1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/pagewalk.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include <linux/psi.h> 61 #include <linux/seq_buf.h> 62 #include "internal.h" 63 #include <net/sock.h> 64 #include <net/ip.h> 65 #include "slab.h" 66 67 #include <linux/uaccess.h> 68 69 #include <trace/events/vmscan.h> 70 71 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 72 EXPORT_SYMBOL(memory_cgrp_subsys); 73 74 struct mem_cgroup *root_mem_cgroup __read_mostly; 75 76 #define MEM_CGROUP_RECLAIM_RETRIES 5 77 78 /* Socket memory accounting disabled? */ 79 static bool cgroup_memory_nosocket; 80 81 /* Kernel memory accounting disabled? */ 82 static bool cgroup_memory_nokmem; 83 84 /* Whether the swap controller is active */ 85 #ifdef CONFIG_MEMCG_SWAP 86 int do_swap_account __read_mostly; 87 #else 88 #define do_swap_account 0 89 #endif 90 91 #ifdef CONFIG_CGROUP_WRITEBACK 92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 static const char *const mem_cgroup_lru_names[] = { 102 "inactive_anon", 103 "active_anon", 104 "inactive_file", 105 "active_file", 106 "unevictable", 107 }; 108 109 #define THRESHOLDS_EVENTS_TARGET 128 110 #define SOFTLIMIT_EVENTS_TARGET 1024 111 #define NUMAINFO_EVENTS_TARGET 1024 112 113 /* 114 * Cgroups above their limits are maintained in a RB-Tree, independent of 115 * their hierarchy representation 116 */ 117 118 struct mem_cgroup_tree_per_node { 119 struct rb_root rb_root; 120 struct rb_node *rb_rightmost; 121 spinlock_t lock; 122 }; 123 124 struct mem_cgroup_tree { 125 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 126 }; 127 128 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 129 130 /* for OOM */ 131 struct mem_cgroup_eventfd_list { 132 struct list_head list; 133 struct eventfd_ctx *eventfd; 134 }; 135 136 /* 137 * cgroup_event represents events which userspace want to receive. 138 */ 139 struct mem_cgroup_event { 140 /* 141 * memcg which the event belongs to. 142 */ 143 struct mem_cgroup *memcg; 144 /* 145 * eventfd to signal userspace about the event. 146 */ 147 struct eventfd_ctx *eventfd; 148 /* 149 * Each of these stored in a list by the cgroup. 150 */ 151 struct list_head list; 152 /* 153 * register_event() callback will be used to add new userspace 154 * waiter for changes related to this event. Use eventfd_signal() 155 * on eventfd to send notification to userspace. 156 */ 157 int (*register_event)(struct mem_cgroup *memcg, 158 struct eventfd_ctx *eventfd, const char *args); 159 /* 160 * unregister_event() callback will be called when userspace closes 161 * the eventfd or on cgroup removing. This callback must be set, 162 * if you want provide notification functionality. 163 */ 164 void (*unregister_event)(struct mem_cgroup *memcg, 165 struct eventfd_ctx *eventfd); 166 /* 167 * All fields below needed to unregister event when 168 * userspace closes eventfd. 169 */ 170 poll_table pt; 171 wait_queue_head_t *wqh; 172 wait_queue_entry_t wait; 173 struct work_struct remove; 174 }; 175 176 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 177 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 178 179 /* Stuffs for move charges at task migration. */ 180 /* 181 * Types of charges to be moved. 182 */ 183 #define MOVE_ANON 0x1U 184 #define MOVE_FILE 0x2U 185 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 186 187 /* "mc" and its members are protected by cgroup_mutex */ 188 static struct move_charge_struct { 189 spinlock_t lock; /* for from, to */ 190 struct mm_struct *mm; 191 struct mem_cgroup *from; 192 struct mem_cgroup *to; 193 unsigned long flags; 194 unsigned long precharge; 195 unsigned long moved_charge; 196 unsigned long moved_swap; 197 struct task_struct *moving_task; /* a task moving charges */ 198 wait_queue_head_t waitq; /* a waitq for other context */ 199 } mc = { 200 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 201 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 202 }; 203 204 /* 205 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 206 * limit reclaim to prevent infinite loops, if they ever occur. 207 */ 208 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 209 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 210 211 enum charge_type { 212 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 213 MEM_CGROUP_CHARGE_TYPE_ANON, 214 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 215 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 216 NR_CHARGE_TYPE, 217 }; 218 219 /* for encoding cft->private value on file */ 220 enum res_type { 221 _MEM, 222 _MEMSWAP, 223 _OOM_TYPE, 224 _KMEM, 225 _TCP, 226 }; 227 228 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 229 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 230 #define MEMFILE_ATTR(val) ((val) & 0xffff) 231 /* Used for OOM nofiier */ 232 #define OOM_CONTROL (0) 233 234 /* 235 * Iteration constructs for visiting all cgroups (under a tree). If 236 * loops are exited prematurely (break), mem_cgroup_iter_break() must 237 * be used for reference counting. 238 */ 239 #define for_each_mem_cgroup_tree(iter, root) \ 240 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 241 iter != NULL; \ 242 iter = mem_cgroup_iter(root, iter, NULL)) 243 244 #define for_each_mem_cgroup(iter) \ 245 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 246 iter != NULL; \ 247 iter = mem_cgroup_iter(NULL, iter, NULL)) 248 249 static inline bool should_force_charge(void) 250 { 251 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 252 (current->flags & PF_EXITING); 253 } 254 255 /* Some nice accessors for the vmpressure. */ 256 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 257 { 258 if (!memcg) 259 memcg = root_mem_cgroup; 260 return &memcg->vmpressure; 261 } 262 263 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 264 { 265 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 266 } 267 268 #ifdef CONFIG_MEMCG_KMEM 269 /* 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 271 * The main reason for not using cgroup id for this: 272 * this works better in sparse environments, where we have a lot of memcgs, 273 * but only a few kmem-limited. Or also, if we have, for instance, 200 274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 275 * 200 entry array for that. 276 * 277 * The current size of the caches array is stored in memcg_nr_cache_ids. It 278 * will double each time we have to increase it. 279 */ 280 static DEFINE_IDA(memcg_cache_ida); 281 int memcg_nr_cache_ids; 282 283 /* Protects memcg_nr_cache_ids */ 284 static DECLARE_RWSEM(memcg_cache_ids_sem); 285 286 void memcg_get_cache_ids(void) 287 { 288 down_read(&memcg_cache_ids_sem); 289 } 290 291 void memcg_put_cache_ids(void) 292 { 293 up_read(&memcg_cache_ids_sem); 294 } 295 296 /* 297 * MIN_SIZE is different than 1, because we would like to avoid going through 298 * the alloc/free process all the time. In a small machine, 4 kmem-limited 299 * cgroups is a reasonable guess. In the future, it could be a parameter or 300 * tunable, but that is strictly not necessary. 301 * 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 303 * this constant directly from cgroup, but it is understandable that this is 304 * better kept as an internal representation in cgroup.c. In any case, the 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily 306 * increase ours as well if it increases. 307 */ 308 #define MEMCG_CACHES_MIN_SIZE 4 309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 310 311 /* 312 * A lot of the calls to the cache allocation functions are expected to be 313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 314 * conditional to this static branch, we'll have to allow modules that does 315 * kmem_cache_alloc and the such to see this symbol as well 316 */ 317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 318 EXPORT_SYMBOL(memcg_kmem_enabled_key); 319 320 struct workqueue_struct *memcg_kmem_cache_wq; 321 #endif 322 323 static int memcg_shrinker_map_size; 324 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 325 326 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 327 { 328 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 329 } 330 331 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 332 int size, int old_size) 333 { 334 struct memcg_shrinker_map *new, *old; 335 int nid; 336 337 lockdep_assert_held(&memcg_shrinker_map_mutex); 338 339 for_each_node(nid) { 340 old = rcu_dereference_protected( 341 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 342 /* Not yet online memcg */ 343 if (!old) 344 return 0; 345 346 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); 347 if (!new) 348 return -ENOMEM; 349 350 /* Set all old bits, clear all new bits */ 351 memset(new->map, (int)0xff, old_size); 352 memset((void *)new->map + old_size, 0, size - old_size); 353 354 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 355 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 356 } 357 358 return 0; 359 } 360 361 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 362 { 363 struct mem_cgroup_per_node *pn; 364 struct memcg_shrinker_map *map; 365 int nid; 366 367 if (mem_cgroup_is_root(memcg)) 368 return; 369 370 for_each_node(nid) { 371 pn = mem_cgroup_nodeinfo(memcg, nid); 372 map = rcu_dereference_protected(pn->shrinker_map, true); 373 if (map) 374 kvfree(map); 375 rcu_assign_pointer(pn->shrinker_map, NULL); 376 } 377 } 378 379 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 380 { 381 struct memcg_shrinker_map *map; 382 int nid, size, ret = 0; 383 384 if (mem_cgroup_is_root(memcg)) 385 return 0; 386 387 mutex_lock(&memcg_shrinker_map_mutex); 388 size = memcg_shrinker_map_size; 389 for_each_node(nid) { 390 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); 391 if (!map) { 392 memcg_free_shrinker_maps(memcg); 393 ret = -ENOMEM; 394 break; 395 } 396 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 397 } 398 mutex_unlock(&memcg_shrinker_map_mutex); 399 400 return ret; 401 } 402 403 int memcg_expand_shrinker_maps(int new_id) 404 { 405 int size, old_size, ret = 0; 406 struct mem_cgroup *memcg; 407 408 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 409 old_size = memcg_shrinker_map_size; 410 if (size <= old_size) 411 return 0; 412 413 mutex_lock(&memcg_shrinker_map_mutex); 414 if (!root_mem_cgroup) 415 goto unlock; 416 417 for_each_mem_cgroup(memcg) { 418 if (mem_cgroup_is_root(memcg)) 419 continue; 420 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 421 if (ret) 422 goto unlock; 423 } 424 unlock: 425 if (!ret) 426 memcg_shrinker_map_size = size; 427 mutex_unlock(&memcg_shrinker_map_mutex); 428 return ret; 429 } 430 431 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 432 { 433 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 434 struct memcg_shrinker_map *map; 435 436 rcu_read_lock(); 437 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 438 /* Pairs with smp mb in shrink_slab() */ 439 smp_mb__before_atomic(); 440 set_bit(shrinker_id, map->map); 441 rcu_read_unlock(); 442 } 443 } 444 445 /** 446 * mem_cgroup_css_from_page - css of the memcg associated with a page 447 * @page: page of interest 448 * 449 * If memcg is bound to the default hierarchy, css of the memcg associated 450 * with @page is returned. The returned css remains associated with @page 451 * until it is released. 452 * 453 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 454 * is returned. 455 */ 456 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 457 { 458 struct mem_cgroup *memcg; 459 460 memcg = page->mem_cgroup; 461 462 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 463 memcg = root_mem_cgroup; 464 465 return &memcg->css; 466 } 467 468 /** 469 * page_cgroup_ino - return inode number of the memcg a page is charged to 470 * @page: the page 471 * 472 * Look up the closest online ancestor of the memory cgroup @page is charged to 473 * and return its inode number or 0 if @page is not charged to any cgroup. It 474 * is safe to call this function without holding a reference to @page. 475 * 476 * Note, this function is inherently racy, because there is nothing to prevent 477 * the cgroup inode from getting torn down and potentially reallocated a moment 478 * after page_cgroup_ino() returns, so it only should be used by callers that 479 * do not care (such as procfs interfaces). 480 */ 481 ino_t page_cgroup_ino(struct page *page) 482 { 483 struct mem_cgroup *memcg; 484 unsigned long ino = 0; 485 486 rcu_read_lock(); 487 if (PageHead(page) && PageSlab(page)) 488 memcg = memcg_from_slab_page(page); 489 else 490 memcg = READ_ONCE(page->mem_cgroup); 491 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 492 memcg = parent_mem_cgroup(memcg); 493 if (memcg) 494 ino = cgroup_ino(memcg->css.cgroup); 495 rcu_read_unlock(); 496 return ino; 497 } 498 499 static struct mem_cgroup_per_node * 500 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 501 { 502 int nid = page_to_nid(page); 503 504 return memcg->nodeinfo[nid]; 505 } 506 507 static struct mem_cgroup_tree_per_node * 508 soft_limit_tree_node(int nid) 509 { 510 return soft_limit_tree.rb_tree_per_node[nid]; 511 } 512 513 static struct mem_cgroup_tree_per_node * 514 soft_limit_tree_from_page(struct page *page) 515 { 516 int nid = page_to_nid(page); 517 518 return soft_limit_tree.rb_tree_per_node[nid]; 519 } 520 521 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 522 struct mem_cgroup_tree_per_node *mctz, 523 unsigned long new_usage_in_excess) 524 { 525 struct rb_node **p = &mctz->rb_root.rb_node; 526 struct rb_node *parent = NULL; 527 struct mem_cgroup_per_node *mz_node; 528 bool rightmost = true; 529 530 if (mz->on_tree) 531 return; 532 533 mz->usage_in_excess = new_usage_in_excess; 534 if (!mz->usage_in_excess) 535 return; 536 while (*p) { 537 parent = *p; 538 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 539 tree_node); 540 if (mz->usage_in_excess < mz_node->usage_in_excess) { 541 p = &(*p)->rb_left; 542 rightmost = false; 543 } 544 545 /* 546 * We can't avoid mem cgroups that are over their soft 547 * limit by the same amount 548 */ 549 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 550 p = &(*p)->rb_right; 551 } 552 553 if (rightmost) 554 mctz->rb_rightmost = &mz->tree_node; 555 556 rb_link_node(&mz->tree_node, parent, p); 557 rb_insert_color(&mz->tree_node, &mctz->rb_root); 558 mz->on_tree = true; 559 } 560 561 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 562 struct mem_cgroup_tree_per_node *mctz) 563 { 564 if (!mz->on_tree) 565 return; 566 567 if (&mz->tree_node == mctz->rb_rightmost) 568 mctz->rb_rightmost = rb_prev(&mz->tree_node); 569 570 rb_erase(&mz->tree_node, &mctz->rb_root); 571 mz->on_tree = false; 572 } 573 574 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 575 struct mem_cgroup_tree_per_node *mctz) 576 { 577 unsigned long flags; 578 579 spin_lock_irqsave(&mctz->lock, flags); 580 __mem_cgroup_remove_exceeded(mz, mctz); 581 spin_unlock_irqrestore(&mctz->lock, flags); 582 } 583 584 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 585 { 586 unsigned long nr_pages = page_counter_read(&memcg->memory); 587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 588 unsigned long excess = 0; 589 590 if (nr_pages > soft_limit) 591 excess = nr_pages - soft_limit; 592 593 return excess; 594 } 595 596 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 597 { 598 unsigned long excess; 599 struct mem_cgroup_per_node *mz; 600 struct mem_cgroup_tree_per_node *mctz; 601 602 mctz = soft_limit_tree_from_page(page); 603 if (!mctz) 604 return; 605 /* 606 * Necessary to update all ancestors when hierarchy is used. 607 * because their event counter is not touched. 608 */ 609 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 610 mz = mem_cgroup_page_nodeinfo(memcg, page); 611 excess = soft_limit_excess(memcg); 612 /* 613 * We have to update the tree if mz is on RB-tree or 614 * mem is over its softlimit. 615 */ 616 if (excess || mz->on_tree) { 617 unsigned long flags; 618 619 spin_lock_irqsave(&mctz->lock, flags); 620 /* if on-tree, remove it */ 621 if (mz->on_tree) 622 __mem_cgroup_remove_exceeded(mz, mctz); 623 /* 624 * Insert again. mz->usage_in_excess will be updated. 625 * If excess is 0, no tree ops. 626 */ 627 __mem_cgroup_insert_exceeded(mz, mctz, excess); 628 spin_unlock_irqrestore(&mctz->lock, flags); 629 } 630 } 631 } 632 633 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 634 { 635 struct mem_cgroup_tree_per_node *mctz; 636 struct mem_cgroup_per_node *mz; 637 int nid; 638 639 for_each_node(nid) { 640 mz = mem_cgroup_nodeinfo(memcg, nid); 641 mctz = soft_limit_tree_node(nid); 642 if (mctz) 643 mem_cgroup_remove_exceeded(mz, mctz); 644 } 645 } 646 647 static struct mem_cgroup_per_node * 648 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 649 { 650 struct mem_cgroup_per_node *mz; 651 652 retry: 653 mz = NULL; 654 if (!mctz->rb_rightmost) 655 goto done; /* Nothing to reclaim from */ 656 657 mz = rb_entry(mctz->rb_rightmost, 658 struct mem_cgroup_per_node, tree_node); 659 /* 660 * Remove the node now but someone else can add it back, 661 * we will to add it back at the end of reclaim to its correct 662 * position in the tree. 663 */ 664 __mem_cgroup_remove_exceeded(mz, mctz); 665 if (!soft_limit_excess(mz->memcg) || 666 !css_tryget_online(&mz->memcg->css)) 667 goto retry; 668 done: 669 return mz; 670 } 671 672 static struct mem_cgroup_per_node * 673 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 674 { 675 struct mem_cgroup_per_node *mz; 676 677 spin_lock_irq(&mctz->lock); 678 mz = __mem_cgroup_largest_soft_limit_node(mctz); 679 spin_unlock_irq(&mctz->lock); 680 return mz; 681 } 682 683 /** 684 * __mod_memcg_state - update cgroup memory statistics 685 * @memcg: the memory cgroup 686 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 687 * @val: delta to add to the counter, can be negative 688 */ 689 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 690 { 691 long x; 692 693 if (mem_cgroup_disabled()) 694 return; 695 696 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 697 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 698 struct mem_cgroup *mi; 699 700 /* 701 * Batch local counters to keep them in sync with 702 * the hierarchical ones. 703 */ 704 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 705 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 706 atomic_long_add(x, &mi->vmstats[idx]); 707 x = 0; 708 } 709 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 710 } 711 712 static struct mem_cgroup_per_node * 713 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 714 { 715 struct mem_cgroup *parent; 716 717 parent = parent_mem_cgroup(pn->memcg); 718 if (!parent) 719 return NULL; 720 return mem_cgroup_nodeinfo(parent, nid); 721 } 722 723 /** 724 * __mod_lruvec_state - update lruvec memory statistics 725 * @lruvec: the lruvec 726 * @idx: the stat item 727 * @val: delta to add to the counter, can be negative 728 * 729 * The lruvec is the intersection of the NUMA node and a cgroup. This 730 * function updates the all three counters that are affected by a 731 * change of state at this level: per-node, per-cgroup, per-lruvec. 732 */ 733 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 734 int val) 735 { 736 pg_data_t *pgdat = lruvec_pgdat(lruvec); 737 struct mem_cgroup_per_node *pn; 738 struct mem_cgroup *memcg; 739 long x; 740 741 /* Update node */ 742 __mod_node_page_state(pgdat, idx, val); 743 744 if (mem_cgroup_disabled()) 745 return; 746 747 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 748 memcg = pn->memcg; 749 750 /* Update memcg */ 751 __mod_memcg_state(memcg, idx, val); 752 753 /* Update lruvec */ 754 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 755 756 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 757 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 758 struct mem_cgroup_per_node *pi; 759 760 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 761 atomic_long_add(x, &pi->lruvec_stat[idx]); 762 x = 0; 763 } 764 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 765 } 766 767 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) 768 { 769 struct page *page = virt_to_head_page(p); 770 pg_data_t *pgdat = page_pgdat(page); 771 struct mem_cgroup *memcg; 772 struct lruvec *lruvec; 773 774 rcu_read_lock(); 775 memcg = memcg_from_slab_page(page); 776 777 /* Untracked pages have no memcg, no lruvec. Update only the node */ 778 if (!memcg || memcg == root_mem_cgroup) { 779 __mod_node_page_state(pgdat, idx, val); 780 } else { 781 lruvec = mem_cgroup_lruvec(pgdat, memcg); 782 __mod_lruvec_state(lruvec, idx, val); 783 } 784 rcu_read_unlock(); 785 } 786 787 /** 788 * __count_memcg_events - account VM events in a cgroup 789 * @memcg: the memory cgroup 790 * @idx: the event item 791 * @count: the number of events that occured 792 */ 793 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 794 unsigned long count) 795 { 796 unsigned long x; 797 798 if (mem_cgroup_disabled()) 799 return; 800 801 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 802 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 803 struct mem_cgroup *mi; 804 805 /* 806 * Batch local counters to keep them in sync with 807 * the hierarchical ones. 808 */ 809 __this_cpu_add(memcg->vmstats_local->events[idx], x); 810 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 811 atomic_long_add(x, &mi->vmevents[idx]); 812 x = 0; 813 } 814 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 815 } 816 817 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 818 { 819 return atomic_long_read(&memcg->vmevents[event]); 820 } 821 822 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 823 { 824 long x = 0; 825 int cpu; 826 827 for_each_possible_cpu(cpu) 828 x += per_cpu(memcg->vmstats_local->events[event], cpu); 829 return x; 830 } 831 832 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 833 struct page *page, 834 bool compound, int nr_pages) 835 { 836 /* 837 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 838 * counted as CACHE even if it's on ANON LRU. 839 */ 840 if (PageAnon(page)) 841 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 842 else { 843 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 844 if (PageSwapBacked(page)) 845 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 846 } 847 848 if (compound) { 849 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 850 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 851 } 852 853 /* pagein of a big page is an event. So, ignore page size */ 854 if (nr_pages > 0) 855 __count_memcg_events(memcg, PGPGIN, 1); 856 else { 857 __count_memcg_events(memcg, PGPGOUT, 1); 858 nr_pages = -nr_pages; /* for event */ 859 } 860 861 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 862 } 863 864 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 865 enum mem_cgroup_events_target target) 866 { 867 unsigned long val, next; 868 869 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 870 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 871 /* from time_after() in jiffies.h */ 872 if ((long)(next - val) < 0) { 873 switch (target) { 874 case MEM_CGROUP_TARGET_THRESH: 875 next = val + THRESHOLDS_EVENTS_TARGET; 876 break; 877 case MEM_CGROUP_TARGET_SOFTLIMIT: 878 next = val + SOFTLIMIT_EVENTS_TARGET; 879 break; 880 case MEM_CGROUP_TARGET_NUMAINFO: 881 next = val + NUMAINFO_EVENTS_TARGET; 882 break; 883 default: 884 break; 885 } 886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 887 return true; 888 } 889 return false; 890 } 891 892 /* 893 * Check events in order. 894 * 895 */ 896 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 897 { 898 /* threshold event is triggered in finer grain than soft limit */ 899 if (unlikely(mem_cgroup_event_ratelimit(memcg, 900 MEM_CGROUP_TARGET_THRESH))) { 901 bool do_softlimit; 902 bool do_numainfo __maybe_unused; 903 904 do_softlimit = mem_cgroup_event_ratelimit(memcg, 905 MEM_CGROUP_TARGET_SOFTLIMIT); 906 #if MAX_NUMNODES > 1 907 do_numainfo = mem_cgroup_event_ratelimit(memcg, 908 MEM_CGROUP_TARGET_NUMAINFO); 909 #endif 910 mem_cgroup_threshold(memcg); 911 if (unlikely(do_softlimit)) 912 mem_cgroup_update_tree(memcg, page); 913 #if MAX_NUMNODES > 1 914 if (unlikely(do_numainfo)) 915 atomic_inc(&memcg->numainfo_events); 916 #endif 917 } 918 } 919 920 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 921 { 922 /* 923 * mm_update_next_owner() may clear mm->owner to NULL 924 * if it races with swapoff, page migration, etc. 925 * So this can be called with p == NULL. 926 */ 927 if (unlikely(!p)) 928 return NULL; 929 930 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 931 } 932 EXPORT_SYMBOL(mem_cgroup_from_task); 933 934 /** 935 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 936 * @mm: mm from which memcg should be extracted. It can be NULL. 937 * 938 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 939 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 940 * returned. 941 */ 942 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 943 { 944 struct mem_cgroup *memcg; 945 946 if (mem_cgroup_disabled()) 947 return NULL; 948 949 rcu_read_lock(); 950 do { 951 /* 952 * Page cache insertions can happen withou an 953 * actual mm context, e.g. during disk probing 954 * on boot, loopback IO, acct() writes etc. 955 */ 956 if (unlikely(!mm)) 957 memcg = root_mem_cgroup; 958 else { 959 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 960 if (unlikely(!memcg)) 961 memcg = root_mem_cgroup; 962 } 963 } while (!css_tryget_online(&memcg->css)); 964 rcu_read_unlock(); 965 return memcg; 966 } 967 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 968 969 /** 970 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 971 * @page: page from which memcg should be extracted. 972 * 973 * Obtain a reference on page->memcg and returns it if successful. Otherwise 974 * root_mem_cgroup is returned. 975 */ 976 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 977 { 978 struct mem_cgroup *memcg = page->mem_cgroup; 979 980 if (mem_cgroup_disabled()) 981 return NULL; 982 983 rcu_read_lock(); 984 if (!memcg || !css_tryget_online(&memcg->css)) 985 memcg = root_mem_cgroup; 986 rcu_read_unlock(); 987 return memcg; 988 } 989 EXPORT_SYMBOL(get_mem_cgroup_from_page); 990 991 /** 992 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 993 */ 994 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 995 { 996 if (unlikely(current->active_memcg)) { 997 struct mem_cgroup *memcg = root_mem_cgroup; 998 999 rcu_read_lock(); 1000 if (css_tryget_online(¤t->active_memcg->css)) 1001 memcg = current->active_memcg; 1002 rcu_read_unlock(); 1003 return memcg; 1004 } 1005 return get_mem_cgroup_from_mm(current->mm); 1006 } 1007 1008 /** 1009 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1010 * @root: hierarchy root 1011 * @prev: previously returned memcg, NULL on first invocation 1012 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1013 * 1014 * Returns references to children of the hierarchy below @root, or 1015 * @root itself, or %NULL after a full round-trip. 1016 * 1017 * Caller must pass the return value in @prev on subsequent 1018 * invocations for reference counting, or use mem_cgroup_iter_break() 1019 * to cancel a hierarchy walk before the round-trip is complete. 1020 * 1021 * Reclaimers can specify a node and a priority level in @reclaim to 1022 * divide up the memcgs in the hierarchy among all concurrent 1023 * reclaimers operating on the same node and priority. 1024 */ 1025 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1026 struct mem_cgroup *prev, 1027 struct mem_cgroup_reclaim_cookie *reclaim) 1028 { 1029 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1030 struct cgroup_subsys_state *css = NULL; 1031 struct mem_cgroup *memcg = NULL; 1032 struct mem_cgroup *pos = NULL; 1033 1034 if (mem_cgroup_disabled()) 1035 return NULL; 1036 1037 if (!root) 1038 root = root_mem_cgroup; 1039 1040 if (prev && !reclaim) 1041 pos = prev; 1042 1043 if (!root->use_hierarchy && root != root_mem_cgroup) { 1044 if (prev) 1045 goto out; 1046 return root; 1047 } 1048 1049 rcu_read_lock(); 1050 1051 if (reclaim) { 1052 struct mem_cgroup_per_node *mz; 1053 1054 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1055 iter = &mz->iter[reclaim->priority]; 1056 1057 if (prev && reclaim->generation != iter->generation) 1058 goto out_unlock; 1059 1060 while (1) { 1061 pos = READ_ONCE(iter->position); 1062 if (!pos || css_tryget(&pos->css)) 1063 break; 1064 /* 1065 * css reference reached zero, so iter->position will 1066 * be cleared by ->css_released. However, we should not 1067 * rely on this happening soon, because ->css_released 1068 * is called from a work queue, and by busy-waiting we 1069 * might block it. So we clear iter->position right 1070 * away. 1071 */ 1072 (void)cmpxchg(&iter->position, pos, NULL); 1073 } 1074 } 1075 1076 if (pos) 1077 css = &pos->css; 1078 1079 for (;;) { 1080 css = css_next_descendant_pre(css, &root->css); 1081 if (!css) { 1082 /* 1083 * Reclaimers share the hierarchy walk, and a 1084 * new one might jump in right at the end of 1085 * the hierarchy - make sure they see at least 1086 * one group and restart from the beginning. 1087 */ 1088 if (!prev) 1089 continue; 1090 break; 1091 } 1092 1093 /* 1094 * Verify the css and acquire a reference. The root 1095 * is provided by the caller, so we know it's alive 1096 * and kicking, and don't take an extra reference. 1097 */ 1098 memcg = mem_cgroup_from_css(css); 1099 1100 if (css == &root->css) 1101 break; 1102 1103 if (css_tryget(css)) 1104 break; 1105 1106 memcg = NULL; 1107 } 1108 1109 if (reclaim) { 1110 /* 1111 * The position could have already been updated by a competing 1112 * thread, so check that the value hasn't changed since we read 1113 * it to avoid reclaiming from the same cgroup twice. 1114 */ 1115 (void)cmpxchg(&iter->position, pos, memcg); 1116 1117 if (pos) 1118 css_put(&pos->css); 1119 1120 if (!memcg) 1121 iter->generation++; 1122 else if (!prev) 1123 reclaim->generation = iter->generation; 1124 } 1125 1126 out_unlock: 1127 rcu_read_unlock(); 1128 out: 1129 if (prev && prev != root) 1130 css_put(&prev->css); 1131 1132 return memcg; 1133 } 1134 1135 /** 1136 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1137 * @root: hierarchy root 1138 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1139 */ 1140 void mem_cgroup_iter_break(struct mem_cgroup *root, 1141 struct mem_cgroup *prev) 1142 { 1143 if (!root) 1144 root = root_mem_cgroup; 1145 if (prev && prev != root) 1146 css_put(&prev->css); 1147 } 1148 1149 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1150 struct mem_cgroup *dead_memcg) 1151 { 1152 struct mem_cgroup_reclaim_iter *iter; 1153 struct mem_cgroup_per_node *mz; 1154 int nid; 1155 int i; 1156 1157 for_each_node(nid) { 1158 mz = mem_cgroup_nodeinfo(from, nid); 1159 for (i = 0; i <= DEF_PRIORITY; i++) { 1160 iter = &mz->iter[i]; 1161 cmpxchg(&iter->position, 1162 dead_memcg, NULL); 1163 } 1164 } 1165 } 1166 1167 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1168 { 1169 struct mem_cgroup *memcg = dead_memcg; 1170 struct mem_cgroup *last; 1171 1172 do { 1173 __invalidate_reclaim_iterators(memcg, dead_memcg); 1174 last = memcg; 1175 } while ((memcg = parent_mem_cgroup(memcg))); 1176 1177 /* 1178 * When cgruop1 non-hierarchy mode is used, 1179 * parent_mem_cgroup() does not walk all the way up to the 1180 * cgroup root (root_mem_cgroup). So we have to handle 1181 * dead_memcg from cgroup root separately. 1182 */ 1183 if (last != root_mem_cgroup) 1184 __invalidate_reclaim_iterators(root_mem_cgroup, 1185 dead_memcg); 1186 } 1187 1188 /** 1189 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1190 * @memcg: hierarchy root 1191 * @fn: function to call for each task 1192 * @arg: argument passed to @fn 1193 * 1194 * This function iterates over tasks attached to @memcg or to any of its 1195 * descendants and calls @fn for each task. If @fn returns a non-zero 1196 * value, the function breaks the iteration loop and returns the value. 1197 * Otherwise, it will iterate over all tasks and return 0. 1198 * 1199 * This function must not be called for the root memory cgroup. 1200 */ 1201 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1202 int (*fn)(struct task_struct *, void *), void *arg) 1203 { 1204 struct mem_cgroup *iter; 1205 int ret = 0; 1206 1207 BUG_ON(memcg == root_mem_cgroup); 1208 1209 for_each_mem_cgroup_tree(iter, memcg) { 1210 struct css_task_iter it; 1211 struct task_struct *task; 1212 1213 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1214 while (!ret && (task = css_task_iter_next(&it))) 1215 ret = fn(task, arg); 1216 css_task_iter_end(&it); 1217 if (ret) { 1218 mem_cgroup_iter_break(memcg, iter); 1219 break; 1220 } 1221 } 1222 return ret; 1223 } 1224 1225 /** 1226 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1227 * @page: the page 1228 * @pgdat: pgdat of the page 1229 * 1230 * This function is only safe when following the LRU page isolation 1231 * and putback protocol: the LRU lock must be held, and the page must 1232 * either be PageLRU() or the caller must have isolated/allocated it. 1233 */ 1234 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1235 { 1236 struct mem_cgroup_per_node *mz; 1237 struct mem_cgroup *memcg; 1238 struct lruvec *lruvec; 1239 1240 if (mem_cgroup_disabled()) { 1241 lruvec = &pgdat->lruvec; 1242 goto out; 1243 } 1244 1245 memcg = page->mem_cgroup; 1246 /* 1247 * Swapcache readahead pages are added to the LRU - and 1248 * possibly migrated - before they are charged. 1249 */ 1250 if (!memcg) 1251 memcg = root_mem_cgroup; 1252 1253 mz = mem_cgroup_page_nodeinfo(memcg, page); 1254 lruvec = &mz->lruvec; 1255 out: 1256 /* 1257 * Since a node can be onlined after the mem_cgroup was created, 1258 * we have to be prepared to initialize lruvec->zone here; 1259 * and if offlined then reonlined, we need to reinitialize it. 1260 */ 1261 if (unlikely(lruvec->pgdat != pgdat)) 1262 lruvec->pgdat = pgdat; 1263 return lruvec; 1264 } 1265 1266 /** 1267 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1268 * @lruvec: mem_cgroup per zone lru vector 1269 * @lru: index of lru list the page is sitting on 1270 * @zid: zone id of the accounted pages 1271 * @nr_pages: positive when adding or negative when removing 1272 * 1273 * This function must be called under lru_lock, just before a page is added 1274 * to or just after a page is removed from an lru list (that ordering being 1275 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1276 */ 1277 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1278 int zid, int nr_pages) 1279 { 1280 struct mem_cgroup_per_node *mz; 1281 unsigned long *lru_size; 1282 long size; 1283 1284 if (mem_cgroup_disabled()) 1285 return; 1286 1287 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1288 lru_size = &mz->lru_zone_size[zid][lru]; 1289 1290 if (nr_pages < 0) 1291 *lru_size += nr_pages; 1292 1293 size = *lru_size; 1294 if (WARN_ONCE(size < 0, 1295 "%s(%p, %d, %d): lru_size %ld\n", 1296 __func__, lruvec, lru, nr_pages, size)) { 1297 VM_BUG_ON(1); 1298 *lru_size = 0; 1299 } 1300 1301 if (nr_pages > 0) 1302 *lru_size += nr_pages; 1303 } 1304 1305 /** 1306 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1307 * @memcg: the memory cgroup 1308 * 1309 * Returns the maximum amount of memory @mem can be charged with, in 1310 * pages. 1311 */ 1312 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1313 { 1314 unsigned long margin = 0; 1315 unsigned long count; 1316 unsigned long limit; 1317 1318 count = page_counter_read(&memcg->memory); 1319 limit = READ_ONCE(memcg->memory.max); 1320 if (count < limit) 1321 margin = limit - count; 1322 1323 if (do_memsw_account()) { 1324 count = page_counter_read(&memcg->memsw); 1325 limit = READ_ONCE(memcg->memsw.max); 1326 if (count <= limit) 1327 margin = min(margin, limit - count); 1328 else 1329 margin = 0; 1330 } 1331 1332 return margin; 1333 } 1334 1335 /* 1336 * A routine for checking "mem" is under move_account() or not. 1337 * 1338 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1339 * moving cgroups. This is for waiting at high-memory pressure 1340 * caused by "move". 1341 */ 1342 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1343 { 1344 struct mem_cgroup *from; 1345 struct mem_cgroup *to; 1346 bool ret = false; 1347 /* 1348 * Unlike task_move routines, we access mc.to, mc.from not under 1349 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1350 */ 1351 spin_lock(&mc.lock); 1352 from = mc.from; 1353 to = mc.to; 1354 if (!from) 1355 goto unlock; 1356 1357 ret = mem_cgroup_is_descendant(from, memcg) || 1358 mem_cgroup_is_descendant(to, memcg); 1359 unlock: 1360 spin_unlock(&mc.lock); 1361 return ret; 1362 } 1363 1364 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1365 { 1366 if (mc.moving_task && current != mc.moving_task) { 1367 if (mem_cgroup_under_move(memcg)) { 1368 DEFINE_WAIT(wait); 1369 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1370 /* moving charge context might have finished. */ 1371 if (mc.moving_task) 1372 schedule(); 1373 finish_wait(&mc.waitq, &wait); 1374 return true; 1375 } 1376 } 1377 return false; 1378 } 1379 1380 static char *memory_stat_format(struct mem_cgroup *memcg) 1381 { 1382 struct seq_buf s; 1383 int i; 1384 1385 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1386 if (!s.buffer) 1387 return NULL; 1388 1389 /* 1390 * Provide statistics on the state of the memory subsystem as 1391 * well as cumulative event counters that show past behavior. 1392 * 1393 * This list is ordered following a combination of these gradients: 1394 * 1) generic big picture -> specifics and details 1395 * 2) reflecting userspace activity -> reflecting kernel heuristics 1396 * 1397 * Current memory state: 1398 */ 1399 1400 seq_buf_printf(&s, "anon %llu\n", 1401 (u64)memcg_page_state(memcg, MEMCG_RSS) * 1402 PAGE_SIZE); 1403 seq_buf_printf(&s, "file %llu\n", 1404 (u64)memcg_page_state(memcg, MEMCG_CACHE) * 1405 PAGE_SIZE); 1406 seq_buf_printf(&s, "kernel_stack %llu\n", 1407 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1408 1024); 1409 seq_buf_printf(&s, "slab %llu\n", 1410 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + 1411 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * 1412 PAGE_SIZE); 1413 seq_buf_printf(&s, "sock %llu\n", 1414 (u64)memcg_page_state(memcg, MEMCG_SOCK) * 1415 PAGE_SIZE); 1416 1417 seq_buf_printf(&s, "shmem %llu\n", 1418 (u64)memcg_page_state(memcg, NR_SHMEM) * 1419 PAGE_SIZE); 1420 seq_buf_printf(&s, "file_mapped %llu\n", 1421 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * 1422 PAGE_SIZE); 1423 seq_buf_printf(&s, "file_dirty %llu\n", 1424 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * 1425 PAGE_SIZE); 1426 seq_buf_printf(&s, "file_writeback %llu\n", 1427 (u64)memcg_page_state(memcg, NR_WRITEBACK) * 1428 PAGE_SIZE); 1429 1430 /* 1431 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter 1432 * with the NR_ANON_THP vm counter, but right now it's a pain in the 1433 * arse because it requires migrating the work out of rmap to a place 1434 * where the page->mem_cgroup is set up and stable. 1435 */ 1436 seq_buf_printf(&s, "anon_thp %llu\n", 1437 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * 1438 PAGE_SIZE); 1439 1440 for (i = 0; i < NR_LRU_LISTS; i++) 1441 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i], 1442 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 1443 PAGE_SIZE); 1444 1445 seq_buf_printf(&s, "slab_reclaimable %llu\n", 1446 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * 1447 PAGE_SIZE); 1448 seq_buf_printf(&s, "slab_unreclaimable %llu\n", 1449 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * 1450 PAGE_SIZE); 1451 1452 /* Accumulated memory events */ 1453 1454 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT)); 1455 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT)); 1456 1457 seq_buf_printf(&s, "workingset_refault %lu\n", 1458 memcg_page_state(memcg, WORKINGSET_REFAULT)); 1459 seq_buf_printf(&s, "workingset_activate %lu\n", 1460 memcg_page_state(memcg, WORKINGSET_ACTIVATE)); 1461 seq_buf_printf(&s, "workingset_nodereclaim %lu\n", 1462 memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); 1463 1464 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL)); 1465 seq_buf_printf(&s, "pgscan %lu\n", 1466 memcg_events(memcg, PGSCAN_KSWAPD) + 1467 memcg_events(memcg, PGSCAN_DIRECT)); 1468 seq_buf_printf(&s, "pgsteal %lu\n", 1469 memcg_events(memcg, PGSTEAL_KSWAPD) + 1470 memcg_events(memcg, PGSTEAL_DIRECT)); 1471 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE)); 1472 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE)); 1473 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE)); 1474 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED)); 1475 1476 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1477 seq_buf_printf(&s, "thp_fault_alloc %lu\n", 1478 memcg_events(memcg, THP_FAULT_ALLOC)); 1479 seq_buf_printf(&s, "thp_collapse_alloc %lu\n", 1480 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1481 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1482 1483 /* The above should easily fit into one page */ 1484 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1485 1486 return s.buffer; 1487 } 1488 1489 #define K(x) ((x) << (PAGE_SHIFT-10)) 1490 /** 1491 * mem_cgroup_print_oom_context: Print OOM information relevant to 1492 * memory controller. 1493 * @memcg: The memory cgroup that went over limit 1494 * @p: Task that is going to be killed 1495 * 1496 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1497 * enabled 1498 */ 1499 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1500 { 1501 rcu_read_lock(); 1502 1503 if (memcg) { 1504 pr_cont(",oom_memcg="); 1505 pr_cont_cgroup_path(memcg->css.cgroup); 1506 } else 1507 pr_cont(",global_oom"); 1508 if (p) { 1509 pr_cont(",task_memcg="); 1510 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1511 } 1512 rcu_read_unlock(); 1513 } 1514 1515 /** 1516 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1517 * memory controller. 1518 * @memcg: The memory cgroup that went over limit 1519 */ 1520 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1521 { 1522 char *buf; 1523 1524 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1525 K((u64)page_counter_read(&memcg->memory)), 1526 K((u64)memcg->memory.max), memcg->memory.failcnt); 1527 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1528 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1529 K((u64)page_counter_read(&memcg->swap)), 1530 K((u64)memcg->swap.max), memcg->swap.failcnt); 1531 else { 1532 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1533 K((u64)page_counter_read(&memcg->memsw)), 1534 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1535 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1536 K((u64)page_counter_read(&memcg->kmem)), 1537 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1538 } 1539 1540 pr_info("Memory cgroup stats for "); 1541 pr_cont_cgroup_path(memcg->css.cgroup); 1542 pr_cont(":"); 1543 buf = memory_stat_format(memcg); 1544 if (!buf) 1545 return; 1546 pr_info("%s", buf); 1547 kfree(buf); 1548 } 1549 1550 /* 1551 * Return the memory (and swap, if configured) limit for a memcg. 1552 */ 1553 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1554 { 1555 unsigned long max; 1556 1557 max = memcg->memory.max; 1558 if (mem_cgroup_swappiness(memcg)) { 1559 unsigned long memsw_max; 1560 unsigned long swap_max; 1561 1562 memsw_max = memcg->memsw.max; 1563 swap_max = memcg->swap.max; 1564 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1565 max = min(max + swap_max, memsw_max); 1566 } 1567 return max; 1568 } 1569 1570 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1571 { 1572 return page_counter_read(&memcg->memory); 1573 } 1574 1575 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1576 int order) 1577 { 1578 struct oom_control oc = { 1579 .zonelist = NULL, 1580 .nodemask = NULL, 1581 .memcg = memcg, 1582 .gfp_mask = gfp_mask, 1583 .order = order, 1584 }; 1585 bool ret; 1586 1587 if (mutex_lock_killable(&oom_lock)) 1588 return true; 1589 /* 1590 * A few threads which were not waiting at mutex_lock_killable() can 1591 * fail to bail out. Therefore, check again after holding oom_lock. 1592 */ 1593 ret = should_force_charge() || out_of_memory(&oc); 1594 mutex_unlock(&oom_lock); 1595 return ret; 1596 } 1597 1598 #if MAX_NUMNODES > 1 1599 1600 /** 1601 * test_mem_cgroup_node_reclaimable 1602 * @memcg: the target memcg 1603 * @nid: the node ID to be checked. 1604 * @noswap : specify true here if the user wants flle only information. 1605 * 1606 * This function returns whether the specified memcg contains any 1607 * reclaimable pages on a node. Returns true if there are any reclaimable 1608 * pages in the node. 1609 */ 1610 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1611 int nid, bool noswap) 1612 { 1613 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 1614 1615 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) || 1616 lruvec_page_state(lruvec, NR_ACTIVE_FILE)) 1617 return true; 1618 if (noswap || !total_swap_pages) 1619 return false; 1620 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) || 1621 lruvec_page_state(lruvec, NR_ACTIVE_ANON)) 1622 return true; 1623 return false; 1624 1625 } 1626 1627 /* 1628 * Always updating the nodemask is not very good - even if we have an empty 1629 * list or the wrong list here, we can start from some node and traverse all 1630 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1631 * 1632 */ 1633 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1634 { 1635 int nid; 1636 /* 1637 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1638 * pagein/pageout changes since the last update. 1639 */ 1640 if (!atomic_read(&memcg->numainfo_events)) 1641 return; 1642 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1643 return; 1644 1645 /* make a nodemask where this memcg uses memory from */ 1646 memcg->scan_nodes = node_states[N_MEMORY]; 1647 1648 for_each_node_mask(nid, node_states[N_MEMORY]) { 1649 1650 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1651 node_clear(nid, memcg->scan_nodes); 1652 } 1653 1654 atomic_set(&memcg->numainfo_events, 0); 1655 atomic_set(&memcg->numainfo_updating, 0); 1656 } 1657 1658 /* 1659 * Selecting a node where we start reclaim from. Because what we need is just 1660 * reducing usage counter, start from anywhere is O,K. Considering 1661 * memory reclaim from current node, there are pros. and cons. 1662 * 1663 * Freeing memory from current node means freeing memory from a node which 1664 * we'll use or we've used. So, it may make LRU bad. And if several threads 1665 * hit limits, it will see a contention on a node. But freeing from remote 1666 * node means more costs for memory reclaim because of memory latency. 1667 * 1668 * Now, we use round-robin. Better algorithm is welcomed. 1669 */ 1670 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1671 { 1672 int node; 1673 1674 mem_cgroup_may_update_nodemask(memcg); 1675 node = memcg->last_scanned_node; 1676 1677 node = next_node_in(node, memcg->scan_nodes); 1678 /* 1679 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1680 * last time it really checked all the LRUs due to rate limiting. 1681 * Fallback to the current node in that case for simplicity. 1682 */ 1683 if (unlikely(node == MAX_NUMNODES)) 1684 node = numa_node_id(); 1685 1686 memcg->last_scanned_node = node; 1687 return node; 1688 } 1689 #else 1690 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1691 { 1692 return 0; 1693 } 1694 #endif 1695 1696 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1697 pg_data_t *pgdat, 1698 gfp_t gfp_mask, 1699 unsigned long *total_scanned) 1700 { 1701 struct mem_cgroup *victim = NULL; 1702 int total = 0; 1703 int loop = 0; 1704 unsigned long excess; 1705 unsigned long nr_scanned; 1706 struct mem_cgroup_reclaim_cookie reclaim = { 1707 .pgdat = pgdat, 1708 .priority = 0, 1709 }; 1710 1711 excess = soft_limit_excess(root_memcg); 1712 1713 while (1) { 1714 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1715 if (!victim) { 1716 loop++; 1717 if (loop >= 2) { 1718 /* 1719 * If we have not been able to reclaim 1720 * anything, it might because there are 1721 * no reclaimable pages under this hierarchy 1722 */ 1723 if (!total) 1724 break; 1725 /* 1726 * We want to do more targeted reclaim. 1727 * excess >> 2 is not to excessive so as to 1728 * reclaim too much, nor too less that we keep 1729 * coming back to reclaim from this cgroup 1730 */ 1731 if (total >= (excess >> 2) || 1732 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1733 break; 1734 } 1735 continue; 1736 } 1737 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1738 pgdat, &nr_scanned); 1739 *total_scanned += nr_scanned; 1740 if (!soft_limit_excess(root_memcg)) 1741 break; 1742 } 1743 mem_cgroup_iter_break(root_memcg, victim); 1744 return total; 1745 } 1746 1747 #ifdef CONFIG_LOCKDEP 1748 static struct lockdep_map memcg_oom_lock_dep_map = { 1749 .name = "memcg_oom_lock", 1750 }; 1751 #endif 1752 1753 static DEFINE_SPINLOCK(memcg_oom_lock); 1754 1755 /* 1756 * Check OOM-Killer is already running under our hierarchy. 1757 * If someone is running, return false. 1758 */ 1759 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1760 { 1761 struct mem_cgroup *iter, *failed = NULL; 1762 1763 spin_lock(&memcg_oom_lock); 1764 1765 for_each_mem_cgroup_tree(iter, memcg) { 1766 if (iter->oom_lock) { 1767 /* 1768 * this subtree of our hierarchy is already locked 1769 * so we cannot give a lock. 1770 */ 1771 failed = iter; 1772 mem_cgroup_iter_break(memcg, iter); 1773 break; 1774 } else 1775 iter->oom_lock = true; 1776 } 1777 1778 if (failed) { 1779 /* 1780 * OK, we failed to lock the whole subtree so we have 1781 * to clean up what we set up to the failing subtree 1782 */ 1783 for_each_mem_cgroup_tree(iter, memcg) { 1784 if (iter == failed) { 1785 mem_cgroup_iter_break(memcg, iter); 1786 break; 1787 } 1788 iter->oom_lock = false; 1789 } 1790 } else 1791 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1792 1793 spin_unlock(&memcg_oom_lock); 1794 1795 return !failed; 1796 } 1797 1798 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1799 { 1800 struct mem_cgroup *iter; 1801 1802 spin_lock(&memcg_oom_lock); 1803 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1804 for_each_mem_cgroup_tree(iter, memcg) 1805 iter->oom_lock = false; 1806 spin_unlock(&memcg_oom_lock); 1807 } 1808 1809 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1810 { 1811 struct mem_cgroup *iter; 1812 1813 spin_lock(&memcg_oom_lock); 1814 for_each_mem_cgroup_tree(iter, memcg) 1815 iter->under_oom++; 1816 spin_unlock(&memcg_oom_lock); 1817 } 1818 1819 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1820 { 1821 struct mem_cgroup *iter; 1822 1823 /* 1824 * When a new child is created while the hierarchy is under oom, 1825 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1826 */ 1827 spin_lock(&memcg_oom_lock); 1828 for_each_mem_cgroup_tree(iter, memcg) 1829 if (iter->under_oom > 0) 1830 iter->under_oom--; 1831 spin_unlock(&memcg_oom_lock); 1832 } 1833 1834 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1835 1836 struct oom_wait_info { 1837 struct mem_cgroup *memcg; 1838 wait_queue_entry_t wait; 1839 }; 1840 1841 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1842 unsigned mode, int sync, void *arg) 1843 { 1844 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1845 struct mem_cgroup *oom_wait_memcg; 1846 struct oom_wait_info *oom_wait_info; 1847 1848 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1849 oom_wait_memcg = oom_wait_info->memcg; 1850 1851 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1852 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1853 return 0; 1854 return autoremove_wake_function(wait, mode, sync, arg); 1855 } 1856 1857 static void memcg_oom_recover(struct mem_cgroup *memcg) 1858 { 1859 /* 1860 * For the following lockless ->under_oom test, the only required 1861 * guarantee is that it must see the state asserted by an OOM when 1862 * this function is called as a result of userland actions 1863 * triggered by the notification of the OOM. This is trivially 1864 * achieved by invoking mem_cgroup_mark_under_oom() before 1865 * triggering notification. 1866 */ 1867 if (memcg && memcg->under_oom) 1868 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1869 } 1870 1871 enum oom_status { 1872 OOM_SUCCESS, 1873 OOM_FAILED, 1874 OOM_ASYNC, 1875 OOM_SKIPPED 1876 }; 1877 1878 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1879 { 1880 enum oom_status ret; 1881 bool locked; 1882 1883 if (order > PAGE_ALLOC_COSTLY_ORDER) 1884 return OOM_SKIPPED; 1885 1886 memcg_memory_event(memcg, MEMCG_OOM); 1887 1888 /* 1889 * We are in the middle of the charge context here, so we 1890 * don't want to block when potentially sitting on a callstack 1891 * that holds all kinds of filesystem and mm locks. 1892 * 1893 * cgroup1 allows disabling the OOM killer and waiting for outside 1894 * handling until the charge can succeed; remember the context and put 1895 * the task to sleep at the end of the page fault when all locks are 1896 * released. 1897 * 1898 * On the other hand, in-kernel OOM killer allows for an async victim 1899 * memory reclaim (oom_reaper) and that means that we are not solely 1900 * relying on the oom victim to make a forward progress and we can 1901 * invoke the oom killer here. 1902 * 1903 * Please note that mem_cgroup_out_of_memory might fail to find a 1904 * victim and then we have to bail out from the charge path. 1905 */ 1906 if (memcg->oom_kill_disable) { 1907 if (!current->in_user_fault) 1908 return OOM_SKIPPED; 1909 css_get(&memcg->css); 1910 current->memcg_in_oom = memcg; 1911 current->memcg_oom_gfp_mask = mask; 1912 current->memcg_oom_order = order; 1913 1914 return OOM_ASYNC; 1915 } 1916 1917 mem_cgroup_mark_under_oom(memcg); 1918 1919 locked = mem_cgroup_oom_trylock(memcg); 1920 1921 if (locked) 1922 mem_cgroup_oom_notify(memcg); 1923 1924 mem_cgroup_unmark_under_oom(memcg); 1925 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1926 ret = OOM_SUCCESS; 1927 else 1928 ret = OOM_FAILED; 1929 1930 if (locked) 1931 mem_cgroup_oom_unlock(memcg); 1932 1933 return ret; 1934 } 1935 1936 /** 1937 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1938 * @handle: actually kill/wait or just clean up the OOM state 1939 * 1940 * This has to be called at the end of a page fault if the memcg OOM 1941 * handler was enabled. 1942 * 1943 * Memcg supports userspace OOM handling where failed allocations must 1944 * sleep on a waitqueue until the userspace task resolves the 1945 * situation. Sleeping directly in the charge context with all kinds 1946 * of locks held is not a good idea, instead we remember an OOM state 1947 * in the task and mem_cgroup_oom_synchronize() has to be called at 1948 * the end of the page fault to complete the OOM handling. 1949 * 1950 * Returns %true if an ongoing memcg OOM situation was detected and 1951 * completed, %false otherwise. 1952 */ 1953 bool mem_cgroup_oom_synchronize(bool handle) 1954 { 1955 struct mem_cgroup *memcg = current->memcg_in_oom; 1956 struct oom_wait_info owait; 1957 bool locked; 1958 1959 /* OOM is global, do not handle */ 1960 if (!memcg) 1961 return false; 1962 1963 if (!handle) 1964 goto cleanup; 1965 1966 owait.memcg = memcg; 1967 owait.wait.flags = 0; 1968 owait.wait.func = memcg_oom_wake_function; 1969 owait.wait.private = current; 1970 INIT_LIST_HEAD(&owait.wait.entry); 1971 1972 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1973 mem_cgroup_mark_under_oom(memcg); 1974 1975 locked = mem_cgroup_oom_trylock(memcg); 1976 1977 if (locked) 1978 mem_cgroup_oom_notify(memcg); 1979 1980 if (locked && !memcg->oom_kill_disable) { 1981 mem_cgroup_unmark_under_oom(memcg); 1982 finish_wait(&memcg_oom_waitq, &owait.wait); 1983 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1984 current->memcg_oom_order); 1985 } else { 1986 schedule(); 1987 mem_cgroup_unmark_under_oom(memcg); 1988 finish_wait(&memcg_oom_waitq, &owait.wait); 1989 } 1990 1991 if (locked) { 1992 mem_cgroup_oom_unlock(memcg); 1993 /* 1994 * There is no guarantee that an OOM-lock contender 1995 * sees the wakeups triggered by the OOM kill 1996 * uncharges. Wake any sleepers explicitely. 1997 */ 1998 memcg_oom_recover(memcg); 1999 } 2000 cleanup: 2001 current->memcg_in_oom = NULL; 2002 css_put(&memcg->css); 2003 return true; 2004 } 2005 2006 /** 2007 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2008 * @victim: task to be killed by the OOM killer 2009 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2010 * 2011 * Returns a pointer to a memory cgroup, which has to be cleaned up 2012 * by killing all belonging OOM-killable tasks. 2013 * 2014 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2015 */ 2016 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2017 struct mem_cgroup *oom_domain) 2018 { 2019 struct mem_cgroup *oom_group = NULL; 2020 struct mem_cgroup *memcg; 2021 2022 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2023 return NULL; 2024 2025 if (!oom_domain) 2026 oom_domain = root_mem_cgroup; 2027 2028 rcu_read_lock(); 2029 2030 memcg = mem_cgroup_from_task(victim); 2031 if (memcg == root_mem_cgroup) 2032 goto out; 2033 2034 /* 2035 * Traverse the memory cgroup hierarchy from the victim task's 2036 * cgroup up to the OOMing cgroup (or root) to find the 2037 * highest-level memory cgroup with oom.group set. 2038 */ 2039 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2040 if (memcg->oom_group) 2041 oom_group = memcg; 2042 2043 if (memcg == oom_domain) 2044 break; 2045 } 2046 2047 if (oom_group) 2048 css_get(&oom_group->css); 2049 out: 2050 rcu_read_unlock(); 2051 2052 return oom_group; 2053 } 2054 2055 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2056 { 2057 pr_info("Tasks in "); 2058 pr_cont_cgroup_path(memcg->css.cgroup); 2059 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2060 } 2061 2062 /** 2063 * lock_page_memcg - lock a page->mem_cgroup binding 2064 * @page: the page 2065 * 2066 * This function protects unlocked LRU pages from being moved to 2067 * another cgroup. 2068 * 2069 * It ensures lifetime of the returned memcg. Caller is responsible 2070 * for the lifetime of the page; __unlock_page_memcg() is available 2071 * when @page might get freed inside the locked section. 2072 */ 2073 struct mem_cgroup *lock_page_memcg(struct page *page) 2074 { 2075 struct mem_cgroup *memcg; 2076 unsigned long flags; 2077 2078 /* 2079 * The RCU lock is held throughout the transaction. The fast 2080 * path can get away without acquiring the memcg->move_lock 2081 * because page moving starts with an RCU grace period. 2082 * 2083 * The RCU lock also protects the memcg from being freed when 2084 * the page state that is going to change is the only thing 2085 * preventing the page itself from being freed. E.g. writeback 2086 * doesn't hold a page reference and relies on PG_writeback to 2087 * keep off truncation, migration and so forth. 2088 */ 2089 rcu_read_lock(); 2090 2091 if (mem_cgroup_disabled()) 2092 return NULL; 2093 again: 2094 memcg = page->mem_cgroup; 2095 if (unlikely(!memcg)) 2096 return NULL; 2097 2098 if (atomic_read(&memcg->moving_account) <= 0) 2099 return memcg; 2100 2101 spin_lock_irqsave(&memcg->move_lock, flags); 2102 if (memcg != page->mem_cgroup) { 2103 spin_unlock_irqrestore(&memcg->move_lock, flags); 2104 goto again; 2105 } 2106 2107 /* 2108 * When charge migration first begins, we can have locked and 2109 * unlocked page stat updates happening concurrently. Track 2110 * the task who has the lock for unlock_page_memcg(). 2111 */ 2112 memcg->move_lock_task = current; 2113 memcg->move_lock_flags = flags; 2114 2115 return memcg; 2116 } 2117 EXPORT_SYMBOL(lock_page_memcg); 2118 2119 /** 2120 * __unlock_page_memcg - unlock and unpin a memcg 2121 * @memcg: the memcg 2122 * 2123 * Unlock and unpin a memcg returned by lock_page_memcg(). 2124 */ 2125 void __unlock_page_memcg(struct mem_cgroup *memcg) 2126 { 2127 if (memcg && memcg->move_lock_task == current) { 2128 unsigned long flags = memcg->move_lock_flags; 2129 2130 memcg->move_lock_task = NULL; 2131 memcg->move_lock_flags = 0; 2132 2133 spin_unlock_irqrestore(&memcg->move_lock, flags); 2134 } 2135 2136 rcu_read_unlock(); 2137 } 2138 2139 /** 2140 * unlock_page_memcg - unlock a page->mem_cgroup binding 2141 * @page: the page 2142 */ 2143 void unlock_page_memcg(struct page *page) 2144 { 2145 __unlock_page_memcg(page->mem_cgroup); 2146 } 2147 EXPORT_SYMBOL(unlock_page_memcg); 2148 2149 struct memcg_stock_pcp { 2150 struct mem_cgroup *cached; /* this never be root cgroup */ 2151 unsigned int nr_pages; 2152 struct work_struct work; 2153 unsigned long flags; 2154 #define FLUSHING_CACHED_CHARGE 0 2155 }; 2156 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2157 static DEFINE_MUTEX(percpu_charge_mutex); 2158 2159 /** 2160 * consume_stock: Try to consume stocked charge on this cpu. 2161 * @memcg: memcg to consume from. 2162 * @nr_pages: how many pages to charge. 2163 * 2164 * The charges will only happen if @memcg matches the current cpu's memcg 2165 * stock, and at least @nr_pages are available in that stock. Failure to 2166 * service an allocation will refill the stock. 2167 * 2168 * returns true if successful, false otherwise. 2169 */ 2170 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2171 { 2172 struct memcg_stock_pcp *stock; 2173 unsigned long flags; 2174 bool ret = false; 2175 2176 if (nr_pages > MEMCG_CHARGE_BATCH) 2177 return ret; 2178 2179 local_irq_save(flags); 2180 2181 stock = this_cpu_ptr(&memcg_stock); 2182 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2183 stock->nr_pages -= nr_pages; 2184 ret = true; 2185 } 2186 2187 local_irq_restore(flags); 2188 2189 return ret; 2190 } 2191 2192 /* 2193 * Returns stocks cached in percpu and reset cached information. 2194 */ 2195 static void drain_stock(struct memcg_stock_pcp *stock) 2196 { 2197 struct mem_cgroup *old = stock->cached; 2198 2199 if (stock->nr_pages) { 2200 page_counter_uncharge(&old->memory, stock->nr_pages); 2201 if (do_memsw_account()) 2202 page_counter_uncharge(&old->memsw, stock->nr_pages); 2203 css_put_many(&old->css, stock->nr_pages); 2204 stock->nr_pages = 0; 2205 } 2206 stock->cached = NULL; 2207 } 2208 2209 static void drain_local_stock(struct work_struct *dummy) 2210 { 2211 struct memcg_stock_pcp *stock; 2212 unsigned long flags; 2213 2214 /* 2215 * The only protection from memory hotplug vs. drain_stock races is 2216 * that we always operate on local CPU stock here with IRQ disabled 2217 */ 2218 local_irq_save(flags); 2219 2220 stock = this_cpu_ptr(&memcg_stock); 2221 drain_stock(stock); 2222 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2223 2224 local_irq_restore(flags); 2225 } 2226 2227 /* 2228 * Cache charges(val) to local per_cpu area. 2229 * This will be consumed by consume_stock() function, later. 2230 */ 2231 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2232 { 2233 struct memcg_stock_pcp *stock; 2234 unsigned long flags; 2235 2236 local_irq_save(flags); 2237 2238 stock = this_cpu_ptr(&memcg_stock); 2239 if (stock->cached != memcg) { /* reset if necessary */ 2240 drain_stock(stock); 2241 stock->cached = memcg; 2242 } 2243 stock->nr_pages += nr_pages; 2244 2245 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2246 drain_stock(stock); 2247 2248 local_irq_restore(flags); 2249 } 2250 2251 /* 2252 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2253 * of the hierarchy under it. 2254 */ 2255 static void drain_all_stock(struct mem_cgroup *root_memcg) 2256 { 2257 int cpu, curcpu; 2258 2259 /* If someone's already draining, avoid adding running more workers. */ 2260 if (!mutex_trylock(&percpu_charge_mutex)) 2261 return; 2262 /* 2263 * Notify other cpus that system-wide "drain" is running 2264 * We do not care about races with the cpu hotplug because cpu down 2265 * as well as workers from this path always operate on the local 2266 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2267 */ 2268 curcpu = get_cpu(); 2269 for_each_online_cpu(cpu) { 2270 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2271 struct mem_cgroup *memcg; 2272 bool flush = false; 2273 2274 rcu_read_lock(); 2275 memcg = stock->cached; 2276 if (memcg && stock->nr_pages && 2277 mem_cgroup_is_descendant(memcg, root_memcg)) 2278 flush = true; 2279 rcu_read_unlock(); 2280 2281 if (flush && 2282 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2283 if (cpu == curcpu) 2284 drain_local_stock(&stock->work); 2285 else 2286 schedule_work_on(cpu, &stock->work); 2287 } 2288 } 2289 put_cpu(); 2290 mutex_unlock(&percpu_charge_mutex); 2291 } 2292 2293 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2294 { 2295 struct memcg_stock_pcp *stock; 2296 struct mem_cgroup *memcg, *mi; 2297 2298 stock = &per_cpu(memcg_stock, cpu); 2299 drain_stock(stock); 2300 2301 for_each_mem_cgroup(memcg) { 2302 int i; 2303 2304 for (i = 0; i < MEMCG_NR_STAT; i++) { 2305 int nid; 2306 long x; 2307 2308 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2309 if (x) 2310 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2311 atomic_long_add(x, &memcg->vmstats[i]); 2312 2313 if (i >= NR_VM_NODE_STAT_ITEMS) 2314 continue; 2315 2316 for_each_node(nid) { 2317 struct mem_cgroup_per_node *pn; 2318 2319 pn = mem_cgroup_nodeinfo(memcg, nid); 2320 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2321 if (x) 2322 do { 2323 atomic_long_add(x, &pn->lruvec_stat[i]); 2324 } while ((pn = parent_nodeinfo(pn, nid))); 2325 } 2326 } 2327 2328 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2329 long x; 2330 2331 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2332 if (x) 2333 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2334 atomic_long_add(x, &memcg->vmevents[i]); 2335 } 2336 } 2337 2338 return 0; 2339 } 2340 2341 static void reclaim_high(struct mem_cgroup *memcg, 2342 unsigned int nr_pages, 2343 gfp_t gfp_mask) 2344 { 2345 do { 2346 if (page_counter_read(&memcg->memory) <= memcg->high) 2347 continue; 2348 memcg_memory_event(memcg, MEMCG_HIGH); 2349 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2350 } while ((memcg = parent_mem_cgroup(memcg))); 2351 } 2352 2353 static void high_work_func(struct work_struct *work) 2354 { 2355 struct mem_cgroup *memcg; 2356 2357 memcg = container_of(work, struct mem_cgroup, high_work); 2358 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2359 } 2360 2361 /* 2362 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2363 * enough to still cause a significant slowdown in most cases, while still 2364 * allowing diagnostics and tracing to proceed without becoming stuck. 2365 */ 2366 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2367 2368 /* 2369 * When calculating the delay, we use these either side of the exponentiation to 2370 * maintain precision and scale to a reasonable number of jiffies (see the table 2371 * below. 2372 * 2373 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2374 * overage ratio to a delay. 2375 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the 2376 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2377 * to produce a reasonable delay curve. 2378 * 2379 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2380 * reasonable delay curve compared to precision-adjusted overage, not 2381 * penalising heavily at first, but still making sure that growth beyond the 2382 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2383 * example, with a high of 100 megabytes: 2384 * 2385 * +-------+------------------------+ 2386 * | usage | time to allocate in ms | 2387 * +-------+------------------------+ 2388 * | 100M | 0 | 2389 * | 101M | 6 | 2390 * | 102M | 25 | 2391 * | 103M | 57 | 2392 * | 104M | 102 | 2393 * | 105M | 159 | 2394 * | 106M | 230 | 2395 * | 107M | 313 | 2396 * | 108M | 409 | 2397 * | 109M | 518 | 2398 * | 110M | 639 | 2399 * | 111M | 774 | 2400 * | 112M | 921 | 2401 * | 113M | 1081 | 2402 * | 114M | 1254 | 2403 * | 115M | 1439 | 2404 * | 116M | 1638 | 2405 * | 117M | 1849 | 2406 * | 118M | 2000 | 2407 * | 119M | 2000 | 2408 * | 120M | 2000 | 2409 * +-------+------------------------+ 2410 */ 2411 #define MEMCG_DELAY_PRECISION_SHIFT 20 2412 #define MEMCG_DELAY_SCALING_SHIFT 14 2413 2414 /* 2415 * Scheduled by try_charge() to be executed from the userland return path 2416 * and reclaims memory over the high limit. 2417 */ 2418 void mem_cgroup_handle_over_high(void) 2419 { 2420 unsigned long usage, high, clamped_high; 2421 unsigned long pflags; 2422 unsigned long penalty_jiffies, overage; 2423 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2424 struct mem_cgroup *memcg; 2425 2426 if (likely(!nr_pages)) 2427 return; 2428 2429 memcg = get_mem_cgroup_from_mm(current->mm); 2430 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2431 current->memcg_nr_pages_over_high = 0; 2432 2433 /* 2434 * memory.high is breached and reclaim is unable to keep up. Throttle 2435 * allocators proactively to slow down excessive growth. 2436 * 2437 * We use overage compared to memory.high to calculate the number of 2438 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2439 * fairly lenient on small overages, and increasingly harsh when the 2440 * memcg in question makes it clear that it has no intention of stopping 2441 * its crazy behaviour, so we exponentially increase the delay based on 2442 * overage amount. 2443 */ 2444 2445 usage = page_counter_read(&memcg->memory); 2446 high = READ_ONCE(memcg->high); 2447 2448 if (usage <= high) 2449 goto out; 2450 2451 /* 2452 * Prevent division by 0 in overage calculation by acting as if it was a 2453 * threshold of 1 page 2454 */ 2455 clamped_high = max(high, 1UL); 2456 2457 overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT, 2458 clamped_high); 2459 2460 penalty_jiffies = ((u64)overage * overage * HZ) 2461 >> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT); 2462 2463 /* 2464 * Factor in the task's own contribution to the overage, such that four 2465 * N-sized allocations are throttled approximately the same as one 2466 * 4N-sized allocation. 2467 * 2468 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2469 * larger the current charge patch is than that. 2470 */ 2471 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2472 2473 /* 2474 * Clamp the max delay per usermode return so as to still keep the 2475 * application moving forwards and also permit diagnostics, albeit 2476 * extremely slowly. 2477 */ 2478 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2479 2480 /* 2481 * Don't sleep if the amount of jiffies this memcg owes us is so low 2482 * that it's not even worth doing, in an attempt to be nice to those who 2483 * go only a small amount over their memory.high value and maybe haven't 2484 * been aggressively reclaimed enough yet. 2485 */ 2486 if (penalty_jiffies <= HZ / 100) 2487 goto out; 2488 2489 /* 2490 * If we exit early, we're guaranteed to die (since 2491 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2492 * need to account for any ill-begotten jiffies to pay them off later. 2493 */ 2494 psi_memstall_enter(&pflags); 2495 schedule_timeout_killable(penalty_jiffies); 2496 psi_memstall_leave(&pflags); 2497 2498 out: 2499 css_put(&memcg->css); 2500 } 2501 2502 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2503 unsigned int nr_pages) 2504 { 2505 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2506 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2507 struct mem_cgroup *mem_over_limit; 2508 struct page_counter *counter; 2509 unsigned long nr_reclaimed; 2510 bool may_swap = true; 2511 bool drained = false; 2512 enum oom_status oom_status; 2513 2514 if (mem_cgroup_is_root(memcg)) 2515 return 0; 2516 retry: 2517 if (consume_stock(memcg, nr_pages)) 2518 return 0; 2519 2520 if (!do_memsw_account() || 2521 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2522 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2523 goto done_restock; 2524 if (do_memsw_account()) 2525 page_counter_uncharge(&memcg->memsw, batch); 2526 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2527 } else { 2528 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2529 may_swap = false; 2530 } 2531 2532 if (batch > nr_pages) { 2533 batch = nr_pages; 2534 goto retry; 2535 } 2536 2537 /* 2538 * Unlike in global OOM situations, memcg is not in a physical 2539 * memory shortage. Allow dying and OOM-killed tasks to 2540 * bypass the last charges so that they can exit quickly and 2541 * free their memory. 2542 */ 2543 if (unlikely(should_force_charge())) 2544 goto force; 2545 2546 /* 2547 * Prevent unbounded recursion when reclaim operations need to 2548 * allocate memory. This might exceed the limits temporarily, 2549 * but we prefer facilitating memory reclaim and getting back 2550 * under the limit over triggering OOM kills in these cases. 2551 */ 2552 if (unlikely(current->flags & PF_MEMALLOC)) 2553 goto force; 2554 2555 if (unlikely(task_in_memcg_oom(current))) 2556 goto nomem; 2557 2558 if (!gfpflags_allow_blocking(gfp_mask)) 2559 goto nomem; 2560 2561 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2562 2563 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2564 gfp_mask, may_swap); 2565 2566 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2567 goto retry; 2568 2569 if (!drained) { 2570 drain_all_stock(mem_over_limit); 2571 drained = true; 2572 goto retry; 2573 } 2574 2575 if (gfp_mask & __GFP_NORETRY) 2576 goto nomem; 2577 /* 2578 * Even though the limit is exceeded at this point, reclaim 2579 * may have been able to free some pages. Retry the charge 2580 * before killing the task. 2581 * 2582 * Only for regular pages, though: huge pages are rather 2583 * unlikely to succeed so close to the limit, and we fall back 2584 * to regular pages anyway in case of failure. 2585 */ 2586 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2587 goto retry; 2588 /* 2589 * At task move, charge accounts can be doubly counted. So, it's 2590 * better to wait until the end of task_move if something is going on. 2591 */ 2592 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2593 goto retry; 2594 2595 if (nr_retries--) 2596 goto retry; 2597 2598 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2599 goto nomem; 2600 2601 if (gfp_mask & __GFP_NOFAIL) 2602 goto force; 2603 2604 if (fatal_signal_pending(current)) 2605 goto force; 2606 2607 /* 2608 * keep retrying as long as the memcg oom killer is able to make 2609 * a forward progress or bypass the charge if the oom killer 2610 * couldn't make any progress. 2611 */ 2612 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2613 get_order(nr_pages * PAGE_SIZE)); 2614 switch (oom_status) { 2615 case OOM_SUCCESS: 2616 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2617 goto retry; 2618 case OOM_FAILED: 2619 goto force; 2620 default: 2621 goto nomem; 2622 } 2623 nomem: 2624 if (!(gfp_mask & __GFP_NOFAIL)) 2625 return -ENOMEM; 2626 force: 2627 /* 2628 * The allocation either can't fail or will lead to more memory 2629 * being freed very soon. Allow memory usage go over the limit 2630 * temporarily by force charging it. 2631 */ 2632 page_counter_charge(&memcg->memory, nr_pages); 2633 if (do_memsw_account()) 2634 page_counter_charge(&memcg->memsw, nr_pages); 2635 css_get_many(&memcg->css, nr_pages); 2636 2637 return 0; 2638 2639 done_restock: 2640 css_get_many(&memcg->css, batch); 2641 if (batch > nr_pages) 2642 refill_stock(memcg, batch - nr_pages); 2643 2644 /* 2645 * If the hierarchy is above the normal consumption range, schedule 2646 * reclaim on returning to userland. We can perform reclaim here 2647 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2648 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2649 * not recorded as it most likely matches current's and won't 2650 * change in the meantime. As high limit is checked again before 2651 * reclaim, the cost of mismatch is negligible. 2652 */ 2653 do { 2654 if (page_counter_read(&memcg->memory) > memcg->high) { 2655 /* Don't bother a random interrupted task */ 2656 if (in_interrupt()) { 2657 schedule_work(&memcg->high_work); 2658 break; 2659 } 2660 current->memcg_nr_pages_over_high += batch; 2661 set_notify_resume(current); 2662 break; 2663 } 2664 } while ((memcg = parent_mem_cgroup(memcg))); 2665 2666 return 0; 2667 } 2668 2669 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2670 { 2671 if (mem_cgroup_is_root(memcg)) 2672 return; 2673 2674 page_counter_uncharge(&memcg->memory, nr_pages); 2675 if (do_memsw_account()) 2676 page_counter_uncharge(&memcg->memsw, nr_pages); 2677 2678 css_put_many(&memcg->css, nr_pages); 2679 } 2680 2681 static void lock_page_lru(struct page *page, int *isolated) 2682 { 2683 pg_data_t *pgdat = page_pgdat(page); 2684 2685 spin_lock_irq(&pgdat->lru_lock); 2686 if (PageLRU(page)) { 2687 struct lruvec *lruvec; 2688 2689 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2690 ClearPageLRU(page); 2691 del_page_from_lru_list(page, lruvec, page_lru(page)); 2692 *isolated = 1; 2693 } else 2694 *isolated = 0; 2695 } 2696 2697 static void unlock_page_lru(struct page *page, int isolated) 2698 { 2699 pg_data_t *pgdat = page_pgdat(page); 2700 2701 if (isolated) { 2702 struct lruvec *lruvec; 2703 2704 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2705 VM_BUG_ON_PAGE(PageLRU(page), page); 2706 SetPageLRU(page); 2707 add_page_to_lru_list(page, lruvec, page_lru(page)); 2708 } 2709 spin_unlock_irq(&pgdat->lru_lock); 2710 } 2711 2712 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2713 bool lrucare) 2714 { 2715 int isolated; 2716 2717 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2718 2719 /* 2720 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2721 * may already be on some other mem_cgroup's LRU. Take care of it. 2722 */ 2723 if (lrucare) 2724 lock_page_lru(page, &isolated); 2725 2726 /* 2727 * Nobody should be changing or seriously looking at 2728 * page->mem_cgroup at this point: 2729 * 2730 * - the page is uncharged 2731 * 2732 * - the page is off-LRU 2733 * 2734 * - an anonymous fault has exclusive page access, except for 2735 * a locked page table 2736 * 2737 * - a page cache insertion, a swapin fault, or a migration 2738 * have the page locked 2739 */ 2740 page->mem_cgroup = memcg; 2741 2742 if (lrucare) 2743 unlock_page_lru(page, isolated); 2744 } 2745 2746 #ifdef CONFIG_MEMCG_KMEM 2747 static int memcg_alloc_cache_id(void) 2748 { 2749 int id, size; 2750 int err; 2751 2752 id = ida_simple_get(&memcg_cache_ida, 2753 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2754 if (id < 0) 2755 return id; 2756 2757 if (id < memcg_nr_cache_ids) 2758 return id; 2759 2760 /* 2761 * There's no space for the new id in memcg_caches arrays, 2762 * so we have to grow them. 2763 */ 2764 down_write(&memcg_cache_ids_sem); 2765 2766 size = 2 * (id + 1); 2767 if (size < MEMCG_CACHES_MIN_SIZE) 2768 size = MEMCG_CACHES_MIN_SIZE; 2769 else if (size > MEMCG_CACHES_MAX_SIZE) 2770 size = MEMCG_CACHES_MAX_SIZE; 2771 2772 err = memcg_update_all_caches(size); 2773 if (!err) 2774 err = memcg_update_all_list_lrus(size); 2775 if (!err) 2776 memcg_nr_cache_ids = size; 2777 2778 up_write(&memcg_cache_ids_sem); 2779 2780 if (err) { 2781 ida_simple_remove(&memcg_cache_ida, id); 2782 return err; 2783 } 2784 return id; 2785 } 2786 2787 static void memcg_free_cache_id(int id) 2788 { 2789 ida_simple_remove(&memcg_cache_ida, id); 2790 } 2791 2792 struct memcg_kmem_cache_create_work { 2793 struct mem_cgroup *memcg; 2794 struct kmem_cache *cachep; 2795 struct work_struct work; 2796 }; 2797 2798 static void memcg_kmem_cache_create_func(struct work_struct *w) 2799 { 2800 struct memcg_kmem_cache_create_work *cw = 2801 container_of(w, struct memcg_kmem_cache_create_work, work); 2802 struct mem_cgroup *memcg = cw->memcg; 2803 struct kmem_cache *cachep = cw->cachep; 2804 2805 memcg_create_kmem_cache(memcg, cachep); 2806 2807 css_put(&memcg->css); 2808 kfree(cw); 2809 } 2810 2811 /* 2812 * Enqueue the creation of a per-memcg kmem_cache. 2813 */ 2814 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2815 struct kmem_cache *cachep) 2816 { 2817 struct memcg_kmem_cache_create_work *cw; 2818 2819 if (!css_tryget_online(&memcg->css)) 2820 return; 2821 2822 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2823 if (!cw) 2824 return; 2825 2826 cw->memcg = memcg; 2827 cw->cachep = cachep; 2828 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2829 2830 queue_work(memcg_kmem_cache_wq, &cw->work); 2831 } 2832 2833 static inline bool memcg_kmem_bypass(void) 2834 { 2835 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2836 return true; 2837 return false; 2838 } 2839 2840 /** 2841 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2842 * @cachep: the original global kmem cache 2843 * 2844 * Return the kmem_cache we're supposed to use for a slab allocation. 2845 * We try to use the current memcg's version of the cache. 2846 * 2847 * If the cache does not exist yet, if we are the first user of it, we 2848 * create it asynchronously in a workqueue and let the current allocation 2849 * go through with the original cache. 2850 * 2851 * This function takes a reference to the cache it returns to assure it 2852 * won't get destroyed while we are working with it. Once the caller is 2853 * done with it, memcg_kmem_put_cache() must be called to release the 2854 * reference. 2855 */ 2856 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2857 { 2858 struct mem_cgroup *memcg; 2859 struct kmem_cache *memcg_cachep; 2860 struct memcg_cache_array *arr; 2861 int kmemcg_id; 2862 2863 VM_BUG_ON(!is_root_cache(cachep)); 2864 2865 if (memcg_kmem_bypass()) 2866 return cachep; 2867 2868 rcu_read_lock(); 2869 2870 if (unlikely(current->active_memcg)) 2871 memcg = current->active_memcg; 2872 else 2873 memcg = mem_cgroup_from_task(current); 2874 2875 if (!memcg || memcg == root_mem_cgroup) 2876 goto out_unlock; 2877 2878 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2879 if (kmemcg_id < 0) 2880 goto out_unlock; 2881 2882 arr = rcu_dereference(cachep->memcg_params.memcg_caches); 2883 2884 /* 2885 * Make sure we will access the up-to-date value. The code updating 2886 * memcg_caches issues a write barrier to match the data dependency 2887 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()). 2888 */ 2889 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]); 2890 2891 /* 2892 * If we are in a safe context (can wait, and not in interrupt 2893 * context), we could be be predictable and return right away. 2894 * This would guarantee that the allocation being performed 2895 * already belongs in the new cache. 2896 * 2897 * However, there are some clashes that can arrive from locking. 2898 * For instance, because we acquire the slab_mutex while doing 2899 * memcg_create_kmem_cache, this means no further allocation 2900 * could happen with the slab_mutex held. So it's better to 2901 * defer everything. 2902 * 2903 * If the memcg is dying or memcg_cache is about to be released, 2904 * don't bother creating new kmem_caches. Because memcg_cachep 2905 * is ZEROed as the fist step of kmem offlining, we don't need 2906 * percpu_ref_tryget_live() here. css_tryget_online() check in 2907 * memcg_schedule_kmem_cache_create() will prevent us from 2908 * creation of a new kmem_cache. 2909 */ 2910 if (unlikely(!memcg_cachep)) 2911 memcg_schedule_kmem_cache_create(memcg, cachep); 2912 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt)) 2913 cachep = memcg_cachep; 2914 out_unlock: 2915 rcu_read_unlock(); 2916 return cachep; 2917 } 2918 2919 /** 2920 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2921 * @cachep: the cache returned by memcg_kmem_get_cache 2922 */ 2923 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2924 { 2925 if (!is_root_cache(cachep)) 2926 percpu_ref_put(&cachep->memcg_params.refcnt); 2927 } 2928 2929 /** 2930 * __memcg_kmem_charge_memcg: charge a kmem page 2931 * @page: page to charge 2932 * @gfp: reclaim mode 2933 * @order: allocation order 2934 * @memcg: memory cgroup to charge 2935 * 2936 * Returns 0 on success, an error code on failure. 2937 */ 2938 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2939 struct mem_cgroup *memcg) 2940 { 2941 unsigned int nr_pages = 1 << order; 2942 struct page_counter *counter; 2943 int ret; 2944 2945 ret = try_charge(memcg, gfp, nr_pages); 2946 if (ret) 2947 return ret; 2948 2949 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2950 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2951 2952 /* 2953 * Enforce __GFP_NOFAIL allocation because callers are not 2954 * prepared to see failures and likely do not have any failure 2955 * handling code. 2956 */ 2957 if (gfp & __GFP_NOFAIL) { 2958 page_counter_charge(&memcg->kmem, nr_pages); 2959 return 0; 2960 } 2961 cancel_charge(memcg, nr_pages); 2962 return -ENOMEM; 2963 } 2964 return 0; 2965 } 2966 2967 /** 2968 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup 2969 * @page: page to charge 2970 * @gfp: reclaim mode 2971 * @order: allocation order 2972 * 2973 * Returns 0 on success, an error code on failure. 2974 */ 2975 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2976 { 2977 struct mem_cgroup *memcg; 2978 int ret = 0; 2979 2980 if (memcg_kmem_bypass()) 2981 return 0; 2982 2983 memcg = get_mem_cgroup_from_current(); 2984 if (!mem_cgroup_is_root(memcg)) { 2985 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2986 if (!ret) { 2987 page->mem_cgroup = memcg; 2988 __SetPageKmemcg(page); 2989 } 2990 } 2991 css_put(&memcg->css); 2992 return ret; 2993 } 2994 2995 /** 2996 * __memcg_kmem_uncharge_memcg: uncharge a kmem page 2997 * @memcg: memcg to uncharge 2998 * @nr_pages: number of pages to uncharge 2999 */ 3000 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg, 3001 unsigned int nr_pages) 3002 { 3003 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 3004 page_counter_uncharge(&memcg->kmem, nr_pages); 3005 3006 page_counter_uncharge(&memcg->memory, nr_pages); 3007 if (do_memsw_account()) 3008 page_counter_uncharge(&memcg->memsw, nr_pages); 3009 } 3010 /** 3011 * __memcg_kmem_uncharge: uncharge a kmem page 3012 * @page: page to uncharge 3013 * @order: allocation order 3014 */ 3015 void __memcg_kmem_uncharge(struct page *page, int order) 3016 { 3017 struct mem_cgroup *memcg = page->mem_cgroup; 3018 unsigned int nr_pages = 1 << order; 3019 3020 if (!memcg) 3021 return; 3022 3023 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 3024 __memcg_kmem_uncharge_memcg(memcg, nr_pages); 3025 page->mem_cgroup = NULL; 3026 3027 /* slab pages do not have PageKmemcg flag set */ 3028 if (PageKmemcg(page)) 3029 __ClearPageKmemcg(page); 3030 3031 css_put_many(&memcg->css, nr_pages); 3032 } 3033 #endif /* CONFIG_MEMCG_KMEM */ 3034 3035 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3036 3037 /* 3038 * Because tail pages are not marked as "used", set it. We're under 3039 * pgdat->lru_lock and migration entries setup in all page mappings. 3040 */ 3041 void mem_cgroup_split_huge_fixup(struct page *head) 3042 { 3043 int i; 3044 3045 if (mem_cgroup_disabled()) 3046 return; 3047 3048 for (i = 1; i < HPAGE_PMD_NR; i++) 3049 head[i].mem_cgroup = head->mem_cgroup; 3050 3051 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 3052 } 3053 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3054 3055 #ifdef CONFIG_MEMCG_SWAP 3056 /** 3057 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3058 * @entry: swap entry to be moved 3059 * @from: mem_cgroup which the entry is moved from 3060 * @to: mem_cgroup which the entry is moved to 3061 * 3062 * It succeeds only when the swap_cgroup's record for this entry is the same 3063 * as the mem_cgroup's id of @from. 3064 * 3065 * Returns 0 on success, -EINVAL on failure. 3066 * 3067 * The caller must have charged to @to, IOW, called page_counter_charge() about 3068 * both res and memsw, and called css_get(). 3069 */ 3070 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3071 struct mem_cgroup *from, struct mem_cgroup *to) 3072 { 3073 unsigned short old_id, new_id; 3074 3075 old_id = mem_cgroup_id(from); 3076 new_id = mem_cgroup_id(to); 3077 3078 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3079 mod_memcg_state(from, MEMCG_SWAP, -1); 3080 mod_memcg_state(to, MEMCG_SWAP, 1); 3081 return 0; 3082 } 3083 return -EINVAL; 3084 } 3085 #else 3086 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3087 struct mem_cgroup *from, struct mem_cgroup *to) 3088 { 3089 return -EINVAL; 3090 } 3091 #endif 3092 3093 static DEFINE_MUTEX(memcg_max_mutex); 3094 3095 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3096 unsigned long max, bool memsw) 3097 { 3098 bool enlarge = false; 3099 bool drained = false; 3100 int ret; 3101 bool limits_invariant; 3102 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3103 3104 do { 3105 if (signal_pending(current)) { 3106 ret = -EINTR; 3107 break; 3108 } 3109 3110 mutex_lock(&memcg_max_mutex); 3111 /* 3112 * Make sure that the new limit (memsw or memory limit) doesn't 3113 * break our basic invariant rule memory.max <= memsw.max. 3114 */ 3115 limits_invariant = memsw ? max >= memcg->memory.max : 3116 max <= memcg->memsw.max; 3117 if (!limits_invariant) { 3118 mutex_unlock(&memcg_max_mutex); 3119 ret = -EINVAL; 3120 break; 3121 } 3122 if (max > counter->max) 3123 enlarge = true; 3124 ret = page_counter_set_max(counter, max); 3125 mutex_unlock(&memcg_max_mutex); 3126 3127 if (!ret) 3128 break; 3129 3130 if (!drained) { 3131 drain_all_stock(memcg); 3132 drained = true; 3133 continue; 3134 } 3135 3136 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3137 GFP_KERNEL, !memsw)) { 3138 ret = -EBUSY; 3139 break; 3140 } 3141 } while (true); 3142 3143 if (!ret && enlarge) 3144 memcg_oom_recover(memcg); 3145 3146 return ret; 3147 } 3148 3149 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3150 gfp_t gfp_mask, 3151 unsigned long *total_scanned) 3152 { 3153 unsigned long nr_reclaimed = 0; 3154 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3155 unsigned long reclaimed; 3156 int loop = 0; 3157 struct mem_cgroup_tree_per_node *mctz; 3158 unsigned long excess; 3159 unsigned long nr_scanned; 3160 3161 if (order > 0) 3162 return 0; 3163 3164 mctz = soft_limit_tree_node(pgdat->node_id); 3165 3166 /* 3167 * Do not even bother to check the largest node if the root 3168 * is empty. Do it lockless to prevent lock bouncing. Races 3169 * are acceptable as soft limit is best effort anyway. 3170 */ 3171 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3172 return 0; 3173 3174 /* 3175 * This loop can run a while, specially if mem_cgroup's continuously 3176 * keep exceeding their soft limit and putting the system under 3177 * pressure 3178 */ 3179 do { 3180 if (next_mz) 3181 mz = next_mz; 3182 else 3183 mz = mem_cgroup_largest_soft_limit_node(mctz); 3184 if (!mz) 3185 break; 3186 3187 nr_scanned = 0; 3188 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3189 gfp_mask, &nr_scanned); 3190 nr_reclaimed += reclaimed; 3191 *total_scanned += nr_scanned; 3192 spin_lock_irq(&mctz->lock); 3193 __mem_cgroup_remove_exceeded(mz, mctz); 3194 3195 /* 3196 * If we failed to reclaim anything from this memory cgroup 3197 * it is time to move on to the next cgroup 3198 */ 3199 next_mz = NULL; 3200 if (!reclaimed) 3201 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3202 3203 excess = soft_limit_excess(mz->memcg); 3204 /* 3205 * One school of thought says that we should not add 3206 * back the node to the tree if reclaim returns 0. 3207 * But our reclaim could return 0, simply because due 3208 * to priority we are exposing a smaller subset of 3209 * memory to reclaim from. Consider this as a longer 3210 * term TODO. 3211 */ 3212 /* If excess == 0, no tree ops */ 3213 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3214 spin_unlock_irq(&mctz->lock); 3215 css_put(&mz->memcg->css); 3216 loop++; 3217 /* 3218 * Could not reclaim anything and there are no more 3219 * mem cgroups to try or we seem to be looping without 3220 * reclaiming anything. 3221 */ 3222 if (!nr_reclaimed && 3223 (next_mz == NULL || 3224 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3225 break; 3226 } while (!nr_reclaimed); 3227 if (next_mz) 3228 css_put(&next_mz->memcg->css); 3229 return nr_reclaimed; 3230 } 3231 3232 /* 3233 * Test whether @memcg has children, dead or alive. Note that this 3234 * function doesn't care whether @memcg has use_hierarchy enabled and 3235 * returns %true if there are child csses according to the cgroup 3236 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 3237 */ 3238 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3239 { 3240 bool ret; 3241 3242 rcu_read_lock(); 3243 ret = css_next_child(NULL, &memcg->css); 3244 rcu_read_unlock(); 3245 return ret; 3246 } 3247 3248 /* 3249 * Reclaims as many pages from the given memcg as possible. 3250 * 3251 * Caller is responsible for holding css reference for memcg. 3252 */ 3253 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3254 { 3255 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3256 3257 /* we call try-to-free pages for make this cgroup empty */ 3258 lru_add_drain_all(); 3259 3260 drain_all_stock(memcg); 3261 3262 /* try to free all pages in this cgroup */ 3263 while (nr_retries && page_counter_read(&memcg->memory)) { 3264 int progress; 3265 3266 if (signal_pending(current)) 3267 return -EINTR; 3268 3269 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3270 GFP_KERNEL, true); 3271 if (!progress) { 3272 nr_retries--; 3273 /* maybe some writeback is necessary */ 3274 congestion_wait(BLK_RW_ASYNC, HZ/10); 3275 } 3276 3277 } 3278 3279 return 0; 3280 } 3281 3282 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3283 char *buf, size_t nbytes, 3284 loff_t off) 3285 { 3286 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3287 3288 if (mem_cgroup_is_root(memcg)) 3289 return -EINVAL; 3290 return mem_cgroup_force_empty(memcg) ?: nbytes; 3291 } 3292 3293 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3294 struct cftype *cft) 3295 { 3296 return mem_cgroup_from_css(css)->use_hierarchy; 3297 } 3298 3299 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3300 struct cftype *cft, u64 val) 3301 { 3302 int retval = 0; 3303 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3304 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3305 3306 if (memcg->use_hierarchy == val) 3307 return 0; 3308 3309 /* 3310 * If parent's use_hierarchy is set, we can't make any modifications 3311 * in the child subtrees. If it is unset, then the change can 3312 * occur, provided the current cgroup has no children. 3313 * 3314 * For the root cgroup, parent_mem is NULL, we allow value to be 3315 * set if there are no children. 3316 */ 3317 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3318 (val == 1 || val == 0)) { 3319 if (!memcg_has_children(memcg)) 3320 memcg->use_hierarchy = val; 3321 else 3322 retval = -EBUSY; 3323 } else 3324 retval = -EINVAL; 3325 3326 return retval; 3327 } 3328 3329 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3330 { 3331 unsigned long val; 3332 3333 if (mem_cgroup_is_root(memcg)) { 3334 val = memcg_page_state(memcg, MEMCG_CACHE) + 3335 memcg_page_state(memcg, MEMCG_RSS); 3336 if (swap) 3337 val += memcg_page_state(memcg, MEMCG_SWAP); 3338 } else { 3339 if (!swap) 3340 val = page_counter_read(&memcg->memory); 3341 else 3342 val = page_counter_read(&memcg->memsw); 3343 } 3344 return val; 3345 } 3346 3347 enum { 3348 RES_USAGE, 3349 RES_LIMIT, 3350 RES_MAX_USAGE, 3351 RES_FAILCNT, 3352 RES_SOFT_LIMIT, 3353 }; 3354 3355 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3356 struct cftype *cft) 3357 { 3358 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3359 struct page_counter *counter; 3360 3361 switch (MEMFILE_TYPE(cft->private)) { 3362 case _MEM: 3363 counter = &memcg->memory; 3364 break; 3365 case _MEMSWAP: 3366 counter = &memcg->memsw; 3367 break; 3368 case _KMEM: 3369 counter = &memcg->kmem; 3370 break; 3371 case _TCP: 3372 counter = &memcg->tcpmem; 3373 break; 3374 default: 3375 BUG(); 3376 } 3377 3378 switch (MEMFILE_ATTR(cft->private)) { 3379 case RES_USAGE: 3380 if (counter == &memcg->memory) 3381 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3382 if (counter == &memcg->memsw) 3383 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3384 return (u64)page_counter_read(counter) * PAGE_SIZE; 3385 case RES_LIMIT: 3386 return (u64)counter->max * PAGE_SIZE; 3387 case RES_MAX_USAGE: 3388 return (u64)counter->watermark * PAGE_SIZE; 3389 case RES_FAILCNT: 3390 return counter->failcnt; 3391 case RES_SOFT_LIMIT: 3392 return (u64)memcg->soft_limit * PAGE_SIZE; 3393 default: 3394 BUG(); 3395 } 3396 } 3397 3398 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only) 3399 { 3400 unsigned long stat[MEMCG_NR_STAT]; 3401 struct mem_cgroup *mi; 3402 int node, cpu, i; 3403 int min_idx, max_idx; 3404 3405 if (slab_only) { 3406 min_idx = NR_SLAB_RECLAIMABLE; 3407 max_idx = NR_SLAB_UNRECLAIMABLE; 3408 } else { 3409 min_idx = 0; 3410 max_idx = MEMCG_NR_STAT; 3411 } 3412 3413 for (i = min_idx; i < max_idx; i++) 3414 stat[i] = 0; 3415 3416 for_each_online_cpu(cpu) 3417 for (i = min_idx; i < max_idx; i++) 3418 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); 3419 3420 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3421 for (i = min_idx; i < max_idx; i++) 3422 atomic_long_add(stat[i], &mi->vmstats[i]); 3423 3424 if (!slab_only) 3425 max_idx = NR_VM_NODE_STAT_ITEMS; 3426 3427 for_each_node(node) { 3428 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3429 struct mem_cgroup_per_node *pi; 3430 3431 for (i = min_idx; i < max_idx; i++) 3432 stat[i] = 0; 3433 3434 for_each_online_cpu(cpu) 3435 for (i = min_idx; i < max_idx; i++) 3436 stat[i] += per_cpu( 3437 pn->lruvec_stat_cpu->count[i], cpu); 3438 3439 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3440 for (i = min_idx; i < max_idx; i++) 3441 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3442 } 3443 } 3444 3445 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3446 { 3447 unsigned long events[NR_VM_EVENT_ITEMS]; 3448 struct mem_cgroup *mi; 3449 int cpu, i; 3450 3451 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3452 events[i] = 0; 3453 3454 for_each_online_cpu(cpu) 3455 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3456 events[i] += per_cpu(memcg->vmstats_percpu->events[i], 3457 cpu); 3458 3459 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3460 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3461 atomic_long_add(events[i], &mi->vmevents[i]); 3462 } 3463 3464 #ifdef CONFIG_MEMCG_KMEM 3465 static int memcg_online_kmem(struct mem_cgroup *memcg) 3466 { 3467 int memcg_id; 3468 3469 if (cgroup_memory_nokmem) 3470 return 0; 3471 3472 BUG_ON(memcg->kmemcg_id >= 0); 3473 BUG_ON(memcg->kmem_state); 3474 3475 memcg_id = memcg_alloc_cache_id(); 3476 if (memcg_id < 0) 3477 return memcg_id; 3478 3479 static_branch_inc(&memcg_kmem_enabled_key); 3480 /* 3481 * A memory cgroup is considered kmem-online as soon as it gets 3482 * kmemcg_id. Setting the id after enabling static branching will 3483 * guarantee no one starts accounting before all call sites are 3484 * patched. 3485 */ 3486 memcg->kmemcg_id = memcg_id; 3487 memcg->kmem_state = KMEM_ONLINE; 3488 INIT_LIST_HEAD(&memcg->kmem_caches); 3489 3490 return 0; 3491 } 3492 3493 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3494 { 3495 struct cgroup_subsys_state *css; 3496 struct mem_cgroup *parent, *child; 3497 int kmemcg_id; 3498 3499 if (memcg->kmem_state != KMEM_ONLINE) 3500 return; 3501 /* 3502 * Clear the online state before clearing memcg_caches array 3503 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3504 * guarantees that no cache will be created for this cgroup 3505 * after we are done (see memcg_create_kmem_cache()). 3506 */ 3507 memcg->kmem_state = KMEM_ALLOCATED; 3508 3509 parent = parent_mem_cgroup(memcg); 3510 if (!parent) 3511 parent = root_mem_cgroup; 3512 3513 /* 3514 * Deactivate and reparent kmem_caches. Then flush percpu 3515 * slab statistics to have precise values at the parent and 3516 * all ancestor levels. It's required to keep slab stats 3517 * accurate after the reparenting of kmem_caches. 3518 */ 3519 memcg_deactivate_kmem_caches(memcg, parent); 3520 memcg_flush_percpu_vmstats(memcg, true); 3521 3522 kmemcg_id = memcg->kmemcg_id; 3523 BUG_ON(kmemcg_id < 0); 3524 3525 /* 3526 * Change kmemcg_id of this cgroup and all its descendants to the 3527 * parent's id, and then move all entries from this cgroup's list_lrus 3528 * to ones of the parent. After we have finished, all list_lrus 3529 * corresponding to this cgroup are guaranteed to remain empty. The 3530 * ordering is imposed by list_lru_node->lock taken by 3531 * memcg_drain_all_list_lrus(). 3532 */ 3533 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3534 css_for_each_descendant_pre(css, &memcg->css) { 3535 child = mem_cgroup_from_css(css); 3536 BUG_ON(child->kmemcg_id != kmemcg_id); 3537 child->kmemcg_id = parent->kmemcg_id; 3538 if (!memcg->use_hierarchy) 3539 break; 3540 } 3541 rcu_read_unlock(); 3542 3543 memcg_drain_all_list_lrus(kmemcg_id, parent); 3544 3545 memcg_free_cache_id(kmemcg_id); 3546 } 3547 3548 static void memcg_free_kmem(struct mem_cgroup *memcg) 3549 { 3550 /* css_alloc() failed, offlining didn't happen */ 3551 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3552 memcg_offline_kmem(memcg); 3553 3554 if (memcg->kmem_state == KMEM_ALLOCATED) { 3555 WARN_ON(!list_empty(&memcg->kmem_caches)); 3556 static_branch_dec(&memcg_kmem_enabled_key); 3557 } 3558 } 3559 #else 3560 static int memcg_online_kmem(struct mem_cgroup *memcg) 3561 { 3562 return 0; 3563 } 3564 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3565 { 3566 } 3567 static void memcg_free_kmem(struct mem_cgroup *memcg) 3568 { 3569 } 3570 #endif /* CONFIG_MEMCG_KMEM */ 3571 3572 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3573 unsigned long max) 3574 { 3575 int ret; 3576 3577 mutex_lock(&memcg_max_mutex); 3578 ret = page_counter_set_max(&memcg->kmem, max); 3579 mutex_unlock(&memcg_max_mutex); 3580 return ret; 3581 } 3582 3583 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3584 { 3585 int ret; 3586 3587 mutex_lock(&memcg_max_mutex); 3588 3589 ret = page_counter_set_max(&memcg->tcpmem, max); 3590 if (ret) 3591 goto out; 3592 3593 if (!memcg->tcpmem_active) { 3594 /* 3595 * The active flag needs to be written after the static_key 3596 * update. This is what guarantees that the socket activation 3597 * function is the last one to run. See mem_cgroup_sk_alloc() 3598 * for details, and note that we don't mark any socket as 3599 * belonging to this memcg until that flag is up. 3600 * 3601 * We need to do this, because static_keys will span multiple 3602 * sites, but we can't control their order. If we mark a socket 3603 * as accounted, but the accounting functions are not patched in 3604 * yet, we'll lose accounting. 3605 * 3606 * We never race with the readers in mem_cgroup_sk_alloc(), 3607 * because when this value change, the code to process it is not 3608 * patched in yet. 3609 */ 3610 static_branch_inc(&memcg_sockets_enabled_key); 3611 memcg->tcpmem_active = true; 3612 } 3613 out: 3614 mutex_unlock(&memcg_max_mutex); 3615 return ret; 3616 } 3617 3618 /* 3619 * The user of this function is... 3620 * RES_LIMIT. 3621 */ 3622 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3623 char *buf, size_t nbytes, loff_t off) 3624 { 3625 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3626 unsigned long nr_pages; 3627 int ret; 3628 3629 buf = strstrip(buf); 3630 ret = page_counter_memparse(buf, "-1", &nr_pages); 3631 if (ret) 3632 return ret; 3633 3634 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3635 case RES_LIMIT: 3636 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3637 ret = -EINVAL; 3638 break; 3639 } 3640 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3641 case _MEM: 3642 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3643 break; 3644 case _MEMSWAP: 3645 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3646 break; 3647 case _KMEM: 3648 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3649 "Please report your usecase to linux-mm@kvack.org if you " 3650 "depend on this functionality.\n"); 3651 ret = memcg_update_kmem_max(memcg, nr_pages); 3652 break; 3653 case _TCP: 3654 ret = memcg_update_tcp_max(memcg, nr_pages); 3655 break; 3656 } 3657 break; 3658 case RES_SOFT_LIMIT: 3659 memcg->soft_limit = nr_pages; 3660 ret = 0; 3661 break; 3662 } 3663 return ret ?: nbytes; 3664 } 3665 3666 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3667 size_t nbytes, loff_t off) 3668 { 3669 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3670 struct page_counter *counter; 3671 3672 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3673 case _MEM: 3674 counter = &memcg->memory; 3675 break; 3676 case _MEMSWAP: 3677 counter = &memcg->memsw; 3678 break; 3679 case _KMEM: 3680 counter = &memcg->kmem; 3681 break; 3682 case _TCP: 3683 counter = &memcg->tcpmem; 3684 break; 3685 default: 3686 BUG(); 3687 } 3688 3689 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3690 case RES_MAX_USAGE: 3691 page_counter_reset_watermark(counter); 3692 break; 3693 case RES_FAILCNT: 3694 counter->failcnt = 0; 3695 break; 3696 default: 3697 BUG(); 3698 } 3699 3700 return nbytes; 3701 } 3702 3703 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3704 struct cftype *cft) 3705 { 3706 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3707 } 3708 3709 #ifdef CONFIG_MMU 3710 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3711 struct cftype *cft, u64 val) 3712 { 3713 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3714 3715 if (val & ~MOVE_MASK) 3716 return -EINVAL; 3717 3718 /* 3719 * No kind of locking is needed in here, because ->can_attach() will 3720 * check this value once in the beginning of the process, and then carry 3721 * on with stale data. This means that changes to this value will only 3722 * affect task migrations starting after the change. 3723 */ 3724 memcg->move_charge_at_immigrate = val; 3725 return 0; 3726 } 3727 #else 3728 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3729 struct cftype *cft, u64 val) 3730 { 3731 return -ENOSYS; 3732 } 3733 #endif 3734 3735 #ifdef CONFIG_NUMA 3736 3737 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3738 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3739 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3740 3741 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3742 int nid, unsigned int lru_mask) 3743 { 3744 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 3745 unsigned long nr = 0; 3746 enum lru_list lru; 3747 3748 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3749 3750 for_each_lru(lru) { 3751 if (!(BIT(lru) & lru_mask)) 3752 continue; 3753 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3754 } 3755 return nr; 3756 } 3757 3758 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3759 unsigned int lru_mask) 3760 { 3761 unsigned long nr = 0; 3762 enum lru_list lru; 3763 3764 for_each_lru(lru) { 3765 if (!(BIT(lru) & lru_mask)) 3766 continue; 3767 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3768 } 3769 return nr; 3770 } 3771 3772 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3773 { 3774 struct numa_stat { 3775 const char *name; 3776 unsigned int lru_mask; 3777 }; 3778 3779 static const struct numa_stat stats[] = { 3780 { "total", LRU_ALL }, 3781 { "file", LRU_ALL_FILE }, 3782 { "anon", LRU_ALL_ANON }, 3783 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3784 }; 3785 const struct numa_stat *stat; 3786 int nid; 3787 unsigned long nr; 3788 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3789 3790 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3791 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3792 seq_printf(m, "%s=%lu", stat->name, nr); 3793 for_each_node_state(nid, N_MEMORY) { 3794 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3795 stat->lru_mask); 3796 seq_printf(m, " N%d=%lu", nid, nr); 3797 } 3798 seq_putc(m, '\n'); 3799 } 3800 3801 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3802 struct mem_cgroup *iter; 3803 3804 nr = 0; 3805 for_each_mem_cgroup_tree(iter, memcg) 3806 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3807 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3808 for_each_node_state(nid, N_MEMORY) { 3809 nr = 0; 3810 for_each_mem_cgroup_tree(iter, memcg) 3811 nr += mem_cgroup_node_nr_lru_pages( 3812 iter, nid, stat->lru_mask); 3813 seq_printf(m, " N%d=%lu", nid, nr); 3814 } 3815 seq_putc(m, '\n'); 3816 } 3817 3818 return 0; 3819 } 3820 #endif /* CONFIG_NUMA */ 3821 3822 static const unsigned int memcg1_stats[] = { 3823 MEMCG_CACHE, 3824 MEMCG_RSS, 3825 MEMCG_RSS_HUGE, 3826 NR_SHMEM, 3827 NR_FILE_MAPPED, 3828 NR_FILE_DIRTY, 3829 NR_WRITEBACK, 3830 MEMCG_SWAP, 3831 }; 3832 3833 static const char *const memcg1_stat_names[] = { 3834 "cache", 3835 "rss", 3836 "rss_huge", 3837 "shmem", 3838 "mapped_file", 3839 "dirty", 3840 "writeback", 3841 "swap", 3842 }; 3843 3844 /* Universal VM events cgroup1 shows, original sort order */ 3845 static const unsigned int memcg1_events[] = { 3846 PGPGIN, 3847 PGPGOUT, 3848 PGFAULT, 3849 PGMAJFAULT, 3850 }; 3851 3852 static const char *const memcg1_event_names[] = { 3853 "pgpgin", 3854 "pgpgout", 3855 "pgfault", 3856 "pgmajfault", 3857 }; 3858 3859 static int memcg_stat_show(struct seq_file *m, void *v) 3860 { 3861 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3862 unsigned long memory, memsw; 3863 struct mem_cgroup *mi; 3864 unsigned int i; 3865 3866 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3867 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3868 3869 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3870 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3871 continue; 3872 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3873 memcg_page_state_local(memcg, memcg1_stats[i]) * 3874 PAGE_SIZE); 3875 } 3876 3877 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3878 seq_printf(m, "%s %lu\n", memcg1_event_names[i], 3879 memcg_events_local(memcg, memcg1_events[i])); 3880 3881 for (i = 0; i < NR_LRU_LISTS; i++) 3882 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3883 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3884 PAGE_SIZE); 3885 3886 /* Hierarchical information */ 3887 memory = memsw = PAGE_COUNTER_MAX; 3888 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3889 memory = min(memory, mi->memory.max); 3890 memsw = min(memsw, mi->memsw.max); 3891 } 3892 seq_printf(m, "hierarchical_memory_limit %llu\n", 3893 (u64)memory * PAGE_SIZE); 3894 if (do_memsw_account()) 3895 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3896 (u64)memsw * PAGE_SIZE); 3897 3898 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3899 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3900 continue; 3901 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3902 (u64)memcg_page_state(memcg, memcg1_stats[i]) * 3903 PAGE_SIZE); 3904 } 3905 3906 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3907 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], 3908 (u64)memcg_events(memcg, memcg1_events[i])); 3909 3910 for (i = 0; i < NR_LRU_LISTS; i++) 3911 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], 3912 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 3913 PAGE_SIZE); 3914 3915 #ifdef CONFIG_DEBUG_VM 3916 { 3917 pg_data_t *pgdat; 3918 struct mem_cgroup_per_node *mz; 3919 struct zone_reclaim_stat *rstat; 3920 unsigned long recent_rotated[2] = {0, 0}; 3921 unsigned long recent_scanned[2] = {0, 0}; 3922 3923 for_each_online_pgdat(pgdat) { 3924 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3925 rstat = &mz->lruvec.reclaim_stat; 3926 3927 recent_rotated[0] += rstat->recent_rotated[0]; 3928 recent_rotated[1] += rstat->recent_rotated[1]; 3929 recent_scanned[0] += rstat->recent_scanned[0]; 3930 recent_scanned[1] += rstat->recent_scanned[1]; 3931 } 3932 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3933 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3934 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3935 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3936 } 3937 #endif 3938 3939 return 0; 3940 } 3941 3942 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3943 struct cftype *cft) 3944 { 3945 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3946 3947 return mem_cgroup_swappiness(memcg); 3948 } 3949 3950 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3951 struct cftype *cft, u64 val) 3952 { 3953 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3954 3955 if (val > 100) 3956 return -EINVAL; 3957 3958 if (css->parent) 3959 memcg->swappiness = val; 3960 else 3961 vm_swappiness = val; 3962 3963 return 0; 3964 } 3965 3966 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3967 { 3968 struct mem_cgroup_threshold_ary *t; 3969 unsigned long usage; 3970 int i; 3971 3972 rcu_read_lock(); 3973 if (!swap) 3974 t = rcu_dereference(memcg->thresholds.primary); 3975 else 3976 t = rcu_dereference(memcg->memsw_thresholds.primary); 3977 3978 if (!t) 3979 goto unlock; 3980 3981 usage = mem_cgroup_usage(memcg, swap); 3982 3983 /* 3984 * current_threshold points to threshold just below or equal to usage. 3985 * If it's not true, a threshold was crossed after last 3986 * call of __mem_cgroup_threshold(). 3987 */ 3988 i = t->current_threshold; 3989 3990 /* 3991 * Iterate backward over array of thresholds starting from 3992 * current_threshold and check if a threshold is crossed. 3993 * If none of thresholds below usage is crossed, we read 3994 * only one element of the array here. 3995 */ 3996 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3997 eventfd_signal(t->entries[i].eventfd, 1); 3998 3999 /* i = current_threshold + 1 */ 4000 i++; 4001 4002 /* 4003 * Iterate forward over array of thresholds starting from 4004 * current_threshold+1 and check if a threshold is crossed. 4005 * If none of thresholds above usage is crossed, we read 4006 * only one element of the array here. 4007 */ 4008 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4009 eventfd_signal(t->entries[i].eventfd, 1); 4010 4011 /* Update current_threshold */ 4012 t->current_threshold = i - 1; 4013 unlock: 4014 rcu_read_unlock(); 4015 } 4016 4017 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4018 { 4019 while (memcg) { 4020 __mem_cgroup_threshold(memcg, false); 4021 if (do_memsw_account()) 4022 __mem_cgroup_threshold(memcg, true); 4023 4024 memcg = parent_mem_cgroup(memcg); 4025 } 4026 } 4027 4028 static int compare_thresholds(const void *a, const void *b) 4029 { 4030 const struct mem_cgroup_threshold *_a = a; 4031 const struct mem_cgroup_threshold *_b = b; 4032 4033 if (_a->threshold > _b->threshold) 4034 return 1; 4035 4036 if (_a->threshold < _b->threshold) 4037 return -1; 4038 4039 return 0; 4040 } 4041 4042 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4043 { 4044 struct mem_cgroup_eventfd_list *ev; 4045 4046 spin_lock(&memcg_oom_lock); 4047 4048 list_for_each_entry(ev, &memcg->oom_notify, list) 4049 eventfd_signal(ev->eventfd, 1); 4050 4051 spin_unlock(&memcg_oom_lock); 4052 return 0; 4053 } 4054 4055 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4056 { 4057 struct mem_cgroup *iter; 4058 4059 for_each_mem_cgroup_tree(iter, memcg) 4060 mem_cgroup_oom_notify_cb(iter); 4061 } 4062 4063 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4064 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4065 { 4066 struct mem_cgroup_thresholds *thresholds; 4067 struct mem_cgroup_threshold_ary *new; 4068 unsigned long threshold; 4069 unsigned long usage; 4070 int i, size, ret; 4071 4072 ret = page_counter_memparse(args, "-1", &threshold); 4073 if (ret) 4074 return ret; 4075 4076 mutex_lock(&memcg->thresholds_lock); 4077 4078 if (type == _MEM) { 4079 thresholds = &memcg->thresholds; 4080 usage = mem_cgroup_usage(memcg, false); 4081 } else if (type == _MEMSWAP) { 4082 thresholds = &memcg->memsw_thresholds; 4083 usage = mem_cgroup_usage(memcg, true); 4084 } else 4085 BUG(); 4086 4087 /* Check if a threshold crossed before adding a new one */ 4088 if (thresholds->primary) 4089 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4090 4091 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4092 4093 /* Allocate memory for new array of thresholds */ 4094 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4095 if (!new) { 4096 ret = -ENOMEM; 4097 goto unlock; 4098 } 4099 new->size = size; 4100 4101 /* Copy thresholds (if any) to new array */ 4102 if (thresholds->primary) { 4103 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4104 sizeof(struct mem_cgroup_threshold)); 4105 } 4106 4107 /* Add new threshold */ 4108 new->entries[size - 1].eventfd = eventfd; 4109 new->entries[size - 1].threshold = threshold; 4110 4111 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4112 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4113 compare_thresholds, NULL); 4114 4115 /* Find current threshold */ 4116 new->current_threshold = -1; 4117 for (i = 0; i < size; i++) { 4118 if (new->entries[i].threshold <= usage) { 4119 /* 4120 * new->current_threshold will not be used until 4121 * rcu_assign_pointer(), so it's safe to increment 4122 * it here. 4123 */ 4124 ++new->current_threshold; 4125 } else 4126 break; 4127 } 4128 4129 /* Free old spare buffer and save old primary buffer as spare */ 4130 kfree(thresholds->spare); 4131 thresholds->spare = thresholds->primary; 4132 4133 rcu_assign_pointer(thresholds->primary, new); 4134 4135 /* To be sure that nobody uses thresholds */ 4136 synchronize_rcu(); 4137 4138 unlock: 4139 mutex_unlock(&memcg->thresholds_lock); 4140 4141 return ret; 4142 } 4143 4144 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4145 struct eventfd_ctx *eventfd, const char *args) 4146 { 4147 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4148 } 4149 4150 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4151 struct eventfd_ctx *eventfd, const char *args) 4152 { 4153 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4154 } 4155 4156 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4157 struct eventfd_ctx *eventfd, enum res_type type) 4158 { 4159 struct mem_cgroup_thresholds *thresholds; 4160 struct mem_cgroup_threshold_ary *new; 4161 unsigned long usage; 4162 int i, j, size; 4163 4164 mutex_lock(&memcg->thresholds_lock); 4165 4166 if (type == _MEM) { 4167 thresholds = &memcg->thresholds; 4168 usage = mem_cgroup_usage(memcg, false); 4169 } else if (type == _MEMSWAP) { 4170 thresholds = &memcg->memsw_thresholds; 4171 usage = mem_cgroup_usage(memcg, true); 4172 } else 4173 BUG(); 4174 4175 if (!thresholds->primary) 4176 goto unlock; 4177 4178 /* Check if a threshold crossed before removing */ 4179 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4180 4181 /* Calculate new number of threshold */ 4182 size = 0; 4183 for (i = 0; i < thresholds->primary->size; i++) { 4184 if (thresholds->primary->entries[i].eventfd != eventfd) 4185 size++; 4186 } 4187 4188 new = thresholds->spare; 4189 4190 /* Set thresholds array to NULL if we don't have thresholds */ 4191 if (!size) { 4192 kfree(new); 4193 new = NULL; 4194 goto swap_buffers; 4195 } 4196 4197 new->size = size; 4198 4199 /* Copy thresholds and find current threshold */ 4200 new->current_threshold = -1; 4201 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4202 if (thresholds->primary->entries[i].eventfd == eventfd) 4203 continue; 4204 4205 new->entries[j] = thresholds->primary->entries[i]; 4206 if (new->entries[j].threshold <= usage) { 4207 /* 4208 * new->current_threshold will not be used 4209 * until rcu_assign_pointer(), so it's safe to increment 4210 * it here. 4211 */ 4212 ++new->current_threshold; 4213 } 4214 j++; 4215 } 4216 4217 swap_buffers: 4218 /* Swap primary and spare array */ 4219 thresholds->spare = thresholds->primary; 4220 4221 rcu_assign_pointer(thresholds->primary, new); 4222 4223 /* To be sure that nobody uses thresholds */ 4224 synchronize_rcu(); 4225 4226 /* If all events are unregistered, free the spare array */ 4227 if (!new) { 4228 kfree(thresholds->spare); 4229 thresholds->spare = NULL; 4230 } 4231 unlock: 4232 mutex_unlock(&memcg->thresholds_lock); 4233 } 4234 4235 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4236 struct eventfd_ctx *eventfd) 4237 { 4238 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4239 } 4240 4241 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4242 struct eventfd_ctx *eventfd) 4243 { 4244 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4245 } 4246 4247 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4248 struct eventfd_ctx *eventfd, const char *args) 4249 { 4250 struct mem_cgroup_eventfd_list *event; 4251 4252 event = kmalloc(sizeof(*event), GFP_KERNEL); 4253 if (!event) 4254 return -ENOMEM; 4255 4256 spin_lock(&memcg_oom_lock); 4257 4258 event->eventfd = eventfd; 4259 list_add(&event->list, &memcg->oom_notify); 4260 4261 /* already in OOM ? */ 4262 if (memcg->under_oom) 4263 eventfd_signal(eventfd, 1); 4264 spin_unlock(&memcg_oom_lock); 4265 4266 return 0; 4267 } 4268 4269 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4270 struct eventfd_ctx *eventfd) 4271 { 4272 struct mem_cgroup_eventfd_list *ev, *tmp; 4273 4274 spin_lock(&memcg_oom_lock); 4275 4276 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4277 if (ev->eventfd == eventfd) { 4278 list_del(&ev->list); 4279 kfree(ev); 4280 } 4281 } 4282 4283 spin_unlock(&memcg_oom_lock); 4284 } 4285 4286 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4287 { 4288 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4289 4290 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4291 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4292 seq_printf(sf, "oom_kill %lu\n", 4293 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4294 return 0; 4295 } 4296 4297 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4298 struct cftype *cft, u64 val) 4299 { 4300 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4301 4302 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4303 if (!css->parent || !((val == 0) || (val == 1))) 4304 return -EINVAL; 4305 4306 memcg->oom_kill_disable = val; 4307 if (!val) 4308 memcg_oom_recover(memcg); 4309 4310 return 0; 4311 } 4312 4313 #ifdef CONFIG_CGROUP_WRITEBACK 4314 4315 #include <trace/events/writeback.h> 4316 4317 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4318 { 4319 return wb_domain_init(&memcg->cgwb_domain, gfp); 4320 } 4321 4322 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4323 { 4324 wb_domain_exit(&memcg->cgwb_domain); 4325 } 4326 4327 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4328 { 4329 wb_domain_size_changed(&memcg->cgwb_domain); 4330 } 4331 4332 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4333 { 4334 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4335 4336 if (!memcg->css.parent) 4337 return NULL; 4338 4339 return &memcg->cgwb_domain; 4340 } 4341 4342 /* 4343 * idx can be of type enum memcg_stat_item or node_stat_item. 4344 * Keep in sync with memcg_exact_page(). 4345 */ 4346 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4347 { 4348 long x = atomic_long_read(&memcg->vmstats[idx]); 4349 int cpu; 4350 4351 for_each_online_cpu(cpu) 4352 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4353 if (x < 0) 4354 x = 0; 4355 return x; 4356 } 4357 4358 /** 4359 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4360 * @wb: bdi_writeback in question 4361 * @pfilepages: out parameter for number of file pages 4362 * @pheadroom: out parameter for number of allocatable pages according to memcg 4363 * @pdirty: out parameter for number of dirty pages 4364 * @pwriteback: out parameter for number of pages under writeback 4365 * 4366 * Determine the numbers of file, headroom, dirty, and writeback pages in 4367 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4368 * is a bit more involved. 4369 * 4370 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4371 * headroom is calculated as the lowest headroom of itself and the 4372 * ancestors. Note that this doesn't consider the actual amount of 4373 * available memory in the system. The caller should further cap 4374 * *@pheadroom accordingly. 4375 */ 4376 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4377 unsigned long *pheadroom, unsigned long *pdirty, 4378 unsigned long *pwriteback) 4379 { 4380 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4381 struct mem_cgroup *parent; 4382 4383 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4384 4385 /* this should eventually include NR_UNSTABLE_NFS */ 4386 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4387 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4388 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4389 *pheadroom = PAGE_COUNTER_MAX; 4390 4391 while ((parent = parent_mem_cgroup(memcg))) { 4392 unsigned long ceiling = min(memcg->memory.max, memcg->high); 4393 unsigned long used = page_counter_read(&memcg->memory); 4394 4395 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4396 memcg = parent; 4397 } 4398 } 4399 4400 /* 4401 * Foreign dirty flushing 4402 * 4403 * There's an inherent mismatch between memcg and writeback. The former 4404 * trackes ownership per-page while the latter per-inode. This was a 4405 * deliberate design decision because honoring per-page ownership in the 4406 * writeback path is complicated, may lead to higher CPU and IO overheads 4407 * and deemed unnecessary given that write-sharing an inode across 4408 * different cgroups isn't a common use-case. 4409 * 4410 * Combined with inode majority-writer ownership switching, this works well 4411 * enough in most cases but there are some pathological cases. For 4412 * example, let's say there are two cgroups A and B which keep writing to 4413 * different but confined parts of the same inode. B owns the inode and 4414 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4415 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4416 * triggering background writeback. A will be slowed down without a way to 4417 * make writeback of the dirty pages happen. 4418 * 4419 * Conditions like the above can lead to a cgroup getting repatedly and 4420 * severely throttled after making some progress after each 4421 * dirty_expire_interval while the underyling IO device is almost 4422 * completely idle. 4423 * 4424 * Solving this problem completely requires matching the ownership tracking 4425 * granularities between memcg and writeback in either direction. However, 4426 * the more egregious behaviors can be avoided by simply remembering the 4427 * most recent foreign dirtying events and initiating remote flushes on 4428 * them when local writeback isn't enough to keep the memory clean enough. 4429 * 4430 * The following two functions implement such mechanism. When a foreign 4431 * page - a page whose memcg and writeback ownerships don't match - is 4432 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4433 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4434 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4435 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4436 * foreign bdi_writebacks which haven't expired. Both the numbers of 4437 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4438 * limited to MEMCG_CGWB_FRN_CNT. 4439 * 4440 * The mechanism only remembers IDs and doesn't hold any object references. 4441 * As being wrong occasionally doesn't matter, updates and accesses to the 4442 * records are lockless and racy. 4443 */ 4444 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4445 struct bdi_writeback *wb) 4446 { 4447 struct mem_cgroup *memcg = page->mem_cgroup; 4448 struct memcg_cgwb_frn *frn; 4449 u64 now = get_jiffies_64(); 4450 u64 oldest_at = now; 4451 int oldest = -1; 4452 int i; 4453 4454 trace_track_foreign_dirty(page, wb); 4455 4456 /* 4457 * Pick the slot to use. If there is already a slot for @wb, keep 4458 * using it. If not replace the oldest one which isn't being 4459 * written out. 4460 */ 4461 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4462 frn = &memcg->cgwb_frn[i]; 4463 if (frn->bdi_id == wb->bdi->id && 4464 frn->memcg_id == wb->memcg_css->id) 4465 break; 4466 if (time_before64(frn->at, oldest_at) && 4467 atomic_read(&frn->done.cnt) == 1) { 4468 oldest = i; 4469 oldest_at = frn->at; 4470 } 4471 } 4472 4473 if (i < MEMCG_CGWB_FRN_CNT) { 4474 /* 4475 * Re-using an existing one. Update timestamp lazily to 4476 * avoid making the cacheline hot. We want them to be 4477 * reasonably up-to-date and significantly shorter than 4478 * dirty_expire_interval as that's what expires the record. 4479 * Use the shorter of 1s and dirty_expire_interval / 8. 4480 */ 4481 unsigned long update_intv = 4482 min_t(unsigned long, HZ, 4483 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4484 4485 if (time_before64(frn->at, now - update_intv)) 4486 frn->at = now; 4487 } else if (oldest >= 0) { 4488 /* replace the oldest free one */ 4489 frn = &memcg->cgwb_frn[oldest]; 4490 frn->bdi_id = wb->bdi->id; 4491 frn->memcg_id = wb->memcg_css->id; 4492 frn->at = now; 4493 } 4494 } 4495 4496 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4497 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4498 { 4499 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4500 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4501 u64 now = jiffies_64; 4502 int i; 4503 4504 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4505 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4506 4507 /* 4508 * If the record is older than dirty_expire_interval, 4509 * writeback on it has already started. No need to kick it 4510 * off again. Also, don't start a new one if there's 4511 * already one in flight. 4512 */ 4513 if (time_after64(frn->at, now - intv) && 4514 atomic_read(&frn->done.cnt) == 1) { 4515 frn->at = 0; 4516 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4517 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0, 4518 WB_REASON_FOREIGN_FLUSH, 4519 &frn->done); 4520 } 4521 } 4522 } 4523 4524 #else /* CONFIG_CGROUP_WRITEBACK */ 4525 4526 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4527 { 4528 return 0; 4529 } 4530 4531 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4532 { 4533 } 4534 4535 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4536 { 4537 } 4538 4539 #endif /* CONFIG_CGROUP_WRITEBACK */ 4540 4541 /* 4542 * DO NOT USE IN NEW FILES. 4543 * 4544 * "cgroup.event_control" implementation. 4545 * 4546 * This is way over-engineered. It tries to support fully configurable 4547 * events for each user. Such level of flexibility is completely 4548 * unnecessary especially in the light of the planned unified hierarchy. 4549 * 4550 * Please deprecate this and replace with something simpler if at all 4551 * possible. 4552 */ 4553 4554 /* 4555 * Unregister event and free resources. 4556 * 4557 * Gets called from workqueue. 4558 */ 4559 static void memcg_event_remove(struct work_struct *work) 4560 { 4561 struct mem_cgroup_event *event = 4562 container_of(work, struct mem_cgroup_event, remove); 4563 struct mem_cgroup *memcg = event->memcg; 4564 4565 remove_wait_queue(event->wqh, &event->wait); 4566 4567 event->unregister_event(memcg, event->eventfd); 4568 4569 /* Notify userspace the event is going away. */ 4570 eventfd_signal(event->eventfd, 1); 4571 4572 eventfd_ctx_put(event->eventfd); 4573 kfree(event); 4574 css_put(&memcg->css); 4575 } 4576 4577 /* 4578 * Gets called on EPOLLHUP on eventfd when user closes it. 4579 * 4580 * Called with wqh->lock held and interrupts disabled. 4581 */ 4582 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4583 int sync, void *key) 4584 { 4585 struct mem_cgroup_event *event = 4586 container_of(wait, struct mem_cgroup_event, wait); 4587 struct mem_cgroup *memcg = event->memcg; 4588 __poll_t flags = key_to_poll(key); 4589 4590 if (flags & EPOLLHUP) { 4591 /* 4592 * If the event has been detached at cgroup removal, we 4593 * can simply return knowing the other side will cleanup 4594 * for us. 4595 * 4596 * We can't race against event freeing since the other 4597 * side will require wqh->lock via remove_wait_queue(), 4598 * which we hold. 4599 */ 4600 spin_lock(&memcg->event_list_lock); 4601 if (!list_empty(&event->list)) { 4602 list_del_init(&event->list); 4603 /* 4604 * We are in atomic context, but cgroup_event_remove() 4605 * may sleep, so we have to call it in workqueue. 4606 */ 4607 schedule_work(&event->remove); 4608 } 4609 spin_unlock(&memcg->event_list_lock); 4610 } 4611 4612 return 0; 4613 } 4614 4615 static void memcg_event_ptable_queue_proc(struct file *file, 4616 wait_queue_head_t *wqh, poll_table *pt) 4617 { 4618 struct mem_cgroup_event *event = 4619 container_of(pt, struct mem_cgroup_event, pt); 4620 4621 event->wqh = wqh; 4622 add_wait_queue(wqh, &event->wait); 4623 } 4624 4625 /* 4626 * DO NOT USE IN NEW FILES. 4627 * 4628 * Parse input and register new cgroup event handler. 4629 * 4630 * Input must be in format '<event_fd> <control_fd> <args>'. 4631 * Interpretation of args is defined by control file implementation. 4632 */ 4633 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4634 char *buf, size_t nbytes, loff_t off) 4635 { 4636 struct cgroup_subsys_state *css = of_css(of); 4637 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4638 struct mem_cgroup_event *event; 4639 struct cgroup_subsys_state *cfile_css; 4640 unsigned int efd, cfd; 4641 struct fd efile; 4642 struct fd cfile; 4643 const char *name; 4644 char *endp; 4645 int ret; 4646 4647 buf = strstrip(buf); 4648 4649 efd = simple_strtoul(buf, &endp, 10); 4650 if (*endp != ' ') 4651 return -EINVAL; 4652 buf = endp + 1; 4653 4654 cfd = simple_strtoul(buf, &endp, 10); 4655 if ((*endp != ' ') && (*endp != '\0')) 4656 return -EINVAL; 4657 buf = endp + 1; 4658 4659 event = kzalloc(sizeof(*event), GFP_KERNEL); 4660 if (!event) 4661 return -ENOMEM; 4662 4663 event->memcg = memcg; 4664 INIT_LIST_HEAD(&event->list); 4665 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4666 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4667 INIT_WORK(&event->remove, memcg_event_remove); 4668 4669 efile = fdget(efd); 4670 if (!efile.file) { 4671 ret = -EBADF; 4672 goto out_kfree; 4673 } 4674 4675 event->eventfd = eventfd_ctx_fileget(efile.file); 4676 if (IS_ERR(event->eventfd)) { 4677 ret = PTR_ERR(event->eventfd); 4678 goto out_put_efile; 4679 } 4680 4681 cfile = fdget(cfd); 4682 if (!cfile.file) { 4683 ret = -EBADF; 4684 goto out_put_eventfd; 4685 } 4686 4687 /* the process need read permission on control file */ 4688 /* AV: shouldn't we check that it's been opened for read instead? */ 4689 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4690 if (ret < 0) 4691 goto out_put_cfile; 4692 4693 /* 4694 * Determine the event callbacks and set them in @event. This used 4695 * to be done via struct cftype but cgroup core no longer knows 4696 * about these events. The following is crude but the whole thing 4697 * is for compatibility anyway. 4698 * 4699 * DO NOT ADD NEW FILES. 4700 */ 4701 name = cfile.file->f_path.dentry->d_name.name; 4702 4703 if (!strcmp(name, "memory.usage_in_bytes")) { 4704 event->register_event = mem_cgroup_usage_register_event; 4705 event->unregister_event = mem_cgroup_usage_unregister_event; 4706 } else if (!strcmp(name, "memory.oom_control")) { 4707 event->register_event = mem_cgroup_oom_register_event; 4708 event->unregister_event = mem_cgroup_oom_unregister_event; 4709 } else if (!strcmp(name, "memory.pressure_level")) { 4710 event->register_event = vmpressure_register_event; 4711 event->unregister_event = vmpressure_unregister_event; 4712 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4713 event->register_event = memsw_cgroup_usage_register_event; 4714 event->unregister_event = memsw_cgroup_usage_unregister_event; 4715 } else { 4716 ret = -EINVAL; 4717 goto out_put_cfile; 4718 } 4719 4720 /* 4721 * Verify @cfile should belong to @css. Also, remaining events are 4722 * automatically removed on cgroup destruction but the removal is 4723 * asynchronous, so take an extra ref on @css. 4724 */ 4725 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4726 &memory_cgrp_subsys); 4727 ret = -EINVAL; 4728 if (IS_ERR(cfile_css)) 4729 goto out_put_cfile; 4730 if (cfile_css != css) { 4731 css_put(cfile_css); 4732 goto out_put_cfile; 4733 } 4734 4735 ret = event->register_event(memcg, event->eventfd, buf); 4736 if (ret) 4737 goto out_put_css; 4738 4739 vfs_poll(efile.file, &event->pt); 4740 4741 spin_lock(&memcg->event_list_lock); 4742 list_add(&event->list, &memcg->event_list); 4743 spin_unlock(&memcg->event_list_lock); 4744 4745 fdput(cfile); 4746 fdput(efile); 4747 4748 return nbytes; 4749 4750 out_put_css: 4751 css_put(css); 4752 out_put_cfile: 4753 fdput(cfile); 4754 out_put_eventfd: 4755 eventfd_ctx_put(event->eventfd); 4756 out_put_efile: 4757 fdput(efile); 4758 out_kfree: 4759 kfree(event); 4760 4761 return ret; 4762 } 4763 4764 static struct cftype mem_cgroup_legacy_files[] = { 4765 { 4766 .name = "usage_in_bytes", 4767 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4768 .read_u64 = mem_cgroup_read_u64, 4769 }, 4770 { 4771 .name = "max_usage_in_bytes", 4772 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4773 .write = mem_cgroup_reset, 4774 .read_u64 = mem_cgroup_read_u64, 4775 }, 4776 { 4777 .name = "limit_in_bytes", 4778 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4779 .write = mem_cgroup_write, 4780 .read_u64 = mem_cgroup_read_u64, 4781 }, 4782 { 4783 .name = "soft_limit_in_bytes", 4784 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4785 .write = mem_cgroup_write, 4786 .read_u64 = mem_cgroup_read_u64, 4787 }, 4788 { 4789 .name = "failcnt", 4790 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4791 .write = mem_cgroup_reset, 4792 .read_u64 = mem_cgroup_read_u64, 4793 }, 4794 { 4795 .name = "stat", 4796 .seq_show = memcg_stat_show, 4797 }, 4798 { 4799 .name = "force_empty", 4800 .write = mem_cgroup_force_empty_write, 4801 }, 4802 { 4803 .name = "use_hierarchy", 4804 .write_u64 = mem_cgroup_hierarchy_write, 4805 .read_u64 = mem_cgroup_hierarchy_read, 4806 }, 4807 { 4808 .name = "cgroup.event_control", /* XXX: for compat */ 4809 .write = memcg_write_event_control, 4810 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4811 }, 4812 { 4813 .name = "swappiness", 4814 .read_u64 = mem_cgroup_swappiness_read, 4815 .write_u64 = mem_cgroup_swappiness_write, 4816 }, 4817 { 4818 .name = "move_charge_at_immigrate", 4819 .read_u64 = mem_cgroup_move_charge_read, 4820 .write_u64 = mem_cgroup_move_charge_write, 4821 }, 4822 { 4823 .name = "oom_control", 4824 .seq_show = mem_cgroup_oom_control_read, 4825 .write_u64 = mem_cgroup_oom_control_write, 4826 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4827 }, 4828 { 4829 .name = "pressure_level", 4830 }, 4831 #ifdef CONFIG_NUMA 4832 { 4833 .name = "numa_stat", 4834 .seq_show = memcg_numa_stat_show, 4835 }, 4836 #endif 4837 { 4838 .name = "kmem.limit_in_bytes", 4839 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4840 .write = mem_cgroup_write, 4841 .read_u64 = mem_cgroup_read_u64, 4842 }, 4843 { 4844 .name = "kmem.usage_in_bytes", 4845 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4846 .read_u64 = mem_cgroup_read_u64, 4847 }, 4848 { 4849 .name = "kmem.failcnt", 4850 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4851 .write = mem_cgroup_reset, 4852 .read_u64 = mem_cgroup_read_u64, 4853 }, 4854 { 4855 .name = "kmem.max_usage_in_bytes", 4856 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4857 .write = mem_cgroup_reset, 4858 .read_u64 = mem_cgroup_read_u64, 4859 }, 4860 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 4861 { 4862 .name = "kmem.slabinfo", 4863 .seq_start = memcg_slab_start, 4864 .seq_next = memcg_slab_next, 4865 .seq_stop = memcg_slab_stop, 4866 .seq_show = memcg_slab_show, 4867 }, 4868 #endif 4869 { 4870 .name = "kmem.tcp.limit_in_bytes", 4871 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4872 .write = mem_cgroup_write, 4873 .read_u64 = mem_cgroup_read_u64, 4874 }, 4875 { 4876 .name = "kmem.tcp.usage_in_bytes", 4877 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4878 .read_u64 = mem_cgroup_read_u64, 4879 }, 4880 { 4881 .name = "kmem.tcp.failcnt", 4882 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4883 .write = mem_cgroup_reset, 4884 .read_u64 = mem_cgroup_read_u64, 4885 }, 4886 { 4887 .name = "kmem.tcp.max_usage_in_bytes", 4888 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4889 .write = mem_cgroup_reset, 4890 .read_u64 = mem_cgroup_read_u64, 4891 }, 4892 { }, /* terminate */ 4893 }; 4894 4895 /* 4896 * Private memory cgroup IDR 4897 * 4898 * Swap-out records and page cache shadow entries need to store memcg 4899 * references in constrained space, so we maintain an ID space that is 4900 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4901 * memory-controlled cgroups to 64k. 4902 * 4903 * However, there usually are many references to the oflline CSS after 4904 * the cgroup has been destroyed, such as page cache or reclaimable 4905 * slab objects, that don't need to hang on to the ID. We want to keep 4906 * those dead CSS from occupying IDs, or we might quickly exhaust the 4907 * relatively small ID space and prevent the creation of new cgroups 4908 * even when there are much fewer than 64k cgroups - possibly none. 4909 * 4910 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4911 * be freed and recycled when it's no longer needed, which is usually 4912 * when the CSS is offlined. 4913 * 4914 * The only exception to that are records of swapped out tmpfs/shmem 4915 * pages that need to be attributed to live ancestors on swapin. But 4916 * those references are manageable from userspace. 4917 */ 4918 4919 static DEFINE_IDR(mem_cgroup_idr); 4920 4921 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4922 { 4923 if (memcg->id.id > 0) { 4924 idr_remove(&mem_cgroup_idr, memcg->id.id); 4925 memcg->id.id = 0; 4926 } 4927 } 4928 4929 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4930 { 4931 refcount_add(n, &memcg->id.ref); 4932 } 4933 4934 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4935 { 4936 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4937 mem_cgroup_id_remove(memcg); 4938 4939 /* Memcg ID pins CSS */ 4940 css_put(&memcg->css); 4941 } 4942 } 4943 4944 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4945 { 4946 mem_cgroup_id_put_many(memcg, 1); 4947 } 4948 4949 /** 4950 * mem_cgroup_from_id - look up a memcg from a memcg id 4951 * @id: the memcg id to look up 4952 * 4953 * Caller must hold rcu_read_lock(). 4954 */ 4955 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4956 { 4957 WARN_ON_ONCE(!rcu_read_lock_held()); 4958 return idr_find(&mem_cgroup_idr, id); 4959 } 4960 4961 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4962 { 4963 struct mem_cgroup_per_node *pn; 4964 int tmp = node; 4965 /* 4966 * This routine is called against possible nodes. 4967 * But it's BUG to call kmalloc() against offline node. 4968 * 4969 * TODO: this routine can waste much memory for nodes which will 4970 * never be onlined. It's better to use memory hotplug callback 4971 * function. 4972 */ 4973 if (!node_state(node, N_NORMAL_MEMORY)) 4974 tmp = -1; 4975 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4976 if (!pn) 4977 return 1; 4978 4979 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat); 4980 if (!pn->lruvec_stat_local) { 4981 kfree(pn); 4982 return 1; 4983 } 4984 4985 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4986 if (!pn->lruvec_stat_cpu) { 4987 free_percpu(pn->lruvec_stat_local); 4988 kfree(pn); 4989 return 1; 4990 } 4991 4992 lruvec_init(&pn->lruvec); 4993 pn->usage_in_excess = 0; 4994 pn->on_tree = false; 4995 pn->memcg = memcg; 4996 4997 memcg->nodeinfo[node] = pn; 4998 return 0; 4999 } 5000 5001 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5002 { 5003 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5004 5005 if (!pn) 5006 return; 5007 5008 free_percpu(pn->lruvec_stat_cpu); 5009 free_percpu(pn->lruvec_stat_local); 5010 kfree(pn); 5011 } 5012 5013 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5014 { 5015 int node; 5016 5017 /* 5018 * Flush percpu vmstats and vmevents to guarantee the value correctness 5019 * on parent's and all ancestor levels. 5020 */ 5021 memcg_flush_percpu_vmstats(memcg, false); 5022 memcg_flush_percpu_vmevents(memcg); 5023 for_each_node(node) 5024 free_mem_cgroup_per_node_info(memcg, node); 5025 free_percpu(memcg->vmstats_percpu); 5026 free_percpu(memcg->vmstats_local); 5027 kfree(memcg); 5028 } 5029 5030 static void mem_cgroup_free(struct mem_cgroup *memcg) 5031 { 5032 memcg_wb_domain_exit(memcg); 5033 __mem_cgroup_free(memcg); 5034 } 5035 5036 static struct mem_cgroup *mem_cgroup_alloc(void) 5037 { 5038 struct mem_cgroup *memcg; 5039 unsigned int size; 5040 int node; 5041 int __maybe_unused i; 5042 5043 size = sizeof(struct mem_cgroup); 5044 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 5045 5046 memcg = kzalloc(size, GFP_KERNEL); 5047 if (!memcg) 5048 return NULL; 5049 5050 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5051 1, MEM_CGROUP_ID_MAX, 5052 GFP_KERNEL); 5053 if (memcg->id.id < 0) 5054 goto fail; 5055 5056 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu); 5057 if (!memcg->vmstats_local) 5058 goto fail; 5059 5060 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); 5061 if (!memcg->vmstats_percpu) 5062 goto fail; 5063 5064 for_each_node(node) 5065 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5066 goto fail; 5067 5068 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5069 goto fail; 5070 5071 INIT_WORK(&memcg->high_work, high_work_func); 5072 memcg->last_scanned_node = MAX_NUMNODES; 5073 INIT_LIST_HEAD(&memcg->oom_notify); 5074 mutex_init(&memcg->thresholds_lock); 5075 spin_lock_init(&memcg->move_lock); 5076 vmpressure_init(&memcg->vmpressure); 5077 INIT_LIST_HEAD(&memcg->event_list); 5078 spin_lock_init(&memcg->event_list_lock); 5079 memcg->socket_pressure = jiffies; 5080 #ifdef CONFIG_MEMCG_KMEM 5081 memcg->kmemcg_id = -1; 5082 #endif 5083 #ifdef CONFIG_CGROUP_WRITEBACK 5084 INIT_LIST_HEAD(&memcg->cgwb_list); 5085 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5086 memcg->cgwb_frn[i].done = 5087 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5088 #endif 5089 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5090 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5091 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5092 memcg->deferred_split_queue.split_queue_len = 0; 5093 #endif 5094 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5095 return memcg; 5096 fail: 5097 mem_cgroup_id_remove(memcg); 5098 __mem_cgroup_free(memcg); 5099 return NULL; 5100 } 5101 5102 static struct cgroup_subsys_state * __ref 5103 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5104 { 5105 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5106 struct mem_cgroup *memcg; 5107 long error = -ENOMEM; 5108 5109 memcg = mem_cgroup_alloc(); 5110 if (!memcg) 5111 return ERR_PTR(error); 5112 5113 memcg->high = PAGE_COUNTER_MAX; 5114 memcg->soft_limit = PAGE_COUNTER_MAX; 5115 if (parent) { 5116 memcg->swappiness = mem_cgroup_swappiness(parent); 5117 memcg->oom_kill_disable = parent->oom_kill_disable; 5118 } 5119 if (parent && parent->use_hierarchy) { 5120 memcg->use_hierarchy = true; 5121 page_counter_init(&memcg->memory, &parent->memory); 5122 page_counter_init(&memcg->swap, &parent->swap); 5123 page_counter_init(&memcg->memsw, &parent->memsw); 5124 page_counter_init(&memcg->kmem, &parent->kmem); 5125 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5126 } else { 5127 page_counter_init(&memcg->memory, NULL); 5128 page_counter_init(&memcg->swap, NULL); 5129 page_counter_init(&memcg->memsw, NULL); 5130 page_counter_init(&memcg->kmem, NULL); 5131 page_counter_init(&memcg->tcpmem, NULL); 5132 /* 5133 * Deeper hierachy with use_hierarchy == false doesn't make 5134 * much sense so let cgroup subsystem know about this 5135 * unfortunate state in our controller. 5136 */ 5137 if (parent != root_mem_cgroup) 5138 memory_cgrp_subsys.broken_hierarchy = true; 5139 } 5140 5141 /* The following stuff does not apply to the root */ 5142 if (!parent) { 5143 #ifdef CONFIG_MEMCG_KMEM 5144 INIT_LIST_HEAD(&memcg->kmem_caches); 5145 #endif 5146 root_mem_cgroup = memcg; 5147 return &memcg->css; 5148 } 5149 5150 error = memcg_online_kmem(memcg); 5151 if (error) 5152 goto fail; 5153 5154 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5155 static_branch_inc(&memcg_sockets_enabled_key); 5156 5157 return &memcg->css; 5158 fail: 5159 mem_cgroup_id_remove(memcg); 5160 mem_cgroup_free(memcg); 5161 return ERR_PTR(-ENOMEM); 5162 } 5163 5164 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5165 { 5166 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5167 5168 /* 5169 * A memcg must be visible for memcg_expand_shrinker_maps() 5170 * by the time the maps are allocated. So, we allocate maps 5171 * here, when for_each_mem_cgroup() can't skip it. 5172 */ 5173 if (memcg_alloc_shrinker_maps(memcg)) { 5174 mem_cgroup_id_remove(memcg); 5175 return -ENOMEM; 5176 } 5177 5178 /* Online state pins memcg ID, memcg ID pins CSS */ 5179 refcount_set(&memcg->id.ref, 1); 5180 css_get(css); 5181 return 0; 5182 } 5183 5184 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5185 { 5186 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5187 struct mem_cgroup_event *event, *tmp; 5188 5189 /* 5190 * Unregister events and notify userspace. 5191 * Notify userspace about cgroup removing only after rmdir of cgroup 5192 * directory to avoid race between userspace and kernelspace. 5193 */ 5194 spin_lock(&memcg->event_list_lock); 5195 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5196 list_del_init(&event->list); 5197 schedule_work(&event->remove); 5198 } 5199 spin_unlock(&memcg->event_list_lock); 5200 5201 page_counter_set_min(&memcg->memory, 0); 5202 page_counter_set_low(&memcg->memory, 0); 5203 5204 memcg_offline_kmem(memcg); 5205 wb_memcg_offline(memcg); 5206 5207 drain_all_stock(memcg); 5208 5209 mem_cgroup_id_put(memcg); 5210 } 5211 5212 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5213 { 5214 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5215 5216 invalidate_reclaim_iterators(memcg); 5217 } 5218 5219 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5220 { 5221 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5222 int __maybe_unused i; 5223 5224 #ifdef CONFIG_CGROUP_WRITEBACK 5225 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5226 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5227 #endif 5228 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5229 static_branch_dec(&memcg_sockets_enabled_key); 5230 5231 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5232 static_branch_dec(&memcg_sockets_enabled_key); 5233 5234 vmpressure_cleanup(&memcg->vmpressure); 5235 cancel_work_sync(&memcg->high_work); 5236 mem_cgroup_remove_from_trees(memcg); 5237 memcg_free_shrinker_maps(memcg); 5238 memcg_free_kmem(memcg); 5239 mem_cgroup_free(memcg); 5240 } 5241 5242 /** 5243 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5244 * @css: the target css 5245 * 5246 * Reset the states of the mem_cgroup associated with @css. This is 5247 * invoked when the userland requests disabling on the default hierarchy 5248 * but the memcg is pinned through dependency. The memcg should stop 5249 * applying policies and should revert to the vanilla state as it may be 5250 * made visible again. 5251 * 5252 * The current implementation only resets the essential configurations. 5253 * This needs to be expanded to cover all the visible parts. 5254 */ 5255 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5256 { 5257 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5258 5259 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5260 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5261 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 5262 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5263 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5264 page_counter_set_min(&memcg->memory, 0); 5265 page_counter_set_low(&memcg->memory, 0); 5266 memcg->high = PAGE_COUNTER_MAX; 5267 memcg->soft_limit = PAGE_COUNTER_MAX; 5268 memcg_wb_domain_size_changed(memcg); 5269 } 5270 5271 #ifdef CONFIG_MMU 5272 /* Handlers for move charge at task migration. */ 5273 static int mem_cgroup_do_precharge(unsigned long count) 5274 { 5275 int ret; 5276 5277 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5278 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5279 if (!ret) { 5280 mc.precharge += count; 5281 return ret; 5282 } 5283 5284 /* Try charges one by one with reclaim, but do not retry */ 5285 while (count--) { 5286 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5287 if (ret) 5288 return ret; 5289 mc.precharge++; 5290 cond_resched(); 5291 } 5292 return 0; 5293 } 5294 5295 union mc_target { 5296 struct page *page; 5297 swp_entry_t ent; 5298 }; 5299 5300 enum mc_target_type { 5301 MC_TARGET_NONE = 0, 5302 MC_TARGET_PAGE, 5303 MC_TARGET_SWAP, 5304 MC_TARGET_DEVICE, 5305 }; 5306 5307 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5308 unsigned long addr, pte_t ptent) 5309 { 5310 struct page *page = vm_normal_page(vma, addr, ptent); 5311 5312 if (!page || !page_mapped(page)) 5313 return NULL; 5314 if (PageAnon(page)) { 5315 if (!(mc.flags & MOVE_ANON)) 5316 return NULL; 5317 } else { 5318 if (!(mc.flags & MOVE_FILE)) 5319 return NULL; 5320 } 5321 if (!get_page_unless_zero(page)) 5322 return NULL; 5323 5324 return page; 5325 } 5326 5327 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5328 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5329 pte_t ptent, swp_entry_t *entry) 5330 { 5331 struct page *page = NULL; 5332 swp_entry_t ent = pte_to_swp_entry(ptent); 5333 5334 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 5335 return NULL; 5336 5337 /* 5338 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5339 * a device and because they are not accessible by CPU they are store 5340 * as special swap entry in the CPU page table. 5341 */ 5342 if (is_device_private_entry(ent)) { 5343 page = device_private_entry_to_page(ent); 5344 /* 5345 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5346 * a refcount of 1 when free (unlike normal page) 5347 */ 5348 if (!page_ref_add_unless(page, 1, 1)) 5349 return NULL; 5350 return page; 5351 } 5352 5353 /* 5354 * Because lookup_swap_cache() updates some statistics counter, 5355 * we call find_get_page() with swapper_space directly. 5356 */ 5357 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5358 if (do_memsw_account()) 5359 entry->val = ent.val; 5360 5361 return page; 5362 } 5363 #else 5364 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5365 pte_t ptent, swp_entry_t *entry) 5366 { 5367 return NULL; 5368 } 5369 #endif 5370 5371 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5372 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5373 { 5374 struct page *page = NULL; 5375 struct address_space *mapping; 5376 pgoff_t pgoff; 5377 5378 if (!vma->vm_file) /* anonymous vma */ 5379 return NULL; 5380 if (!(mc.flags & MOVE_FILE)) 5381 return NULL; 5382 5383 mapping = vma->vm_file->f_mapping; 5384 pgoff = linear_page_index(vma, addr); 5385 5386 /* page is moved even if it's not RSS of this task(page-faulted). */ 5387 #ifdef CONFIG_SWAP 5388 /* shmem/tmpfs may report page out on swap: account for that too. */ 5389 if (shmem_mapping(mapping)) { 5390 page = find_get_entry(mapping, pgoff); 5391 if (xa_is_value(page)) { 5392 swp_entry_t swp = radix_to_swp_entry(page); 5393 if (do_memsw_account()) 5394 *entry = swp; 5395 page = find_get_page(swap_address_space(swp), 5396 swp_offset(swp)); 5397 } 5398 } else 5399 page = find_get_page(mapping, pgoff); 5400 #else 5401 page = find_get_page(mapping, pgoff); 5402 #endif 5403 return page; 5404 } 5405 5406 /** 5407 * mem_cgroup_move_account - move account of the page 5408 * @page: the page 5409 * @compound: charge the page as compound or small page 5410 * @from: mem_cgroup which the page is moved from. 5411 * @to: mem_cgroup which the page is moved to. @from != @to. 5412 * 5413 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5414 * 5415 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5416 * from old cgroup. 5417 */ 5418 static int mem_cgroup_move_account(struct page *page, 5419 bool compound, 5420 struct mem_cgroup *from, 5421 struct mem_cgroup *to) 5422 { 5423 struct lruvec *from_vec, *to_vec; 5424 struct pglist_data *pgdat; 5425 unsigned long flags; 5426 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5427 int ret; 5428 bool anon; 5429 5430 VM_BUG_ON(from == to); 5431 VM_BUG_ON_PAGE(PageLRU(page), page); 5432 VM_BUG_ON(compound && !PageTransHuge(page)); 5433 5434 /* 5435 * Prevent mem_cgroup_migrate() from looking at 5436 * page->mem_cgroup of its source page while we change it. 5437 */ 5438 ret = -EBUSY; 5439 if (!trylock_page(page)) 5440 goto out; 5441 5442 ret = -EINVAL; 5443 if (page->mem_cgroup != from) 5444 goto out_unlock; 5445 5446 anon = PageAnon(page); 5447 5448 pgdat = page_pgdat(page); 5449 from_vec = mem_cgroup_lruvec(pgdat, from); 5450 to_vec = mem_cgroup_lruvec(pgdat, to); 5451 5452 spin_lock_irqsave(&from->move_lock, flags); 5453 5454 if (!anon && page_mapped(page)) { 5455 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5456 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5457 } 5458 5459 /* 5460 * move_lock grabbed above and caller set from->moving_account, so 5461 * mod_memcg_page_state will serialize updates to PageDirty. 5462 * So mapping should be stable for dirty pages. 5463 */ 5464 if (!anon && PageDirty(page)) { 5465 struct address_space *mapping = page_mapping(page); 5466 5467 if (mapping_cap_account_dirty(mapping)) { 5468 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages); 5469 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages); 5470 } 5471 } 5472 5473 if (PageWriteback(page)) { 5474 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5475 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5476 } 5477 5478 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5479 if (compound && !list_empty(page_deferred_list(page))) { 5480 spin_lock(&from->deferred_split_queue.split_queue_lock); 5481 list_del_init(page_deferred_list(page)); 5482 from->deferred_split_queue.split_queue_len--; 5483 spin_unlock(&from->deferred_split_queue.split_queue_lock); 5484 } 5485 #endif 5486 /* 5487 * It is safe to change page->mem_cgroup here because the page 5488 * is referenced, charged, and isolated - we can't race with 5489 * uncharging, charging, migration, or LRU putback. 5490 */ 5491 5492 /* caller should have done css_get */ 5493 page->mem_cgroup = to; 5494 5495 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5496 if (compound && list_empty(page_deferred_list(page))) { 5497 spin_lock(&to->deferred_split_queue.split_queue_lock); 5498 list_add_tail(page_deferred_list(page), 5499 &to->deferred_split_queue.split_queue); 5500 to->deferred_split_queue.split_queue_len++; 5501 spin_unlock(&to->deferred_split_queue.split_queue_lock); 5502 } 5503 #endif 5504 5505 spin_unlock_irqrestore(&from->move_lock, flags); 5506 5507 ret = 0; 5508 5509 local_irq_disable(); 5510 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 5511 memcg_check_events(to, page); 5512 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 5513 memcg_check_events(from, page); 5514 local_irq_enable(); 5515 out_unlock: 5516 unlock_page(page); 5517 out: 5518 return ret; 5519 } 5520 5521 /** 5522 * get_mctgt_type - get target type of moving charge 5523 * @vma: the vma the pte to be checked belongs 5524 * @addr: the address corresponding to the pte to be checked 5525 * @ptent: the pte to be checked 5526 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5527 * 5528 * Returns 5529 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5530 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5531 * move charge. if @target is not NULL, the page is stored in target->page 5532 * with extra refcnt got(Callers should handle it). 5533 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5534 * target for charge migration. if @target is not NULL, the entry is stored 5535 * in target->ent. 5536 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5537 * (so ZONE_DEVICE page and thus not on the lru). 5538 * For now we such page is charge like a regular page would be as for all 5539 * intent and purposes it is just special memory taking the place of a 5540 * regular page. 5541 * 5542 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5543 * 5544 * Called with pte lock held. 5545 */ 5546 5547 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5548 unsigned long addr, pte_t ptent, union mc_target *target) 5549 { 5550 struct page *page = NULL; 5551 enum mc_target_type ret = MC_TARGET_NONE; 5552 swp_entry_t ent = { .val = 0 }; 5553 5554 if (pte_present(ptent)) 5555 page = mc_handle_present_pte(vma, addr, ptent); 5556 else if (is_swap_pte(ptent)) 5557 page = mc_handle_swap_pte(vma, ptent, &ent); 5558 else if (pte_none(ptent)) 5559 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5560 5561 if (!page && !ent.val) 5562 return ret; 5563 if (page) { 5564 /* 5565 * Do only loose check w/o serialization. 5566 * mem_cgroup_move_account() checks the page is valid or 5567 * not under LRU exclusion. 5568 */ 5569 if (page->mem_cgroup == mc.from) { 5570 ret = MC_TARGET_PAGE; 5571 if (is_device_private_page(page)) 5572 ret = MC_TARGET_DEVICE; 5573 if (target) 5574 target->page = page; 5575 } 5576 if (!ret || !target) 5577 put_page(page); 5578 } 5579 /* 5580 * There is a swap entry and a page doesn't exist or isn't charged. 5581 * But we cannot move a tail-page in a THP. 5582 */ 5583 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5584 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5585 ret = MC_TARGET_SWAP; 5586 if (target) 5587 target->ent = ent; 5588 } 5589 return ret; 5590 } 5591 5592 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5593 /* 5594 * We don't consider PMD mapped swapping or file mapped pages because THP does 5595 * not support them for now. 5596 * Caller should make sure that pmd_trans_huge(pmd) is true. 5597 */ 5598 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5599 unsigned long addr, pmd_t pmd, union mc_target *target) 5600 { 5601 struct page *page = NULL; 5602 enum mc_target_type ret = MC_TARGET_NONE; 5603 5604 if (unlikely(is_swap_pmd(pmd))) { 5605 VM_BUG_ON(thp_migration_supported() && 5606 !is_pmd_migration_entry(pmd)); 5607 return ret; 5608 } 5609 page = pmd_page(pmd); 5610 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5611 if (!(mc.flags & MOVE_ANON)) 5612 return ret; 5613 if (page->mem_cgroup == mc.from) { 5614 ret = MC_TARGET_PAGE; 5615 if (target) { 5616 get_page(page); 5617 target->page = page; 5618 } 5619 } 5620 return ret; 5621 } 5622 #else 5623 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5624 unsigned long addr, pmd_t pmd, union mc_target *target) 5625 { 5626 return MC_TARGET_NONE; 5627 } 5628 #endif 5629 5630 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5631 unsigned long addr, unsigned long end, 5632 struct mm_walk *walk) 5633 { 5634 struct vm_area_struct *vma = walk->vma; 5635 pte_t *pte; 5636 spinlock_t *ptl; 5637 5638 ptl = pmd_trans_huge_lock(pmd, vma); 5639 if (ptl) { 5640 /* 5641 * Note their can not be MC_TARGET_DEVICE for now as we do not 5642 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5643 * this might change. 5644 */ 5645 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5646 mc.precharge += HPAGE_PMD_NR; 5647 spin_unlock(ptl); 5648 return 0; 5649 } 5650 5651 if (pmd_trans_unstable(pmd)) 5652 return 0; 5653 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5654 for (; addr != end; pte++, addr += PAGE_SIZE) 5655 if (get_mctgt_type(vma, addr, *pte, NULL)) 5656 mc.precharge++; /* increment precharge temporarily */ 5657 pte_unmap_unlock(pte - 1, ptl); 5658 cond_resched(); 5659 5660 return 0; 5661 } 5662 5663 static const struct mm_walk_ops precharge_walk_ops = { 5664 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5665 }; 5666 5667 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5668 { 5669 unsigned long precharge; 5670 5671 down_read(&mm->mmap_sem); 5672 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5673 up_read(&mm->mmap_sem); 5674 5675 precharge = mc.precharge; 5676 mc.precharge = 0; 5677 5678 return precharge; 5679 } 5680 5681 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5682 { 5683 unsigned long precharge = mem_cgroup_count_precharge(mm); 5684 5685 VM_BUG_ON(mc.moving_task); 5686 mc.moving_task = current; 5687 return mem_cgroup_do_precharge(precharge); 5688 } 5689 5690 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5691 static void __mem_cgroup_clear_mc(void) 5692 { 5693 struct mem_cgroup *from = mc.from; 5694 struct mem_cgroup *to = mc.to; 5695 5696 /* we must uncharge all the leftover precharges from mc.to */ 5697 if (mc.precharge) { 5698 cancel_charge(mc.to, mc.precharge); 5699 mc.precharge = 0; 5700 } 5701 /* 5702 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5703 * we must uncharge here. 5704 */ 5705 if (mc.moved_charge) { 5706 cancel_charge(mc.from, mc.moved_charge); 5707 mc.moved_charge = 0; 5708 } 5709 /* we must fixup refcnts and charges */ 5710 if (mc.moved_swap) { 5711 /* uncharge swap account from the old cgroup */ 5712 if (!mem_cgroup_is_root(mc.from)) 5713 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5714 5715 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5716 5717 /* 5718 * we charged both to->memory and to->memsw, so we 5719 * should uncharge to->memory. 5720 */ 5721 if (!mem_cgroup_is_root(mc.to)) 5722 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5723 5724 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5725 css_put_many(&mc.to->css, mc.moved_swap); 5726 5727 mc.moved_swap = 0; 5728 } 5729 memcg_oom_recover(from); 5730 memcg_oom_recover(to); 5731 wake_up_all(&mc.waitq); 5732 } 5733 5734 static void mem_cgroup_clear_mc(void) 5735 { 5736 struct mm_struct *mm = mc.mm; 5737 5738 /* 5739 * we must clear moving_task before waking up waiters at the end of 5740 * task migration. 5741 */ 5742 mc.moving_task = NULL; 5743 __mem_cgroup_clear_mc(); 5744 spin_lock(&mc.lock); 5745 mc.from = NULL; 5746 mc.to = NULL; 5747 mc.mm = NULL; 5748 spin_unlock(&mc.lock); 5749 5750 mmput(mm); 5751 } 5752 5753 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5754 { 5755 struct cgroup_subsys_state *css; 5756 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5757 struct mem_cgroup *from; 5758 struct task_struct *leader, *p; 5759 struct mm_struct *mm; 5760 unsigned long move_flags; 5761 int ret = 0; 5762 5763 /* charge immigration isn't supported on the default hierarchy */ 5764 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5765 return 0; 5766 5767 /* 5768 * Multi-process migrations only happen on the default hierarchy 5769 * where charge immigration is not used. Perform charge 5770 * immigration if @tset contains a leader and whine if there are 5771 * multiple. 5772 */ 5773 p = NULL; 5774 cgroup_taskset_for_each_leader(leader, css, tset) { 5775 WARN_ON_ONCE(p); 5776 p = leader; 5777 memcg = mem_cgroup_from_css(css); 5778 } 5779 if (!p) 5780 return 0; 5781 5782 /* 5783 * We are now commited to this value whatever it is. Changes in this 5784 * tunable will only affect upcoming migrations, not the current one. 5785 * So we need to save it, and keep it going. 5786 */ 5787 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5788 if (!move_flags) 5789 return 0; 5790 5791 from = mem_cgroup_from_task(p); 5792 5793 VM_BUG_ON(from == memcg); 5794 5795 mm = get_task_mm(p); 5796 if (!mm) 5797 return 0; 5798 /* We move charges only when we move a owner of the mm */ 5799 if (mm->owner == p) { 5800 VM_BUG_ON(mc.from); 5801 VM_BUG_ON(mc.to); 5802 VM_BUG_ON(mc.precharge); 5803 VM_BUG_ON(mc.moved_charge); 5804 VM_BUG_ON(mc.moved_swap); 5805 5806 spin_lock(&mc.lock); 5807 mc.mm = mm; 5808 mc.from = from; 5809 mc.to = memcg; 5810 mc.flags = move_flags; 5811 spin_unlock(&mc.lock); 5812 /* We set mc.moving_task later */ 5813 5814 ret = mem_cgroup_precharge_mc(mm); 5815 if (ret) 5816 mem_cgroup_clear_mc(); 5817 } else { 5818 mmput(mm); 5819 } 5820 return ret; 5821 } 5822 5823 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5824 { 5825 if (mc.to) 5826 mem_cgroup_clear_mc(); 5827 } 5828 5829 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5830 unsigned long addr, unsigned long end, 5831 struct mm_walk *walk) 5832 { 5833 int ret = 0; 5834 struct vm_area_struct *vma = walk->vma; 5835 pte_t *pte; 5836 spinlock_t *ptl; 5837 enum mc_target_type target_type; 5838 union mc_target target; 5839 struct page *page; 5840 5841 ptl = pmd_trans_huge_lock(pmd, vma); 5842 if (ptl) { 5843 if (mc.precharge < HPAGE_PMD_NR) { 5844 spin_unlock(ptl); 5845 return 0; 5846 } 5847 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5848 if (target_type == MC_TARGET_PAGE) { 5849 page = target.page; 5850 if (!isolate_lru_page(page)) { 5851 if (!mem_cgroup_move_account(page, true, 5852 mc.from, mc.to)) { 5853 mc.precharge -= HPAGE_PMD_NR; 5854 mc.moved_charge += HPAGE_PMD_NR; 5855 } 5856 putback_lru_page(page); 5857 } 5858 put_page(page); 5859 } else if (target_type == MC_TARGET_DEVICE) { 5860 page = target.page; 5861 if (!mem_cgroup_move_account(page, true, 5862 mc.from, mc.to)) { 5863 mc.precharge -= HPAGE_PMD_NR; 5864 mc.moved_charge += HPAGE_PMD_NR; 5865 } 5866 put_page(page); 5867 } 5868 spin_unlock(ptl); 5869 return 0; 5870 } 5871 5872 if (pmd_trans_unstable(pmd)) 5873 return 0; 5874 retry: 5875 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5876 for (; addr != end; addr += PAGE_SIZE) { 5877 pte_t ptent = *(pte++); 5878 bool device = false; 5879 swp_entry_t ent; 5880 5881 if (!mc.precharge) 5882 break; 5883 5884 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5885 case MC_TARGET_DEVICE: 5886 device = true; 5887 /* fall through */ 5888 case MC_TARGET_PAGE: 5889 page = target.page; 5890 /* 5891 * We can have a part of the split pmd here. Moving it 5892 * can be done but it would be too convoluted so simply 5893 * ignore such a partial THP and keep it in original 5894 * memcg. There should be somebody mapping the head. 5895 */ 5896 if (PageTransCompound(page)) 5897 goto put; 5898 if (!device && isolate_lru_page(page)) 5899 goto put; 5900 if (!mem_cgroup_move_account(page, false, 5901 mc.from, mc.to)) { 5902 mc.precharge--; 5903 /* we uncharge from mc.from later. */ 5904 mc.moved_charge++; 5905 } 5906 if (!device) 5907 putback_lru_page(page); 5908 put: /* get_mctgt_type() gets the page */ 5909 put_page(page); 5910 break; 5911 case MC_TARGET_SWAP: 5912 ent = target.ent; 5913 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5914 mc.precharge--; 5915 /* we fixup refcnts and charges later. */ 5916 mc.moved_swap++; 5917 } 5918 break; 5919 default: 5920 break; 5921 } 5922 } 5923 pte_unmap_unlock(pte - 1, ptl); 5924 cond_resched(); 5925 5926 if (addr != end) { 5927 /* 5928 * We have consumed all precharges we got in can_attach(). 5929 * We try charge one by one, but don't do any additional 5930 * charges to mc.to if we have failed in charge once in attach() 5931 * phase. 5932 */ 5933 ret = mem_cgroup_do_precharge(1); 5934 if (!ret) 5935 goto retry; 5936 } 5937 5938 return ret; 5939 } 5940 5941 static const struct mm_walk_ops charge_walk_ops = { 5942 .pmd_entry = mem_cgroup_move_charge_pte_range, 5943 }; 5944 5945 static void mem_cgroup_move_charge(void) 5946 { 5947 lru_add_drain_all(); 5948 /* 5949 * Signal lock_page_memcg() to take the memcg's move_lock 5950 * while we're moving its pages to another memcg. Then wait 5951 * for already started RCU-only updates to finish. 5952 */ 5953 atomic_inc(&mc.from->moving_account); 5954 synchronize_rcu(); 5955 retry: 5956 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5957 /* 5958 * Someone who are holding the mmap_sem might be waiting in 5959 * waitq. So we cancel all extra charges, wake up all waiters, 5960 * and retry. Because we cancel precharges, we might not be able 5961 * to move enough charges, but moving charge is a best-effort 5962 * feature anyway, so it wouldn't be a big problem. 5963 */ 5964 __mem_cgroup_clear_mc(); 5965 cond_resched(); 5966 goto retry; 5967 } 5968 /* 5969 * When we have consumed all precharges and failed in doing 5970 * additional charge, the page walk just aborts. 5971 */ 5972 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 5973 NULL); 5974 5975 up_read(&mc.mm->mmap_sem); 5976 atomic_dec(&mc.from->moving_account); 5977 } 5978 5979 static void mem_cgroup_move_task(void) 5980 { 5981 if (mc.to) { 5982 mem_cgroup_move_charge(); 5983 mem_cgroup_clear_mc(); 5984 } 5985 } 5986 #else /* !CONFIG_MMU */ 5987 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5988 { 5989 return 0; 5990 } 5991 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5992 { 5993 } 5994 static void mem_cgroup_move_task(void) 5995 { 5996 } 5997 #endif 5998 5999 /* 6000 * Cgroup retains root cgroups across [un]mount cycles making it necessary 6001 * to verify whether we're attached to the default hierarchy on each mount 6002 * attempt. 6003 */ 6004 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 6005 { 6006 /* 6007 * use_hierarchy is forced on the default hierarchy. cgroup core 6008 * guarantees that @root doesn't have any children, so turning it 6009 * on for the root memcg is enough. 6010 */ 6011 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6012 root_mem_cgroup->use_hierarchy = true; 6013 else 6014 root_mem_cgroup->use_hierarchy = false; 6015 } 6016 6017 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6018 { 6019 if (value == PAGE_COUNTER_MAX) 6020 seq_puts(m, "max\n"); 6021 else 6022 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6023 6024 return 0; 6025 } 6026 6027 static u64 memory_current_read(struct cgroup_subsys_state *css, 6028 struct cftype *cft) 6029 { 6030 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6031 6032 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6033 } 6034 6035 static int memory_min_show(struct seq_file *m, void *v) 6036 { 6037 return seq_puts_memcg_tunable(m, 6038 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6039 } 6040 6041 static ssize_t memory_min_write(struct kernfs_open_file *of, 6042 char *buf, size_t nbytes, loff_t off) 6043 { 6044 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6045 unsigned long min; 6046 int err; 6047 6048 buf = strstrip(buf); 6049 err = page_counter_memparse(buf, "max", &min); 6050 if (err) 6051 return err; 6052 6053 page_counter_set_min(&memcg->memory, min); 6054 6055 return nbytes; 6056 } 6057 6058 static int memory_low_show(struct seq_file *m, void *v) 6059 { 6060 return seq_puts_memcg_tunable(m, 6061 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6062 } 6063 6064 static ssize_t memory_low_write(struct kernfs_open_file *of, 6065 char *buf, size_t nbytes, loff_t off) 6066 { 6067 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6068 unsigned long low; 6069 int err; 6070 6071 buf = strstrip(buf); 6072 err = page_counter_memparse(buf, "max", &low); 6073 if (err) 6074 return err; 6075 6076 page_counter_set_low(&memcg->memory, low); 6077 6078 return nbytes; 6079 } 6080 6081 static int memory_high_show(struct seq_file *m, void *v) 6082 { 6083 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); 6084 } 6085 6086 static ssize_t memory_high_write(struct kernfs_open_file *of, 6087 char *buf, size_t nbytes, loff_t off) 6088 { 6089 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6090 unsigned long nr_pages; 6091 unsigned long high; 6092 int err; 6093 6094 buf = strstrip(buf); 6095 err = page_counter_memparse(buf, "max", &high); 6096 if (err) 6097 return err; 6098 6099 memcg->high = high; 6100 6101 nr_pages = page_counter_read(&memcg->memory); 6102 if (nr_pages > high) 6103 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6104 GFP_KERNEL, true); 6105 6106 memcg_wb_domain_size_changed(memcg); 6107 return nbytes; 6108 } 6109 6110 static int memory_max_show(struct seq_file *m, void *v) 6111 { 6112 return seq_puts_memcg_tunable(m, 6113 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6114 } 6115 6116 static ssize_t memory_max_write(struct kernfs_open_file *of, 6117 char *buf, size_t nbytes, loff_t off) 6118 { 6119 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6120 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 6121 bool drained = false; 6122 unsigned long max; 6123 int err; 6124 6125 buf = strstrip(buf); 6126 err = page_counter_memparse(buf, "max", &max); 6127 if (err) 6128 return err; 6129 6130 xchg(&memcg->memory.max, max); 6131 6132 for (;;) { 6133 unsigned long nr_pages = page_counter_read(&memcg->memory); 6134 6135 if (nr_pages <= max) 6136 break; 6137 6138 if (signal_pending(current)) { 6139 err = -EINTR; 6140 break; 6141 } 6142 6143 if (!drained) { 6144 drain_all_stock(memcg); 6145 drained = true; 6146 continue; 6147 } 6148 6149 if (nr_reclaims) { 6150 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6151 GFP_KERNEL, true)) 6152 nr_reclaims--; 6153 continue; 6154 } 6155 6156 memcg_memory_event(memcg, MEMCG_OOM); 6157 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6158 break; 6159 } 6160 6161 memcg_wb_domain_size_changed(memcg); 6162 return nbytes; 6163 } 6164 6165 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6166 { 6167 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6168 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6169 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6170 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6171 seq_printf(m, "oom_kill %lu\n", 6172 atomic_long_read(&events[MEMCG_OOM_KILL])); 6173 } 6174 6175 static int memory_events_show(struct seq_file *m, void *v) 6176 { 6177 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6178 6179 __memory_events_show(m, memcg->memory_events); 6180 return 0; 6181 } 6182 6183 static int memory_events_local_show(struct seq_file *m, void *v) 6184 { 6185 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6186 6187 __memory_events_show(m, memcg->memory_events_local); 6188 return 0; 6189 } 6190 6191 static int memory_stat_show(struct seq_file *m, void *v) 6192 { 6193 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6194 char *buf; 6195 6196 buf = memory_stat_format(memcg); 6197 if (!buf) 6198 return -ENOMEM; 6199 seq_puts(m, buf); 6200 kfree(buf); 6201 return 0; 6202 } 6203 6204 static int memory_oom_group_show(struct seq_file *m, void *v) 6205 { 6206 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6207 6208 seq_printf(m, "%d\n", memcg->oom_group); 6209 6210 return 0; 6211 } 6212 6213 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6214 char *buf, size_t nbytes, loff_t off) 6215 { 6216 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6217 int ret, oom_group; 6218 6219 buf = strstrip(buf); 6220 if (!buf) 6221 return -EINVAL; 6222 6223 ret = kstrtoint(buf, 0, &oom_group); 6224 if (ret) 6225 return ret; 6226 6227 if (oom_group != 0 && oom_group != 1) 6228 return -EINVAL; 6229 6230 memcg->oom_group = oom_group; 6231 6232 return nbytes; 6233 } 6234 6235 static struct cftype memory_files[] = { 6236 { 6237 .name = "current", 6238 .flags = CFTYPE_NOT_ON_ROOT, 6239 .read_u64 = memory_current_read, 6240 }, 6241 { 6242 .name = "min", 6243 .flags = CFTYPE_NOT_ON_ROOT, 6244 .seq_show = memory_min_show, 6245 .write = memory_min_write, 6246 }, 6247 { 6248 .name = "low", 6249 .flags = CFTYPE_NOT_ON_ROOT, 6250 .seq_show = memory_low_show, 6251 .write = memory_low_write, 6252 }, 6253 { 6254 .name = "high", 6255 .flags = CFTYPE_NOT_ON_ROOT, 6256 .seq_show = memory_high_show, 6257 .write = memory_high_write, 6258 }, 6259 { 6260 .name = "max", 6261 .flags = CFTYPE_NOT_ON_ROOT, 6262 .seq_show = memory_max_show, 6263 .write = memory_max_write, 6264 }, 6265 { 6266 .name = "events", 6267 .flags = CFTYPE_NOT_ON_ROOT, 6268 .file_offset = offsetof(struct mem_cgroup, events_file), 6269 .seq_show = memory_events_show, 6270 }, 6271 { 6272 .name = "events.local", 6273 .flags = CFTYPE_NOT_ON_ROOT, 6274 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6275 .seq_show = memory_events_local_show, 6276 }, 6277 { 6278 .name = "stat", 6279 .flags = CFTYPE_NOT_ON_ROOT, 6280 .seq_show = memory_stat_show, 6281 }, 6282 { 6283 .name = "oom.group", 6284 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6285 .seq_show = memory_oom_group_show, 6286 .write = memory_oom_group_write, 6287 }, 6288 { } /* terminate */ 6289 }; 6290 6291 struct cgroup_subsys memory_cgrp_subsys = { 6292 .css_alloc = mem_cgroup_css_alloc, 6293 .css_online = mem_cgroup_css_online, 6294 .css_offline = mem_cgroup_css_offline, 6295 .css_released = mem_cgroup_css_released, 6296 .css_free = mem_cgroup_css_free, 6297 .css_reset = mem_cgroup_css_reset, 6298 .can_attach = mem_cgroup_can_attach, 6299 .cancel_attach = mem_cgroup_cancel_attach, 6300 .post_attach = mem_cgroup_move_task, 6301 .bind = mem_cgroup_bind, 6302 .dfl_cftypes = memory_files, 6303 .legacy_cftypes = mem_cgroup_legacy_files, 6304 .early_init = 0, 6305 }; 6306 6307 /** 6308 * mem_cgroup_protected - check if memory consumption is in the normal range 6309 * @root: the top ancestor of the sub-tree being checked 6310 * @memcg: the memory cgroup to check 6311 * 6312 * WARNING: This function is not stateless! It can only be used as part 6313 * of a top-down tree iteration, not for isolated queries. 6314 * 6315 * Returns one of the following: 6316 * MEMCG_PROT_NONE: cgroup memory is not protected 6317 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 6318 * an unprotected supply of reclaimable memory from other cgroups. 6319 * MEMCG_PROT_MIN: cgroup memory is protected 6320 * 6321 * @root is exclusive; it is never protected when looked at directly 6322 * 6323 * To provide a proper hierarchical behavior, effective memory.min/low values 6324 * are used. Below is the description of how effective memory.low is calculated. 6325 * Effective memory.min values is calculated in the same way. 6326 * 6327 * Effective memory.low is always equal or less than the original memory.low. 6328 * If there is no memory.low overcommittment (which is always true for 6329 * top-level memory cgroups), these two values are equal. 6330 * Otherwise, it's a part of parent's effective memory.low, 6331 * calculated as a cgroup's memory.low usage divided by sum of sibling's 6332 * memory.low usages, where memory.low usage is the size of actually 6333 * protected memory. 6334 * 6335 * low_usage 6336 * elow = min( memory.low, parent->elow * ------------------ ), 6337 * siblings_low_usage 6338 * 6339 * | memory.current, if memory.current < memory.low 6340 * low_usage = | 6341 * | 0, otherwise. 6342 * 6343 * 6344 * Such definition of the effective memory.low provides the expected 6345 * hierarchical behavior: parent's memory.low value is limiting 6346 * children, unprotected memory is reclaimed first and cgroups, 6347 * which are not using their guarantee do not affect actual memory 6348 * distribution. 6349 * 6350 * For example, if there are memcgs A, A/B, A/C, A/D and A/E: 6351 * 6352 * A A/memory.low = 2G, A/memory.current = 6G 6353 * //\\ 6354 * BC DE B/memory.low = 3G B/memory.current = 2G 6355 * C/memory.low = 1G C/memory.current = 2G 6356 * D/memory.low = 0 D/memory.current = 2G 6357 * E/memory.low = 10G E/memory.current = 0 6358 * 6359 * and the memory pressure is applied, the following memory distribution 6360 * is expected (approximately): 6361 * 6362 * A/memory.current = 2G 6363 * 6364 * B/memory.current = 1.3G 6365 * C/memory.current = 0.6G 6366 * D/memory.current = 0 6367 * E/memory.current = 0 6368 * 6369 * These calculations require constant tracking of the actual low usages 6370 * (see propagate_protected_usage()), as well as recursive calculation of 6371 * effective memory.low values. But as we do call mem_cgroup_protected() 6372 * path for each memory cgroup top-down from the reclaim, 6373 * it's possible to optimize this part, and save calculated elow 6374 * for next usage. This part is intentionally racy, but it's ok, 6375 * as memory.low is a best-effort mechanism. 6376 */ 6377 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 6378 struct mem_cgroup *memcg) 6379 { 6380 struct mem_cgroup *parent; 6381 unsigned long emin, parent_emin; 6382 unsigned long elow, parent_elow; 6383 unsigned long usage; 6384 6385 if (mem_cgroup_disabled()) 6386 return MEMCG_PROT_NONE; 6387 6388 if (!root) 6389 root = root_mem_cgroup; 6390 if (memcg == root) 6391 return MEMCG_PROT_NONE; 6392 6393 usage = page_counter_read(&memcg->memory); 6394 if (!usage) 6395 return MEMCG_PROT_NONE; 6396 6397 emin = memcg->memory.min; 6398 elow = memcg->memory.low; 6399 6400 parent = parent_mem_cgroup(memcg); 6401 /* No parent means a non-hierarchical mode on v1 memcg */ 6402 if (!parent) 6403 return MEMCG_PROT_NONE; 6404 6405 if (parent == root) 6406 goto exit; 6407 6408 parent_emin = READ_ONCE(parent->memory.emin); 6409 emin = min(emin, parent_emin); 6410 if (emin && parent_emin) { 6411 unsigned long min_usage, siblings_min_usage; 6412 6413 min_usage = min(usage, memcg->memory.min); 6414 siblings_min_usage = atomic_long_read( 6415 &parent->memory.children_min_usage); 6416 6417 if (min_usage && siblings_min_usage) 6418 emin = min(emin, parent_emin * min_usage / 6419 siblings_min_usage); 6420 } 6421 6422 parent_elow = READ_ONCE(parent->memory.elow); 6423 elow = min(elow, parent_elow); 6424 if (elow && parent_elow) { 6425 unsigned long low_usage, siblings_low_usage; 6426 6427 low_usage = min(usage, memcg->memory.low); 6428 siblings_low_usage = atomic_long_read( 6429 &parent->memory.children_low_usage); 6430 6431 if (low_usage && siblings_low_usage) 6432 elow = min(elow, parent_elow * low_usage / 6433 siblings_low_usage); 6434 } 6435 6436 exit: 6437 memcg->memory.emin = emin; 6438 memcg->memory.elow = elow; 6439 6440 if (usage <= emin) 6441 return MEMCG_PROT_MIN; 6442 else if (usage <= elow) 6443 return MEMCG_PROT_LOW; 6444 else 6445 return MEMCG_PROT_NONE; 6446 } 6447 6448 /** 6449 * mem_cgroup_try_charge - try charging a page 6450 * @page: page to charge 6451 * @mm: mm context of the victim 6452 * @gfp_mask: reclaim mode 6453 * @memcgp: charged memcg return 6454 * @compound: charge the page as compound or small page 6455 * 6456 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6457 * pages according to @gfp_mask if necessary. 6458 * 6459 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 6460 * Otherwise, an error code is returned. 6461 * 6462 * After page->mapping has been set up, the caller must finalize the 6463 * charge with mem_cgroup_commit_charge(). Or abort the transaction 6464 * with mem_cgroup_cancel_charge() in case page instantiation fails. 6465 */ 6466 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 6467 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6468 bool compound) 6469 { 6470 struct mem_cgroup *memcg = NULL; 6471 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6472 int ret = 0; 6473 6474 if (mem_cgroup_disabled()) 6475 goto out; 6476 6477 if (PageSwapCache(page)) { 6478 /* 6479 * Every swap fault against a single page tries to charge the 6480 * page, bail as early as possible. shmem_unuse() encounters 6481 * already charged pages, too. The USED bit is protected by 6482 * the page lock, which serializes swap cache removal, which 6483 * in turn serializes uncharging. 6484 */ 6485 VM_BUG_ON_PAGE(!PageLocked(page), page); 6486 if (compound_head(page)->mem_cgroup) 6487 goto out; 6488 6489 if (do_swap_account) { 6490 swp_entry_t ent = { .val = page_private(page), }; 6491 unsigned short id = lookup_swap_cgroup_id(ent); 6492 6493 rcu_read_lock(); 6494 memcg = mem_cgroup_from_id(id); 6495 if (memcg && !css_tryget_online(&memcg->css)) 6496 memcg = NULL; 6497 rcu_read_unlock(); 6498 } 6499 } 6500 6501 if (!memcg) 6502 memcg = get_mem_cgroup_from_mm(mm); 6503 6504 ret = try_charge(memcg, gfp_mask, nr_pages); 6505 6506 css_put(&memcg->css); 6507 out: 6508 *memcgp = memcg; 6509 return ret; 6510 } 6511 6512 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 6513 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6514 bool compound) 6515 { 6516 struct mem_cgroup *memcg; 6517 int ret; 6518 6519 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 6520 memcg = *memcgp; 6521 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 6522 return ret; 6523 } 6524 6525 /** 6526 * mem_cgroup_commit_charge - commit a page charge 6527 * @page: page to charge 6528 * @memcg: memcg to charge the page to 6529 * @lrucare: page might be on LRU already 6530 * @compound: charge the page as compound or small page 6531 * 6532 * Finalize a charge transaction started by mem_cgroup_try_charge(), 6533 * after page->mapping has been set up. This must happen atomically 6534 * as part of the page instantiation, i.e. under the page table lock 6535 * for anonymous pages, under the page lock for page and swap cache. 6536 * 6537 * In addition, the page must not be on the LRU during the commit, to 6538 * prevent racing with task migration. If it might be, use @lrucare. 6539 * 6540 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 6541 */ 6542 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 6543 bool lrucare, bool compound) 6544 { 6545 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6546 6547 VM_BUG_ON_PAGE(!page->mapping, page); 6548 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 6549 6550 if (mem_cgroup_disabled()) 6551 return; 6552 /* 6553 * Swap faults will attempt to charge the same page multiple 6554 * times. But reuse_swap_page() might have removed the page 6555 * from swapcache already, so we can't check PageSwapCache(). 6556 */ 6557 if (!memcg) 6558 return; 6559 6560 commit_charge(page, memcg, lrucare); 6561 6562 local_irq_disable(); 6563 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 6564 memcg_check_events(memcg, page); 6565 local_irq_enable(); 6566 6567 if (do_memsw_account() && PageSwapCache(page)) { 6568 swp_entry_t entry = { .val = page_private(page) }; 6569 /* 6570 * The swap entry might not get freed for a long time, 6571 * let's not wait for it. The page already received a 6572 * memory+swap charge, drop the swap entry duplicate. 6573 */ 6574 mem_cgroup_uncharge_swap(entry, nr_pages); 6575 } 6576 } 6577 6578 /** 6579 * mem_cgroup_cancel_charge - cancel a page charge 6580 * @page: page to charge 6581 * @memcg: memcg to charge the page to 6582 * @compound: charge the page as compound or small page 6583 * 6584 * Cancel a charge transaction started by mem_cgroup_try_charge(). 6585 */ 6586 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 6587 bool compound) 6588 { 6589 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6590 6591 if (mem_cgroup_disabled()) 6592 return; 6593 /* 6594 * Swap faults will attempt to charge the same page multiple 6595 * times. But reuse_swap_page() might have removed the page 6596 * from swapcache already, so we can't check PageSwapCache(). 6597 */ 6598 if (!memcg) 6599 return; 6600 6601 cancel_charge(memcg, nr_pages); 6602 } 6603 6604 struct uncharge_gather { 6605 struct mem_cgroup *memcg; 6606 unsigned long pgpgout; 6607 unsigned long nr_anon; 6608 unsigned long nr_file; 6609 unsigned long nr_kmem; 6610 unsigned long nr_huge; 6611 unsigned long nr_shmem; 6612 struct page *dummy_page; 6613 }; 6614 6615 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6616 { 6617 memset(ug, 0, sizeof(*ug)); 6618 } 6619 6620 static void uncharge_batch(const struct uncharge_gather *ug) 6621 { 6622 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6623 unsigned long flags; 6624 6625 if (!mem_cgroup_is_root(ug->memcg)) { 6626 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6627 if (do_memsw_account()) 6628 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6629 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6630 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6631 memcg_oom_recover(ug->memcg); 6632 } 6633 6634 local_irq_save(flags); 6635 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6636 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6637 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6638 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6639 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6640 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages); 6641 memcg_check_events(ug->memcg, ug->dummy_page); 6642 local_irq_restore(flags); 6643 6644 if (!mem_cgroup_is_root(ug->memcg)) 6645 css_put_many(&ug->memcg->css, nr_pages); 6646 } 6647 6648 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6649 { 6650 VM_BUG_ON_PAGE(PageLRU(page), page); 6651 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6652 !PageHWPoison(page) , page); 6653 6654 if (!page->mem_cgroup) 6655 return; 6656 6657 /* 6658 * Nobody should be changing or seriously looking at 6659 * page->mem_cgroup at this point, we have fully 6660 * exclusive access to the page. 6661 */ 6662 6663 if (ug->memcg != page->mem_cgroup) { 6664 if (ug->memcg) { 6665 uncharge_batch(ug); 6666 uncharge_gather_clear(ug); 6667 } 6668 ug->memcg = page->mem_cgroup; 6669 } 6670 6671 if (!PageKmemcg(page)) { 6672 unsigned int nr_pages = 1; 6673 6674 if (PageTransHuge(page)) { 6675 nr_pages = compound_nr(page); 6676 ug->nr_huge += nr_pages; 6677 } 6678 if (PageAnon(page)) 6679 ug->nr_anon += nr_pages; 6680 else { 6681 ug->nr_file += nr_pages; 6682 if (PageSwapBacked(page)) 6683 ug->nr_shmem += nr_pages; 6684 } 6685 ug->pgpgout++; 6686 } else { 6687 ug->nr_kmem += compound_nr(page); 6688 __ClearPageKmemcg(page); 6689 } 6690 6691 ug->dummy_page = page; 6692 page->mem_cgroup = NULL; 6693 } 6694 6695 static void uncharge_list(struct list_head *page_list) 6696 { 6697 struct uncharge_gather ug; 6698 struct list_head *next; 6699 6700 uncharge_gather_clear(&ug); 6701 6702 /* 6703 * Note that the list can be a single page->lru; hence the 6704 * do-while loop instead of a simple list_for_each_entry(). 6705 */ 6706 next = page_list->next; 6707 do { 6708 struct page *page; 6709 6710 page = list_entry(next, struct page, lru); 6711 next = page->lru.next; 6712 6713 uncharge_page(page, &ug); 6714 } while (next != page_list); 6715 6716 if (ug.memcg) 6717 uncharge_batch(&ug); 6718 } 6719 6720 /** 6721 * mem_cgroup_uncharge - uncharge a page 6722 * @page: page to uncharge 6723 * 6724 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6725 * mem_cgroup_commit_charge(). 6726 */ 6727 void mem_cgroup_uncharge(struct page *page) 6728 { 6729 struct uncharge_gather ug; 6730 6731 if (mem_cgroup_disabled()) 6732 return; 6733 6734 /* Don't touch page->lru of any random page, pre-check: */ 6735 if (!page->mem_cgroup) 6736 return; 6737 6738 uncharge_gather_clear(&ug); 6739 uncharge_page(page, &ug); 6740 uncharge_batch(&ug); 6741 } 6742 6743 /** 6744 * mem_cgroup_uncharge_list - uncharge a list of page 6745 * @page_list: list of pages to uncharge 6746 * 6747 * Uncharge a list of pages previously charged with 6748 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6749 */ 6750 void mem_cgroup_uncharge_list(struct list_head *page_list) 6751 { 6752 if (mem_cgroup_disabled()) 6753 return; 6754 6755 if (!list_empty(page_list)) 6756 uncharge_list(page_list); 6757 } 6758 6759 /** 6760 * mem_cgroup_migrate - charge a page's replacement 6761 * @oldpage: currently circulating page 6762 * @newpage: replacement page 6763 * 6764 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6765 * be uncharged upon free. 6766 * 6767 * Both pages must be locked, @newpage->mapping must be set up. 6768 */ 6769 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6770 { 6771 struct mem_cgroup *memcg; 6772 unsigned int nr_pages; 6773 bool compound; 6774 unsigned long flags; 6775 6776 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6777 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6778 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6779 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6780 newpage); 6781 6782 if (mem_cgroup_disabled()) 6783 return; 6784 6785 /* Page cache replacement: new page already charged? */ 6786 if (newpage->mem_cgroup) 6787 return; 6788 6789 /* Swapcache readahead pages can get replaced before being charged */ 6790 memcg = oldpage->mem_cgroup; 6791 if (!memcg) 6792 return; 6793 6794 /* Force-charge the new page. The old one will be freed soon */ 6795 compound = PageTransHuge(newpage); 6796 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 6797 6798 page_counter_charge(&memcg->memory, nr_pages); 6799 if (do_memsw_account()) 6800 page_counter_charge(&memcg->memsw, nr_pages); 6801 css_get_many(&memcg->css, nr_pages); 6802 6803 commit_charge(newpage, memcg, false); 6804 6805 local_irq_save(flags); 6806 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 6807 memcg_check_events(memcg, newpage); 6808 local_irq_restore(flags); 6809 } 6810 6811 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6812 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6813 6814 void mem_cgroup_sk_alloc(struct sock *sk) 6815 { 6816 struct mem_cgroup *memcg; 6817 6818 if (!mem_cgroup_sockets_enabled) 6819 return; 6820 6821 /* 6822 * Socket cloning can throw us here with sk_memcg already 6823 * filled. It won't however, necessarily happen from 6824 * process context. So the test for root memcg given 6825 * the current task's memcg won't help us in this case. 6826 * 6827 * Respecting the original socket's memcg is a better 6828 * decision in this case. 6829 */ 6830 if (sk->sk_memcg) { 6831 css_get(&sk->sk_memcg->css); 6832 return; 6833 } 6834 6835 rcu_read_lock(); 6836 memcg = mem_cgroup_from_task(current); 6837 if (memcg == root_mem_cgroup) 6838 goto out; 6839 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6840 goto out; 6841 if (css_tryget_online(&memcg->css)) 6842 sk->sk_memcg = memcg; 6843 out: 6844 rcu_read_unlock(); 6845 } 6846 6847 void mem_cgroup_sk_free(struct sock *sk) 6848 { 6849 if (sk->sk_memcg) 6850 css_put(&sk->sk_memcg->css); 6851 } 6852 6853 /** 6854 * mem_cgroup_charge_skmem - charge socket memory 6855 * @memcg: memcg to charge 6856 * @nr_pages: number of pages to charge 6857 * 6858 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6859 * @memcg's configured limit, %false if the charge had to be forced. 6860 */ 6861 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6862 { 6863 gfp_t gfp_mask = GFP_KERNEL; 6864 6865 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6866 struct page_counter *fail; 6867 6868 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6869 memcg->tcpmem_pressure = 0; 6870 return true; 6871 } 6872 page_counter_charge(&memcg->tcpmem, nr_pages); 6873 memcg->tcpmem_pressure = 1; 6874 return false; 6875 } 6876 6877 /* Don't block in the packet receive path */ 6878 if (in_softirq()) 6879 gfp_mask = GFP_NOWAIT; 6880 6881 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6882 6883 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6884 return true; 6885 6886 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6887 return false; 6888 } 6889 6890 /** 6891 * mem_cgroup_uncharge_skmem - uncharge socket memory 6892 * @memcg: memcg to uncharge 6893 * @nr_pages: number of pages to uncharge 6894 */ 6895 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6896 { 6897 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6898 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6899 return; 6900 } 6901 6902 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6903 6904 refill_stock(memcg, nr_pages); 6905 } 6906 6907 static int __init cgroup_memory(char *s) 6908 { 6909 char *token; 6910 6911 while ((token = strsep(&s, ",")) != NULL) { 6912 if (!*token) 6913 continue; 6914 if (!strcmp(token, "nosocket")) 6915 cgroup_memory_nosocket = true; 6916 if (!strcmp(token, "nokmem")) 6917 cgroup_memory_nokmem = true; 6918 } 6919 return 0; 6920 } 6921 __setup("cgroup.memory=", cgroup_memory); 6922 6923 /* 6924 * subsys_initcall() for memory controller. 6925 * 6926 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6927 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6928 * basically everything that doesn't depend on a specific mem_cgroup structure 6929 * should be initialized from here. 6930 */ 6931 static int __init mem_cgroup_init(void) 6932 { 6933 int cpu, node; 6934 6935 #ifdef CONFIG_MEMCG_KMEM 6936 /* 6937 * Kmem cache creation is mostly done with the slab_mutex held, 6938 * so use a workqueue with limited concurrency to avoid stalling 6939 * all worker threads in case lots of cgroups are created and 6940 * destroyed simultaneously. 6941 */ 6942 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6943 BUG_ON(!memcg_kmem_cache_wq); 6944 #endif 6945 6946 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6947 memcg_hotplug_cpu_dead); 6948 6949 for_each_possible_cpu(cpu) 6950 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6951 drain_local_stock); 6952 6953 for_each_node(node) { 6954 struct mem_cgroup_tree_per_node *rtpn; 6955 6956 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6957 node_online(node) ? node : NUMA_NO_NODE); 6958 6959 rtpn->rb_root = RB_ROOT; 6960 rtpn->rb_rightmost = NULL; 6961 spin_lock_init(&rtpn->lock); 6962 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6963 } 6964 6965 return 0; 6966 } 6967 subsys_initcall(mem_cgroup_init); 6968 6969 #ifdef CONFIG_MEMCG_SWAP 6970 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6971 { 6972 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6973 /* 6974 * The root cgroup cannot be destroyed, so it's refcount must 6975 * always be >= 1. 6976 */ 6977 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6978 VM_BUG_ON(1); 6979 break; 6980 } 6981 memcg = parent_mem_cgroup(memcg); 6982 if (!memcg) 6983 memcg = root_mem_cgroup; 6984 } 6985 return memcg; 6986 } 6987 6988 /** 6989 * mem_cgroup_swapout - transfer a memsw charge to swap 6990 * @page: page whose memsw charge to transfer 6991 * @entry: swap entry to move the charge to 6992 * 6993 * Transfer the memsw charge of @page to @entry. 6994 */ 6995 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6996 { 6997 struct mem_cgroup *memcg, *swap_memcg; 6998 unsigned int nr_entries; 6999 unsigned short oldid; 7000 7001 VM_BUG_ON_PAGE(PageLRU(page), page); 7002 VM_BUG_ON_PAGE(page_count(page), page); 7003 7004 if (!do_memsw_account()) 7005 return; 7006 7007 memcg = page->mem_cgroup; 7008 7009 /* Readahead page, never charged */ 7010 if (!memcg) 7011 return; 7012 7013 /* 7014 * In case the memcg owning these pages has been offlined and doesn't 7015 * have an ID allocated to it anymore, charge the closest online 7016 * ancestor for the swap instead and transfer the memory+swap charge. 7017 */ 7018 swap_memcg = mem_cgroup_id_get_online(memcg); 7019 nr_entries = hpage_nr_pages(page); 7020 /* Get references for the tail pages, too */ 7021 if (nr_entries > 1) 7022 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7023 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7024 nr_entries); 7025 VM_BUG_ON_PAGE(oldid, page); 7026 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7027 7028 page->mem_cgroup = NULL; 7029 7030 if (!mem_cgroup_is_root(memcg)) 7031 page_counter_uncharge(&memcg->memory, nr_entries); 7032 7033 if (memcg != swap_memcg) { 7034 if (!mem_cgroup_is_root(swap_memcg)) 7035 page_counter_charge(&swap_memcg->memsw, nr_entries); 7036 page_counter_uncharge(&memcg->memsw, nr_entries); 7037 } 7038 7039 /* 7040 * Interrupts should be disabled here because the caller holds the 7041 * i_pages lock which is taken with interrupts-off. It is 7042 * important here to have the interrupts disabled because it is the 7043 * only synchronisation we have for updating the per-CPU variables. 7044 */ 7045 VM_BUG_ON(!irqs_disabled()); 7046 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 7047 -nr_entries); 7048 memcg_check_events(memcg, page); 7049 7050 if (!mem_cgroup_is_root(memcg)) 7051 css_put_many(&memcg->css, nr_entries); 7052 } 7053 7054 /** 7055 * mem_cgroup_try_charge_swap - try charging swap space for a page 7056 * @page: page being added to swap 7057 * @entry: swap entry to charge 7058 * 7059 * Try to charge @page's memcg for the swap space at @entry. 7060 * 7061 * Returns 0 on success, -ENOMEM on failure. 7062 */ 7063 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 7064 { 7065 unsigned int nr_pages = hpage_nr_pages(page); 7066 struct page_counter *counter; 7067 struct mem_cgroup *memcg; 7068 unsigned short oldid; 7069 7070 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 7071 return 0; 7072 7073 memcg = page->mem_cgroup; 7074 7075 /* Readahead page, never charged */ 7076 if (!memcg) 7077 return 0; 7078 7079 if (!entry.val) { 7080 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7081 return 0; 7082 } 7083 7084 memcg = mem_cgroup_id_get_online(memcg); 7085 7086 if (!mem_cgroup_is_root(memcg) && 7087 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7088 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7089 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7090 mem_cgroup_id_put(memcg); 7091 return -ENOMEM; 7092 } 7093 7094 /* Get references for the tail pages, too */ 7095 if (nr_pages > 1) 7096 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7097 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7098 VM_BUG_ON_PAGE(oldid, page); 7099 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7100 7101 return 0; 7102 } 7103 7104 /** 7105 * mem_cgroup_uncharge_swap - uncharge swap space 7106 * @entry: swap entry to uncharge 7107 * @nr_pages: the amount of swap space to uncharge 7108 */ 7109 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7110 { 7111 struct mem_cgroup *memcg; 7112 unsigned short id; 7113 7114 if (!do_swap_account) 7115 return; 7116 7117 id = swap_cgroup_record(entry, 0, nr_pages); 7118 rcu_read_lock(); 7119 memcg = mem_cgroup_from_id(id); 7120 if (memcg) { 7121 if (!mem_cgroup_is_root(memcg)) { 7122 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7123 page_counter_uncharge(&memcg->swap, nr_pages); 7124 else 7125 page_counter_uncharge(&memcg->memsw, nr_pages); 7126 } 7127 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7128 mem_cgroup_id_put_many(memcg, nr_pages); 7129 } 7130 rcu_read_unlock(); 7131 } 7132 7133 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7134 { 7135 long nr_swap_pages = get_nr_swap_pages(); 7136 7137 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7138 return nr_swap_pages; 7139 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7140 nr_swap_pages = min_t(long, nr_swap_pages, 7141 READ_ONCE(memcg->swap.max) - 7142 page_counter_read(&memcg->swap)); 7143 return nr_swap_pages; 7144 } 7145 7146 bool mem_cgroup_swap_full(struct page *page) 7147 { 7148 struct mem_cgroup *memcg; 7149 7150 VM_BUG_ON_PAGE(!PageLocked(page), page); 7151 7152 if (vm_swap_full()) 7153 return true; 7154 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7155 return false; 7156 7157 memcg = page->mem_cgroup; 7158 if (!memcg) 7159 return false; 7160 7161 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7162 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) 7163 return true; 7164 7165 return false; 7166 } 7167 7168 /* for remember boot option*/ 7169 #ifdef CONFIG_MEMCG_SWAP_ENABLED 7170 static int really_do_swap_account __initdata = 1; 7171 #else 7172 static int really_do_swap_account __initdata; 7173 #endif 7174 7175 static int __init enable_swap_account(char *s) 7176 { 7177 if (!strcmp(s, "1")) 7178 really_do_swap_account = 1; 7179 else if (!strcmp(s, "0")) 7180 really_do_swap_account = 0; 7181 return 1; 7182 } 7183 __setup("swapaccount=", enable_swap_account); 7184 7185 static u64 swap_current_read(struct cgroup_subsys_state *css, 7186 struct cftype *cft) 7187 { 7188 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7189 7190 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7191 } 7192 7193 static int swap_max_show(struct seq_file *m, void *v) 7194 { 7195 return seq_puts_memcg_tunable(m, 7196 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7197 } 7198 7199 static ssize_t swap_max_write(struct kernfs_open_file *of, 7200 char *buf, size_t nbytes, loff_t off) 7201 { 7202 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7203 unsigned long max; 7204 int err; 7205 7206 buf = strstrip(buf); 7207 err = page_counter_memparse(buf, "max", &max); 7208 if (err) 7209 return err; 7210 7211 xchg(&memcg->swap.max, max); 7212 7213 return nbytes; 7214 } 7215 7216 static int swap_events_show(struct seq_file *m, void *v) 7217 { 7218 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7219 7220 seq_printf(m, "max %lu\n", 7221 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7222 seq_printf(m, "fail %lu\n", 7223 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7224 7225 return 0; 7226 } 7227 7228 static struct cftype swap_files[] = { 7229 { 7230 .name = "swap.current", 7231 .flags = CFTYPE_NOT_ON_ROOT, 7232 .read_u64 = swap_current_read, 7233 }, 7234 { 7235 .name = "swap.max", 7236 .flags = CFTYPE_NOT_ON_ROOT, 7237 .seq_show = swap_max_show, 7238 .write = swap_max_write, 7239 }, 7240 { 7241 .name = "swap.events", 7242 .flags = CFTYPE_NOT_ON_ROOT, 7243 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7244 .seq_show = swap_events_show, 7245 }, 7246 { } /* terminate */ 7247 }; 7248 7249 static struct cftype memsw_cgroup_files[] = { 7250 { 7251 .name = "memsw.usage_in_bytes", 7252 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7253 .read_u64 = mem_cgroup_read_u64, 7254 }, 7255 { 7256 .name = "memsw.max_usage_in_bytes", 7257 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7258 .write = mem_cgroup_reset, 7259 .read_u64 = mem_cgroup_read_u64, 7260 }, 7261 { 7262 .name = "memsw.limit_in_bytes", 7263 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7264 .write = mem_cgroup_write, 7265 .read_u64 = mem_cgroup_read_u64, 7266 }, 7267 { 7268 .name = "memsw.failcnt", 7269 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7270 .write = mem_cgroup_reset, 7271 .read_u64 = mem_cgroup_read_u64, 7272 }, 7273 { }, /* terminate */ 7274 }; 7275 7276 static int __init mem_cgroup_swap_init(void) 7277 { 7278 if (!mem_cgroup_disabled() && really_do_swap_account) { 7279 do_swap_account = 1; 7280 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 7281 swap_files)); 7282 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 7283 memsw_cgroup_files)); 7284 } 7285 return 0; 7286 } 7287 subsys_initcall(mem_cgroup_swap_init); 7288 7289 #endif /* CONFIG_MEMCG_SWAP */ 7290