement: new page already charged? */
6313 	if (newpage->mem_cgroup)
6314 		return;
6315 
6316 	/* Swapcache readahead pages can get replaced before being charged */
6317 	memcg = oldpage->mem_cgroup;
6318 	if (!memcg)
6319 		return;
6320 
6321 	/* Force-charge the new page. The old one will be freed soon */
6322 	compound = PageTransHuge(newpage);
6323 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6324 
6325 	page_counter_charge(&memcg->memory, nr_pages);
6326 	if (do_memsw_account())
6327 		page_counter_charge(&memcg->memsw, nr_pages);
6328 	css_get_many(&memcg->css, nr_pages);
6329 
6330 	commit_charge(newpage, memcg, false);
6331 
6332 	local_irq_save(flags);
6333 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6334 	memcg_check_events(memcg, newpage);
6335 	local_irq_restore(flags);
6336 }
6337 
6338 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6339 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6340 
6341 void mem_cgroup_sk_alloc(struct sock *sk)
6342 {
6343 	struct mem_cgroup *memcg;
6344 
6345 	if (!mem_cgroup_sockets_enabled)
6346 		return;
6347 
6348 	/*
6349 	 * Socket cloning can throw us here with sk_memcg already
6350 	 * filled. It won't however, necessarily happen from
6351 	 * process context. So the test for root memcg given
6352 	 * the current task's memcg won't help us in this case.
6353 	 *
6354 	 * Respecting the original socket's memcg is a better
6355 	 * decision in this case.
6356 	 */
6357 	if (sk->sk_memcg) {
6358 		css_get(&sk->sk_memcg->css);
6359 		return;
6360 	}
6361 
6362 	rcu_read_lock();
6363 	memcg = mem_cgroup_from_task(current);
6364 	if (memcg == root_mem_cgroup)
6365 		goto out;
6366 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6367 		goto out;
6368 	if (css_tryget_online(&memcg->css))
6369 		sk->sk_memcg = memcg;
6370 out:
6371 	rcu_read_unlock();
6372 }
6373 
6374 void mem_cgroup_sk_free(struct sock *sk)
6375 {
6376 	if (sk->sk_memcg)
6377 		css_put(&sk->sk_memcg->css);
6378 }
6379 
6380 /**
6381  * mem_cgroup_charge_skmem - charge socket memory
6382  * @memcg: memcg to charge
6383  * @nr_pages: number of pages to charge
6384  *
6385  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6386  * @memcg's configured limit, %false if the charge had to be forced.
6387  */
6388 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6389 {
6390 	gfp_t gfp_mask = GFP_KERNEL;
6391 
6392 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6393 		struct page_counter *fail;
6394 
6395 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6396 			memcg->tcpmem_pressure = 0;
6397 			return true;
6398 		}
6399 		page_counter_charge(&memcg->tcpmem, nr_pages);
6400 		memcg->tcpmem_pressure = 1;
6401 		return false;
6402 	}
6403 
6404 	/* Don't block in the packet receive path */
6405 	if (in_softirq())
6406 		gfp_mask = GFP_NOWAIT;
6407 
6408 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6409 
6410 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6411 		return true;
6412 
6413 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6414 	return false;
6415 }
6416 
6417 /**
6418  * mem_cgroup_uncharge_skmem - uncharge socket memory
6419  * @memcg: memcg to uncharge
6420  * @nr_pages: number of pages to uncharge
6421  */
6422 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6423 {
6424 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6425 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6426 		return;
6427 	}
6428 
6429 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6430 
6431 	refill_stock(memcg, nr_pages);
6432 }
6433 
6434 static int __init cgroup_memory(char *s)
6435 {
6436 	char *token;
6437 
6438 	while ((token = strsep(&s, ",")) != NULL) {
6439 		if (!*token)
6440 			continue;
6441 		if (!strcmp(token, "nosocket"))
6442 			cgroup_memory_nosocket = true;
6443 		if (!strcmp(token, "nokmem"))
6444 			cgroup_memory_nokmem = true;
6445 	}
6446 	return 0;
6447 }
6448 __setup("cgroup.memory=", cgroup_memory);
6449 
6450 /*
6451  * subsys_initcall() for memory controller.
6452  *
6453  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6454  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6455  * basically everything that doesn't depend on a specific mem_cgroup structure
6456  * should be initialized from here.
6457  */
6458 static int __init mem_cgroup_init(void)
6459 {
6460 	int cpu, node;
6461 
6462 #ifdef CONFIG_MEMCG_KMEM
6463 	/*
6464 	 * Kmem cache creation is mostly done with the slab_mutex held,
6465 	 * so use a workqueue with limited concurrency to avoid stalling
6466 	 * all worker threads in case lots of cgroups are created and
6467 	 * destroyed simultaneously.
6468 	 */
6469 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6470 	BUG_ON(!memcg_kmem_cache_wq);
6471 #endif
6472 
6473 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6474 				  memcg_hotplug_cpu_dead);
6475 
6476 	for_each_possible_cpu(cpu)
6477 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6478 			  drain_local_stock);
6479 
6480 	for_each_node(node) {
6481 		struct mem_cgroup_tree_per_node *rtpn;
6482 
6483 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6484 				    node_online(node) ? node : NUMA_NO_NODE);
6485 
6486 		rtpn->rb_root = RB_ROOT;
6487 		rtpn->rb_rightmost = NULL;
6488 		spin_lock_init(&rtpn->lock);
6489 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6490 	}
6491 
6492 	return 0;
6493 }
6494 subsys_initcall(mem_cgroup_init);
6495 
6496 #ifdef CONFIG_MEMCG_SWAP
6497 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6498 {
6499 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6500 		/*
6501 		 * The root cgroup cannot be destroyed, so it's refcount must
6502 		 * always be >= 1.
6503 		 */
6504 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6505 			VM_BUG_ON(1);
6506 			break;
6507 		}
6508 		memcg = parent_mem_cgroup(memcg);
6509 		if (!memcg)
6510 			memcg = root_mem_cgroup;
6511 	}
6512 	return memcg;
6513 }
6514 
6515 /**
6516  * mem_cgroup_swapout - transfer a memsw charge to swap
6517  * @page: page whose memsw charge to transfer
6518  * @entry: swap entry to move the charge to
6519  *
6520  * Transfer the memsw charge of @page to @entry.
6521  */
6522 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6523 {
6524 	struct mem_cgroup *memcg, *swap_memcg;
6525 	unsigned int nr_entries;
6526 	unsigned short oldid;
6527 
6528 	VM_BUG_ON_PAGE(PageLRU(page), page);
6529 	VM_BUG_ON_PAGE(page_count(page), page);
6530 
6531 	if (!do_memsw_account())
6532 		return;
6533 
6534 	memcg = page->mem_cgroup;
6535 
6536 	/* Readahead page, never charged */
6537 	if (!memcg)
6538 		return;
6539 
6540 	/*
6541 	 * In case the memcg owning these pages has been offlined and doesn't
6542 	 * have an ID allocated to it anymore, charge the closest online
6543 	 * ancestor for the swap instead and transfer the memory+swap charge.
6544 	 */
6545 	swap_memcg = mem_cgroup_id_get_online(memcg);
6546 	nr_entries = hpage_nr_pages(page);
6547 	/* Get references for the tail pages, too */
6548 	if (nr_entries > 1)
6549 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6550 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6551 				   nr_entries);
6552 	VM_BUG_ON_PAGE(oldid, page);
6553 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6554 
6555 	page->mem_cgroup = NULL;
6556 
6557 	if (!mem_cgroup_is_root(memcg))
6558 		page_counter_uncharge(&memcg->memory, nr_entries);
6559 
6560 	if (memcg != swap_memcg) {
6561 		if (!mem_cgroup_is_root(swap_memcg))
6562 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6563 		page_counter_uncharge(&memcg->memsw, nr_entries);
6564 	}
6565 
6566 	/*
6567 	 * Interrupts should be disabled here because the caller holds the
6568 	 * i_pages lock which is taken with interrupts-off. It is
6569 	 * important here to have the interrupts disabled because it is the
6570 	 * only synchronisation we have for updating the per-CPU variables.
6571 	 */
6572 	VM_BUG_ON(!irqs_disabled());
6573 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6574 				     -nr_entries);
6575 	memcg_check_events(memcg, page);
6576 
6577 	if (!mem_cgroup_is_root(memcg))
6578 		css_put_many(&memcg->css, nr_entries);
6579 }
6580 
6581 /**
6582  * mem_cgroup_try_charge_swap - try charging swap space for a page
6583  * @page: page being added to swap
6584  * @entry: swap entry to charge
6585  *
6586  * Try to charge @page's memcg for the swap space at @entry.
6587  *
6588  * Returns 0 on success, -ENOMEM on failure.
6589  */
6590 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6591 {
6592 	unsigned int nr_pages = hpage_nr_pages(page);
6593 	struct page_counter *counter;
6594 	struct mem_cgroup *memcg;
6595 	unsigned short oldid;
6596 
6597 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6598 		return 0;
6599 
6600 	memcg = page->mem_cgroup;
6601 
6602 	/* Readahead page, never charged */
6603 	if (!memcg)
6604 		return 0;
6605 
6606 	if (!entry.val) {
6607 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6608 		return 0;
6609 	}
6610 
6611 	memcg = mem_cgroup_id_get_online(memcg);
6612 
6613 	if (!mem_cgroup_is_root(memcg) &&
6614 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6615 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6616 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6617 		mem_cgroup_id_put(memcg);
6618 		return -ENOMEM;
6619 	}
6620 
6621 	/* Get references for the tail pages, too */
6622 	if (nr_pages > 1)
6623 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6624 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6625 	VM_BUG_ON_PAGE(oldid, page);
6626 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6627 
6628 	return 0;
6629 }
6630 
6631 /**
6632  * mem_cgroup_uncharge_swap - uncharge swap space
6633  * @entry: swap entry to uncharge
6634  * @nr_pages: the amount of swap space to uncharge
6635  */
6636 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6637 {
6638 	struct mem_cgroup *memcg;
6639 	unsigned short id;
6640 
6641 	if (!do_swap_account)
6642 		return;
6643 
6644 	id = swap_cgroup_record(entry, 0, nr_pages);
6645 	rcu_read_lock();
6646 	memcg = mem_cgroup_from_id(id);
6647 	if (memcg) {
6648 		if (!mem_cgroup_is_root(memcg)) {
6649 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6650 				page_counter_uncharge(&memcg->swap, nr_pages);
6651 			else
6652 				page_counter_uncharge(&memcg->memsw, nr_pages);
6653 		}
6654 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6655 		mem_cgroup_id_put_many(memcg, nr_pages);
6656 	}
6657 	rcu_read_unlock();
6658 }
6659 
6660 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6661 {
6662 	long nr_swap_pages = get_nr_swap_pages();
6663 
6664 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6665 		return nr_swap_pages;
6666 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6667 		nr_swap_pages = min_t(long, nr_swap_pages,
6668 				      READ_ONCE(memcg->swap.max) -
6669 				      page_counter_read(&memcg->swap));
6670 	return nr_swap_pages;
6671 }
6672 
6673 bool mem_cgroup_swap_full(struct page *page)
6674 {
6675 	struct mem_cgroup *memcg;
6676 
6677 	VM_BUG_ON_PAGE(!PageLocked(page), page);
6678 
6679 	if (vm_swap_full())
6680 		return true;
6681 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6682 		return false;
6683 
6684 	memcg = page->mem_cgroup;
6685 	if (!memcg)
6686 		return false;
6687 
6688 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6689 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6690 			return true;
6691 
6692 	return false;
6693 }
6694 
6695 /* for remember boot option*/
6696 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6697 static int really_do_swap_account __initdata = 1;
6698 #else
6699 static int really_do_swap_account __initdata;
6700 #endif
6701 
6702 static int __init enable_swap_account(char *s)
6703 {
6704 	if (!strcmp(s, "1"))
6705 		really_do_swap_account = 1;
6706 	else if (!strcmp(s, "0"))
6707 		really_do_swap_account = 0;
6708 	return 1;
6709 }
6710 __setup("swapaccount=", enable_swap_account);
6711 
6712 static u64 swap_current_read(struct cgroup_subsys_state *css,
6713 			     struct cftype *cft)
6714 {
6715 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6716 
6717 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6718 }
6719 
6720 static int swap_max_show(struct seq_file *m, void *v)
6721 {
6722 	return seq_puts_memcg_tunable(m,
6723 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6724 }
6725 
6726 static ssize_t swap_max_write(struct kernfs_open_file *of,
6727 			      char *buf, size_t nbytes, loff_t off)
6728 {
6729 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6730 	unsigned long max;
6731 	int err;
6732 
6733 	buf = strstrip(buf);
6734 	err = page_counter_memparse(buf, "max", &max);
6735 	if (err)
6736 		return err;
6737 
6738 	xchg(&memcg->swap.max, max);
6739 
6740 	return nbytes;
6741 }
6742 
6743 static int swap_events_show(struct seq_file *m, void *v)
6744 {
6745 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6746 
6747 	seq_printf(m, "max %lu\n",
6748 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6749 	seq_printf(m, "fail %lu\n",
6750 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6751 
6752 	return 0;
6753 }
6754 
6755 static struct cftype swap_files[] = {
6756 	{
6757 		.name = "swap.current",
6758 		.flags = CFTYPE_NOT_ON_ROOT,
6759 		.read_u64 = swap_current_read,
6760 	},
6761 	{
6762 		.name = "swap.max",
6763 		.flags = CFTYPE_NOT_ON_ROOT,
6764 		.seq_show = swap_max_show,
6765 		.write = swap_max_write,
6766 	},
6767 	{
6768 		.name = "swap.events",
6769 		.flags = CFTYPE_NOT_ON_ROOT,
6770 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
6771 		.seq_show = swap_events_show,
6772 	},
6773 	{ }	/* terminate */
6774 };
6775 
6776 static struct cftype memsw_cgroup_files[] = {
6777 	{
6778 		.name = "memsw.usage_in_bytes",
6779 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6780 		.read_u64 = mem_cgroup_read_u64,
6781 	},
6782 	{
6783 		.name = "memsw.max_usage_in_bytes",
6784 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6785 		.write = mem_cgroup_reset,
6786 		.read_u64 = mem_cgroup_read_u64,
6787 	},
6788 	{
6789 		.name = "memsw.limit_in_bytes",
6790 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6791 		.write = mem_cgroup_write,
6792 		.read_u64 = mem_cgroup_read_u64,
6793 	},
6794 	{
6795 		.name = "memsw.failcnt",
6796 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6797 		.write = mem_cgroup_reset,
6798 		.read_u64 = mem_cgroup_read_u64,
6799 	},
6800 	{ },	/* terminate */
6801 };
6802 
6803 static int __init mem_cgroup_swap_init(void)
6804 {
6805 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6806 		do_swap_account = 1;
6807 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6808 					       swap_files));
6809 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6810 						  memsw_cgroup_files));
6811 	}
6812 	return 0;
6813 }
6814 subsys_initcall(mem_cgroup_swap_init);
6815 
6816 #endif /* CONFIG_MEMCG_SWAP */
6817