1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/file.h> 62 #include <linux/tracehook.h> 63 #include <linux/psi.h> 64 #include <linux/seq_buf.h> 65 #include "internal.h" 66 #include <net/sock.h> 67 #include <net/ip.h> 68 #include "slab.h" 69 70 #include <linux/uaccess.h> 71 72 #include <trace/events/vmscan.h> 73 74 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 75 EXPORT_SYMBOL(memory_cgrp_subsys); 76 77 struct mem_cgroup *root_mem_cgroup __read_mostly; 78 79 /* Active memory cgroup to use from an interrupt context */ 80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 82 83 /* Socket memory accounting disabled? */ 84 static bool cgroup_memory_nosocket __ro_after_init; 85 86 /* Kernel memory accounting disabled? */ 87 static bool cgroup_memory_nokmem __ro_after_init; 88 89 /* Whether the swap controller is active */ 90 #ifdef CONFIG_MEMCG_SWAP 91 bool cgroup_memory_noswap __ro_after_init; 92 #else 93 #define cgroup_memory_noswap 1 94 #endif 95 96 #ifdef CONFIG_CGROUP_WRITEBACK 97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 98 #endif 99 100 /* Whether legacy memory+swap accounting is active */ 101 static bool do_memsw_account(void) 102 { 103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap; 104 } 105 106 #define THRESHOLDS_EVENTS_TARGET 128 107 #define SOFTLIMIT_EVENTS_TARGET 1024 108 109 /* 110 * Cgroups above their limits are maintained in a RB-Tree, independent of 111 * their hierarchy representation 112 */ 113 114 struct mem_cgroup_tree_per_node { 115 struct rb_root rb_root; 116 struct rb_node *rb_rightmost; 117 spinlock_t lock; 118 }; 119 120 struct mem_cgroup_tree { 121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 122 }; 123 124 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 125 126 /* for OOM */ 127 struct mem_cgroup_eventfd_list { 128 struct list_head list; 129 struct eventfd_ctx *eventfd; 130 }; 131 132 /* 133 * cgroup_event represents events which userspace want to receive. 134 */ 135 struct mem_cgroup_event { 136 /* 137 * memcg which the event belongs to. 138 */ 139 struct mem_cgroup *memcg; 140 /* 141 * eventfd to signal userspace about the event. 142 */ 143 struct eventfd_ctx *eventfd; 144 /* 145 * Each of these stored in a list by the cgroup. 146 */ 147 struct list_head list; 148 /* 149 * register_event() callback will be used to add new userspace 150 * waiter for changes related to this event. Use eventfd_signal() 151 * on eventfd to send notification to userspace. 152 */ 153 int (*register_event)(struct mem_cgroup *memcg, 154 struct eventfd_ctx *eventfd, const char *args); 155 /* 156 * unregister_event() callback will be called when userspace closes 157 * the eventfd or on cgroup removing. This callback must be set, 158 * if you want provide notification functionality. 159 */ 160 void (*unregister_event)(struct mem_cgroup *memcg, 161 struct eventfd_ctx *eventfd); 162 /* 163 * All fields below needed to unregister event when 164 * userspace closes eventfd. 165 */ 166 poll_table pt; 167 wait_queue_head_t *wqh; 168 wait_queue_entry_t wait; 169 struct work_struct remove; 170 }; 171 172 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 173 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 174 175 /* Stuffs for move charges at task migration. */ 176 /* 177 * Types of charges to be moved. 178 */ 179 #define MOVE_ANON 0x1U 180 #define MOVE_FILE 0x2U 181 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 182 183 /* "mc" and its members are protected by cgroup_mutex */ 184 static struct move_charge_struct { 185 spinlock_t lock; /* for from, to */ 186 struct mm_struct *mm; 187 struct mem_cgroup *from; 188 struct mem_cgroup *to; 189 unsigned long flags; 190 unsigned long precharge; 191 unsigned long moved_charge; 192 unsigned long moved_swap; 193 struct task_struct *moving_task; /* a task moving charges */ 194 wait_queue_head_t waitq; /* a waitq for other context */ 195 } mc = { 196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 198 }; 199 200 /* 201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 202 * limit reclaim to prevent infinite loops, if they ever occur. 203 */ 204 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 205 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 206 207 /* for encoding cft->private value on file */ 208 enum res_type { 209 _MEM, 210 _MEMSWAP, 211 _OOM_TYPE, 212 _KMEM, 213 _TCP, 214 }; 215 216 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 217 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 218 #define MEMFILE_ATTR(val) ((val) & 0xffff) 219 /* Used for OOM notifier */ 220 #define OOM_CONTROL (0) 221 222 /* 223 * Iteration constructs for visiting all cgroups (under a tree). If 224 * loops are exited prematurely (break), mem_cgroup_iter_break() must 225 * be used for reference counting. 226 */ 227 #define for_each_mem_cgroup_tree(iter, root) \ 228 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 229 iter != NULL; \ 230 iter = mem_cgroup_iter(root, iter, NULL)) 231 232 #define for_each_mem_cgroup(iter) \ 233 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 234 iter != NULL; \ 235 iter = mem_cgroup_iter(NULL, iter, NULL)) 236 237 static inline bool task_is_dying(void) 238 { 239 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 240 (current->flags & PF_EXITING); 241 } 242 243 /* Some nice accessors for the vmpressure. */ 244 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 245 { 246 if (!memcg) 247 memcg = root_mem_cgroup; 248 return &memcg->vmpressure; 249 } 250 251 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 252 { 253 return container_of(vmpr, struct mem_cgroup, vmpressure); 254 } 255 256 #ifdef CONFIG_MEMCG_KMEM 257 extern spinlock_t css_set_lock; 258 259 bool mem_cgroup_kmem_disabled(void) 260 { 261 return cgroup_memory_nokmem; 262 } 263 264 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 265 unsigned int nr_pages); 266 267 static void obj_cgroup_release(struct percpu_ref *ref) 268 { 269 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 270 unsigned int nr_bytes; 271 unsigned int nr_pages; 272 unsigned long flags; 273 274 /* 275 * At this point all allocated objects are freed, and 276 * objcg->nr_charged_bytes can't have an arbitrary byte value. 277 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 278 * 279 * The following sequence can lead to it: 280 * 1) CPU0: objcg == stock->cached_objcg 281 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 282 * PAGE_SIZE bytes are charged 283 * 3) CPU1: a process from another memcg is allocating something, 284 * the stock if flushed, 285 * objcg->nr_charged_bytes = PAGE_SIZE - 92 286 * 5) CPU0: we do release this object, 287 * 92 bytes are added to stock->nr_bytes 288 * 6) CPU0: stock is flushed, 289 * 92 bytes are added to objcg->nr_charged_bytes 290 * 291 * In the result, nr_charged_bytes == PAGE_SIZE. 292 * This page will be uncharged in obj_cgroup_release(). 293 */ 294 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 295 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 296 nr_pages = nr_bytes >> PAGE_SHIFT; 297 298 if (nr_pages) 299 obj_cgroup_uncharge_pages(objcg, nr_pages); 300 301 spin_lock_irqsave(&css_set_lock, flags); 302 list_del(&objcg->list); 303 spin_unlock_irqrestore(&css_set_lock, flags); 304 305 percpu_ref_exit(ref); 306 kfree_rcu(objcg, rcu); 307 } 308 309 static struct obj_cgroup *obj_cgroup_alloc(void) 310 { 311 struct obj_cgroup *objcg; 312 int ret; 313 314 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 315 if (!objcg) 316 return NULL; 317 318 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 319 GFP_KERNEL); 320 if (ret) { 321 kfree(objcg); 322 return NULL; 323 } 324 INIT_LIST_HEAD(&objcg->list); 325 return objcg; 326 } 327 328 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 329 struct mem_cgroup *parent) 330 { 331 struct obj_cgroup *objcg, *iter; 332 333 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 334 335 spin_lock_irq(&css_set_lock); 336 337 /* 1) Ready to reparent active objcg. */ 338 list_add(&objcg->list, &memcg->objcg_list); 339 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 340 list_for_each_entry(iter, &memcg->objcg_list, list) 341 WRITE_ONCE(iter->memcg, parent); 342 /* 3) Move already reparented objcgs to the parent's list */ 343 list_splice(&memcg->objcg_list, &parent->objcg_list); 344 345 spin_unlock_irq(&css_set_lock); 346 347 percpu_ref_kill(&objcg->refcnt); 348 } 349 350 /* 351 * This will be used as a shrinker list's index. 352 * The main reason for not using cgroup id for this: 353 * this works better in sparse environments, where we have a lot of memcgs, 354 * but only a few kmem-limited. Or also, if we have, for instance, 200 355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 356 * 200 entry array for that. 357 * 358 * The current size of the caches array is stored in memcg_nr_cache_ids. It 359 * will double each time we have to increase it. 360 */ 361 static DEFINE_IDA(memcg_cache_ida); 362 int memcg_nr_cache_ids; 363 364 /* Protects memcg_nr_cache_ids */ 365 static DECLARE_RWSEM(memcg_cache_ids_sem); 366 367 void memcg_get_cache_ids(void) 368 { 369 down_read(&memcg_cache_ids_sem); 370 } 371 372 void memcg_put_cache_ids(void) 373 { 374 up_read(&memcg_cache_ids_sem); 375 } 376 377 /* 378 * MIN_SIZE is different than 1, because we would like to avoid going through 379 * the alloc/free process all the time. In a small machine, 4 kmem-limited 380 * cgroups is a reasonable guess. In the future, it could be a parameter or 381 * tunable, but that is strictly not necessary. 382 * 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 384 * this constant directly from cgroup, but it is understandable that this is 385 * better kept as an internal representation in cgroup.c. In any case, the 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily 387 * increase ours as well if it increases. 388 */ 389 #define MEMCG_CACHES_MIN_SIZE 4 390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 391 392 /* 393 * A lot of the calls to the cache allocation functions are expected to be 394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 395 * conditional to this static branch, we'll have to allow modules that does 396 * kmem_cache_alloc and the such to see this symbol as well 397 */ 398 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 399 EXPORT_SYMBOL(memcg_kmem_enabled_key); 400 #endif 401 402 /** 403 * mem_cgroup_css_from_page - css of the memcg associated with a page 404 * @page: page of interest 405 * 406 * If memcg is bound to the default hierarchy, css of the memcg associated 407 * with @page is returned. The returned css remains associated with @page 408 * until it is released. 409 * 410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 411 * is returned. 412 */ 413 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 414 { 415 struct mem_cgroup *memcg; 416 417 memcg = page_memcg(page); 418 419 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 420 memcg = root_mem_cgroup; 421 422 return &memcg->css; 423 } 424 425 /** 426 * page_cgroup_ino - return inode number of the memcg a page is charged to 427 * @page: the page 428 * 429 * Look up the closest online ancestor of the memory cgroup @page is charged to 430 * and return its inode number or 0 if @page is not charged to any cgroup. It 431 * is safe to call this function without holding a reference to @page. 432 * 433 * Note, this function is inherently racy, because there is nothing to prevent 434 * the cgroup inode from getting torn down and potentially reallocated a moment 435 * after page_cgroup_ino() returns, so it only should be used by callers that 436 * do not care (such as procfs interfaces). 437 */ 438 ino_t page_cgroup_ino(struct page *page) 439 { 440 struct mem_cgroup *memcg; 441 unsigned long ino = 0; 442 443 rcu_read_lock(); 444 memcg = page_memcg_check(page); 445 446 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 447 memcg = parent_mem_cgroup(memcg); 448 if (memcg) 449 ino = cgroup_ino(memcg->css.cgroup); 450 rcu_read_unlock(); 451 return ino; 452 } 453 454 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 455 struct mem_cgroup_tree_per_node *mctz, 456 unsigned long new_usage_in_excess) 457 { 458 struct rb_node **p = &mctz->rb_root.rb_node; 459 struct rb_node *parent = NULL; 460 struct mem_cgroup_per_node *mz_node; 461 bool rightmost = true; 462 463 if (mz->on_tree) 464 return; 465 466 mz->usage_in_excess = new_usage_in_excess; 467 if (!mz->usage_in_excess) 468 return; 469 while (*p) { 470 parent = *p; 471 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 472 tree_node); 473 if (mz->usage_in_excess < mz_node->usage_in_excess) { 474 p = &(*p)->rb_left; 475 rightmost = false; 476 } else { 477 p = &(*p)->rb_right; 478 } 479 } 480 481 if (rightmost) 482 mctz->rb_rightmost = &mz->tree_node; 483 484 rb_link_node(&mz->tree_node, parent, p); 485 rb_insert_color(&mz->tree_node, &mctz->rb_root); 486 mz->on_tree = true; 487 } 488 489 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 490 struct mem_cgroup_tree_per_node *mctz) 491 { 492 if (!mz->on_tree) 493 return; 494 495 if (&mz->tree_node == mctz->rb_rightmost) 496 mctz->rb_rightmost = rb_prev(&mz->tree_node); 497 498 rb_erase(&mz->tree_node, &mctz->rb_root); 499 mz->on_tree = false; 500 } 501 502 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 503 struct mem_cgroup_tree_per_node *mctz) 504 { 505 unsigned long flags; 506 507 spin_lock_irqsave(&mctz->lock, flags); 508 __mem_cgroup_remove_exceeded(mz, mctz); 509 spin_unlock_irqrestore(&mctz->lock, flags); 510 } 511 512 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 513 { 514 unsigned long nr_pages = page_counter_read(&memcg->memory); 515 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 516 unsigned long excess = 0; 517 518 if (nr_pages > soft_limit) 519 excess = nr_pages - soft_limit; 520 521 return excess; 522 } 523 524 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 525 { 526 unsigned long excess; 527 struct mem_cgroup_per_node *mz; 528 struct mem_cgroup_tree_per_node *mctz; 529 530 mctz = soft_limit_tree.rb_tree_per_node[nid]; 531 if (!mctz) 532 return; 533 /* 534 * Necessary to update all ancestors when hierarchy is used. 535 * because their event counter is not touched. 536 */ 537 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 538 mz = memcg->nodeinfo[nid]; 539 excess = soft_limit_excess(memcg); 540 /* 541 * We have to update the tree if mz is on RB-tree or 542 * mem is over its softlimit. 543 */ 544 if (excess || mz->on_tree) { 545 unsigned long flags; 546 547 spin_lock_irqsave(&mctz->lock, flags); 548 /* if on-tree, remove it */ 549 if (mz->on_tree) 550 __mem_cgroup_remove_exceeded(mz, mctz); 551 /* 552 * Insert again. mz->usage_in_excess will be updated. 553 * If excess is 0, no tree ops. 554 */ 555 __mem_cgroup_insert_exceeded(mz, mctz, excess); 556 spin_unlock_irqrestore(&mctz->lock, flags); 557 } 558 } 559 } 560 561 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 562 { 563 struct mem_cgroup_tree_per_node *mctz; 564 struct mem_cgroup_per_node *mz; 565 int nid; 566 567 for_each_node(nid) { 568 mz = memcg->nodeinfo[nid]; 569 mctz = soft_limit_tree.rb_tree_per_node[nid]; 570 if (mctz) 571 mem_cgroup_remove_exceeded(mz, mctz); 572 } 573 } 574 575 static struct mem_cgroup_per_node * 576 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 577 { 578 struct mem_cgroup_per_node *mz; 579 580 retry: 581 mz = NULL; 582 if (!mctz->rb_rightmost) 583 goto done; /* Nothing to reclaim from */ 584 585 mz = rb_entry(mctz->rb_rightmost, 586 struct mem_cgroup_per_node, tree_node); 587 /* 588 * Remove the node now but someone else can add it back, 589 * we will to add it back at the end of reclaim to its correct 590 * position in the tree. 591 */ 592 __mem_cgroup_remove_exceeded(mz, mctz); 593 if (!soft_limit_excess(mz->memcg) || 594 !css_tryget(&mz->memcg->css)) 595 goto retry; 596 done: 597 return mz; 598 } 599 600 static struct mem_cgroup_per_node * 601 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 602 { 603 struct mem_cgroup_per_node *mz; 604 605 spin_lock_irq(&mctz->lock); 606 mz = __mem_cgroup_largest_soft_limit_node(mctz); 607 spin_unlock_irq(&mctz->lock); 608 return mz; 609 } 610 611 /* 612 * memcg and lruvec stats flushing 613 * 614 * Many codepaths leading to stats update or read are performance sensitive and 615 * adding stats flushing in such codepaths is not desirable. So, to optimize the 616 * flushing the kernel does: 617 * 618 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 619 * rstat update tree grow unbounded. 620 * 621 * 2) Flush the stats synchronously on reader side only when there are more than 622 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 623 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 624 * only for 2 seconds due to (1). 625 */ 626 static void flush_memcg_stats_dwork(struct work_struct *w); 627 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 628 static DEFINE_SPINLOCK(stats_flush_lock); 629 static DEFINE_PER_CPU(unsigned int, stats_updates); 630 static atomic_t stats_flush_threshold = ATOMIC_INIT(0); 631 632 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 633 { 634 unsigned int x; 635 636 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 637 638 x = __this_cpu_add_return(stats_updates, abs(val)); 639 if (x > MEMCG_CHARGE_BATCH) { 640 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold); 641 __this_cpu_write(stats_updates, 0); 642 } 643 } 644 645 static void __mem_cgroup_flush_stats(void) 646 { 647 unsigned long flag; 648 649 if (!spin_trylock_irqsave(&stats_flush_lock, flag)) 650 return; 651 652 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup); 653 atomic_set(&stats_flush_threshold, 0); 654 spin_unlock_irqrestore(&stats_flush_lock, flag); 655 } 656 657 void mem_cgroup_flush_stats(void) 658 { 659 if (atomic_read(&stats_flush_threshold) > num_online_cpus()) 660 __mem_cgroup_flush_stats(); 661 } 662 663 static void flush_memcg_stats_dwork(struct work_struct *w) 664 { 665 __mem_cgroup_flush_stats(); 666 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ); 667 } 668 669 /** 670 * __mod_memcg_state - update cgroup memory statistics 671 * @memcg: the memory cgroup 672 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 673 * @val: delta to add to the counter, can be negative 674 */ 675 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 676 { 677 if (mem_cgroup_disabled()) 678 return; 679 680 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 681 memcg_rstat_updated(memcg, val); 682 } 683 684 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 685 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 686 { 687 long x = 0; 688 int cpu; 689 690 for_each_possible_cpu(cpu) 691 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu); 692 #ifdef CONFIG_SMP 693 if (x < 0) 694 x = 0; 695 #endif 696 return x; 697 } 698 699 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 700 int val) 701 { 702 struct mem_cgroup_per_node *pn; 703 struct mem_cgroup *memcg; 704 705 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 706 memcg = pn->memcg; 707 708 /* Update memcg */ 709 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 710 711 /* Update lruvec */ 712 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 713 714 memcg_rstat_updated(memcg, val); 715 } 716 717 /** 718 * __mod_lruvec_state - update lruvec memory statistics 719 * @lruvec: the lruvec 720 * @idx: the stat item 721 * @val: delta to add to the counter, can be negative 722 * 723 * The lruvec is the intersection of the NUMA node and a cgroup. This 724 * function updates the all three counters that are affected by a 725 * change of state at this level: per-node, per-cgroup, per-lruvec. 726 */ 727 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 728 int val) 729 { 730 /* Update node */ 731 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 732 733 /* Update memcg and lruvec */ 734 if (!mem_cgroup_disabled()) 735 __mod_memcg_lruvec_state(lruvec, idx, val); 736 } 737 738 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 739 int val) 740 { 741 struct page *head = compound_head(page); /* rmap on tail pages */ 742 struct mem_cgroup *memcg; 743 pg_data_t *pgdat = page_pgdat(page); 744 struct lruvec *lruvec; 745 746 rcu_read_lock(); 747 memcg = page_memcg(head); 748 /* Untracked pages have no memcg, no lruvec. Update only the node */ 749 if (!memcg) { 750 rcu_read_unlock(); 751 __mod_node_page_state(pgdat, idx, val); 752 return; 753 } 754 755 lruvec = mem_cgroup_lruvec(memcg, pgdat); 756 __mod_lruvec_state(lruvec, idx, val); 757 rcu_read_unlock(); 758 } 759 EXPORT_SYMBOL(__mod_lruvec_page_state); 760 761 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 762 { 763 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 764 struct mem_cgroup *memcg; 765 struct lruvec *lruvec; 766 767 rcu_read_lock(); 768 memcg = mem_cgroup_from_obj(p); 769 770 /* 771 * Untracked pages have no memcg, no lruvec. Update only the 772 * node. If we reparent the slab objects to the root memcg, 773 * when we free the slab object, we need to update the per-memcg 774 * vmstats to keep it correct for the root memcg. 775 */ 776 if (!memcg) { 777 __mod_node_page_state(pgdat, idx, val); 778 } else { 779 lruvec = mem_cgroup_lruvec(memcg, pgdat); 780 __mod_lruvec_state(lruvec, idx, val); 781 } 782 rcu_read_unlock(); 783 } 784 785 /** 786 * __count_memcg_events - account VM events in a cgroup 787 * @memcg: the memory cgroup 788 * @idx: the event item 789 * @count: the number of events that occurred 790 */ 791 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 792 unsigned long count) 793 { 794 if (mem_cgroup_disabled()) 795 return; 796 797 __this_cpu_add(memcg->vmstats_percpu->events[idx], count); 798 memcg_rstat_updated(memcg, count); 799 } 800 801 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 802 { 803 return READ_ONCE(memcg->vmstats.events[event]); 804 } 805 806 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 807 { 808 long x = 0; 809 int cpu; 810 811 for_each_possible_cpu(cpu) 812 x += per_cpu(memcg->vmstats_percpu->events[event], cpu); 813 return x; 814 } 815 816 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 817 int nr_pages) 818 { 819 /* pagein of a big page is an event. So, ignore page size */ 820 if (nr_pages > 0) 821 __count_memcg_events(memcg, PGPGIN, 1); 822 else { 823 __count_memcg_events(memcg, PGPGOUT, 1); 824 nr_pages = -nr_pages; /* for event */ 825 } 826 827 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 828 } 829 830 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 831 enum mem_cgroup_events_target target) 832 { 833 unsigned long val, next; 834 835 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 836 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 837 /* from time_after() in jiffies.h */ 838 if ((long)(next - val) < 0) { 839 switch (target) { 840 case MEM_CGROUP_TARGET_THRESH: 841 next = val + THRESHOLDS_EVENTS_TARGET; 842 break; 843 case MEM_CGROUP_TARGET_SOFTLIMIT: 844 next = val + SOFTLIMIT_EVENTS_TARGET; 845 break; 846 default: 847 break; 848 } 849 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 850 return true; 851 } 852 return false; 853 } 854 855 /* 856 * Check events in order. 857 * 858 */ 859 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 860 { 861 /* threshold event is triggered in finer grain than soft limit */ 862 if (unlikely(mem_cgroup_event_ratelimit(memcg, 863 MEM_CGROUP_TARGET_THRESH))) { 864 bool do_softlimit; 865 866 do_softlimit = mem_cgroup_event_ratelimit(memcg, 867 MEM_CGROUP_TARGET_SOFTLIMIT); 868 mem_cgroup_threshold(memcg); 869 if (unlikely(do_softlimit)) 870 mem_cgroup_update_tree(memcg, nid); 871 } 872 } 873 874 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 875 { 876 /* 877 * mm_update_next_owner() may clear mm->owner to NULL 878 * if it races with swapoff, page migration, etc. 879 * So this can be called with p == NULL. 880 */ 881 if (unlikely(!p)) 882 return NULL; 883 884 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 885 } 886 EXPORT_SYMBOL(mem_cgroup_from_task); 887 888 static __always_inline struct mem_cgroup *active_memcg(void) 889 { 890 if (!in_task()) 891 return this_cpu_read(int_active_memcg); 892 else 893 return current->active_memcg; 894 } 895 896 /** 897 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 898 * @mm: mm from which memcg should be extracted. It can be NULL. 899 * 900 * Obtain a reference on mm->memcg and returns it if successful. If mm 901 * is NULL, then the memcg is chosen as follows: 902 * 1) The active memcg, if set. 903 * 2) current->mm->memcg, if available 904 * 3) root memcg 905 * If mem_cgroup is disabled, NULL is returned. 906 */ 907 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 908 { 909 struct mem_cgroup *memcg; 910 911 if (mem_cgroup_disabled()) 912 return NULL; 913 914 /* 915 * Page cache insertions can happen without an 916 * actual mm context, e.g. during disk probing 917 * on boot, loopback IO, acct() writes etc. 918 * 919 * No need to css_get on root memcg as the reference 920 * counting is disabled on the root level in the 921 * cgroup core. See CSS_NO_REF. 922 */ 923 if (unlikely(!mm)) { 924 memcg = active_memcg(); 925 if (unlikely(memcg)) { 926 /* remote memcg must hold a ref */ 927 css_get(&memcg->css); 928 return memcg; 929 } 930 mm = current->mm; 931 if (unlikely(!mm)) 932 return root_mem_cgroup; 933 } 934 935 rcu_read_lock(); 936 do { 937 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 938 if (unlikely(!memcg)) 939 memcg = root_mem_cgroup; 940 } while (!css_tryget(&memcg->css)); 941 rcu_read_unlock(); 942 return memcg; 943 } 944 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 945 946 static __always_inline bool memcg_kmem_bypass(void) 947 { 948 /* Allow remote memcg charging from any context. */ 949 if (unlikely(active_memcg())) 950 return false; 951 952 /* Memcg to charge can't be determined. */ 953 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD)) 954 return true; 955 956 return false; 957 } 958 959 /** 960 * mem_cgroup_iter - iterate over memory cgroup hierarchy 961 * @root: hierarchy root 962 * @prev: previously returned memcg, NULL on first invocation 963 * @reclaim: cookie for shared reclaim walks, NULL for full walks 964 * 965 * Returns references to children of the hierarchy below @root, or 966 * @root itself, or %NULL after a full round-trip. 967 * 968 * Caller must pass the return value in @prev on subsequent 969 * invocations for reference counting, or use mem_cgroup_iter_break() 970 * to cancel a hierarchy walk before the round-trip is complete. 971 * 972 * Reclaimers can specify a node in @reclaim to divide up the memcgs 973 * in the hierarchy among all concurrent reclaimers operating on the 974 * same node. 975 */ 976 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 977 struct mem_cgroup *prev, 978 struct mem_cgroup_reclaim_cookie *reclaim) 979 { 980 struct mem_cgroup_reclaim_iter *iter; 981 struct cgroup_subsys_state *css = NULL; 982 struct mem_cgroup *memcg = NULL; 983 struct mem_cgroup *pos = NULL; 984 985 if (mem_cgroup_disabled()) 986 return NULL; 987 988 if (!root) 989 root = root_mem_cgroup; 990 991 if (prev && !reclaim) 992 pos = prev; 993 994 rcu_read_lock(); 995 996 if (reclaim) { 997 struct mem_cgroup_per_node *mz; 998 999 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1000 iter = &mz->iter; 1001 1002 if (prev && reclaim->generation != iter->generation) 1003 goto out_unlock; 1004 1005 while (1) { 1006 pos = READ_ONCE(iter->position); 1007 if (!pos || css_tryget(&pos->css)) 1008 break; 1009 /* 1010 * css reference reached zero, so iter->position will 1011 * be cleared by ->css_released. However, we should not 1012 * rely on this happening soon, because ->css_released 1013 * is called from a work queue, and by busy-waiting we 1014 * might block it. So we clear iter->position right 1015 * away. 1016 */ 1017 (void)cmpxchg(&iter->position, pos, NULL); 1018 } 1019 } 1020 1021 if (pos) 1022 css = &pos->css; 1023 1024 for (;;) { 1025 css = css_next_descendant_pre(css, &root->css); 1026 if (!css) { 1027 /* 1028 * Reclaimers share the hierarchy walk, and a 1029 * new one might jump in right at the end of 1030 * the hierarchy - make sure they see at least 1031 * one group and restart from the beginning. 1032 */ 1033 if (!prev) 1034 continue; 1035 break; 1036 } 1037 1038 /* 1039 * Verify the css and acquire a reference. The root 1040 * is provided by the caller, so we know it's alive 1041 * and kicking, and don't take an extra reference. 1042 */ 1043 memcg = mem_cgroup_from_css(css); 1044 1045 if (css == &root->css) 1046 break; 1047 1048 if (css_tryget(css)) 1049 break; 1050 1051 memcg = NULL; 1052 } 1053 1054 if (reclaim) { 1055 /* 1056 * The position could have already been updated by a competing 1057 * thread, so check that the value hasn't changed since we read 1058 * it to avoid reclaiming from the same cgroup twice. 1059 */ 1060 (void)cmpxchg(&iter->position, pos, memcg); 1061 1062 if (pos) 1063 css_put(&pos->css); 1064 1065 if (!memcg) 1066 iter->generation++; 1067 else if (!prev) 1068 reclaim->generation = iter->generation; 1069 } 1070 1071 out_unlock: 1072 rcu_read_unlock(); 1073 if (prev && prev != root) 1074 css_put(&prev->css); 1075 1076 return memcg; 1077 } 1078 1079 /** 1080 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1081 * @root: hierarchy root 1082 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1083 */ 1084 void mem_cgroup_iter_break(struct mem_cgroup *root, 1085 struct mem_cgroup *prev) 1086 { 1087 if (!root) 1088 root = root_mem_cgroup; 1089 if (prev && prev != root) 1090 css_put(&prev->css); 1091 } 1092 1093 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1094 struct mem_cgroup *dead_memcg) 1095 { 1096 struct mem_cgroup_reclaim_iter *iter; 1097 struct mem_cgroup_per_node *mz; 1098 int nid; 1099 1100 for_each_node(nid) { 1101 mz = from->nodeinfo[nid]; 1102 iter = &mz->iter; 1103 cmpxchg(&iter->position, dead_memcg, NULL); 1104 } 1105 } 1106 1107 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1108 { 1109 struct mem_cgroup *memcg = dead_memcg; 1110 struct mem_cgroup *last; 1111 1112 do { 1113 __invalidate_reclaim_iterators(memcg, dead_memcg); 1114 last = memcg; 1115 } while ((memcg = parent_mem_cgroup(memcg))); 1116 1117 /* 1118 * When cgruop1 non-hierarchy mode is used, 1119 * parent_mem_cgroup() does not walk all the way up to the 1120 * cgroup root (root_mem_cgroup). So we have to handle 1121 * dead_memcg from cgroup root separately. 1122 */ 1123 if (last != root_mem_cgroup) 1124 __invalidate_reclaim_iterators(root_mem_cgroup, 1125 dead_memcg); 1126 } 1127 1128 /** 1129 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1130 * @memcg: hierarchy root 1131 * @fn: function to call for each task 1132 * @arg: argument passed to @fn 1133 * 1134 * This function iterates over tasks attached to @memcg or to any of its 1135 * descendants and calls @fn for each task. If @fn returns a non-zero 1136 * value, the function breaks the iteration loop and returns the value. 1137 * Otherwise, it will iterate over all tasks and return 0. 1138 * 1139 * This function must not be called for the root memory cgroup. 1140 */ 1141 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1142 int (*fn)(struct task_struct *, void *), void *arg) 1143 { 1144 struct mem_cgroup *iter; 1145 int ret = 0; 1146 1147 BUG_ON(memcg == root_mem_cgroup); 1148 1149 for_each_mem_cgroup_tree(iter, memcg) { 1150 struct css_task_iter it; 1151 struct task_struct *task; 1152 1153 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1154 while (!ret && (task = css_task_iter_next(&it))) 1155 ret = fn(task, arg); 1156 css_task_iter_end(&it); 1157 if (ret) { 1158 mem_cgroup_iter_break(memcg, iter); 1159 break; 1160 } 1161 } 1162 return ret; 1163 } 1164 1165 #ifdef CONFIG_DEBUG_VM 1166 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1167 { 1168 struct mem_cgroup *memcg; 1169 1170 if (mem_cgroup_disabled()) 1171 return; 1172 1173 memcg = folio_memcg(folio); 1174 1175 if (!memcg) 1176 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio); 1177 else 1178 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1179 } 1180 #endif 1181 1182 /** 1183 * folio_lruvec_lock - Lock the lruvec for a folio. 1184 * @folio: Pointer to the folio. 1185 * 1186 * These functions are safe to use under any of the following conditions: 1187 * - folio locked 1188 * - folio_test_lru false 1189 * - folio_memcg_lock() 1190 * - folio frozen (refcount of 0) 1191 * 1192 * Return: The lruvec this folio is on with its lock held. 1193 */ 1194 struct lruvec *folio_lruvec_lock(struct folio *folio) 1195 { 1196 struct lruvec *lruvec = folio_lruvec(folio); 1197 1198 spin_lock(&lruvec->lru_lock); 1199 lruvec_memcg_debug(lruvec, folio); 1200 1201 return lruvec; 1202 } 1203 1204 /** 1205 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1206 * @folio: Pointer to the folio. 1207 * 1208 * These functions are safe to use under any of the following conditions: 1209 * - folio locked 1210 * - folio_test_lru false 1211 * - folio_memcg_lock() 1212 * - folio frozen (refcount of 0) 1213 * 1214 * Return: The lruvec this folio is on with its lock held and interrupts 1215 * disabled. 1216 */ 1217 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1218 { 1219 struct lruvec *lruvec = folio_lruvec(folio); 1220 1221 spin_lock_irq(&lruvec->lru_lock); 1222 lruvec_memcg_debug(lruvec, folio); 1223 1224 return lruvec; 1225 } 1226 1227 /** 1228 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1229 * @folio: Pointer to the folio. 1230 * @flags: Pointer to irqsave flags. 1231 * 1232 * These functions are safe to use under any of the following conditions: 1233 * - folio locked 1234 * - folio_test_lru false 1235 * - folio_memcg_lock() 1236 * - folio frozen (refcount of 0) 1237 * 1238 * Return: The lruvec this folio is on with its lock held and interrupts 1239 * disabled. 1240 */ 1241 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1242 unsigned long *flags) 1243 { 1244 struct lruvec *lruvec = folio_lruvec(folio); 1245 1246 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1247 lruvec_memcg_debug(lruvec, folio); 1248 1249 return lruvec; 1250 } 1251 1252 /** 1253 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1254 * @lruvec: mem_cgroup per zone lru vector 1255 * @lru: index of lru list the page is sitting on 1256 * @zid: zone id of the accounted pages 1257 * @nr_pages: positive when adding or negative when removing 1258 * 1259 * This function must be called under lru_lock, just before a page is added 1260 * to or just after a page is removed from an lru list (that ordering being 1261 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1262 */ 1263 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1264 int zid, int nr_pages) 1265 { 1266 struct mem_cgroup_per_node *mz; 1267 unsigned long *lru_size; 1268 long size; 1269 1270 if (mem_cgroup_disabled()) 1271 return; 1272 1273 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1274 lru_size = &mz->lru_zone_size[zid][lru]; 1275 1276 if (nr_pages < 0) 1277 *lru_size += nr_pages; 1278 1279 size = *lru_size; 1280 if (WARN_ONCE(size < 0, 1281 "%s(%p, %d, %d): lru_size %ld\n", 1282 __func__, lruvec, lru, nr_pages, size)) { 1283 VM_BUG_ON(1); 1284 *lru_size = 0; 1285 } 1286 1287 if (nr_pages > 0) 1288 *lru_size += nr_pages; 1289 } 1290 1291 /** 1292 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1293 * @memcg: the memory cgroup 1294 * 1295 * Returns the maximum amount of memory @mem can be charged with, in 1296 * pages. 1297 */ 1298 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1299 { 1300 unsigned long margin = 0; 1301 unsigned long count; 1302 unsigned long limit; 1303 1304 count = page_counter_read(&memcg->memory); 1305 limit = READ_ONCE(memcg->memory.max); 1306 if (count < limit) 1307 margin = limit - count; 1308 1309 if (do_memsw_account()) { 1310 count = page_counter_read(&memcg->memsw); 1311 limit = READ_ONCE(memcg->memsw.max); 1312 if (count < limit) 1313 margin = min(margin, limit - count); 1314 else 1315 margin = 0; 1316 } 1317 1318 return margin; 1319 } 1320 1321 /* 1322 * A routine for checking "mem" is under move_account() or not. 1323 * 1324 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1325 * moving cgroups. This is for waiting at high-memory pressure 1326 * caused by "move". 1327 */ 1328 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1329 { 1330 struct mem_cgroup *from; 1331 struct mem_cgroup *to; 1332 bool ret = false; 1333 /* 1334 * Unlike task_move routines, we access mc.to, mc.from not under 1335 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1336 */ 1337 spin_lock(&mc.lock); 1338 from = mc.from; 1339 to = mc.to; 1340 if (!from) 1341 goto unlock; 1342 1343 ret = mem_cgroup_is_descendant(from, memcg) || 1344 mem_cgroup_is_descendant(to, memcg); 1345 unlock: 1346 spin_unlock(&mc.lock); 1347 return ret; 1348 } 1349 1350 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1351 { 1352 if (mc.moving_task && current != mc.moving_task) { 1353 if (mem_cgroup_under_move(memcg)) { 1354 DEFINE_WAIT(wait); 1355 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1356 /* moving charge context might have finished. */ 1357 if (mc.moving_task) 1358 schedule(); 1359 finish_wait(&mc.waitq, &wait); 1360 return true; 1361 } 1362 } 1363 return false; 1364 } 1365 1366 struct memory_stat { 1367 const char *name; 1368 unsigned int idx; 1369 }; 1370 1371 static const struct memory_stat memory_stats[] = { 1372 { "anon", NR_ANON_MAPPED }, 1373 { "file", NR_FILE_PAGES }, 1374 { "kernel_stack", NR_KERNEL_STACK_KB }, 1375 { "pagetables", NR_PAGETABLE }, 1376 { "percpu", MEMCG_PERCPU_B }, 1377 { "sock", MEMCG_SOCK }, 1378 { "vmalloc", MEMCG_VMALLOC }, 1379 { "shmem", NR_SHMEM }, 1380 { "file_mapped", NR_FILE_MAPPED }, 1381 { "file_dirty", NR_FILE_DIRTY }, 1382 { "file_writeback", NR_WRITEBACK }, 1383 #ifdef CONFIG_SWAP 1384 { "swapcached", NR_SWAPCACHE }, 1385 #endif 1386 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1387 { "anon_thp", NR_ANON_THPS }, 1388 { "file_thp", NR_FILE_THPS }, 1389 { "shmem_thp", NR_SHMEM_THPS }, 1390 #endif 1391 { "inactive_anon", NR_INACTIVE_ANON }, 1392 { "active_anon", NR_ACTIVE_ANON }, 1393 { "inactive_file", NR_INACTIVE_FILE }, 1394 { "active_file", NR_ACTIVE_FILE }, 1395 { "unevictable", NR_UNEVICTABLE }, 1396 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1397 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1398 1399 /* The memory events */ 1400 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1401 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1402 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1403 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1404 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1405 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1406 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1407 }; 1408 1409 /* Translate stat items to the correct unit for memory.stat output */ 1410 static int memcg_page_state_unit(int item) 1411 { 1412 switch (item) { 1413 case MEMCG_PERCPU_B: 1414 case NR_SLAB_RECLAIMABLE_B: 1415 case NR_SLAB_UNRECLAIMABLE_B: 1416 case WORKINGSET_REFAULT_ANON: 1417 case WORKINGSET_REFAULT_FILE: 1418 case WORKINGSET_ACTIVATE_ANON: 1419 case WORKINGSET_ACTIVATE_FILE: 1420 case WORKINGSET_RESTORE_ANON: 1421 case WORKINGSET_RESTORE_FILE: 1422 case WORKINGSET_NODERECLAIM: 1423 return 1; 1424 case NR_KERNEL_STACK_KB: 1425 return SZ_1K; 1426 default: 1427 return PAGE_SIZE; 1428 } 1429 } 1430 1431 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1432 int item) 1433 { 1434 return memcg_page_state(memcg, item) * memcg_page_state_unit(item); 1435 } 1436 1437 static char *memory_stat_format(struct mem_cgroup *memcg) 1438 { 1439 struct seq_buf s; 1440 int i; 1441 1442 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1443 if (!s.buffer) 1444 return NULL; 1445 1446 /* 1447 * Provide statistics on the state of the memory subsystem as 1448 * well as cumulative event counters that show past behavior. 1449 * 1450 * This list is ordered following a combination of these gradients: 1451 * 1) generic big picture -> specifics and details 1452 * 2) reflecting userspace activity -> reflecting kernel heuristics 1453 * 1454 * Current memory state: 1455 */ 1456 mem_cgroup_flush_stats(); 1457 1458 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1459 u64 size; 1460 1461 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1462 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1463 1464 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1465 size += memcg_page_state_output(memcg, 1466 NR_SLAB_RECLAIMABLE_B); 1467 seq_buf_printf(&s, "slab %llu\n", size); 1468 } 1469 } 1470 1471 /* Accumulated memory events */ 1472 1473 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1474 memcg_events(memcg, PGFAULT)); 1475 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1476 memcg_events(memcg, PGMAJFAULT)); 1477 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1478 memcg_events(memcg, PGREFILL)); 1479 seq_buf_printf(&s, "pgscan %lu\n", 1480 memcg_events(memcg, PGSCAN_KSWAPD) + 1481 memcg_events(memcg, PGSCAN_DIRECT)); 1482 seq_buf_printf(&s, "pgsteal %lu\n", 1483 memcg_events(memcg, PGSTEAL_KSWAPD) + 1484 memcg_events(memcg, PGSTEAL_DIRECT)); 1485 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1486 memcg_events(memcg, PGACTIVATE)); 1487 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1488 memcg_events(memcg, PGDEACTIVATE)); 1489 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1490 memcg_events(memcg, PGLAZYFREE)); 1491 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1492 memcg_events(memcg, PGLAZYFREED)); 1493 1494 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1495 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1496 memcg_events(memcg, THP_FAULT_ALLOC)); 1497 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1498 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1499 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1500 1501 /* The above should easily fit into one page */ 1502 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1503 1504 return s.buffer; 1505 } 1506 1507 #define K(x) ((x) << (PAGE_SHIFT-10)) 1508 /** 1509 * mem_cgroup_print_oom_context: Print OOM information relevant to 1510 * memory controller. 1511 * @memcg: The memory cgroup that went over limit 1512 * @p: Task that is going to be killed 1513 * 1514 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1515 * enabled 1516 */ 1517 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1518 { 1519 rcu_read_lock(); 1520 1521 if (memcg) { 1522 pr_cont(",oom_memcg="); 1523 pr_cont_cgroup_path(memcg->css.cgroup); 1524 } else 1525 pr_cont(",global_oom"); 1526 if (p) { 1527 pr_cont(",task_memcg="); 1528 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1529 } 1530 rcu_read_unlock(); 1531 } 1532 1533 /** 1534 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1535 * memory controller. 1536 * @memcg: The memory cgroup that went over limit 1537 */ 1538 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1539 { 1540 char *buf; 1541 1542 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1543 K((u64)page_counter_read(&memcg->memory)), 1544 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1545 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1546 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1547 K((u64)page_counter_read(&memcg->swap)), 1548 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1549 else { 1550 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1551 K((u64)page_counter_read(&memcg->memsw)), 1552 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1553 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1554 K((u64)page_counter_read(&memcg->kmem)), 1555 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1556 } 1557 1558 pr_info("Memory cgroup stats for "); 1559 pr_cont_cgroup_path(memcg->css.cgroup); 1560 pr_cont(":"); 1561 buf = memory_stat_format(memcg); 1562 if (!buf) 1563 return; 1564 pr_info("%s", buf); 1565 kfree(buf); 1566 } 1567 1568 /* 1569 * Return the memory (and swap, if configured) limit for a memcg. 1570 */ 1571 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1572 { 1573 unsigned long max = READ_ONCE(memcg->memory.max); 1574 1575 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 1576 if (mem_cgroup_swappiness(memcg)) 1577 max += min(READ_ONCE(memcg->swap.max), 1578 (unsigned long)total_swap_pages); 1579 } else { /* v1 */ 1580 if (mem_cgroup_swappiness(memcg)) { 1581 /* Calculate swap excess capacity from memsw limit */ 1582 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1583 1584 max += min(swap, (unsigned long)total_swap_pages); 1585 } 1586 } 1587 return max; 1588 } 1589 1590 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1591 { 1592 return page_counter_read(&memcg->memory); 1593 } 1594 1595 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1596 int order) 1597 { 1598 struct oom_control oc = { 1599 .zonelist = NULL, 1600 .nodemask = NULL, 1601 .memcg = memcg, 1602 .gfp_mask = gfp_mask, 1603 .order = order, 1604 }; 1605 bool ret = true; 1606 1607 if (mutex_lock_killable(&oom_lock)) 1608 return true; 1609 1610 if (mem_cgroup_margin(memcg) >= (1 << order)) 1611 goto unlock; 1612 1613 /* 1614 * A few threads which were not waiting at mutex_lock_killable() can 1615 * fail to bail out. Therefore, check again after holding oom_lock. 1616 */ 1617 ret = task_is_dying() || out_of_memory(&oc); 1618 1619 unlock: 1620 mutex_unlock(&oom_lock); 1621 return ret; 1622 } 1623 1624 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1625 pg_data_t *pgdat, 1626 gfp_t gfp_mask, 1627 unsigned long *total_scanned) 1628 { 1629 struct mem_cgroup *victim = NULL; 1630 int total = 0; 1631 int loop = 0; 1632 unsigned long excess; 1633 unsigned long nr_scanned; 1634 struct mem_cgroup_reclaim_cookie reclaim = { 1635 .pgdat = pgdat, 1636 }; 1637 1638 excess = soft_limit_excess(root_memcg); 1639 1640 while (1) { 1641 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1642 if (!victim) { 1643 loop++; 1644 if (loop >= 2) { 1645 /* 1646 * If we have not been able to reclaim 1647 * anything, it might because there are 1648 * no reclaimable pages under this hierarchy 1649 */ 1650 if (!total) 1651 break; 1652 /* 1653 * We want to do more targeted reclaim. 1654 * excess >> 2 is not to excessive so as to 1655 * reclaim too much, nor too less that we keep 1656 * coming back to reclaim from this cgroup 1657 */ 1658 if (total >= (excess >> 2) || 1659 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1660 break; 1661 } 1662 continue; 1663 } 1664 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1665 pgdat, &nr_scanned); 1666 *total_scanned += nr_scanned; 1667 if (!soft_limit_excess(root_memcg)) 1668 break; 1669 } 1670 mem_cgroup_iter_break(root_memcg, victim); 1671 return total; 1672 } 1673 1674 #ifdef CONFIG_LOCKDEP 1675 static struct lockdep_map memcg_oom_lock_dep_map = { 1676 .name = "memcg_oom_lock", 1677 }; 1678 #endif 1679 1680 static DEFINE_SPINLOCK(memcg_oom_lock); 1681 1682 /* 1683 * Check OOM-Killer is already running under our hierarchy. 1684 * If someone is running, return false. 1685 */ 1686 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1687 { 1688 struct mem_cgroup *iter, *failed = NULL; 1689 1690 spin_lock(&memcg_oom_lock); 1691 1692 for_each_mem_cgroup_tree(iter, memcg) { 1693 if (iter->oom_lock) { 1694 /* 1695 * this subtree of our hierarchy is already locked 1696 * so we cannot give a lock. 1697 */ 1698 failed = iter; 1699 mem_cgroup_iter_break(memcg, iter); 1700 break; 1701 } else 1702 iter->oom_lock = true; 1703 } 1704 1705 if (failed) { 1706 /* 1707 * OK, we failed to lock the whole subtree so we have 1708 * to clean up what we set up to the failing subtree 1709 */ 1710 for_each_mem_cgroup_tree(iter, memcg) { 1711 if (iter == failed) { 1712 mem_cgroup_iter_break(memcg, iter); 1713 break; 1714 } 1715 iter->oom_lock = false; 1716 } 1717 } else 1718 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1719 1720 spin_unlock(&memcg_oom_lock); 1721 1722 return !failed; 1723 } 1724 1725 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1726 { 1727 struct mem_cgroup *iter; 1728 1729 spin_lock(&memcg_oom_lock); 1730 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1731 for_each_mem_cgroup_tree(iter, memcg) 1732 iter->oom_lock = false; 1733 spin_unlock(&memcg_oom_lock); 1734 } 1735 1736 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1737 { 1738 struct mem_cgroup *iter; 1739 1740 spin_lock(&memcg_oom_lock); 1741 for_each_mem_cgroup_tree(iter, memcg) 1742 iter->under_oom++; 1743 spin_unlock(&memcg_oom_lock); 1744 } 1745 1746 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1747 { 1748 struct mem_cgroup *iter; 1749 1750 /* 1751 * Be careful about under_oom underflows because a child memcg 1752 * could have been added after mem_cgroup_mark_under_oom. 1753 */ 1754 spin_lock(&memcg_oom_lock); 1755 for_each_mem_cgroup_tree(iter, memcg) 1756 if (iter->under_oom > 0) 1757 iter->under_oom--; 1758 spin_unlock(&memcg_oom_lock); 1759 } 1760 1761 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1762 1763 struct oom_wait_info { 1764 struct mem_cgroup *memcg; 1765 wait_queue_entry_t wait; 1766 }; 1767 1768 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1769 unsigned mode, int sync, void *arg) 1770 { 1771 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1772 struct mem_cgroup *oom_wait_memcg; 1773 struct oom_wait_info *oom_wait_info; 1774 1775 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1776 oom_wait_memcg = oom_wait_info->memcg; 1777 1778 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1779 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1780 return 0; 1781 return autoremove_wake_function(wait, mode, sync, arg); 1782 } 1783 1784 static void memcg_oom_recover(struct mem_cgroup *memcg) 1785 { 1786 /* 1787 * For the following lockless ->under_oom test, the only required 1788 * guarantee is that it must see the state asserted by an OOM when 1789 * this function is called as a result of userland actions 1790 * triggered by the notification of the OOM. This is trivially 1791 * achieved by invoking mem_cgroup_mark_under_oom() before 1792 * triggering notification. 1793 */ 1794 if (memcg && memcg->under_oom) 1795 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1796 } 1797 1798 enum oom_status { 1799 OOM_SUCCESS, 1800 OOM_FAILED, 1801 OOM_ASYNC, 1802 OOM_SKIPPED 1803 }; 1804 1805 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1806 { 1807 enum oom_status ret; 1808 bool locked; 1809 1810 if (order > PAGE_ALLOC_COSTLY_ORDER) 1811 return OOM_SKIPPED; 1812 1813 memcg_memory_event(memcg, MEMCG_OOM); 1814 1815 /* 1816 * We are in the middle of the charge context here, so we 1817 * don't want to block when potentially sitting on a callstack 1818 * that holds all kinds of filesystem and mm locks. 1819 * 1820 * cgroup1 allows disabling the OOM killer and waiting for outside 1821 * handling until the charge can succeed; remember the context and put 1822 * the task to sleep at the end of the page fault when all locks are 1823 * released. 1824 * 1825 * On the other hand, in-kernel OOM killer allows for an async victim 1826 * memory reclaim (oom_reaper) and that means that we are not solely 1827 * relying on the oom victim to make a forward progress and we can 1828 * invoke the oom killer here. 1829 * 1830 * Please note that mem_cgroup_out_of_memory might fail to find a 1831 * victim and then we have to bail out from the charge path. 1832 */ 1833 if (memcg->oom_kill_disable) { 1834 if (!current->in_user_fault) 1835 return OOM_SKIPPED; 1836 css_get(&memcg->css); 1837 current->memcg_in_oom = memcg; 1838 current->memcg_oom_gfp_mask = mask; 1839 current->memcg_oom_order = order; 1840 1841 return OOM_ASYNC; 1842 } 1843 1844 mem_cgroup_mark_under_oom(memcg); 1845 1846 locked = mem_cgroup_oom_trylock(memcg); 1847 1848 if (locked) 1849 mem_cgroup_oom_notify(memcg); 1850 1851 mem_cgroup_unmark_under_oom(memcg); 1852 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1853 ret = OOM_SUCCESS; 1854 else 1855 ret = OOM_FAILED; 1856 1857 if (locked) 1858 mem_cgroup_oom_unlock(memcg); 1859 1860 return ret; 1861 } 1862 1863 /** 1864 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1865 * @handle: actually kill/wait or just clean up the OOM state 1866 * 1867 * This has to be called at the end of a page fault if the memcg OOM 1868 * handler was enabled. 1869 * 1870 * Memcg supports userspace OOM handling where failed allocations must 1871 * sleep on a waitqueue until the userspace task resolves the 1872 * situation. Sleeping directly in the charge context with all kinds 1873 * of locks held is not a good idea, instead we remember an OOM state 1874 * in the task and mem_cgroup_oom_synchronize() has to be called at 1875 * the end of the page fault to complete the OOM handling. 1876 * 1877 * Returns %true if an ongoing memcg OOM situation was detected and 1878 * completed, %false otherwise. 1879 */ 1880 bool mem_cgroup_oom_synchronize(bool handle) 1881 { 1882 struct mem_cgroup *memcg = current->memcg_in_oom; 1883 struct oom_wait_info owait; 1884 bool locked; 1885 1886 /* OOM is global, do not handle */ 1887 if (!memcg) 1888 return false; 1889 1890 if (!handle) 1891 goto cleanup; 1892 1893 owait.memcg = memcg; 1894 owait.wait.flags = 0; 1895 owait.wait.func = memcg_oom_wake_function; 1896 owait.wait.private = current; 1897 INIT_LIST_HEAD(&owait.wait.entry); 1898 1899 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1900 mem_cgroup_mark_under_oom(memcg); 1901 1902 locked = mem_cgroup_oom_trylock(memcg); 1903 1904 if (locked) 1905 mem_cgroup_oom_notify(memcg); 1906 1907 if (locked && !memcg->oom_kill_disable) { 1908 mem_cgroup_unmark_under_oom(memcg); 1909 finish_wait(&memcg_oom_waitq, &owait.wait); 1910 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1911 current->memcg_oom_order); 1912 } else { 1913 schedule(); 1914 mem_cgroup_unmark_under_oom(memcg); 1915 finish_wait(&memcg_oom_waitq, &owait.wait); 1916 } 1917 1918 if (locked) { 1919 mem_cgroup_oom_unlock(memcg); 1920 /* 1921 * There is no guarantee that an OOM-lock contender 1922 * sees the wakeups triggered by the OOM kill 1923 * uncharges. Wake any sleepers explicitly. 1924 */ 1925 memcg_oom_recover(memcg); 1926 } 1927 cleanup: 1928 current->memcg_in_oom = NULL; 1929 css_put(&memcg->css); 1930 return true; 1931 } 1932 1933 /** 1934 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1935 * @victim: task to be killed by the OOM killer 1936 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1937 * 1938 * Returns a pointer to a memory cgroup, which has to be cleaned up 1939 * by killing all belonging OOM-killable tasks. 1940 * 1941 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1942 */ 1943 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1944 struct mem_cgroup *oom_domain) 1945 { 1946 struct mem_cgroup *oom_group = NULL; 1947 struct mem_cgroup *memcg; 1948 1949 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1950 return NULL; 1951 1952 if (!oom_domain) 1953 oom_domain = root_mem_cgroup; 1954 1955 rcu_read_lock(); 1956 1957 memcg = mem_cgroup_from_task(victim); 1958 if (memcg == root_mem_cgroup) 1959 goto out; 1960 1961 /* 1962 * If the victim task has been asynchronously moved to a different 1963 * memory cgroup, we might end up killing tasks outside oom_domain. 1964 * In this case it's better to ignore memory.group.oom. 1965 */ 1966 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1967 goto out; 1968 1969 /* 1970 * Traverse the memory cgroup hierarchy from the victim task's 1971 * cgroup up to the OOMing cgroup (or root) to find the 1972 * highest-level memory cgroup with oom.group set. 1973 */ 1974 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1975 if (memcg->oom_group) 1976 oom_group = memcg; 1977 1978 if (memcg == oom_domain) 1979 break; 1980 } 1981 1982 if (oom_group) 1983 css_get(&oom_group->css); 1984 out: 1985 rcu_read_unlock(); 1986 1987 return oom_group; 1988 } 1989 1990 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1991 { 1992 pr_info("Tasks in "); 1993 pr_cont_cgroup_path(memcg->css.cgroup); 1994 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1995 } 1996 1997 /** 1998 * folio_memcg_lock - Bind a folio to its memcg. 1999 * @folio: The folio. 2000 * 2001 * This function prevents unlocked LRU folios from being moved to 2002 * another cgroup. 2003 * 2004 * It ensures lifetime of the bound memcg. The caller is responsible 2005 * for the lifetime of the folio. 2006 */ 2007 void folio_memcg_lock(struct folio *folio) 2008 { 2009 struct mem_cgroup *memcg; 2010 unsigned long flags; 2011 2012 /* 2013 * The RCU lock is held throughout the transaction. The fast 2014 * path can get away without acquiring the memcg->move_lock 2015 * because page moving starts with an RCU grace period. 2016 */ 2017 rcu_read_lock(); 2018 2019 if (mem_cgroup_disabled()) 2020 return; 2021 again: 2022 memcg = folio_memcg(folio); 2023 if (unlikely(!memcg)) 2024 return; 2025 2026 #ifdef CONFIG_PROVE_LOCKING 2027 local_irq_save(flags); 2028 might_lock(&memcg->move_lock); 2029 local_irq_restore(flags); 2030 #endif 2031 2032 if (atomic_read(&memcg->moving_account) <= 0) 2033 return; 2034 2035 spin_lock_irqsave(&memcg->move_lock, flags); 2036 if (memcg != folio_memcg(folio)) { 2037 spin_unlock_irqrestore(&memcg->move_lock, flags); 2038 goto again; 2039 } 2040 2041 /* 2042 * When charge migration first begins, we can have multiple 2043 * critical sections holding the fast-path RCU lock and one 2044 * holding the slowpath move_lock. Track the task who has the 2045 * move_lock for unlock_page_memcg(). 2046 */ 2047 memcg->move_lock_task = current; 2048 memcg->move_lock_flags = flags; 2049 } 2050 2051 void lock_page_memcg(struct page *page) 2052 { 2053 folio_memcg_lock(page_folio(page)); 2054 } 2055 2056 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2057 { 2058 if (memcg && memcg->move_lock_task == current) { 2059 unsigned long flags = memcg->move_lock_flags; 2060 2061 memcg->move_lock_task = NULL; 2062 memcg->move_lock_flags = 0; 2063 2064 spin_unlock_irqrestore(&memcg->move_lock, flags); 2065 } 2066 2067 rcu_read_unlock(); 2068 } 2069 2070 /** 2071 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2072 * @folio: The folio. 2073 * 2074 * This releases the binding created by folio_memcg_lock(). This does 2075 * not change the accounting of this folio to its memcg, but it does 2076 * permit others to change it. 2077 */ 2078 void folio_memcg_unlock(struct folio *folio) 2079 { 2080 __folio_memcg_unlock(folio_memcg(folio)); 2081 } 2082 2083 void unlock_page_memcg(struct page *page) 2084 { 2085 folio_memcg_unlock(page_folio(page)); 2086 } 2087 2088 struct obj_stock { 2089 #ifdef CONFIG_MEMCG_KMEM 2090 struct obj_cgroup *cached_objcg; 2091 struct pglist_data *cached_pgdat; 2092 unsigned int nr_bytes; 2093 int nr_slab_reclaimable_b; 2094 int nr_slab_unreclaimable_b; 2095 #else 2096 int dummy[0]; 2097 #endif 2098 }; 2099 2100 struct memcg_stock_pcp { 2101 struct mem_cgroup *cached; /* this never be root cgroup */ 2102 unsigned int nr_pages; 2103 struct obj_stock task_obj; 2104 struct obj_stock irq_obj; 2105 2106 struct work_struct work; 2107 unsigned long flags; 2108 #define FLUSHING_CACHED_CHARGE 0 2109 }; 2110 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2111 static DEFINE_MUTEX(percpu_charge_mutex); 2112 2113 #ifdef CONFIG_MEMCG_KMEM 2114 static void drain_obj_stock(struct obj_stock *stock); 2115 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2116 struct mem_cgroup *root_memcg); 2117 2118 #else 2119 static inline void drain_obj_stock(struct obj_stock *stock) 2120 { 2121 } 2122 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2123 struct mem_cgroup *root_memcg) 2124 { 2125 return false; 2126 } 2127 #endif 2128 2129 /** 2130 * consume_stock: Try to consume stocked charge on this cpu. 2131 * @memcg: memcg to consume from. 2132 * @nr_pages: how many pages to charge. 2133 * 2134 * The charges will only happen if @memcg matches the current cpu's memcg 2135 * stock, and at least @nr_pages are available in that stock. Failure to 2136 * service an allocation will refill the stock. 2137 * 2138 * returns true if successful, false otherwise. 2139 */ 2140 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2141 { 2142 struct memcg_stock_pcp *stock; 2143 unsigned long flags; 2144 bool ret = false; 2145 2146 if (nr_pages > MEMCG_CHARGE_BATCH) 2147 return ret; 2148 2149 local_irq_save(flags); 2150 2151 stock = this_cpu_ptr(&memcg_stock); 2152 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2153 stock->nr_pages -= nr_pages; 2154 ret = true; 2155 } 2156 2157 local_irq_restore(flags); 2158 2159 return ret; 2160 } 2161 2162 /* 2163 * Returns stocks cached in percpu and reset cached information. 2164 */ 2165 static void drain_stock(struct memcg_stock_pcp *stock) 2166 { 2167 struct mem_cgroup *old = stock->cached; 2168 2169 if (!old) 2170 return; 2171 2172 if (stock->nr_pages) { 2173 page_counter_uncharge(&old->memory, stock->nr_pages); 2174 if (do_memsw_account()) 2175 page_counter_uncharge(&old->memsw, stock->nr_pages); 2176 stock->nr_pages = 0; 2177 } 2178 2179 css_put(&old->css); 2180 stock->cached = NULL; 2181 } 2182 2183 static void drain_local_stock(struct work_struct *dummy) 2184 { 2185 struct memcg_stock_pcp *stock; 2186 unsigned long flags; 2187 2188 /* 2189 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2190 * drain_stock races is that we always operate on local CPU stock 2191 * here with IRQ disabled 2192 */ 2193 local_irq_save(flags); 2194 2195 stock = this_cpu_ptr(&memcg_stock); 2196 drain_obj_stock(&stock->irq_obj); 2197 if (in_task()) 2198 drain_obj_stock(&stock->task_obj); 2199 drain_stock(stock); 2200 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2201 2202 local_irq_restore(flags); 2203 } 2204 2205 /* 2206 * Cache charges(val) to local per_cpu area. 2207 * This will be consumed by consume_stock() function, later. 2208 */ 2209 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2210 { 2211 struct memcg_stock_pcp *stock; 2212 unsigned long flags; 2213 2214 local_irq_save(flags); 2215 2216 stock = this_cpu_ptr(&memcg_stock); 2217 if (stock->cached != memcg) { /* reset if necessary */ 2218 drain_stock(stock); 2219 css_get(&memcg->css); 2220 stock->cached = memcg; 2221 } 2222 stock->nr_pages += nr_pages; 2223 2224 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2225 drain_stock(stock); 2226 2227 local_irq_restore(flags); 2228 } 2229 2230 /* 2231 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2232 * of the hierarchy under it. 2233 */ 2234 static void drain_all_stock(struct mem_cgroup *root_memcg) 2235 { 2236 int cpu, curcpu; 2237 2238 /* If someone's already draining, avoid adding running more workers. */ 2239 if (!mutex_trylock(&percpu_charge_mutex)) 2240 return; 2241 /* 2242 * Notify other cpus that system-wide "drain" is running 2243 * We do not care about races with the cpu hotplug because cpu down 2244 * as well as workers from this path always operate on the local 2245 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2246 */ 2247 curcpu = get_cpu(); 2248 for_each_online_cpu(cpu) { 2249 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2250 struct mem_cgroup *memcg; 2251 bool flush = false; 2252 2253 rcu_read_lock(); 2254 memcg = stock->cached; 2255 if (memcg && stock->nr_pages && 2256 mem_cgroup_is_descendant(memcg, root_memcg)) 2257 flush = true; 2258 else if (obj_stock_flush_required(stock, root_memcg)) 2259 flush = true; 2260 rcu_read_unlock(); 2261 2262 if (flush && 2263 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2264 if (cpu == curcpu) 2265 drain_local_stock(&stock->work); 2266 else 2267 schedule_work_on(cpu, &stock->work); 2268 } 2269 } 2270 put_cpu(); 2271 mutex_unlock(&percpu_charge_mutex); 2272 } 2273 2274 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2275 { 2276 struct memcg_stock_pcp *stock; 2277 2278 stock = &per_cpu(memcg_stock, cpu); 2279 drain_stock(stock); 2280 2281 return 0; 2282 } 2283 2284 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2285 unsigned int nr_pages, 2286 gfp_t gfp_mask) 2287 { 2288 unsigned long nr_reclaimed = 0; 2289 2290 do { 2291 unsigned long pflags; 2292 2293 if (page_counter_read(&memcg->memory) <= 2294 READ_ONCE(memcg->memory.high)) 2295 continue; 2296 2297 memcg_memory_event(memcg, MEMCG_HIGH); 2298 2299 psi_memstall_enter(&pflags); 2300 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2301 gfp_mask, true); 2302 psi_memstall_leave(&pflags); 2303 } while ((memcg = parent_mem_cgroup(memcg)) && 2304 !mem_cgroup_is_root(memcg)); 2305 2306 return nr_reclaimed; 2307 } 2308 2309 static void high_work_func(struct work_struct *work) 2310 { 2311 struct mem_cgroup *memcg; 2312 2313 memcg = container_of(work, struct mem_cgroup, high_work); 2314 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2315 } 2316 2317 /* 2318 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2319 * enough to still cause a significant slowdown in most cases, while still 2320 * allowing diagnostics and tracing to proceed without becoming stuck. 2321 */ 2322 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2323 2324 /* 2325 * When calculating the delay, we use these either side of the exponentiation to 2326 * maintain precision and scale to a reasonable number of jiffies (see the table 2327 * below. 2328 * 2329 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2330 * overage ratio to a delay. 2331 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2332 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2333 * to produce a reasonable delay curve. 2334 * 2335 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2336 * reasonable delay curve compared to precision-adjusted overage, not 2337 * penalising heavily at first, but still making sure that growth beyond the 2338 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2339 * example, with a high of 100 megabytes: 2340 * 2341 * +-------+------------------------+ 2342 * | usage | time to allocate in ms | 2343 * +-------+------------------------+ 2344 * | 100M | 0 | 2345 * | 101M | 6 | 2346 * | 102M | 25 | 2347 * | 103M | 57 | 2348 * | 104M | 102 | 2349 * | 105M | 159 | 2350 * | 106M | 230 | 2351 * | 107M | 313 | 2352 * | 108M | 409 | 2353 * | 109M | 518 | 2354 * | 110M | 639 | 2355 * | 111M | 774 | 2356 * | 112M | 921 | 2357 * | 113M | 1081 | 2358 * | 114M | 1254 | 2359 * | 115M | 1439 | 2360 * | 116M | 1638 | 2361 * | 117M | 1849 | 2362 * | 118M | 2000 | 2363 * | 119M | 2000 | 2364 * | 120M | 2000 | 2365 * +-------+------------------------+ 2366 */ 2367 #define MEMCG_DELAY_PRECISION_SHIFT 20 2368 #define MEMCG_DELAY_SCALING_SHIFT 14 2369 2370 static u64 calculate_overage(unsigned long usage, unsigned long high) 2371 { 2372 u64 overage; 2373 2374 if (usage <= high) 2375 return 0; 2376 2377 /* 2378 * Prevent division by 0 in overage calculation by acting as if 2379 * it was a threshold of 1 page 2380 */ 2381 high = max(high, 1UL); 2382 2383 overage = usage - high; 2384 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2385 return div64_u64(overage, high); 2386 } 2387 2388 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2389 { 2390 u64 overage, max_overage = 0; 2391 2392 do { 2393 overage = calculate_overage(page_counter_read(&memcg->memory), 2394 READ_ONCE(memcg->memory.high)); 2395 max_overage = max(overage, max_overage); 2396 } while ((memcg = parent_mem_cgroup(memcg)) && 2397 !mem_cgroup_is_root(memcg)); 2398 2399 return max_overage; 2400 } 2401 2402 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2403 { 2404 u64 overage, max_overage = 0; 2405 2406 do { 2407 overage = calculate_overage(page_counter_read(&memcg->swap), 2408 READ_ONCE(memcg->swap.high)); 2409 if (overage) 2410 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2411 max_overage = max(overage, max_overage); 2412 } while ((memcg = parent_mem_cgroup(memcg)) && 2413 !mem_cgroup_is_root(memcg)); 2414 2415 return max_overage; 2416 } 2417 2418 /* 2419 * Get the number of jiffies that we should penalise a mischievous cgroup which 2420 * is exceeding its memory.high by checking both it and its ancestors. 2421 */ 2422 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2423 unsigned int nr_pages, 2424 u64 max_overage) 2425 { 2426 unsigned long penalty_jiffies; 2427 2428 if (!max_overage) 2429 return 0; 2430 2431 /* 2432 * We use overage compared to memory.high to calculate the number of 2433 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2434 * fairly lenient on small overages, and increasingly harsh when the 2435 * memcg in question makes it clear that it has no intention of stopping 2436 * its crazy behaviour, so we exponentially increase the delay based on 2437 * overage amount. 2438 */ 2439 penalty_jiffies = max_overage * max_overage * HZ; 2440 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2441 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2442 2443 /* 2444 * Factor in the task's own contribution to the overage, such that four 2445 * N-sized allocations are throttled approximately the same as one 2446 * 4N-sized allocation. 2447 * 2448 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2449 * larger the current charge patch is than that. 2450 */ 2451 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2452 } 2453 2454 /* 2455 * Scheduled by try_charge() to be executed from the userland return path 2456 * and reclaims memory over the high limit. 2457 */ 2458 void mem_cgroup_handle_over_high(void) 2459 { 2460 unsigned long penalty_jiffies; 2461 unsigned long pflags; 2462 unsigned long nr_reclaimed; 2463 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2464 int nr_retries = MAX_RECLAIM_RETRIES; 2465 struct mem_cgroup *memcg; 2466 bool in_retry = false; 2467 2468 if (likely(!nr_pages)) 2469 return; 2470 2471 memcg = get_mem_cgroup_from_mm(current->mm); 2472 current->memcg_nr_pages_over_high = 0; 2473 2474 retry_reclaim: 2475 /* 2476 * The allocating task should reclaim at least the batch size, but for 2477 * subsequent retries we only want to do what's necessary to prevent oom 2478 * or breaching resource isolation. 2479 * 2480 * This is distinct from memory.max or page allocator behaviour because 2481 * memory.high is currently batched, whereas memory.max and the page 2482 * allocator run every time an allocation is made. 2483 */ 2484 nr_reclaimed = reclaim_high(memcg, 2485 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2486 GFP_KERNEL); 2487 2488 /* 2489 * memory.high is breached and reclaim is unable to keep up. Throttle 2490 * allocators proactively to slow down excessive growth. 2491 */ 2492 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2493 mem_find_max_overage(memcg)); 2494 2495 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2496 swap_find_max_overage(memcg)); 2497 2498 /* 2499 * Clamp the max delay per usermode return so as to still keep the 2500 * application moving forwards and also permit diagnostics, albeit 2501 * extremely slowly. 2502 */ 2503 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2504 2505 /* 2506 * Don't sleep if the amount of jiffies this memcg owes us is so low 2507 * that it's not even worth doing, in an attempt to be nice to those who 2508 * go only a small amount over their memory.high value and maybe haven't 2509 * been aggressively reclaimed enough yet. 2510 */ 2511 if (penalty_jiffies <= HZ / 100) 2512 goto out; 2513 2514 /* 2515 * If reclaim is making forward progress but we're still over 2516 * memory.high, we want to encourage that rather than doing allocator 2517 * throttling. 2518 */ 2519 if (nr_reclaimed || nr_retries--) { 2520 in_retry = true; 2521 goto retry_reclaim; 2522 } 2523 2524 /* 2525 * If we exit early, we're guaranteed to die (since 2526 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2527 * need to account for any ill-begotten jiffies to pay them off later. 2528 */ 2529 psi_memstall_enter(&pflags); 2530 schedule_timeout_killable(penalty_jiffies); 2531 psi_memstall_leave(&pflags); 2532 2533 out: 2534 css_put(&memcg->css); 2535 } 2536 2537 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2538 unsigned int nr_pages) 2539 { 2540 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2541 int nr_retries = MAX_RECLAIM_RETRIES; 2542 struct mem_cgroup *mem_over_limit; 2543 struct page_counter *counter; 2544 enum oom_status oom_status; 2545 unsigned long nr_reclaimed; 2546 bool passed_oom = false; 2547 bool may_swap = true; 2548 bool drained = false; 2549 unsigned long pflags; 2550 2551 retry: 2552 if (consume_stock(memcg, nr_pages)) 2553 return 0; 2554 2555 if (!do_memsw_account() || 2556 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2557 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2558 goto done_restock; 2559 if (do_memsw_account()) 2560 page_counter_uncharge(&memcg->memsw, batch); 2561 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2562 } else { 2563 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2564 may_swap = false; 2565 } 2566 2567 if (batch > nr_pages) { 2568 batch = nr_pages; 2569 goto retry; 2570 } 2571 2572 /* 2573 * Memcg doesn't have a dedicated reserve for atomic 2574 * allocations. But like the global atomic pool, we need to 2575 * put the burden of reclaim on regular allocation requests 2576 * and let these go through as privileged allocations. 2577 */ 2578 if (gfp_mask & __GFP_ATOMIC) 2579 goto force; 2580 2581 /* 2582 * Prevent unbounded recursion when reclaim operations need to 2583 * allocate memory. This might exceed the limits temporarily, 2584 * but we prefer facilitating memory reclaim and getting back 2585 * under the limit over triggering OOM kills in these cases. 2586 */ 2587 if (unlikely(current->flags & PF_MEMALLOC)) 2588 goto force; 2589 2590 if (unlikely(task_in_memcg_oom(current))) 2591 goto nomem; 2592 2593 if (!gfpflags_allow_blocking(gfp_mask)) 2594 goto nomem; 2595 2596 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2597 2598 psi_memstall_enter(&pflags); 2599 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2600 gfp_mask, may_swap); 2601 psi_memstall_leave(&pflags); 2602 2603 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2604 goto retry; 2605 2606 if (!drained) { 2607 drain_all_stock(mem_over_limit); 2608 drained = true; 2609 goto retry; 2610 } 2611 2612 if (gfp_mask & __GFP_NORETRY) 2613 goto nomem; 2614 /* 2615 * Even though the limit is exceeded at this point, reclaim 2616 * may have been able to free some pages. Retry the charge 2617 * before killing the task. 2618 * 2619 * Only for regular pages, though: huge pages are rather 2620 * unlikely to succeed so close to the limit, and we fall back 2621 * to regular pages anyway in case of failure. 2622 */ 2623 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2624 goto retry; 2625 /* 2626 * At task move, charge accounts can be doubly counted. So, it's 2627 * better to wait until the end of task_move if something is going on. 2628 */ 2629 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2630 goto retry; 2631 2632 if (nr_retries--) 2633 goto retry; 2634 2635 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2636 goto nomem; 2637 2638 /* Avoid endless loop for tasks bypassed by the oom killer */ 2639 if (passed_oom && task_is_dying()) 2640 goto nomem; 2641 2642 /* 2643 * keep retrying as long as the memcg oom killer is able to make 2644 * a forward progress or bypass the charge if the oom killer 2645 * couldn't make any progress. 2646 */ 2647 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2648 get_order(nr_pages * PAGE_SIZE)); 2649 if (oom_status == OOM_SUCCESS) { 2650 passed_oom = true; 2651 nr_retries = MAX_RECLAIM_RETRIES; 2652 goto retry; 2653 } 2654 nomem: 2655 if (!(gfp_mask & __GFP_NOFAIL)) 2656 return -ENOMEM; 2657 force: 2658 /* 2659 * The allocation either can't fail or will lead to more memory 2660 * being freed very soon. Allow memory usage go over the limit 2661 * temporarily by force charging it. 2662 */ 2663 page_counter_charge(&memcg->memory, nr_pages); 2664 if (do_memsw_account()) 2665 page_counter_charge(&memcg->memsw, nr_pages); 2666 2667 return 0; 2668 2669 done_restock: 2670 if (batch > nr_pages) 2671 refill_stock(memcg, batch - nr_pages); 2672 2673 /* 2674 * If the hierarchy is above the normal consumption range, schedule 2675 * reclaim on returning to userland. We can perform reclaim here 2676 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2677 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2678 * not recorded as it most likely matches current's and won't 2679 * change in the meantime. As high limit is checked again before 2680 * reclaim, the cost of mismatch is negligible. 2681 */ 2682 do { 2683 bool mem_high, swap_high; 2684 2685 mem_high = page_counter_read(&memcg->memory) > 2686 READ_ONCE(memcg->memory.high); 2687 swap_high = page_counter_read(&memcg->swap) > 2688 READ_ONCE(memcg->swap.high); 2689 2690 /* Don't bother a random interrupted task */ 2691 if (in_interrupt()) { 2692 if (mem_high) { 2693 schedule_work(&memcg->high_work); 2694 break; 2695 } 2696 continue; 2697 } 2698 2699 if (mem_high || swap_high) { 2700 /* 2701 * The allocating tasks in this cgroup will need to do 2702 * reclaim or be throttled to prevent further growth 2703 * of the memory or swap footprints. 2704 * 2705 * Target some best-effort fairness between the tasks, 2706 * and distribute reclaim work and delay penalties 2707 * based on how much each task is actually allocating. 2708 */ 2709 current->memcg_nr_pages_over_high += batch; 2710 set_notify_resume(current); 2711 break; 2712 } 2713 } while ((memcg = parent_mem_cgroup(memcg))); 2714 2715 return 0; 2716 } 2717 2718 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2719 unsigned int nr_pages) 2720 { 2721 if (mem_cgroup_is_root(memcg)) 2722 return 0; 2723 2724 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2725 } 2726 2727 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2728 { 2729 if (mem_cgroup_is_root(memcg)) 2730 return; 2731 2732 page_counter_uncharge(&memcg->memory, nr_pages); 2733 if (do_memsw_account()) 2734 page_counter_uncharge(&memcg->memsw, nr_pages); 2735 } 2736 2737 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2738 { 2739 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2740 /* 2741 * Any of the following ensures page's memcg stability: 2742 * 2743 * - the page lock 2744 * - LRU isolation 2745 * - lock_page_memcg() 2746 * - exclusive reference 2747 */ 2748 folio->memcg_data = (unsigned long)memcg; 2749 } 2750 2751 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 2752 { 2753 struct mem_cgroup *memcg; 2754 2755 rcu_read_lock(); 2756 retry: 2757 memcg = obj_cgroup_memcg(objcg); 2758 if (unlikely(!css_tryget(&memcg->css))) 2759 goto retry; 2760 rcu_read_unlock(); 2761 2762 return memcg; 2763 } 2764 2765 #ifdef CONFIG_MEMCG_KMEM 2766 /* 2767 * The allocated objcg pointers array is not accounted directly. 2768 * Moreover, it should not come from DMA buffer and is not readily 2769 * reclaimable. So those GFP bits should be masked off. 2770 */ 2771 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT) 2772 2773 /* 2774 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable 2775 * sequence used in this case to access content from object stock is slow. 2776 * To optimize for user context access, there are now two object stocks for 2777 * task context and interrupt context access respectively. 2778 * 2779 * The task context object stock can be accessed by disabling preemption only 2780 * which is cheap in non-preempt kernel. The interrupt context object stock 2781 * can only be accessed after disabling interrupt. User context code can 2782 * access interrupt object stock, but not vice versa. 2783 */ 2784 static inline struct obj_stock *get_obj_stock(unsigned long *pflags) 2785 { 2786 struct memcg_stock_pcp *stock; 2787 2788 if (likely(in_task())) { 2789 *pflags = 0UL; 2790 preempt_disable(); 2791 stock = this_cpu_ptr(&memcg_stock); 2792 return &stock->task_obj; 2793 } 2794 2795 local_irq_save(*pflags); 2796 stock = this_cpu_ptr(&memcg_stock); 2797 return &stock->irq_obj; 2798 } 2799 2800 static inline void put_obj_stock(unsigned long flags) 2801 { 2802 if (likely(in_task())) 2803 preempt_enable(); 2804 else 2805 local_irq_restore(flags); 2806 } 2807 2808 /* 2809 * mod_objcg_mlstate() may be called with irq enabled, so 2810 * mod_memcg_lruvec_state() should be used. 2811 */ 2812 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2813 struct pglist_data *pgdat, 2814 enum node_stat_item idx, int nr) 2815 { 2816 struct mem_cgroup *memcg; 2817 struct lruvec *lruvec; 2818 2819 rcu_read_lock(); 2820 memcg = obj_cgroup_memcg(objcg); 2821 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2822 mod_memcg_lruvec_state(lruvec, idx, nr); 2823 rcu_read_unlock(); 2824 } 2825 2826 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, 2827 gfp_t gfp, bool new_slab) 2828 { 2829 unsigned int objects = objs_per_slab(s, slab); 2830 unsigned long memcg_data; 2831 void *vec; 2832 2833 gfp &= ~OBJCGS_CLEAR_MASK; 2834 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2835 slab_nid(slab)); 2836 if (!vec) 2837 return -ENOMEM; 2838 2839 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 2840 if (new_slab) { 2841 /* 2842 * If the slab is brand new and nobody can yet access its 2843 * memcg_data, no synchronization is required and memcg_data can 2844 * be simply assigned. 2845 */ 2846 slab->memcg_data = memcg_data; 2847 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) { 2848 /* 2849 * If the slab is already in use, somebody can allocate and 2850 * assign obj_cgroups in parallel. In this case the existing 2851 * objcg vector should be reused. 2852 */ 2853 kfree(vec); 2854 return 0; 2855 } 2856 2857 kmemleak_not_leak(vec); 2858 return 0; 2859 } 2860 2861 /* 2862 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2863 * 2864 * A passed kernel object can be a slab object or a generic kernel page, so 2865 * different mechanisms for getting the memory cgroup pointer should be used. 2866 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2867 * can not know for sure how the kernel object is implemented. 2868 * mem_cgroup_from_obj() can be safely used in such cases. 2869 * 2870 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2871 * cgroup_mutex, etc. 2872 */ 2873 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2874 { 2875 struct folio *folio; 2876 2877 if (mem_cgroup_disabled()) 2878 return NULL; 2879 2880 folio = virt_to_folio(p); 2881 2882 /* 2883 * Slab objects are accounted individually, not per-page. 2884 * Memcg membership data for each individual object is saved in 2885 * slab->memcg_data. 2886 */ 2887 if (folio_test_slab(folio)) { 2888 struct obj_cgroup **objcgs; 2889 struct slab *slab; 2890 unsigned int off; 2891 2892 slab = folio_slab(folio); 2893 objcgs = slab_objcgs(slab); 2894 if (!objcgs) 2895 return NULL; 2896 2897 off = obj_to_index(slab->slab_cache, slab, p); 2898 if (objcgs[off]) 2899 return obj_cgroup_memcg(objcgs[off]); 2900 2901 return NULL; 2902 } 2903 2904 /* 2905 * page_memcg_check() is used here, because in theory we can encounter 2906 * a folio where the slab flag has been cleared already, but 2907 * slab->memcg_data has not been freed yet 2908 * page_memcg_check(page) will guarantee that a proper memory 2909 * cgroup pointer or NULL will be returned. 2910 */ 2911 return page_memcg_check(folio_page(folio, 0)); 2912 } 2913 2914 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 2915 { 2916 struct obj_cgroup *objcg = NULL; 2917 struct mem_cgroup *memcg; 2918 2919 if (memcg_kmem_bypass()) 2920 return NULL; 2921 2922 rcu_read_lock(); 2923 if (unlikely(active_memcg())) 2924 memcg = active_memcg(); 2925 else 2926 memcg = mem_cgroup_from_task(current); 2927 2928 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 2929 objcg = rcu_dereference(memcg->objcg); 2930 if (objcg && obj_cgroup_tryget(objcg)) 2931 break; 2932 objcg = NULL; 2933 } 2934 rcu_read_unlock(); 2935 2936 return objcg; 2937 } 2938 2939 static int memcg_alloc_cache_id(void) 2940 { 2941 int id, size; 2942 int err; 2943 2944 id = ida_simple_get(&memcg_cache_ida, 2945 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2946 if (id < 0) 2947 return id; 2948 2949 if (id < memcg_nr_cache_ids) 2950 return id; 2951 2952 /* 2953 * There's no space for the new id in memcg_caches arrays, 2954 * so we have to grow them. 2955 */ 2956 down_write(&memcg_cache_ids_sem); 2957 2958 size = 2 * (id + 1); 2959 if (size < MEMCG_CACHES_MIN_SIZE) 2960 size = MEMCG_CACHES_MIN_SIZE; 2961 else if (size > MEMCG_CACHES_MAX_SIZE) 2962 size = MEMCG_CACHES_MAX_SIZE; 2963 2964 err = memcg_update_all_list_lrus(size); 2965 if (!err) 2966 memcg_nr_cache_ids = size; 2967 2968 up_write(&memcg_cache_ids_sem); 2969 2970 if (err) { 2971 ida_simple_remove(&memcg_cache_ida, id); 2972 return err; 2973 } 2974 return id; 2975 } 2976 2977 static void memcg_free_cache_id(int id) 2978 { 2979 ida_simple_remove(&memcg_cache_ida, id); 2980 } 2981 2982 /* 2983 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2984 * @objcg: object cgroup to uncharge 2985 * @nr_pages: number of pages to uncharge 2986 */ 2987 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2988 unsigned int nr_pages) 2989 { 2990 struct mem_cgroup *memcg; 2991 2992 memcg = get_mem_cgroup_from_objcg(objcg); 2993 2994 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2995 page_counter_uncharge(&memcg->kmem, nr_pages); 2996 refill_stock(memcg, nr_pages); 2997 2998 css_put(&memcg->css); 2999 } 3000 3001 /* 3002 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 3003 * @objcg: object cgroup to charge 3004 * @gfp: reclaim mode 3005 * @nr_pages: number of pages to charge 3006 * 3007 * Returns 0 on success, an error code on failure. 3008 */ 3009 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 3010 unsigned int nr_pages) 3011 { 3012 struct mem_cgroup *memcg; 3013 int ret; 3014 3015 memcg = get_mem_cgroup_from_objcg(objcg); 3016 3017 ret = try_charge_memcg(memcg, gfp, nr_pages); 3018 if (ret) 3019 goto out; 3020 3021 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 3022 page_counter_charge(&memcg->kmem, nr_pages); 3023 out: 3024 css_put(&memcg->css); 3025 3026 return ret; 3027 } 3028 3029 /** 3030 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3031 * @page: page to charge 3032 * @gfp: reclaim mode 3033 * @order: allocation order 3034 * 3035 * Returns 0 on success, an error code on failure. 3036 */ 3037 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3038 { 3039 struct obj_cgroup *objcg; 3040 int ret = 0; 3041 3042 objcg = get_obj_cgroup_from_current(); 3043 if (objcg) { 3044 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3045 if (!ret) { 3046 page->memcg_data = (unsigned long)objcg | 3047 MEMCG_DATA_KMEM; 3048 return 0; 3049 } 3050 obj_cgroup_put(objcg); 3051 } 3052 return ret; 3053 } 3054 3055 /** 3056 * __memcg_kmem_uncharge_page: uncharge a kmem page 3057 * @page: page to uncharge 3058 * @order: allocation order 3059 */ 3060 void __memcg_kmem_uncharge_page(struct page *page, int order) 3061 { 3062 struct folio *folio = page_folio(page); 3063 struct obj_cgroup *objcg; 3064 unsigned int nr_pages = 1 << order; 3065 3066 if (!folio_memcg_kmem(folio)) 3067 return; 3068 3069 objcg = __folio_objcg(folio); 3070 obj_cgroup_uncharge_pages(objcg, nr_pages); 3071 folio->memcg_data = 0; 3072 obj_cgroup_put(objcg); 3073 } 3074 3075 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3076 enum node_stat_item idx, int nr) 3077 { 3078 unsigned long flags; 3079 struct obj_stock *stock = get_obj_stock(&flags); 3080 int *bytes; 3081 3082 /* 3083 * Save vmstat data in stock and skip vmstat array update unless 3084 * accumulating over a page of vmstat data or when pgdat or idx 3085 * changes. 3086 */ 3087 if (stock->cached_objcg != objcg) { 3088 drain_obj_stock(stock); 3089 obj_cgroup_get(objcg); 3090 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3091 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3092 stock->cached_objcg = objcg; 3093 stock->cached_pgdat = pgdat; 3094 } else if (stock->cached_pgdat != pgdat) { 3095 /* Flush the existing cached vmstat data */ 3096 struct pglist_data *oldpg = stock->cached_pgdat; 3097 3098 if (stock->nr_slab_reclaimable_b) { 3099 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3100 stock->nr_slab_reclaimable_b); 3101 stock->nr_slab_reclaimable_b = 0; 3102 } 3103 if (stock->nr_slab_unreclaimable_b) { 3104 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3105 stock->nr_slab_unreclaimable_b); 3106 stock->nr_slab_unreclaimable_b = 0; 3107 } 3108 stock->cached_pgdat = pgdat; 3109 } 3110 3111 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3112 : &stock->nr_slab_unreclaimable_b; 3113 /* 3114 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3115 * cached locally at least once before pushing it out. 3116 */ 3117 if (!*bytes) { 3118 *bytes = nr; 3119 nr = 0; 3120 } else { 3121 *bytes += nr; 3122 if (abs(*bytes) > PAGE_SIZE) { 3123 nr = *bytes; 3124 *bytes = 0; 3125 } else { 3126 nr = 0; 3127 } 3128 } 3129 if (nr) 3130 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3131 3132 put_obj_stock(flags); 3133 } 3134 3135 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3136 { 3137 unsigned long flags; 3138 struct obj_stock *stock = get_obj_stock(&flags); 3139 bool ret = false; 3140 3141 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3142 stock->nr_bytes -= nr_bytes; 3143 ret = true; 3144 } 3145 3146 put_obj_stock(flags); 3147 3148 return ret; 3149 } 3150 3151 static void drain_obj_stock(struct obj_stock *stock) 3152 { 3153 struct obj_cgroup *old = stock->cached_objcg; 3154 3155 if (!old) 3156 return; 3157 3158 if (stock->nr_bytes) { 3159 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3160 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3161 3162 if (nr_pages) 3163 obj_cgroup_uncharge_pages(old, nr_pages); 3164 3165 /* 3166 * The leftover is flushed to the centralized per-memcg value. 3167 * On the next attempt to refill obj stock it will be moved 3168 * to a per-cpu stock (probably, on an other CPU), see 3169 * refill_obj_stock(). 3170 * 3171 * How often it's flushed is a trade-off between the memory 3172 * limit enforcement accuracy and potential CPU contention, 3173 * so it might be changed in the future. 3174 */ 3175 atomic_add(nr_bytes, &old->nr_charged_bytes); 3176 stock->nr_bytes = 0; 3177 } 3178 3179 /* 3180 * Flush the vmstat data in current stock 3181 */ 3182 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3183 if (stock->nr_slab_reclaimable_b) { 3184 mod_objcg_mlstate(old, stock->cached_pgdat, 3185 NR_SLAB_RECLAIMABLE_B, 3186 stock->nr_slab_reclaimable_b); 3187 stock->nr_slab_reclaimable_b = 0; 3188 } 3189 if (stock->nr_slab_unreclaimable_b) { 3190 mod_objcg_mlstate(old, stock->cached_pgdat, 3191 NR_SLAB_UNRECLAIMABLE_B, 3192 stock->nr_slab_unreclaimable_b); 3193 stock->nr_slab_unreclaimable_b = 0; 3194 } 3195 stock->cached_pgdat = NULL; 3196 } 3197 3198 obj_cgroup_put(old); 3199 stock->cached_objcg = NULL; 3200 } 3201 3202 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3203 struct mem_cgroup *root_memcg) 3204 { 3205 struct mem_cgroup *memcg; 3206 3207 if (in_task() && stock->task_obj.cached_objcg) { 3208 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg); 3209 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3210 return true; 3211 } 3212 if (stock->irq_obj.cached_objcg) { 3213 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg); 3214 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3215 return true; 3216 } 3217 3218 return false; 3219 } 3220 3221 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3222 bool allow_uncharge) 3223 { 3224 unsigned long flags; 3225 struct obj_stock *stock = get_obj_stock(&flags); 3226 unsigned int nr_pages = 0; 3227 3228 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3229 drain_obj_stock(stock); 3230 obj_cgroup_get(objcg); 3231 stock->cached_objcg = objcg; 3232 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3233 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3234 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3235 } 3236 stock->nr_bytes += nr_bytes; 3237 3238 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3239 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3240 stock->nr_bytes &= (PAGE_SIZE - 1); 3241 } 3242 3243 put_obj_stock(flags); 3244 3245 if (nr_pages) 3246 obj_cgroup_uncharge_pages(objcg, nr_pages); 3247 } 3248 3249 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3250 { 3251 unsigned int nr_pages, nr_bytes; 3252 int ret; 3253 3254 if (consume_obj_stock(objcg, size)) 3255 return 0; 3256 3257 /* 3258 * In theory, objcg->nr_charged_bytes can have enough 3259 * pre-charged bytes to satisfy the allocation. However, 3260 * flushing objcg->nr_charged_bytes requires two atomic 3261 * operations, and objcg->nr_charged_bytes can't be big. 3262 * The shared objcg->nr_charged_bytes can also become a 3263 * performance bottleneck if all tasks of the same memcg are 3264 * trying to update it. So it's better to ignore it and try 3265 * grab some new pages. The stock's nr_bytes will be flushed to 3266 * objcg->nr_charged_bytes later on when objcg changes. 3267 * 3268 * The stock's nr_bytes may contain enough pre-charged bytes 3269 * to allow one less page from being charged, but we can't rely 3270 * on the pre-charged bytes not being changed outside of 3271 * consume_obj_stock() or refill_obj_stock(). So ignore those 3272 * pre-charged bytes as well when charging pages. To avoid a 3273 * page uncharge right after a page charge, we set the 3274 * allow_uncharge flag to false when calling refill_obj_stock() 3275 * to temporarily allow the pre-charged bytes to exceed the page 3276 * size limit. The maximum reachable value of the pre-charged 3277 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3278 * race. 3279 */ 3280 nr_pages = size >> PAGE_SHIFT; 3281 nr_bytes = size & (PAGE_SIZE - 1); 3282 3283 if (nr_bytes) 3284 nr_pages += 1; 3285 3286 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3287 if (!ret && nr_bytes) 3288 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3289 3290 return ret; 3291 } 3292 3293 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3294 { 3295 refill_obj_stock(objcg, size, true); 3296 } 3297 3298 #endif /* CONFIG_MEMCG_KMEM */ 3299 3300 /* 3301 * Because page_memcg(head) is not set on tails, set it now. 3302 */ 3303 void split_page_memcg(struct page *head, unsigned int nr) 3304 { 3305 struct folio *folio = page_folio(head); 3306 struct mem_cgroup *memcg = folio_memcg(folio); 3307 int i; 3308 3309 if (mem_cgroup_disabled() || !memcg) 3310 return; 3311 3312 for (i = 1; i < nr; i++) 3313 folio_page(folio, i)->memcg_data = folio->memcg_data; 3314 3315 if (folio_memcg_kmem(folio)) 3316 obj_cgroup_get_many(__folio_objcg(folio), nr - 1); 3317 else 3318 css_get_many(&memcg->css, nr - 1); 3319 } 3320 3321 #ifdef CONFIG_MEMCG_SWAP 3322 /** 3323 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3324 * @entry: swap entry to be moved 3325 * @from: mem_cgroup which the entry is moved from 3326 * @to: mem_cgroup which the entry is moved to 3327 * 3328 * It succeeds only when the swap_cgroup's record for this entry is the same 3329 * as the mem_cgroup's id of @from. 3330 * 3331 * Returns 0 on success, -EINVAL on failure. 3332 * 3333 * The caller must have charged to @to, IOW, called page_counter_charge() about 3334 * both res and memsw, and called css_get(). 3335 */ 3336 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3337 struct mem_cgroup *from, struct mem_cgroup *to) 3338 { 3339 unsigned short old_id, new_id; 3340 3341 old_id = mem_cgroup_id(from); 3342 new_id = mem_cgroup_id(to); 3343 3344 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3345 mod_memcg_state(from, MEMCG_SWAP, -1); 3346 mod_memcg_state(to, MEMCG_SWAP, 1); 3347 return 0; 3348 } 3349 return -EINVAL; 3350 } 3351 #else 3352 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3353 struct mem_cgroup *from, struct mem_cgroup *to) 3354 { 3355 return -EINVAL; 3356 } 3357 #endif 3358 3359 static DEFINE_MUTEX(memcg_max_mutex); 3360 3361 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3362 unsigned long max, bool memsw) 3363 { 3364 bool enlarge = false; 3365 bool drained = false; 3366 int ret; 3367 bool limits_invariant; 3368 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3369 3370 do { 3371 if (signal_pending(current)) { 3372 ret = -EINTR; 3373 break; 3374 } 3375 3376 mutex_lock(&memcg_max_mutex); 3377 /* 3378 * Make sure that the new limit (memsw or memory limit) doesn't 3379 * break our basic invariant rule memory.max <= memsw.max. 3380 */ 3381 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3382 max <= memcg->memsw.max; 3383 if (!limits_invariant) { 3384 mutex_unlock(&memcg_max_mutex); 3385 ret = -EINVAL; 3386 break; 3387 } 3388 if (max > counter->max) 3389 enlarge = true; 3390 ret = page_counter_set_max(counter, max); 3391 mutex_unlock(&memcg_max_mutex); 3392 3393 if (!ret) 3394 break; 3395 3396 if (!drained) { 3397 drain_all_stock(memcg); 3398 drained = true; 3399 continue; 3400 } 3401 3402 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3403 GFP_KERNEL, !memsw)) { 3404 ret = -EBUSY; 3405 break; 3406 } 3407 } while (true); 3408 3409 if (!ret && enlarge) 3410 memcg_oom_recover(memcg); 3411 3412 return ret; 3413 } 3414 3415 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3416 gfp_t gfp_mask, 3417 unsigned long *total_scanned) 3418 { 3419 unsigned long nr_reclaimed = 0; 3420 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3421 unsigned long reclaimed; 3422 int loop = 0; 3423 struct mem_cgroup_tree_per_node *mctz; 3424 unsigned long excess; 3425 unsigned long nr_scanned; 3426 3427 if (order > 0) 3428 return 0; 3429 3430 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3431 3432 /* 3433 * Do not even bother to check the largest node if the root 3434 * is empty. Do it lockless to prevent lock bouncing. Races 3435 * are acceptable as soft limit is best effort anyway. 3436 */ 3437 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3438 return 0; 3439 3440 /* 3441 * This loop can run a while, specially if mem_cgroup's continuously 3442 * keep exceeding their soft limit and putting the system under 3443 * pressure 3444 */ 3445 do { 3446 if (next_mz) 3447 mz = next_mz; 3448 else 3449 mz = mem_cgroup_largest_soft_limit_node(mctz); 3450 if (!mz) 3451 break; 3452 3453 nr_scanned = 0; 3454 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3455 gfp_mask, &nr_scanned); 3456 nr_reclaimed += reclaimed; 3457 *total_scanned += nr_scanned; 3458 spin_lock_irq(&mctz->lock); 3459 __mem_cgroup_remove_exceeded(mz, mctz); 3460 3461 /* 3462 * If we failed to reclaim anything from this memory cgroup 3463 * it is time to move on to the next cgroup 3464 */ 3465 next_mz = NULL; 3466 if (!reclaimed) 3467 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3468 3469 excess = soft_limit_excess(mz->memcg); 3470 /* 3471 * One school of thought says that we should not add 3472 * back the node to the tree if reclaim returns 0. 3473 * But our reclaim could return 0, simply because due 3474 * to priority we are exposing a smaller subset of 3475 * memory to reclaim from. Consider this as a longer 3476 * term TODO. 3477 */ 3478 /* If excess == 0, no tree ops */ 3479 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3480 spin_unlock_irq(&mctz->lock); 3481 css_put(&mz->memcg->css); 3482 loop++; 3483 /* 3484 * Could not reclaim anything and there are no more 3485 * mem cgroups to try or we seem to be looping without 3486 * reclaiming anything. 3487 */ 3488 if (!nr_reclaimed && 3489 (next_mz == NULL || 3490 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3491 break; 3492 } while (!nr_reclaimed); 3493 if (next_mz) 3494 css_put(&next_mz->memcg->css); 3495 return nr_reclaimed; 3496 } 3497 3498 /* 3499 * Reclaims as many pages from the given memcg as possible. 3500 * 3501 * Caller is responsible for holding css reference for memcg. 3502 */ 3503 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3504 { 3505 int nr_retries = MAX_RECLAIM_RETRIES; 3506 3507 /* we call try-to-free pages for make this cgroup empty */ 3508 lru_add_drain_all(); 3509 3510 drain_all_stock(memcg); 3511 3512 /* try to free all pages in this cgroup */ 3513 while (nr_retries && page_counter_read(&memcg->memory)) { 3514 if (signal_pending(current)) 3515 return -EINTR; 3516 3517 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true)) 3518 nr_retries--; 3519 } 3520 3521 return 0; 3522 } 3523 3524 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3525 char *buf, size_t nbytes, 3526 loff_t off) 3527 { 3528 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3529 3530 if (mem_cgroup_is_root(memcg)) 3531 return -EINVAL; 3532 return mem_cgroup_force_empty(memcg) ?: nbytes; 3533 } 3534 3535 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3536 struct cftype *cft) 3537 { 3538 return 1; 3539 } 3540 3541 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3542 struct cftype *cft, u64 val) 3543 { 3544 if (val == 1) 3545 return 0; 3546 3547 pr_warn_once("Non-hierarchical mode is deprecated. " 3548 "Please report your usecase to linux-mm@kvack.org if you " 3549 "depend on this functionality.\n"); 3550 3551 return -EINVAL; 3552 } 3553 3554 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3555 { 3556 unsigned long val; 3557 3558 if (mem_cgroup_is_root(memcg)) { 3559 mem_cgroup_flush_stats(); 3560 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3561 memcg_page_state(memcg, NR_ANON_MAPPED); 3562 if (swap) 3563 val += memcg_page_state(memcg, MEMCG_SWAP); 3564 } else { 3565 if (!swap) 3566 val = page_counter_read(&memcg->memory); 3567 else 3568 val = page_counter_read(&memcg->memsw); 3569 } 3570 return val; 3571 } 3572 3573 enum { 3574 RES_USAGE, 3575 RES_LIMIT, 3576 RES_MAX_USAGE, 3577 RES_FAILCNT, 3578 RES_SOFT_LIMIT, 3579 }; 3580 3581 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3582 struct cftype *cft) 3583 { 3584 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3585 struct page_counter *counter; 3586 3587 switch (MEMFILE_TYPE(cft->private)) { 3588 case _MEM: 3589 counter = &memcg->memory; 3590 break; 3591 case _MEMSWAP: 3592 counter = &memcg->memsw; 3593 break; 3594 case _KMEM: 3595 counter = &memcg->kmem; 3596 break; 3597 case _TCP: 3598 counter = &memcg->tcpmem; 3599 break; 3600 default: 3601 BUG(); 3602 } 3603 3604 switch (MEMFILE_ATTR(cft->private)) { 3605 case RES_USAGE: 3606 if (counter == &memcg->memory) 3607 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3608 if (counter == &memcg->memsw) 3609 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3610 return (u64)page_counter_read(counter) * PAGE_SIZE; 3611 case RES_LIMIT: 3612 return (u64)counter->max * PAGE_SIZE; 3613 case RES_MAX_USAGE: 3614 return (u64)counter->watermark * PAGE_SIZE; 3615 case RES_FAILCNT: 3616 return counter->failcnt; 3617 case RES_SOFT_LIMIT: 3618 return (u64)memcg->soft_limit * PAGE_SIZE; 3619 default: 3620 BUG(); 3621 } 3622 } 3623 3624 #ifdef CONFIG_MEMCG_KMEM 3625 static int memcg_online_kmem(struct mem_cgroup *memcg) 3626 { 3627 struct obj_cgroup *objcg; 3628 int memcg_id; 3629 3630 if (cgroup_memory_nokmem) 3631 return 0; 3632 3633 BUG_ON(memcg->kmemcg_id >= 0); 3634 3635 memcg_id = memcg_alloc_cache_id(); 3636 if (memcg_id < 0) 3637 return memcg_id; 3638 3639 objcg = obj_cgroup_alloc(); 3640 if (!objcg) { 3641 memcg_free_cache_id(memcg_id); 3642 return -ENOMEM; 3643 } 3644 objcg->memcg = memcg; 3645 rcu_assign_pointer(memcg->objcg, objcg); 3646 3647 static_branch_enable(&memcg_kmem_enabled_key); 3648 3649 memcg->kmemcg_id = memcg_id; 3650 3651 return 0; 3652 } 3653 3654 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3655 { 3656 struct mem_cgroup *parent; 3657 int kmemcg_id; 3658 3659 if (memcg->kmemcg_id == -1) 3660 return; 3661 3662 parent = parent_mem_cgroup(memcg); 3663 if (!parent) 3664 parent = root_mem_cgroup; 3665 3666 memcg_reparent_objcgs(memcg, parent); 3667 3668 kmemcg_id = memcg->kmemcg_id; 3669 BUG_ON(kmemcg_id < 0); 3670 3671 /* 3672 * After we have finished memcg_reparent_objcgs(), all list_lrus 3673 * corresponding to this cgroup are guaranteed to remain empty. 3674 * The ordering is imposed by list_lru_node->lock taken by 3675 * memcg_drain_all_list_lrus(). 3676 */ 3677 memcg_drain_all_list_lrus(kmemcg_id, parent); 3678 3679 memcg_free_cache_id(kmemcg_id); 3680 memcg->kmemcg_id = -1; 3681 } 3682 #else 3683 static int memcg_online_kmem(struct mem_cgroup *memcg) 3684 { 3685 return 0; 3686 } 3687 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3688 { 3689 } 3690 #endif /* CONFIG_MEMCG_KMEM */ 3691 3692 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3693 { 3694 int ret; 3695 3696 mutex_lock(&memcg_max_mutex); 3697 3698 ret = page_counter_set_max(&memcg->tcpmem, max); 3699 if (ret) 3700 goto out; 3701 3702 if (!memcg->tcpmem_active) { 3703 /* 3704 * The active flag needs to be written after the static_key 3705 * update. This is what guarantees that the socket activation 3706 * function is the last one to run. See mem_cgroup_sk_alloc() 3707 * for details, and note that we don't mark any socket as 3708 * belonging to this memcg until that flag is up. 3709 * 3710 * We need to do this, because static_keys will span multiple 3711 * sites, but we can't control their order. If we mark a socket 3712 * as accounted, but the accounting functions are not patched in 3713 * yet, we'll lose accounting. 3714 * 3715 * We never race with the readers in mem_cgroup_sk_alloc(), 3716 * because when this value change, the code to process it is not 3717 * patched in yet. 3718 */ 3719 static_branch_inc(&memcg_sockets_enabled_key); 3720 memcg->tcpmem_active = true; 3721 } 3722 out: 3723 mutex_unlock(&memcg_max_mutex); 3724 return ret; 3725 } 3726 3727 /* 3728 * The user of this function is... 3729 * RES_LIMIT. 3730 */ 3731 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3732 char *buf, size_t nbytes, loff_t off) 3733 { 3734 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3735 unsigned long nr_pages; 3736 int ret; 3737 3738 buf = strstrip(buf); 3739 ret = page_counter_memparse(buf, "-1", &nr_pages); 3740 if (ret) 3741 return ret; 3742 3743 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3744 case RES_LIMIT: 3745 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3746 ret = -EINVAL; 3747 break; 3748 } 3749 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3750 case _MEM: 3751 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3752 break; 3753 case _MEMSWAP: 3754 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3755 break; 3756 case _KMEM: 3757 /* kmem.limit_in_bytes is deprecated. */ 3758 ret = -EOPNOTSUPP; 3759 break; 3760 case _TCP: 3761 ret = memcg_update_tcp_max(memcg, nr_pages); 3762 break; 3763 } 3764 break; 3765 case RES_SOFT_LIMIT: 3766 memcg->soft_limit = nr_pages; 3767 ret = 0; 3768 break; 3769 } 3770 return ret ?: nbytes; 3771 } 3772 3773 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3774 size_t nbytes, loff_t off) 3775 { 3776 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3777 struct page_counter *counter; 3778 3779 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3780 case _MEM: 3781 counter = &memcg->memory; 3782 break; 3783 case _MEMSWAP: 3784 counter = &memcg->memsw; 3785 break; 3786 case _KMEM: 3787 counter = &memcg->kmem; 3788 break; 3789 case _TCP: 3790 counter = &memcg->tcpmem; 3791 break; 3792 default: 3793 BUG(); 3794 } 3795 3796 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3797 case RES_MAX_USAGE: 3798 page_counter_reset_watermark(counter); 3799 break; 3800 case RES_FAILCNT: 3801 counter->failcnt = 0; 3802 break; 3803 default: 3804 BUG(); 3805 } 3806 3807 return nbytes; 3808 } 3809 3810 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3811 struct cftype *cft) 3812 { 3813 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3814 } 3815 3816 #ifdef CONFIG_MMU 3817 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3818 struct cftype *cft, u64 val) 3819 { 3820 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3821 3822 if (val & ~MOVE_MASK) 3823 return -EINVAL; 3824 3825 /* 3826 * No kind of locking is needed in here, because ->can_attach() will 3827 * check this value once in the beginning of the process, and then carry 3828 * on with stale data. This means that changes to this value will only 3829 * affect task migrations starting after the change. 3830 */ 3831 memcg->move_charge_at_immigrate = val; 3832 return 0; 3833 } 3834 #else 3835 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3836 struct cftype *cft, u64 val) 3837 { 3838 return -ENOSYS; 3839 } 3840 #endif 3841 3842 #ifdef CONFIG_NUMA 3843 3844 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3845 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3846 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3847 3848 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3849 int nid, unsigned int lru_mask, bool tree) 3850 { 3851 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3852 unsigned long nr = 0; 3853 enum lru_list lru; 3854 3855 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3856 3857 for_each_lru(lru) { 3858 if (!(BIT(lru) & lru_mask)) 3859 continue; 3860 if (tree) 3861 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3862 else 3863 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3864 } 3865 return nr; 3866 } 3867 3868 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3869 unsigned int lru_mask, 3870 bool tree) 3871 { 3872 unsigned long nr = 0; 3873 enum lru_list lru; 3874 3875 for_each_lru(lru) { 3876 if (!(BIT(lru) & lru_mask)) 3877 continue; 3878 if (tree) 3879 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3880 else 3881 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3882 } 3883 return nr; 3884 } 3885 3886 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3887 { 3888 struct numa_stat { 3889 const char *name; 3890 unsigned int lru_mask; 3891 }; 3892 3893 static const struct numa_stat stats[] = { 3894 { "total", LRU_ALL }, 3895 { "file", LRU_ALL_FILE }, 3896 { "anon", LRU_ALL_ANON }, 3897 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3898 }; 3899 const struct numa_stat *stat; 3900 int nid; 3901 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3902 3903 mem_cgroup_flush_stats(); 3904 3905 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3906 seq_printf(m, "%s=%lu", stat->name, 3907 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3908 false)); 3909 for_each_node_state(nid, N_MEMORY) 3910 seq_printf(m, " N%d=%lu", nid, 3911 mem_cgroup_node_nr_lru_pages(memcg, nid, 3912 stat->lru_mask, false)); 3913 seq_putc(m, '\n'); 3914 } 3915 3916 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3917 3918 seq_printf(m, "hierarchical_%s=%lu", stat->name, 3919 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3920 true)); 3921 for_each_node_state(nid, N_MEMORY) 3922 seq_printf(m, " N%d=%lu", nid, 3923 mem_cgroup_node_nr_lru_pages(memcg, nid, 3924 stat->lru_mask, true)); 3925 seq_putc(m, '\n'); 3926 } 3927 3928 return 0; 3929 } 3930 #endif /* CONFIG_NUMA */ 3931 3932 static const unsigned int memcg1_stats[] = { 3933 NR_FILE_PAGES, 3934 NR_ANON_MAPPED, 3935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3936 NR_ANON_THPS, 3937 #endif 3938 NR_SHMEM, 3939 NR_FILE_MAPPED, 3940 NR_FILE_DIRTY, 3941 NR_WRITEBACK, 3942 MEMCG_SWAP, 3943 }; 3944 3945 static const char *const memcg1_stat_names[] = { 3946 "cache", 3947 "rss", 3948 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3949 "rss_huge", 3950 #endif 3951 "shmem", 3952 "mapped_file", 3953 "dirty", 3954 "writeback", 3955 "swap", 3956 }; 3957 3958 /* Universal VM events cgroup1 shows, original sort order */ 3959 static const unsigned int memcg1_events[] = { 3960 PGPGIN, 3961 PGPGOUT, 3962 PGFAULT, 3963 PGMAJFAULT, 3964 }; 3965 3966 static int memcg_stat_show(struct seq_file *m, void *v) 3967 { 3968 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3969 unsigned long memory, memsw; 3970 struct mem_cgroup *mi; 3971 unsigned int i; 3972 3973 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3974 3975 mem_cgroup_flush_stats(); 3976 3977 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3978 unsigned long nr; 3979 3980 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3981 continue; 3982 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 3983 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE); 3984 } 3985 3986 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3987 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 3988 memcg_events_local(memcg, memcg1_events[i])); 3989 3990 for (i = 0; i < NR_LRU_LISTS; i++) 3991 seq_printf(m, "%s %lu\n", lru_list_name(i), 3992 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3993 PAGE_SIZE); 3994 3995 /* Hierarchical information */ 3996 memory = memsw = PAGE_COUNTER_MAX; 3997 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3998 memory = min(memory, READ_ONCE(mi->memory.max)); 3999 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4000 } 4001 seq_printf(m, "hierarchical_memory_limit %llu\n", 4002 (u64)memory * PAGE_SIZE); 4003 if (do_memsw_account()) 4004 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4005 (u64)memsw * PAGE_SIZE); 4006 4007 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4008 unsigned long nr; 4009 4010 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4011 continue; 4012 nr = memcg_page_state(memcg, memcg1_stats[i]); 4013 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4014 (u64)nr * PAGE_SIZE); 4015 } 4016 4017 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4018 seq_printf(m, "total_%s %llu\n", 4019 vm_event_name(memcg1_events[i]), 4020 (u64)memcg_events(memcg, memcg1_events[i])); 4021 4022 for (i = 0; i < NR_LRU_LISTS; i++) 4023 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4024 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4025 PAGE_SIZE); 4026 4027 #ifdef CONFIG_DEBUG_VM 4028 { 4029 pg_data_t *pgdat; 4030 struct mem_cgroup_per_node *mz; 4031 unsigned long anon_cost = 0; 4032 unsigned long file_cost = 0; 4033 4034 for_each_online_pgdat(pgdat) { 4035 mz = memcg->nodeinfo[pgdat->node_id]; 4036 4037 anon_cost += mz->lruvec.anon_cost; 4038 file_cost += mz->lruvec.file_cost; 4039 } 4040 seq_printf(m, "anon_cost %lu\n", anon_cost); 4041 seq_printf(m, "file_cost %lu\n", file_cost); 4042 } 4043 #endif 4044 4045 return 0; 4046 } 4047 4048 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4049 struct cftype *cft) 4050 { 4051 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4052 4053 return mem_cgroup_swappiness(memcg); 4054 } 4055 4056 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4057 struct cftype *cft, u64 val) 4058 { 4059 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4060 4061 if (val > 200) 4062 return -EINVAL; 4063 4064 if (!mem_cgroup_is_root(memcg)) 4065 memcg->swappiness = val; 4066 else 4067 vm_swappiness = val; 4068 4069 return 0; 4070 } 4071 4072 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4073 { 4074 struct mem_cgroup_threshold_ary *t; 4075 unsigned long usage; 4076 int i; 4077 4078 rcu_read_lock(); 4079 if (!swap) 4080 t = rcu_dereference(memcg->thresholds.primary); 4081 else 4082 t = rcu_dereference(memcg->memsw_thresholds.primary); 4083 4084 if (!t) 4085 goto unlock; 4086 4087 usage = mem_cgroup_usage(memcg, swap); 4088 4089 /* 4090 * current_threshold points to threshold just below or equal to usage. 4091 * If it's not true, a threshold was crossed after last 4092 * call of __mem_cgroup_threshold(). 4093 */ 4094 i = t->current_threshold; 4095 4096 /* 4097 * Iterate backward over array of thresholds starting from 4098 * current_threshold and check if a threshold is crossed. 4099 * If none of thresholds below usage is crossed, we read 4100 * only one element of the array here. 4101 */ 4102 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4103 eventfd_signal(t->entries[i].eventfd, 1); 4104 4105 /* i = current_threshold + 1 */ 4106 i++; 4107 4108 /* 4109 * Iterate forward over array of thresholds starting from 4110 * current_threshold+1 and check if a threshold is crossed. 4111 * If none of thresholds above usage is crossed, we read 4112 * only one element of the array here. 4113 */ 4114 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4115 eventfd_signal(t->entries[i].eventfd, 1); 4116 4117 /* Update current_threshold */ 4118 t->current_threshold = i - 1; 4119 unlock: 4120 rcu_read_unlock(); 4121 } 4122 4123 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4124 { 4125 while (memcg) { 4126 __mem_cgroup_threshold(memcg, false); 4127 if (do_memsw_account()) 4128 __mem_cgroup_threshold(memcg, true); 4129 4130 memcg = parent_mem_cgroup(memcg); 4131 } 4132 } 4133 4134 static int compare_thresholds(const void *a, const void *b) 4135 { 4136 const struct mem_cgroup_threshold *_a = a; 4137 const struct mem_cgroup_threshold *_b = b; 4138 4139 if (_a->threshold > _b->threshold) 4140 return 1; 4141 4142 if (_a->threshold < _b->threshold) 4143 return -1; 4144 4145 return 0; 4146 } 4147 4148 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4149 { 4150 struct mem_cgroup_eventfd_list *ev; 4151 4152 spin_lock(&memcg_oom_lock); 4153 4154 list_for_each_entry(ev, &memcg->oom_notify, list) 4155 eventfd_signal(ev->eventfd, 1); 4156 4157 spin_unlock(&memcg_oom_lock); 4158 return 0; 4159 } 4160 4161 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4162 { 4163 struct mem_cgroup *iter; 4164 4165 for_each_mem_cgroup_tree(iter, memcg) 4166 mem_cgroup_oom_notify_cb(iter); 4167 } 4168 4169 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4170 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4171 { 4172 struct mem_cgroup_thresholds *thresholds; 4173 struct mem_cgroup_threshold_ary *new; 4174 unsigned long threshold; 4175 unsigned long usage; 4176 int i, size, ret; 4177 4178 ret = page_counter_memparse(args, "-1", &threshold); 4179 if (ret) 4180 return ret; 4181 4182 mutex_lock(&memcg->thresholds_lock); 4183 4184 if (type == _MEM) { 4185 thresholds = &memcg->thresholds; 4186 usage = mem_cgroup_usage(memcg, false); 4187 } else if (type == _MEMSWAP) { 4188 thresholds = &memcg->memsw_thresholds; 4189 usage = mem_cgroup_usage(memcg, true); 4190 } else 4191 BUG(); 4192 4193 /* Check if a threshold crossed before adding a new one */ 4194 if (thresholds->primary) 4195 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4196 4197 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4198 4199 /* Allocate memory for new array of thresholds */ 4200 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4201 if (!new) { 4202 ret = -ENOMEM; 4203 goto unlock; 4204 } 4205 new->size = size; 4206 4207 /* Copy thresholds (if any) to new array */ 4208 if (thresholds->primary) 4209 memcpy(new->entries, thresholds->primary->entries, 4210 flex_array_size(new, entries, size - 1)); 4211 4212 /* Add new threshold */ 4213 new->entries[size - 1].eventfd = eventfd; 4214 new->entries[size - 1].threshold = threshold; 4215 4216 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4217 sort(new->entries, size, sizeof(*new->entries), 4218 compare_thresholds, NULL); 4219 4220 /* Find current threshold */ 4221 new->current_threshold = -1; 4222 for (i = 0; i < size; i++) { 4223 if (new->entries[i].threshold <= usage) { 4224 /* 4225 * new->current_threshold will not be used until 4226 * rcu_assign_pointer(), so it's safe to increment 4227 * it here. 4228 */ 4229 ++new->current_threshold; 4230 } else 4231 break; 4232 } 4233 4234 /* Free old spare buffer and save old primary buffer as spare */ 4235 kfree(thresholds->spare); 4236 thresholds->spare = thresholds->primary; 4237 4238 rcu_assign_pointer(thresholds->primary, new); 4239 4240 /* To be sure that nobody uses thresholds */ 4241 synchronize_rcu(); 4242 4243 unlock: 4244 mutex_unlock(&memcg->thresholds_lock); 4245 4246 return ret; 4247 } 4248 4249 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4250 struct eventfd_ctx *eventfd, const char *args) 4251 { 4252 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4253 } 4254 4255 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4256 struct eventfd_ctx *eventfd, const char *args) 4257 { 4258 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4259 } 4260 4261 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4262 struct eventfd_ctx *eventfd, enum res_type type) 4263 { 4264 struct mem_cgroup_thresholds *thresholds; 4265 struct mem_cgroup_threshold_ary *new; 4266 unsigned long usage; 4267 int i, j, size, entries; 4268 4269 mutex_lock(&memcg->thresholds_lock); 4270 4271 if (type == _MEM) { 4272 thresholds = &memcg->thresholds; 4273 usage = mem_cgroup_usage(memcg, false); 4274 } else if (type == _MEMSWAP) { 4275 thresholds = &memcg->memsw_thresholds; 4276 usage = mem_cgroup_usage(memcg, true); 4277 } else 4278 BUG(); 4279 4280 if (!thresholds->primary) 4281 goto unlock; 4282 4283 /* Check if a threshold crossed before removing */ 4284 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4285 4286 /* Calculate new number of threshold */ 4287 size = entries = 0; 4288 for (i = 0; i < thresholds->primary->size; i++) { 4289 if (thresholds->primary->entries[i].eventfd != eventfd) 4290 size++; 4291 else 4292 entries++; 4293 } 4294 4295 new = thresholds->spare; 4296 4297 /* If no items related to eventfd have been cleared, nothing to do */ 4298 if (!entries) 4299 goto unlock; 4300 4301 /* Set thresholds array to NULL if we don't have thresholds */ 4302 if (!size) { 4303 kfree(new); 4304 new = NULL; 4305 goto swap_buffers; 4306 } 4307 4308 new->size = size; 4309 4310 /* Copy thresholds and find current threshold */ 4311 new->current_threshold = -1; 4312 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4313 if (thresholds->primary->entries[i].eventfd == eventfd) 4314 continue; 4315 4316 new->entries[j] = thresholds->primary->entries[i]; 4317 if (new->entries[j].threshold <= usage) { 4318 /* 4319 * new->current_threshold will not be used 4320 * until rcu_assign_pointer(), so it's safe to increment 4321 * it here. 4322 */ 4323 ++new->current_threshold; 4324 } 4325 j++; 4326 } 4327 4328 swap_buffers: 4329 /* Swap primary and spare array */ 4330 thresholds->spare = thresholds->primary; 4331 4332 rcu_assign_pointer(thresholds->primary, new); 4333 4334 /* To be sure that nobody uses thresholds */ 4335 synchronize_rcu(); 4336 4337 /* If all events are unregistered, free the spare array */ 4338 if (!new) { 4339 kfree(thresholds->spare); 4340 thresholds->spare = NULL; 4341 } 4342 unlock: 4343 mutex_unlock(&memcg->thresholds_lock); 4344 } 4345 4346 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4347 struct eventfd_ctx *eventfd) 4348 { 4349 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4350 } 4351 4352 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4353 struct eventfd_ctx *eventfd) 4354 { 4355 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4356 } 4357 4358 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4359 struct eventfd_ctx *eventfd, const char *args) 4360 { 4361 struct mem_cgroup_eventfd_list *event; 4362 4363 event = kmalloc(sizeof(*event), GFP_KERNEL); 4364 if (!event) 4365 return -ENOMEM; 4366 4367 spin_lock(&memcg_oom_lock); 4368 4369 event->eventfd = eventfd; 4370 list_add(&event->list, &memcg->oom_notify); 4371 4372 /* already in OOM ? */ 4373 if (memcg->under_oom) 4374 eventfd_signal(eventfd, 1); 4375 spin_unlock(&memcg_oom_lock); 4376 4377 return 0; 4378 } 4379 4380 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4381 struct eventfd_ctx *eventfd) 4382 { 4383 struct mem_cgroup_eventfd_list *ev, *tmp; 4384 4385 spin_lock(&memcg_oom_lock); 4386 4387 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4388 if (ev->eventfd == eventfd) { 4389 list_del(&ev->list); 4390 kfree(ev); 4391 } 4392 } 4393 4394 spin_unlock(&memcg_oom_lock); 4395 } 4396 4397 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4398 { 4399 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4400 4401 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4402 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4403 seq_printf(sf, "oom_kill %lu\n", 4404 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4405 return 0; 4406 } 4407 4408 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4409 struct cftype *cft, u64 val) 4410 { 4411 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4412 4413 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4414 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4415 return -EINVAL; 4416 4417 memcg->oom_kill_disable = val; 4418 if (!val) 4419 memcg_oom_recover(memcg); 4420 4421 return 0; 4422 } 4423 4424 #ifdef CONFIG_CGROUP_WRITEBACK 4425 4426 #include <trace/events/writeback.h> 4427 4428 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4429 { 4430 return wb_domain_init(&memcg->cgwb_domain, gfp); 4431 } 4432 4433 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4434 { 4435 wb_domain_exit(&memcg->cgwb_domain); 4436 } 4437 4438 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4439 { 4440 wb_domain_size_changed(&memcg->cgwb_domain); 4441 } 4442 4443 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4444 { 4445 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4446 4447 if (!memcg->css.parent) 4448 return NULL; 4449 4450 return &memcg->cgwb_domain; 4451 } 4452 4453 /** 4454 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4455 * @wb: bdi_writeback in question 4456 * @pfilepages: out parameter for number of file pages 4457 * @pheadroom: out parameter for number of allocatable pages according to memcg 4458 * @pdirty: out parameter for number of dirty pages 4459 * @pwriteback: out parameter for number of pages under writeback 4460 * 4461 * Determine the numbers of file, headroom, dirty, and writeback pages in 4462 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4463 * is a bit more involved. 4464 * 4465 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4466 * headroom is calculated as the lowest headroom of itself and the 4467 * ancestors. Note that this doesn't consider the actual amount of 4468 * available memory in the system. The caller should further cap 4469 * *@pheadroom accordingly. 4470 */ 4471 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4472 unsigned long *pheadroom, unsigned long *pdirty, 4473 unsigned long *pwriteback) 4474 { 4475 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4476 struct mem_cgroup *parent; 4477 4478 mem_cgroup_flush_stats(); 4479 4480 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4481 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4482 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4483 memcg_page_state(memcg, NR_ACTIVE_FILE); 4484 4485 *pheadroom = PAGE_COUNTER_MAX; 4486 while ((parent = parent_mem_cgroup(memcg))) { 4487 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4488 READ_ONCE(memcg->memory.high)); 4489 unsigned long used = page_counter_read(&memcg->memory); 4490 4491 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4492 memcg = parent; 4493 } 4494 } 4495 4496 /* 4497 * Foreign dirty flushing 4498 * 4499 * There's an inherent mismatch between memcg and writeback. The former 4500 * tracks ownership per-page while the latter per-inode. This was a 4501 * deliberate design decision because honoring per-page ownership in the 4502 * writeback path is complicated, may lead to higher CPU and IO overheads 4503 * and deemed unnecessary given that write-sharing an inode across 4504 * different cgroups isn't a common use-case. 4505 * 4506 * Combined with inode majority-writer ownership switching, this works well 4507 * enough in most cases but there are some pathological cases. For 4508 * example, let's say there are two cgroups A and B which keep writing to 4509 * different but confined parts of the same inode. B owns the inode and 4510 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4511 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4512 * triggering background writeback. A will be slowed down without a way to 4513 * make writeback of the dirty pages happen. 4514 * 4515 * Conditions like the above can lead to a cgroup getting repeatedly and 4516 * severely throttled after making some progress after each 4517 * dirty_expire_interval while the underlying IO device is almost 4518 * completely idle. 4519 * 4520 * Solving this problem completely requires matching the ownership tracking 4521 * granularities between memcg and writeback in either direction. However, 4522 * the more egregious behaviors can be avoided by simply remembering the 4523 * most recent foreign dirtying events and initiating remote flushes on 4524 * them when local writeback isn't enough to keep the memory clean enough. 4525 * 4526 * The following two functions implement such mechanism. When a foreign 4527 * page - a page whose memcg and writeback ownerships don't match - is 4528 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4529 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4530 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4531 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4532 * foreign bdi_writebacks which haven't expired. Both the numbers of 4533 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4534 * limited to MEMCG_CGWB_FRN_CNT. 4535 * 4536 * The mechanism only remembers IDs and doesn't hold any object references. 4537 * As being wrong occasionally doesn't matter, updates and accesses to the 4538 * records are lockless and racy. 4539 */ 4540 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 4541 struct bdi_writeback *wb) 4542 { 4543 struct mem_cgroup *memcg = folio_memcg(folio); 4544 struct memcg_cgwb_frn *frn; 4545 u64 now = get_jiffies_64(); 4546 u64 oldest_at = now; 4547 int oldest = -1; 4548 int i; 4549 4550 trace_track_foreign_dirty(folio, wb); 4551 4552 /* 4553 * Pick the slot to use. If there is already a slot for @wb, keep 4554 * using it. If not replace the oldest one which isn't being 4555 * written out. 4556 */ 4557 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4558 frn = &memcg->cgwb_frn[i]; 4559 if (frn->bdi_id == wb->bdi->id && 4560 frn->memcg_id == wb->memcg_css->id) 4561 break; 4562 if (time_before64(frn->at, oldest_at) && 4563 atomic_read(&frn->done.cnt) == 1) { 4564 oldest = i; 4565 oldest_at = frn->at; 4566 } 4567 } 4568 4569 if (i < MEMCG_CGWB_FRN_CNT) { 4570 /* 4571 * Re-using an existing one. Update timestamp lazily to 4572 * avoid making the cacheline hot. We want them to be 4573 * reasonably up-to-date and significantly shorter than 4574 * dirty_expire_interval as that's what expires the record. 4575 * Use the shorter of 1s and dirty_expire_interval / 8. 4576 */ 4577 unsigned long update_intv = 4578 min_t(unsigned long, HZ, 4579 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4580 4581 if (time_before64(frn->at, now - update_intv)) 4582 frn->at = now; 4583 } else if (oldest >= 0) { 4584 /* replace the oldest free one */ 4585 frn = &memcg->cgwb_frn[oldest]; 4586 frn->bdi_id = wb->bdi->id; 4587 frn->memcg_id = wb->memcg_css->id; 4588 frn->at = now; 4589 } 4590 } 4591 4592 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4593 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4594 { 4595 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4596 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4597 u64 now = jiffies_64; 4598 int i; 4599 4600 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4601 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4602 4603 /* 4604 * If the record is older than dirty_expire_interval, 4605 * writeback on it has already started. No need to kick it 4606 * off again. Also, don't start a new one if there's 4607 * already one in flight. 4608 */ 4609 if (time_after64(frn->at, now - intv) && 4610 atomic_read(&frn->done.cnt) == 1) { 4611 frn->at = 0; 4612 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4613 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4614 WB_REASON_FOREIGN_FLUSH, 4615 &frn->done); 4616 } 4617 } 4618 } 4619 4620 #else /* CONFIG_CGROUP_WRITEBACK */ 4621 4622 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4623 { 4624 return 0; 4625 } 4626 4627 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4628 { 4629 } 4630 4631 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4632 { 4633 } 4634 4635 #endif /* CONFIG_CGROUP_WRITEBACK */ 4636 4637 /* 4638 * DO NOT USE IN NEW FILES. 4639 * 4640 * "cgroup.event_control" implementation. 4641 * 4642 * This is way over-engineered. It tries to support fully configurable 4643 * events for each user. Such level of flexibility is completely 4644 * unnecessary especially in the light of the planned unified hierarchy. 4645 * 4646 * Please deprecate this and replace with something simpler if at all 4647 * possible. 4648 */ 4649 4650 /* 4651 * Unregister event and free resources. 4652 * 4653 * Gets called from workqueue. 4654 */ 4655 static void memcg_event_remove(struct work_struct *work) 4656 { 4657 struct mem_cgroup_event *event = 4658 container_of(work, struct mem_cgroup_event, remove); 4659 struct mem_cgroup *memcg = event->memcg; 4660 4661 remove_wait_queue(event->wqh, &event->wait); 4662 4663 event->unregister_event(memcg, event->eventfd); 4664 4665 /* Notify userspace the event is going away. */ 4666 eventfd_signal(event->eventfd, 1); 4667 4668 eventfd_ctx_put(event->eventfd); 4669 kfree(event); 4670 css_put(&memcg->css); 4671 } 4672 4673 /* 4674 * Gets called on EPOLLHUP on eventfd when user closes it. 4675 * 4676 * Called with wqh->lock held and interrupts disabled. 4677 */ 4678 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4679 int sync, void *key) 4680 { 4681 struct mem_cgroup_event *event = 4682 container_of(wait, struct mem_cgroup_event, wait); 4683 struct mem_cgroup *memcg = event->memcg; 4684 __poll_t flags = key_to_poll(key); 4685 4686 if (flags & EPOLLHUP) { 4687 /* 4688 * If the event has been detached at cgroup removal, we 4689 * can simply return knowing the other side will cleanup 4690 * for us. 4691 * 4692 * We can't race against event freeing since the other 4693 * side will require wqh->lock via remove_wait_queue(), 4694 * which we hold. 4695 */ 4696 spin_lock(&memcg->event_list_lock); 4697 if (!list_empty(&event->list)) { 4698 list_del_init(&event->list); 4699 /* 4700 * We are in atomic context, but cgroup_event_remove() 4701 * may sleep, so we have to call it in workqueue. 4702 */ 4703 schedule_work(&event->remove); 4704 } 4705 spin_unlock(&memcg->event_list_lock); 4706 } 4707 4708 return 0; 4709 } 4710 4711 static void memcg_event_ptable_queue_proc(struct file *file, 4712 wait_queue_head_t *wqh, poll_table *pt) 4713 { 4714 struct mem_cgroup_event *event = 4715 container_of(pt, struct mem_cgroup_event, pt); 4716 4717 event->wqh = wqh; 4718 add_wait_queue(wqh, &event->wait); 4719 } 4720 4721 /* 4722 * DO NOT USE IN NEW FILES. 4723 * 4724 * Parse input and register new cgroup event handler. 4725 * 4726 * Input must be in format '<event_fd> <control_fd> <args>'. 4727 * Interpretation of args is defined by control file implementation. 4728 */ 4729 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4730 char *buf, size_t nbytes, loff_t off) 4731 { 4732 struct cgroup_subsys_state *css = of_css(of); 4733 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4734 struct mem_cgroup_event *event; 4735 struct cgroup_subsys_state *cfile_css; 4736 unsigned int efd, cfd; 4737 struct fd efile; 4738 struct fd cfile; 4739 const char *name; 4740 char *endp; 4741 int ret; 4742 4743 buf = strstrip(buf); 4744 4745 efd = simple_strtoul(buf, &endp, 10); 4746 if (*endp != ' ') 4747 return -EINVAL; 4748 buf = endp + 1; 4749 4750 cfd = simple_strtoul(buf, &endp, 10); 4751 if ((*endp != ' ') && (*endp != '\0')) 4752 return -EINVAL; 4753 buf = endp + 1; 4754 4755 event = kzalloc(sizeof(*event), GFP_KERNEL); 4756 if (!event) 4757 return -ENOMEM; 4758 4759 event->memcg = memcg; 4760 INIT_LIST_HEAD(&event->list); 4761 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4762 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4763 INIT_WORK(&event->remove, memcg_event_remove); 4764 4765 efile = fdget(efd); 4766 if (!efile.file) { 4767 ret = -EBADF; 4768 goto out_kfree; 4769 } 4770 4771 event->eventfd = eventfd_ctx_fileget(efile.file); 4772 if (IS_ERR(event->eventfd)) { 4773 ret = PTR_ERR(event->eventfd); 4774 goto out_put_efile; 4775 } 4776 4777 cfile = fdget(cfd); 4778 if (!cfile.file) { 4779 ret = -EBADF; 4780 goto out_put_eventfd; 4781 } 4782 4783 /* the process need read permission on control file */ 4784 /* AV: shouldn't we check that it's been opened for read instead? */ 4785 ret = file_permission(cfile.file, MAY_READ); 4786 if (ret < 0) 4787 goto out_put_cfile; 4788 4789 /* 4790 * Determine the event callbacks and set them in @event. This used 4791 * to be done via struct cftype but cgroup core no longer knows 4792 * about these events. The following is crude but the whole thing 4793 * is for compatibility anyway. 4794 * 4795 * DO NOT ADD NEW FILES. 4796 */ 4797 name = cfile.file->f_path.dentry->d_name.name; 4798 4799 if (!strcmp(name, "memory.usage_in_bytes")) { 4800 event->register_event = mem_cgroup_usage_register_event; 4801 event->unregister_event = mem_cgroup_usage_unregister_event; 4802 } else if (!strcmp(name, "memory.oom_control")) { 4803 event->register_event = mem_cgroup_oom_register_event; 4804 event->unregister_event = mem_cgroup_oom_unregister_event; 4805 } else if (!strcmp(name, "memory.pressure_level")) { 4806 event->register_event = vmpressure_register_event; 4807 event->unregister_event = vmpressure_unregister_event; 4808 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4809 event->register_event = memsw_cgroup_usage_register_event; 4810 event->unregister_event = memsw_cgroup_usage_unregister_event; 4811 } else { 4812 ret = -EINVAL; 4813 goto out_put_cfile; 4814 } 4815 4816 /* 4817 * Verify @cfile should belong to @css. Also, remaining events are 4818 * automatically removed on cgroup destruction but the removal is 4819 * asynchronous, so take an extra ref on @css. 4820 */ 4821 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4822 &memory_cgrp_subsys); 4823 ret = -EINVAL; 4824 if (IS_ERR(cfile_css)) 4825 goto out_put_cfile; 4826 if (cfile_css != css) { 4827 css_put(cfile_css); 4828 goto out_put_cfile; 4829 } 4830 4831 ret = event->register_event(memcg, event->eventfd, buf); 4832 if (ret) 4833 goto out_put_css; 4834 4835 vfs_poll(efile.file, &event->pt); 4836 4837 spin_lock_irq(&memcg->event_list_lock); 4838 list_add(&event->list, &memcg->event_list); 4839 spin_unlock_irq(&memcg->event_list_lock); 4840 4841 fdput(cfile); 4842 fdput(efile); 4843 4844 return nbytes; 4845 4846 out_put_css: 4847 css_put(css); 4848 out_put_cfile: 4849 fdput(cfile); 4850 out_put_eventfd: 4851 eventfd_ctx_put(event->eventfd); 4852 out_put_efile: 4853 fdput(efile); 4854 out_kfree: 4855 kfree(event); 4856 4857 return ret; 4858 } 4859 4860 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4861 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 4862 { 4863 /* 4864 * Deprecated. 4865 * Please, take a look at tools/cgroup/slabinfo.py . 4866 */ 4867 return 0; 4868 } 4869 #endif 4870 4871 static struct cftype mem_cgroup_legacy_files[] = { 4872 { 4873 .name = "usage_in_bytes", 4874 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4875 .read_u64 = mem_cgroup_read_u64, 4876 }, 4877 { 4878 .name = "max_usage_in_bytes", 4879 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4880 .write = mem_cgroup_reset, 4881 .read_u64 = mem_cgroup_read_u64, 4882 }, 4883 { 4884 .name = "limit_in_bytes", 4885 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4886 .write = mem_cgroup_write, 4887 .read_u64 = mem_cgroup_read_u64, 4888 }, 4889 { 4890 .name = "soft_limit_in_bytes", 4891 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4892 .write = mem_cgroup_write, 4893 .read_u64 = mem_cgroup_read_u64, 4894 }, 4895 { 4896 .name = "failcnt", 4897 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4898 .write = mem_cgroup_reset, 4899 .read_u64 = mem_cgroup_read_u64, 4900 }, 4901 { 4902 .name = "stat", 4903 .seq_show = memcg_stat_show, 4904 }, 4905 { 4906 .name = "force_empty", 4907 .write = mem_cgroup_force_empty_write, 4908 }, 4909 { 4910 .name = "use_hierarchy", 4911 .write_u64 = mem_cgroup_hierarchy_write, 4912 .read_u64 = mem_cgroup_hierarchy_read, 4913 }, 4914 { 4915 .name = "cgroup.event_control", /* XXX: for compat */ 4916 .write = memcg_write_event_control, 4917 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4918 }, 4919 { 4920 .name = "swappiness", 4921 .read_u64 = mem_cgroup_swappiness_read, 4922 .write_u64 = mem_cgroup_swappiness_write, 4923 }, 4924 { 4925 .name = "move_charge_at_immigrate", 4926 .read_u64 = mem_cgroup_move_charge_read, 4927 .write_u64 = mem_cgroup_move_charge_write, 4928 }, 4929 { 4930 .name = "oom_control", 4931 .seq_show = mem_cgroup_oom_control_read, 4932 .write_u64 = mem_cgroup_oom_control_write, 4933 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4934 }, 4935 { 4936 .name = "pressure_level", 4937 }, 4938 #ifdef CONFIG_NUMA 4939 { 4940 .name = "numa_stat", 4941 .seq_show = memcg_numa_stat_show, 4942 }, 4943 #endif 4944 { 4945 .name = "kmem.limit_in_bytes", 4946 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4947 .write = mem_cgroup_write, 4948 .read_u64 = mem_cgroup_read_u64, 4949 }, 4950 { 4951 .name = "kmem.usage_in_bytes", 4952 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4953 .read_u64 = mem_cgroup_read_u64, 4954 }, 4955 { 4956 .name = "kmem.failcnt", 4957 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4958 .write = mem_cgroup_reset, 4959 .read_u64 = mem_cgroup_read_u64, 4960 }, 4961 { 4962 .name = "kmem.max_usage_in_bytes", 4963 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4964 .write = mem_cgroup_reset, 4965 .read_u64 = mem_cgroup_read_u64, 4966 }, 4967 #if defined(CONFIG_MEMCG_KMEM) && \ 4968 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4969 { 4970 .name = "kmem.slabinfo", 4971 .seq_show = mem_cgroup_slab_show, 4972 }, 4973 #endif 4974 { 4975 .name = "kmem.tcp.limit_in_bytes", 4976 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4977 .write = mem_cgroup_write, 4978 .read_u64 = mem_cgroup_read_u64, 4979 }, 4980 { 4981 .name = "kmem.tcp.usage_in_bytes", 4982 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4983 .read_u64 = mem_cgroup_read_u64, 4984 }, 4985 { 4986 .name = "kmem.tcp.failcnt", 4987 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4988 .write = mem_cgroup_reset, 4989 .read_u64 = mem_cgroup_read_u64, 4990 }, 4991 { 4992 .name = "kmem.tcp.max_usage_in_bytes", 4993 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4994 .write = mem_cgroup_reset, 4995 .read_u64 = mem_cgroup_read_u64, 4996 }, 4997 { }, /* terminate */ 4998 }; 4999 5000 /* 5001 * Private memory cgroup IDR 5002 * 5003 * Swap-out records and page cache shadow entries need to store memcg 5004 * references in constrained space, so we maintain an ID space that is 5005 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5006 * memory-controlled cgroups to 64k. 5007 * 5008 * However, there usually are many references to the offline CSS after 5009 * the cgroup has been destroyed, such as page cache or reclaimable 5010 * slab objects, that don't need to hang on to the ID. We want to keep 5011 * those dead CSS from occupying IDs, or we might quickly exhaust the 5012 * relatively small ID space and prevent the creation of new cgroups 5013 * even when there are much fewer than 64k cgroups - possibly none. 5014 * 5015 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5016 * be freed and recycled when it's no longer needed, which is usually 5017 * when the CSS is offlined. 5018 * 5019 * The only exception to that are records of swapped out tmpfs/shmem 5020 * pages that need to be attributed to live ancestors on swapin. But 5021 * those references are manageable from userspace. 5022 */ 5023 5024 static DEFINE_IDR(mem_cgroup_idr); 5025 5026 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5027 { 5028 if (memcg->id.id > 0) { 5029 idr_remove(&mem_cgroup_idr, memcg->id.id); 5030 memcg->id.id = 0; 5031 } 5032 } 5033 5034 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5035 unsigned int n) 5036 { 5037 refcount_add(n, &memcg->id.ref); 5038 } 5039 5040 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5041 { 5042 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5043 mem_cgroup_id_remove(memcg); 5044 5045 /* Memcg ID pins CSS */ 5046 css_put(&memcg->css); 5047 } 5048 } 5049 5050 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5051 { 5052 mem_cgroup_id_put_many(memcg, 1); 5053 } 5054 5055 /** 5056 * mem_cgroup_from_id - look up a memcg from a memcg id 5057 * @id: the memcg id to look up 5058 * 5059 * Caller must hold rcu_read_lock(). 5060 */ 5061 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5062 { 5063 WARN_ON_ONCE(!rcu_read_lock_held()); 5064 return idr_find(&mem_cgroup_idr, id); 5065 } 5066 5067 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5068 { 5069 struct mem_cgroup_per_node *pn; 5070 int tmp = node; 5071 /* 5072 * This routine is called against possible nodes. 5073 * But it's BUG to call kmalloc() against offline node. 5074 * 5075 * TODO: this routine can waste much memory for nodes which will 5076 * never be onlined. It's better to use memory hotplug callback 5077 * function. 5078 */ 5079 if (!node_state(node, N_NORMAL_MEMORY)) 5080 tmp = -1; 5081 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 5082 if (!pn) 5083 return 1; 5084 5085 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5086 GFP_KERNEL_ACCOUNT); 5087 if (!pn->lruvec_stats_percpu) { 5088 kfree(pn); 5089 return 1; 5090 } 5091 5092 lruvec_init(&pn->lruvec); 5093 pn->usage_in_excess = 0; 5094 pn->on_tree = false; 5095 pn->memcg = memcg; 5096 5097 memcg->nodeinfo[node] = pn; 5098 return 0; 5099 } 5100 5101 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5102 { 5103 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5104 5105 if (!pn) 5106 return; 5107 5108 free_percpu(pn->lruvec_stats_percpu); 5109 kfree(pn); 5110 } 5111 5112 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5113 { 5114 int node; 5115 5116 for_each_node(node) 5117 free_mem_cgroup_per_node_info(memcg, node); 5118 free_percpu(memcg->vmstats_percpu); 5119 kfree(memcg); 5120 } 5121 5122 static void mem_cgroup_free(struct mem_cgroup *memcg) 5123 { 5124 memcg_wb_domain_exit(memcg); 5125 __mem_cgroup_free(memcg); 5126 } 5127 5128 static struct mem_cgroup *mem_cgroup_alloc(void) 5129 { 5130 struct mem_cgroup *memcg; 5131 int node; 5132 int __maybe_unused i; 5133 long error = -ENOMEM; 5134 5135 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 5136 if (!memcg) 5137 return ERR_PTR(error); 5138 5139 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5140 1, MEM_CGROUP_ID_MAX, 5141 GFP_KERNEL); 5142 if (memcg->id.id < 0) { 5143 error = memcg->id.id; 5144 goto fail; 5145 } 5146 5147 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5148 GFP_KERNEL_ACCOUNT); 5149 if (!memcg->vmstats_percpu) 5150 goto fail; 5151 5152 for_each_node(node) 5153 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5154 goto fail; 5155 5156 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5157 goto fail; 5158 5159 INIT_WORK(&memcg->high_work, high_work_func); 5160 INIT_LIST_HEAD(&memcg->oom_notify); 5161 mutex_init(&memcg->thresholds_lock); 5162 spin_lock_init(&memcg->move_lock); 5163 vmpressure_init(&memcg->vmpressure); 5164 INIT_LIST_HEAD(&memcg->event_list); 5165 spin_lock_init(&memcg->event_list_lock); 5166 memcg->socket_pressure = jiffies; 5167 #ifdef CONFIG_MEMCG_KMEM 5168 memcg->kmemcg_id = -1; 5169 INIT_LIST_HEAD(&memcg->objcg_list); 5170 #endif 5171 #ifdef CONFIG_CGROUP_WRITEBACK 5172 INIT_LIST_HEAD(&memcg->cgwb_list); 5173 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5174 memcg->cgwb_frn[i].done = 5175 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5176 #endif 5177 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5178 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5179 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5180 memcg->deferred_split_queue.split_queue_len = 0; 5181 #endif 5182 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5183 return memcg; 5184 fail: 5185 mem_cgroup_id_remove(memcg); 5186 __mem_cgroup_free(memcg); 5187 return ERR_PTR(error); 5188 } 5189 5190 static struct cgroup_subsys_state * __ref 5191 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5192 { 5193 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5194 struct mem_cgroup *memcg, *old_memcg; 5195 long error = -ENOMEM; 5196 5197 old_memcg = set_active_memcg(parent); 5198 memcg = mem_cgroup_alloc(); 5199 set_active_memcg(old_memcg); 5200 if (IS_ERR(memcg)) 5201 return ERR_CAST(memcg); 5202 5203 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5204 memcg->soft_limit = PAGE_COUNTER_MAX; 5205 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5206 if (parent) { 5207 memcg->swappiness = mem_cgroup_swappiness(parent); 5208 memcg->oom_kill_disable = parent->oom_kill_disable; 5209 5210 page_counter_init(&memcg->memory, &parent->memory); 5211 page_counter_init(&memcg->swap, &parent->swap); 5212 page_counter_init(&memcg->kmem, &parent->kmem); 5213 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5214 } else { 5215 page_counter_init(&memcg->memory, NULL); 5216 page_counter_init(&memcg->swap, NULL); 5217 page_counter_init(&memcg->kmem, NULL); 5218 page_counter_init(&memcg->tcpmem, NULL); 5219 5220 root_mem_cgroup = memcg; 5221 return &memcg->css; 5222 } 5223 5224 /* The following stuff does not apply to the root */ 5225 error = memcg_online_kmem(memcg); 5226 if (error) 5227 goto fail; 5228 5229 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5230 static_branch_inc(&memcg_sockets_enabled_key); 5231 5232 return &memcg->css; 5233 fail: 5234 mem_cgroup_id_remove(memcg); 5235 mem_cgroup_free(memcg); 5236 return ERR_PTR(error); 5237 } 5238 5239 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5240 { 5241 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5242 5243 /* 5244 * A memcg must be visible for expand_shrinker_info() 5245 * by the time the maps are allocated. So, we allocate maps 5246 * here, when for_each_mem_cgroup() can't skip it. 5247 */ 5248 if (alloc_shrinker_info(memcg)) { 5249 mem_cgroup_id_remove(memcg); 5250 return -ENOMEM; 5251 } 5252 5253 /* Online state pins memcg ID, memcg ID pins CSS */ 5254 refcount_set(&memcg->id.ref, 1); 5255 css_get(css); 5256 5257 if (unlikely(mem_cgroup_is_root(memcg))) 5258 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5259 2UL*HZ); 5260 return 0; 5261 } 5262 5263 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5264 { 5265 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5266 struct mem_cgroup_event *event, *tmp; 5267 5268 /* 5269 * Unregister events and notify userspace. 5270 * Notify userspace about cgroup removing only after rmdir of cgroup 5271 * directory to avoid race between userspace and kernelspace. 5272 */ 5273 spin_lock_irq(&memcg->event_list_lock); 5274 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5275 list_del_init(&event->list); 5276 schedule_work(&event->remove); 5277 } 5278 spin_unlock_irq(&memcg->event_list_lock); 5279 5280 page_counter_set_min(&memcg->memory, 0); 5281 page_counter_set_low(&memcg->memory, 0); 5282 5283 memcg_offline_kmem(memcg); 5284 reparent_shrinker_deferred(memcg); 5285 wb_memcg_offline(memcg); 5286 5287 drain_all_stock(memcg); 5288 5289 mem_cgroup_id_put(memcg); 5290 } 5291 5292 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5293 { 5294 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5295 5296 invalidate_reclaim_iterators(memcg); 5297 } 5298 5299 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5300 { 5301 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5302 int __maybe_unused i; 5303 5304 #ifdef CONFIG_CGROUP_WRITEBACK 5305 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5306 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5307 #endif 5308 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5309 static_branch_dec(&memcg_sockets_enabled_key); 5310 5311 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5312 static_branch_dec(&memcg_sockets_enabled_key); 5313 5314 vmpressure_cleanup(&memcg->vmpressure); 5315 cancel_work_sync(&memcg->high_work); 5316 mem_cgroup_remove_from_trees(memcg); 5317 free_shrinker_info(memcg); 5318 5319 /* Need to offline kmem if online_css() fails */ 5320 memcg_offline_kmem(memcg); 5321 mem_cgroup_free(memcg); 5322 } 5323 5324 /** 5325 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5326 * @css: the target css 5327 * 5328 * Reset the states of the mem_cgroup associated with @css. This is 5329 * invoked when the userland requests disabling on the default hierarchy 5330 * but the memcg is pinned through dependency. The memcg should stop 5331 * applying policies and should revert to the vanilla state as it may be 5332 * made visible again. 5333 * 5334 * The current implementation only resets the essential configurations. 5335 * This needs to be expanded to cover all the visible parts. 5336 */ 5337 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5338 { 5339 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5340 5341 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5342 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5343 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5344 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5345 page_counter_set_min(&memcg->memory, 0); 5346 page_counter_set_low(&memcg->memory, 0); 5347 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5348 memcg->soft_limit = PAGE_COUNTER_MAX; 5349 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5350 memcg_wb_domain_size_changed(memcg); 5351 } 5352 5353 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5354 { 5355 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5356 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5357 struct memcg_vmstats_percpu *statc; 5358 long delta, v; 5359 int i, nid; 5360 5361 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5362 5363 for (i = 0; i < MEMCG_NR_STAT; i++) { 5364 /* 5365 * Collect the aggregated propagation counts of groups 5366 * below us. We're in a per-cpu loop here and this is 5367 * a global counter, so the first cycle will get them. 5368 */ 5369 delta = memcg->vmstats.state_pending[i]; 5370 if (delta) 5371 memcg->vmstats.state_pending[i] = 0; 5372 5373 /* Add CPU changes on this level since the last flush */ 5374 v = READ_ONCE(statc->state[i]); 5375 if (v != statc->state_prev[i]) { 5376 delta += v - statc->state_prev[i]; 5377 statc->state_prev[i] = v; 5378 } 5379 5380 if (!delta) 5381 continue; 5382 5383 /* Aggregate counts on this level and propagate upwards */ 5384 memcg->vmstats.state[i] += delta; 5385 if (parent) 5386 parent->vmstats.state_pending[i] += delta; 5387 } 5388 5389 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 5390 delta = memcg->vmstats.events_pending[i]; 5391 if (delta) 5392 memcg->vmstats.events_pending[i] = 0; 5393 5394 v = READ_ONCE(statc->events[i]); 5395 if (v != statc->events_prev[i]) { 5396 delta += v - statc->events_prev[i]; 5397 statc->events_prev[i] = v; 5398 } 5399 5400 if (!delta) 5401 continue; 5402 5403 memcg->vmstats.events[i] += delta; 5404 if (parent) 5405 parent->vmstats.events_pending[i] += delta; 5406 } 5407 5408 for_each_node_state(nid, N_MEMORY) { 5409 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5410 struct mem_cgroup_per_node *ppn = NULL; 5411 struct lruvec_stats_percpu *lstatc; 5412 5413 if (parent) 5414 ppn = parent->nodeinfo[nid]; 5415 5416 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5417 5418 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5419 delta = pn->lruvec_stats.state_pending[i]; 5420 if (delta) 5421 pn->lruvec_stats.state_pending[i] = 0; 5422 5423 v = READ_ONCE(lstatc->state[i]); 5424 if (v != lstatc->state_prev[i]) { 5425 delta += v - lstatc->state_prev[i]; 5426 lstatc->state_prev[i] = v; 5427 } 5428 5429 if (!delta) 5430 continue; 5431 5432 pn->lruvec_stats.state[i] += delta; 5433 if (ppn) 5434 ppn->lruvec_stats.state_pending[i] += delta; 5435 } 5436 } 5437 } 5438 5439 #ifdef CONFIG_MMU 5440 /* Handlers for move charge at task migration. */ 5441 static int mem_cgroup_do_precharge(unsigned long count) 5442 { 5443 int ret; 5444 5445 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5446 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5447 if (!ret) { 5448 mc.precharge += count; 5449 return ret; 5450 } 5451 5452 /* Try charges one by one with reclaim, but do not retry */ 5453 while (count--) { 5454 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5455 if (ret) 5456 return ret; 5457 mc.precharge++; 5458 cond_resched(); 5459 } 5460 return 0; 5461 } 5462 5463 union mc_target { 5464 struct page *page; 5465 swp_entry_t ent; 5466 }; 5467 5468 enum mc_target_type { 5469 MC_TARGET_NONE = 0, 5470 MC_TARGET_PAGE, 5471 MC_TARGET_SWAP, 5472 MC_TARGET_DEVICE, 5473 }; 5474 5475 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5476 unsigned long addr, pte_t ptent) 5477 { 5478 struct page *page = vm_normal_page(vma, addr, ptent); 5479 5480 if (!page || !page_mapped(page)) 5481 return NULL; 5482 if (PageAnon(page)) { 5483 if (!(mc.flags & MOVE_ANON)) 5484 return NULL; 5485 } else { 5486 if (!(mc.flags & MOVE_FILE)) 5487 return NULL; 5488 } 5489 if (!get_page_unless_zero(page)) 5490 return NULL; 5491 5492 return page; 5493 } 5494 5495 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5496 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5497 pte_t ptent, swp_entry_t *entry) 5498 { 5499 struct page *page = NULL; 5500 swp_entry_t ent = pte_to_swp_entry(ptent); 5501 5502 if (!(mc.flags & MOVE_ANON)) 5503 return NULL; 5504 5505 /* 5506 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5507 * a device and because they are not accessible by CPU they are store 5508 * as special swap entry in the CPU page table. 5509 */ 5510 if (is_device_private_entry(ent)) { 5511 page = pfn_swap_entry_to_page(ent); 5512 /* 5513 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5514 * a refcount of 1 when free (unlike normal page) 5515 */ 5516 if (!page_ref_add_unless(page, 1, 1)) 5517 return NULL; 5518 return page; 5519 } 5520 5521 if (non_swap_entry(ent)) 5522 return NULL; 5523 5524 /* 5525 * Because lookup_swap_cache() updates some statistics counter, 5526 * we call find_get_page() with swapper_space directly. 5527 */ 5528 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5529 entry->val = ent.val; 5530 5531 return page; 5532 } 5533 #else 5534 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5535 pte_t ptent, swp_entry_t *entry) 5536 { 5537 return NULL; 5538 } 5539 #endif 5540 5541 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5542 unsigned long addr, pte_t ptent) 5543 { 5544 if (!vma->vm_file) /* anonymous vma */ 5545 return NULL; 5546 if (!(mc.flags & MOVE_FILE)) 5547 return NULL; 5548 5549 /* page is moved even if it's not RSS of this task(page-faulted). */ 5550 /* shmem/tmpfs may report page out on swap: account for that too. */ 5551 return find_get_incore_page(vma->vm_file->f_mapping, 5552 linear_page_index(vma, addr)); 5553 } 5554 5555 /** 5556 * mem_cgroup_move_account - move account of the page 5557 * @page: the page 5558 * @compound: charge the page as compound or small page 5559 * @from: mem_cgroup which the page is moved from. 5560 * @to: mem_cgroup which the page is moved to. @from != @to. 5561 * 5562 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5563 * 5564 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5565 * from old cgroup. 5566 */ 5567 static int mem_cgroup_move_account(struct page *page, 5568 bool compound, 5569 struct mem_cgroup *from, 5570 struct mem_cgroup *to) 5571 { 5572 struct folio *folio = page_folio(page); 5573 struct lruvec *from_vec, *to_vec; 5574 struct pglist_data *pgdat; 5575 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 5576 int nid, ret; 5577 5578 VM_BUG_ON(from == to); 5579 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 5580 VM_BUG_ON(compound && !folio_test_large(folio)); 5581 5582 /* 5583 * Prevent mem_cgroup_migrate() from looking at 5584 * page's memory cgroup of its source page while we change it. 5585 */ 5586 ret = -EBUSY; 5587 if (!folio_trylock(folio)) 5588 goto out; 5589 5590 ret = -EINVAL; 5591 if (folio_memcg(folio) != from) 5592 goto out_unlock; 5593 5594 pgdat = folio_pgdat(folio); 5595 from_vec = mem_cgroup_lruvec(from, pgdat); 5596 to_vec = mem_cgroup_lruvec(to, pgdat); 5597 5598 folio_memcg_lock(folio); 5599 5600 if (folio_test_anon(folio)) { 5601 if (folio_mapped(folio)) { 5602 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5603 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5604 if (folio_test_transhuge(folio)) { 5605 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5606 -nr_pages); 5607 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5608 nr_pages); 5609 } 5610 } 5611 } else { 5612 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5613 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5614 5615 if (folio_test_swapbacked(folio)) { 5616 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5617 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5618 } 5619 5620 if (folio_mapped(folio)) { 5621 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5622 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5623 } 5624 5625 if (folio_test_dirty(folio)) { 5626 struct address_space *mapping = folio_mapping(folio); 5627 5628 if (mapping_can_writeback(mapping)) { 5629 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5630 -nr_pages); 5631 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5632 nr_pages); 5633 } 5634 } 5635 } 5636 5637 if (folio_test_writeback(folio)) { 5638 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5639 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5640 } 5641 5642 /* 5643 * All state has been migrated, let's switch to the new memcg. 5644 * 5645 * It is safe to change page's memcg here because the page 5646 * is referenced, charged, isolated, and locked: we can't race 5647 * with (un)charging, migration, LRU putback, or anything else 5648 * that would rely on a stable page's memory cgroup. 5649 * 5650 * Note that lock_page_memcg is a memcg lock, not a page lock, 5651 * to save space. As soon as we switch page's memory cgroup to a 5652 * new memcg that isn't locked, the above state can change 5653 * concurrently again. Make sure we're truly done with it. 5654 */ 5655 smp_mb(); 5656 5657 css_get(&to->css); 5658 css_put(&from->css); 5659 5660 folio->memcg_data = (unsigned long)to; 5661 5662 __folio_memcg_unlock(from); 5663 5664 ret = 0; 5665 nid = folio_nid(folio); 5666 5667 local_irq_disable(); 5668 mem_cgroup_charge_statistics(to, nr_pages); 5669 memcg_check_events(to, nid); 5670 mem_cgroup_charge_statistics(from, -nr_pages); 5671 memcg_check_events(from, nid); 5672 local_irq_enable(); 5673 out_unlock: 5674 folio_unlock(folio); 5675 out: 5676 return ret; 5677 } 5678 5679 /** 5680 * get_mctgt_type - get target type of moving charge 5681 * @vma: the vma the pte to be checked belongs 5682 * @addr: the address corresponding to the pte to be checked 5683 * @ptent: the pte to be checked 5684 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5685 * 5686 * Returns 5687 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5688 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5689 * move charge. if @target is not NULL, the page is stored in target->page 5690 * with extra refcnt got(Callers should handle it). 5691 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5692 * target for charge migration. if @target is not NULL, the entry is stored 5693 * in target->ent. 5694 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5695 * (so ZONE_DEVICE page and thus not on the lru). 5696 * For now we such page is charge like a regular page would be as for all 5697 * intent and purposes it is just special memory taking the place of a 5698 * regular page. 5699 * 5700 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5701 * 5702 * Called with pte lock held. 5703 */ 5704 5705 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5706 unsigned long addr, pte_t ptent, union mc_target *target) 5707 { 5708 struct page *page = NULL; 5709 enum mc_target_type ret = MC_TARGET_NONE; 5710 swp_entry_t ent = { .val = 0 }; 5711 5712 if (pte_present(ptent)) 5713 page = mc_handle_present_pte(vma, addr, ptent); 5714 else if (is_swap_pte(ptent)) 5715 page = mc_handle_swap_pte(vma, ptent, &ent); 5716 else if (pte_none(ptent)) 5717 page = mc_handle_file_pte(vma, addr, ptent); 5718 5719 if (!page && !ent.val) 5720 return ret; 5721 if (page) { 5722 /* 5723 * Do only loose check w/o serialization. 5724 * mem_cgroup_move_account() checks the page is valid or 5725 * not under LRU exclusion. 5726 */ 5727 if (page_memcg(page) == mc.from) { 5728 ret = MC_TARGET_PAGE; 5729 if (is_device_private_page(page)) 5730 ret = MC_TARGET_DEVICE; 5731 if (target) 5732 target->page = page; 5733 } 5734 if (!ret || !target) 5735 put_page(page); 5736 } 5737 /* 5738 * There is a swap entry and a page doesn't exist or isn't charged. 5739 * But we cannot move a tail-page in a THP. 5740 */ 5741 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5742 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5743 ret = MC_TARGET_SWAP; 5744 if (target) 5745 target->ent = ent; 5746 } 5747 return ret; 5748 } 5749 5750 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5751 /* 5752 * We don't consider PMD mapped swapping or file mapped pages because THP does 5753 * not support them for now. 5754 * Caller should make sure that pmd_trans_huge(pmd) is true. 5755 */ 5756 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5757 unsigned long addr, pmd_t pmd, union mc_target *target) 5758 { 5759 struct page *page = NULL; 5760 enum mc_target_type ret = MC_TARGET_NONE; 5761 5762 if (unlikely(is_swap_pmd(pmd))) { 5763 VM_BUG_ON(thp_migration_supported() && 5764 !is_pmd_migration_entry(pmd)); 5765 return ret; 5766 } 5767 page = pmd_page(pmd); 5768 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5769 if (!(mc.flags & MOVE_ANON)) 5770 return ret; 5771 if (page_memcg(page) == mc.from) { 5772 ret = MC_TARGET_PAGE; 5773 if (target) { 5774 get_page(page); 5775 target->page = page; 5776 } 5777 } 5778 return ret; 5779 } 5780 #else 5781 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5782 unsigned long addr, pmd_t pmd, union mc_target *target) 5783 { 5784 return MC_TARGET_NONE; 5785 } 5786 #endif 5787 5788 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5789 unsigned long addr, unsigned long end, 5790 struct mm_walk *walk) 5791 { 5792 struct vm_area_struct *vma = walk->vma; 5793 pte_t *pte; 5794 spinlock_t *ptl; 5795 5796 ptl = pmd_trans_huge_lock(pmd, vma); 5797 if (ptl) { 5798 /* 5799 * Note their can not be MC_TARGET_DEVICE for now as we do not 5800 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5801 * this might change. 5802 */ 5803 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5804 mc.precharge += HPAGE_PMD_NR; 5805 spin_unlock(ptl); 5806 return 0; 5807 } 5808 5809 if (pmd_trans_unstable(pmd)) 5810 return 0; 5811 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5812 for (; addr != end; pte++, addr += PAGE_SIZE) 5813 if (get_mctgt_type(vma, addr, *pte, NULL)) 5814 mc.precharge++; /* increment precharge temporarily */ 5815 pte_unmap_unlock(pte - 1, ptl); 5816 cond_resched(); 5817 5818 return 0; 5819 } 5820 5821 static const struct mm_walk_ops precharge_walk_ops = { 5822 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5823 }; 5824 5825 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5826 { 5827 unsigned long precharge; 5828 5829 mmap_read_lock(mm); 5830 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5831 mmap_read_unlock(mm); 5832 5833 precharge = mc.precharge; 5834 mc.precharge = 0; 5835 5836 return precharge; 5837 } 5838 5839 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5840 { 5841 unsigned long precharge = mem_cgroup_count_precharge(mm); 5842 5843 VM_BUG_ON(mc.moving_task); 5844 mc.moving_task = current; 5845 return mem_cgroup_do_precharge(precharge); 5846 } 5847 5848 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5849 static void __mem_cgroup_clear_mc(void) 5850 { 5851 struct mem_cgroup *from = mc.from; 5852 struct mem_cgroup *to = mc.to; 5853 5854 /* we must uncharge all the leftover precharges from mc.to */ 5855 if (mc.precharge) { 5856 cancel_charge(mc.to, mc.precharge); 5857 mc.precharge = 0; 5858 } 5859 /* 5860 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5861 * we must uncharge here. 5862 */ 5863 if (mc.moved_charge) { 5864 cancel_charge(mc.from, mc.moved_charge); 5865 mc.moved_charge = 0; 5866 } 5867 /* we must fixup refcnts and charges */ 5868 if (mc.moved_swap) { 5869 /* uncharge swap account from the old cgroup */ 5870 if (!mem_cgroup_is_root(mc.from)) 5871 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5872 5873 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5874 5875 /* 5876 * we charged both to->memory and to->memsw, so we 5877 * should uncharge to->memory. 5878 */ 5879 if (!mem_cgroup_is_root(mc.to)) 5880 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5881 5882 mc.moved_swap = 0; 5883 } 5884 memcg_oom_recover(from); 5885 memcg_oom_recover(to); 5886 wake_up_all(&mc.waitq); 5887 } 5888 5889 static void mem_cgroup_clear_mc(void) 5890 { 5891 struct mm_struct *mm = mc.mm; 5892 5893 /* 5894 * we must clear moving_task before waking up waiters at the end of 5895 * task migration. 5896 */ 5897 mc.moving_task = NULL; 5898 __mem_cgroup_clear_mc(); 5899 spin_lock(&mc.lock); 5900 mc.from = NULL; 5901 mc.to = NULL; 5902 mc.mm = NULL; 5903 spin_unlock(&mc.lock); 5904 5905 mmput(mm); 5906 } 5907 5908 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5909 { 5910 struct cgroup_subsys_state *css; 5911 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5912 struct mem_cgroup *from; 5913 struct task_struct *leader, *p; 5914 struct mm_struct *mm; 5915 unsigned long move_flags; 5916 int ret = 0; 5917 5918 /* charge immigration isn't supported on the default hierarchy */ 5919 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5920 return 0; 5921 5922 /* 5923 * Multi-process migrations only happen on the default hierarchy 5924 * where charge immigration is not used. Perform charge 5925 * immigration if @tset contains a leader and whine if there are 5926 * multiple. 5927 */ 5928 p = NULL; 5929 cgroup_taskset_for_each_leader(leader, css, tset) { 5930 WARN_ON_ONCE(p); 5931 p = leader; 5932 memcg = mem_cgroup_from_css(css); 5933 } 5934 if (!p) 5935 return 0; 5936 5937 /* 5938 * We are now committed to this value whatever it is. Changes in this 5939 * tunable will only affect upcoming migrations, not the current one. 5940 * So we need to save it, and keep it going. 5941 */ 5942 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5943 if (!move_flags) 5944 return 0; 5945 5946 from = mem_cgroup_from_task(p); 5947 5948 VM_BUG_ON(from == memcg); 5949 5950 mm = get_task_mm(p); 5951 if (!mm) 5952 return 0; 5953 /* We move charges only when we move a owner of the mm */ 5954 if (mm->owner == p) { 5955 VM_BUG_ON(mc.from); 5956 VM_BUG_ON(mc.to); 5957 VM_BUG_ON(mc.precharge); 5958 VM_BUG_ON(mc.moved_charge); 5959 VM_BUG_ON(mc.moved_swap); 5960 5961 spin_lock(&mc.lock); 5962 mc.mm = mm; 5963 mc.from = from; 5964 mc.to = memcg; 5965 mc.flags = move_flags; 5966 spin_unlock(&mc.lock); 5967 /* We set mc.moving_task later */ 5968 5969 ret = mem_cgroup_precharge_mc(mm); 5970 if (ret) 5971 mem_cgroup_clear_mc(); 5972 } else { 5973 mmput(mm); 5974 } 5975 return ret; 5976 } 5977 5978 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5979 { 5980 if (mc.to) 5981 mem_cgroup_clear_mc(); 5982 } 5983 5984 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5985 unsigned long addr, unsigned long end, 5986 struct mm_walk *walk) 5987 { 5988 int ret = 0; 5989 struct vm_area_struct *vma = walk->vma; 5990 pte_t *pte; 5991 spinlock_t *ptl; 5992 enum mc_target_type target_type; 5993 union mc_target target; 5994 struct page *page; 5995 5996 ptl = pmd_trans_huge_lock(pmd, vma); 5997 if (ptl) { 5998 if (mc.precharge < HPAGE_PMD_NR) { 5999 spin_unlock(ptl); 6000 return 0; 6001 } 6002 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6003 if (target_type == MC_TARGET_PAGE) { 6004 page = target.page; 6005 if (!isolate_lru_page(page)) { 6006 if (!mem_cgroup_move_account(page, true, 6007 mc.from, mc.to)) { 6008 mc.precharge -= HPAGE_PMD_NR; 6009 mc.moved_charge += HPAGE_PMD_NR; 6010 } 6011 putback_lru_page(page); 6012 } 6013 put_page(page); 6014 } else if (target_type == MC_TARGET_DEVICE) { 6015 page = target.page; 6016 if (!mem_cgroup_move_account(page, true, 6017 mc.from, mc.to)) { 6018 mc.precharge -= HPAGE_PMD_NR; 6019 mc.moved_charge += HPAGE_PMD_NR; 6020 } 6021 put_page(page); 6022 } 6023 spin_unlock(ptl); 6024 return 0; 6025 } 6026 6027 if (pmd_trans_unstable(pmd)) 6028 return 0; 6029 retry: 6030 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6031 for (; addr != end; addr += PAGE_SIZE) { 6032 pte_t ptent = *(pte++); 6033 bool device = false; 6034 swp_entry_t ent; 6035 6036 if (!mc.precharge) 6037 break; 6038 6039 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6040 case MC_TARGET_DEVICE: 6041 device = true; 6042 fallthrough; 6043 case MC_TARGET_PAGE: 6044 page = target.page; 6045 /* 6046 * We can have a part of the split pmd here. Moving it 6047 * can be done but it would be too convoluted so simply 6048 * ignore such a partial THP and keep it in original 6049 * memcg. There should be somebody mapping the head. 6050 */ 6051 if (PageTransCompound(page)) 6052 goto put; 6053 if (!device && isolate_lru_page(page)) 6054 goto put; 6055 if (!mem_cgroup_move_account(page, false, 6056 mc.from, mc.to)) { 6057 mc.precharge--; 6058 /* we uncharge from mc.from later. */ 6059 mc.moved_charge++; 6060 } 6061 if (!device) 6062 putback_lru_page(page); 6063 put: /* get_mctgt_type() gets the page */ 6064 put_page(page); 6065 break; 6066 case MC_TARGET_SWAP: 6067 ent = target.ent; 6068 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6069 mc.precharge--; 6070 mem_cgroup_id_get_many(mc.to, 1); 6071 /* we fixup other refcnts and charges later. */ 6072 mc.moved_swap++; 6073 } 6074 break; 6075 default: 6076 break; 6077 } 6078 } 6079 pte_unmap_unlock(pte - 1, ptl); 6080 cond_resched(); 6081 6082 if (addr != end) { 6083 /* 6084 * We have consumed all precharges we got in can_attach(). 6085 * We try charge one by one, but don't do any additional 6086 * charges to mc.to if we have failed in charge once in attach() 6087 * phase. 6088 */ 6089 ret = mem_cgroup_do_precharge(1); 6090 if (!ret) 6091 goto retry; 6092 } 6093 6094 return ret; 6095 } 6096 6097 static const struct mm_walk_ops charge_walk_ops = { 6098 .pmd_entry = mem_cgroup_move_charge_pte_range, 6099 }; 6100 6101 static void mem_cgroup_move_charge(void) 6102 { 6103 lru_add_drain_all(); 6104 /* 6105 * Signal lock_page_memcg() to take the memcg's move_lock 6106 * while we're moving its pages to another memcg. Then wait 6107 * for already started RCU-only updates to finish. 6108 */ 6109 atomic_inc(&mc.from->moving_account); 6110 synchronize_rcu(); 6111 retry: 6112 if (unlikely(!mmap_read_trylock(mc.mm))) { 6113 /* 6114 * Someone who are holding the mmap_lock might be waiting in 6115 * waitq. So we cancel all extra charges, wake up all waiters, 6116 * and retry. Because we cancel precharges, we might not be able 6117 * to move enough charges, but moving charge is a best-effort 6118 * feature anyway, so it wouldn't be a big problem. 6119 */ 6120 __mem_cgroup_clear_mc(); 6121 cond_resched(); 6122 goto retry; 6123 } 6124 /* 6125 * When we have consumed all precharges and failed in doing 6126 * additional charge, the page walk just aborts. 6127 */ 6128 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 6129 NULL); 6130 6131 mmap_read_unlock(mc.mm); 6132 atomic_dec(&mc.from->moving_account); 6133 } 6134 6135 static void mem_cgroup_move_task(void) 6136 { 6137 if (mc.to) { 6138 mem_cgroup_move_charge(); 6139 mem_cgroup_clear_mc(); 6140 } 6141 } 6142 #else /* !CONFIG_MMU */ 6143 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6144 { 6145 return 0; 6146 } 6147 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6148 { 6149 } 6150 static void mem_cgroup_move_task(void) 6151 { 6152 } 6153 #endif 6154 6155 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6156 { 6157 if (value == PAGE_COUNTER_MAX) 6158 seq_puts(m, "max\n"); 6159 else 6160 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6161 6162 return 0; 6163 } 6164 6165 static u64 memory_current_read(struct cgroup_subsys_state *css, 6166 struct cftype *cft) 6167 { 6168 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6169 6170 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6171 } 6172 6173 static int memory_min_show(struct seq_file *m, void *v) 6174 { 6175 return seq_puts_memcg_tunable(m, 6176 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6177 } 6178 6179 static ssize_t memory_min_write(struct kernfs_open_file *of, 6180 char *buf, size_t nbytes, loff_t off) 6181 { 6182 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6183 unsigned long min; 6184 int err; 6185 6186 buf = strstrip(buf); 6187 err = page_counter_memparse(buf, "max", &min); 6188 if (err) 6189 return err; 6190 6191 page_counter_set_min(&memcg->memory, min); 6192 6193 return nbytes; 6194 } 6195 6196 static int memory_low_show(struct seq_file *m, void *v) 6197 { 6198 return seq_puts_memcg_tunable(m, 6199 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6200 } 6201 6202 static ssize_t memory_low_write(struct kernfs_open_file *of, 6203 char *buf, size_t nbytes, loff_t off) 6204 { 6205 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6206 unsigned long low; 6207 int err; 6208 6209 buf = strstrip(buf); 6210 err = page_counter_memparse(buf, "max", &low); 6211 if (err) 6212 return err; 6213 6214 page_counter_set_low(&memcg->memory, low); 6215 6216 return nbytes; 6217 } 6218 6219 static int memory_high_show(struct seq_file *m, void *v) 6220 { 6221 return seq_puts_memcg_tunable(m, 6222 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6223 } 6224 6225 static ssize_t memory_high_write(struct kernfs_open_file *of, 6226 char *buf, size_t nbytes, loff_t off) 6227 { 6228 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6229 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6230 bool drained = false; 6231 unsigned long high; 6232 int err; 6233 6234 buf = strstrip(buf); 6235 err = page_counter_memparse(buf, "max", &high); 6236 if (err) 6237 return err; 6238 6239 page_counter_set_high(&memcg->memory, high); 6240 6241 for (;;) { 6242 unsigned long nr_pages = page_counter_read(&memcg->memory); 6243 unsigned long reclaimed; 6244 6245 if (nr_pages <= high) 6246 break; 6247 6248 if (signal_pending(current)) 6249 break; 6250 6251 if (!drained) { 6252 drain_all_stock(memcg); 6253 drained = true; 6254 continue; 6255 } 6256 6257 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6258 GFP_KERNEL, true); 6259 6260 if (!reclaimed && !nr_retries--) 6261 break; 6262 } 6263 6264 memcg_wb_domain_size_changed(memcg); 6265 return nbytes; 6266 } 6267 6268 static int memory_max_show(struct seq_file *m, void *v) 6269 { 6270 return seq_puts_memcg_tunable(m, 6271 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6272 } 6273 6274 static ssize_t memory_max_write(struct kernfs_open_file *of, 6275 char *buf, size_t nbytes, loff_t off) 6276 { 6277 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6278 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6279 bool drained = false; 6280 unsigned long max; 6281 int err; 6282 6283 buf = strstrip(buf); 6284 err = page_counter_memparse(buf, "max", &max); 6285 if (err) 6286 return err; 6287 6288 xchg(&memcg->memory.max, max); 6289 6290 for (;;) { 6291 unsigned long nr_pages = page_counter_read(&memcg->memory); 6292 6293 if (nr_pages <= max) 6294 break; 6295 6296 if (signal_pending(current)) 6297 break; 6298 6299 if (!drained) { 6300 drain_all_stock(memcg); 6301 drained = true; 6302 continue; 6303 } 6304 6305 if (nr_reclaims) { 6306 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6307 GFP_KERNEL, true)) 6308 nr_reclaims--; 6309 continue; 6310 } 6311 6312 memcg_memory_event(memcg, MEMCG_OOM); 6313 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6314 break; 6315 } 6316 6317 memcg_wb_domain_size_changed(memcg); 6318 return nbytes; 6319 } 6320 6321 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6322 { 6323 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6324 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6325 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6326 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6327 seq_printf(m, "oom_kill %lu\n", 6328 atomic_long_read(&events[MEMCG_OOM_KILL])); 6329 seq_printf(m, "oom_group_kill %lu\n", 6330 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 6331 } 6332 6333 static int memory_events_show(struct seq_file *m, void *v) 6334 { 6335 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6336 6337 __memory_events_show(m, memcg->memory_events); 6338 return 0; 6339 } 6340 6341 static int memory_events_local_show(struct seq_file *m, void *v) 6342 { 6343 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6344 6345 __memory_events_show(m, memcg->memory_events_local); 6346 return 0; 6347 } 6348 6349 static int memory_stat_show(struct seq_file *m, void *v) 6350 { 6351 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6352 char *buf; 6353 6354 buf = memory_stat_format(memcg); 6355 if (!buf) 6356 return -ENOMEM; 6357 seq_puts(m, buf); 6358 kfree(buf); 6359 return 0; 6360 } 6361 6362 #ifdef CONFIG_NUMA 6363 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6364 int item) 6365 { 6366 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); 6367 } 6368 6369 static int memory_numa_stat_show(struct seq_file *m, void *v) 6370 { 6371 int i; 6372 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6373 6374 mem_cgroup_flush_stats(); 6375 6376 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6377 int nid; 6378 6379 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6380 continue; 6381 6382 seq_printf(m, "%s", memory_stats[i].name); 6383 for_each_node_state(nid, N_MEMORY) { 6384 u64 size; 6385 struct lruvec *lruvec; 6386 6387 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6388 size = lruvec_page_state_output(lruvec, 6389 memory_stats[i].idx); 6390 seq_printf(m, " N%d=%llu", nid, size); 6391 } 6392 seq_putc(m, '\n'); 6393 } 6394 6395 return 0; 6396 } 6397 #endif 6398 6399 static int memory_oom_group_show(struct seq_file *m, void *v) 6400 { 6401 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6402 6403 seq_printf(m, "%d\n", memcg->oom_group); 6404 6405 return 0; 6406 } 6407 6408 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6409 char *buf, size_t nbytes, loff_t off) 6410 { 6411 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6412 int ret, oom_group; 6413 6414 buf = strstrip(buf); 6415 if (!buf) 6416 return -EINVAL; 6417 6418 ret = kstrtoint(buf, 0, &oom_group); 6419 if (ret) 6420 return ret; 6421 6422 if (oom_group != 0 && oom_group != 1) 6423 return -EINVAL; 6424 6425 memcg->oom_group = oom_group; 6426 6427 return nbytes; 6428 } 6429 6430 static struct cftype memory_files[] = { 6431 { 6432 .name = "current", 6433 .flags = CFTYPE_NOT_ON_ROOT, 6434 .read_u64 = memory_current_read, 6435 }, 6436 { 6437 .name = "min", 6438 .flags = CFTYPE_NOT_ON_ROOT, 6439 .seq_show = memory_min_show, 6440 .write = memory_min_write, 6441 }, 6442 { 6443 .name = "low", 6444 .flags = CFTYPE_NOT_ON_ROOT, 6445 .seq_show = memory_low_show, 6446 .write = memory_low_write, 6447 }, 6448 { 6449 .name = "high", 6450 .flags = CFTYPE_NOT_ON_ROOT, 6451 .seq_show = memory_high_show, 6452 .write = memory_high_write, 6453 }, 6454 { 6455 .name = "max", 6456 .flags = CFTYPE_NOT_ON_ROOT, 6457 .seq_show = memory_max_show, 6458 .write = memory_max_write, 6459 }, 6460 { 6461 .name = "events", 6462 .flags = CFTYPE_NOT_ON_ROOT, 6463 .file_offset = offsetof(struct mem_cgroup, events_file), 6464 .seq_show = memory_events_show, 6465 }, 6466 { 6467 .name = "events.local", 6468 .flags = CFTYPE_NOT_ON_ROOT, 6469 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6470 .seq_show = memory_events_local_show, 6471 }, 6472 { 6473 .name = "stat", 6474 .seq_show = memory_stat_show, 6475 }, 6476 #ifdef CONFIG_NUMA 6477 { 6478 .name = "numa_stat", 6479 .seq_show = memory_numa_stat_show, 6480 }, 6481 #endif 6482 { 6483 .name = "oom.group", 6484 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6485 .seq_show = memory_oom_group_show, 6486 .write = memory_oom_group_write, 6487 }, 6488 { } /* terminate */ 6489 }; 6490 6491 struct cgroup_subsys memory_cgrp_subsys = { 6492 .css_alloc = mem_cgroup_css_alloc, 6493 .css_online = mem_cgroup_css_online, 6494 .css_offline = mem_cgroup_css_offline, 6495 .css_released = mem_cgroup_css_released, 6496 .css_free = mem_cgroup_css_free, 6497 .css_reset = mem_cgroup_css_reset, 6498 .css_rstat_flush = mem_cgroup_css_rstat_flush, 6499 .can_attach = mem_cgroup_can_attach, 6500 .cancel_attach = mem_cgroup_cancel_attach, 6501 .post_attach = mem_cgroup_move_task, 6502 .dfl_cftypes = memory_files, 6503 .legacy_cftypes = mem_cgroup_legacy_files, 6504 .early_init = 0, 6505 }; 6506 6507 /* 6508 * This function calculates an individual cgroup's effective 6509 * protection which is derived from its own memory.min/low, its 6510 * parent's and siblings' settings, as well as the actual memory 6511 * distribution in the tree. 6512 * 6513 * The following rules apply to the effective protection values: 6514 * 6515 * 1. At the first level of reclaim, effective protection is equal to 6516 * the declared protection in memory.min and memory.low. 6517 * 6518 * 2. To enable safe delegation of the protection configuration, at 6519 * subsequent levels the effective protection is capped to the 6520 * parent's effective protection. 6521 * 6522 * 3. To make complex and dynamic subtrees easier to configure, the 6523 * user is allowed to overcommit the declared protection at a given 6524 * level. If that is the case, the parent's effective protection is 6525 * distributed to the children in proportion to how much protection 6526 * they have declared and how much of it they are utilizing. 6527 * 6528 * This makes distribution proportional, but also work-conserving: 6529 * if one cgroup claims much more protection than it uses memory, 6530 * the unused remainder is available to its siblings. 6531 * 6532 * 4. Conversely, when the declared protection is undercommitted at a 6533 * given level, the distribution of the larger parental protection 6534 * budget is NOT proportional. A cgroup's protection from a sibling 6535 * is capped to its own memory.min/low setting. 6536 * 6537 * 5. However, to allow protecting recursive subtrees from each other 6538 * without having to declare each individual cgroup's fixed share 6539 * of the ancestor's claim to protection, any unutilized - 6540 * "floating" - protection from up the tree is distributed in 6541 * proportion to each cgroup's *usage*. This makes the protection 6542 * neutral wrt sibling cgroups and lets them compete freely over 6543 * the shared parental protection budget, but it protects the 6544 * subtree as a whole from neighboring subtrees. 6545 * 6546 * Note that 4. and 5. are not in conflict: 4. is about protecting 6547 * against immediate siblings whereas 5. is about protecting against 6548 * neighboring subtrees. 6549 */ 6550 static unsigned long effective_protection(unsigned long usage, 6551 unsigned long parent_usage, 6552 unsigned long setting, 6553 unsigned long parent_effective, 6554 unsigned long siblings_protected) 6555 { 6556 unsigned long protected; 6557 unsigned long ep; 6558 6559 protected = min(usage, setting); 6560 /* 6561 * If all cgroups at this level combined claim and use more 6562 * protection then what the parent affords them, distribute 6563 * shares in proportion to utilization. 6564 * 6565 * We are using actual utilization rather than the statically 6566 * claimed protection in order to be work-conserving: claimed 6567 * but unused protection is available to siblings that would 6568 * otherwise get a smaller chunk than what they claimed. 6569 */ 6570 if (siblings_protected > parent_effective) 6571 return protected * parent_effective / siblings_protected; 6572 6573 /* 6574 * Ok, utilized protection of all children is within what the 6575 * parent affords them, so we know whatever this child claims 6576 * and utilizes is effectively protected. 6577 * 6578 * If there is unprotected usage beyond this value, reclaim 6579 * will apply pressure in proportion to that amount. 6580 * 6581 * If there is unutilized protection, the cgroup will be fully 6582 * shielded from reclaim, but we do return a smaller value for 6583 * protection than what the group could enjoy in theory. This 6584 * is okay. With the overcommit distribution above, effective 6585 * protection is always dependent on how memory is actually 6586 * consumed among the siblings anyway. 6587 */ 6588 ep = protected; 6589 6590 /* 6591 * If the children aren't claiming (all of) the protection 6592 * afforded to them by the parent, distribute the remainder in 6593 * proportion to the (unprotected) memory of each cgroup. That 6594 * way, cgroups that aren't explicitly prioritized wrt each 6595 * other compete freely over the allowance, but they are 6596 * collectively protected from neighboring trees. 6597 * 6598 * We're using unprotected memory for the weight so that if 6599 * some cgroups DO claim explicit protection, we don't protect 6600 * the same bytes twice. 6601 * 6602 * Check both usage and parent_usage against the respective 6603 * protected values. One should imply the other, but they 6604 * aren't read atomically - make sure the division is sane. 6605 */ 6606 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6607 return ep; 6608 if (parent_effective > siblings_protected && 6609 parent_usage > siblings_protected && 6610 usage > protected) { 6611 unsigned long unclaimed; 6612 6613 unclaimed = parent_effective - siblings_protected; 6614 unclaimed *= usage - protected; 6615 unclaimed /= parent_usage - siblings_protected; 6616 6617 ep += unclaimed; 6618 } 6619 6620 return ep; 6621 } 6622 6623 /** 6624 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 6625 * @root: the top ancestor of the sub-tree being checked 6626 * @memcg: the memory cgroup to check 6627 * 6628 * WARNING: This function is not stateless! It can only be used as part 6629 * of a top-down tree iteration, not for isolated queries. 6630 */ 6631 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6632 struct mem_cgroup *memcg) 6633 { 6634 unsigned long usage, parent_usage; 6635 struct mem_cgroup *parent; 6636 6637 if (mem_cgroup_disabled()) 6638 return; 6639 6640 if (!root) 6641 root = root_mem_cgroup; 6642 6643 /* 6644 * Effective values of the reclaim targets are ignored so they 6645 * can be stale. Have a look at mem_cgroup_protection for more 6646 * details. 6647 * TODO: calculation should be more robust so that we do not need 6648 * that special casing. 6649 */ 6650 if (memcg == root) 6651 return; 6652 6653 usage = page_counter_read(&memcg->memory); 6654 if (!usage) 6655 return; 6656 6657 parent = parent_mem_cgroup(memcg); 6658 /* No parent means a non-hierarchical mode on v1 memcg */ 6659 if (!parent) 6660 return; 6661 6662 if (parent == root) { 6663 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6664 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6665 return; 6666 } 6667 6668 parent_usage = page_counter_read(&parent->memory); 6669 6670 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6671 READ_ONCE(memcg->memory.min), 6672 READ_ONCE(parent->memory.emin), 6673 atomic_long_read(&parent->memory.children_min_usage))); 6674 6675 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6676 READ_ONCE(memcg->memory.low), 6677 READ_ONCE(parent->memory.elow), 6678 atomic_long_read(&parent->memory.children_low_usage))); 6679 } 6680 6681 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 6682 gfp_t gfp) 6683 { 6684 long nr_pages = folio_nr_pages(folio); 6685 int ret; 6686 6687 ret = try_charge(memcg, gfp, nr_pages); 6688 if (ret) 6689 goto out; 6690 6691 css_get(&memcg->css); 6692 commit_charge(folio, memcg); 6693 6694 local_irq_disable(); 6695 mem_cgroup_charge_statistics(memcg, nr_pages); 6696 memcg_check_events(memcg, folio_nid(folio)); 6697 local_irq_enable(); 6698 out: 6699 return ret; 6700 } 6701 6702 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 6703 { 6704 struct mem_cgroup *memcg; 6705 int ret; 6706 6707 memcg = get_mem_cgroup_from_mm(mm); 6708 ret = charge_memcg(folio, memcg, gfp); 6709 css_put(&memcg->css); 6710 6711 return ret; 6712 } 6713 6714 /** 6715 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin 6716 * @page: page to charge 6717 * @mm: mm context of the victim 6718 * @gfp: reclaim mode 6719 * @entry: swap entry for which the page is allocated 6720 * 6721 * This function charges a page allocated for swapin. Please call this before 6722 * adding the page to the swapcache. 6723 * 6724 * Returns 0 on success. Otherwise, an error code is returned. 6725 */ 6726 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, 6727 gfp_t gfp, swp_entry_t entry) 6728 { 6729 struct folio *folio = page_folio(page); 6730 struct mem_cgroup *memcg; 6731 unsigned short id; 6732 int ret; 6733 6734 if (mem_cgroup_disabled()) 6735 return 0; 6736 6737 id = lookup_swap_cgroup_id(entry); 6738 rcu_read_lock(); 6739 memcg = mem_cgroup_from_id(id); 6740 if (!memcg || !css_tryget_online(&memcg->css)) 6741 memcg = get_mem_cgroup_from_mm(mm); 6742 rcu_read_unlock(); 6743 6744 ret = charge_memcg(folio, memcg, gfp); 6745 6746 css_put(&memcg->css); 6747 return ret; 6748 } 6749 6750 /* 6751 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 6752 * @entry: swap entry for which the page is charged 6753 * 6754 * Call this function after successfully adding the charged page to swapcache. 6755 * 6756 * Note: This function assumes the page for which swap slot is being uncharged 6757 * is order 0 page. 6758 */ 6759 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 6760 { 6761 /* 6762 * Cgroup1's unified memory+swap counter has been charged with the 6763 * new swapcache page, finish the transfer by uncharging the swap 6764 * slot. The swap slot would also get uncharged when it dies, but 6765 * it can stick around indefinitely and we'd count the page twice 6766 * the entire time. 6767 * 6768 * Cgroup2 has separate resource counters for memory and swap, 6769 * so this is a non-issue here. Memory and swap charge lifetimes 6770 * correspond 1:1 to page and swap slot lifetimes: we charge the 6771 * page to memory here, and uncharge swap when the slot is freed. 6772 */ 6773 if (!mem_cgroup_disabled() && do_memsw_account()) { 6774 /* 6775 * The swap entry might not get freed for a long time, 6776 * let's not wait for it. The page already received a 6777 * memory+swap charge, drop the swap entry duplicate. 6778 */ 6779 mem_cgroup_uncharge_swap(entry, 1); 6780 } 6781 } 6782 6783 struct uncharge_gather { 6784 struct mem_cgroup *memcg; 6785 unsigned long nr_memory; 6786 unsigned long pgpgout; 6787 unsigned long nr_kmem; 6788 int nid; 6789 }; 6790 6791 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6792 { 6793 memset(ug, 0, sizeof(*ug)); 6794 } 6795 6796 static void uncharge_batch(const struct uncharge_gather *ug) 6797 { 6798 unsigned long flags; 6799 6800 if (ug->nr_memory) { 6801 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 6802 if (do_memsw_account()) 6803 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 6804 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6805 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6806 memcg_oom_recover(ug->memcg); 6807 } 6808 6809 local_irq_save(flags); 6810 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6811 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 6812 memcg_check_events(ug->memcg, ug->nid); 6813 local_irq_restore(flags); 6814 6815 /* drop reference from uncharge_folio */ 6816 css_put(&ug->memcg->css); 6817 } 6818 6819 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 6820 { 6821 long nr_pages; 6822 struct mem_cgroup *memcg; 6823 struct obj_cgroup *objcg; 6824 bool use_objcg = folio_memcg_kmem(folio); 6825 6826 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 6827 6828 /* 6829 * Nobody should be changing or seriously looking at 6830 * folio memcg or objcg at this point, we have fully 6831 * exclusive access to the folio. 6832 */ 6833 if (use_objcg) { 6834 objcg = __folio_objcg(folio); 6835 /* 6836 * This get matches the put at the end of the function and 6837 * kmem pages do not hold memcg references anymore. 6838 */ 6839 memcg = get_mem_cgroup_from_objcg(objcg); 6840 } else { 6841 memcg = __folio_memcg(folio); 6842 } 6843 6844 if (!memcg) 6845 return; 6846 6847 if (ug->memcg != memcg) { 6848 if (ug->memcg) { 6849 uncharge_batch(ug); 6850 uncharge_gather_clear(ug); 6851 } 6852 ug->memcg = memcg; 6853 ug->nid = folio_nid(folio); 6854 6855 /* pairs with css_put in uncharge_batch */ 6856 css_get(&memcg->css); 6857 } 6858 6859 nr_pages = folio_nr_pages(folio); 6860 6861 if (use_objcg) { 6862 ug->nr_memory += nr_pages; 6863 ug->nr_kmem += nr_pages; 6864 6865 folio->memcg_data = 0; 6866 obj_cgroup_put(objcg); 6867 } else { 6868 /* LRU pages aren't accounted at the root level */ 6869 if (!mem_cgroup_is_root(memcg)) 6870 ug->nr_memory += nr_pages; 6871 ug->pgpgout++; 6872 6873 folio->memcg_data = 0; 6874 } 6875 6876 css_put(&memcg->css); 6877 } 6878 6879 void __mem_cgroup_uncharge(struct folio *folio) 6880 { 6881 struct uncharge_gather ug; 6882 6883 /* Don't touch folio->lru of any random page, pre-check: */ 6884 if (!folio_memcg(folio)) 6885 return; 6886 6887 uncharge_gather_clear(&ug); 6888 uncharge_folio(folio, &ug); 6889 uncharge_batch(&ug); 6890 } 6891 6892 /** 6893 * __mem_cgroup_uncharge_list - uncharge a list of page 6894 * @page_list: list of pages to uncharge 6895 * 6896 * Uncharge a list of pages previously charged with 6897 * __mem_cgroup_charge(). 6898 */ 6899 void __mem_cgroup_uncharge_list(struct list_head *page_list) 6900 { 6901 struct uncharge_gather ug; 6902 struct folio *folio; 6903 6904 uncharge_gather_clear(&ug); 6905 list_for_each_entry(folio, page_list, lru) 6906 uncharge_folio(folio, &ug); 6907 if (ug.memcg) 6908 uncharge_batch(&ug); 6909 } 6910 6911 /** 6912 * mem_cgroup_migrate - Charge a folio's replacement. 6913 * @old: Currently circulating folio. 6914 * @new: Replacement folio. 6915 * 6916 * Charge @new as a replacement folio for @old. @old will 6917 * be uncharged upon free. 6918 * 6919 * Both folios must be locked, @new->mapping must be set up. 6920 */ 6921 void mem_cgroup_migrate(struct folio *old, struct folio *new) 6922 { 6923 struct mem_cgroup *memcg; 6924 long nr_pages = folio_nr_pages(new); 6925 unsigned long flags; 6926 6927 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 6928 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 6929 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 6930 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 6931 6932 if (mem_cgroup_disabled()) 6933 return; 6934 6935 /* Page cache replacement: new folio already charged? */ 6936 if (folio_memcg(new)) 6937 return; 6938 6939 memcg = folio_memcg(old); 6940 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 6941 if (!memcg) 6942 return; 6943 6944 /* Force-charge the new page. The old one will be freed soon */ 6945 if (!mem_cgroup_is_root(memcg)) { 6946 page_counter_charge(&memcg->memory, nr_pages); 6947 if (do_memsw_account()) 6948 page_counter_charge(&memcg->memsw, nr_pages); 6949 } 6950 6951 css_get(&memcg->css); 6952 commit_charge(new, memcg); 6953 6954 local_irq_save(flags); 6955 mem_cgroup_charge_statistics(memcg, nr_pages); 6956 memcg_check_events(memcg, folio_nid(new)); 6957 local_irq_restore(flags); 6958 } 6959 6960 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6961 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6962 6963 void mem_cgroup_sk_alloc(struct sock *sk) 6964 { 6965 struct mem_cgroup *memcg; 6966 6967 if (!mem_cgroup_sockets_enabled) 6968 return; 6969 6970 /* Do not associate the sock with unrelated interrupted task's memcg. */ 6971 if (in_interrupt()) 6972 return; 6973 6974 rcu_read_lock(); 6975 memcg = mem_cgroup_from_task(current); 6976 if (memcg == root_mem_cgroup) 6977 goto out; 6978 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6979 goto out; 6980 if (css_tryget(&memcg->css)) 6981 sk->sk_memcg = memcg; 6982 out: 6983 rcu_read_unlock(); 6984 } 6985 6986 void mem_cgroup_sk_free(struct sock *sk) 6987 { 6988 if (sk->sk_memcg) 6989 css_put(&sk->sk_memcg->css); 6990 } 6991 6992 /** 6993 * mem_cgroup_charge_skmem - charge socket memory 6994 * @memcg: memcg to charge 6995 * @nr_pages: number of pages to charge 6996 * @gfp_mask: reclaim mode 6997 * 6998 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6999 * @memcg's configured limit, %false if it doesn't. 7000 */ 7001 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 7002 gfp_t gfp_mask) 7003 { 7004 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7005 struct page_counter *fail; 7006 7007 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7008 memcg->tcpmem_pressure = 0; 7009 return true; 7010 } 7011 memcg->tcpmem_pressure = 1; 7012 if (gfp_mask & __GFP_NOFAIL) { 7013 page_counter_charge(&memcg->tcpmem, nr_pages); 7014 return true; 7015 } 7016 return false; 7017 } 7018 7019 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7020 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7021 return true; 7022 } 7023 7024 return false; 7025 } 7026 7027 /** 7028 * mem_cgroup_uncharge_skmem - uncharge socket memory 7029 * @memcg: memcg to uncharge 7030 * @nr_pages: number of pages to uncharge 7031 */ 7032 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7033 { 7034 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7035 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7036 return; 7037 } 7038 7039 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7040 7041 refill_stock(memcg, nr_pages); 7042 } 7043 7044 static int __init cgroup_memory(char *s) 7045 { 7046 char *token; 7047 7048 while ((token = strsep(&s, ",")) != NULL) { 7049 if (!*token) 7050 continue; 7051 if (!strcmp(token, "nosocket")) 7052 cgroup_memory_nosocket = true; 7053 if (!strcmp(token, "nokmem")) 7054 cgroup_memory_nokmem = true; 7055 } 7056 return 0; 7057 } 7058 __setup("cgroup.memory=", cgroup_memory); 7059 7060 /* 7061 * subsys_initcall() for memory controller. 7062 * 7063 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7064 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7065 * basically everything that doesn't depend on a specific mem_cgroup structure 7066 * should be initialized from here. 7067 */ 7068 static int __init mem_cgroup_init(void) 7069 { 7070 int cpu, node; 7071 7072 /* 7073 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7074 * used for per-memcg-per-cpu caching of per-node statistics. In order 7075 * to work fine, we should make sure that the overfill threshold can't 7076 * exceed S32_MAX / PAGE_SIZE. 7077 */ 7078 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7079 7080 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7081 memcg_hotplug_cpu_dead); 7082 7083 for_each_possible_cpu(cpu) 7084 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7085 drain_local_stock); 7086 7087 for_each_node(node) { 7088 struct mem_cgroup_tree_per_node *rtpn; 7089 7090 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7091 node_online(node) ? node : NUMA_NO_NODE); 7092 7093 rtpn->rb_root = RB_ROOT; 7094 rtpn->rb_rightmost = NULL; 7095 spin_lock_init(&rtpn->lock); 7096 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7097 } 7098 7099 return 0; 7100 } 7101 subsys_initcall(mem_cgroup_init); 7102 7103 #ifdef CONFIG_MEMCG_SWAP 7104 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7105 { 7106 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7107 /* 7108 * The root cgroup cannot be destroyed, so it's refcount must 7109 * always be >= 1. 7110 */ 7111 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 7112 VM_BUG_ON(1); 7113 break; 7114 } 7115 memcg = parent_mem_cgroup(memcg); 7116 if (!memcg) 7117 memcg = root_mem_cgroup; 7118 } 7119 return memcg; 7120 } 7121 7122 /** 7123 * mem_cgroup_swapout - transfer a memsw charge to swap 7124 * @page: page whose memsw charge to transfer 7125 * @entry: swap entry to move the charge to 7126 * 7127 * Transfer the memsw charge of @page to @entry. 7128 */ 7129 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 7130 { 7131 struct mem_cgroup *memcg, *swap_memcg; 7132 unsigned int nr_entries; 7133 unsigned short oldid; 7134 7135 VM_BUG_ON_PAGE(PageLRU(page), page); 7136 VM_BUG_ON_PAGE(page_count(page), page); 7137 7138 if (mem_cgroup_disabled()) 7139 return; 7140 7141 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7142 return; 7143 7144 memcg = page_memcg(page); 7145 7146 VM_WARN_ON_ONCE_PAGE(!memcg, page); 7147 if (!memcg) 7148 return; 7149 7150 /* 7151 * In case the memcg owning these pages has been offlined and doesn't 7152 * have an ID allocated to it anymore, charge the closest online 7153 * ancestor for the swap instead and transfer the memory+swap charge. 7154 */ 7155 swap_memcg = mem_cgroup_id_get_online(memcg); 7156 nr_entries = thp_nr_pages(page); 7157 /* Get references for the tail pages, too */ 7158 if (nr_entries > 1) 7159 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7160 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7161 nr_entries); 7162 VM_BUG_ON_PAGE(oldid, page); 7163 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7164 7165 page->memcg_data = 0; 7166 7167 if (!mem_cgroup_is_root(memcg)) 7168 page_counter_uncharge(&memcg->memory, nr_entries); 7169 7170 if (!cgroup_memory_noswap && memcg != swap_memcg) { 7171 if (!mem_cgroup_is_root(swap_memcg)) 7172 page_counter_charge(&swap_memcg->memsw, nr_entries); 7173 page_counter_uncharge(&memcg->memsw, nr_entries); 7174 } 7175 7176 /* 7177 * Interrupts should be disabled here because the caller holds the 7178 * i_pages lock which is taken with interrupts-off. It is 7179 * important here to have the interrupts disabled because it is the 7180 * only synchronisation we have for updating the per-CPU variables. 7181 */ 7182 VM_BUG_ON(!irqs_disabled()); 7183 mem_cgroup_charge_statistics(memcg, -nr_entries); 7184 memcg_check_events(memcg, page_to_nid(page)); 7185 7186 css_put(&memcg->css); 7187 } 7188 7189 /** 7190 * __mem_cgroup_try_charge_swap - try charging swap space for a page 7191 * @page: page being added to swap 7192 * @entry: swap entry to charge 7193 * 7194 * Try to charge @page's memcg for the swap space at @entry. 7195 * 7196 * Returns 0 on success, -ENOMEM on failure. 7197 */ 7198 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 7199 { 7200 unsigned int nr_pages = thp_nr_pages(page); 7201 struct page_counter *counter; 7202 struct mem_cgroup *memcg; 7203 unsigned short oldid; 7204 7205 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7206 return 0; 7207 7208 memcg = page_memcg(page); 7209 7210 VM_WARN_ON_ONCE_PAGE(!memcg, page); 7211 if (!memcg) 7212 return 0; 7213 7214 if (!entry.val) { 7215 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7216 return 0; 7217 } 7218 7219 memcg = mem_cgroup_id_get_online(memcg); 7220 7221 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) && 7222 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7223 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7224 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7225 mem_cgroup_id_put(memcg); 7226 return -ENOMEM; 7227 } 7228 7229 /* Get references for the tail pages, too */ 7230 if (nr_pages > 1) 7231 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7232 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7233 VM_BUG_ON_PAGE(oldid, page); 7234 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7235 7236 return 0; 7237 } 7238 7239 /** 7240 * __mem_cgroup_uncharge_swap - uncharge swap space 7241 * @entry: swap entry to uncharge 7242 * @nr_pages: the amount of swap space to uncharge 7243 */ 7244 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7245 { 7246 struct mem_cgroup *memcg; 7247 unsigned short id; 7248 7249 id = swap_cgroup_record(entry, 0, nr_pages); 7250 rcu_read_lock(); 7251 memcg = mem_cgroup_from_id(id); 7252 if (memcg) { 7253 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) { 7254 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7255 page_counter_uncharge(&memcg->swap, nr_pages); 7256 else 7257 page_counter_uncharge(&memcg->memsw, nr_pages); 7258 } 7259 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7260 mem_cgroup_id_put_many(memcg, nr_pages); 7261 } 7262 rcu_read_unlock(); 7263 } 7264 7265 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7266 { 7267 long nr_swap_pages = get_nr_swap_pages(); 7268 7269 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7270 return nr_swap_pages; 7271 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7272 nr_swap_pages = min_t(long, nr_swap_pages, 7273 READ_ONCE(memcg->swap.max) - 7274 page_counter_read(&memcg->swap)); 7275 return nr_swap_pages; 7276 } 7277 7278 bool mem_cgroup_swap_full(struct page *page) 7279 { 7280 struct mem_cgroup *memcg; 7281 7282 VM_BUG_ON_PAGE(!PageLocked(page), page); 7283 7284 if (vm_swap_full()) 7285 return true; 7286 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7287 return false; 7288 7289 memcg = page_memcg(page); 7290 if (!memcg) 7291 return false; 7292 7293 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 7294 unsigned long usage = page_counter_read(&memcg->swap); 7295 7296 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7297 usage * 2 >= READ_ONCE(memcg->swap.max)) 7298 return true; 7299 } 7300 7301 return false; 7302 } 7303 7304 static int __init setup_swap_account(char *s) 7305 { 7306 if (!strcmp(s, "1")) 7307 cgroup_memory_noswap = false; 7308 else if (!strcmp(s, "0")) 7309 cgroup_memory_noswap = true; 7310 return 1; 7311 } 7312 __setup("swapaccount=", setup_swap_account); 7313 7314 static u64 swap_current_read(struct cgroup_subsys_state *css, 7315 struct cftype *cft) 7316 { 7317 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7318 7319 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7320 } 7321 7322 static int swap_high_show(struct seq_file *m, void *v) 7323 { 7324 return seq_puts_memcg_tunable(m, 7325 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7326 } 7327 7328 static ssize_t swap_high_write(struct kernfs_open_file *of, 7329 char *buf, size_t nbytes, loff_t off) 7330 { 7331 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7332 unsigned long high; 7333 int err; 7334 7335 buf = strstrip(buf); 7336 err = page_counter_memparse(buf, "max", &high); 7337 if (err) 7338 return err; 7339 7340 page_counter_set_high(&memcg->swap, high); 7341 7342 return nbytes; 7343 } 7344 7345 static int swap_max_show(struct seq_file *m, void *v) 7346 { 7347 return seq_puts_memcg_tunable(m, 7348 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7349 } 7350 7351 static ssize_t swap_max_write(struct kernfs_open_file *of, 7352 char *buf, size_t nbytes, loff_t off) 7353 { 7354 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7355 unsigned long max; 7356 int err; 7357 7358 buf = strstrip(buf); 7359 err = page_counter_memparse(buf, "max", &max); 7360 if (err) 7361 return err; 7362 7363 xchg(&memcg->swap.max, max); 7364 7365 return nbytes; 7366 } 7367 7368 static int swap_events_show(struct seq_file *m, void *v) 7369 { 7370 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7371 7372 seq_printf(m, "high %lu\n", 7373 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7374 seq_printf(m, "max %lu\n", 7375 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7376 seq_printf(m, "fail %lu\n", 7377 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7378 7379 return 0; 7380 } 7381 7382 static struct cftype swap_files[] = { 7383 { 7384 .name = "swap.current", 7385 .flags = CFTYPE_NOT_ON_ROOT, 7386 .read_u64 = swap_current_read, 7387 }, 7388 { 7389 .name = "swap.high", 7390 .flags = CFTYPE_NOT_ON_ROOT, 7391 .seq_show = swap_high_show, 7392 .write = swap_high_write, 7393 }, 7394 { 7395 .name = "swap.max", 7396 .flags = CFTYPE_NOT_ON_ROOT, 7397 .seq_show = swap_max_show, 7398 .write = swap_max_write, 7399 }, 7400 { 7401 .name = "swap.events", 7402 .flags = CFTYPE_NOT_ON_ROOT, 7403 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7404 .seq_show = swap_events_show, 7405 }, 7406 { } /* terminate */ 7407 }; 7408 7409 static struct cftype memsw_files[] = { 7410 { 7411 .name = "memsw.usage_in_bytes", 7412 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7413 .read_u64 = mem_cgroup_read_u64, 7414 }, 7415 { 7416 .name = "memsw.max_usage_in_bytes", 7417 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7418 .write = mem_cgroup_reset, 7419 .read_u64 = mem_cgroup_read_u64, 7420 }, 7421 { 7422 .name = "memsw.limit_in_bytes", 7423 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7424 .write = mem_cgroup_write, 7425 .read_u64 = mem_cgroup_read_u64, 7426 }, 7427 { 7428 .name = "memsw.failcnt", 7429 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7430 .write = mem_cgroup_reset, 7431 .read_u64 = mem_cgroup_read_u64, 7432 }, 7433 { }, /* terminate */ 7434 }; 7435 7436 /* 7437 * If mem_cgroup_swap_init() is implemented as a subsys_initcall() 7438 * instead of a core_initcall(), this could mean cgroup_memory_noswap still 7439 * remains set to false even when memcg is disabled via "cgroup_disable=memory" 7440 * boot parameter. This may result in premature OOPS inside 7441 * mem_cgroup_get_nr_swap_pages() function in corner cases. 7442 */ 7443 static int __init mem_cgroup_swap_init(void) 7444 { 7445 /* No memory control -> no swap control */ 7446 if (mem_cgroup_disabled()) 7447 cgroup_memory_noswap = true; 7448 7449 if (cgroup_memory_noswap) 7450 return 0; 7451 7452 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7453 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7454 7455 return 0; 7456 } 7457 core_initcall(mem_cgroup_swap_init); 7458 7459 #endif /* CONFIG_MEMCG_SWAP */ 7460