1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/mm.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include <linux/seq_buf.h> 61 #include "internal.h" 62 #include <net/sock.h> 63 #include <net/ip.h> 64 #include "slab.h" 65 66 #include <linux/uaccess.h> 67 68 #include <trace/events/vmscan.h> 69 70 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 71 EXPORT_SYMBOL(memory_cgrp_subsys); 72 73 struct mem_cgroup *root_mem_cgroup __read_mostly; 74 75 #define MEM_CGROUP_RECLAIM_RETRIES 5 76 77 /* Socket memory accounting disabled? */ 78 static bool cgroup_memory_nosocket; 79 80 /* Kernel memory accounting disabled? */ 81 static bool cgroup_memory_nokmem; 82 83 /* Whether the swap controller is active */ 84 #ifdef CONFIG_MEMCG_SWAP 85 int do_swap_account __read_mostly; 86 #else 87 #define do_swap_account 0 88 #endif 89 90 /* Whether legacy memory+swap accounting is active */ 91 static bool do_memsw_account(void) 92 { 93 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 94 } 95 96 static const char *const mem_cgroup_lru_names[] = { 97 "inactive_anon", 98 "active_anon", 99 "inactive_file", 100 "active_file", 101 "unevictable", 102 }; 103 104 #define THRESHOLDS_EVENTS_TARGET 128 105 #define SOFTLIMIT_EVENTS_TARGET 1024 106 #define NUMAINFO_EVENTS_TARGET 1024 107 108 /* 109 * Cgroups above their limits are maintained in a RB-Tree, independent of 110 * their hierarchy representation 111 */ 112 113 struct mem_cgroup_tree_per_node { 114 struct rb_root rb_root; 115 struct rb_node *rb_rightmost; 116 spinlock_t lock; 117 }; 118 119 struct mem_cgroup_tree { 120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 121 }; 122 123 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 124 125 /* for OOM */ 126 struct mem_cgroup_eventfd_list { 127 struct list_head list; 128 struct eventfd_ctx *eventfd; 129 }; 130 131 /* 132 * cgroup_event represents events which userspace want to receive. 133 */ 134 struct mem_cgroup_event { 135 /* 136 * memcg which the event belongs to. 137 */ 138 struct mem_cgroup *memcg; 139 /* 140 * eventfd to signal userspace about the event. 141 */ 142 struct eventfd_ctx *eventfd; 143 /* 144 * Each of these stored in a list by the cgroup. 145 */ 146 struct list_head list; 147 /* 148 * register_event() callback will be used to add new userspace 149 * waiter for changes related to this event. Use eventfd_signal() 150 * on eventfd to send notification to userspace. 151 */ 152 int (*register_event)(struct mem_cgroup *memcg, 153 struct eventfd_ctx *eventfd, const char *args); 154 /* 155 * unregister_event() callback will be called when userspace closes 156 * the eventfd or on cgroup removing. This callback must be set, 157 * if you want provide notification functionality. 158 */ 159 void (*unregister_event)(struct mem_cgroup *memcg, 160 struct eventfd_ctx *eventfd); 161 /* 162 * All fields below needed to unregister event when 163 * userspace closes eventfd. 164 */ 165 poll_table pt; 166 wait_queue_head_t *wqh; 167 wait_queue_entry_t wait; 168 struct work_struct remove; 169 }; 170 171 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 173 174 /* Stuffs for move charges at task migration. */ 175 /* 176 * Types of charges to be moved. 177 */ 178 #define MOVE_ANON 0x1U 179 #define MOVE_FILE 0x2U 180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 181 182 /* "mc" and its members are protected by cgroup_mutex */ 183 static struct move_charge_struct { 184 spinlock_t lock; /* for from, to */ 185 struct mm_struct *mm; 186 struct mem_cgroup *from; 187 struct mem_cgroup *to; 188 unsigned long flags; 189 unsigned long precharge; 190 unsigned long moved_charge; 191 unsigned long moved_swap; 192 struct task_struct *moving_task; /* a task moving charges */ 193 wait_queue_head_t waitq; /* a waitq for other context */ 194 } mc = { 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 197 }; 198 199 /* 200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 201 * limit reclaim to prevent infinite loops, if they ever occur. 202 */ 203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 205 206 enum charge_type { 207 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 208 MEM_CGROUP_CHARGE_TYPE_ANON, 209 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 210 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 211 NR_CHARGE_TYPE, 212 }; 213 214 /* for encoding cft->private value on file */ 215 enum res_type { 216 _MEM, 217 _MEMSWAP, 218 _OOM_TYPE, 219 _KMEM, 220 _TCP, 221 }; 222 223 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 224 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 225 #define MEMFILE_ATTR(val) ((val) & 0xffff) 226 /* Used for OOM nofiier */ 227 #define OOM_CONTROL (0) 228 229 /* 230 * Iteration constructs for visiting all cgroups (under a tree). If 231 * loops are exited prematurely (break), mem_cgroup_iter_break() must 232 * be used for reference counting. 233 */ 234 #define for_each_mem_cgroup_tree(iter, root) \ 235 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 236 iter != NULL; \ 237 iter = mem_cgroup_iter(root, iter, NULL)) 238 239 #define for_each_mem_cgroup(iter) \ 240 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 241 iter != NULL; \ 242 iter = mem_cgroup_iter(NULL, iter, NULL)) 243 244 static inline bool should_force_charge(void) 245 { 246 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 247 (current->flags & PF_EXITING); 248 } 249 250 /* Some nice accessors for the vmpressure. */ 251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 252 { 253 if (!memcg) 254 memcg = root_mem_cgroup; 255 return &memcg->vmpressure; 256 } 257 258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 259 { 260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 261 } 262 263 #ifdef CONFIG_MEMCG_KMEM 264 /* 265 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 266 * The main reason for not using cgroup id for this: 267 * this works better in sparse environments, where we have a lot of memcgs, 268 * but only a few kmem-limited. Or also, if we have, for instance, 200 269 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 270 * 200 entry array for that. 271 * 272 * The current size of the caches array is stored in memcg_nr_cache_ids. It 273 * will double each time we have to increase it. 274 */ 275 static DEFINE_IDA(memcg_cache_ida); 276 int memcg_nr_cache_ids; 277 278 /* Protects memcg_nr_cache_ids */ 279 static DECLARE_RWSEM(memcg_cache_ids_sem); 280 281 void memcg_get_cache_ids(void) 282 { 283 down_read(&memcg_cache_ids_sem); 284 } 285 286 void memcg_put_cache_ids(void) 287 { 288 up_read(&memcg_cache_ids_sem); 289 } 290 291 /* 292 * MIN_SIZE is different than 1, because we would like to avoid going through 293 * the alloc/free process all the time. In a small machine, 4 kmem-limited 294 * cgroups is a reasonable guess. In the future, it could be a parameter or 295 * tunable, but that is strictly not necessary. 296 * 297 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 298 * this constant directly from cgroup, but it is understandable that this is 299 * better kept as an internal representation in cgroup.c. In any case, the 300 * cgrp_id space is not getting any smaller, and we don't have to necessarily 301 * increase ours as well if it increases. 302 */ 303 #define MEMCG_CACHES_MIN_SIZE 4 304 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 305 306 /* 307 * A lot of the calls to the cache allocation functions are expected to be 308 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 309 * conditional to this static branch, we'll have to allow modules that does 310 * kmem_cache_alloc and the such to see this symbol as well 311 */ 312 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 313 EXPORT_SYMBOL(memcg_kmem_enabled_key); 314 315 struct workqueue_struct *memcg_kmem_cache_wq; 316 317 static int memcg_shrinker_map_size; 318 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 319 320 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 321 { 322 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 323 } 324 325 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 326 int size, int old_size) 327 { 328 struct memcg_shrinker_map *new, *old; 329 int nid; 330 331 lockdep_assert_held(&memcg_shrinker_map_mutex); 332 333 for_each_node(nid) { 334 old = rcu_dereference_protected( 335 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 336 /* Not yet online memcg */ 337 if (!old) 338 return 0; 339 340 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); 341 if (!new) 342 return -ENOMEM; 343 344 /* Set all old bits, clear all new bits */ 345 memset(new->map, (int)0xff, old_size); 346 memset((void *)new->map + old_size, 0, size - old_size); 347 348 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 349 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 350 } 351 352 return 0; 353 } 354 355 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 356 { 357 struct mem_cgroup_per_node *pn; 358 struct memcg_shrinker_map *map; 359 int nid; 360 361 if (mem_cgroup_is_root(memcg)) 362 return; 363 364 for_each_node(nid) { 365 pn = mem_cgroup_nodeinfo(memcg, nid); 366 map = rcu_dereference_protected(pn->shrinker_map, true); 367 if (map) 368 kvfree(map); 369 rcu_assign_pointer(pn->shrinker_map, NULL); 370 } 371 } 372 373 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 374 { 375 struct memcg_shrinker_map *map; 376 int nid, size, ret = 0; 377 378 if (mem_cgroup_is_root(memcg)) 379 return 0; 380 381 mutex_lock(&memcg_shrinker_map_mutex); 382 size = memcg_shrinker_map_size; 383 for_each_node(nid) { 384 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); 385 if (!map) { 386 memcg_free_shrinker_maps(memcg); 387 ret = -ENOMEM; 388 break; 389 } 390 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 391 } 392 mutex_unlock(&memcg_shrinker_map_mutex); 393 394 return ret; 395 } 396 397 int memcg_expand_shrinker_maps(int new_id) 398 { 399 int size, old_size, ret = 0; 400 struct mem_cgroup *memcg; 401 402 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 403 old_size = memcg_shrinker_map_size; 404 if (size <= old_size) 405 return 0; 406 407 mutex_lock(&memcg_shrinker_map_mutex); 408 if (!root_mem_cgroup) 409 goto unlock; 410 411 for_each_mem_cgroup(memcg) { 412 if (mem_cgroup_is_root(memcg)) 413 continue; 414 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 415 if (ret) 416 goto unlock; 417 } 418 unlock: 419 if (!ret) 420 memcg_shrinker_map_size = size; 421 mutex_unlock(&memcg_shrinker_map_mutex); 422 return ret; 423 } 424 425 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 426 { 427 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 428 struct memcg_shrinker_map *map; 429 430 rcu_read_lock(); 431 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 432 /* Pairs with smp mb in shrink_slab() */ 433 smp_mb__before_atomic(); 434 set_bit(shrinker_id, map->map); 435 rcu_read_unlock(); 436 } 437 } 438 439 #else /* CONFIG_MEMCG_KMEM */ 440 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 441 { 442 return 0; 443 } 444 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { } 445 #endif /* CONFIG_MEMCG_KMEM */ 446 447 /** 448 * mem_cgroup_css_from_page - css of the memcg associated with a page 449 * @page: page of interest 450 * 451 * If memcg is bound to the default hierarchy, css of the memcg associated 452 * with @page is returned. The returned css remains associated with @page 453 * until it is released. 454 * 455 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 456 * is returned. 457 */ 458 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 459 { 460 struct mem_cgroup *memcg; 461 462 memcg = page->mem_cgroup; 463 464 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 465 memcg = root_mem_cgroup; 466 467 return &memcg->css; 468 } 469 470 /** 471 * page_cgroup_ino - return inode number of the memcg a page is charged to 472 * @page: the page 473 * 474 * Look up the closest online ancestor of the memory cgroup @page is charged to 475 * and return its inode number or 0 if @page is not charged to any cgroup. It 476 * is safe to call this function without holding a reference to @page. 477 * 478 * Note, this function is inherently racy, because there is nothing to prevent 479 * the cgroup inode from getting torn down and potentially reallocated a moment 480 * after page_cgroup_ino() returns, so it only should be used by callers that 481 * do not care (such as procfs interfaces). 482 */ 483 ino_t page_cgroup_ino(struct page *page) 484 { 485 struct mem_cgroup *memcg; 486 unsigned long ino = 0; 487 488 rcu_read_lock(); 489 if (PageHead(page) && PageSlab(page)) 490 memcg = memcg_from_slab_page(page); 491 else 492 memcg = READ_ONCE(page->mem_cgroup); 493 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 494 memcg = parent_mem_cgroup(memcg); 495 if (memcg) 496 ino = cgroup_ino(memcg->css.cgroup); 497 rcu_read_unlock(); 498 return ino; 499 } 500 501 static struct mem_cgroup_per_node * 502 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 503 { 504 int nid = page_to_nid(page); 505 506 return memcg->nodeinfo[nid]; 507 } 508 509 static struct mem_cgroup_tree_per_node * 510 soft_limit_tree_node(int nid) 511 { 512 return soft_limit_tree.rb_tree_per_node[nid]; 513 } 514 515 static struct mem_cgroup_tree_per_node * 516 soft_limit_tree_from_page(struct page *page) 517 { 518 int nid = page_to_nid(page); 519 520 return soft_limit_tree.rb_tree_per_node[nid]; 521 } 522 523 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 524 struct mem_cgroup_tree_per_node *mctz, 525 unsigned long new_usage_in_excess) 526 { 527 struct rb_node **p = &mctz->rb_root.rb_node; 528 struct rb_node *parent = NULL; 529 struct mem_cgroup_per_node *mz_node; 530 bool rightmost = true; 531 532 if (mz->on_tree) 533 return; 534 535 mz->usage_in_excess = new_usage_in_excess; 536 if (!mz->usage_in_excess) 537 return; 538 while (*p) { 539 parent = *p; 540 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 541 tree_node); 542 if (mz->usage_in_excess < mz_node->usage_in_excess) { 543 p = &(*p)->rb_left; 544 rightmost = false; 545 } 546 547 /* 548 * We can't avoid mem cgroups that are over their soft 549 * limit by the same amount 550 */ 551 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 552 p = &(*p)->rb_right; 553 } 554 555 if (rightmost) 556 mctz->rb_rightmost = &mz->tree_node; 557 558 rb_link_node(&mz->tree_node, parent, p); 559 rb_insert_color(&mz->tree_node, &mctz->rb_root); 560 mz->on_tree = true; 561 } 562 563 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 564 struct mem_cgroup_tree_per_node *mctz) 565 { 566 if (!mz->on_tree) 567 return; 568 569 if (&mz->tree_node == mctz->rb_rightmost) 570 mctz->rb_rightmost = rb_prev(&mz->tree_node); 571 572 rb_erase(&mz->tree_node, &mctz->rb_root); 573 mz->on_tree = false; 574 } 575 576 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 577 struct mem_cgroup_tree_per_node *mctz) 578 { 579 unsigned long flags; 580 581 spin_lock_irqsave(&mctz->lock, flags); 582 __mem_cgroup_remove_exceeded(mz, mctz); 583 spin_unlock_irqrestore(&mctz->lock, flags); 584 } 585 586 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 587 { 588 unsigned long nr_pages = page_counter_read(&memcg->memory); 589 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 590 unsigned long excess = 0; 591 592 if (nr_pages > soft_limit) 593 excess = nr_pages - soft_limit; 594 595 return excess; 596 } 597 598 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 599 { 600 unsigned long excess; 601 struct mem_cgroup_per_node *mz; 602 struct mem_cgroup_tree_per_node *mctz; 603 604 mctz = soft_limit_tree_from_page(page); 605 if (!mctz) 606 return; 607 /* 608 * Necessary to update all ancestors when hierarchy is used. 609 * because their event counter is not touched. 610 */ 611 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 612 mz = mem_cgroup_page_nodeinfo(memcg, page); 613 excess = soft_limit_excess(memcg); 614 /* 615 * We have to update the tree if mz is on RB-tree or 616 * mem is over its softlimit. 617 */ 618 if (excess || mz->on_tree) { 619 unsigned long flags; 620 621 spin_lock_irqsave(&mctz->lock, flags); 622 /* if on-tree, remove it */ 623 if (mz->on_tree) 624 __mem_cgroup_remove_exceeded(mz, mctz); 625 /* 626 * Insert again. mz->usage_in_excess will be updated. 627 * If excess is 0, no tree ops. 628 */ 629 __mem_cgroup_insert_exceeded(mz, mctz, excess); 630 spin_unlock_irqrestore(&mctz->lock, flags); 631 } 632 } 633 } 634 635 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 636 { 637 struct mem_cgroup_tree_per_node *mctz; 638 struct mem_cgroup_per_node *mz; 639 int nid; 640 641 for_each_node(nid) { 642 mz = mem_cgroup_nodeinfo(memcg, nid); 643 mctz = soft_limit_tree_node(nid); 644 if (mctz) 645 mem_cgroup_remove_exceeded(mz, mctz); 646 } 647 } 648 649 static struct mem_cgroup_per_node * 650 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 651 { 652 struct mem_cgroup_per_node *mz; 653 654 retry: 655 mz = NULL; 656 if (!mctz->rb_rightmost) 657 goto done; /* Nothing to reclaim from */ 658 659 mz = rb_entry(mctz->rb_rightmost, 660 struct mem_cgroup_per_node, tree_node); 661 /* 662 * Remove the node now but someone else can add it back, 663 * we will to add it back at the end of reclaim to its correct 664 * position in the tree. 665 */ 666 __mem_cgroup_remove_exceeded(mz, mctz); 667 if (!soft_limit_excess(mz->memcg) || 668 !css_tryget_online(&mz->memcg->css)) 669 goto retry; 670 done: 671 return mz; 672 } 673 674 static struct mem_cgroup_per_node * 675 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 676 { 677 struct mem_cgroup_per_node *mz; 678 679 spin_lock_irq(&mctz->lock); 680 mz = __mem_cgroup_largest_soft_limit_node(mctz); 681 spin_unlock_irq(&mctz->lock); 682 return mz; 683 } 684 685 /** 686 * __mod_memcg_state - update cgroup memory statistics 687 * @memcg: the memory cgroup 688 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 689 * @val: delta to add to the counter, can be negative 690 */ 691 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 692 { 693 long x; 694 695 if (mem_cgroup_disabled()) 696 return; 697 698 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 699 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 700 struct mem_cgroup *mi; 701 702 /* 703 * Batch local counters to keep them in sync with 704 * the hierarchical ones. 705 */ 706 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 707 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 708 atomic_long_add(x, &mi->vmstats[idx]); 709 x = 0; 710 } 711 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 712 } 713 714 static struct mem_cgroup_per_node * 715 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 716 { 717 struct mem_cgroup *parent; 718 719 parent = parent_mem_cgroup(pn->memcg); 720 if (!parent) 721 return NULL; 722 return mem_cgroup_nodeinfo(parent, nid); 723 } 724 725 /** 726 * __mod_lruvec_state - update lruvec memory statistics 727 * @lruvec: the lruvec 728 * @idx: the stat item 729 * @val: delta to add to the counter, can be negative 730 * 731 * The lruvec is the intersection of the NUMA node and a cgroup. This 732 * function updates the all three counters that are affected by a 733 * change of state at this level: per-node, per-cgroup, per-lruvec. 734 */ 735 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 736 int val) 737 { 738 pg_data_t *pgdat = lruvec_pgdat(lruvec); 739 struct mem_cgroup_per_node *pn; 740 struct mem_cgroup *memcg; 741 long x; 742 743 /* Update node */ 744 __mod_node_page_state(pgdat, idx, val); 745 746 if (mem_cgroup_disabled()) 747 return; 748 749 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 750 memcg = pn->memcg; 751 752 /* Update memcg */ 753 __mod_memcg_state(memcg, idx, val); 754 755 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 756 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 757 struct mem_cgroup_per_node *pi; 758 759 /* 760 * Batch local counters to keep them in sync with 761 * the hierarchical ones. 762 */ 763 __this_cpu_add(pn->lruvec_stat_local->count[idx], x); 764 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 765 atomic_long_add(x, &pi->lruvec_stat[idx]); 766 x = 0; 767 } 768 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 769 } 770 771 /** 772 * __count_memcg_events - account VM events in a cgroup 773 * @memcg: the memory cgroup 774 * @idx: the event item 775 * @count: the number of events that occured 776 */ 777 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 778 unsigned long count) 779 { 780 unsigned long x; 781 782 if (mem_cgroup_disabled()) 783 return; 784 785 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 786 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 787 struct mem_cgroup *mi; 788 789 /* 790 * Batch local counters to keep them in sync with 791 * the hierarchical ones. 792 */ 793 __this_cpu_add(memcg->vmstats_local->events[idx], x); 794 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 795 atomic_long_add(x, &mi->vmevents[idx]); 796 x = 0; 797 } 798 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 799 } 800 801 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 802 { 803 return atomic_long_read(&memcg->vmevents[event]); 804 } 805 806 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 807 { 808 long x = 0; 809 int cpu; 810 811 for_each_possible_cpu(cpu) 812 x += per_cpu(memcg->vmstats_local->events[event], cpu); 813 return x; 814 } 815 816 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 817 struct page *page, 818 bool compound, int nr_pages) 819 { 820 /* 821 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 822 * counted as CACHE even if it's on ANON LRU. 823 */ 824 if (PageAnon(page)) 825 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 826 else { 827 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 828 if (PageSwapBacked(page)) 829 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 830 } 831 832 if (compound) { 833 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 834 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 835 } 836 837 /* pagein of a big page is an event. So, ignore page size */ 838 if (nr_pages > 0) 839 __count_memcg_events(memcg, PGPGIN, 1); 840 else { 841 __count_memcg_events(memcg, PGPGOUT, 1); 842 nr_pages = -nr_pages; /* for event */ 843 } 844 845 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 846 } 847 848 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 849 enum mem_cgroup_events_target target) 850 { 851 unsigned long val, next; 852 853 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 854 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 855 /* from time_after() in jiffies.h */ 856 if ((long)(next - val) < 0) { 857 switch (target) { 858 case MEM_CGROUP_TARGET_THRESH: 859 next = val + THRESHOLDS_EVENTS_TARGET; 860 break; 861 case MEM_CGROUP_TARGET_SOFTLIMIT: 862 next = val + SOFTLIMIT_EVENTS_TARGET; 863 break; 864 case MEM_CGROUP_TARGET_NUMAINFO: 865 next = val + NUMAINFO_EVENTS_TARGET; 866 break; 867 default: 868 break; 869 } 870 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 871 return true; 872 } 873 return false; 874 } 875 876 /* 877 * Check events in order. 878 * 879 */ 880 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 881 { 882 /* threshold event is triggered in finer grain than soft limit */ 883 if (unlikely(mem_cgroup_event_ratelimit(memcg, 884 MEM_CGROUP_TARGET_THRESH))) { 885 bool do_softlimit; 886 bool do_numainfo __maybe_unused; 887 888 do_softlimit = mem_cgroup_event_ratelimit(memcg, 889 MEM_CGROUP_TARGET_SOFTLIMIT); 890 #if MAX_NUMNODES > 1 891 do_numainfo = mem_cgroup_event_ratelimit(memcg, 892 MEM_CGROUP_TARGET_NUMAINFO); 893 #endif 894 mem_cgroup_threshold(memcg); 895 if (unlikely(do_softlimit)) 896 mem_cgroup_update_tree(memcg, page); 897 #if MAX_NUMNODES > 1 898 if (unlikely(do_numainfo)) 899 atomic_inc(&memcg->numainfo_events); 900 #endif 901 } 902 } 903 904 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 905 { 906 /* 907 * mm_update_next_owner() may clear mm->owner to NULL 908 * if it races with swapoff, page migration, etc. 909 * So this can be called with p == NULL. 910 */ 911 if (unlikely(!p)) 912 return NULL; 913 914 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 915 } 916 EXPORT_SYMBOL(mem_cgroup_from_task); 917 918 /** 919 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 920 * @mm: mm from which memcg should be extracted. It can be NULL. 921 * 922 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 923 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 924 * returned. 925 */ 926 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 927 { 928 struct mem_cgroup *memcg; 929 930 if (mem_cgroup_disabled()) 931 return NULL; 932 933 rcu_read_lock(); 934 do { 935 /* 936 * Page cache insertions can happen withou an 937 * actual mm context, e.g. during disk probing 938 * on boot, loopback IO, acct() writes etc. 939 */ 940 if (unlikely(!mm)) 941 memcg = root_mem_cgroup; 942 else { 943 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 944 if (unlikely(!memcg)) 945 memcg = root_mem_cgroup; 946 } 947 } while (!css_tryget_online(&memcg->css)); 948 rcu_read_unlock(); 949 return memcg; 950 } 951 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 952 953 /** 954 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 955 * @page: page from which memcg should be extracted. 956 * 957 * Obtain a reference on page->memcg and returns it if successful. Otherwise 958 * root_mem_cgroup is returned. 959 */ 960 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 961 { 962 struct mem_cgroup *memcg = page->mem_cgroup; 963 964 if (mem_cgroup_disabled()) 965 return NULL; 966 967 rcu_read_lock(); 968 if (!memcg || !css_tryget_online(&memcg->css)) 969 memcg = root_mem_cgroup; 970 rcu_read_unlock(); 971 return memcg; 972 } 973 EXPORT_SYMBOL(get_mem_cgroup_from_page); 974 975 /** 976 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 977 */ 978 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 979 { 980 if (unlikely(current->active_memcg)) { 981 struct mem_cgroup *memcg = root_mem_cgroup; 982 983 rcu_read_lock(); 984 if (css_tryget_online(¤t->active_memcg->css)) 985 memcg = current->active_memcg; 986 rcu_read_unlock(); 987 return memcg; 988 } 989 return get_mem_cgroup_from_mm(current->mm); 990 } 991 992 /** 993 * mem_cgroup_iter - iterate over memory cgroup hierarchy 994 * @root: hierarchy root 995 * @prev: previously returned memcg, NULL on first invocation 996 * @reclaim: cookie for shared reclaim walks, NULL for full walks 997 * 998 * Returns references to children of the hierarchy below @root, or 999 * @root itself, or %NULL after a full round-trip. 1000 * 1001 * Caller must pass the return value in @prev on subsequent 1002 * invocations for reference counting, or use mem_cgroup_iter_break() 1003 * to cancel a hierarchy walk before the round-trip is complete. 1004 * 1005 * Reclaimers can specify a node and a priority level in @reclaim to 1006 * divide up the memcgs in the hierarchy among all concurrent 1007 * reclaimers operating on the same node and priority. 1008 */ 1009 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1010 struct mem_cgroup *prev, 1011 struct mem_cgroup_reclaim_cookie *reclaim) 1012 { 1013 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1014 struct cgroup_subsys_state *css = NULL; 1015 struct mem_cgroup *memcg = NULL; 1016 struct mem_cgroup *pos = NULL; 1017 1018 if (mem_cgroup_disabled()) 1019 return NULL; 1020 1021 if (!root) 1022 root = root_mem_cgroup; 1023 1024 if (prev && !reclaim) 1025 pos = prev; 1026 1027 if (!root->use_hierarchy && root != root_mem_cgroup) { 1028 if (prev) 1029 goto out; 1030 return root; 1031 } 1032 1033 rcu_read_lock(); 1034 1035 if (reclaim) { 1036 struct mem_cgroup_per_node *mz; 1037 1038 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1039 iter = &mz->iter[reclaim->priority]; 1040 1041 if (prev && reclaim->generation != iter->generation) 1042 goto out_unlock; 1043 1044 while (1) { 1045 pos = READ_ONCE(iter->position); 1046 if (!pos || css_tryget(&pos->css)) 1047 break; 1048 /* 1049 * css reference reached zero, so iter->position will 1050 * be cleared by ->css_released. However, we should not 1051 * rely on this happening soon, because ->css_released 1052 * is called from a work queue, and by busy-waiting we 1053 * might block it. So we clear iter->position right 1054 * away. 1055 */ 1056 (void)cmpxchg(&iter->position, pos, NULL); 1057 } 1058 } 1059 1060 if (pos) 1061 css = &pos->css; 1062 1063 for (;;) { 1064 css = css_next_descendant_pre(css, &root->css); 1065 if (!css) { 1066 /* 1067 * Reclaimers share the hierarchy walk, and a 1068 * new one might jump in right at the end of 1069 * the hierarchy - make sure they see at least 1070 * one group and restart from the beginning. 1071 */ 1072 if (!prev) 1073 continue; 1074 break; 1075 } 1076 1077 /* 1078 * Verify the css and acquire a reference. The root 1079 * is provided by the caller, so we know it's alive 1080 * and kicking, and don't take an extra reference. 1081 */ 1082 memcg = mem_cgroup_from_css(css); 1083 1084 if (css == &root->css) 1085 break; 1086 1087 if (css_tryget(css)) 1088 break; 1089 1090 memcg = NULL; 1091 } 1092 1093 if (reclaim) { 1094 /* 1095 * The position could have already been updated by a competing 1096 * thread, so check that the value hasn't changed since we read 1097 * it to avoid reclaiming from the same cgroup twice. 1098 */ 1099 (void)cmpxchg(&iter->position, pos, memcg); 1100 1101 if (pos) 1102 css_put(&pos->css); 1103 1104 if (!memcg) 1105 iter->generation++; 1106 else if (!prev) 1107 reclaim->generation = iter->generation; 1108 } 1109 1110 out_unlock: 1111 rcu_read_unlock(); 1112 out: 1113 if (prev && prev != root) 1114 css_put(&prev->css); 1115 1116 return memcg; 1117 } 1118 1119 /** 1120 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1121 * @root: hierarchy root 1122 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1123 */ 1124 void mem_cgroup_iter_break(struct mem_cgroup *root, 1125 struct mem_cgroup *prev) 1126 { 1127 if (!root) 1128 root = root_mem_cgroup; 1129 if (prev && prev != root) 1130 css_put(&prev->css); 1131 } 1132 1133 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1134 { 1135 struct mem_cgroup *memcg = dead_memcg; 1136 struct mem_cgroup_reclaim_iter *iter; 1137 struct mem_cgroup_per_node *mz; 1138 int nid; 1139 int i; 1140 1141 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1142 for_each_node(nid) { 1143 mz = mem_cgroup_nodeinfo(memcg, nid); 1144 for (i = 0; i <= DEF_PRIORITY; i++) { 1145 iter = &mz->iter[i]; 1146 cmpxchg(&iter->position, 1147 dead_memcg, NULL); 1148 } 1149 } 1150 } 1151 } 1152 1153 /** 1154 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1155 * @memcg: hierarchy root 1156 * @fn: function to call for each task 1157 * @arg: argument passed to @fn 1158 * 1159 * This function iterates over tasks attached to @memcg or to any of its 1160 * descendants and calls @fn for each task. If @fn returns a non-zero 1161 * value, the function breaks the iteration loop and returns the value. 1162 * Otherwise, it will iterate over all tasks and return 0. 1163 * 1164 * This function must not be called for the root memory cgroup. 1165 */ 1166 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1167 int (*fn)(struct task_struct *, void *), void *arg) 1168 { 1169 struct mem_cgroup *iter; 1170 int ret = 0; 1171 1172 BUG_ON(memcg == root_mem_cgroup); 1173 1174 for_each_mem_cgroup_tree(iter, memcg) { 1175 struct css_task_iter it; 1176 struct task_struct *task; 1177 1178 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1179 while (!ret && (task = css_task_iter_next(&it))) 1180 ret = fn(task, arg); 1181 css_task_iter_end(&it); 1182 if (ret) { 1183 mem_cgroup_iter_break(memcg, iter); 1184 break; 1185 } 1186 } 1187 return ret; 1188 } 1189 1190 /** 1191 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1192 * @page: the page 1193 * @pgdat: pgdat of the page 1194 * 1195 * This function is only safe when following the LRU page isolation 1196 * and putback protocol: the LRU lock must be held, and the page must 1197 * either be PageLRU() or the caller must have isolated/allocated it. 1198 */ 1199 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1200 { 1201 struct mem_cgroup_per_node *mz; 1202 struct mem_cgroup *memcg; 1203 struct lruvec *lruvec; 1204 1205 if (mem_cgroup_disabled()) { 1206 lruvec = &pgdat->lruvec; 1207 goto out; 1208 } 1209 1210 memcg = page->mem_cgroup; 1211 /* 1212 * Swapcache readahead pages are added to the LRU - and 1213 * possibly migrated - before they are charged. 1214 */ 1215 if (!memcg) 1216 memcg = root_mem_cgroup; 1217 1218 mz = mem_cgroup_page_nodeinfo(memcg, page); 1219 lruvec = &mz->lruvec; 1220 out: 1221 /* 1222 * Since a node can be onlined after the mem_cgroup was created, 1223 * we have to be prepared to initialize lruvec->zone here; 1224 * and if offlined then reonlined, we need to reinitialize it. 1225 */ 1226 if (unlikely(lruvec->pgdat != pgdat)) 1227 lruvec->pgdat = pgdat; 1228 return lruvec; 1229 } 1230 1231 /** 1232 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1233 * @lruvec: mem_cgroup per zone lru vector 1234 * @lru: index of lru list the page is sitting on 1235 * @zid: zone id of the accounted pages 1236 * @nr_pages: positive when adding or negative when removing 1237 * 1238 * This function must be called under lru_lock, just before a page is added 1239 * to or just after a page is removed from an lru list (that ordering being 1240 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1241 */ 1242 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1243 int zid, int nr_pages) 1244 { 1245 struct mem_cgroup_per_node *mz; 1246 unsigned long *lru_size; 1247 long size; 1248 1249 if (mem_cgroup_disabled()) 1250 return; 1251 1252 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1253 lru_size = &mz->lru_zone_size[zid][lru]; 1254 1255 if (nr_pages < 0) 1256 *lru_size += nr_pages; 1257 1258 size = *lru_size; 1259 if (WARN_ONCE(size < 0, 1260 "%s(%p, %d, %d): lru_size %ld\n", 1261 __func__, lruvec, lru, nr_pages, size)) { 1262 VM_BUG_ON(1); 1263 *lru_size = 0; 1264 } 1265 1266 if (nr_pages > 0) 1267 *lru_size += nr_pages; 1268 } 1269 1270 /** 1271 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1272 * @memcg: the memory cgroup 1273 * 1274 * Returns the maximum amount of memory @mem can be charged with, in 1275 * pages. 1276 */ 1277 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1278 { 1279 unsigned long margin = 0; 1280 unsigned long count; 1281 unsigned long limit; 1282 1283 count = page_counter_read(&memcg->memory); 1284 limit = READ_ONCE(memcg->memory.max); 1285 if (count < limit) 1286 margin = limit - count; 1287 1288 if (do_memsw_account()) { 1289 count = page_counter_read(&memcg->memsw); 1290 limit = READ_ONCE(memcg->memsw.max); 1291 if (count <= limit) 1292 margin = min(margin, limit - count); 1293 else 1294 margin = 0; 1295 } 1296 1297 return margin; 1298 } 1299 1300 /* 1301 * A routine for checking "mem" is under move_account() or not. 1302 * 1303 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1304 * moving cgroups. This is for waiting at high-memory pressure 1305 * caused by "move". 1306 */ 1307 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1308 { 1309 struct mem_cgroup *from; 1310 struct mem_cgroup *to; 1311 bool ret = false; 1312 /* 1313 * Unlike task_move routines, we access mc.to, mc.from not under 1314 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1315 */ 1316 spin_lock(&mc.lock); 1317 from = mc.from; 1318 to = mc.to; 1319 if (!from) 1320 goto unlock; 1321 1322 ret = mem_cgroup_is_descendant(from, memcg) || 1323 mem_cgroup_is_descendant(to, memcg); 1324 unlock: 1325 spin_unlock(&mc.lock); 1326 return ret; 1327 } 1328 1329 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1330 { 1331 if (mc.moving_task && current != mc.moving_task) { 1332 if (mem_cgroup_under_move(memcg)) { 1333 DEFINE_WAIT(wait); 1334 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1335 /* moving charge context might have finished. */ 1336 if (mc.moving_task) 1337 schedule(); 1338 finish_wait(&mc.waitq, &wait); 1339 return true; 1340 } 1341 } 1342 return false; 1343 } 1344 1345 static char *memory_stat_format(struct mem_cgroup *memcg) 1346 { 1347 struct seq_buf s; 1348 int i; 1349 1350 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1351 if (!s.buffer) 1352 return NULL; 1353 1354 /* 1355 * Provide statistics on the state of the memory subsystem as 1356 * well as cumulative event counters that show past behavior. 1357 * 1358 * This list is ordered following a combination of these gradients: 1359 * 1) generic big picture -> specifics and details 1360 * 2) reflecting userspace activity -> reflecting kernel heuristics 1361 * 1362 * Current memory state: 1363 */ 1364 1365 seq_buf_printf(&s, "anon %llu\n", 1366 (u64)memcg_page_state(memcg, MEMCG_RSS) * 1367 PAGE_SIZE); 1368 seq_buf_printf(&s, "file %llu\n", 1369 (u64)memcg_page_state(memcg, MEMCG_CACHE) * 1370 PAGE_SIZE); 1371 seq_buf_printf(&s, "kernel_stack %llu\n", 1372 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1373 1024); 1374 seq_buf_printf(&s, "slab %llu\n", 1375 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + 1376 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * 1377 PAGE_SIZE); 1378 seq_buf_printf(&s, "sock %llu\n", 1379 (u64)memcg_page_state(memcg, MEMCG_SOCK) * 1380 PAGE_SIZE); 1381 1382 seq_buf_printf(&s, "shmem %llu\n", 1383 (u64)memcg_page_state(memcg, NR_SHMEM) * 1384 PAGE_SIZE); 1385 seq_buf_printf(&s, "file_mapped %llu\n", 1386 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * 1387 PAGE_SIZE); 1388 seq_buf_printf(&s, "file_dirty %llu\n", 1389 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * 1390 PAGE_SIZE); 1391 seq_buf_printf(&s, "file_writeback %llu\n", 1392 (u64)memcg_page_state(memcg, NR_WRITEBACK) * 1393 PAGE_SIZE); 1394 1395 /* 1396 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter 1397 * with the NR_ANON_THP vm counter, but right now it's a pain in the 1398 * arse because it requires migrating the work out of rmap to a place 1399 * where the page->mem_cgroup is set up and stable. 1400 */ 1401 seq_buf_printf(&s, "anon_thp %llu\n", 1402 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * 1403 PAGE_SIZE); 1404 1405 for (i = 0; i < NR_LRU_LISTS; i++) 1406 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i], 1407 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 1408 PAGE_SIZE); 1409 1410 seq_buf_printf(&s, "slab_reclaimable %llu\n", 1411 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * 1412 PAGE_SIZE); 1413 seq_buf_printf(&s, "slab_unreclaimable %llu\n", 1414 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * 1415 PAGE_SIZE); 1416 1417 /* Accumulated memory events */ 1418 1419 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT)); 1420 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT)); 1421 1422 seq_buf_printf(&s, "workingset_refault %lu\n", 1423 memcg_page_state(memcg, WORKINGSET_REFAULT)); 1424 seq_buf_printf(&s, "workingset_activate %lu\n", 1425 memcg_page_state(memcg, WORKINGSET_ACTIVATE)); 1426 seq_buf_printf(&s, "workingset_nodereclaim %lu\n", 1427 memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); 1428 1429 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL)); 1430 seq_buf_printf(&s, "pgscan %lu\n", 1431 memcg_events(memcg, PGSCAN_KSWAPD) + 1432 memcg_events(memcg, PGSCAN_DIRECT)); 1433 seq_buf_printf(&s, "pgsteal %lu\n", 1434 memcg_events(memcg, PGSTEAL_KSWAPD) + 1435 memcg_events(memcg, PGSTEAL_DIRECT)); 1436 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE)); 1437 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE)); 1438 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE)); 1439 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED)); 1440 1441 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1442 seq_buf_printf(&s, "thp_fault_alloc %lu\n", 1443 memcg_events(memcg, THP_FAULT_ALLOC)); 1444 seq_buf_printf(&s, "thp_collapse_alloc %lu\n", 1445 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1446 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1447 1448 /* The above should easily fit into one page */ 1449 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1450 1451 return s.buffer; 1452 } 1453 1454 #define K(x) ((x) << (PAGE_SHIFT-10)) 1455 /** 1456 * mem_cgroup_print_oom_context: Print OOM information relevant to 1457 * memory controller. 1458 * @memcg: The memory cgroup that went over limit 1459 * @p: Task that is going to be killed 1460 * 1461 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1462 * enabled 1463 */ 1464 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1465 { 1466 rcu_read_lock(); 1467 1468 if (memcg) { 1469 pr_cont(",oom_memcg="); 1470 pr_cont_cgroup_path(memcg->css.cgroup); 1471 } else 1472 pr_cont(",global_oom"); 1473 if (p) { 1474 pr_cont(",task_memcg="); 1475 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1476 } 1477 rcu_read_unlock(); 1478 } 1479 1480 /** 1481 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1482 * memory controller. 1483 * @memcg: The memory cgroup that went over limit 1484 */ 1485 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1486 { 1487 char *buf; 1488 1489 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1490 K((u64)page_counter_read(&memcg->memory)), 1491 K((u64)memcg->memory.max), memcg->memory.failcnt); 1492 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1493 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1494 K((u64)page_counter_read(&memcg->swap)), 1495 K((u64)memcg->swap.max), memcg->swap.failcnt); 1496 else { 1497 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1498 K((u64)page_counter_read(&memcg->memsw)), 1499 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1500 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1501 K((u64)page_counter_read(&memcg->kmem)), 1502 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1503 } 1504 1505 pr_info("Memory cgroup stats for "); 1506 pr_cont_cgroup_path(memcg->css.cgroup); 1507 pr_cont(":"); 1508 buf = memory_stat_format(memcg); 1509 if (!buf) 1510 return; 1511 pr_info("%s", buf); 1512 kfree(buf); 1513 } 1514 1515 /* 1516 * Return the memory (and swap, if configured) limit for a memcg. 1517 */ 1518 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1519 { 1520 unsigned long max; 1521 1522 max = memcg->memory.max; 1523 if (mem_cgroup_swappiness(memcg)) { 1524 unsigned long memsw_max; 1525 unsigned long swap_max; 1526 1527 memsw_max = memcg->memsw.max; 1528 swap_max = memcg->swap.max; 1529 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1530 max = min(max + swap_max, memsw_max); 1531 } 1532 return max; 1533 } 1534 1535 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1536 int order) 1537 { 1538 struct oom_control oc = { 1539 .zonelist = NULL, 1540 .nodemask = NULL, 1541 .memcg = memcg, 1542 .gfp_mask = gfp_mask, 1543 .order = order, 1544 }; 1545 bool ret; 1546 1547 if (mutex_lock_killable(&oom_lock)) 1548 return true; 1549 /* 1550 * A few threads which were not waiting at mutex_lock_killable() can 1551 * fail to bail out. Therefore, check again after holding oom_lock. 1552 */ 1553 ret = should_force_charge() || out_of_memory(&oc); 1554 mutex_unlock(&oom_lock); 1555 return ret; 1556 } 1557 1558 #if MAX_NUMNODES > 1 1559 1560 /** 1561 * test_mem_cgroup_node_reclaimable 1562 * @memcg: the target memcg 1563 * @nid: the node ID to be checked. 1564 * @noswap : specify true here if the user wants flle only information. 1565 * 1566 * This function returns whether the specified memcg contains any 1567 * reclaimable pages on a node. Returns true if there are any reclaimable 1568 * pages in the node. 1569 */ 1570 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1571 int nid, bool noswap) 1572 { 1573 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 1574 1575 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) || 1576 lruvec_page_state(lruvec, NR_ACTIVE_FILE)) 1577 return true; 1578 if (noswap || !total_swap_pages) 1579 return false; 1580 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) || 1581 lruvec_page_state(lruvec, NR_ACTIVE_ANON)) 1582 return true; 1583 return false; 1584 1585 } 1586 1587 /* 1588 * Always updating the nodemask is not very good - even if we have an empty 1589 * list or the wrong list here, we can start from some node and traverse all 1590 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1591 * 1592 */ 1593 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1594 { 1595 int nid; 1596 /* 1597 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1598 * pagein/pageout changes since the last update. 1599 */ 1600 if (!atomic_read(&memcg->numainfo_events)) 1601 return; 1602 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1603 return; 1604 1605 /* make a nodemask where this memcg uses memory from */ 1606 memcg->scan_nodes = node_states[N_MEMORY]; 1607 1608 for_each_node_mask(nid, node_states[N_MEMORY]) { 1609 1610 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1611 node_clear(nid, memcg->scan_nodes); 1612 } 1613 1614 atomic_set(&memcg->numainfo_events, 0); 1615 atomic_set(&memcg->numainfo_updating, 0); 1616 } 1617 1618 /* 1619 * Selecting a node where we start reclaim from. Because what we need is just 1620 * reducing usage counter, start from anywhere is O,K. Considering 1621 * memory reclaim from current node, there are pros. and cons. 1622 * 1623 * Freeing memory from current node means freeing memory from a node which 1624 * we'll use or we've used. So, it may make LRU bad. And if several threads 1625 * hit limits, it will see a contention on a node. But freeing from remote 1626 * node means more costs for memory reclaim because of memory latency. 1627 * 1628 * Now, we use round-robin. Better algorithm is welcomed. 1629 */ 1630 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1631 { 1632 int node; 1633 1634 mem_cgroup_may_update_nodemask(memcg); 1635 node = memcg->last_scanned_node; 1636 1637 node = next_node_in(node, memcg->scan_nodes); 1638 /* 1639 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1640 * last time it really checked all the LRUs due to rate limiting. 1641 * Fallback to the current node in that case for simplicity. 1642 */ 1643 if (unlikely(node == MAX_NUMNODES)) 1644 node = numa_node_id(); 1645 1646 memcg->last_scanned_node = node; 1647 return node; 1648 } 1649 #else 1650 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1651 { 1652 return 0; 1653 } 1654 #endif 1655 1656 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1657 pg_data_t *pgdat, 1658 gfp_t gfp_mask, 1659 unsigned long *total_scanned) 1660 { 1661 struct mem_cgroup *victim = NULL; 1662 int total = 0; 1663 int loop = 0; 1664 unsigned long excess; 1665 unsigned long nr_scanned; 1666 struct mem_cgroup_reclaim_cookie reclaim = { 1667 .pgdat = pgdat, 1668 .priority = 0, 1669 }; 1670 1671 excess = soft_limit_excess(root_memcg); 1672 1673 while (1) { 1674 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1675 if (!victim) { 1676 loop++; 1677 if (loop >= 2) { 1678 /* 1679 * If we have not been able to reclaim 1680 * anything, it might because there are 1681 * no reclaimable pages under this hierarchy 1682 */ 1683 if (!total) 1684 break; 1685 /* 1686 * We want to do more targeted reclaim. 1687 * excess >> 2 is not to excessive so as to 1688 * reclaim too much, nor too less that we keep 1689 * coming back to reclaim from this cgroup 1690 */ 1691 if (total >= (excess >> 2) || 1692 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1693 break; 1694 } 1695 continue; 1696 } 1697 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1698 pgdat, &nr_scanned); 1699 *total_scanned += nr_scanned; 1700 if (!soft_limit_excess(root_memcg)) 1701 break; 1702 } 1703 mem_cgroup_iter_break(root_memcg, victim); 1704 return total; 1705 } 1706 1707 #ifdef CONFIG_LOCKDEP 1708 static struct lockdep_map memcg_oom_lock_dep_map = { 1709 .name = "memcg_oom_lock", 1710 }; 1711 #endif 1712 1713 static DEFINE_SPINLOCK(memcg_oom_lock); 1714 1715 /* 1716 * Check OOM-Killer is already running under our hierarchy. 1717 * If someone is running, return false. 1718 */ 1719 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1720 { 1721 struct mem_cgroup *iter, *failed = NULL; 1722 1723 spin_lock(&memcg_oom_lock); 1724 1725 for_each_mem_cgroup_tree(iter, memcg) { 1726 if (iter->oom_lock) { 1727 /* 1728 * this subtree of our hierarchy is already locked 1729 * so we cannot give a lock. 1730 */ 1731 failed = iter; 1732 mem_cgroup_iter_break(memcg, iter); 1733 break; 1734 } else 1735 iter->oom_lock = true; 1736 } 1737 1738 if (failed) { 1739 /* 1740 * OK, we failed to lock the whole subtree so we have 1741 * to clean up what we set up to the failing subtree 1742 */ 1743 for_each_mem_cgroup_tree(iter, memcg) { 1744 if (iter == failed) { 1745 mem_cgroup_iter_break(memcg, iter); 1746 break; 1747 } 1748 iter->oom_lock = false; 1749 } 1750 } else 1751 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1752 1753 spin_unlock(&memcg_oom_lock); 1754 1755 return !failed; 1756 } 1757 1758 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1759 { 1760 struct mem_cgroup *iter; 1761 1762 spin_lock(&memcg_oom_lock); 1763 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1764 for_each_mem_cgroup_tree(iter, memcg) 1765 iter->oom_lock = false; 1766 spin_unlock(&memcg_oom_lock); 1767 } 1768 1769 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1770 { 1771 struct mem_cgroup *iter; 1772 1773 spin_lock(&memcg_oom_lock); 1774 for_each_mem_cgroup_tree(iter, memcg) 1775 iter->under_oom++; 1776 spin_unlock(&memcg_oom_lock); 1777 } 1778 1779 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1780 { 1781 struct mem_cgroup *iter; 1782 1783 /* 1784 * When a new child is created while the hierarchy is under oom, 1785 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1786 */ 1787 spin_lock(&memcg_oom_lock); 1788 for_each_mem_cgroup_tree(iter, memcg) 1789 if (iter->under_oom > 0) 1790 iter->under_oom--; 1791 spin_unlock(&memcg_oom_lock); 1792 } 1793 1794 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1795 1796 struct oom_wait_info { 1797 struct mem_cgroup *memcg; 1798 wait_queue_entry_t wait; 1799 }; 1800 1801 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1802 unsigned mode, int sync, void *arg) 1803 { 1804 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1805 struct mem_cgroup *oom_wait_memcg; 1806 struct oom_wait_info *oom_wait_info; 1807 1808 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1809 oom_wait_memcg = oom_wait_info->memcg; 1810 1811 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1812 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1813 return 0; 1814 return autoremove_wake_function(wait, mode, sync, arg); 1815 } 1816 1817 static void memcg_oom_recover(struct mem_cgroup *memcg) 1818 { 1819 /* 1820 * For the following lockless ->under_oom test, the only required 1821 * guarantee is that it must see the state asserted by an OOM when 1822 * this function is called as a result of userland actions 1823 * triggered by the notification of the OOM. This is trivially 1824 * achieved by invoking mem_cgroup_mark_under_oom() before 1825 * triggering notification. 1826 */ 1827 if (memcg && memcg->under_oom) 1828 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1829 } 1830 1831 enum oom_status { 1832 OOM_SUCCESS, 1833 OOM_FAILED, 1834 OOM_ASYNC, 1835 OOM_SKIPPED 1836 }; 1837 1838 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1839 { 1840 enum oom_status ret; 1841 bool locked; 1842 1843 if (order > PAGE_ALLOC_COSTLY_ORDER) 1844 return OOM_SKIPPED; 1845 1846 memcg_memory_event(memcg, MEMCG_OOM); 1847 1848 /* 1849 * We are in the middle of the charge context here, so we 1850 * don't want to block when potentially sitting on a callstack 1851 * that holds all kinds of filesystem and mm locks. 1852 * 1853 * cgroup1 allows disabling the OOM killer and waiting for outside 1854 * handling until the charge can succeed; remember the context and put 1855 * the task to sleep at the end of the page fault when all locks are 1856 * released. 1857 * 1858 * On the other hand, in-kernel OOM killer allows for an async victim 1859 * memory reclaim (oom_reaper) and that means that we are not solely 1860 * relying on the oom victim to make a forward progress and we can 1861 * invoke the oom killer here. 1862 * 1863 * Please note that mem_cgroup_out_of_memory might fail to find a 1864 * victim and then we have to bail out from the charge path. 1865 */ 1866 if (memcg->oom_kill_disable) { 1867 if (!current->in_user_fault) 1868 return OOM_SKIPPED; 1869 css_get(&memcg->css); 1870 current->memcg_in_oom = memcg; 1871 current->memcg_oom_gfp_mask = mask; 1872 current->memcg_oom_order = order; 1873 1874 return OOM_ASYNC; 1875 } 1876 1877 mem_cgroup_mark_under_oom(memcg); 1878 1879 locked = mem_cgroup_oom_trylock(memcg); 1880 1881 if (locked) 1882 mem_cgroup_oom_notify(memcg); 1883 1884 mem_cgroup_unmark_under_oom(memcg); 1885 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1886 ret = OOM_SUCCESS; 1887 else 1888 ret = OOM_FAILED; 1889 1890 if (locked) 1891 mem_cgroup_oom_unlock(memcg); 1892 1893 return ret; 1894 } 1895 1896 /** 1897 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1898 * @handle: actually kill/wait or just clean up the OOM state 1899 * 1900 * This has to be called at the end of a page fault if the memcg OOM 1901 * handler was enabled. 1902 * 1903 * Memcg supports userspace OOM handling where failed allocations must 1904 * sleep on a waitqueue until the userspace task resolves the 1905 * situation. Sleeping directly in the charge context with all kinds 1906 * of locks held is not a good idea, instead we remember an OOM state 1907 * in the task and mem_cgroup_oom_synchronize() has to be called at 1908 * the end of the page fault to complete the OOM handling. 1909 * 1910 * Returns %true if an ongoing memcg OOM situation was detected and 1911 * completed, %false otherwise. 1912 */ 1913 bool mem_cgroup_oom_synchronize(bool handle) 1914 { 1915 struct mem_cgroup *memcg = current->memcg_in_oom; 1916 struct oom_wait_info owait; 1917 bool locked; 1918 1919 /* OOM is global, do not handle */ 1920 if (!memcg) 1921 return false; 1922 1923 if (!handle) 1924 goto cleanup; 1925 1926 owait.memcg = memcg; 1927 owait.wait.flags = 0; 1928 owait.wait.func = memcg_oom_wake_function; 1929 owait.wait.private = current; 1930 INIT_LIST_HEAD(&owait.wait.entry); 1931 1932 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1933 mem_cgroup_mark_under_oom(memcg); 1934 1935 locked = mem_cgroup_oom_trylock(memcg); 1936 1937 if (locked) 1938 mem_cgroup_oom_notify(memcg); 1939 1940 if (locked && !memcg->oom_kill_disable) { 1941 mem_cgroup_unmark_under_oom(memcg); 1942 finish_wait(&memcg_oom_waitq, &owait.wait); 1943 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1944 current->memcg_oom_order); 1945 } else { 1946 schedule(); 1947 mem_cgroup_unmark_under_oom(memcg); 1948 finish_wait(&memcg_oom_waitq, &owait.wait); 1949 } 1950 1951 if (locked) { 1952 mem_cgroup_oom_unlock(memcg); 1953 /* 1954 * There is no guarantee that an OOM-lock contender 1955 * sees the wakeups triggered by the OOM kill 1956 * uncharges. Wake any sleepers explicitely. 1957 */ 1958 memcg_oom_recover(memcg); 1959 } 1960 cleanup: 1961 current->memcg_in_oom = NULL; 1962 css_put(&memcg->css); 1963 return true; 1964 } 1965 1966 /** 1967 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1968 * @victim: task to be killed by the OOM killer 1969 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1970 * 1971 * Returns a pointer to a memory cgroup, which has to be cleaned up 1972 * by killing all belonging OOM-killable tasks. 1973 * 1974 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1975 */ 1976 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1977 struct mem_cgroup *oom_domain) 1978 { 1979 struct mem_cgroup *oom_group = NULL; 1980 struct mem_cgroup *memcg; 1981 1982 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1983 return NULL; 1984 1985 if (!oom_domain) 1986 oom_domain = root_mem_cgroup; 1987 1988 rcu_read_lock(); 1989 1990 memcg = mem_cgroup_from_task(victim); 1991 if (memcg == root_mem_cgroup) 1992 goto out; 1993 1994 /* 1995 * Traverse the memory cgroup hierarchy from the victim task's 1996 * cgroup up to the OOMing cgroup (or root) to find the 1997 * highest-level memory cgroup with oom.group set. 1998 */ 1999 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2000 if (memcg->oom_group) 2001 oom_group = memcg; 2002 2003 if (memcg == oom_domain) 2004 break; 2005 } 2006 2007 if (oom_group) 2008 css_get(&oom_group->css); 2009 out: 2010 rcu_read_unlock(); 2011 2012 return oom_group; 2013 } 2014 2015 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2016 { 2017 pr_info("Tasks in "); 2018 pr_cont_cgroup_path(memcg->css.cgroup); 2019 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2020 } 2021 2022 /** 2023 * lock_page_memcg - lock a page->mem_cgroup binding 2024 * @page: the page 2025 * 2026 * This function protects unlocked LRU pages from being moved to 2027 * another cgroup. 2028 * 2029 * It ensures lifetime of the returned memcg. Caller is responsible 2030 * for the lifetime of the page; __unlock_page_memcg() is available 2031 * when @page might get freed inside the locked section. 2032 */ 2033 struct mem_cgroup *lock_page_memcg(struct page *page) 2034 { 2035 struct mem_cgroup *memcg; 2036 unsigned long flags; 2037 2038 /* 2039 * The RCU lock is held throughout the transaction. The fast 2040 * path can get away without acquiring the memcg->move_lock 2041 * because page moving starts with an RCU grace period. 2042 * 2043 * The RCU lock also protects the memcg from being freed when 2044 * the page state that is going to change is the only thing 2045 * preventing the page itself from being freed. E.g. writeback 2046 * doesn't hold a page reference and relies on PG_writeback to 2047 * keep off truncation, migration and so forth. 2048 */ 2049 rcu_read_lock(); 2050 2051 if (mem_cgroup_disabled()) 2052 return NULL; 2053 again: 2054 memcg = page->mem_cgroup; 2055 if (unlikely(!memcg)) 2056 return NULL; 2057 2058 if (atomic_read(&memcg->moving_account) <= 0) 2059 return memcg; 2060 2061 spin_lock_irqsave(&memcg->move_lock, flags); 2062 if (memcg != page->mem_cgroup) { 2063 spin_unlock_irqrestore(&memcg->move_lock, flags); 2064 goto again; 2065 } 2066 2067 /* 2068 * When charge migration first begins, we can have locked and 2069 * unlocked page stat updates happening concurrently. Track 2070 * the task who has the lock for unlock_page_memcg(). 2071 */ 2072 memcg->move_lock_task = current; 2073 memcg->move_lock_flags = flags; 2074 2075 return memcg; 2076 } 2077 EXPORT_SYMBOL(lock_page_memcg); 2078 2079 /** 2080 * __unlock_page_memcg - unlock and unpin a memcg 2081 * @memcg: the memcg 2082 * 2083 * Unlock and unpin a memcg returned by lock_page_memcg(). 2084 */ 2085 void __unlock_page_memcg(struct mem_cgroup *memcg) 2086 { 2087 if (memcg && memcg->move_lock_task == current) { 2088 unsigned long flags = memcg->move_lock_flags; 2089 2090 memcg->move_lock_task = NULL; 2091 memcg->move_lock_flags = 0; 2092 2093 spin_unlock_irqrestore(&memcg->move_lock, flags); 2094 } 2095 2096 rcu_read_unlock(); 2097 } 2098 2099 /** 2100 * unlock_page_memcg - unlock a page->mem_cgroup binding 2101 * @page: the page 2102 */ 2103 void unlock_page_memcg(struct page *page) 2104 { 2105 __unlock_page_memcg(page->mem_cgroup); 2106 } 2107 EXPORT_SYMBOL(unlock_page_memcg); 2108 2109 struct memcg_stock_pcp { 2110 struct mem_cgroup *cached; /* this never be root cgroup */ 2111 unsigned int nr_pages; 2112 struct work_struct work; 2113 unsigned long flags; 2114 #define FLUSHING_CACHED_CHARGE 0 2115 }; 2116 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2117 static DEFINE_MUTEX(percpu_charge_mutex); 2118 2119 /** 2120 * consume_stock: Try to consume stocked charge on this cpu. 2121 * @memcg: memcg to consume from. 2122 * @nr_pages: how many pages to charge. 2123 * 2124 * The charges will only happen if @memcg matches the current cpu's memcg 2125 * stock, and at least @nr_pages are available in that stock. Failure to 2126 * service an allocation will refill the stock. 2127 * 2128 * returns true if successful, false otherwise. 2129 */ 2130 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2131 { 2132 struct memcg_stock_pcp *stock; 2133 unsigned long flags; 2134 bool ret = false; 2135 2136 if (nr_pages > MEMCG_CHARGE_BATCH) 2137 return ret; 2138 2139 local_irq_save(flags); 2140 2141 stock = this_cpu_ptr(&memcg_stock); 2142 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2143 stock->nr_pages -= nr_pages; 2144 ret = true; 2145 } 2146 2147 local_irq_restore(flags); 2148 2149 return ret; 2150 } 2151 2152 /* 2153 * Returns stocks cached in percpu and reset cached information. 2154 */ 2155 static void drain_stock(struct memcg_stock_pcp *stock) 2156 { 2157 struct mem_cgroup *old = stock->cached; 2158 2159 if (stock->nr_pages) { 2160 page_counter_uncharge(&old->memory, stock->nr_pages); 2161 if (do_memsw_account()) 2162 page_counter_uncharge(&old->memsw, stock->nr_pages); 2163 css_put_many(&old->css, stock->nr_pages); 2164 stock->nr_pages = 0; 2165 } 2166 stock->cached = NULL; 2167 } 2168 2169 static void drain_local_stock(struct work_struct *dummy) 2170 { 2171 struct memcg_stock_pcp *stock; 2172 unsigned long flags; 2173 2174 /* 2175 * The only protection from memory hotplug vs. drain_stock races is 2176 * that we always operate on local CPU stock here with IRQ disabled 2177 */ 2178 local_irq_save(flags); 2179 2180 stock = this_cpu_ptr(&memcg_stock); 2181 drain_stock(stock); 2182 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2183 2184 local_irq_restore(flags); 2185 } 2186 2187 /* 2188 * Cache charges(val) to local per_cpu area. 2189 * This will be consumed by consume_stock() function, later. 2190 */ 2191 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2192 { 2193 struct memcg_stock_pcp *stock; 2194 unsigned long flags; 2195 2196 local_irq_save(flags); 2197 2198 stock = this_cpu_ptr(&memcg_stock); 2199 if (stock->cached != memcg) { /* reset if necessary */ 2200 drain_stock(stock); 2201 stock->cached = memcg; 2202 } 2203 stock->nr_pages += nr_pages; 2204 2205 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2206 drain_stock(stock); 2207 2208 local_irq_restore(flags); 2209 } 2210 2211 /* 2212 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2213 * of the hierarchy under it. 2214 */ 2215 static void drain_all_stock(struct mem_cgroup *root_memcg) 2216 { 2217 int cpu, curcpu; 2218 2219 /* If someone's already draining, avoid adding running more workers. */ 2220 if (!mutex_trylock(&percpu_charge_mutex)) 2221 return; 2222 /* 2223 * Notify other cpus that system-wide "drain" is running 2224 * We do not care about races with the cpu hotplug because cpu down 2225 * as well as workers from this path always operate on the local 2226 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2227 */ 2228 curcpu = get_cpu(); 2229 for_each_online_cpu(cpu) { 2230 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2231 struct mem_cgroup *memcg; 2232 2233 memcg = stock->cached; 2234 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css)) 2235 continue; 2236 if (!mem_cgroup_is_descendant(memcg, root_memcg)) { 2237 css_put(&memcg->css); 2238 continue; 2239 } 2240 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2241 if (cpu == curcpu) 2242 drain_local_stock(&stock->work); 2243 else 2244 schedule_work_on(cpu, &stock->work); 2245 } 2246 css_put(&memcg->css); 2247 } 2248 put_cpu(); 2249 mutex_unlock(&percpu_charge_mutex); 2250 } 2251 2252 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2253 { 2254 struct memcg_stock_pcp *stock; 2255 struct mem_cgroup *memcg, *mi; 2256 2257 stock = &per_cpu(memcg_stock, cpu); 2258 drain_stock(stock); 2259 2260 for_each_mem_cgroup(memcg) { 2261 int i; 2262 2263 for (i = 0; i < MEMCG_NR_STAT; i++) { 2264 int nid; 2265 long x; 2266 2267 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2268 if (x) 2269 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2270 atomic_long_add(x, &memcg->vmstats[i]); 2271 2272 if (i >= NR_VM_NODE_STAT_ITEMS) 2273 continue; 2274 2275 for_each_node(nid) { 2276 struct mem_cgroup_per_node *pn; 2277 2278 pn = mem_cgroup_nodeinfo(memcg, nid); 2279 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2280 if (x) 2281 do { 2282 atomic_long_add(x, &pn->lruvec_stat[i]); 2283 } while ((pn = parent_nodeinfo(pn, nid))); 2284 } 2285 } 2286 2287 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2288 long x; 2289 2290 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2291 if (x) 2292 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2293 atomic_long_add(x, &memcg->vmevents[i]); 2294 } 2295 } 2296 2297 return 0; 2298 } 2299 2300 static void reclaim_high(struct mem_cgroup *memcg, 2301 unsigned int nr_pages, 2302 gfp_t gfp_mask) 2303 { 2304 do { 2305 if (page_counter_read(&memcg->memory) <= memcg->high) 2306 continue; 2307 memcg_memory_event(memcg, MEMCG_HIGH); 2308 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2309 } while ((memcg = parent_mem_cgroup(memcg))); 2310 } 2311 2312 static void high_work_func(struct work_struct *work) 2313 { 2314 struct mem_cgroup *memcg; 2315 2316 memcg = container_of(work, struct mem_cgroup, high_work); 2317 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2318 } 2319 2320 /* 2321 * Scheduled by try_charge() to be executed from the userland return path 2322 * and reclaims memory over the high limit. 2323 */ 2324 void mem_cgroup_handle_over_high(void) 2325 { 2326 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2327 struct mem_cgroup *memcg; 2328 2329 if (likely(!nr_pages)) 2330 return; 2331 2332 memcg = get_mem_cgroup_from_mm(current->mm); 2333 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2334 css_put(&memcg->css); 2335 current->memcg_nr_pages_over_high = 0; 2336 } 2337 2338 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2339 unsigned int nr_pages) 2340 { 2341 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2342 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2343 struct mem_cgroup *mem_over_limit; 2344 struct page_counter *counter; 2345 unsigned long nr_reclaimed; 2346 bool may_swap = true; 2347 bool drained = false; 2348 enum oom_status oom_status; 2349 2350 if (mem_cgroup_is_root(memcg)) 2351 return 0; 2352 retry: 2353 if (consume_stock(memcg, nr_pages)) 2354 return 0; 2355 2356 if (!do_memsw_account() || 2357 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2358 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2359 goto done_restock; 2360 if (do_memsw_account()) 2361 page_counter_uncharge(&memcg->memsw, batch); 2362 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2363 } else { 2364 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2365 may_swap = false; 2366 } 2367 2368 if (batch > nr_pages) { 2369 batch = nr_pages; 2370 goto retry; 2371 } 2372 2373 /* 2374 * Unlike in global OOM situations, memcg is not in a physical 2375 * memory shortage. Allow dying and OOM-killed tasks to 2376 * bypass the last charges so that they can exit quickly and 2377 * free their memory. 2378 */ 2379 if (unlikely(should_force_charge())) 2380 goto force; 2381 2382 /* 2383 * Prevent unbounded recursion when reclaim operations need to 2384 * allocate memory. This might exceed the limits temporarily, 2385 * but we prefer facilitating memory reclaim and getting back 2386 * under the limit over triggering OOM kills in these cases. 2387 */ 2388 if (unlikely(current->flags & PF_MEMALLOC)) 2389 goto force; 2390 2391 if (unlikely(task_in_memcg_oom(current))) 2392 goto nomem; 2393 2394 if (!gfpflags_allow_blocking(gfp_mask)) 2395 goto nomem; 2396 2397 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2398 2399 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2400 gfp_mask, may_swap); 2401 2402 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2403 goto retry; 2404 2405 if (!drained) { 2406 drain_all_stock(mem_over_limit); 2407 drained = true; 2408 goto retry; 2409 } 2410 2411 if (gfp_mask & __GFP_NORETRY) 2412 goto nomem; 2413 /* 2414 * Even though the limit is exceeded at this point, reclaim 2415 * may have been able to free some pages. Retry the charge 2416 * before killing the task. 2417 * 2418 * Only for regular pages, though: huge pages are rather 2419 * unlikely to succeed so close to the limit, and we fall back 2420 * to regular pages anyway in case of failure. 2421 */ 2422 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2423 goto retry; 2424 /* 2425 * At task move, charge accounts can be doubly counted. So, it's 2426 * better to wait until the end of task_move if something is going on. 2427 */ 2428 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2429 goto retry; 2430 2431 if (nr_retries--) 2432 goto retry; 2433 2434 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2435 goto nomem; 2436 2437 if (gfp_mask & __GFP_NOFAIL) 2438 goto force; 2439 2440 if (fatal_signal_pending(current)) 2441 goto force; 2442 2443 /* 2444 * keep retrying as long as the memcg oom killer is able to make 2445 * a forward progress or bypass the charge if the oom killer 2446 * couldn't make any progress. 2447 */ 2448 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2449 get_order(nr_pages * PAGE_SIZE)); 2450 switch (oom_status) { 2451 case OOM_SUCCESS: 2452 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2453 goto retry; 2454 case OOM_FAILED: 2455 goto force; 2456 default: 2457 goto nomem; 2458 } 2459 nomem: 2460 if (!(gfp_mask & __GFP_NOFAIL)) 2461 return -ENOMEM; 2462 force: 2463 /* 2464 * The allocation either can't fail or will lead to more memory 2465 * being freed very soon. Allow memory usage go over the limit 2466 * temporarily by force charging it. 2467 */ 2468 page_counter_charge(&memcg->memory, nr_pages); 2469 if (do_memsw_account()) 2470 page_counter_charge(&memcg->memsw, nr_pages); 2471 css_get_many(&memcg->css, nr_pages); 2472 2473 return 0; 2474 2475 done_restock: 2476 css_get_many(&memcg->css, batch); 2477 if (batch > nr_pages) 2478 refill_stock(memcg, batch - nr_pages); 2479 2480 /* 2481 * If the hierarchy is above the normal consumption range, schedule 2482 * reclaim on returning to userland. We can perform reclaim here 2483 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2484 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2485 * not recorded as it most likely matches current's and won't 2486 * change in the meantime. As high limit is checked again before 2487 * reclaim, the cost of mismatch is negligible. 2488 */ 2489 do { 2490 if (page_counter_read(&memcg->memory) > memcg->high) { 2491 /* Don't bother a random interrupted task */ 2492 if (in_interrupt()) { 2493 schedule_work(&memcg->high_work); 2494 break; 2495 } 2496 current->memcg_nr_pages_over_high += batch; 2497 set_notify_resume(current); 2498 break; 2499 } 2500 } while ((memcg = parent_mem_cgroup(memcg))); 2501 2502 return 0; 2503 } 2504 2505 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2506 { 2507 if (mem_cgroup_is_root(memcg)) 2508 return; 2509 2510 page_counter_uncharge(&memcg->memory, nr_pages); 2511 if (do_memsw_account()) 2512 page_counter_uncharge(&memcg->memsw, nr_pages); 2513 2514 css_put_many(&memcg->css, nr_pages); 2515 } 2516 2517 static void lock_page_lru(struct page *page, int *isolated) 2518 { 2519 pg_data_t *pgdat = page_pgdat(page); 2520 2521 spin_lock_irq(&pgdat->lru_lock); 2522 if (PageLRU(page)) { 2523 struct lruvec *lruvec; 2524 2525 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2526 ClearPageLRU(page); 2527 del_page_from_lru_list(page, lruvec, page_lru(page)); 2528 *isolated = 1; 2529 } else 2530 *isolated = 0; 2531 } 2532 2533 static void unlock_page_lru(struct page *page, int isolated) 2534 { 2535 pg_data_t *pgdat = page_pgdat(page); 2536 2537 if (isolated) { 2538 struct lruvec *lruvec; 2539 2540 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2541 VM_BUG_ON_PAGE(PageLRU(page), page); 2542 SetPageLRU(page); 2543 add_page_to_lru_list(page, lruvec, page_lru(page)); 2544 } 2545 spin_unlock_irq(&pgdat->lru_lock); 2546 } 2547 2548 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2549 bool lrucare) 2550 { 2551 int isolated; 2552 2553 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2554 2555 /* 2556 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2557 * may already be on some other mem_cgroup's LRU. Take care of it. 2558 */ 2559 if (lrucare) 2560 lock_page_lru(page, &isolated); 2561 2562 /* 2563 * Nobody should be changing or seriously looking at 2564 * page->mem_cgroup at this point: 2565 * 2566 * - the page is uncharged 2567 * 2568 * - the page is off-LRU 2569 * 2570 * - an anonymous fault has exclusive page access, except for 2571 * a locked page table 2572 * 2573 * - a page cache insertion, a swapin fault, or a migration 2574 * have the page locked 2575 */ 2576 page->mem_cgroup = memcg; 2577 2578 if (lrucare) 2579 unlock_page_lru(page, isolated); 2580 } 2581 2582 #ifdef CONFIG_MEMCG_KMEM 2583 static int memcg_alloc_cache_id(void) 2584 { 2585 int id, size; 2586 int err; 2587 2588 id = ida_simple_get(&memcg_cache_ida, 2589 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2590 if (id < 0) 2591 return id; 2592 2593 if (id < memcg_nr_cache_ids) 2594 return id; 2595 2596 /* 2597 * There's no space for the new id in memcg_caches arrays, 2598 * so we have to grow them. 2599 */ 2600 down_write(&memcg_cache_ids_sem); 2601 2602 size = 2 * (id + 1); 2603 if (size < MEMCG_CACHES_MIN_SIZE) 2604 size = MEMCG_CACHES_MIN_SIZE; 2605 else if (size > MEMCG_CACHES_MAX_SIZE) 2606 size = MEMCG_CACHES_MAX_SIZE; 2607 2608 err = memcg_update_all_caches(size); 2609 if (!err) 2610 err = memcg_update_all_list_lrus(size); 2611 if (!err) 2612 memcg_nr_cache_ids = size; 2613 2614 up_write(&memcg_cache_ids_sem); 2615 2616 if (err) { 2617 ida_simple_remove(&memcg_cache_ida, id); 2618 return err; 2619 } 2620 return id; 2621 } 2622 2623 static void memcg_free_cache_id(int id) 2624 { 2625 ida_simple_remove(&memcg_cache_ida, id); 2626 } 2627 2628 struct memcg_kmem_cache_create_work { 2629 struct mem_cgroup *memcg; 2630 struct kmem_cache *cachep; 2631 struct work_struct work; 2632 }; 2633 2634 static void memcg_kmem_cache_create_func(struct work_struct *w) 2635 { 2636 struct memcg_kmem_cache_create_work *cw = 2637 container_of(w, struct memcg_kmem_cache_create_work, work); 2638 struct mem_cgroup *memcg = cw->memcg; 2639 struct kmem_cache *cachep = cw->cachep; 2640 2641 memcg_create_kmem_cache(memcg, cachep); 2642 2643 css_put(&memcg->css); 2644 kfree(cw); 2645 } 2646 2647 /* 2648 * Enqueue the creation of a per-memcg kmem_cache. 2649 */ 2650 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2651 struct kmem_cache *cachep) 2652 { 2653 struct memcg_kmem_cache_create_work *cw; 2654 2655 if (!css_tryget_online(&memcg->css)) 2656 return; 2657 2658 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2659 if (!cw) 2660 return; 2661 2662 cw->memcg = memcg; 2663 cw->cachep = cachep; 2664 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2665 2666 queue_work(memcg_kmem_cache_wq, &cw->work); 2667 } 2668 2669 static inline bool memcg_kmem_bypass(void) 2670 { 2671 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2672 return true; 2673 return false; 2674 } 2675 2676 /** 2677 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2678 * @cachep: the original global kmem cache 2679 * 2680 * Return the kmem_cache we're supposed to use for a slab allocation. 2681 * We try to use the current memcg's version of the cache. 2682 * 2683 * If the cache does not exist yet, if we are the first user of it, we 2684 * create it asynchronously in a workqueue and let the current allocation 2685 * go through with the original cache. 2686 * 2687 * This function takes a reference to the cache it returns to assure it 2688 * won't get destroyed while we are working with it. Once the caller is 2689 * done with it, memcg_kmem_put_cache() must be called to release the 2690 * reference. 2691 */ 2692 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2693 { 2694 struct mem_cgroup *memcg; 2695 struct kmem_cache *memcg_cachep; 2696 struct memcg_cache_array *arr; 2697 int kmemcg_id; 2698 2699 VM_BUG_ON(!is_root_cache(cachep)); 2700 2701 if (memcg_kmem_bypass()) 2702 return cachep; 2703 2704 rcu_read_lock(); 2705 2706 if (unlikely(current->active_memcg)) 2707 memcg = current->active_memcg; 2708 else 2709 memcg = mem_cgroup_from_task(current); 2710 2711 if (!memcg || memcg == root_mem_cgroup) 2712 goto out_unlock; 2713 2714 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2715 if (kmemcg_id < 0) 2716 goto out_unlock; 2717 2718 arr = rcu_dereference(cachep->memcg_params.memcg_caches); 2719 2720 /* 2721 * Make sure we will access the up-to-date value. The code updating 2722 * memcg_caches issues a write barrier to match the data dependency 2723 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()). 2724 */ 2725 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]); 2726 2727 /* 2728 * If we are in a safe context (can wait, and not in interrupt 2729 * context), we could be be predictable and return right away. 2730 * This would guarantee that the allocation being performed 2731 * already belongs in the new cache. 2732 * 2733 * However, there are some clashes that can arrive from locking. 2734 * For instance, because we acquire the slab_mutex while doing 2735 * memcg_create_kmem_cache, this means no further allocation 2736 * could happen with the slab_mutex held. So it's better to 2737 * defer everything. 2738 * 2739 * If the memcg is dying or memcg_cache is about to be released, 2740 * don't bother creating new kmem_caches. Because memcg_cachep 2741 * is ZEROed as the fist step of kmem offlining, we don't need 2742 * percpu_ref_tryget_live() here. css_tryget_online() check in 2743 * memcg_schedule_kmem_cache_create() will prevent us from 2744 * creation of a new kmem_cache. 2745 */ 2746 if (unlikely(!memcg_cachep)) 2747 memcg_schedule_kmem_cache_create(memcg, cachep); 2748 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt)) 2749 cachep = memcg_cachep; 2750 out_unlock: 2751 rcu_read_unlock(); 2752 return cachep; 2753 } 2754 2755 /** 2756 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2757 * @cachep: the cache returned by memcg_kmem_get_cache 2758 */ 2759 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2760 { 2761 if (!is_root_cache(cachep)) 2762 percpu_ref_put(&cachep->memcg_params.refcnt); 2763 } 2764 2765 /** 2766 * __memcg_kmem_charge_memcg: charge a kmem page 2767 * @page: page to charge 2768 * @gfp: reclaim mode 2769 * @order: allocation order 2770 * @memcg: memory cgroup to charge 2771 * 2772 * Returns 0 on success, an error code on failure. 2773 */ 2774 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2775 struct mem_cgroup *memcg) 2776 { 2777 unsigned int nr_pages = 1 << order; 2778 struct page_counter *counter; 2779 int ret; 2780 2781 ret = try_charge(memcg, gfp, nr_pages); 2782 if (ret) 2783 return ret; 2784 2785 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2786 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2787 cancel_charge(memcg, nr_pages); 2788 return -ENOMEM; 2789 } 2790 return 0; 2791 } 2792 2793 /** 2794 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup 2795 * @page: page to charge 2796 * @gfp: reclaim mode 2797 * @order: allocation order 2798 * 2799 * Returns 0 on success, an error code on failure. 2800 */ 2801 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2802 { 2803 struct mem_cgroup *memcg; 2804 int ret = 0; 2805 2806 if (memcg_kmem_bypass()) 2807 return 0; 2808 2809 memcg = get_mem_cgroup_from_current(); 2810 if (!mem_cgroup_is_root(memcg)) { 2811 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2812 if (!ret) { 2813 page->mem_cgroup = memcg; 2814 __SetPageKmemcg(page); 2815 } 2816 } 2817 css_put(&memcg->css); 2818 return ret; 2819 } 2820 2821 /** 2822 * __memcg_kmem_uncharge_memcg: uncharge a kmem page 2823 * @memcg: memcg to uncharge 2824 * @nr_pages: number of pages to uncharge 2825 */ 2826 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg, 2827 unsigned int nr_pages) 2828 { 2829 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2830 page_counter_uncharge(&memcg->kmem, nr_pages); 2831 2832 page_counter_uncharge(&memcg->memory, nr_pages); 2833 if (do_memsw_account()) 2834 page_counter_uncharge(&memcg->memsw, nr_pages); 2835 } 2836 /** 2837 * __memcg_kmem_uncharge: uncharge a kmem page 2838 * @page: page to uncharge 2839 * @order: allocation order 2840 */ 2841 void __memcg_kmem_uncharge(struct page *page, int order) 2842 { 2843 struct mem_cgroup *memcg = page->mem_cgroup; 2844 unsigned int nr_pages = 1 << order; 2845 2846 if (!memcg) 2847 return; 2848 2849 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2850 __memcg_kmem_uncharge_memcg(memcg, nr_pages); 2851 page->mem_cgroup = NULL; 2852 2853 /* slab pages do not have PageKmemcg flag set */ 2854 if (PageKmemcg(page)) 2855 __ClearPageKmemcg(page); 2856 2857 css_put_many(&memcg->css, nr_pages); 2858 } 2859 #endif /* CONFIG_MEMCG_KMEM */ 2860 2861 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2862 2863 /* 2864 * Because tail pages are not marked as "used", set it. We're under 2865 * pgdat->lru_lock and migration entries setup in all page mappings. 2866 */ 2867 void mem_cgroup_split_huge_fixup(struct page *head) 2868 { 2869 int i; 2870 2871 if (mem_cgroup_disabled()) 2872 return; 2873 2874 for (i = 1; i < HPAGE_PMD_NR; i++) 2875 head[i].mem_cgroup = head->mem_cgroup; 2876 2877 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 2878 } 2879 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2880 2881 #ifdef CONFIG_MEMCG_SWAP 2882 /** 2883 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2884 * @entry: swap entry to be moved 2885 * @from: mem_cgroup which the entry is moved from 2886 * @to: mem_cgroup which the entry is moved to 2887 * 2888 * It succeeds only when the swap_cgroup's record for this entry is the same 2889 * as the mem_cgroup's id of @from. 2890 * 2891 * Returns 0 on success, -EINVAL on failure. 2892 * 2893 * The caller must have charged to @to, IOW, called page_counter_charge() about 2894 * both res and memsw, and called css_get(). 2895 */ 2896 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2897 struct mem_cgroup *from, struct mem_cgroup *to) 2898 { 2899 unsigned short old_id, new_id; 2900 2901 old_id = mem_cgroup_id(from); 2902 new_id = mem_cgroup_id(to); 2903 2904 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2905 mod_memcg_state(from, MEMCG_SWAP, -1); 2906 mod_memcg_state(to, MEMCG_SWAP, 1); 2907 return 0; 2908 } 2909 return -EINVAL; 2910 } 2911 #else 2912 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2913 struct mem_cgroup *from, struct mem_cgroup *to) 2914 { 2915 return -EINVAL; 2916 } 2917 #endif 2918 2919 static DEFINE_MUTEX(memcg_max_mutex); 2920 2921 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 2922 unsigned long max, bool memsw) 2923 { 2924 bool enlarge = false; 2925 bool drained = false; 2926 int ret; 2927 bool limits_invariant; 2928 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 2929 2930 do { 2931 if (signal_pending(current)) { 2932 ret = -EINTR; 2933 break; 2934 } 2935 2936 mutex_lock(&memcg_max_mutex); 2937 /* 2938 * Make sure that the new limit (memsw or memory limit) doesn't 2939 * break our basic invariant rule memory.max <= memsw.max. 2940 */ 2941 limits_invariant = memsw ? max >= memcg->memory.max : 2942 max <= memcg->memsw.max; 2943 if (!limits_invariant) { 2944 mutex_unlock(&memcg_max_mutex); 2945 ret = -EINVAL; 2946 break; 2947 } 2948 if (max > counter->max) 2949 enlarge = true; 2950 ret = page_counter_set_max(counter, max); 2951 mutex_unlock(&memcg_max_mutex); 2952 2953 if (!ret) 2954 break; 2955 2956 if (!drained) { 2957 drain_all_stock(memcg); 2958 drained = true; 2959 continue; 2960 } 2961 2962 if (!try_to_free_mem_cgroup_pages(memcg, 1, 2963 GFP_KERNEL, !memsw)) { 2964 ret = -EBUSY; 2965 break; 2966 } 2967 } while (true); 2968 2969 if (!ret && enlarge) 2970 memcg_oom_recover(memcg); 2971 2972 return ret; 2973 } 2974 2975 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 2976 gfp_t gfp_mask, 2977 unsigned long *total_scanned) 2978 { 2979 unsigned long nr_reclaimed = 0; 2980 struct mem_cgroup_per_node *mz, *next_mz = NULL; 2981 unsigned long reclaimed; 2982 int loop = 0; 2983 struct mem_cgroup_tree_per_node *mctz; 2984 unsigned long excess; 2985 unsigned long nr_scanned; 2986 2987 if (order > 0) 2988 return 0; 2989 2990 mctz = soft_limit_tree_node(pgdat->node_id); 2991 2992 /* 2993 * Do not even bother to check the largest node if the root 2994 * is empty. Do it lockless to prevent lock bouncing. Races 2995 * are acceptable as soft limit is best effort anyway. 2996 */ 2997 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 2998 return 0; 2999 3000 /* 3001 * This loop can run a while, specially if mem_cgroup's continuously 3002 * keep exceeding their soft limit and putting the system under 3003 * pressure 3004 */ 3005 do { 3006 if (next_mz) 3007 mz = next_mz; 3008 else 3009 mz = mem_cgroup_largest_soft_limit_node(mctz); 3010 if (!mz) 3011 break; 3012 3013 nr_scanned = 0; 3014 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3015 gfp_mask, &nr_scanned); 3016 nr_reclaimed += reclaimed; 3017 *total_scanned += nr_scanned; 3018 spin_lock_irq(&mctz->lock); 3019 __mem_cgroup_remove_exceeded(mz, mctz); 3020 3021 /* 3022 * If we failed to reclaim anything from this memory cgroup 3023 * it is time to move on to the next cgroup 3024 */ 3025 next_mz = NULL; 3026 if (!reclaimed) 3027 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3028 3029 excess = soft_limit_excess(mz->memcg); 3030 /* 3031 * One school of thought says that we should not add 3032 * back the node to the tree if reclaim returns 0. 3033 * But our reclaim could return 0, simply because due 3034 * to priority we are exposing a smaller subset of 3035 * memory to reclaim from. Consider this as a longer 3036 * term TODO. 3037 */ 3038 /* If excess == 0, no tree ops */ 3039 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3040 spin_unlock_irq(&mctz->lock); 3041 css_put(&mz->memcg->css); 3042 loop++; 3043 /* 3044 * Could not reclaim anything and there are no more 3045 * mem cgroups to try or we seem to be looping without 3046 * reclaiming anything. 3047 */ 3048 if (!nr_reclaimed && 3049 (next_mz == NULL || 3050 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3051 break; 3052 } while (!nr_reclaimed); 3053 if (next_mz) 3054 css_put(&next_mz->memcg->css); 3055 return nr_reclaimed; 3056 } 3057 3058 /* 3059 * Test whether @memcg has children, dead or alive. Note that this 3060 * function doesn't care whether @memcg has use_hierarchy enabled and 3061 * returns %true if there are child csses according to the cgroup 3062 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 3063 */ 3064 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3065 { 3066 bool ret; 3067 3068 rcu_read_lock(); 3069 ret = css_next_child(NULL, &memcg->css); 3070 rcu_read_unlock(); 3071 return ret; 3072 } 3073 3074 /* 3075 * Reclaims as many pages from the given memcg as possible. 3076 * 3077 * Caller is responsible for holding css reference for memcg. 3078 */ 3079 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3080 { 3081 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3082 3083 /* we call try-to-free pages for make this cgroup empty */ 3084 lru_add_drain_all(); 3085 3086 drain_all_stock(memcg); 3087 3088 /* try to free all pages in this cgroup */ 3089 while (nr_retries && page_counter_read(&memcg->memory)) { 3090 int progress; 3091 3092 if (signal_pending(current)) 3093 return -EINTR; 3094 3095 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3096 GFP_KERNEL, true); 3097 if (!progress) { 3098 nr_retries--; 3099 /* maybe some writeback is necessary */ 3100 congestion_wait(BLK_RW_ASYNC, HZ/10); 3101 } 3102 3103 } 3104 3105 return 0; 3106 } 3107 3108 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3109 char *buf, size_t nbytes, 3110 loff_t off) 3111 { 3112 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3113 3114 if (mem_cgroup_is_root(memcg)) 3115 return -EINVAL; 3116 return mem_cgroup_force_empty(memcg) ?: nbytes; 3117 } 3118 3119 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3120 struct cftype *cft) 3121 { 3122 return mem_cgroup_from_css(css)->use_hierarchy; 3123 } 3124 3125 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3126 struct cftype *cft, u64 val) 3127 { 3128 int retval = 0; 3129 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3130 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3131 3132 if (memcg->use_hierarchy == val) 3133 return 0; 3134 3135 /* 3136 * If parent's use_hierarchy is set, we can't make any modifications 3137 * in the child subtrees. If it is unset, then the change can 3138 * occur, provided the current cgroup has no children. 3139 * 3140 * For the root cgroup, parent_mem is NULL, we allow value to be 3141 * set if there are no children. 3142 */ 3143 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3144 (val == 1 || val == 0)) { 3145 if (!memcg_has_children(memcg)) 3146 memcg->use_hierarchy = val; 3147 else 3148 retval = -EBUSY; 3149 } else 3150 retval = -EINVAL; 3151 3152 return retval; 3153 } 3154 3155 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3156 { 3157 unsigned long val; 3158 3159 if (mem_cgroup_is_root(memcg)) { 3160 val = memcg_page_state(memcg, MEMCG_CACHE) + 3161 memcg_page_state(memcg, MEMCG_RSS); 3162 if (swap) 3163 val += memcg_page_state(memcg, MEMCG_SWAP); 3164 } else { 3165 if (!swap) 3166 val = page_counter_read(&memcg->memory); 3167 else 3168 val = page_counter_read(&memcg->memsw); 3169 } 3170 return val; 3171 } 3172 3173 enum { 3174 RES_USAGE, 3175 RES_LIMIT, 3176 RES_MAX_USAGE, 3177 RES_FAILCNT, 3178 RES_SOFT_LIMIT, 3179 }; 3180 3181 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3182 struct cftype *cft) 3183 { 3184 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3185 struct page_counter *counter; 3186 3187 switch (MEMFILE_TYPE(cft->private)) { 3188 case _MEM: 3189 counter = &memcg->memory; 3190 break; 3191 case _MEMSWAP: 3192 counter = &memcg->memsw; 3193 break; 3194 case _KMEM: 3195 counter = &memcg->kmem; 3196 break; 3197 case _TCP: 3198 counter = &memcg->tcpmem; 3199 break; 3200 default: 3201 BUG(); 3202 } 3203 3204 switch (MEMFILE_ATTR(cft->private)) { 3205 case RES_USAGE: 3206 if (counter == &memcg->memory) 3207 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3208 if (counter == &memcg->memsw) 3209 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3210 return (u64)page_counter_read(counter) * PAGE_SIZE; 3211 case RES_LIMIT: 3212 return (u64)counter->max * PAGE_SIZE; 3213 case RES_MAX_USAGE: 3214 return (u64)counter->watermark * PAGE_SIZE; 3215 case RES_FAILCNT: 3216 return counter->failcnt; 3217 case RES_SOFT_LIMIT: 3218 return (u64)memcg->soft_limit * PAGE_SIZE; 3219 default: 3220 BUG(); 3221 } 3222 } 3223 3224 #ifdef CONFIG_MEMCG_KMEM 3225 static int memcg_online_kmem(struct mem_cgroup *memcg) 3226 { 3227 int memcg_id; 3228 3229 if (cgroup_memory_nokmem) 3230 return 0; 3231 3232 BUG_ON(memcg->kmemcg_id >= 0); 3233 BUG_ON(memcg->kmem_state); 3234 3235 memcg_id = memcg_alloc_cache_id(); 3236 if (memcg_id < 0) 3237 return memcg_id; 3238 3239 static_branch_inc(&memcg_kmem_enabled_key); 3240 /* 3241 * A memory cgroup is considered kmem-online as soon as it gets 3242 * kmemcg_id. Setting the id after enabling static branching will 3243 * guarantee no one starts accounting before all call sites are 3244 * patched. 3245 */ 3246 memcg->kmemcg_id = memcg_id; 3247 memcg->kmem_state = KMEM_ONLINE; 3248 INIT_LIST_HEAD(&memcg->kmem_caches); 3249 3250 return 0; 3251 } 3252 3253 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3254 { 3255 struct cgroup_subsys_state *css; 3256 struct mem_cgroup *parent, *child; 3257 int kmemcg_id; 3258 3259 if (memcg->kmem_state != KMEM_ONLINE) 3260 return; 3261 /* 3262 * Clear the online state before clearing memcg_caches array 3263 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3264 * guarantees that no cache will be created for this cgroup 3265 * after we are done (see memcg_create_kmem_cache()). 3266 */ 3267 memcg->kmem_state = KMEM_ALLOCATED; 3268 3269 parent = parent_mem_cgroup(memcg); 3270 if (!parent) 3271 parent = root_mem_cgroup; 3272 3273 memcg_deactivate_kmem_caches(memcg, parent); 3274 3275 kmemcg_id = memcg->kmemcg_id; 3276 BUG_ON(kmemcg_id < 0); 3277 3278 /* 3279 * Change kmemcg_id of this cgroup and all its descendants to the 3280 * parent's id, and then move all entries from this cgroup's list_lrus 3281 * to ones of the parent. After we have finished, all list_lrus 3282 * corresponding to this cgroup are guaranteed to remain empty. The 3283 * ordering is imposed by list_lru_node->lock taken by 3284 * memcg_drain_all_list_lrus(). 3285 */ 3286 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3287 css_for_each_descendant_pre(css, &memcg->css) { 3288 child = mem_cgroup_from_css(css); 3289 BUG_ON(child->kmemcg_id != kmemcg_id); 3290 child->kmemcg_id = parent->kmemcg_id; 3291 if (!memcg->use_hierarchy) 3292 break; 3293 } 3294 rcu_read_unlock(); 3295 3296 memcg_drain_all_list_lrus(kmemcg_id, parent); 3297 3298 memcg_free_cache_id(kmemcg_id); 3299 } 3300 3301 static void memcg_free_kmem(struct mem_cgroup *memcg) 3302 { 3303 /* css_alloc() failed, offlining didn't happen */ 3304 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3305 memcg_offline_kmem(memcg); 3306 3307 if (memcg->kmem_state == KMEM_ALLOCATED) { 3308 WARN_ON(!list_empty(&memcg->kmem_caches)); 3309 static_branch_dec(&memcg_kmem_enabled_key); 3310 } 3311 } 3312 #else 3313 static int memcg_online_kmem(struct mem_cgroup *memcg) 3314 { 3315 return 0; 3316 } 3317 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3318 { 3319 } 3320 static void memcg_free_kmem(struct mem_cgroup *memcg) 3321 { 3322 } 3323 #endif /* CONFIG_MEMCG_KMEM */ 3324 3325 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3326 unsigned long max) 3327 { 3328 int ret; 3329 3330 mutex_lock(&memcg_max_mutex); 3331 ret = page_counter_set_max(&memcg->kmem, max); 3332 mutex_unlock(&memcg_max_mutex); 3333 return ret; 3334 } 3335 3336 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3337 { 3338 int ret; 3339 3340 mutex_lock(&memcg_max_mutex); 3341 3342 ret = page_counter_set_max(&memcg->tcpmem, max); 3343 if (ret) 3344 goto out; 3345 3346 if (!memcg->tcpmem_active) { 3347 /* 3348 * The active flag needs to be written after the static_key 3349 * update. This is what guarantees that the socket activation 3350 * function is the last one to run. See mem_cgroup_sk_alloc() 3351 * for details, and note that we don't mark any socket as 3352 * belonging to this memcg until that flag is up. 3353 * 3354 * We need to do this, because static_keys will span multiple 3355 * sites, but we can't control their order. If we mark a socket 3356 * as accounted, but the accounting functions are not patched in 3357 * yet, we'll lose accounting. 3358 * 3359 * We never race with the readers in mem_cgroup_sk_alloc(), 3360 * because when this value change, the code to process it is not 3361 * patched in yet. 3362 */ 3363 static_branch_inc(&memcg_sockets_enabled_key); 3364 memcg->tcpmem_active = true; 3365 } 3366 out: 3367 mutex_unlock(&memcg_max_mutex); 3368 return ret; 3369 } 3370 3371 /* 3372 * The user of this function is... 3373 * RES_LIMIT. 3374 */ 3375 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3376 char *buf, size_t nbytes, loff_t off) 3377 { 3378 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3379 unsigned long nr_pages; 3380 int ret; 3381 3382 buf = strstrip(buf); 3383 ret = page_counter_memparse(buf, "-1", &nr_pages); 3384 if (ret) 3385 return ret; 3386 3387 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3388 case RES_LIMIT: 3389 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3390 ret = -EINVAL; 3391 break; 3392 } 3393 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3394 case _MEM: 3395 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3396 break; 3397 case _MEMSWAP: 3398 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3399 break; 3400 case _KMEM: 3401 ret = memcg_update_kmem_max(memcg, nr_pages); 3402 break; 3403 case _TCP: 3404 ret = memcg_update_tcp_max(memcg, nr_pages); 3405 break; 3406 } 3407 break; 3408 case RES_SOFT_LIMIT: 3409 memcg->soft_limit = nr_pages; 3410 ret = 0; 3411 break; 3412 } 3413 return ret ?: nbytes; 3414 } 3415 3416 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3417 size_t nbytes, loff_t off) 3418 { 3419 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3420 struct page_counter *counter; 3421 3422 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3423 case _MEM: 3424 counter = &memcg->memory; 3425 break; 3426 case _MEMSWAP: 3427 counter = &memcg->memsw; 3428 break; 3429 case _KMEM: 3430 counter = &memcg->kmem; 3431 break; 3432 case _TCP: 3433 counter = &memcg->tcpmem; 3434 break; 3435 default: 3436 BUG(); 3437 } 3438 3439 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3440 case RES_MAX_USAGE: 3441 page_counter_reset_watermark(counter); 3442 break; 3443 case RES_FAILCNT: 3444 counter->failcnt = 0; 3445 break; 3446 default: 3447 BUG(); 3448 } 3449 3450 return nbytes; 3451 } 3452 3453 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3454 struct cftype *cft) 3455 { 3456 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3457 } 3458 3459 #ifdef CONFIG_MMU 3460 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3461 struct cftype *cft, u64 val) 3462 { 3463 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3464 3465 if (val & ~MOVE_MASK) 3466 return -EINVAL; 3467 3468 /* 3469 * No kind of locking is needed in here, because ->can_attach() will 3470 * check this value once in the beginning of the process, and then carry 3471 * on with stale data. This means that changes to this value will only 3472 * affect task migrations starting after the change. 3473 */ 3474 memcg->move_charge_at_immigrate = val; 3475 return 0; 3476 } 3477 #else 3478 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3479 struct cftype *cft, u64 val) 3480 { 3481 return -ENOSYS; 3482 } 3483 #endif 3484 3485 #ifdef CONFIG_NUMA 3486 3487 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3488 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3489 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3490 3491 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3492 int nid, unsigned int lru_mask) 3493 { 3494 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 3495 unsigned long nr = 0; 3496 enum lru_list lru; 3497 3498 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3499 3500 for_each_lru(lru) { 3501 if (!(BIT(lru) & lru_mask)) 3502 continue; 3503 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3504 } 3505 return nr; 3506 } 3507 3508 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3509 unsigned int lru_mask) 3510 { 3511 unsigned long nr = 0; 3512 enum lru_list lru; 3513 3514 for_each_lru(lru) { 3515 if (!(BIT(lru) & lru_mask)) 3516 continue; 3517 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3518 } 3519 return nr; 3520 } 3521 3522 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3523 { 3524 struct numa_stat { 3525 const char *name; 3526 unsigned int lru_mask; 3527 }; 3528 3529 static const struct numa_stat stats[] = { 3530 { "total", LRU_ALL }, 3531 { "file", LRU_ALL_FILE }, 3532 { "anon", LRU_ALL_ANON }, 3533 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3534 }; 3535 const struct numa_stat *stat; 3536 int nid; 3537 unsigned long nr; 3538 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3539 3540 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3541 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3542 seq_printf(m, "%s=%lu", stat->name, nr); 3543 for_each_node_state(nid, N_MEMORY) { 3544 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3545 stat->lru_mask); 3546 seq_printf(m, " N%d=%lu", nid, nr); 3547 } 3548 seq_putc(m, '\n'); 3549 } 3550 3551 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3552 struct mem_cgroup *iter; 3553 3554 nr = 0; 3555 for_each_mem_cgroup_tree(iter, memcg) 3556 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3557 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3558 for_each_node_state(nid, N_MEMORY) { 3559 nr = 0; 3560 for_each_mem_cgroup_tree(iter, memcg) 3561 nr += mem_cgroup_node_nr_lru_pages( 3562 iter, nid, stat->lru_mask); 3563 seq_printf(m, " N%d=%lu", nid, nr); 3564 } 3565 seq_putc(m, '\n'); 3566 } 3567 3568 return 0; 3569 } 3570 #endif /* CONFIG_NUMA */ 3571 3572 static const unsigned int memcg1_stats[] = { 3573 MEMCG_CACHE, 3574 MEMCG_RSS, 3575 MEMCG_RSS_HUGE, 3576 NR_SHMEM, 3577 NR_FILE_MAPPED, 3578 NR_FILE_DIRTY, 3579 NR_WRITEBACK, 3580 MEMCG_SWAP, 3581 }; 3582 3583 static const char *const memcg1_stat_names[] = { 3584 "cache", 3585 "rss", 3586 "rss_huge", 3587 "shmem", 3588 "mapped_file", 3589 "dirty", 3590 "writeback", 3591 "swap", 3592 }; 3593 3594 /* Universal VM events cgroup1 shows, original sort order */ 3595 static const unsigned int memcg1_events[] = { 3596 PGPGIN, 3597 PGPGOUT, 3598 PGFAULT, 3599 PGMAJFAULT, 3600 }; 3601 3602 static const char *const memcg1_event_names[] = { 3603 "pgpgin", 3604 "pgpgout", 3605 "pgfault", 3606 "pgmajfault", 3607 }; 3608 3609 static int memcg_stat_show(struct seq_file *m, void *v) 3610 { 3611 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3612 unsigned long memory, memsw; 3613 struct mem_cgroup *mi; 3614 unsigned int i; 3615 3616 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3617 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3618 3619 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3620 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3621 continue; 3622 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3623 memcg_page_state_local(memcg, memcg1_stats[i]) * 3624 PAGE_SIZE); 3625 } 3626 3627 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3628 seq_printf(m, "%s %lu\n", memcg1_event_names[i], 3629 memcg_events_local(memcg, memcg1_events[i])); 3630 3631 for (i = 0; i < NR_LRU_LISTS; i++) 3632 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3633 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3634 PAGE_SIZE); 3635 3636 /* Hierarchical information */ 3637 memory = memsw = PAGE_COUNTER_MAX; 3638 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3639 memory = min(memory, mi->memory.max); 3640 memsw = min(memsw, mi->memsw.max); 3641 } 3642 seq_printf(m, "hierarchical_memory_limit %llu\n", 3643 (u64)memory * PAGE_SIZE); 3644 if (do_memsw_account()) 3645 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3646 (u64)memsw * PAGE_SIZE); 3647 3648 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3649 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3650 continue; 3651 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3652 (u64)memcg_page_state(memcg, memcg1_stats[i]) * 3653 PAGE_SIZE); 3654 } 3655 3656 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3657 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], 3658 (u64)memcg_events(memcg, memcg1_events[i])); 3659 3660 for (i = 0; i < NR_LRU_LISTS; i++) 3661 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], 3662 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 3663 PAGE_SIZE); 3664 3665 #ifdef CONFIG_DEBUG_VM 3666 { 3667 pg_data_t *pgdat; 3668 struct mem_cgroup_per_node *mz; 3669 struct zone_reclaim_stat *rstat; 3670 unsigned long recent_rotated[2] = {0, 0}; 3671 unsigned long recent_scanned[2] = {0, 0}; 3672 3673 for_each_online_pgdat(pgdat) { 3674 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3675 rstat = &mz->lruvec.reclaim_stat; 3676 3677 recent_rotated[0] += rstat->recent_rotated[0]; 3678 recent_rotated[1] += rstat->recent_rotated[1]; 3679 recent_scanned[0] += rstat->recent_scanned[0]; 3680 recent_scanned[1] += rstat->recent_scanned[1]; 3681 } 3682 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3683 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3684 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3685 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3686 } 3687 #endif 3688 3689 return 0; 3690 } 3691 3692 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3693 struct cftype *cft) 3694 { 3695 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3696 3697 return mem_cgroup_swappiness(memcg); 3698 } 3699 3700 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3701 struct cftype *cft, u64 val) 3702 { 3703 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3704 3705 if (val > 100) 3706 return -EINVAL; 3707 3708 if (css->parent) 3709 memcg->swappiness = val; 3710 else 3711 vm_swappiness = val; 3712 3713 return 0; 3714 } 3715 3716 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3717 { 3718 struct mem_cgroup_threshold_ary *t; 3719 unsigned long usage; 3720 int i; 3721 3722 rcu_read_lock(); 3723 if (!swap) 3724 t = rcu_dereference(memcg->thresholds.primary); 3725 else 3726 t = rcu_dereference(memcg->memsw_thresholds.primary); 3727 3728 if (!t) 3729 goto unlock; 3730 3731 usage = mem_cgroup_usage(memcg, swap); 3732 3733 /* 3734 * current_threshold points to threshold just below or equal to usage. 3735 * If it's not true, a threshold was crossed after last 3736 * call of __mem_cgroup_threshold(). 3737 */ 3738 i = t->current_threshold; 3739 3740 /* 3741 * Iterate backward over array of thresholds starting from 3742 * current_threshold and check if a threshold is crossed. 3743 * If none of thresholds below usage is crossed, we read 3744 * only one element of the array here. 3745 */ 3746 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3747 eventfd_signal(t->entries[i].eventfd, 1); 3748 3749 /* i = current_threshold + 1 */ 3750 i++; 3751 3752 /* 3753 * Iterate forward over array of thresholds starting from 3754 * current_threshold+1 and check if a threshold is crossed. 3755 * If none of thresholds above usage is crossed, we read 3756 * only one element of the array here. 3757 */ 3758 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3759 eventfd_signal(t->entries[i].eventfd, 1); 3760 3761 /* Update current_threshold */ 3762 t->current_threshold = i - 1; 3763 unlock: 3764 rcu_read_unlock(); 3765 } 3766 3767 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3768 { 3769 while (memcg) { 3770 __mem_cgroup_threshold(memcg, false); 3771 if (do_memsw_account()) 3772 __mem_cgroup_threshold(memcg, true); 3773 3774 memcg = parent_mem_cgroup(memcg); 3775 } 3776 } 3777 3778 static int compare_thresholds(const void *a, const void *b) 3779 { 3780 const struct mem_cgroup_threshold *_a = a; 3781 const struct mem_cgroup_threshold *_b = b; 3782 3783 if (_a->threshold > _b->threshold) 3784 return 1; 3785 3786 if (_a->threshold < _b->threshold) 3787 return -1; 3788 3789 return 0; 3790 } 3791 3792 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3793 { 3794 struct mem_cgroup_eventfd_list *ev; 3795 3796 spin_lock(&memcg_oom_lock); 3797 3798 list_for_each_entry(ev, &memcg->oom_notify, list) 3799 eventfd_signal(ev->eventfd, 1); 3800 3801 spin_unlock(&memcg_oom_lock); 3802 return 0; 3803 } 3804 3805 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3806 { 3807 struct mem_cgroup *iter; 3808 3809 for_each_mem_cgroup_tree(iter, memcg) 3810 mem_cgroup_oom_notify_cb(iter); 3811 } 3812 3813 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3814 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3815 { 3816 struct mem_cgroup_thresholds *thresholds; 3817 struct mem_cgroup_threshold_ary *new; 3818 unsigned long threshold; 3819 unsigned long usage; 3820 int i, size, ret; 3821 3822 ret = page_counter_memparse(args, "-1", &threshold); 3823 if (ret) 3824 return ret; 3825 3826 mutex_lock(&memcg->thresholds_lock); 3827 3828 if (type == _MEM) { 3829 thresholds = &memcg->thresholds; 3830 usage = mem_cgroup_usage(memcg, false); 3831 } else if (type == _MEMSWAP) { 3832 thresholds = &memcg->memsw_thresholds; 3833 usage = mem_cgroup_usage(memcg, true); 3834 } else 3835 BUG(); 3836 3837 /* Check if a threshold crossed before adding a new one */ 3838 if (thresholds->primary) 3839 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3840 3841 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3842 3843 /* Allocate memory for new array of thresholds */ 3844 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 3845 if (!new) { 3846 ret = -ENOMEM; 3847 goto unlock; 3848 } 3849 new->size = size; 3850 3851 /* Copy thresholds (if any) to new array */ 3852 if (thresholds->primary) { 3853 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3854 sizeof(struct mem_cgroup_threshold)); 3855 } 3856 3857 /* Add new threshold */ 3858 new->entries[size - 1].eventfd = eventfd; 3859 new->entries[size - 1].threshold = threshold; 3860 3861 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3862 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3863 compare_thresholds, NULL); 3864 3865 /* Find current threshold */ 3866 new->current_threshold = -1; 3867 for (i = 0; i < size; i++) { 3868 if (new->entries[i].threshold <= usage) { 3869 /* 3870 * new->current_threshold will not be used until 3871 * rcu_assign_pointer(), so it's safe to increment 3872 * it here. 3873 */ 3874 ++new->current_threshold; 3875 } else 3876 break; 3877 } 3878 3879 /* Free old spare buffer and save old primary buffer as spare */ 3880 kfree(thresholds->spare); 3881 thresholds->spare = thresholds->primary; 3882 3883 rcu_assign_pointer(thresholds->primary, new); 3884 3885 /* To be sure that nobody uses thresholds */ 3886 synchronize_rcu(); 3887 3888 unlock: 3889 mutex_unlock(&memcg->thresholds_lock); 3890 3891 return ret; 3892 } 3893 3894 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3895 struct eventfd_ctx *eventfd, const char *args) 3896 { 3897 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3898 } 3899 3900 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3901 struct eventfd_ctx *eventfd, const char *args) 3902 { 3903 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3904 } 3905 3906 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3907 struct eventfd_ctx *eventfd, enum res_type type) 3908 { 3909 struct mem_cgroup_thresholds *thresholds; 3910 struct mem_cgroup_threshold_ary *new; 3911 unsigned long usage; 3912 int i, j, size; 3913 3914 mutex_lock(&memcg->thresholds_lock); 3915 3916 if (type == _MEM) { 3917 thresholds = &memcg->thresholds; 3918 usage = mem_cgroup_usage(memcg, false); 3919 } else if (type == _MEMSWAP) { 3920 thresholds = &memcg->memsw_thresholds; 3921 usage = mem_cgroup_usage(memcg, true); 3922 } else 3923 BUG(); 3924 3925 if (!thresholds->primary) 3926 goto unlock; 3927 3928 /* Check if a threshold crossed before removing */ 3929 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3930 3931 /* Calculate new number of threshold */ 3932 size = 0; 3933 for (i = 0; i < thresholds->primary->size; i++) { 3934 if (thresholds->primary->entries[i].eventfd != eventfd) 3935 size++; 3936 } 3937 3938 new = thresholds->spare; 3939 3940 /* Set thresholds array to NULL if we don't have thresholds */ 3941 if (!size) { 3942 kfree(new); 3943 new = NULL; 3944 goto swap_buffers; 3945 } 3946 3947 new->size = size; 3948 3949 /* Copy thresholds and find current threshold */ 3950 new->current_threshold = -1; 3951 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3952 if (thresholds->primary->entries[i].eventfd == eventfd) 3953 continue; 3954 3955 new->entries[j] = thresholds->primary->entries[i]; 3956 if (new->entries[j].threshold <= usage) { 3957 /* 3958 * new->current_threshold will not be used 3959 * until rcu_assign_pointer(), so it's safe to increment 3960 * it here. 3961 */ 3962 ++new->current_threshold; 3963 } 3964 j++; 3965 } 3966 3967 swap_buffers: 3968 /* Swap primary and spare array */ 3969 thresholds->spare = thresholds->primary; 3970 3971 rcu_assign_pointer(thresholds->primary, new); 3972 3973 /* To be sure that nobody uses thresholds */ 3974 synchronize_rcu(); 3975 3976 /* If all events are unregistered, free the spare array */ 3977 if (!new) { 3978 kfree(thresholds->spare); 3979 thresholds->spare = NULL; 3980 } 3981 unlock: 3982 mutex_unlock(&memcg->thresholds_lock); 3983 } 3984 3985 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3986 struct eventfd_ctx *eventfd) 3987 { 3988 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3989 } 3990 3991 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3992 struct eventfd_ctx *eventfd) 3993 { 3994 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3995 } 3996 3997 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3998 struct eventfd_ctx *eventfd, const char *args) 3999 { 4000 struct mem_cgroup_eventfd_list *event; 4001 4002 event = kmalloc(sizeof(*event), GFP_KERNEL); 4003 if (!event) 4004 return -ENOMEM; 4005 4006 spin_lock(&memcg_oom_lock); 4007 4008 event->eventfd = eventfd; 4009 list_add(&event->list, &memcg->oom_notify); 4010 4011 /* already in OOM ? */ 4012 if (memcg->under_oom) 4013 eventfd_signal(eventfd, 1); 4014 spin_unlock(&memcg_oom_lock); 4015 4016 return 0; 4017 } 4018 4019 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4020 struct eventfd_ctx *eventfd) 4021 { 4022 struct mem_cgroup_eventfd_list *ev, *tmp; 4023 4024 spin_lock(&memcg_oom_lock); 4025 4026 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4027 if (ev->eventfd == eventfd) { 4028 list_del(&ev->list); 4029 kfree(ev); 4030 } 4031 } 4032 4033 spin_unlock(&memcg_oom_lock); 4034 } 4035 4036 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4037 { 4038 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4039 4040 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4041 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4042 seq_printf(sf, "oom_kill %lu\n", 4043 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4044 return 0; 4045 } 4046 4047 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4048 struct cftype *cft, u64 val) 4049 { 4050 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4051 4052 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4053 if (!css->parent || !((val == 0) || (val == 1))) 4054 return -EINVAL; 4055 4056 memcg->oom_kill_disable = val; 4057 if (!val) 4058 memcg_oom_recover(memcg); 4059 4060 return 0; 4061 } 4062 4063 #ifdef CONFIG_CGROUP_WRITEBACK 4064 4065 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4066 { 4067 return wb_domain_init(&memcg->cgwb_domain, gfp); 4068 } 4069 4070 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4071 { 4072 wb_domain_exit(&memcg->cgwb_domain); 4073 } 4074 4075 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4076 { 4077 wb_domain_size_changed(&memcg->cgwb_domain); 4078 } 4079 4080 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4081 { 4082 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4083 4084 if (!memcg->css.parent) 4085 return NULL; 4086 4087 return &memcg->cgwb_domain; 4088 } 4089 4090 /* 4091 * idx can be of type enum memcg_stat_item or node_stat_item. 4092 * Keep in sync with memcg_exact_page(). 4093 */ 4094 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4095 { 4096 long x = atomic_long_read(&memcg->vmstats[idx]); 4097 int cpu; 4098 4099 for_each_online_cpu(cpu) 4100 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4101 if (x < 0) 4102 x = 0; 4103 return x; 4104 } 4105 4106 /** 4107 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4108 * @wb: bdi_writeback in question 4109 * @pfilepages: out parameter for number of file pages 4110 * @pheadroom: out parameter for number of allocatable pages according to memcg 4111 * @pdirty: out parameter for number of dirty pages 4112 * @pwriteback: out parameter for number of pages under writeback 4113 * 4114 * Determine the numbers of file, headroom, dirty, and writeback pages in 4115 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4116 * is a bit more involved. 4117 * 4118 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4119 * headroom is calculated as the lowest headroom of itself and the 4120 * ancestors. Note that this doesn't consider the actual amount of 4121 * available memory in the system. The caller should further cap 4122 * *@pheadroom accordingly. 4123 */ 4124 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4125 unsigned long *pheadroom, unsigned long *pdirty, 4126 unsigned long *pwriteback) 4127 { 4128 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4129 struct mem_cgroup *parent; 4130 4131 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4132 4133 /* this should eventually include NR_UNSTABLE_NFS */ 4134 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4135 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4136 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4137 *pheadroom = PAGE_COUNTER_MAX; 4138 4139 while ((parent = parent_mem_cgroup(memcg))) { 4140 unsigned long ceiling = min(memcg->memory.max, memcg->high); 4141 unsigned long used = page_counter_read(&memcg->memory); 4142 4143 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4144 memcg = parent; 4145 } 4146 } 4147 4148 #else /* CONFIG_CGROUP_WRITEBACK */ 4149 4150 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4151 { 4152 return 0; 4153 } 4154 4155 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4156 { 4157 } 4158 4159 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4160 { 4161 } 4162 4163 #endif /* CONFIG_CGROUP_WRITEBACK */ 4164 4165 /* 4166 * DO NOT USE IN NEW FILES. 4167 * 4168 * "cgroup.event_control" implementation. 4169 * 4170 * This is way over-engineered. It tries to support fully configurable 4171 * events for each user. Such level of flexibility is completely 4172 * unnecessary especially in the light of the planned unified hierarchy. 4173 * 4174 * Please deprecate this and replace with something simpler if at all 4175 * possible. 4176 */ 4177 4178 /* 4179 * Unregister event and free resources. 4180 * 4181 * Gets called from workqueue. 4182 */ 4183 static void memcg_event_remove(struct work_struct *work) 4184 { 4185 struct mem_cgroup_event *event = 4186 container_of(work, struct mem_cgroup_event, remove); 4187 struct mem_cgroup *memcg = event->memcg; 4188 4189 remove_wait_queue(event->wqh, &event->wait); 4190 4191 event->unregister_event(memcg, event->eventfd); 4192 4193 /* Notify userspace the event is going away. */ 4194 eventfd_signal(event->eventfd, 1); 4195 4196 eventfd_ctx_put(event->eventfd); 4197 kfree(event); 4198 css_put(&memcg->css); 4199 } 4200 4201 /* 4202 * Gets called on EPOLLHUP on eventfd when user closes it. 4203 * 4204 * Called with wqh->lock held and interrupts disabled. 4205 */ 4206 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4207 int sync, void *key) 4208 { 4209 struct mem_cgroup_event *event = 4210 container_of(wait, struct mem_cgroup_event, wait); 4211 struct mem_cgroup *memcg = event->memcg; 4212 __poll_t flags = key_to_poll(key); 4213 4214 if (flags & EPOLLHUP) { 4215 /* 4216 * If the event has been detached at cgroup removal, we 4217 * can simply return knowing the other side will cleanup 4218 * for us. 4219 * 4220 * We can't race against event freeing since the other 4221 * side will require wqh->lock via remove_wait_queue(), 4222 * which we hold. 4223 */ 4224 spin_lock(&memcg->event_list_lock); 4225 if (!list_empty(&event->list)) { 4226 list_del_init(&event->list); 4227 /* 4228 * We are in atomic context, but cgroup_event_remove() 4229 * may sleep, so we have to call it in workqueue. 4230 */ 4231 schedule_work(&event->remove); 4232 } 4233 spin_unlock(&memcg->event_list_lock); 4234 } 4235 4236 return 0; 4237 } 4238 4239 static void memcg_event_ptable_queue_proc(struct file *file, 4240 wait_queue_head_t *wqh, poll_table *pt) 4241 { 4242 struct mem_cgroup_event *event = 4243 container_of(pt, struct mem_cgroup_event, pt); 4244 4245 event->wqh = wqh; 4246 add_wait_queue(wqh, &event->wait); 4247 } 4248 4249 /* 4250 * DO NOT USE IN NEW FILES. 4251 * 4252 * Parse input and register new cgroup event handler. 4253 * 4254 * Input must be in format '<event_fd> <control_fd> <args>'. 4255 * Interpretation of args is defined by control file implementation. 4256 */ 4257 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4258 char *buf, size_t nbytes, loff_t off) 4259 { 4260 struct cgroup_subsys_state *css = of_css(of); 4261 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4262 struct mem_cgroup_event *event; 4263 struct cgroup_subsys_state *cfile_css; 4264 unsigned int efd, cfd; 4265 struct fd efile; 4266 struct fd cfile; 4267 const char *name; 4268 char *endp; 4269 int ret; 4270 4271 buf = strstrip(buf); 4272 4273 efd = simple_strtoul(buf, &endp, 10); 4274 if (*endp != ' ') 4275 return -EINVAL; 4276 buf = endp + 1; 4277 4278 cfd = simple_strtoul(buf, &endp, 10); 4279 if ((*endp != ' ') && (*endp != '\0')) 4280 return -EINVAL; 4281 buf = endp + 1; 4282 4283 event = kzalloc(sizeof(*event), GFP_KERNEL); 4284 if (!event) 4285 return -ENOMEM; 4286 4287 event->memcg = memcg; 4288 INIT_LIST_HEAD(&event->list); 4289 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4290 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4291 INIT_WORK(&event->remove, memcg_event_remove); 4292 4293 efile = fdget(efd); 4294 if (!efile.file) { 4295 ret = -EBADF; 4296 goto out_kfree; 4297 } 4298 4299 event->eventfd = eventfd_ctx_fileget(efile.file); 4300 if (IS_ERR(event->eventfd)) { 4301 ret = PTR_ERR(event->eventfd); 4302 goto out_put_efile; 4303 } 4304 4305 cfile = fdget(cfd); 4306 if (!cfile.file) { 4307 ret = -EBADF; 4308 goto out_put_eventfd; 4309 } 4310 4311 /* the process need read permission on control file */ 4312 /* AV: shouldn't we check that it's been opened for read instead? */ 4313 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4314 if (ret < 0) 4315 goto out_put_cfile; 4316 4317 /* 4318 * Determine the event callbacks and set them in @event. This used 4319 * to be done via struct cftype but cgroup core no longer knows 4320 * about these events. The following is crude but the whole thing 4321 * is for compatibility anyway. 4322 * 4323 * DO NOT ADD NEW FILES. 4324 */ 4325 name = cfile.file->f_path.dentry->d_name.name; 4326 4327 if (!strcmp(name, "memory.usage_in_bytes")) { 4328 event->register_event = mem_cgroup_usage_register_event; 4329 event->unregister_event = mem_cgroup_usage_unregister_event; 4330 } else if (!strcmp(name, "memory.oom_control")) { 4331 event->register_event = mem_cgroup_oom_register_event; 4332 event->unregister_event = mem_cgroup_oom_unregister_event; 4333 } else if (!strcmp(name, "memory.pressure_level")) { 4334 event->register_event = vmpressure_register_event; 4335 event->unregister_event = vmpressure_unregister_event; 4336 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4337 event->register_event = memsw_cgroup_usage_register_event; 4338 event->unregister_event = memsw_cgroup_usage_unregister_event; 4339 } else { 4340 ret = -EINVAL; 4341 goto out_put_cfile; 4342 } 4343 4344 /* 4345 * Verify @cfile should belong to @css. Also, remaining events are 4346 * automatically removed on cgroup destruction but the removal is 4347 * asynchronous, so take an extra ref on @css. 4348 */ 4349 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4350 &memory_cgrp_subsys); 4351 ret = -EINVAL; 4352 if (IS_ERR(cfile_css)) 4353 goto out_put_cfile; 4354 if (cfile_css != css) { 4355 css_put(cfile_css); 4356 goto out_put_cfile; 4357 } 4358 4359 ret = event->register_event(memcg, event->eventfd, buf); 4360 if (ret) 4361 goto out_put_css; 4362 4363 vfs_poll(efile.file, &event->pt); 4364 4365 spin_lock(&memcg->event_list_lock); 4366 list_add(&event->list, &memcg->event_list); 4367 spin_unlock(&memcg->event_list_lock); 4368 4369 fdput(cfile); 4370 fdput(efile); 4371 4372 return nbytes; 4373 4374 out_put_css: 4375 css_put(css); 4376 out_put_cfile: 4377 fdput(cfile); 4378 out_put_eventfd: 4379 eventfd_ctx_put(event->eventfd); 4380 out_put_efile: 4381 fdput(efile); 4382 out_kfree: 4383 kfree(event); 4384 4385 return ret; 4386 } 4387 4388 static struct cftype mem_cgroup_legacy_files[] = { 4389 { 4390 .name = "usage_in_bytes", 4391 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4392 .read_u64 = mem_cgroup_read_u64, 4393 }, 4394 { 4395 .name = "max_usage_in_bytes", 4396 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4397 .write = mem_cgroup_reset, 4398 .read_u64 = mem_cgroup_read_u64, 4399 }, 4400 { 4401 .name = "limit_in_bytes", 4402 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4403 .write = mem_cgroup_write, 4404 .read_u64 = mem_cgroup_read_u64, 4405 }, 4406 { 4407 .name = "soft_limit_in_bytes", 4408 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4409 .write = mem_cgroup_write, 4410 .read_u64 = mem_cgroup_read_u64, 4411 }, 4412 { 4413 .name = "failcnt", 4414 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4415 .write = mem_cgroup_reset, 4416 .read_u64 = mem_cgroup_read_u64, 4417 }, 4418 { 4419 .name = "stat", 4420 .seq_show = memcg_stat_show, 4421 }, 4422 { 4423 .name = "force_empty", 4424 .write = mem_cgroup_force_empty_write, 4425 }, 4426 { 4427 .name = "use_hierarchy", 4428 .write_u64 = mem_cgroup_hierarchy_write, 4429 .read_u64 = mem_cgroup_hierarchy_read, 4430 }, 4431 { 4432 .name = "cgroup.event_control", /* XXX: for compat */ 4433 .write = memcg_write_event_control, 4434 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4435 }, 4436 { 4437 .name = "swappiness", 4438 .read_u64 = mem_cgroup_swappiness_read, 4439 .write_u64 = mem_cgroup_swappiness_write, 4440 }, 4441 { 4442 .name = "move_charge_at_immigrate", 4443 .read_u64 = mem_cgroup_move_charge_read, 4444 .write_u64 = mem_cgroup_move_charge_write, 4445 }, 4446 { 4447 .name = "oom_control", 4448 .seq_show = mem_cgroup_oom_control_read, 4449 .write_u64 = mem_cgroup_oom_control_write, 4450 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4451 }, 4452 { 4453 .name = "pressure_level", 4454 }, 4455 #ifdef CONFIG_NUMA 4456 { 4457 .name = "numa_stat", 4458 .seq_show = memcg_numa_stat_show, 4459 }, 4460 #endif 4461 { 4462 .name = "kmem.limit_in_bytes", 4463 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4464 .write = mem_cgroup_write, 4465 .read_u64 = mem_cgroup_read_u64, 4466 }, 4467 { 4468 .name = "kmem.usage_in_bytes", 4469 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4470 .read_u64 = mem_cgroup_read_u64, 4471 }, 4472 { 4473 .name = "kmem.failcnt", 4474 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4475 .write = mem_cgroup_reset, 4476 .read_u64 = mem_cgroup_read_u64, 4477 }, 4478 { 4479 .name = "kmem.max_usage_in_bytes", 4480 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4481 .write = mem_cgroup_reset, 4482 .read_u64 = mem_cgroup_read_u64, 4483 }, 4484 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 4485 { 4486 .name = "kmem.slabinfo", 4487 .seq_start = memcg_slab_start, 4488 .seq_next = memcg_slab_next, 4489 .seq_stop = memcg_slab_stop, 4490 .seq_show = memcg_slab_show, 4491 }, 4492 #endif 4493 { 4494 .name = "kmem.tcp.limit_in_bytes", 4495 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4496 .write = mem_cgroup_write, 4497 .read_u64 = mem_cgroup_read_u64, 4498 }, 4499 { 4500 .name = "kmem.tcp.usage_in_bytes", 4501 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4502 .read_u64 = mem_cgroup_read_u64, 4503 }, 4504 { 4505 .name = "kmem.tcp.failcnt", 4506 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4507 .write = mem_cgroup_reset, 4508 .read_u64 = mem_cgroup_read_u64, 4509 }, 4510 { 4511 .name = "kmem.tcp.max_usage_in_bytes", 4512 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4513 .write = mem_cgroup_reset, 4514 .read_u64 = mem_cgroup_read_u64, 4515 }, 4516 { }, /* terminate */ 4517 }; 4518 4519 /* 4520 * Private memory cgroup IDR 4521 * 4522 * Swap-out records and page cache shadow entries need to store memcg 4523 * references in constrained space, so we maintain an ID space that is 4524 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4525 * memory-controlled cgroups to 64k. 4526 * 4527 * However, there usually are many references to the oflline CSS after 4528 * the cgroup has been destroyed, such as page cache or reclaimable 4529 * slab objects, that don't need to hang on to the ID. We want to keep 4530 * those dead CSS from occupying IDs, or we might quickly exhaust the 4531 * relatively small ID space and prevent the creation of new cgroups 4532 * even when there are much fewer than 64k cgroups - possibly none. 4533 * 4534 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4535 * be freed and recycled when it's no longer needed, which is usually 4536 * when the CSS is offlined. 4537 * 4538 * The only exception to that are records of swapped out tmpfs/shmem 4539 * pages that need to be attributed to live ancestors on swapin. But 4540 * those references are manageable from userspace. 4541 */ 4542 4543 static DEFINE_IDR(mem_cgroup_idr); 4544 4545 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4546 { 4547 if (memcg->id.id > 0) { 4548 idr_remove(&mem_cgroup_idr, memcg->id.id); 4549 memcg->id.id = 0; 4550 } 4551 } 4552 4553 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4554 { 4555 refcount_add(n, &memcg->id.ref); 4556 } 4557 4558 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4559 { 4560 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4561 mem_cgroup_id_remove(memcg); 4562 4563 /* Memcg ID pins CSS */ 4564 css_put(&memcg->css); 4565 } 4566 } 4567 4568 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) 4569 { 4570 mem_cgroup_id_get_many(memcg, 1); 4571 } 4572 4573 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4574 { 4575 mem_cgroup_id_put_many(memcg, 1); 4576 } 4577 4578 /** 4579 * mem_cgroup_from_id - look up a memcg from a memcg id 4580 * @id: the memcg id to look up 4581 * 4582 * Caller must hold rcu_read_lock(). 4583 */ 4584 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4585 { 4586 WARN_ON_ONCE(!rcu_read_lock_held()); 4587 return idr_find(&mem_cgroup_idr, id); 4588 } 4589 4590 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4591 { 4592 struct mem_cgroup_per_node *pn; 4593 int tmp = node; 4594 /* 4595 * This routine is called against possible nodes. 4596 * But it's BUG to call kmalloc() against offline node. 4597 * 4598 * TODO: this routine can waste much memory for nodes which will 4599 * never be onlined. It's better to use memory hotplug callback 4600 * function. 4601 */ 4602 if (!node_state(node, N_NORMAL_MEMORY)) 4603 tmp = -1; 4604 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4605 if (!pn) 4606 return 1; 4607 4608 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat); 4609 if (!pn->lruvec_stat_local) { 4610 kfree(pn); 4611 return 1; 4612 } 4613 4614 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4615 if (!pn->lruvec_stat_cpu) { 4616 free_percpu(pn->lruvec_stat_local); 4617 kfree(pn); 4618 return 1; 4619 } 4620 4621 lruvec_init(&pn->lruvec); 4622 pn->usage_in_excess = 0; 4623 pn->on_tree = false; 4624 pn->memcg = memcg; 4625 4626 memcg->nodeinfo[node] = pn; 4627 return 0; 4628 } 4629 4630 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4631 { 4632 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4633 4634 if (!pn) 4635 return; 4636 4637 free_percpu(pn->lruvec_stat_cpu); 4638 free_percpu(pn->lruvec_stat_local); 4639 kfree(pn); 4640 } 4641 4642 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4643 { 4644 int node; 4645 4646 for_each_node(node) 4647 free_mem_cgroup_per_node_info(memcg, node); 4648 free_percpu(memcg->vmstats_percpu); 4649 free_percpu(memcg->vmstats_local); 4650 kfree(memcg); 4651 } 4652 4653 static void mem_cgroup_free(struct mem_cgroup *memcg) 4654 { 4655 memcg_wb_domain_exit(memcg); 4656 __mem_cgroup_free(memcg); 4657 } 4658 4659 static struct mem_cgroup *mem_cgroup_alloc(void) 4660 { 4661 struct mem_cgroup *memcg; 4662 unsigned int size; 4663 int node; 4664 4665 size = sizeof(struct mem_cgroup); 4666 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4667 4668 memcg = kzalloc(size, GFP_KERNEL); 4669 if (!memcg) 4670 return NULL; 4671 4672 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4673 1, MEM_CGROUP_ID_MAX, 4674 GFP_KERNEL); 4675 if (memcg->id.id < 0) 4676 goto fail; 4677 4678 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu); 4679 if (!memcg->vmstats_local) 4680 goto fail; 4681 4682 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); 4683 if (!memcg->vmstats_percpu) 4684 goto fail; 4685 4686 for_each_node(node) 4687 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4688 goto fail; 4689 4690 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4691 goto fail; 4692 4693 INIT_WORK(&memcg->high_work, high_work_func); 4694 memcg->last_scanned_node = MAX_NUMNODES; 4695 INIT_LIST_HEAD(&memcg->oom_notify); 4696 mutex_init(&memcg->thresholds_lock); 4697 spin_lock_init(&memcg->move_lock); 4698 vmpressure_init(&memcg->vmpressure); 4699 INIT_LIST_HEAD(&memcg->event_list); 4700 spin_lock_init(&memcg->event_list_lock); 4701 memcg->socket_pressure = jiffies; 4702 #ifdef CONFIG_MEMCG_KMEM 4703 memcg->kmemcg_id = -1; 4704 #endif 4705 #ifdef CONFIG_CGROUP_WRITEBACK 4706 INIT_LIST_HEAD(&memcg->cgwb_list); 4707 #endif 4708 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4709 return memcg; 4710 fail: 4711 mem_cgroup_id_remove(memcg); 4712 __mem_cgroup_free(memcg); 4713 return NULL; 4714 } 4715 4716 static struct cgroup_subsys_state * __ref 4717 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4718 { 4719 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4720 struct mem_cgroup *memcg; 4721 long error = -ENOMEM; 4722 4723 memcg = mem_cgroup_alloc(); 4724 if (!memcg) 4725 return ERR_PTR(error); 4726 4727 memcg->high = PAGE_COUNTER_MAX; 4728 memcg->soft_limit = PAGE_COUNTER_MAX; 4729 if (parent) { 4730 memcg->swappiness = mem_cgroup_swappiness(parent); 4731 memcg->oom_kill_disable = parent->oom_kill_disable; 4732 } 4733 if (parent && parent->use_hierarchy) { 4734 memcg->use_hierarchy = true; 4735 page_counter_init(&memcg->memory, &parent->memory); 4736 page_counter_init(&memcg->swap, &parent->swap); 4737 page_counter_init(&memcg->memsw, &parent->memsw); 4738 page_counter_init(&memcg->kmem, &parent->kmem); 4739 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4740 } else { 4741 page_counter_init(&memcg->memory, NULL); 4742 page_counter_init(&memcg->swap, NULL); 4743 page_counter_init(&memcg->memsw, NULL); 4744 page_counter_init(&memcg->kmem, NULL); 4745 page_counter_init(&memcg->tcpmem, NULL); 4746 /* 4747 * Deeper hierachy with use_hierarchy == false doesn't make 4748 * much sense so let cgroup subsystem know about this 4749 * unfortunate state in our controller. 4750 */ 4751 if (parent != root_mem_cgroup) 4752 memory_cgrp_subsys.broken_hierarchy = true; 4753 } 4754 4755 /* The following stuff does not apply to the root */ 4756 if (!parent) { 4757 #ifdef CONFIG_MEMCG_KMEM 4758 INIT_LIST_HEAD(&memcg->kmem_caches); 4759 #endif 4760 root_mem_cgroup = memcg; 4761 return &memcg->css; 4762 } 4763 4764 error = memcg_online_kmem(memcg); 4765 if (error) 4766 goto fail; 4767 4768 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4769 static_branch_inc(&memcg_sockets_enabled_key); 4770 4771 return &memcg->css; 4772 fail: 4773 mem_cgroup_id_remove(memcg); 4774 mem_cgroup_free(memcg); 4775 return ERR_PTR(-ENOMEM); 4776 } 4777 4778 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4779 { 4780 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4781 4782 /* 4783 * A memcg must be visible for memcg_expand_shrinker_maps() 4784 * by the time the maps are allocated. So, we allocate maps 4785 * here, when for_each_mem_cgroup() can't skip it. 4786 */ 4787 if (memcg_alloc_shrinker_maps(memcg)) { 4788 mem_cgroup_id_remove(memcg); 4789 return -ENOMEM; 4790 } 4791 4792 /* Online state pins memcg ID, memcg ID pins CSS */ 4793 refcount_set(&memcg->id.ref, 1); 4794 css_get(css); 4795 return 0; 4796 } 4797 4798 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4799 { 4800 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4801 struct mem_cgroup_event *event, *tmp; 4802 4803 /* 4804 * Unregister events and notify userspace. 4805 * Notify userspace about cgroup removing only after rmdir of cgroup 4806 * directory to avoid race between userspace and kernelspace. 4807 */ 4808 spin_lock(&memcg->event_list_lock); 4809 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4810 list_del_init(&event->list); 4811 schedule_work(&event->remove); 4812 } 4813 spin_unlock(&memcg->event_list_lock); 4814 4815 page_counter_set_min(&memcg->memory, 0); 4816 page_counter_set_low(&memcg->memory, 0); 4817 4818 memcg_offline_kmem(memcg); 4819 wb_memcg_offline(memcg); 4820 4821 drain_all_stock(memcg); 4822 4823 mem_cgroup_id_put(memcg); 4824 } 4825 4826 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4827 { 4828 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4829 4830 invalidate_reclaim_iterators(memcg); 4831 } 4832 4833 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4834 { 4835 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4836 4837 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4838 static_branch_dec(&memcg_sockets_enabled_key); 4839 4840 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4841 static_branch_dec(&memcg_sockets_enabled_key); 4842 4843 vmpressure_cleanup(&memcg->vmpressure); 4844 cancel_work_sync(&memcg->high_work); 4845 mem_cgroup_remove_from_trees(memcg); 4846 memcg_free_shrinker_maps(memcg); 4847 memcg_free_kmem(memcg); 4848 mem_cgroup_free(memcg); 4849 } 4850 4851 /** 4852 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4853 * @css: the target css 4854 * 4855 * Reset the states of the mem_cgroup associated with @css. This is 4856 * invoked when the userland requests disabling on the default hierarchy 4857 * but the memcg is pinned through dependency. The memcg should stop 4858 * applying policies and should revert to the vanilla state as it may be 4859 * made visible again. 4860 * 4861 * The current implementation only resets the essential configurations. 4862 * This needs to be expanded to cover all the visible parts. 4863 */ 4864 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4865 { 4866 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4867 4868 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 4869 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 4870 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 4871 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 4872 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 4873 page_counter_set_min(&memcg->memory, 0); 4874 page_counter_set_low(&memcg->memory, 0); 4875 memcg->high = PAGE_COUNTER_MAX; 4876 memcg->soft_limit = PAGE_COUNTER_MAX; 4877 memcg_wb_domain_size_changed(memcg); 4878 } 4879 4880 #ifdef CONFIG_MMU 4881 /* Handlers for move charge at task migration. */ 4882 static int mem_cgroup_do_precharge(unsigned long count) 4883 { 4884 int ret; 4885 4886 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4887 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4888 if (!ret) { 4889 mc.precharge += count; 4890 return ret; 4891 } 4892 4893 /* Try charges one by one with reclaim, but do not retry */ 4894 while (count--) { 4895 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 4896 if (ret) 4897 return ret; 4898 mc.precharge++; 4899 cond_resched(); 4900 } 4901 return 0; 4902 } 4903 4904 union mc_target { 4905 struct page *page; 4906 swp_entry_t ent; 4907 }; 4908 4909 enum mc_target_type { 4910 MC_TARGET_NONE = 0, 4911 MC_TARGET_PAGE, 4912 MC_TARGET_SWAP, 4913 MC_TARGET_DEVICE, 4914 }; 4915 4916 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4917 unsigned long addr, pte_t ptent) 4918 { 4919 struct page *page = vm_normal_page(vma, addr, ptent); 4920 4921 if (!page || !page_mapped(page)) 4922 return NULL; 4923 if (PageAnon(page)) { 4924 if (!(mc.flags & MOVE_ANON)) 4925 return NULL; 4926 } else { 4927 if (!(mc.flags & MOVE_FILE)) 4928 return NULL; 4929 } 4930 if (!get_page_unless_zero(page)) 4931 return NULL; 4932 4933 return page; 4934 } 4935 4936 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 4937 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4938 pte_t ptent, swp_entry_t *entry) 4939 { 4940 struct page *page = NULL; 4941 swp_entry_t ent = pte_to_swp_entry(ptent); 4942 4943 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4944 return NULL; 4945 4946 /* 4947 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 4948 * a device and because they are not accessible by CPU they are store 4949 * as special swap entry in the CPU page table. 4950 */ 4951 if (is_device_private_entry(ent)) { 4952 page = device_private_entry_to_page(ent); 4953 /* 4954 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 4955 * a refcount of 1 when free (unlike normal page) 4956 */ 4957 if (!page_ref_add_unless(page, 1, 1)) 4958 return NULL; 4959 return page; 4960 } 4961 4962 /* 4963 * Because lookup_swap_cache() updates some statistics counter, 4964 * we call find_get_page() with swapper_space directly. 4965 */ 4966 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 4967 if (do_memsw_account()) 4968 entry->val = ent.val; 4969 4970 return page; 4971 } 4972 #else 4973 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4974 pte_t ptent, swp_entry_t *entry) 4975 { 4976 return NULL; 4977 } 4978 #endif 4979 4980 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4981 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4982 { 4983 struct page *page = NULL; 4984 struct address_space *mapping; 4985 pgoff_t pgoff; 4986 4987 if (!vma->vm_file) /* anonymous vma */ 4988 return NULL; 4989 if (!(mc.flags & MOVE_FILE)) 4990 return NULL; 4991 4992 mapping = vma->vm_file->f_mapping; 4993 pgoff = linear_page_index(vma, addr); 4994 4995 /* page is moved even if it's not RSS of this task(page-faulted). */ 4996 #ifdef CONFIG_SWAP 4997 /* shmem/tmpfs may report page out on swap: account for that too. */ 4998 if (shmem_mapping(mapping)) { 4999 page = find_get_entry(mapping, pgoff); 5000 if (xa_is_value(page)) { 5001 swp_entry_t swp = radix_to_swp_entry(page); 5002 if (do_memsw_account()) 5003 *entry = swp; 5004 page = find_get_page(swap_address_space(swp), 5005 swp_offset(swp)); 5006 } 5007 } else 5008 page = find_get_page(mapping, pgoff); 5009 #else 5010 page = find_get_page(mapping, pgoff); 5011 #endif 5012 return page; 5013 } 5014 5015 /** 5016 * mem_cgroup_move_account - move account of the page 5017 * @page: the page 5018 * @compound: charge the page as compound or small page 5019 * @from: mem_cgroup which the page is moved from. 5020 * @to: mem_cgroup which the page is moved to. @from != @to. 5021 * 5022 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5023 * 5024 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5025 * from old cgroup. 5026 */ 5027 static int mem_cgroup_move_account(struct page *page, 5028 bool compound, 5029 struct mem_cgroup *from, 5030 struct mem_cgroup *to) 5031 { 5032 unsigned long flags; 5033 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5034 int ret; 5035 bool anon; 5036 5037 VM_BUG_ON(from == to); 5038 VM_BUG_ON_PAGE(PageLRU(page), page); 5039 VM_BUG_ON(compound && !PageTransHuge(page)); 5040 5041 /* 5042 * Prevent mem_cgroup_migrate() from looking at 5043 * page->mem_cgroup of its source page while we change it. 5044 */ 5045 ret = -EBUSY; 5046 if (!trylock_page(page)) 5047 goto out; 5048 5049 ret = -EINVAL; 5050 if (page->mem_cgroup != from) 5051 goto out_unlock; 5052 5053 anon = PageAnon(page); 5054 5055 spin_lock_irqsave(&from->move_lock, flags); 5056 5057 if (!anon && page_mapped(page)) { 5058 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages); 5059 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages); 5060 } 5061 5062 /* 5063 * move_lock grabbed above and caller set from->moving_account, so 5064 * mod_memcg_page_state will serialize updates to PageDirty. 5065 * So mapping should be stable for dirty pages. 5066 */ 5067 if (!anon && PageDirty(page)) { 5068 struct address_space *mapping = page_mapping(page); 5069 5070 if (mapping_cap_account_dirty(mapping)) { 5071 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages); 5072 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages); 5073 } 5074 } 5075 5076 if (PageWriteback(page)) { 5077 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages); 5078 __mod_memcg_state(to, NR_WRITEBACK, nr_pages); 5079 } 5080 5081 /* 5082 * It is safe to change page->mem_cgroup here because the page 5083 * is referenced, charged, and isolated - we can't race with 5084 * uncharging, charging, migration, or LRU putback. 5085 */ 5086 5087 /* caller should have done css_get */ 5088 page->mem_cgroup = to; 5089 spin_unlock_irqrestore(&from->move_lock, flags); 5090 5091 ret = 0; 5092 5093 local_irq_disable(); 5094 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 5095 memcg_check_events(to, page); 5096 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 5097 memcg_check_events(from, page); 5098 local_irq_enable(); 5099 out_unlock: 5100 unlock_page(page); 5101 out: 5102 return ret; 5103 } 5104 5105 /** 5106 * get_mctgt_type - get target type of moving charge 5107 * @vma: the vma the pte to be checked belongs 5108 * @addr: the address corresponding to the pte to be checked 5109 * @ptent: the pte to be checked 5110 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5111 * 5112 * Returns 5113 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5114 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5115 * move charge. if @target is not NULL, the page is stored in target->page 5116 * with extra refcnt got(Callers should handle it). 5117 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5118 * target for charge migration. if @target is not NULL, the entry is stored 5119 * in target->ent. 5120 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5121 * (so ZONE_DEVICE page and thus not on the lru). 5122 * For now we such page is charge like a regular page would be as for all 5123 * intent and purposes it is just special memory taking the place of a 5124 * regular page. 5125 * 5126 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5127 * 5128 * Called with pte lock held. 5129 */ 5130 5131 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5132 unsigned long addr, pte_t ptent, union mc_target *target) 5133 { 5134 struct page *page = NULL; 5135 enum mc_target_type ret = MC_TARGET_NONE; 5136 swp_entry_t ent = { .val = 0 }; 5137 5138 if (pte_present(ptent)) 5139 page = mc_handle_present_pte(vma, addr, ptent); 5140 else if (is_swap_pte(ptent)) 5141 page = mc_handle_swap_pte(vma, ptent, &ent); 5142 else if (pte_none(ptent)) 5143 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5144 5145 if (!page && !ent.val) 5146 return ret; 5147 if (page) { 5148 /* 5149 * Do only loose check w/o serialization. 5150 * mem_cgroup_move_account() checks the page is valid or 5151 * not under LRU exclusion. 5152 */ 5153 if (page->mem_cgroup == mc.from) { 5154 ret = MC_TARGET_PAGE; 5155 if (is_device_private_page(page)) 5156 ret = MC_TARGET_DEVICE; 5157 if (target) 5158 target->page = page; 5159 } 5160 if (!ret || !target) 5161 put_page(page); 5162 } 5163 /* 5164 * There is a swap entry and a page doesn't exist or isn't charged. 5165 * But we cannot move a tail-page in a THP. 5166 */ 5167 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5168 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5169 ret = MC_TARGET_SWAP; 5170 if (target) 5171 target->ent = ent; 5172 } 5173 return ret; 5174 } 5175 5176 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5177 /* 5178 * We don't consider PMD mapped swapping or file mapped pages because THP does 5179 * not support them for now. 5180 * Caller should make sure that pmd_trans_huge(pmd) is true. 5181 */ 5182 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5183 unsigned long addr, pmd_t pmd, union mc_target *target) 5184 { 5185 struct page *page = NULL; 5186 enum mc_target_type ret = MC_TARGET_NONE; 5187 5188 if (unlikely(is_swap_pmd(pmd))) { 5189 VM_BUG_ON(thp_migration_supported() && 5190 !is_pmd_migration_entry(pmd)); 5191 return ret; 5192 } 5193 page = pmd_page(pmd); 5194 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5195 if (!(mc.flags & MOVE_ANON)) 5196 return ret; 5197 if (page->mem_cgroup == mc.from) { 5198 ret = MC_TARGET_PAGE; 5199 if (target) { 5200 get_page(page); 5201 target->page = page; 5202 } 5203 } 5204 return ret; 5205 } 5206 #else 5207 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5208 unsigned long addr, pmd_t pmd, union mc_target *target) 5209 { 5210 return MC_TARGET_NONE; 5211 } 5212 #endif 5213 5214 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5215 unsigned long addr, unsigned long end, 5216 struct mm_walk *walk) 5217 { 5218 struct vm_area_struct *vma = walk->vma; 5219 pte_t *pte; 5220 spinlock_t *ptl; 5221 5222 ptl = pmd_trans_huge_lock(pmd, vma); 5223 if (ptl) { 5224 /* 5225 * Note their can not be MC_TARGET_DEVICE for now as we do not 5226 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5227 * this might change. 5228 */ 5229 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5230 mc.precharge += HPAGE_PMD_NR; 5231 spin_unlock(ptl); 5232 return 0; 5233 } 5234 5235 if (pmd_trans_unstable(pmd)) 5236 return 0; 5237 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5238 for (; addr != end; pte++, addr += PAGE_SIZE) 5239 if (get_mctgt_type(vma, addr, *pte, NULL)) 5240 mc.precharge++; /* increment precharge temporarily */ 5241 pte_unmap_unlock(pte - 1, ptl); 5242 cond_resched(); 5243 5244 return 0; 5245 } 5246 5247 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5248 { 5249 unsigned long precharge; 5250 5251 struct mm_walk mem_cgroup_count_precharge_walk = { 5252 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5253 .mm = mm, 5254 }; 5255 down_read(&mm->mmap_sem); 5256 walk_page_range(0, mm->highest_vm_end, 5257 &mem_cgroup_count_precharge_walk); 5258 up_read(&mm->mmap_sem); 5259 5260 precharge = mc.precharge; 5261 mc.precharge = 0; 5262 5263 return precharge; 5264 } 5265 5266 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5267 { 5268 unsigned long precharge = mem_cgroup_count_precharge(mm); 5269 5270 VM_BUG_ON(mc.moving_task); 5271 mc.moving_task = current; 5272 return mem_cgroup_do_precharge(precharge); 5273 } 5274 5275 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5276 static void __mem_cgroup_clear_mc(void) 5277 { 5278 struct mem_cgroup *from = mc.from; 5279 struct mem_cgroup *to = mc.to; 5280 5281 /* we must uncharge all the leftover precharges from mc.to */ 5282 if (mc.precharge) { 5283 cancel_charge(mc.to, mc.precharge); 5284 mc.precharge = 0; 5285 } 5286 /* 5287 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5288 * we must uncharge here. 5289 */ 5290 if (mc.moved_charge) { 5291 cancel_charge(mc.from, mc.moved_charge); 5292 mc.moved_charge = 0; 5293 } 5294 /* we must fixup refcnts and charges */ 5295 if (mc.moved_swap) { 5296 /* uncharge swap account from the old cgroup */ 5297 if (!mem_cgroup_is_root(mc.from)) 5298 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5299 5300 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5301 5302 /* 5303 * we charged both to->memory and to->memsw, so we 5304 * should uncharge to->memory. 5305 */ 5306 if (!mem_cgroup_is_root(mc.to)) 5307 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5308 5309 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5310 css_put_many(&mc.to->css, mc.moved_swap); 5311 5312 mc.moved_swap = 0; 5313 } 5314 memcg_oom_recover(from); 5315 memcg_oom_recover(to); 5316 wake_up_all(&mc.waitq); 5317 } 5318 5319 static void mem_cgroup_clear_mc(void) 5320 { 5321 struct mm_struct *mm = mc.mm; 5322 5323 /* 5324 * we must clear moving_task before waking up waiters at the end of 5325 * task migration. 5326 */ 5327 mc.moving_task = NULL; 5328 __mem_cgroup_clear_mc(); 5329 spin_lock(&mc.lock); 5330 mc.from = NULL; 5331 mc.to = NULL; 5332 mc.mm = NULL; 5333 spin_unlock(&mc.lock); 5334 5335 mmput(mm); 5336 } 5337 5338 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5339 { 5340 struct cgroup_subsys_state *css; 5341 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5342 struct mem_cgroup *from; 5343 struct task_struct *leader, *p; 5344 struct mm_struct *mm; 5345 unsigned long move_flags; 5346 int ret = 0; 5347 5348 /* charge immigration isn't supported on the default hierarchy */ 5349 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5350 return 0; 5351 5352 /* 5353 * Multi-process migrations only happen on the default hierarchy 5354 * where charge immigration is not used. Perform charge 5355 * immigration if @tset contains a leader and whine if there are 5356 * multiple. 5357 */ 5358 p = NULL; 5359 cgroup_taskset_for_each_leader(leader, css, tset) { 5360 WARN_ON_ONCE(p); 5361 p = leader; 5362 memcg = mem_cgroup_from_css(css); 5363 } 5364 if (!p) 5365 return 0; 5366 5367 /* 5368 * We are now commited to this value whatever it is. Changes in this 5369 * tunable will only affect upcoming migrations, not the current one. 5370 * So we need to save it, and keep it going. 5371 */ 5372 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5373 if (!move_flags) 5374 return 0; 5375 5376 from = mem_cgroup_from_task(p); 5377 5378 VM_BUG_ON(from == memcg); 5379 5380 mm = get_task_mm(p); 5381 if (!mm) 5382 return 0; 5383 /* We move charges only when we move a owner of the mm */ 5384 if (mm->owner == p) { 5385 VM_BUG_ON(mc.from); 5386 VM_BUG_ON(mc.to); 5387 VM_BUG_ON(mc.precharge); 5388 VM_BUG_ON(mc.moved_charge); 5389 VM_BUG_ON(mc.moved_swap); 5390 5391 spin_lock(&mc.lock); 5392 mc.mm = mm; 5393 mc.from = from; 5394 mc.to = memcg; 5395 mc.flags = move_flags; 5396 spin_unlock(&mc.lock); 5397 /* We set mc.moving_task later */ 5398 5399 ret = mem_cgroup_precharge_mc(mm); 5400 if (ret) 5401 mem_cgroup_clear_mc(); 5402 } else { 5403 mmput(mm); 5404 } 5405 return ret; 5406 } 5407 5408 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5409 { 5410 if (mc.to) 5411 mem_cgroup_clear_mc(); 5412 } 5413 5414 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5415 unsigned long addr, unsigned long end, 5416 struct mm_walk *walk) 5417 { 5418 int ret = 0; 5419 struct vm_area_struct *vma = walk->vma; 5420 pte_t *pte; 5421 spinlock_t *ptl; 5422 enum mc_target_type target_type; 5423 union mc_target target; 5424 struct page *page; 5425 5426 ptl = pmd_trans_huge_lock(pmd, vma); 5427 if (ptl) { 5428 if (mc.precharge < HPAGE_PMD_NR) { 5429 spin_unlock(ptl); 5430 return 0; 5431 } 5432 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5433 if (target_type == MC_TARGET_PAGE) { 5434 page = target.page; 5435 if (!isolate_lru_page(page)) { 5436 if (!mem_cgroup_move_account(page, true, 5437 mc.from, mc.to)) { 5438 mc.precharge -= HPAGE_PMD_NR; 5439 mc.moved_charge += HPAGE_PMD_NR; 5440 } 5441 putback_lru_page(page); 5442 } 5443 put_page(page); 5444 } else if (target_type == MC_TARGET_DEVICE) { 5445 page = target.page; 5446 if (!mem_cgroup_move_account(page, true, 5447 mc.from, mc.to)) { 5448 mc.precharge -= HPAGE_PMD_NR; 5449 mc.moved_charge += HPAGE_PMD_NR; 5450 } 5451 put_page(page); 5452 } 5453 spin_unlock(ptl); 5454 return 0; 5455 } 5456 5457 if (pmd_trans_unstable(pmd)) 5458 return 0; 5459 retry: 5460 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5461 for (; addr != end; addr += PAGE_SIZE) { 5462 pte_t ptent = *(pte++); 5463 bool device = false; 5464 swp_entry_t ent; 5465 5466 if (!mc.precharge) 5467 break; 5468 5469 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5470 case MC_TARGET_DEVICE: 5471 device = true; 5472 /* fall through */ 5473 case MC_TARGET_PAGE: 5474 page = target.page; 5475 /* 5476 * We can have a part of the split pmd here. Moving it 5477 * can be done but it would be too convoluted so simply 5478 * ignore such a partial THP and keep it in original 5479 * memcg. There should be somebody mapping the head. 5480 */ 5481 if (PageTransCompound(page)) 5482 goto put; 5483 if (!device && isolate_lru_page(page)) 5484 goto put; 5485 if (!mem_cgroup_move_account(page, false, 5486 mc.from, mc.to)) { 5487 mc.precharge--; 5488 /* we uncharge from mc.from later. */ 5489 mc.moved_charge++; 5490 } 5491 if (!device) 5492 putback_lru_page(page); 5493 put: /* get_mctgt_type() gets the page */ 5494 put_page(page); 5495 break; 5496 case MC_TARGET_SWAP: 5497 ent = target.ent; 5498 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5499 mc.precharge--; 5500 /* we fixup refcnts and charges later. */ 5501 mc.moved_swap++; 5502 } 5503 break; 5504 default: 5505 break; 5506 } 5507 } 5508 pte_unmap_unlock(pte - 1, ptl); 5509 cond_resched(); 5510 5511 if (addr != end) { 5512 /* 5513 * We have consumed all precharges we got in can_attach(). 5514 * We try charge one by one, but don't do any additional 5515 * charges to mc.to if we have failed in charge once in attach() 5516 * phase. 5517 */ 5518 ret = mem_cgroup_do_precharge(1); 5519 if (!ret) 5520 goto retry; 5521 } 5522 5523 return ret; 5524 } 5525 5526 static void mem_cgroup_move_charge(void) 5527 { 5528 struct mm_walk mem_cgroup_move_charge_walk = { 5529 .pmd_entry = mem_cgroup_move_charge_pte_range, 5530 .mm = mc.mm, 5531 }; 5532 5533 lru_add_drain_all(); 5534 /* 5535 * Signal lock_page_memcg() to take the memcg's move_lock 5536 * while we're moving its pages to another memcg. Then wait 5537 * for already started RCU-only updates to finish. 5538 */ 5539 atomic_inc(&mc.from->moving_account); 5540 synchronize_rcu(); 5541 retry: 5542 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5543 /* 5544 * Someone who are holding the mmap_sem might be waiting in 5545 * waitq. So we cancel all extra charges, wake up all waiters, 5546 * and retry. Because we cancel precharges, we might not be able 5547 * to move enough charges, but moving charge is a best-effort 5548 * feature anyway, so it wouldn't be a big problem. 5549 */ 5550 __mem_cgroup_clear_mc(); 5551 cond_resched(); 5552 goto retry; 5553 } 5554 /* 5555 * When we have consumed all precharges and failed in doing 5556 * additional charge, the page walk just aborts. 5557 */ 5558 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk); 5559 5560 up_read(&mc.mm->mmap_sem); 5561 atomic_dec(&mc.from->moving_account); 5562 } 5563 5564 static void mem_cgroup_move_task(void) 5565 { 5566 if (mc.to) { 5567 mem_cgroup_move_charge(); 5568 mem_cgroup_clear_mc(); 5569 } 5570 } 5571 #else /* !CONFIG_MMU */ 5572 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5573 { 5574 return 0; 5575 } 5576 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5577 { 5578 } 5579 static void mem_cgroup_move_task(void) 5580 { 5581 } 5582 #endif 5583 5584 /* 5585 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5586 * to verify whether we're attached to the default hierarchy on each mount 5587 * attempt. 5588 */ 5589 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5590 { 5591 /* 5592 * use_hierarchy is forced on the default hierarchy. cgroup core 5593 * guarantees that @root doesn't have any children, so turning it 5594 * on for the root memcg is enough. 5595 */ 5596 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5597 root_mem_cgroup->use_hierarchy = true; 5598 else 5599 root_mem_cgroup->use_hierarchy = false; 5600 } 5601 5602 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 5603 { 5604 if (value == PAGE_COUNTER_MAX) 5605 seq_puts(m, "max\n"); 5606 else 5607 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 5608 5609 return 0; 5610 } 5611 5612 static u64 memory_current_read(struct cgroup_subsys_state *css, 5613 struct cftype *cft) 5614 { 5615 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5616 5617 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5618 } 5619 5620 static int memory_min_show(struct seq_file *m, void *v) 5621 { 5622 return seq_puts_memcg_tunable(m, 5623 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 5624 } 5625 5626 static ssize_t memory_min_write(struct kernfs_open_file *of, 5627 char *buf, size_t nbytes, loff_t off) 5628 { 5629 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5630 unsigned long min; 5631 int err; 5632 5633 buf = strstrip(buf); 5634 err = page_counter_memparse(buf, "max", &min); 5635 if (err) 5636 return err; 5637 5638 page_counter_set_min(&memcg->memory, min); 5639 5640 return nbytes; 5641 } 5642 5643 static int memory_low_show(struct seq_file *m, void *v) 5644 { 5645 return seq_puts_memcg_tunable(m, 5646 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 5647 } 5648 5649 static ssize_t memory_low_write(struct kernfs_open_file *of, 5650 char *buf, size_t nbytes, loff_t off) 5651 { 5652 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5653 unsigned long low; 5654 int err; 5655 5656 buf = strstrip(buf); 5657 err = page_counter_memparse(buf, "max", &low); 5658 if (err) 5659 return err; 5660 5661 page_counter_set_low(&memcg->memory, low); 5662 5663 return nbytes; 5664 } 5665 5666 static int memory_high_show(struct seq_file *m, void *v) 5667 { 5668 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); 5669 } 5670 5671 static ssize_t memory_high_write(struct kernfs_open_file *of, 5672 char *buf, size_t nbytes, loff_t off) 5673 { 5674 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5675 unsigned long nr_pages; 5676 unsigned long high; 5677 int err; 5678 5679 buf = strstrip(buf); 5680 err = page_counter_memparse(buf, "max", &high); 5681 if (err) 5682 return err; 5683 5684 memcg->high = high; 5685 5686 nr_pages = page_counter_read(&memcg->memory); 5687 if (nr_pages > high) 5688 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5689 GFP_KERNEL, true); 5690 5691 memcg_wb_domain_size_changed(memcg); 5692 return nbytes; 5693 } 5694 5695 static int memory_max_show(struct seq_file *m, void *v) 5696 { 5697 return seq_puts_memcg_tunable(m, 5698 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 5699 } 5700 5701 static ssize_t memory_max_write(struct kernfs_open_file *of, 5702 char *buf, size_t nbytes, loff_t off) 5703 { 5704 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5705 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5706 bool drained = false; 5707 unsigned long max; 5708 int err; 5709 5710 buf = strstrip(buf); 5711 err = page_counter_memparse(buf, "max", &max); 5712 if (err) 5713 return err; 5714 5715 xchg(&memcg->memory.max, max); 5716 5717 for (;;) { 5718 unsigned long nr_pages = page_counter_read(&memcg->memory); 5719 5720 if (nr_pages <= max) 5721 break; 5722 5723 if (signal_pending(current)) { 5724 err = -EINTR; 5725 break; 5726 } 5727 5728 if (!drained) { 5729 drain_all_stock(memcg); 5730 drained = true; 5731 continue; 5732 } 5733 5734 if (nr_reclaims) { 5735 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5736 GFP_KERNEL, true)) 5737 nr_reclaims--; 5738 continue; 5739 } 5740 5741 memcg_memory_event(memcg, MEMCG_OOM); 5742 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5743 break; 5744 } 5745 5746 memcg_wb_domain_size_changed(memcg); 5747 return nbytes; 5748 } 5749 5750 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 5751 { 5752 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 5753 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 5754 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 5755 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 5756 seq_printf(m, "oom_kill %lu\n", 5757 atomic_long_read(&events[MEMCG_OOM_KILL])); 5758 } 5759 5760 static int memory_events_show(struct seq_file *m, void *v) 5761 { 5762 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5763 5764 __memory_events_show(m, memcg->memory_events); 5765 return 0; 5766 } 5767 5768 static int memory_events_local_show(struct seq_file *m, void *v) 5769 { 5770 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5771 5772 __memory_events_show(m, memcg->memory_events_local); 5773 return 0; 5774 } 5775 5776 static int memory_stat_show(struct seq_file *m, void *v) 5777 { 5778 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5779 char *buf; 5780 5781 buf = memory_stat_format(memcg); 5782 if (!buf) 5783 return -ENOMEM; 5784 seq_puts(m, buf); 5785 kfree(buf); 5786 return 0; 5787 } 5788 5789 static int memory_oom_group_show(struct seq_file *m, void *v) 5790 { 5791 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5792 5793 seq_printf(m, "%d\n", memcg->oom_group); 5794 5795 return 0; 5796 } 5797 5798 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 5799 char *buf, size_t nbytes, loff_t off) 5800 { 5801 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5802 int ret, oom_group; 5803 5804 buf = strstrip(buf); 5805 if (!buf) 5806 return -EINVAL; 5807 5808 ret = kstrtoint(buf, 0, &oom_group); 5809 if (ret) 5810 return ret; 5811 5812 if (oom_group != 0 && oom_group != 1) 5813 return -EINVAL; 5814 5815 memcg->oom_group = oom_group; 5816 5817 return nbytes; 5818 } 5819 5820 static struct cftype memory_files[] = { 5821 { 5822 .name = "current", 5823 .flags = CFTYPE_NOT_ON_ROOT, 5824 .read_u64 = memory_current_read, 5825 }, 5826 { 5827 .name = "min", 5828 .flags = CFTYPE_NOT_ON_ROOT, 5829 .seq_show = memory_min_show, 5830 .write = memory_min_write, 5831 }, 5832 { 5833 .name = "low", 5834 .flags = CFTYPE_NOT_ON_ROOT, 5835 .seq_show = memory_low_show, 5836 .write = memory_low_write, 5837 }, 5838 { 5839 .name = "high", 5840 .flags = CFTYPE_NOT_ON_ROOT, 5841 .seq_show = memory_high_show, 5842 .write = memory_high_write, 5843 }, 5844 { 5845 .name = "max", 5846 .flags = CFTYPE_NOT_ON_ROOT, 5847 .seq_show = memory_max_show, 5848 .write = memory_max_write, 5849 }, 5850 { 5851 .name = "events", 5852 .flags = CFTYPE_NOT_ON_ROOT, 5853 .file_offset = offsetof(struct mem_cgroup, events_file), 5854 .seq_show = memory_events_show, 5855 }, 5856 { 5857 .name = "events.local", 5858 .flags = CFTYPE_NOT_ON_ROOT, 5859 .file_offset = offsetof(struct mem_cgroup, events_local_file), 5860 .seq_show = memory_events_local_show, 5861 }, 5862 { 5863 .name = "stat", 5864 .flags = CFTYPE_NOT_ON_ROOT, 5865 .seq_show = memory_stat_show, 5866 }, 5867 { 5868 .name = "oom.group", 5869 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 5870 .seq_show = memory_oom_group_show, 5871 .write = memory_oom_group_write, 5872 }, 5873 { } /* terminate */ 5874 }; 5875 5876 struct cgroup_subsys memory_cgrp_subsys = { 5877 .css_alloc = mem_cgroup_css_alloc, 5878 .css_online = mem_cgroup_css_online, 5879 .css_offline = mem_cgroup_css_offline, 5880 .css_released = mem_cgroup_css_released, 5881 .css_free = mem_cgroup_css_free, 5882 .css_reset = mem_cgroup_css_reset, 5883 .can_attach = mem_cgroup_can_attach, 5884 .cancel_attach = mem_cgroup_cancel_attach, 5885 .post_attach = mem_cgroup_move_task, 5886 .bind = mem_cgroup_bind, 5887 .dfl_cftypes = memory_files, 5888 .legacy_cftypes = mem_cgroup_legacy_files, 5889 .early_init = 0, 5890 }; 5891 5892 /** 5893 * mem_cgroup_protected - check if memory consumption is in the normal range 5894 * @root: the top ancestor of the sub-tree being checked 5895 * @memcg: the memory cgroup to check 5896 * 5897 * WARNING: This function is not stateless! It can only be used as part 5898 * of a top-down tree iteration, not for isolated queries. 5899 * 5900 * Returns one of the following: 5901 * MEMCG_PROT_NONE: cgroup memory is not protected 5902 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 5903 * an unprotected supply of reclaimable memory from other cgroups. 5904 * MEMCG_PROT_MIN: cgroup memory is protected 5905 * 5906 * @root is exclusive; it is never protected when looked at directly 5907 * 5908 * To provide a proper hierarchical behavior, effective memory.min/low values 5909 * are used. Below is the description of how effective memory.low is calculated. 5910 * Effective memory.min values is calculated in the same way. 5911 * 5912 * Effective memory.low is always equal or less than the original memory.low. 5913 * If there is no memory.low overcommittment (which is always true for 5914 * top-level memory cgroups), these two values are equal. 5915 * Otherwise, it's a part of parent's effective memory.low, 5916 * calculated as a cgroup's memory.low usage divided by sum of sibling's 5917 * memory.low usages, where memory.low usage is the size of actually 5918 * protected memory. 5919 * 5920 * low_usage 5921 * elow = min( memory.low, parent->elow * ------------------ ), 5922 * siblings_low_usage 5923 * 5924 * | memory.current, if memory.current < memory.low 5925 * low_usage = | 5926 * | 0, otherwise. 5927 * 5928 * 5929 * Such definition of the effective memory.low provides the expected 5930 * hierarchical behavior: parent's memory.low value is limiting 5931 * children, unprotected memory is reclaimed first and cgroups, 5932 * which are not using their guarantee do not affect actual memory 5933 * distribution. 5934 * 5935 * For example, if there are memcgs A, A/B, A/C, A/D and A/E: 5936 * 5937 * A A/memory.low = 2G, A/memory.current = 6G 5938 * //\\ 5939 * BC DE B/memory.low = 3G B/memory.current = 2G 5940 * C/memory.low = 1G C/memory.current = 2G 5941 * D/memory.low = 0 D/memory.current = 2G 5942 * E/memory.low = 10G E/memory.current = 0 5943 * 5944 * and the memory pressure is applied, the following memory distribution 5945 * is expected (approximately): 5946 * 5947 * A/memory.current = 2G 5948 * 5949 * B/memory.current = 1.3G 5950 * C/memory.current = 0.6G 5951 * D/memory.current = 0 5952 * E/memory.current = 0 5953 * 5954 * These calculations require constant tracking of the actual low usages 5955 * (see propagate_protected_usage()), as well as recursive calculation of 5956 * effective memory.low values. But as we do call mem_cgroup_protected() 5957 * path for each memory cgroup top-down from the reclaim, 5958 * it's possible to optimize this part, and save calculated elow 5959 * for next usage. This part is intentionally racy, but it's ok, 5960 * as memory.low is a best-effort mechanism. 5961 */ 5962 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 5963 struct mem_cgroup *memcg) 5964 { 5965 struct mem_cgroup *parent; 5966 unsigned long emin, parent_emin; 5967 unsigned long elow, parent_elow; 5968 unsigned long usage; 5969 5970 if (mem_cgroup_disabled()) 5971 return MEMCG_PROT_NONE; 5972 5973 if (!root) 5974 root = root_mem_cgroup; 5975 if (memcg == root) 5976 return MEMCG_PROT_NONE; 5977 5978 usage = page_counter_read(&memcg->memory); 5979 if (!usage) 5980 return MEMCG_PROT_NONE; 5981 5982 emin = memcg->memory.min; 5983 elow = memcg->memory.low; 5984 5985 parent = parent_mem_cgroup(memcg); 5986 /* No parent means a non-hierarchical mode on v1 memcg */ 5987 if (!parent) 5988 return MEMCG_PROT_NONE; 5989 5990 if (parent == root) 5991 goto exit; 5992 5993 parent_emin = READ_ONCE(parent->memory.emin); 5994 emin = min(emin, parent_emin); 5995 if (emin && parent_emin) { 5996 unsigned long min_usage, siblings_min_usage; 5997 5998 min_usage = min(usage, memcg->memory.min); 5999 siblings_min_usage = atomic_long_read( 6000 &parent->memory.children_min_usage); 6001 6002 if (min_usage && siblings_min_usage) 6003 emin = min(emin, parent_emin * min_usage / 6004 siblings_min_usage); 6005 } 6006 6007 parent_elow = READ_ONCE(parent->memory.elow); 6008 elow = min(elow, parent_elow); 6009 if (elow && parent_elow) { 6010 unsigned long low_usage, siblings_low_usage; 6011 6012 low_usage = min(usage, memcg->memory.low); 6013 siblings_low_usage = atomic_long_read( 6014 &parent->memory.children_low_usage); 6015 6016 if (low_usage && siblings_low_usage) 6017 elow = min(elow, parent_elow * low_usage / 6018 siblings_low_usage); 6019 } 6020 6021 exit: 6022 memcg->memory.emin = emin; 6023 memcg->memory.elow = elow; 6024 6025 if (usage <= emin) 6026 return MEMCG_PROT_MIN; 6027 else if (usage <= elow) 6028 return MEMCG_PROT_LOW; 6029 else 6030 return MEMCG_PROT_NONE; 6031 } 6032 6033 /** 6034 * mem_cgroup_try_charge - try charging a page 6035 * @page: page to charge 6036 * @mm: mm context of the victim 6037 * @gfp_mask: reclaim mode 6038 * @memcgp: charged memcg return 6039 * @compound: charge the page as compound or small page 6040 * 6041 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6042 * pages according to @gfp_mask if necessary. 6043 * 6044 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 6045 * Otherwise, an error code is returned. 6046 * 6047 * After page->mapping has been set up, the caller must finalize the 6048 * charge with mem_cgroup_commit_charge(). Or abort the transaction 6049 * with mem_cgroup_cancel_charge() in case page instantiation fails. 6050 */ 6051 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 6052 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6053 bool compound) 6054 { 6055 struct mem_cgroup *memcg = NULL; 6056 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6057 int ret = 0; 6058 6059 if (mem_cgroup_disabled()) 6060 goto out; 6061 6062 if (PageSwapCache(page)) { 6063 /* 6064 * Every swap fault against a single page tries to charge the 6065 * page, bail as early as possible. shmem_unuse() encounters 6066 * already charged pages, too. The USED bit is protected by 6067 * the page lock, which serializes swap cache removal, which 6068 * in turn serializes uncharging. 6069 */ 6070 VM_BUG_ON_PAGE(!PageLocked(page), page); 6071 if (compound_head(page)->mem_cgroup) 6072 goto out; 6073 6074 if (do_swap_account) { 6075 swp_entry_t ent = { .val = page_private(page), }; 6076 unsigned short id = lookup_swap_cgroup_id(ent); 6077 6078 rcu_read_lock(); 6079 memcg = mem_cgroup_from_id(id); 6080 if (memcg && !css_tryget_online(&memcg->css)) 6081 memcg = NULL; 6082 rcu_read_unlock(); 6083 } 6084 } 6085 6086 if (!memcg) 6087 memcg = get_mem_cgroup_from_mm(mm); 6088 6089 ret = try_charge(memcg, gfp_mask, nr_pages); 6090 6091 css_put(&memcg->css); 6092 out: 6093 *memcgp = memcg; 6094 return ret; 6095 } 6096 6097 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 6098 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6099 bool compound) 6100 { 6101 struct mem_cgroup *memcg; 6102 int ret; 6103 6104 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 6105 memcg = *memcgp; 6106 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 6107 return ret; 6108 } 6109 6110 /** 6111 * mem_cgroup_commit_charge - commit a page charge 6112 * @page: page to charge 6113 * @memcg: memcg to charge the page to 6114 * @lrucare: page might be on LRU already 6115 * @compound: charge the page as compound or small page 6116 * 6117 * Finalize a charge transaction started by mem_cgroup_try_charge(), 6118 * after page->mapping has been set up. This must happen atomically 6119 * as part of the page instantiation, i.e. under the page table lock 6120 * for anonymous pages, under the page lock for page and swap cache. 6121 * 6122 * In addition, the page must not be on the LRU during the commit, to 6123 * prevent racing with task migration. If it might be, use @lrucare. 6124 * 6125 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 6126 */ 6127 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 6128 bool lrucare, bool compound) 6129 { 6130 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6131 6132 VM_BUG_ON_PAGE(!page->mapping, page); 6133 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 6134 6135 if (mem_cgroup_disabled()) 6136 return; 6137 /* 6138 * Swap faults will attempt to charge the same page multiple 6139 * times. But reuse_swap_page() might have removed the page 6140 * from swapcache already, so we can't check PageSwapCache(). 6141 */ 6142 if (!memcg) 6143 return; 6144 6145 commit_charge(page, memcg, lrucare); 6146 6147 local_irq_disable(); 6148 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 6149 memcg_check_events(memcg, page); 6150 local_irq_enable(); 6151 6152 if (do_memsw_account() && PageSwapCache(page)) { 6153 swp_entry_t entry = { .val = page_private(page) }; 6154 /* 6155 * The swap entry might not get freed for a long time, 6156 * let's not wait for it. The page already received a 6157 * memory+swap charge, drop the swap entry duplicate. 6158 */ 6159 mem_cgroup_uncharge_swap(entry, nr_pages); 6160 } 6161 } 6162 6163 /** 6164 * mem_cgroup_cancel_charge - cancel a page charge 6165 * @page: page to charge 6166 * @memcg: memcg to charge the page to 6167 * @compound: charge the page as compound or small page 6168 * 6169 * Cancel a charge transaction started by mem_cgroup_try_charge(). 6170 */ 6171 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 6172 bool compound) 6173 { 6174 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6175 6176 if (mem_cgroup_disabled()) 6177 return; 6178 /* 6179 * Swap faults will attempt to charge the same page multiple 6180 * times. But reuse_swap_page() might have removed the page 6181 * from swapcache already, so we can't check PageSwapCache(). 6182 */ 6183 if (!memcg) 6184 return; 6185 6186 cancel_charge(memcg, nr_pages); 6187 } 6188 6189 struct uncharge_gather { 6190 struct mem_cgroup *memcg; 6191 unsigned long pgpgout; 6192 unsigned long nr_anon; 6193 unsigned long nr_file; 6194 unsigned long nr_kmem; 6195 unsigned long nr_huge; 6196 unsigned long nr_shmem; 6197 struct page *dummy_page; 6198 }; 6199 6200 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6201 { 6202 memset(ug, 0, sizeof(*ug)); 6203 } 6204 6205 static void uncharge_batch(const struct uncharge_gather *ug) 6206 { 6207 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6208 unsigned long flags; 6209 6210 if (!mem_cgroup_is_root(ug->memcg)) { 6211 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6212 if (do_memsw_account()) 6213 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6214 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6215 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6216 memcg_oom_recover(ug->memcg); 6217 } 6218 6219 local_irq_save(flags); 6220 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6221 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6222 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6223 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6224 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6225 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages); 6226 memcg_check_events(ug->memcg, ug->dummy_page); 6227 local_irq_restore(flags); 6228 6229 if (!mem_cgroup_is_root(ug->memcg)) 6230 css_put_many(&ug->memcg->css, nr_pages); 6231 } 6232 6233 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6234 { 6235 VM_BUG_ON_PAGE(PageLRU(page), page); 6236 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6237 !PageHWPoison(page) , page); 6238 6239 if (!page->mem_cgroup) 6240 return; 6241 6242 /* 6243 * Nobody should be changing or seriously looking at 6244 * page->mem_cgroup at this point, we have fully 6245 * exclusive access to the page. 6246 */ 6247 6248 if (ug->memcg != page->mem_cgroup) { 6249 if (ug->memcg) { 6250 uncharge_batch(ug); 6251 uncharge_gather_clear(ug); 6252 } 6253 ug->memcg = page->mem_cgroup; 6254 } 6255 6256 if (!PageKmemcg(page)) { 6257 unsigned int nr_pages = 1; 6258 6259 if (PageTransHuge(page)) { 6260 nr_pages <<= compound_order(page); 6261 ug->nr_huge += nr_pages; 6262 } 6263 if (PageAnon(page)) 6264 ug->nr_anon += nr_pages; 6265 else { 6266 ug->nr_file += nr_pages; 6267 if (PageSwapBacked(page)) 6268 ug->nr_shmem += nr_pages; 6269 } 6270 ug->pgpgout++; 6271 } else { 6272 ug->nr_kmem += 1 << compound_order(page); 6273 __ClearPageKmemcg(page); 6274 } 6275 6276 ug->dummy_page = page; 6277 page->mem_cgroup = NULL; 6278 } 6279 6280 static void uncharge_list(struct list_head *page_list) 6281 { 6282 struct uncharge_gather ug; 6283 struct list_head *next; 6284 6285 uncharge_gather_clear(&ug); 6286 6287 /* 6288 * Note that the list can be a single page->lru; hence the 6289 * do-while loop instead of a simple list_for_each_entry(). 6290 */ 6291 next = page_list->next; 6292 do { 6293 struct page *page; 6294 6295 page = list_entry(next, struct page, lru); 6296 next = page->lru.next; 6297 6298 uncharge_page(page, &ug); 6299 } while (next != page_list); 6300 6301 if (ug.memcg) 6302 uncharge_batch(&ug); 6303 } 6304 6305 /** 6306 * mem_cgroup_uncharge - uncharge a page 6307 * @page: page to uncharge 6308 * 6309 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6310 * mem_cgroup_commit_charge(). 6311 */ 6312 void mem_cgroup_uncharge(struct page *page) 6313 { 6314 struct uncharge_gather ug; 6315 6316 if (mem_cgroup_disabled()) 6317 return; 6318 6319 /* Don't touch page->lru of any random page, pre-check: */ 6320 if (!page->mem_cgroup) 6321 return; 6322 6323 uncharge_gather_clear(&ug); 6324 uncharge_page(page, &ug); 6325 uncharge_batch(&ug); 6326 } 6327 6328 /** 6329 * mem_cgroup_uncharge_list - uncharge a list of page 6330 * @page_list: list of pages to uncharge 6331 * 6332 * Uncharge a list of pages previously charged with 6333 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6334 */ 6335 void mem_cgroup_uncharge_list(struct list_head *page_list) 6336 { 6337 if (mem_cgroup_disabled()) 6338 return; 6339 6340 if (!list_empty(page_list)) 6341 uncharge_list(page_list); 6342 } 6343 6344 /** 6345 * mem_cgroup_migrate - charge a page's replacement 6346 * @oldpage: currently circulating page 6347 * @newpage: replacement page 6348 * 6349 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6350 * be uncharged upon free. 6351 * 6352 * Both pages must be locked, @newpage->mapping must be set up. 6353 */ 6354 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6355 { 6356 struct mem_cgroup *memcg; 6357 unsigned int nr_pages; 6358 bool compound; 6359 unsigned long flags; 6360 6361 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6362 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6363 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6364 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6365 newpage); 6366 6367 if (mem_cgroup_disabled()) 6368 return; 6369 6370 /* Page cache replacement: new page already charged? */ 6371 if (newpage->mem_cgroup) 6372 return; 6373 6374 /* Swapcache readahead pages can get replaced before being charged */ 6375 memcg = oldpage->mem_cgroup; 6376 if (!memcg) 6377 return; 6378 6379 /* Force-charge the new page. The old one will be freed soon */ 6380 compound = PageTransHuge(newpage); 6381 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 6382 6383 page_counter_charge(&memcg->memory, nr_pages); 6384 if (do_memsw_account()) 6385 page_counter_charge(&memcg->memsw, nr_pages); 6386 css_get_many(&memcg->css, nr_pages); 6387 6388 commit_charge(newpage, memcg, false); 6389 6390 local_irq_save(flags); 6391 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 6392 memcg_check_events(memcg, newpage); 6393 local_irq_restore(flags); 6394 } 6395 6396 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6397 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6398 6399 void mem_cgroup_sk_alloc(struct sock *sk) 6400 { 6401 struct mem_cgroup *memcg; 6402 6403 if (!mem_cgroup_sockets_enabled) 6404 return; 6405 6406 /* 6407 * Socket cloning can throw us here with sk_memcg already 6408 * filled. It won't however, necessarily happen from 6409 * process context. So the test for root memcg given 6410 * the current task's memcg won't help us in this case. 6411 * 6412 * Respecting the original socket's memcg is a better 6413 * decision in this case. 6414 */ 6415 if (sk->sk_memcg) { 6416 css_get(&sk->sk_memcg->css); 6417 return; 6418 } 6419 6420 rcu_read_lock(); 6421 memcg = mem_cgroup_from_task(current); 6422 if (memcg == root_mem_cgroup) 6423 goto out; 6424 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6425 goto out; 6426 if (css_tryget_online(&memcg->css)) 6427 sk->sk_memcg = memcg; 6428 out: 6429 rcu_read_unlock(); 6430 } 6431 6432 void mem_cgroup_sk_free(struct sock *sk) 6433 { 6434 if (sk->sk_memcg) 6435 css_put(&sk->sk_memcg->css); 6436 } 6437 6438 /** 6439 * mem_cgroup_charge_skmem - charge socket memory 6440 * @memcg: memcg to charge 6441 * @nr_pages: number of pages to charge 6442 * 6443 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6444 * @memcg's configured limit, %false if the charge had to be forced. 6445 */ 6446 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6447 { 6448 gfp_t gfp_mask = GFP_KERNEL; 6449 6450 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6451 struct page_counter *fail; 6452 6453 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6454 memcg->tcpmem_pressure = 0; 6455 return true; 6456 } 6457 page_counter_charge(&memcg->tcpmem, nr_pages); 6458 memcg->tcpmem_pressure = 1; 6459 return false; 6460 } 6461 6462 /* Don't block in the packet receive path */ 6463 if (in_softirq()) 6464 gfp_mask = GFP_NOWAIT; 6465 6466 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6467 6468 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6469 return true; 6470 6471 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6472 return false; 6473 } 6474 6475 /** 6476 * mem_cgroup_uncharge_skmem - uncharge socket memory 6477 * @memcg: memcg to uncharge 6478 * @nr_pages: number of pages to uncharge 6479 */ 6480 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6481 { 6482 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6483 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6484 return; 6485 } 6486 6487 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6488 6489 refill_stock(memcg, nr_pages); 6490 } 6491 6492 static int __init cgroup_memory(char *s) 6493 { 6494 char *token; 6495 6496 while ((token = strsep(&s, ",")) != NULL) { 6497 if (!*token) 6498 continue; 6499 if (!strcmp(token, "nosocket")) 6500 cgroup_memory_nosocket = true; 6501 if (!strcmp(token, "nokmem")) 6502 cgroup_memory_nokmem = true; 6503 } 6504 return 0; 6505 } 6506 __setup("cgroup.memory=", cgroup_memory); 6507 6508 /* 6509 * subsys_initcall() for memory controller. 6510 * 6511 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6512 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6513 * basically everything that doesn't depend on a specific mem_cgroup structure 6514 * should be initialized from here. 6515 */ 6516 static int __init mem_cgroup_init(void) 6517 { 6518 int cpu, node; 6519 6520 #ifdef CONFIG_MEMCG_KMEM 6521 /* 6522 * Kmem cache creation is mostly done with the slab_mutex held, 6523 * so use a workqueue with limited concurrency to avoid stalling 6524 * all worker threads in case lots of cgroups are created and 6525 * destroyed simultaneously. 6526 */ 6527 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6528 BUG_ON(!memcg_kmem_cache_wq); 6529 #endif 6530 6531 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6532 memcg_hotplug_cpu_dead); 6533 6534 for_each_possible_cpu(cpu) 6535 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6536 drain_local_stock); 6537 6538 for_each_node(node) { 6539 struct mem_cgroup_tree_per_node *rtpn; 6540 6541 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6542 node_online(node) ? node : NUMA_NO_NODE); 6543 6544 rtpn->rb_root = RB_ROOT; 6545 rtpn->rb_rightmost = NULL; 6546 spin_lock_init(&rtpn->lock); 6547 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6548 } 6549 6550 return 0; 6551 } 6552 subsys_initcall(mem_cgroup_init); 6553 6554 #ifdef CONFIG_MEMCG_SWAP 6555 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6556 { 6557 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6558 /* 6559 * The root cgroup cannot be destroyed, so it's refcount must 6560 * always be >= 1. 6561 */ 6562 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6563 VM_BUG_ON(1); 6564 break; 6565 } 6566 memcg = parent_mem_cgroup(memcg); 6567 if (!memcg) 6568 memcg = root_mem_cgroup; 6569 } 6570 return memcg; 6571 } 6572 6573 /** 6574 * mem_cgroup_swapout - transfer a memsw charge to swap 6575 * @page: page whose memsw charge to transfer 6576 * @entry: swap entry to move the charge to 6577 * 6578 * Transfer the memsw charge of @page to @entry. 6579 */ 6580 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6581 { 6582 struct mem_cgroup *memcg, *swap_memcg; 6583 unsigned int nr_entries; 6584 unsigned short oldid; 6585 6586 VM_BUG_ON_PAGE(PageLRU(page), page); 6587 VM_BUG_ON_PAGE(page_count(page), page); 6588 6589 if (!do_memsw_account()) 6590 return; 6591 6592 memcg = page->mem_cgroup; 6593 6594 /* Readahead page, never charged */ 6595 if (!memcg) 6596 return; 6597 6598 /* 6599 * In case the memcg owning these pages has been offlined and doesn't 6600 * have an ID allocated to it anymore, charge the closest online 6601 * ancestor for the swap instead and transfer the memory+swap charge. 6602 */ 6603 swap_memcg = mem_cgroup_id_get_online(memcg); 6604 nr_entries = hpage_nr_pages(page); 6605 /* Get references for the tail pages, too */ 6606 if (nr_entries > 1) 6607 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6608 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6609 nr_entries); 6610 VM_BUG_ON_PAGE(oldid, page); 6611 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6612 6613 page->mem_cgroup = NULL; 6614 6615 if (!mem_cgroup_is_root(memcg)) 6616 page_counter_uncharge(&memcg->memory, nr_entries); 6617 6618 if (memcg != swap_memcg) { 6619 if (!mem_cgroup_is_root(swap_memcg)) 6620 page_counter_charge(&swap_memcg->memsw, nr_entries); 6621 page_counter_uncharge(&memcg->memsw, nr_entries); 6622 } 6623 6624 /* 6625 * Interrupts should be disabled here because the caller holds the 6626 * i_pages lock which is taken with interrupts-off. It is 6627 * important here to have the interrupts disabled because it is the 6628 * only synchronisation we have for updating the per-CPU variables. 6629 */ 6630 VM_BUG_ON(!irqs_disabled()); 6631 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 6632 -nr_entries); 6633 memcg_check_events(memcg, page); 6634 6635 if (!mem_cgroup_is_root(memcg)) 6636 css_put_many(&memcg->css, nr_entries); 6637 } 6638 6639 /** 6640 * mem_cgroup_try_charge_swap - try charging swap space for a page 6641 * @page: page being added to swap 6642 * @entry: swap entry to charge 6643 * 6644 * Try to charge @page's memcg for the swap space at @entry. 6645 * 6646 * Returns 0 on success, -ENOMEM on failure. 6647 */ 6648 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 6649 { 6650 unsigned int nr_pages = hpage_nr_pages(page); 6651 struct page_counter *counter; 6652 struct mem_cgroup *memcg; 6653 unsigned short oldid; 6654 6655 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 6656 return 0; 6657 6658 memcg = page->mem_cgroup; 6659 6660 /* Readahead page, never charged */ 6661 if (!memcg) 6662 return 0; 6663 6664 if (!entry.val) { 6665 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6666 return 0; 6667 } 6668 6669 memcg = mem_cgroup_id_get_online(memcg); 6670 6671 if (!mem_cgroup_is_root(memcg) && 6672 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 6673 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 6674 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6675 mem_cgroup_id_put(memcg); 6676 return -ENOMEM; 6677 } 6678 6679 /* Get references for the tail pages, too */ 6680 if (nr_pages > 1) 6681 mem_cgroup_id_get_many(memcg, nr_pages - 1); 6682 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 6683 VM_BUG_ON_PAGE(oldid, page); 6684 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 6685 6686 return 0; 6687 } 6688 6689 /** 6690 * mem_cgroup_uncharge_swap - uncharge swap space 6691 * @entry: swap entry to uncharge 6692 * @nr_pages: the amount of swap space to uncharge 6693 */ 6694 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 6695 { 6696 struct mem_cgroup *memcg; 6697 unsigned short id; 6698 6699 if (!do_swap_account) 6700 return; 6701 6702 id = swap_cgroup_record(entry, 0, nr_pages); 6703 rcu_read_lock(); 6704 memcg = mem_cgroup_from_id(id); 6705 if (memcg) { 6706 if (!mem_cgroup_is_root(memcg)) { 6707 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6708 page_counter_uncharge(&memcg->swap, nr_pages); 6709 else 6710 page_counter_uncharge(&memcg->memsw, nr_pages); 6711 } 6712 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 6713 mem_cgroup_id_put_many(memcg, nr_pages); 6714 } 6715 rcu_read_unlock(); 6716 } 6717 6718 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 6719 { 6720 long nr_swap_pages = get_nr_swap_pages(); 6721 6722 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6723 return nr_swap_pages; 6724 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6725 nr_swap_pages = min_t(long, nr_swap_pages, 6726 READ_ONCE(memcg->swap.max) - 6727 page_counter_read(&memcg->swap)); 6728 return nr_swap_pages; 6729 } 6730 6731 bool mem_cgroup_swap_full(struct page *page) 6732 { 6733 struct mem_cgroup *memcg; 6734 6735 VM_BUG_ON_PAGE(!PageLocked(page), page); 6736 6737 if (vm_swap_full()) 6738 return true; 6739 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6740 return false; 6741 6742 memcg = page->mem_cgroup; 6743 if (!memcg) 6744 return false; 6745 6746 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6747 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) 6748 return true; 6749 6750 return false; 6751 } 6752 6753 /* for remember boot option*/ 6754 #ifdef CONFIG_MEMCG_SWAP_ENABLED 6755 static int really_do_swap_account __initdata = 1; 6756 #else 6757 static int really_do_swap_account __initdata; 6758 #endif 6759 6760 static int __init enable_swap_account(char *s) 6761 { 6762 if (!strcmp(s, "1")) 6763 really_do_swap_account = 1; 6764 else if (!strcmp(s, "0")) 6765 really_do_swap_account = 0; 6766 return 1; 6767 } 6768 __setup("swapaccount=", enable_swap_account); 6769 6770 static u64 swap_current_read(struct cgroup_subsys_state *css, 6771 struct cftype *cft) 6772 { 6773 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6774 6775 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 6776 } 6777 6778 static int swap_max_show(struct seq_file *m, void *v) 6779 { 6780 return seq_puts_memcg_tunable(m, 6781 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 6782 } 6783 6784 static ssize_t swap_max_write(struct kernfs_open_file *of, 6785 char *buf, size_t nbytes, loff_t off) 6786 { 6787 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6788 unsigned long max; 6789 int err; 6790 6791 buf = strstrip(buf); 6792 err = page_counter_memparse(buf, "max", &max); 6793 if (err) 6794 return err; 6795 6796 xchg(&memcg->swap.max, max); 6797 6798 return nbytes; 6799 } 6800 6801 static int swap_events_show(struct seq_file *m, void *v) 6802 { 6803 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6804 6805 seq_printf(m, "max %lu\n", 6806 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 6807 seq_printf(m, "fail %lu\n", 6808 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 6809 6810 return 0; 6811 } 6812 6813 static struct cftype swap_files[] = { 6814 { 6815 .name = "swap.current", 6816 .flags = CFTYPE_NOT_ON_ROOT, 6817 .read_u64 = swap_current_read, 6818 }, 6819 { 6820 .name = "swap.max", 6821 .flags = CFTYPE_NOT_ON_ROOT, 6822 .seq_show = swap_max_show, 6823 .write = swap_max_write, 6824 }, 6825 { 6826 .name = "swap.events", 6827 .flags = CFTYPE_NOT_ON_ROOT, 6828 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 6829 .seq_show = swap_events_show, 6830 }, 6831 { } /* terminate */ 6832 }; 6833 6834 static struct cftype memsw_cgroup_files[] = { 6835 { 6836 .name = "memsw.usage_in_bytes", 6837 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6838 .read_u64 = mem_cgroup_read_u64, 6839 }, 6840 { 6841 .name = "memsw.max_usage_in_bytes", 6842 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6843 .write = mem_cgroup_reset, 6844 .read_u64 = mem_cgroup_read_u64, 6845 }, 6846 { 6847 .name = "memsw.limit_in_bytes", 6848 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6849 .write = mem_cgroup_write, 6850 .read_u64 = mem_cgroup_read_u64, 6851 }, 6852 { 6853 .name = "memsw.failcnt", 6854 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6855 .write = mem_cgroup_reset, 6856 .read_u64 = mem_cgroup_read_u64, 6857 }, 6858 { }, /* terminate */ 6859 }; 6860 6861 static int __init mem_cgroup_swap_init(void) 6862 { 6863 if (!mem_cgroup_disabled() && really_do_swap_account) { 6864 do_swap_account = 1; 6865 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6866 swap_files)); 6867 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6868 memsw_cgroup_files)); 6869 } 6870 return 0; 6871 } 6872 subsys_initcall(mem_cgroup_swap_init); 6873 6874 #endif /* CONFIG_MEMCG_SWAP */ 6875