1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 */ 27 28 #include <linux/res_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/mm.h> 32 #include <linux/hugetlb.h> 33 #include <linux/pagemap.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/page_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include "internal.h" 60 #include <net/sock.h> 61 #include <net/ip.h> 62 #include <net/tcp_memcontrol.h> 63 #include "slab.h" 64 65 #include <asm/uaccess.h> 66 67 #include <trace/events/vmscan.h> 68 69 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 70 EXPORT_SYMBOL(memory_cgrp_subsys); 71 72 #define MEM_CGROUP_RECLAIM_RETRIES 5 73 static struct mem_cgroup *root_mem_cgroup __read_mostly; 74 75 #ifdef CONFIG_MEMCG_SWAP 76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 77 int do_swap_account __read_mostly; 78 79 /* for remember boot option*/ 80 #ifdef CONFIG_MEMCG_SWAP_ENABLED 81 static int really_do_swap_account __initdata = 1; 82 #else 83 static int really_do_swap_account __initdata = 0; 84 #endif 85 86 #else 87 #define do_swap_account 0 88 #endif 89 90 91 static const char * const mem_cgroup_stat_names[] = { 92 "cache", 93 "rss", 94 "rss_huge", 95 "mapped_file", 96 "writeback", 97 "swap", 98 }; 99 100 enum mem_cgroup_events_index { 101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 105 MEM_CGROUP_EVENTS_NSTATS, 106 }; 107 108 static const char * const mem_cgroup_events_names[] = { 109 "pgpgin", 110 "pgpgout", 111 "pgfault", 112 "pgmajfault", 113 }; 114 115 static const char * const mem_cgroup_lru_names[] = { 116 "inactive_anon", 117 "active_anon", 118 "inactive_file", 119 "active_file", 120 "unevictable", 121 }; 122 123 /* 124 * Per memcg event counter is incremented at every pagein/pageout. With THP, 125 * it will be incremated by the number of pages. This counter is used for 126 * for trigger some periodic events. This is straightforward and better 127 * than using jiffies etc. to handle periodic memcg event. 128 */ 129 enum mem_cgroup_events_target { 130 MEM_CGROUP_TARGET_THRESH, 131 MEM_CGROUP_TARGET_SOFTLIMIT, 132 MEM_CGROUP_TARGET_NUMAINFO, 133 MEM_CGROUP_NTARGETS, 134 }; 135 #define THRESHOLDS_EVENTS_TARGET 128 136 #define SOFTLIMIT_EVENTS_TARGET 1024 137 #define NUMAINFO_EVENTS_TARGET 1024 138 139 struct mem_cgroup_stat_cpu { 140 long count[MEM_CGROUP_STAT_NSTATS]; 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 142 unsigned long nr_page_events; 143 unsigned long targets[MEM_CGROUP_NTARGETS]; 144 }; 145 146 struct mem_cgroup_reclaim_iter { 147 /* 148 * last scanned hierarchy member. Valid only if last_dead_count 149 * matches memcg->dead_count of the hierarchy root group. 150 */ 151 struct mem_cgroup *last_visited; 152 int last_dead_count; 153 154 /* scan generation, increased every round-trip */ 155 unsigned int generation; 156 }; 157 158 /* 159 * per-zone information in memory controller. 160 */ 161 struct mem_cgroup_per_zone { 162 struct lruvec lruvec; 163 unsigned long lru_size[NR_LRU_LISTS]; 164 165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 166 167 struct rb_node tree_node; /* RB tree node */ 168 unsigned long long usage_in_excess;/* Set to the value by which */ 169 /* the soft limit is exceeded*/ 170 bool on_tree; 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 172 /* use container_of */ 173 }; 174 175 struct mem_cgroup_per_node { 176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 177 }; 178 179 /* 180 * Cgroups above their limits are maintained in a RB-Tree, independent of 181 * their hierarchy representation 182 */ 183 184 struct mem_cgroup_tree_per_zone { 185 struct rb_root rb_root; 186 spinlock_t lock; 187 }; 188 189 struct mem_cgroup_tree_per_node { 190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 191 }; 192 193 struct mem_cgroup_tree { 194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 195 }; 196 197 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 198 199 struct mem_cgroup_threshold { 200 struct eventfd_ctx *eventfd; 201 u64 threshold; 202 }; 203 204 /* For threshold */ 205 struct mem_cgroup_threshold_ary { 206 /* An array index points to threshold just below or equal to usage. */ 207 int current_threshold; 208 /* Size of entries[] */ 209 unsigned int size; 210 /* Array of thresholds */ 211 struct mem_cgroup_threshold entries[0]; 212 }; 213 214 struct mem_cgroup_thresholds { 215 /* Primary thresholds array */ 216 struct mem_cgroup_threshold_ary *primary; 217 /* 218 * Spare threshold array. 219 * This is needed to make mem_cgroup_unregister_event() "never fail". 220 * It must be able to store at least primary->size - 1 entries. 221 */ 222 struct mem_cgroup_threshold_ary *spare; 223 }; 224 225 /* for OOM */ 226 struct mem_cgroup_eventfd_list { 227 struct list_head list; 228 struct eventfd_ctx *eventfd; 229 }; 230 231 /* 232 * cgroup_event represents events which userspace want to receive. 233 */ 234 struct mem_cgroup_event { 235 /* 236 * memcg which the event belongs to. 237 */ 238 struct mem_cgroup *memcg; 239 /* 240 * eventfd to signal userspace about the event. 241 */ 242 struct eventfd_ctx *eventfd; 243 /* 244 * Each of these stored in a list by the cgroup. 245 */ 246 struct list_head list; 247 /* 248 * register_event() callback will be used to add new userspace 249 * waiter for changes related to this event. Use eventfd_signal() 250 * on eventfd to send notification to userspace. 251 */ 252 int (*register_event)(struct mem_cgroup *memcg, 253 struct eventfd_ctx *eventfd, const char *args); 254 /* 255 * unregister_event() callback will be called when userspace closes 256 * the eventfd or on cgroup removing. This callback must be set, 257 * if you want provide notification functionality. 258 */ 259 void (*unregister_event)(struct mem_cgroup *memcg, 260 struct eventfd_ctx *eventfd); 261 /* 262 * All fields below needed to unregister event when 263 * userspace closes eventfd. 264 */ 265 poll_table pt; 266 wait_queue_head_t *wqh; 267 wait_queue_t wait; 268 struct work_struct remove; 269 }; 270 271 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 273 274 /* 275 * The memory controller data structure. The memory controller controls both 276 * page cache and RSS per cgroup. We would eventually like to provide 277 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 278 * to help the administrator determine what knobs to tune. 279 * 280 * TODO: Add a water mark for the memory controller. Reclaim will begin when 281 * we hit the water mark. May be even add a low water mark, such that 282 * no reclaim occurs from a cgroup at it's low water mark, this is 283 * a feature that will be implemented much later in the future. 284 */ 285 struct mem_cgroup { 286 struct cgroup_subsys_state css; 287 /* 288 * the counter to account for memory usage 289 */ 290 struct res_counter res; 291 292 /* vmpressure notifications */ 293 struct vmpressure vmpressure; 294 295 /* 296 * the counter to account for mem+swap usage. 297 */ 298 struct res_counter memsw; 299 300 /* 301 * the counter to account for kernel memory usage. 302 */ 303 struct res_counter kmem; 304 /* 305 * Should the accounting and control be hierarchical, per subtree? 306 */ 307 bool use_hierarchy; 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ 309 310 bool oom_lock; 311 atomic_t under_oom; 312 atomic_t oom_wakeups; 313 314 int swappiness; 315 /* OOM-Killer disable */ 316 int oom_kill_disable; 317 318 /* set when res.limit == memsw.limit */ 319 bool memsw_is_minimum; 320 321 /* protect arrays of thresholds */ 322 struct mutex thresholds_lock; 323 324 /* thresholds for memory usage. RCU-protected */ 325 struct mem_cgroup_thresholds thresholds; 326 327 /* thresholds for mem+swap usage. RCU-protected */ 328 struct mem_cgroup_thresholds memsw_thresholds; 329 330 /* For oom notifier event fd */ 331 struct list_head oom_notify; 332 333 /* 334 * Should we move charges of a task when a task is moved into this 335 * mem_cgroup ? And what type of charges should we move ? 336 */ 337 unsigned long move_charge_at_immigrate; 338 /* 339 * set > 0 if pages under this cgroup are moving to other cgroup. 340 */ 341 atomic_t moving_account; 342 /* taken only while moving_account > 0 */ 343 spinlock_t move_lock; 344 /* 345 * percpu counter. 346 */ 347 struct mem_cgroup_stat_cpu __percpu *stat; 348 /* 349 * used when a cpu is offlined or other synchronizations 350 * See mem_cgroup_read_stat(). 351 */ 352 struct mem_cgroup_stat_cpu nocpu_base; 353 spinlock_t pcp_counter_lock; 354 355 atomic_t dead_count; 356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 357 struct cg_proto tcp_mem; 358 #endif 359 #if defined(CONFIG_MEMCG_KMEM) 360 /* analogous to slab_common's slab_caches list. per-memcg */ 361 struct list_head memcg_slab_caches; 362 /* Not a spinlock, we can take a lot of time walking the list */ 363 struct mutex slab_caches_mutex; 364 /* Index in the kmem_cache->memcg_params->memcg_caches array */ 365 int kmemcg_id; 366 #endif 367 368 int last_scanned_node; 369 #if MAX_NUMNODES > 1 370 nodemask_t scan_nodes; 371 atomic_t numainfo_events; 372 atomic_t numainfo_updating; 373 #endif 374 375 /* List of events which userspace want to receive */ 376 struct list_head event_list; 377 spinlock_t event_list_lock; 378 379 struct mem_cgroup_per_node *nodeinfo[0]; 380 /* WARNING: nodeinfo must be the last member here */ 381 }; 382 383 /* internal only representation about the status of kmem accounting. */ 384 enum { 385 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */ 386 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ 387 }; 388 389 #ifdef CONFIG_MEMCG_KMEM 390 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) 391 { 392 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 393 } 394 395 static bool memcg_kmem_is_active(struct mem_cgroup *memcg) 396 { 397 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 398 } 399 400 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) 401 { 402 /* 403 * Our caller must use css_get() first, because memcg_uncharge_kmem() 404 * will call css_put() if it sees the memcg is dead. 405 */ 406 smp_wmb(); 407 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) 408 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); 409 } 410 411 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) 412 { 413 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, 414 &memcg->kmem_account_flags); 415 } 416 #endif 417 418 /* Stuffs for move charges at task migration. */ 419 /* 420 * Types of charges to be moved. "move_charge_at_immitgrate" and 421 * "immigrate_flags" are treated as a left-shifted bitmap of these types. 422 */ 423 enum move_type { 424 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 425 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 426 NR_MOVE_TYPE, 427 }; 428 429 /* "mc" and its members are protected by cgroup_mutex */ 430 static struct move_charge_struct { 431 spinlock_t lock; /* for from, to */ 432 struct mem_cgroup *from; 433 struct mem_cgroup *to; 434 unsigned long immigrate_flags; 435 unsigned long precharge; 436 unsigned long moved_charge; 437 unsigned long moved_swap; 438 struct task_struct *moving_task; /* a task moving charges */ 439 wait_queue_head_t waitq; /* a waitq for other context */ 440 } mc = { 441 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 442 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 443 }; 444 445 static bool move_anon(void) 446 { 447 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); 448 } 449 450 static bool move_file(void) 451 { 452 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); 453 } 454 455 /* 456 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 457 * limit reclaim to prevent infinite loops, if they ever occur. 458 */ 459 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 460 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 461 462 enum charge_type { 463 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 464 MEM_CGROUP_CHARGE_TYPE_ANON, 465 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 466 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 467 NR_CHARGE_TYPE, 468 }; 469 470 /* for encoding cft->private value on file */ 471 enum res_type { 472 _MEM, 473 _MEMSWAP, 474 _OOM_TYPE, 475 _KMEM, 476 }; 477 478 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 479 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 480 #define MEMFILE_ATTR(val) ((val) & 0xffff) 481 /* Used for OOM nofiier */ 482 #define OOM_CONTROL (0) 483 484 /* 485 * Reclaim flags for mem_cgroup_hierarchical_reclaim 486 */ 487 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 488 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 489 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 490 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 491 492 /* 493 * The memcg_create_mutex will be held whenever a new cgroup is created. 494 * As a consequence, any change that needs to protect against new child cgroups 495 * appearing has to hold it as well. 496 */ 497 static DEFINE_MUTEX(memcg_create_mutex); 498 499 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 500 { 501 return s ? container_of(s, struct mem_cgroup, css) : NULL; 502 } 503 504 /* Some nice accessors for the vmpressure. */ 505 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 506 { 507 if (!memcg) 508 memcg = root_mem_cgroup; 509 return &memcg->vmpressure; 510 } 511 512 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 513 { 514 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 515 } 516 517 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 518 { 519 return (memcg == root_mem_cgroup); 520 } 521 522 /* 523 * We restrict the id in the range of [1, 65535], so it can fit into 524 * an unsigned short. 525 */ 526 #define MEM_CGROUP_ID_MAX USHRT_MAX 527 528 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 529 { 530 /* 531 * The ID of the root cgroup is 0, but memcg treat 0 as an 532 * invalid ID, so we return (cgroup_id + 1). 533 */ 534 return memcg->css.cgroup->id + 1; 535 } 536 537 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 538 { 539 struct cgroup_subsys_state *css; 540 541 css = css_from_id(id - 1, &memory_cgrp_subsys); 542 return mem_cgroup_from_css(css); 543 } 544 545 /* Writing them here to avoid exposing memcg's inner layout */ 546 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 547 548 void sock_update_memcg(struct sock *sk) 549 { 550 if (mem_cgroup_sockets_enabled) { 551 struct mem_cgroup *memcg; 552 struct cg_proto *cg_proto; 553 554 BUG_ON(!sk->sk_prot->proto_cgroup); 555 556 /* Socket cloning can throw us here with sk_cgrp already 557 * filled. It won't however, necessarily happen from 558 * process context. So the test for root memcg given 559 * the current task's memcg won't help us in this case. 560 * 561 * Respecting the original socket's memcg is a better 562 * decision in this case. 563 */ 564 if (sk->sk_cgrp) { 565 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 566 css_get(&sk->sk_cgrp->memcg->css); 567 return; 568 } 569 570 rcu_read_lock(); 571 memcg = mem_cgroup_from_task(current); 572 cg_proto = sk->sk_prot->proto_cgroup(memcg); 573 if (!mem_cgroup_is_root(memcg) && 574 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) { 575 sk->sk_cgrp = cg_proto; 576 } 577 rcu_read_unlock(); 578 } 579 } 580 EXPORT_SYMBOL(sock_update_memcg); 581 582 void sock_release_memcg(struct sock *sk) 583 { 584 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 585 struct mem_cgroup *memcg; 586 WARN_ON(!sk->sk_cgrp->memcg); 587 memcg = sk->sk_cgrp->memcg; 588 css_put(&sk->sk_cgrp->memcg->css); 589 } 590 } 591 592 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 593 { 594 if (!memcg || mem_cgroup_is_root(memcg)) 595 return NULL; 596 597 return &memcg->tcp_mem; 598 } 599 EXPORT_SYMBOL(tcp_proto_cgroup); 600 601 static void disarm_sock_keys(struct mem_cgroup *memcg) 602 { 603 if (!memcg_proto_activated(&memcg->tcp_mem)) 604 return; 605 static_key_slow_dec(&memcg_socket_limit_enabled); 606 } 607 #else 608 static void disarm_sock_keys(struct mem_cgroup *memcg) 609 { 610 } 611 #endif 612 613 #ifdef CONFIG_MEMCG_KMEM 614 /* 615 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. 616 * The main reason for not using cgroup id for this: 617 * this works better in sparse environments, where we have a lot of memcgs, 618 * but only a few kmem-limited. Or also, if we have, for instance, 200 619 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 620 * 200 entry array for that. 621 * 622 * The current size of the caches array is stored in 623 * memcg_limited_groups_array_size. It will double each time we have to 624 * increase it. 625 */ 626 static DEFINE_IDA(kmem_limited_groups); 627 int memcg_limited_groups_array_size; 628 629 /* 630 * MIN_SIZE is different than 1, because we would like to avoid going through 631 * the alloc/free process all the time. In a small machine, 4 kmem-limited 632 * cgroups is a reasonable guess. In the future, it could be a parameter or 633 * tunable, but that is strictly not necessary. 634 * 635 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 636 * this constant directly from cgroup, but it is understandable that this is 637 * better kept as an internal representation in cgroup.c. In any case, the 638 * cgrp_id space is not getting any smaller, and we don't have to necessarily 639 * increase ours as well if it increases. 640 */ 641 #define MEMCG_CACHES_MIN_SIZE 4 642 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 643 644 /* 645 * A lot of the calls to the cache allocation functions are expected to be 646 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 647 * conditional to this static branch, we'll have to allow modules that does 648 * kmem_cache_alloc and the such to see this symbol as well 649 */ 650 struct static_key memcg_kmem_enabled_key; 651 EXPORT_SYMBOL(memcg_kmem_enabled_key); 652 653 static void disarm_kmem_keys(struct mem_cgroup *memcg) 654 { 655 if (memcg_kmem_is_active(memcg)) { 656 static_key_slow_dec(&memcg_kmem_enabled_key); 657 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); 658 } 659 /* 660 * This check can't live in kmem destruction function, 661 * since the charges will outlive the cgroup 662 */ 663 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); 664 } 665 #else 666 static void disarm_kmem_keys(struct mem_cgroup *memcg) 667 { 668 } 669 #endif /* CONFIG_MEMCG_KMEM */ 670 671 static void disarm_static_keys(struct mem_cgroup *memcg) 672 { 673 disarm_sock_keys(memcg); 674 disarm_kmem_keys(memcg); 675 } 676 677 static void drain_all_stock_async(struct mem_cgroup *memcg); 678 679 static struct mem_cgroup_per_zone * 680 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 681 { 682 VM_BUG_ON((unsigned)nid >= nr_node_ids); 683 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 684 } 685 686 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 687 { 688 return &memcg->css; 689 } 690 691 static struct mem_cgroup_per_zone * 692 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 693 { 694 int nid = page_to_nid(page); 695 int zid = page_zonenum(page); 696 697 return mem_cgroup_zoneinfo(memcg, nid, zid); 698 } 699 700 static struct mem_cgroup_tree_per_zone * 701 soft_limit_tree_node_zone(int nid, int zid) 702 { 703 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 704 } 705 706 static struct mem_cgroup_tree_per_zone * 707 soft_limit_tree_from_page(struct page *page) 708 { 709 int nid = page_to_nid(page); 710 int zid = page_zonenum(page); 711 712 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 713 } 714 715 static void 716 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 717 struct mem_cgroup_per_zone *mz, 718 struct mem_cgroup_tree_per_zone *mctz, 719 unsigned long long new_usage_in_excess) 720 { 721 struct rb_node **p = &mctz->rb_root.rb_node; 722 struct rb_node *parent = NULL; 723 struct mem_cgroup_per_zone *mz_node; 724 725 if (mz->on_tree) 726 return; 727 728 mz->usage_in_excess = new_usage_in_excess; 729 if (!mz->usage_in_excess) 730 return; 731 while (*p) { 732 parent = *p; 733 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 734 tree_node); 735 if (mz->usage_in_excess < mz_node->usage_in_excess) 736 p = &(*p)->rb_left; 737 /* 738 * We can't avoid mem cgroups that are over their soft 739 * limit by the same amount 740 */ 741 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 742 p = &(*p)->rb_right; 743 } 744 rb_link_node(&mz->tree_node, parent, p); 745 rb_insert_color(&mz->tree_node, &mctz->rb_root); 746 mz->on_tree = true; 747 } 748 749 static void 750 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 751 struct mem_cgroup_per_zone *mz, 752 struct mem_cgroup_tree_per_zone *mctz) 753 { 754 if (!mz->on_tree) 755 return; 756 rb_erase(&mz->tree_node, &mctz->rb_root); 757 mz->on_tree = false; 758 } 759 760 static void 761 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 762 struct mem_cgroup_per_zone *mz, 763 struct mem_cgroup_tree_per_zone *mctz) 764 { 765 spin_lock(&mctz->lock); 766 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 767 spin_unlock(&mctz->lock); 768 } 769 770 771 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 772 { 773 unsigned long long excess; 774 struct mem_cgroup_per_zone *mz; 775 struct mem_cgroup_tree_per_zone *mctz; 776 int nid = page_to_nid(page); 777 int zid = page_zonenum(page); 778 mctz = soft_limit_tree_from_page(page); 779 780 /* 781 * Necessary to update all ancestors when hierarchy is used. 782 * because their event counter is not touched. 783 */ 784 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 785 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 786 excess = res_counter_soft_limit_excess(&memcg->res); 787 /* 788 * We have to update the tree if mz is on RB-tree or 789 * mem is over its softlimit. 790 */ 791 if (excess || mz->on_tree) { 792 spin_lock(&mctz->lock); 793 /* if on-tree, remove it */ 794 if (mz->on_tree) 795 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 796 /* 797 * Insert again. mz->usage_in_excess will be updated. 798 * If excess is 0, no tree ops. 799 */ 800 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 801 spin_unlock(&mctz->lock); 802 } 803 } 804 } 805 806 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 807 { 808 int node, zone; 809 struct mem_cgroup_per_zone *mz; 810 struct mem_cgroup_tree_per_zone *mctz; 811 812 for_each_node(node) { 813 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 814 mz = mem_cgroup_zoneinfo(memcg, node, zone); 815 mctz = soft_limit_tree_node_zone(node, zone); 816 mem_cgroup_remove_exceeded(memcg, mz, mctz); 817 } 818 } 819 } 820 821 static struct mem_cgroup_per_zone * 822 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 823 { 824 struct rb_node *rightmost = NULL; 825 struct mem_cgroup_per_zone *mz; 826 827 retry: 828 mz = NULL; 829 rightmost = rb_last(&mctz->rb_root); 830 if (!rightmost) 831 goto done; /* Nothing to reclaim from */ 832 833 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 834 /* 835 * Remove the node now but someone else can add it back, 836 * we will to add it back at the end of reclaim to its correct 837 * position in the tree. 838 */ 839 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 840 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 841 !css_tryget(&mz->memcg->css)) 842 goto retry; 843 done: 844 return mz; 845 } 846 847 static struct mem_cgroup_per_zone * 848 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 849 { 850 struct mem_cgroup_per_zone *mz; 851 852 spin_lock(&mctz->lock); 853 mz = __mem_cgroup_largest_soft_limit_node(mctz); 854 spin_unlock(&mctz->lock); 855 return mz; 856 } 857 858 /* 859 * Implementation Note: reading percpu statistics for memcg. 860 * 861 * Both of vmstat[] and percpu_counter has threshold and do periodic 862 * synchronization to implement "quick" read. There are trade-off between 863 * reading cost and precision of value. Then, we may have a chance to implement 864 * a periodic synchronizion of counter in memcg's counter. 865 * 866 * But this _read() function is used for user interface now. The user accounts 867 * memory usage by memory cgroup and he _always_ requires exact value because 868 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 869 * have to visit all online cpus and make sum. So, for now, unnecessary 870 * synchronization is not implemented. (just implemented for cpu hotplug) 871 * 872 * If there are kernel internal actions which can make use of some not-exact 873 * value, and reading all cpu value can be performance bottleneck in some 874 * common workload, threashold and synchonization as vmstat[] should be 875 * implemented. 876 */ 877 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 878 enum mem_cgroup_stat_index idx) 879 { 880 long val = 0; 881 int cpu; 882 883 get_online_cpus(); 884 for_each_online_cpu(cpu) 885 val += per_cpu(memcg->stat->count[idx], cpu); 886 #ifdef CONFIG_HOTPLUG_CPU 887 spin_lock(&memcg->pcp_counter_lock); 888 val += memcg->nocpu_base.count[idx]; 889 spin_unlock(&memcg->pcp_counter_lock); 890 #endif 891 put_online_cpus(); 892 return val; 893 } 894 895 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 896 bool charge) 897 { 898 int val = (charge) ? 1 : -1; 899 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 900 } 901 902 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 903 enum mem_cgroup_events_index idx) 904 { 905 unsigned long val = 0; 906 int cpu; 907 908 get_online_cpus(); 909 for_each_online_cpu(cpu) 910 val += per_cpu(memcg->stat->events[idx], cpu); 911 #ifdef CONFIG_HOTPLUG_CPU 912 spin_lock(&memcg->pcp_counter_lock); 913 val += memcg->nocpu_base.events[idx]; 914 spin_unlock(&memcg->pcp_counter_lock); 915 #endif 916 put_online_cpus(); 917 return val; 918 } 919 920 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 921 struct page *page, 922 bool anon, int nr_pages) 923 { 924 /* 925 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 926 * counted as CACHE even if it's on ANON LRU. 927 */ 928 if (anon) 929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 930 nr_pages); 931 else 932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 933 nr_pages); 934 935 if (PageTransHuge(page)) 936 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 937 nr_pages); 938 939 /* pagein of a big page is an event. So, ignore page size */ 940 if (nr_pages > 0) 941 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 942 else { 943 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 944 nr_pages = -nr_pages; /* for event */ 945 } 946 947 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 948 } 949 950 unsigned long 951 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 952 { 953 struct mem_cgroup_per_zone *mz; 954 955 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 956 return mz->lru_size[lru]; 957 } 958 959 static unsigned long 960 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 961 unsigned int lru_mask) 962 { 963 struct mem_cgroup_per_zone *mz; 964 enum lru_list lru; 965 unsigned long ret = 0; 966 967 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 968 969 for_each_lru(lru) { 970 if (BIT(lru) & lru_mask) 971 ret += mz->lru_size[lru]; 972 } 973 return ret; 974 } 975 976 static unsigned long 977 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 978 int nid, unsigned int lru_mask) 979 { 980 u64 total = 0; 981 int zid; 982 983 for (zid = 0; zid < MAX_NR_ZONES; zid++) 984 total += mem_cgroup_zone_nr_lru_pages(memcg, 985 nid, zid, lru_mask); 986 987 return total; 988 } 989 990 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 991 unsigned int lru_mask) 992 { 993 int nid; 994 u64 total = 0; 995 996 for_each_node_state(nid, N_MEMORY) 997 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 998 return total; 999 } 1000 1001 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 1002 enum mem_cgroup_events_target target) 1003 { 1004 unsigned long val, next; 1005 1006 val = __this_cpu_read(memcg->stat->nr_page_events); 1007 next = __this_cpu_read(memcg->stat->targets[target]); 1008 /* from time_after() in jiffies.h */ 1009 if ((long)next - (long)val < 0) { 1010 switch (target) { 1011 case MEM_CGROUP_TARGET_THRESH: 1012 next = val + THRESHOLDS_EVENTS_TARGET; 1013 break; 1014 case MEM_CGROUP_TARGET_SOFTLIMIT: 1015 next = val + SOFTLIMIT_EVENTS_TARGET; 1016 break; 1017 case MEM_CGROUP_TARGET_NUMAINFO: 1018 next = val + NUMAINFO_EVENTS_TARGET; 1019 break; 1020 default: 1021 break; 1022 } 1023 __this_cpu_write(memcg->stat->targets[target], next); 1024 return true; 1025 } 1026 return false; 1027 } 1028 1029 /* 1030 * Check events in order. 1031 * 1032 */ 1033 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 1034 { 1035 preempt_disable(); 1036 /* threshold event is triggered in finer grain than soft limit */ 1037 if (unlikely(mem_cgroup_event_ratelimit(memcg, 1038 MEM_CGROUP_TARGET_THRESH))) { 1039 bool do_softlimit; 1040 bool do_numainfo __maybe_unused; 1041 1042 do_softlimit = mem_cgroup_event_ratelimit(memcg, 1043 MEM_CGROUP_TARGET_SOFTLIMIT); 1044 #if MAX_NUMNODES > 1 1045 do_numainfo = mem_cgroup_event_ratelimit(memcg, 1046 MEM_CGROUP_TARGET_NUMAINFO); 1047 #endif 1048 preempt_enable(); 1049 1050 mem_cgroup_threshold(memcg); 1051 if (unlikely(do_softlimit)) 1052 mem_cgroup_update_tree(memcg, page); 1053 #if MAX_NUMNODES > 1 1054 if (unlikely(do_numainfo)) 1055 atomic_inc(&memcg->numainfo_events); 1056 #endif 1057 } else 1058 preempt_enable(); 1059 } 1060 1061 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1062 { 1063 /* 1064 * mm_update_next_owner() may clear mm->owner to NULL 1065 * if it races with swapoff, page migration, etc. 1066 * So this can be called with p == NULL. 1067 */ 1068 if (unlikely(!p)) 1069 return NULL; 1070 1071 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 1072 } 1073 1074 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1075 { 1076 struct mem_cgroup *memcg = NULL; 1077 1078 rcu_read_lock(); 1079 do { 1080 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1081 if (unlikely(!memcg)) 1082 memcg = root_mem_cgroup; 1083 } while (!css_tryget(&memcg->css)); 1084 rcu_read_unlock(); 1085 return memcg; 1086 } 1087 1088 /* 1089 * Returns a next (in a pre-order walk) alive memcg (with elevated css 1090 * ref. count) or NULL if the whole root's subtree has been visited. 1091 * 1092 * helper function to be used by mem_cgroup_iter 1093 */ 1094 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, 1095 struct mem_cgroup *last_visited) 1096 { 1097 struct cgroup_subsys_state *prev_css, *next_css; 1098 1099 prev_css = last_visited ? &last_visited->css : NULL; 1100 skip_node: 1101 next_css = css_next_descendant_pre(prev_css, &root->css); 1102 1103 /* 1104 * Even if we found a group we have to make sure it is 1105 * alive. css && !memcg means that the groups should be 1106 * skipped and we should continue the tree walk. 1107 * last_visited css is safe to use because it is 1108 * protected by css_get and the tree walk is rcu safe. 1109 * 1110 * We do not take a reference on the root of the tree walk 1111 * because we might race with the root removal when it would 1112 * be the only node in the iterated hierarchy and mem_cgroup_iter 1113 * would end up in an endless loop because it expects that at 1114 * least one valid node will be returned. Root cannot disappear 1115 * because caller of the iterator should hold it already so 1116 * skipping css reference should be safe. 1117 */ 1118 if (next_css) { 1119 if ((next_css == &root->css) || 1120 ((next_css->flags & CSS_ONLINE) && css_tryget(next_css))) 1121 return mem_cgroup_from_css(next_css); 1122 1123 prev_css = next_css; 1124 goto skip_node; 1125 } 1126 1127 return NULL; 1128 } 1129 1130 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root) 1131 { 1132 /* 1133 * When a group in the hierarchy below root is destroyed, the 1134 * hierarchy iterator can no longer be trusted since it might 1135 * have pointed to the destroyed group. Invalidate it. 1136 */ 1137 atomic_inc(&root->dead_count); 1138 } 1139 1140 static struct mem_cgroup * 1141 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter, 1142 struct mem_cgroup *root, 1143 int *sequence) 1144 { 1145 struct mem_cgroup *position = NULL; 1146 /* 1147 * A cgroup destruction happens in two stages: offlining and 1148 * release. They are separated by a RCU grace period. 1149 * 1150 * If the iterator is valid, we may still race with an 1151 * offlining. The RCU lock ensures the object won't be 1152 * released, tryget will fail if we lost the race. 1153 */ 1154 *sequence = atomic_read(&root->dead_count); 1155 if (iter->last_dead_count == *sequence) { 1156 smp_rmb(); 1157 position = iter->last_visited; 1158 1159 /* 1160 * We cannot take a reference to root because we might race 1161 * with root removal and returning NULL would end up in 1162 * an endless loop on the iterator user level when root 1163 * would be returned all the time. 1164 */ 1165 if (position && position != root && 1166 !css_tryget(&position->css)) 1167 position = NULL; 1168 } 1169 return position; 1170 } 1171 1172 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter, 1173 struct mem_cgroup *last_visited, 1174 struct mem_cgroup *new_position, 1175 struct mem_cgroup *root, 1176 int sequence) 1177 { 1178 /* root reference counting symmetric to mem_cgroup_iter_load */ 1179 if (last_visited && last_visited != root) 1180 css_put(&last_visited->css); 1181 /* 1182 * We store the sequence count from the time @last_visited was 1183 * loaded successfully instead of rereading it here so that we 1184 * don't lose destruction events in between. We could have 1185 * raced with the destruction of @new_position after all. 1186 */ 1187 iter->last_visited = new_position; 1188 smp_wmb(); 1189 iter->last_dead_count = sequence; 1190 } 1191 1192 /** 1193 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1194 * @root: hierarchy root 1195 * @prev: previously returned memcg, NULL on first invocation 1196 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1197 * 1198 * Returns references to children of the hierarchy below @root, or 1199 * @root itself, or %NULL after a full round-trip. 1200 * 1201 * Caller must pass the return value in @prev on subsequent 1202 * invocations for reference counting, or use mem_cgroup_iter_break() 1203 * to cancel a hierarchy walk before the round-trip is complete. 1204 * 1205 * Reclaimers can specify a zone and a priority level in @reclaim to 1206 * divide up the memcgs in the hierarchy among all concurrent 1207 * reclaimers operating on the same zone and priority. 1208 */ 1209 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1210 struct mem_cgroup *prev, 1211 struct mem_cgroup_reclaim_cookie *reclaim) 1212 { 1213 struct mem_cgroup *memcg = NULL; 1214 struct mem_cgroup *last_visited = NULL; 1215 1216 if (mem_cgroup_disabled()) 1217 return NULL; 1218 1219 if (!root) 1220 root = root_mem_cgroup; 1221 1222 if (prev && !reclaim) 1223 last_visited = prev; 1224 1225 if (!root->use_hierarchy && root != root_mem_cgroup) { 1226 if (prev) 1227 goto out_css_put; 1228 return root; 1229 } 1230 1231 rcu_read_lock(); 1232 while (!memcg) { 1233 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1234 int uninitialized_var(seq); 1235 1236 if (reclaim) { 1237 int nid = zone_to_nid(reclaim->zone); 1238 int zid = zone_idx(reclaim->zone); 1239 struct mem_cgroup_per_zone *mz; 1240 1241 mz = mem_cgroup_zoneinfo(root, nid, zid); 1242 iter = &mz->reclaim_iter[reclaim->priority]; 1243 if (prev && reclaim->generation != iter->generation) { 1244 iter->last_visited = NULL; 1245 goto out_unlock; 1246 } 1247 1248 last_visited = mem_cgroup_iter_load(iter, root, &seq); 1249 } 1250 1251 memcg = __mem_cgroup_iter_next(root, last_visited); 1252 1253 if (reclaim) { 1254 mem_cgroup_iter_update(iter, last_visited, memcg, root, 1255 seq); 1256 1257 if (!memcg) 1258 iter->generation++; 1259 else if (!prev && memcg) 1260 reclaim->generation = iter->generation; 1261 } 1262 1263 if (prev && !memcg) 1264 goto out_unlock; 1265 } 1266 out_unlock: 1267 rcu_read_unlock(); 1268 out_css_put: 1269 if (prev && prev != root) 1270 css_put(&prev->css); 1271 1272 return memcg; 1273 } 1274 1275 /** 1276 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1277 * @root: hierarchy root 1278 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1279 */ 1280 void mem_cgroup_iter_break(struct mem_cgroup *root, 1281 struct mem_cgroup *prev) 1282 { 1283 if (!root) 1284 root = root_mem_cgroup; 1285 if (prev && prev != root) 1286 css_put(&prev->css); 1287 } 1288 1289 /* 1290 * Iteration constructs for visiting all cgroups (under a tree). If 1291 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1292 * be used for reference counting. 1293 */ 1294 #define for_each_mem_cgroup_tree(iter, root) \ 1295 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1296 iter != NULL; \ 1297 iter = mem_cgroup_iter(root, iter, NULL)) 1298 1299 #define for_each_mem_cgroup(iter) \ 1300 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1301 iter != NULL; \ 1302 iter = mem_cgroup_iter(NULL, iter, NULL)) 1303 1304 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1305 { 1306 struct mem_cgroup *memcg; 1307 1308 rcu_read_lock(); 1309 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1310 if (unlikely(!memcg)) 1311 goto out; 1312 1313 switch (idx) { 1314 case PGFAULT: 1315 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1316 break; 1317 case PGMAJFAULT: 1318 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1319 break; 1320 default: 1321 BUG(); 1322 } 1323 out: 1324 rcu_read_unlock(); 1325 } 1326 EXPORT_SYMBOL(__mem_cgroup_count_vm_event); 1327 1328 /** 1329 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1330 * @zone: zone of the wanted lruvec 1331 * @memcg: memcg of the wanted lruvec 1332 * 1333 * Returns the lru list vector holding pages for the given @zone and 1334 * @mem. This can be the global zone lruvec, if the memory controller 1335 * is disabled. 1336 */ 1337 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1338 struct mem_cgroup *memcg) 1339 { 1340 struct mem_cgroup_per_zone *mz; 1341 struct lruvec *lruvec; 1342 1343 if (mem_cgroup_disabled()) { 1344 lruvec = &zone->lruvec; 1345 goto out; 1346 } 1347 1348 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1349 lruvec = &mz->lruvec; 1350 out: 1351 /* 1352 * Since a node can be onlined after the mem_cgroup was created, 1353 * we have to be prepared to initialize lruvec->zone here; 1354 * and if offlined then reonlined, we need to reinitialize it. 1355 */ 1356 if (unlikely(lruvec->zone != zone)) 1357 lruvec->zone = zone; 1358 return lruvec; 1359 } 1360 1361 /* 1362 * Following LRU functions are allowed to be used without PCG_LOCK. 1363 * Operations are called by routine of global LRU independently from memcg. 1364 * What we have to take care of here is validness of pc->mem_cgroup. 1365 * 1366 * Changes to pc->mem_cgroup happens when 1367 * 1. charge 1368 * 2. moving account 1369 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1370 * It is added to LRU before charge. 1371 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1372 * When moving account, the page is not on LRU. It's isolated. 1373 */ 1374 1375 /** 1376 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1377 * @page: the page 1378 * @zone: zone of the page 1379 */ 1380 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1381 { 1382 struct mem_cgroup_per_zone *mz; 1383 struct mem_cgroup *memcg; 1384 struct page_cgroup *pc; 1385 struct lruvec *lruvec; 1386 1387 if (mem_cgroup_disabled()) { 1388 lruvec = &zone->lruvec; 1389 goto out; 1390 } 1391 1392 pc = lookup_page_cgroup(page); 1393 memcg = pc->mem_cgroup; 1394 1395 /* 1396 * Surreptitiously switch any uncharged offlist page to root: 1397 * an uncharged page off lru does nothing to secure 1398 * its former mem_cgroup from sudden removal. 1399 * 1400 * Our caller holds lru_lock, and PageCgroupUsed is updated 1401 * under page_cgroup lock: between them, they make all uses 1402 * of pc->mem_cgroup safe. 1403 */ 1404 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1405 pc->mem_cgroup = memcg = root_mem_cgroup; 1406 1407 mz = page_cgroup_zoneinfo(memcg, page); 1408 lruvec = &mz->lruvec; 1409 out: 1410 /* 1411 * Since a node can be onlined after the mem_cgroup was created, 1412 * we have to be prepared to initialize lruvec->zone here; 1413 * and if offlined then reonlined, we need to reinitialize it. 1414 */ 1415 if (unlikely(lruvec->zone != zone)) 1416 lruvec->zone = zone; 1417 return lruvec; 1418 } 1419 1420 /** 1421 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1422 * @lruvec: mem_cgroup per zone lru vector 1423 * @lru: index of lru list the page is sitting on 1424 * @nr_pages: positive when adding or negative when removing 1425 * 1426 * This function must be called when a page is added to or removed from an 1427 * lru list. 1428 */ 1429 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1430 int nr_pages) 1431 { 1432 struct mem_cgroup_per_zone *mz; 1433 unsigned long *lru_size; 1434 1435 if (mem_cgroup_disabled()) 1436 return; 1437 1438 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1439 lru_size = mz->lru_size + lru; 1440 *lru_size += nr_pages; 1441 VM_BUG_ON((long)(*lru_size) < 0); 1442 } 1443 1444 /* 1445 * Checks whether given mem is same or in the root_mem_cgroup's 1446 * hierarchy subtree 1447 */ 1448 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1449 struct mem_cgroup *memcg) 1450 { 1451 if (root_memcg == memcg) 1452 return true; 1453 if (!root_memcg->use_hierarchy || !memcg) 1454 return false; 1455 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup); 1456 } 1457 1458 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1459 struct mem_cgroup *memcg) 1460 { 1461 bool ret; 1462 1463 rcu_read_lock(); 1464 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1465 rcu_read_unlock(); 1466 return ret; 1467 } 1468 1469 bool task_in_mem_cgroup(struct task_struct *task, 1470 const struct mem_cgroup *memcg) 1471 { 1472 struct mem_cgroup *curr = NULL; 1473 struct task_struct *p; 1474 bool ret; 1475 1476 p = find_lock_task_mm(task); 1477 if (p) { 1478 curr = get_mem_cgroup_from_mm(p->mm); 1479 task_unlock(p); 1480 } else { 1481 /* 1482 * All threads may have already detached their mm's, but the oom 1483 * killer still needs to detect if they have already been oom 1484 * killed to prevent needlessly killing additional tasks. 1485 */ 1486 rcu_read_lock(); 1487 curr = mem_cgroup_from_task(task); 1488 if (curr) 1489 css_get(&curr->css); 1490 rcu_read_unlock(); 1491 } 1492 /* 1493 * We should check use_hierarchy of "memcg" not "curr". Because checking 1494 * use_hierarchy of "curr" here make this function true if hierarchy is 1495 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1496 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1497 */ 1498 ret = mem_cgroup_same_or_subtree(memcg, curr); 1499 css_put(&curr->css); 1500 return ret; 1501 } 1502 1503 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1504 { 1505 unsigned long inactive_ratio; 1506 unsigned long inactive; 1507 unsigned long active; 1508 unsigned long gb; 1509 1510 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1511 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1512 1513 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1514 if (gb) 1515 inactive_ratio = int_sqrt(10 * gb); 1516 else 1517 inactive_ratio = 1; 1518 1519 return inactive * inactive_ratio < active; 1520 } 1521 1522 #define mem_cgroup_from_res_counter(counter, member) \ 1523 container_of(counter, struct mem_cgroup, member) 1524 1525 /** 1526 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1527 * @memcg: the memory cgroup 1528 * 1529 * Returns the maximum amount of memory @mem can be charged with, in 1530 * pages. 1531 */ 1532 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1533 { 1534 unsigned long long margin; 1535 1536 margin = res_counter_margin(&memcg->res); 1537 if (do_swap_account) 1538 margin = min(margin, res_counter_margin(&memcg->memsw)); 1539 return margin >> PAGE_SHIFT; 1540 } 1541 1542 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1543 { 1544 /* root ? */ 1545 if (!css_parent(&memcg->css)) 1546 return vm_swappiness; 1547 1548 return memcg->swappiness; 1549 } 1550 1551 /* 1552 * memcg->moving_account is used for checking possibility that some thread is 1553 * calling move_account(). When a thread on CPU-A starts moving pages under 1554 * a memcg, other threads should check memcg->moving_account under 1555 * rcu_read_lock(), like this: 1556 * 1557 * CPU-A CPU-B 1558 * rcu_read_lock() 1559 * memcg->moving_account+1 if (memcg->mocing_account) 1560 * take heavy locks. 1561 * synchronize_rcu() update something. 1562 * rcu_read_unlock() 1563 * start move here. 1564 */ 1565 1566 /* for quick checking without looking up memcg */ 1567 atomic_t memcg_moving __read_mostly; 1568 1569 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1570 { 1571 atomic_inc(&memcg_moving); 1572 atomic_inc(&memcg->moving_account); 1573 synchronize_rcu(); 1574 } 1575 1576 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1577 { 1578 /* 1579 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1580 * We check NULL in callee rather than caller. 1581 */ 1582 if (memcg) { 1583 atomic_dec(&memcg_moving); 1584 atomic_dec(&memcg->moving_account); 1585 } 1586 } 1587 1588 /* 1589 * 2 routines for checking "mem" is under move_account() or not. 1590 * 1591 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1592 * is used for avoiding races in accounting. If true, 1593 * pc->mem_cgroup may be overwritten. 1594 * 1595 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1596 * under hierarchy of moving cgroups. This is for 1597 * waiting at hith-memory prressure caused by "move". 1598 */ 1599 1600 static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1601 { 1602 VM_BUG_ON(!rcu_read_lock_held()); 1603 return atomic_read(&memcg->moving_account) > 0; 1604 } 1605 1606 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1607 { 1608 struct mem_cgroup *from; 1609 struct mem_cgroup *to; 1610 bool ret = false; 1611 /* 1612 * Unlike task_move routines, we access mc.to, mc.from not under 1613 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1614 */ 1615 spin_lock(&mc.lock); 1616 from = mc.from; 1617 to = mc.to; 1618 if (!from) 1619 goto unlock; 1620 1621 ret = mem_cgroup_same_or_subtree(memcg, from) 1622 || mem_cgroup_same_or_subtree(memcg, to); 1623 unlock: 1624 spin_unlock(&mc.lock); 1625 return ret; 1626 } 1627 1628 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1629 { 1630 if (mc.moving_task && current != mc.moving_task) { 1631 if (mem_cgroup_under_move(memcg)) { 1632 DEFINE_WAIT(wait); 1633 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1634 /* moving charge context might have finished. */ 1635 if (mc.moving_task) 1636 schedule(); 1637 finish_wait(&mc.waitq, &wait); 1638 return true; 1639 } 1640 } 1641 return false; 1642 } 1643 1644 /* 1645 * Take this lock when 1646 * - a code tries to modify page's memcg while it's USED. 1647 * - a code tries to modify page state accounting in a memcg. 1648 * see mem_cgroup_stolen(), too. 1649 */ 1650 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1651 unsigned long *flags) 1652 { 1653 spin_lock_irqsave(&memcg->move_lock, *flags); 1654 } 1655 1656 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1657 unsigned long *flags) 1658 { 1659 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1660 } 1661 1662 #define K(x) ((x) << (PAGE_SHIFT-10)) 1663 /** 1664 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1665 * @memcg: The memory cgroup that went over limit 1666 * @p: Task that is going to be killed 1667 * 1668 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1669 * enabled 1670 */ 1671 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1672 { 1673 /* oom_info_lock ensures that parallel ooms do not interleave */ 1674 static DEFINE_MUTEX(oom_info_lock); 1675 struct mem_cgroup *iter; 1676 unsigned int i; 1677 1678 if (!p) 1679 return; 1680 1681 mutex_lock(&oom_info_lock); 1682 rcu_read_lock(); 1683 1684 pr_info("Task in "); 1685 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1686 pr_info(" killed as a result of limit of "); 1687 pr_cont_cgroup_path(memcg->css.cgroup); 1688 pr_info("\n"); 1689 1690 rcu_read_unlock(); 1691 1692 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", 1693 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1694 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1695 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1696 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", 1697 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1698 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1699 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1700 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", 1701 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, 1702 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, 1703 res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); 1704 1705 for_each_mem_cgroup_tree(iter, memcg) { 1706 pr_info("Memory cgroup stats for "); 1707 pr_cont_cgroup_path(iter->css.cgroup); 1708 pr_cont(":"); 1709 1710 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1711 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1712 continue; 1713 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], 1714 K(mem_cgroup_read_stat(iter, i))); 1715 } 1716 1717 for (i = 0; i < NR_LRU_LISTS; i++) 1718 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1719 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1720 1721 pr_cont("\n"); 1722 } 1723 mutex_unlock(&oom_info_lock); 1724 } 1725 1726 /* 1727 * This function returns the number of memcg under hierarchy tree. Returns 1728 * 1(self count) if no children. 1729 */ 1730 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1731 { 1732 int num = 0; 1733 struct mem_cgroup *iter; 1734 1735 for_each_mem_cgroup_tree(iter, memcg) 1736 num++; 1737 return num; 1738 } 1739 1740 /* 1741 * Return the memory (and swap, if configured) limit for a memcg. 1742 */ 1743 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1744 { 1745 u64 limit; 1746 1747 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1748 1749 /* 1750 * Do not consider swap space if we cannot swap due to swappiness 1751 */ 1752 if (mem_cgroup_swappiness(memcg)) { 1753 u64 memsw; 1754 1755 limit += total_swap_pages << PAGE_SHIFT; 1756 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1757 1758 /* 1759 * If memsw is finite and limits the amount of swap space 1760 * available to this memcg, return that limit. 1761 */ 1762 limit = min(limit, memsw); 1763 } 1764 1765 return limit; 1766 } 1767 1768 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1769 int order) 1770 { 1771 struct mem_cgroup *iter; 1772 unsigned long chosen_points = 0; 1773 unsigned long totalpages; 1774 unsigned int points = 0; 1775 struct task_struct *chosen = NULL; 1776 1777 /* 1778 * If current has a pending SIGKILL or is exiting, then automatically 1779 * select it. The goal is to allow it to allocate so that it may 1780 * quickly exit and free its memory. 1781 */ 1782 if (fatal_signal_pending(current) || current->flags & PF_EXITING) { 1783 set_thread_flag(TIF_MEMDIE); 1784 return; 1785 } 1786 1787 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1788 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1789 for_each_mem_cgroup_tree(iter, memcg) { 1790 struct css_task_iter it; 1791 struct task_struct *task; 1792 1793 css_task_iter_start(&iter->css, &it); 1794 while ((task = css_task_iter_next(&it))) { 1795 switch (oom_scan_process_thread(task, totalpages, NULL, 1796 false)) { 1797 case OOM_SCAN_SELECT: 1798 if (chosen) 1799 put_task_struct(chosen); 1800 chosen = task; 1801 chosen_points = ULONG_MAX; 1802 get_task_struct(chosen); 1803 /* fall through */ 1804 case OOM_SCAN_CONTINUE: 1805 continue; 1806 case OOM_SCAN_ABORT: 1807 css_task_iter_end(&it); 1808 mem_cgroup_iter_break(memcg, iter); 1809 if (chosen) 1810 put_task_struct(chosen); 1811 return; 1812 case OOM_SCAN_OK: 1813 break; 1814 }; 1815 points = oom_badness(task, memcg, NULL, totalpages); 1816 if (!points || points < chosen_points) 1817 continue; 1818 /* Prefer thread group leaders for display purposes */ 1819 if (points == chosen_points && 1820 thread_group_leader(chosen)) 1821 continue; 1822 1823 if (chosen) 1824 put_task_struct(chosen); 1825 chosen = task; 1826 chosen_points = points; 1827 get_task_struct(chosen); 1828 } 1829 css_task_iter_end(&it); 1830 } 1831 1832 if (!chosen) 1833 return; 1834 points = chosen_points * 1000 / totalpages; 1835 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1836 NULL, "Memory cgroup out of memory"); 1837 } 1838 1839 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1840 gfp_t gfp_mask, 1841 unsigned long flags) 1842 { 1843 unsigned long total = 0; 1844 bool noswap = false; 1845 int loop; 1846 1847 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1848 noswap = true; 1849 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1850 noswap = true; 1851 1852 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1853 if (loop) 1854 drain_all_stock_async(memcg); 1855 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1856 /* 1857 * Allow limit shrinkers, which are triggered directly 1858 * by userspace, to catch signals and stop reclaim 1859 * after minimal progress, regardless of the margin. 1860 */ 1861 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1862 break; 1863 if (mem_cgroup_margin(memcg)) 1864 break; 1865 /* 1866 * If nothing was reclaimed after two attempts, there 1867 * may be no reclaimable pages in this hierarchy. 1868 */ 1869 if (loop && !total) 1870 break; 1871 } 1872 return total; 1873 } 1874 1875 /** 1876 * test_mem_cgroup_node_reclaimable 1877 * @memcg: the target memcg 1878 * @nid: the node ID to be checked. 1879 * @noswap : specify true here if the user wants flle only information. 1880 * 1881 * This function returns whether the specified memcg contains any 1882 * reclaimable pages on a node. Returns true if there are any reclaimable 1883 * pages in the node. 1884 */ 1885 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1886 int nid, bool noswap) 1887 { 1888 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1889 return true; 1890 if (noswap || !total_swap_pages) 1891 return false; 1892 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1893 return true; 1894 return false; 1895 1896 } 1897 #if MAX_NUMNODES > 1 1898 1899 /* 1900 * Always updating the nodemask is not very good - even if we have an empty 1901 * list or the wrong list here, we can start from some node and traverse all 1902 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1903 * 1904 */ 1905 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1906 { 1907 int nid; 1908 /* 1909 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1910 * pagein/pageout changes since the last update. 1911 */ 1912 if (!atomic_read(&memcg->numainfo_events)) 1913 return; 1914 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1915 return; 1916 1917 /* make a nodemask where this memcg uses memory from */ 1918 memcg->scan_nodes = node_states[N_MEMORY]; 1919 1920 for_each_node_mask(nid, node_states[N_MEMORY]) { 1921 1922 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1923 node_clear(nid, memcg->scan_nodes); 1924 } 1925 1926 atomic_set(&memcg->numainfo_events, 0); 1927 atomic_set(&memcg->numainfo_updating, 0); 1928 } 1929 1930 /* 1931 * Selecting a node where we start reclaim from. Because what we need is just 1932 * reducing usage counter, start from anywhere is O,K. Considering 1933 * memory reclaim from current node, there are pros. and cons. 1934 * 1935 * Freeing memory from current node means freeing memory from a node which 1936 * we'll use or we've used. So, it may make LRU bad. And if several threads 1937 * hit limits, it will see a contention on a node. But freeing from remote 1938 * node means more costs for memory reclaim because of memory latency. 1939 * 1940 * Now, we use round-robin. Better algorithm is welcomed. 1941 */ 1942 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1943 { 1944 int node; 1945 1946 mem_cgroup_may_update_nodemask(memcg); 1947 node = memcg->last_scanned_node; 1948 1949 node = next_node(node, memcg->scan_nodes); 1950 if (node == MAX_NUMNODES) 1951 node = first_node(memcg->scan_nodes); 1952 /* 1953 * We call this when we hit limit, not when pages are added to LRU. 1954 * No LRU may hold pages because all pages are UNEVICTABLE or 1955 * memcg is too small and all pages are not on LRU. In that case, 1956 * we use curret node. 1957 */ 1958 if (unlikely(node == MAX_NUMNODES)) 1959 node = numa_node_id(); 1960 1961 memcg->last_scanned_node = node; 1962 return node; 1963 } 1964 1965 /* 1966 * Check all nodes whether it contains reclaimable pages or not. 1967 * For quick scan, we make use of scan_nodes. This will allow us to skip 1968 * unused nodes. But scan_nodes is lazily updated and may not cotain 1969 * enough new information. We need to do double check. 1970 */ 1971 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1972 { 1973 int nid; 1974 1975 /* 1976 * quick check...making use of scan_node. 1977 * We can skip unused nodes. 1978 */ 1979 if (!nodes_empty(memcg->scan_nodes)) { 1980 for (nid = first_node(memcg->scan_nodes); 1981 nid < MAX_NUMNODES; 1982 nid = next_node(nid, memcg->scan_nodes)) { 1983 1984 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1985 return true; 1986 } 1987 } 1988 /* 1989 * Check rest of nodes. 1990 */ 1991 for_each_node_state(nid, N_MEMORY) { 1992 if (node_isset(nid, memcg->scan_nodes)) 1993 continue; 1994 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1995 return true; 1996 } 1997 return false; 1998 } 1999 2000 #else 2001 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 2002 { 2003 return 0; 2004 } 2005 2006 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 2007 { 2008 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 2009 } 2010 #endif 2011 2012 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 2013 struct zone *zone, 2014 gfp_t gfp_mask, 2015 unsigned long *total_scanned) 2016 { 2017 struct mem_cgroup *victim = NULL; 2018 int total = 0; 2019 int loop = 0; 2020 unsigned long excess; 2021 unsigned long nr_scanned; 2022 struct mem_cgroup_reclaim_cookie reclaim = { 2023 .zone = zone, 2024 .priority = 0, 2025 }; 2026 2027 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 2028 2029 while (1) { 2030 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 2031 if (!victim) { 2032 loop++; 2033 if (loop >= 2) { 2034 /* 2035 * If we have not been able to reclaim 2036 * anything, it might because there are 2037 * no reclaimable pages under this hierarchy 2038 */ 2039 if (!total) 2040 break; 2041 /* 2042 * We want to do more targeted reclaim. 2043 * excess >> 2 is not to excessive so as to 2044 * reclaim too much, nor too less that we keep 2045 * coming back to reclaim from this cgroup 2046 */ 2047 if (total >= (excess >> 2) || 2048 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 2049 break; 2050 } 2051 continue; 2052 } 2053 if (!mem_cgroup_reclaimable(victim, false)) 2054 continue; 2055 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 2056 zone, &nr_scanned); 2057 *total_scanned += nr_scanned; 2058 if (!res_counter_soft_limit_excess(&root_memcg->res)) 2059 break; 2060 } 2061 mem_cgroup_iter_break(root_memcg, victim); 2062 return total; 2063 } 2064 2065 #ifdef CONFIG_LOCKDEP 2066 static struct lockdep_map memcg_oom_lock_dep_map = { 2067 .name = "memcg_oom_lock", 2068 }; 2069 #endif 2070 2071 static DEFINE_SPINLOCK(memcg_oom_lock); 2072 2073 /* 2074 * Check OOM-Killer is already running under our hierarchy. 2075 * If someone is running, return false. 2076 */ 2077 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 2078 { 2079 struct mem_cgroup *iter, *failed = NULL; 2080 2081 spin_lock(&memcg_oom_lock); 2082 2083 for_each_mem_cgroup_tree(iter, memcg) { 2084 if (iter->oom_lock) { 2085 /* 2086 * this subtree of our hierarchy is already locked 2087 * so we cannot give a lock. 2088 */ 2089 failed = iter; 2090 mem_cgroup_iter_break(memcg, iter); 2091 break; 2092 } else 2093 iter->oom_lock = true; 2094 } 2095 2096 if (failed) { 2097 /* 2098 * OK, we failed to lock the whole subtree so we have 2099 * to clean up what we set up to the failing subtree 2100 */ 2101 for_each_mem_cgroup_tree(iter, memcg) { 2102 if (iter == failed) { 2103 mem_cgroup_iter_break(memcg, iter); 2104 break; 2105 } 2106 iter->oom_lock = false; 2107 } 2108 } else 2109 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 2110 2111 spin_unlock(&memcg_oom_lock); 2112 2113 return !failed; 2114 } 2115 2116 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 2117 { 2118 struct mem_cgroup *iter; 2119 2120 spin_lock(&memcg_oom_lock); 2121 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 2122 for_each_mem_cgroup_tree(iter, memcg) 2123 iter->oom_lock = false; 2124 spin_unlock(&memcg_oom_lock); 2125 } 2126 2127 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 2128 { 2129 struct mem_cgroup *iter; 2130 2131 for_each_mem_cgroup_tree(iter, memcg) 2132 atomic_inc(&iter->under_oom); 2133 } 2134 2135 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 2136 { 2137 struct mem_cgroup *iter; 2138 2139 /* 2140 * When a new child is created while the hierarchy is under oom, 2141 * mem_cgroup_oom_lock() may not be called. We have to use 2142 * atomic_add_unless() here. 2143 */ 2144 for_each_mem_cgroup_tree(iter, memcg) 2145 atomic_add_unless(&iter->under_oom, -1, 0); 2146 } 2147 2148 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 2149 2150 struct oom_wait_info { 2151 struct mem_cgroup *memcg; 2152 wait_queue_t wait; 2153 }; 2154 2155 static int memcg_oom_wake_function(wait_queue_t *wait, 2156 unsigned mode, int sync, void *arg) 2157 { 2158 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 2159 struct mem_cgroup *oom_wait_memcg; 2160 struct oom_wait_info *oom_wait_info; 2161 2162 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 2163 oom_wait_memcg = oom_wait_info->memcg; 2164 2165 /* 2166 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 2167 * Then we can use css_is_ancestor without taking care of RCU. 2168 */ 2169 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 2170 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 2171 return 0; 2172 return autoremove_wake_function(wait, mode, sync, arg); 2173 } 2174 2175 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 2176 { 2177 atomic_inc(&memcg->oom_wakeups); 2178 /* for filtering, pass "memcg" as argument. */ 2179 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2180 } 2181 2182 static void memcg_oom_recover(struct mem_cgroup *memcg) 2183 { 2184 if (memcg && atomic_read(&memcg->under_oom)) 2185 memcg_wakeup_oom(memcg); 2186 } 2187 2188 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 2189 { 2190 if (!current->memcg_oom.may_oom) 2191 return; 2192 /* 2193 * We are in the middle of the charge context here, so we 2194 * don't want to block when potentially sitting on a callstack 2195 * that holds all kinds of filesystem and mm locks. 2196 * 2197 * Also, the caller may handle a failed allocation gracefully 2198 * (like optional page cache readahead) and so an OOM killer 2199 * invocation might not even be necessary. 2200 * 2201 * That's why we don't do anything here except remember the 2202 * OOM context and then deal with it at the end of the page 2203 * fault when the stack is unwound, the locks are released, 2204 * and when we know whether the fault was overall successful. 2205 */ 2206 css_get(&memcg->css); 2207 current->memcg_oom.memcg = memcg; 2208 current->memcg_oom.gfp_mask = mask; 2209 current->memcg_oom.order = order; 2210 } 2211 2212 /** 2213 * mem_cgroup_oom_synchronize - complete memcg OOM handling 2214 * @handle: actually kill/wait or just clean up the OOM state 2215 * 2216 * This has to be called at the end of a page fault if the memcg OOM 2217 * handler was enabled. 2218 * 2219 * Memcg supports userspace OOM handling where failed allocations must 2220 * sleep on a waitqueue until the userspace task resolves the 2221 * situation. Sleeping directly in the charge context with all kinds 2222 * of locks held is not a good idea, instead we remember an OOM state 2223 * in the task and mem_cgroup_oom_synchronize() has to be called at 2224 * the end of the page fault to complete the OOM handling. 2225 * 2226 * Returns %true if an ongoing memcg OOM situation was detected and 2227 * completed, %false otherwise. 2228 */ 2229 bool mem_cgroup_oom_synchronize(bool handle) 2230 { 2231 struct mem_cgroup *memcg = current->memcg_oom.memcg; 2232 struct oom_wait_info owait; 2233 bool locked; 2234 2235 /* OOM is global, do not handle */ 2236 if (!memcg) 2237 return false; 2238 2239 if (!handle) 2240 goto cleanup; 2241 2242 owait.memcg = memcg; 2243 owait.wait.flags = 0; 2244 owait.wait.func = memcg_oom_wake_function; 2245 owait.wait.private = current; 2246 INIT_LIST_HEAD(&owait.wait.task_list); 2247 2248 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2249 mem_cgroup_mark_under_oom(memcg); 2250 2251 locked = mem_cgroup_oom_trylock(memcg); 2252 2253 if (locked) 2254 mem_cgroup_oom_notify(memcg); 2255 2256 if (locked && !memcg->oom_kill_disable) { 2257 mem_cgroup_unmark_under_oom(memcg); 2258 finish_wait(&memcg_oom_waitq, &owait.wait); 2259 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask, 2260 current->memcg_oom.order); 2261 } else { 2262 schedule(); 2263 mem_cgroup_unmark_under_oom(memcg); 2264 finish_wait(&memcg_oom_waitq, &owait.wait); 2265 } 2266 2267 if (locked) { 2268 mem_cgroup_oom_unlock(memcg); 2269 /* 2270 * There is no guarantee that an OOM-lock contender 2271 * sees the wakeups triggered by the OOM kill 2272 * uncharges. Wake any sleepers explicitely. 2273 */ 2274 memcg_oom_recover(memcg); 2275 } 2276 cleanup: 2277 current->memcg_oom.memcg = NULL; 2278 css_put(&memcg->css); 2279 return true; 2280 } 2281 2282 /* 2283 * Currently used to update mapped file statistics, but the routine can be 2284 * generalized to update other statistics as well. 2285 * 2286 * Notes: Race condition 2287 * 2288 * We usually use page_cgroup_lock() for accessing page_cgroup member but 2289 * it tends to be costly. But considering some conditions, we doesn't need 2290 * to do so _always_. 2291 * 2292 * Considering "charge", lock_page_cgroup() is not required because all 2293 * file-stat operations happen after a page is attached to radix-tree. There 2294 * are no race with "charge". 2295 * 2296 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 2297 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 2298 * if there are race with "uncharge". Statistics itself is properly handled 2299 * by flags. 2300 * 2301 * Considering "move", this is an only case we see a race. To make the race 2302 * small, we check mm->moving_account and detect there are possibility of race 2303 * If there is, we take a lock. 2304 */ 2305 2306 void __mem_cgroup_begin_update_page_stat(struct page *page, 2307 bool *locked, unsigned long *flags) 2308 { 2309 struct mem_cgroup *memcg; 2310 struct page_cgroup *pc; 2311 2312 pc = lookup_page_cgroup(page); 2313 again: 2314 memcg = pc->mem_cgroup; 2315 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2316 return; 2317 /* 2318 * If this memory cgroup is not under account moving, we don't 2319 * need to take move_lock_mem_cgroup(). Because we already hold 2320 * rcu_read_lock(), any calls to move_account will be delayed until 2321 * rcu_read_unlock() if mem_cgroup_stolen() == true. 2322 */ 2323 if (!mem_cgroup_stolen(memcg)) 2324 return; 2325 2326 move_lock_mem_cgroup(memcg, flags); 2327 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 2328 move_unlock_mem_cgroup(memcg, flags); 2329 goto again; 2330 } 2331 *locked = true; 2332 } 2333 2334 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 2335 { 2336 struct page_cgroup *pc = lookup_page_cgroup(page); 2337 2338 /* 2339 * It's guaranteed that pc->mem_cgroup never changes while 2340 * lock is held because a routine modifies pc->mem_cgroup 2341 * should take move_lock_mem_cgroup(). 2342 */ 2343 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 2344 } 2345 2346 void mem_cgroup_update_page_stat(struct page *page, 2347 enum mem_cgroup_stat_index idx, int val) 2348 { 2349 struct mem_cgroup *memcg; 2350 struct page_cgroup *pc = lookup_page_cgroup(page); 2351 unsigned long uninitialized_var(flags); 2352 2353 if (mem_cgroup_disabled()) 2354 return; 2355 2356 VM_BUG_ON(!rcu_read_lock_held()); 2357 memcg = pc->mem_cgroup; 2358 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2359 return; 2360 2361 this_cpu_add(memcg->stat->count[idx], val); 2362 } 2363 2364 /* 2365 * size of first charge trial. "32" comes from vmscan.c's magic value. 2366 * TODO: maybe necessary to use big numbers in big irons. 2367 */ 2368 #define CHARGE_BATCH 32U 2369 struct memcg_stock_pcp { 2370 struct mem_cgroup *cached; /* this never be root cgroup */ 2371 unsigned int nr_pages; 2372 struct work_struct work; 2373 unsigned long flags; 2374 #define FLUSHING_CACHED_CHARGE 0 2375 }; 2376 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2377 static DEFINE_MUTEX(percpu_charge_mutex); 2378 2379 /** 2380 * consume_stock: Try to consume stocked charge on this cpu. 2381 * @memcg: memcg to consume from. 2382 * @nr_pages: how many pages to charge. 2383 * 2384 * The charges will only happen if @memcg matches the current cpu's memcg 2385 * stock, and at least @nr_pages are available in that stock. Failure to 2386 * service an allocation will refill the stock. 2387 * 2388 * returns true if successful, false otherwise. 2389 */ 2390 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2391 { 2392 struct memcg_stock_pcp *stock; 2393 bool ret = true; 2394 2395 if (nr_pages > CHARGE_BATCH) 2396 return false; 2397 2398 stock = &get_cpu_var(memcg_stock); 2399 if (memcg == stock->cached && stock->nr_pages >= nr_pages) 2400 stock->nr_pages -= nr_pages; 2401 else /* need to call res_counter_charge */ 2402 ret = false; 2403 put_cpu_var(memcg_stock); 2404 return ret; 2405 } 2406 2407 /* 2408 * Returns stocks cached in percpu to res_counter and reset cached information. 2409 */ 2410 static void drain_stock(struct memcg_stock_pcp *stock) 2411 { 2412 struct mem_cgroup *old = stock->cached; 2413 2414 if (stock->nr_pages) { 2415 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2416 2417 res_counter_uncharge(&old->res, bytes); 2418 if (do_swap_account) 2419 res_counter_uncharge(&old->memsw, bytes); 2420 stock->nr_pages = 0; 2421 } 2422 stock->cached = NULL; 2423 } 2424 2425 /* 2426 * This must be called under preempt disabled or must be called by 2427 * a thread which is pinned to local cpu. 2428 */ 2429 static void drain_local_stock(struct work_struct *dummy) 2430 { 2431 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2432 drain_stock(stock); 2433 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2434 } 2435 2436 static void __init memcg_stock_init(void) 2437 { 2438 int cpu; 2439 2440 for_each_possible_cpu(cpu) { 2441 struct memcg_stock_pcp *stock = 2442 &per_cpu(memcg_stock, cpu); 2443 INIT_WORK(&stock->work, drain_local_stock); 2444 } 2445 } 2446 2447 /* 2448 * Cache charges(val) which is from res_counter, to local per_cpu area. 2449 * This will be consumed by consume_stock() function, later. 2450 */ 2451 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2452 { 2453 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2454 2455 if (stock->cached != memcg) { /* reset if necessary */ 2456 drain_stock(stock); 2457 stock->cached = memcg; 2458 } 2459 stock->nr_pages += nr_pages; 2460 put_cpu_var(memcg_stock); 2461 } 2462 2463 /* 2464 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2465 * of the hierarchy under it. sync flag says whether we should block 2466 * until the work is done. 2467 */ 2468 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2469 { 2470 int cpu, curcpu; 2471 2472 /* Notify other cpus that system-wide "drain" is running */ 2473 get_online_cpus(); 2474 curcpu = get_cpu(); 2475 for_each_online_cpu(cpu) { 2476 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2477 struct mem_cgroup *memcg; 2478 2479 memcg = stock->cached; 2480 if (!memcg || !stock->nr_pages) 2481 continue; 2482 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2483 continue; 2484 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2485 if (cpu == curcpu) 2486 drain_local_stock(&stock->work); 2487 else 2488 schedule_work_on(cpu, &stock->work); 2489 } 2490 } 2491 put_cpu(); 2492 2493 if (!sync) 2494 goto out; 2495 2496 for_each_online_cpu(cpu) { 2497 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2498 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2499 flush_work(&stock->work); 2500 } 2501 out: 2502 put_online_cpus(); 2503 } 2504 2505 /* 2506 * Tries to drain stocked charges in other cpus. This function is asynchronous 2507 * and just put a work per cpu for draining localy on each cpu. Caller can 2508 * expects some charges will be back to res_counter later but cannot wait for 2509 * it. 2510 */ 2511 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2512 { 2513 /* 2514 * If someone calls draining, avoid adding more kworker runs. 2515 */ 2516 if (!mutex_trylock(&percpu_charge_mutex)) 2517 return; 2518 drain_all_stock(root_memcg, false); 2519 mutex_unlock(&percpu_charge_mutex); 2520 } 2521 2522 /* This is a synchronous drain interface. */ 2523 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2524 { 2525 /* called when force_empty is called */ 2526 mutex_lock(&percpu_charge_mutex); 2527 drain_all_stock(root_memcg, true); 2528 mutex_unlock(&percpu_charge_mutex); 2529 } 2530 2531 /* 2532 * This function drains percpu counter value from DEAD cpu and 2533 * move it to local cpu. Note that this function can be preempted. 2534 */ 2535 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2536 { 2537 int i; 2538 2539 spin_lock(&memcg->pcp_counter_lock); 2540 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2541 long x = per_cpu(memcg->stat->count[i], cpu); 2542 2543 per_cpu(memcg->stat->count[i], cpu) = 0; 2544 memcg->nocpu_base.count[i] += x; 2545 } 2546 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2547 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2548 2549 per_cpu(memcg->stat->events[i], cpu) = 0; 2550 memcg->nocpu_base.events[i] += x; 2551 } 2552 spin_unlock(&memcg->pcp_counter_lock); 2553 } 2554 2555 static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 2556 unsigned long action, 2557 void *hcpu) 2558 { 2559 int cpu = (unsigned long)hcpu; 2560 struct memcg_stock_pcp *stock; 2561 struct mem_cgroup *iter; 2562 2563 if (action == CPU_ONLINE) 2564 return NOTIFY_OK; 2565 2566 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2567 return NOTIFY_OK; 2568 2569 for_each_mem_cgroup(iter) 2570 mem_cgroup_drain_pcp_counter(iter, cpu); 2571 2572 stock = &per_cpu(memcg_stock, cpu); 2573 drain_stock(stock); 2574 return NOTIFY_OK; 2575 } 2576 2577 2578 /* See mem_cgroup_try_charge() for details */ 2579 enum { 2580 CHARGE_OK, /* success */ 2581 CHARGE_RETRY, /* need to retry but retry is not bad */ 2582 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2583 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2584 }; 2585 2586 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2587 unsigned int nr_pages, unsigned int min_pages, 2588 bool invoke_oom) 2589 { 2590 unsigned long csize = nr_pages * PAGE_SIZE; 2591 struct mem_cgroup *mem_over_limit; 2592 struct res_counter *fail_res; 2593 unsigned long flags = 0; 2594 int ret; 2595 2596 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2597 2598 if (likely(!ret)) { 2599 if (!do_swap_account) 2600 return CHARGE_OK; 2601 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2602 if (likely(!ret)) 2603 return CHARGE_OK; 2604 2605 res_counter_uncharge(&memcg->res, csize); 2606 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2607 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2608 } else 2609 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2610 /* 2611 * Never reclaim on behalf of optional batching, retry with a 2612 * single page instead. 2613 */ 2614 if (nr_pages > min_pages) 2615 return CHARGE_RETRY; 2616 2617 if (!(gfp_mask & __GFP_WAIT)) 2618 return CHARGE_WOULDBLOCK; 2619 2620 if (gfp_mask & __GFP_NORETRY) 2621 return CHARGE_NOMEM; 2622 2623 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2624 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2625 return CHARGE_RETRY; 2626 /* 2627 * Even though the limit is exceeded at this point, reclaim 2628 * may have been able to free some pages. Retry the charge 2629 * before killing the task. 2630 * 2631 * Only for regular pages, though: huge pages are rather 2632 * unlikely to succeed so close to the limit, and we fall back 2633 * to regular pages anyway in case of failure. 2634 */ 2635 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) 2636 return CHARGE_RETRY; 2637 2638 /* 2639 * At task move, charge accounts can be doubly counted. So, it's 2640 * better to wait until the end of task_move if something is going on. 2641 */ 2642 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2643 return CHARGE_RETRY; 2644 2645 if (invoke_oom) 2646 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize)); 2647 2648 return CHARGE_NOMEM; 2649 } 2650 2651 /** 2652 * mem_cgroup_try_charge - try charging a memcg 2653 * @memcg: memcg to charge 2654 * @nr_pages: number of pages to charge 2655 * @oom: trigger OOM if reclaim fails 2656 * 2657 * Returns 0 if @memcg was charged successfully, -EINTR if the charge 2658 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed. 2659 */ 2660 static int mem_cgroup_try_charge(struct mem_cgroup *memcg, 2661 gfp_t gfp_mask, 2662 unsigned int nr_pages, 2663 bool oom) 2664 { 2665 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2666 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2667 int ret; 2668 2669 if (mem_cgroup_is_root(memcg)) 2670 goto done; 2671 /* 2672 * Unlike in global OOM situations, memcg is not in a physical 2673 * memory shortage. Allow dying and OOM-killed tasks to 2674 * bypass the last charges so that they can exit quickly and 2675 * free their memory. 2676 */ 2677 if (unlikely(test_thread_flag(TIF_MEMDIE) || 2678 fatal_signal_pending(current))) 2679 goto bypass; 2680 2681 if (unlikely(task_in_memcg_oom(current))) 2682 goto nomem; 2683 2684 if (gfp_mask & __GFP_NOFAIL) 2685 oom = false; 2686 again: 2687 if (consume_stock(memcg, nr_pages)) 2688 goto done; 2689 2690 do { 2691 bool invoke_oom = oom && !nr_oom_retries; 2692 2693 /* If killed, bypass charge */ 2694 if (fatal_signal_pending(current)) 2695 goto bypass; 2696 2697 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, 2698 nr_pages, invoke_oom); 2699 switch (ret) { 2700 case CHARGE_OK: 2701 break; 2702 case CHARGE_RETRY: /* not in OOM situation but retry */ 2703 batch = nr_pages; 2704 goto again; 2705 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2706 goto nomem; 2707 case CHARGE_NOMEM: /* OOM routine works */ 2708 if (!oom || invoke_oom) 2709 goto nomem; 2710 nr_oom_retries--; 2711 break; 2712 } 2713 } while (ret != CHARGE_OK); 2714 2715 if (batch > nr_pages) 2716 refill_stock(memcg, batch - nr_pages); 2717 done: 2718 return 0; 2719 nomem: 2720 if (!(gfp_mask & __GFP_NOFAIL)) 2721 return -ENOMEM; 2722 bypass: 2723 return -EINTR; 2724 } 2725 2726 /** 2727 * mem_cgroup_try_charge_mm - try charging a mm 2728 * @mm: mm_struct to charge 2729 * @nr_pages: number of pages to charge 2730 * @oom: trigger OOM if reclaim fails 2731 * 2732 * Returns the charged mem_cgroup associated with the given mm_struct or 2733 * NULL the charge failed. 2734 */ 2735 static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm, 2736 gfp_t gfp_mask, 2737 unsigned int nr_pages, 2738 bool oom) 2739 2740 { 2741 struct mem_cgroup *memcg; 2742 int ret; 2743 2744 memcg = get_mem_cgroup_from_mm(mm); 2745 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom); 2746 css_put(&memcg->css); 2747 if (ret == -EINTR) 2748 memcg = root_mem_cgroup; 2749 else if (ret) 2750 memcg = NULL; 2751 2752 return memcg; 2753 } 2754 2755 /* 2756 * Somemtimes we have to undo a charge we got by try_charge(). 2757 * This function is for that and do uncharge, put css's refcnt. 2758 * gotten by try_charge(). 2759 */ 2760 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2761 unsigned int nr_pages) 2762 { 2763 if (!mem_cgroup_is_root(memcg)) { 2764 unsigned long bytes = nr_pages * PAGE_SIZE; 2765 2766 res_counter_uncharge(&memcg->res, bytes); 2767 if (do_swap_account) 2768 res_counter_uncharge(&memcg->memsw, bytes); 2769 } 2770 } 2771 2772 /* 2773 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2774 * This is useful when moving usage to parent cgroup. 2775 */ 2776 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2777 unsigned int nr_pages) 2778 { 2779 unsigned long bytes = nr_pages * PAGE_SIZE; 2780 2781 if (mem_cgroup_is_root(memcg)) 2782 return; 2783 2784 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2785 if (do_swap_account) 2786 res_counter_uncharge_until(&memcg->memsw, 2787 memcg->memsw.parent, bytes); 2788 } 2789 2790 /* 2791 * A helper function to get mem_cgroup from ID. must be called under 2792 * rcu_read_lock(). The caller is responsible for calling css_tryget if 2793 * the mem_cgroup is used for charging. (dropping refcnt from swap can be 2794 * called against removed memcg.) 2795 */ 2796 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2797 { 2798 /* ID 0 is unused ID */ 2799 if (!id) 2800 return NULL; 2801 return mem_cgroup_from_id(id); 2802 } 2803 2804 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2805 { 2806 struct mem_cgroup *memcg = NULL; 2807 struct page_cgroup *pc; 2808 unsigned short id; 2809 swp_entry_t ent; 2810 2811 VM_BUG_ON_PAGE(!PageLocked(page), page); 2812 2813 pc = lookup_page_cgroup(page); 2814 lock_page_cgroup(pc); 2815 if (PageCgroupUsed(pc)) { 2816 memcg = pc->mem_cgroup; 2817 if (memcg && !css_tryget(&memcg->css)) 2818 memcg = NULL; 2819 } else if (PageSwapCache(page)) { 2820 ent.val = page_private(page); 2821 id = lookup_swap_cgroup_id(ent); 2822 rcu_read_lock(); 2823 memcg = mem_cgroup_lookup(id); 2824 if (memcg && !css_tryget(&memcg->css)) 2825 memcg = NULL; 2826 rcu_read_unlock(); 2827 } 2828 unlock_page_cgroup(pc); 2829 return memcg; 2830 } 2831 2832 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2833 struct page *page, 2834 unsigned int nr_pages, 2835 enum charge_type ctype, 2836 bool lrucare) 2837 { 2838 struct page_cgroup *pc = lookup_page_cgroup(page); 2839 struct zone *uninitialized_var(zone); 2840 struct lruvec *lruvec; 2841 bool was_on_lru = false; 2842 bool anon; 2843 2844 lock_page_cgroup(pc); 2845 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page); 2846 /* 2847 * we don't need page_cgroup_lock about tail pages, becase they are not 2848 * accessed by any other context at this point. 2849 */ 2850 2851 /* 2852 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2853 * may already be on some other mem_cgroup's LRU. Take care of it. 2854 */ 2855 if (lrucare) { 2856 zone = page_zone(page); 2857 spin_lock_irq(&zone->lru_lock); 2858 if (PageLRU(page)) { 2859 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2860 ClearPageLRU(page); 2861 del_page_from_lru_list(page, lruvec, page_lru(page)); 2862 was_on_lru = true; 2863 } 2864 } 2865 2866 pc->mem_cgroup = memcg; 2867 /* 2868 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2869 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2870 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2871 * before USED bit, we need memory barrier here. 2872 * See mem_cgroup_add_lru_list(), etc. 2873 */ 2874 smp_wmb(); 2875 SetPageCgroupUsed(pc); 2876 2877 if (lrucare) { 2878 if (was_on_lru) { 2879 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2880 VM_BUG_ON_PAGE(PageLRU(page), page); 2881 SetPageLRU(page); 2882 add_page_to_lru_list(page, lruvec, page_lru(page)); 2883 } 2884 spin_unlock_irq(&zone->lru_lock); 2885 } 2886 2887 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2888 anon = true; 2889 else 2890 anon = false; 2891 2892 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages); 2893 unlock_page_cgroup(pc); 2894 2895 /* 2896 * "charge_statistics" updated event counter. Then, check it. 2897 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2898 * if they exceeds softlimit. 2899 */ 2900 memcg_check_events(memcg, page); 2901 } 2902 2903 static DEFINE_MUTEX(set_limit_mutex); 2904 2905 #ifdef CONFIG_MEMCG_KMEM 2906 static DEFINE_MUTEX(activate_kmem_mutex); 2907 2908 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) 2909 { 2910 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && 2911 memcg_kmem_is_active(memcg); 2912 } 2913 2914 /* 2915 * This is a bit cumbersome, but it is rarely used and avoids a backpointer 2916 * in the memcg_cache_params struct. 2917 */ 2918 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) 2919 { 2920 struct kmem_cache *cachep; 2921 2922 VM_BUG_ON(p->is_root_cache); 2923 cachep = p->root_cache; 2924 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg)); 2925 } 2926 2927 #ifdef CONFIG_SLABINFO 2928 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v) 2929 { 2930 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 2931 struct memcg_cache_params *params; 2932 2933 if (!memcg_can_account_kmem(memcg)) 2934 return -EIO; 2935 2936 print_slabinfo_header(m); 2937 2938 mutex_lock(&memcg->slab_caches_mutex); 2939 list_for_each_entry(params, &memcg->memcg_slab_caches, list) 2940 cache_show(memcg_params_to_cache(params), m); 2941 mutex_unlock(&memcg->slab_caches_mutex); 2942 2943 return 0; 2944 } 2945 #endif 2946 2947 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) 2948 { 2949 struct res_counter *fail_res; 2950 int ret = 0; 2951 2952 ret = res_counter_charge(&memcg->kmem, size, &fail_res); 2953 if (ret) 2954 return ret; 2955 2956 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT, 2957 oom_gfp_allowed(gfp)); 2958 if (ret == -EINTR) { 2959 /* 2960 * mem_cgroup_try_charge() chosed to bypass to root due to 2961 * OOM kill or fatal signal. Since our only options are to 2962 * either fail the allocation or charge it to this cgroup, do 2963 * it as a temporary condition. But we can't fail. From a 2964 * kmem/slab perspective, the cache has already been selected, 2965 * by mem_cgroup_kmem_get_cache(), so it is too late to change 2966 * our minds. 2967 * 2968 * This condition will only trigger if the task entered 2969 * memcg_charge_kmem in a sane state, but was OOM-killed during 2970 * mem_cgroup_try_charge() above. Tasks that were already 2971 * dying when the allocation triggers should have been already 2972 * directed to the root cgroup in memcontrol.h 2973 */ 2974 res_counter_charge_nofail(&memcg->res, size, &fail_res); 2975 if (do_swap_account) 2976 res_counter_charge_nofail(&memcg->memsw, size, 2977 &fail_res); 2978 ret = 0; 2979 } else if (ret) 2980 res_counter_uncharge(&memcg->kmem, size); 2981 2982 return ret; 2983 } 2984 2985 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) 2986 { 2987 res_counter_uncharge(&memcg->res, size); 2988 if (do_swap_account) 2989 res_counter_uncharge(&memcg->memsw, size); 2990 2991 /* Not down to 0 */ 2992 if (res_counter_uncharge(&memcg->kmem, size)) 2993 return; 2994 2995 /* 2996 * Releases a reference taken in kmem_cgroup_css_offline in case 2997 * this last uncharge is racing with the offlining code or it is 2998 * outliving the memcg existence. 2999 * 3000 * The memory barrier imposed by test&clear is paired with the 3001 * explicit one in memcg_kmem_mark_dead(). 3002 */ 3003 if (memcg_kmem_test_and_clear_dead(memcg)) 3004 css_put(&memcg->css); 3005 } 3006 3007 /* 3008 * helper for acessing a memcg's index. It will be used as an index in the 3009 * child cache array in kmem_cache, and also to derive its name. This function 3010 * will return -1 when this is not a kmem-limited memcg. 3011 */ 3012 int memcg_cache_id(struct mem_cgroup *memcg) 3013 { 3014 return memcg ? memcg->kmemcg_id : -1; 3015 } 3016 3017 static size_t memcg_caches_array_size(int num_groups) 3018 { 3019 ssize_t size; 3020 if (num_groups <= 0) 3021 return 0; 3022 3023 size = 2 * num_groups; 3024 if (size < MEMCG_CACHES_MIN_SIZE) 3025 size = MEMCG_CACHES_MIN_SIZE; 3026 else if (size > MEMCG_CACHES_MAX_SIZE) 3027 size = MEMCG_CACHES_MAX_SIZE; 3028 3029 return size; 3030 } 3031 3032 /* 3033 * We should update the current array size iff all caches updates succeed. This 3034 * can only be done from the slab side. The slab mutex needs to be held when 3035 * calling this. 3036 */ 3037 void memcg_update_array_size(int num) 3038 { 3039 if (num > memcg_limited_groups_array_size) 3040 memcg_limited_groups_array_size = memcg_caches_array_size(num); 3041 } 3042 3043 static void kmem_cache_destroy_work_func(struct work_struct *w); 3044 3045 int memcg_update_cache_size(struct kmem_cache *s, int num_groups) 3046 { 3047 struct memcg_cache_params *cur_params = s->memcg_params; 3048 3049 VM_BUG_ON(!is_root_cache(s)); 3050 3051 if (num_groups > memcg_limited_groups_array_size) { 3052 int i; 3053 struct memcg_cache_params *new_params; 3054 ssize_t size = memcg_caches_array_size(num_groups); 3055 3056 size *= sizeof(void *); 3057 size += offsetof(struct memcg_cache_params, memcg_caches); 3058 3059 new_params = kzalloc(size, GFP_KERNEL); 3060 if (!new_params) 3061 return -ENOMEM; 3062 3063 new_params->is_root_cache = true; 3064 3065 /* 3066 * There is the chance it will be bigger than 3067 * memcg_limited_groups_array_size, if we failed an allocation 3068 * in a cache, in which case all caches updated before it, will 3069 * have a bigger array. 3070 * 3071 * But if that is the case, the data after 3072 * memcg_limited_groups_array_size is certainly unused 3073 */ 3074 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3075 if (!cur_params->memcg_caches[i]) 3076 continue; 3077 new_params->memcg_caches[i] = 3078 cur_params->memcg_caches[i]; 3079 } 3080 3081 /* 3082 * Ideally, we would wait until all caches succeed, and only 3083 * then free the old one. But this is not worth the extra 3084 * pointer per-cache we'd have to have for this. 3085 * 3086 * It is not a big deal if some caches are left with a size 3087 * bigger than the others. And all updates will reset this 3088 * anyway. 3089 */ 3090 rcu_assign_pointer(s->memcg_params, new_params); 3091 if (cur_params) 3092 kfree_rcu(cur_params, rcu_head); 3093 } 3094 return 0; 3095 } 3096 3097 char *memcg_create_cache_name(struct mem_cgroup *memcg, 3098 struct kmem_cache *root_cache) 3099 { 3100 static char *buf = NULL; 3101 3102 /* 3103 * We need a mutex here to protect the shared buffer. Since this is 3104 * expected to be called only on cache creation, we can employ the 3105 * slab_mutex for that purpose. 3106 */ 3107 lockdep_assert_held(&slab_mutex); 3108 3109 if (!buf) { 3110 buf = kmalloc(NAME_MAX + 1, GFP_KERNEL); 3111 if (!buf) 3112 return NULL; 3113 } 3114 3115 cgroup_name(memcg->css.cgroup, buf, NAME_MAX + 1); 3116 return kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name, 3117 memcg_cache_id(memcg), buf); 3118 } 3119 3120 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s, 3121 struct kmem_cache *root_cache) 3122 { 3123 size_t size; 3124 3125 if (!memcg_kmem_enabled()) 3126 return 0; 3127 3128 if (!memcg) { 3129 size = offsetof(struct memcg_cache_params, memcg_caches); 3130 size += memcg_limited_groups_array_size * sizeof(void *); 3131 } else 3132 size = sizeof(struct memcg_cache_params); 3133 3134 s->memcg_params = kzalloc(size, GFP_KERNEL); 3135 if (!s->memcg_params) 3136 return -ENOMEM; 3137 3138 if (memcg) { 3139 s->memcg_params->memcg = memcg; 3140 s->memcg_params->root_cache = root_cache; 3141 INIT_WORK(&s->memcg_params->destroy, 3142 kmem_cache_destroy_work_func); 3143 css_get(&memcg->css); 3144 } else 3145 s->memcg_params->is_root_cache = true; 3146 3147 return 0; 3148 } 3149 3150 void memcg_free_cache_params(struct kmem_cache *s) 3151 { 3152 if (!s->memcg_params) 3153 return; 3154 if (!s->memcg_params->is_root_cache) 3155 css_put(&s->memcg_params->memcg->css); 3156 kfree(s->memcg_params); 3157 } 3158 3159 void memcg_register_cache(struct kmem_cache *s) 3160 { 3161 struct kmem_cache *root; 3162 struct mem_cgroup *memcg; 3163 int id; 3164 3165 if (is_root_cache(s)) 3166 return; 3167 3168 /* 3169 * Holding the slab_mutex assures nobody will touch the memcg_caches 3170 * array while we are modifying it. 3171 */ 3172 lockdep_assert_held(&slab_mutex); 3173 3174 root = s->memcg_params->root_cache; 3175 memcg = s->memcg_params->memcg; 3176 id = memcg_cache_id(memcg); 3177 3178 /* 3179 * Since readers won't lock (see cache_from_memcg_idx()), we need a 3180 * barrier here to ensure nobody will see the kmem_cache partially 3181 * initialized. 3182 */ 3183 smp_wmb(); 3184 3185 /* 3186 * Initialize the pointer to this cache in its parent's memcg_params 3187 * before adding it to the memcg_slab_caches list, otherwise we can 3188 * fail to convert memcg_params_to_cache() while traversing the list. 3189 */ 3190 VM_BUG_ON(root->memcg_params->memcg_caches[id]); 3191 root->memcg_params->memcg_caches[id] = s; 3192 3193 mutex_lock(&memcg->slab_caches_mutex); 3194 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches); 3195 mutex_unlock(&memcg->slab_caches_mutex); 3196 } 3197 3198 void memcg_unregister_cache(struct kmem_cache *s) 3199 { 3200 struct kmem_cache *root; 3201 struct mem_cgroup *memcg; 3202 int id; 3203 3204 if (is_root_cache(s)) 3205 return; 3206 3207 /* 3208 * Holding the slab_mutex assures nobody will touch the memcg_caches 3209 * array while we are modifying it. 3210 */ 3211 lockdep_assert_held(&slab_mutex); 3212 3213 root = s->memcg_params->root_cache; 3214 memcg = s->memcg_params->memcg; 3215 id = memcg_cache_id(memcg); 3216 3217 mutex_lock(&memcg->slab_caches_mutex); 3218 list_del(&s->memcg_params->list); 3219 mutex_unlock(&memcg->slab_caches_mutex); 3220 3221 /* 3222 * Clear the pointer to this cache in its parent's memcg_params only 3223 * after removing it from the memcg_slab_caches list, otherwise we can 3224 * fail to convert memcg_params_to_cache() while traversing the list. 3225 */ 3226 VM_BUG_ON(root->memcg_params->memcg_caches[id] != s); 3227 root->memcg_params->memcg_caches[id] = NULL; 3228 } 3229 3230 /* 3231 * During the creation a new cache, we need to disable our accounting mechanism 3232 * altogether. This is true even if we are not creating, but rather just 3233 * enqueing new caches to be created. 3234 * 3235 * This is because that process will trigger allocations; some visible, like 3236 * explicit kmallocs to auxiliary data structures, name strings and internal 3237 * cache structures; some well concealed, like INIT_WORK() that can allocate 3238 * objects during debug. 3239 * 3240 * If any allocation happens during memcg_kmem_get_cache, we will recurse back 3241 * to it. This may not be a bounded recursion: since the first cache creation 3242 * failed to complete (waiting on the allocation), we'll just try to create the 3243 * cache again, failing at the same point. 3244 * 3245 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of 3246 * memcg_kmem_skip_account. So we enclose anything that might allocate memory 3247 * inside the following two functions. 3248 */ 3249 static inline void memcg_stop_kmem_account(void) 3250 { 3251 VM_BUG_ON(!current->mm); 3252 current->memcg_kmem_skip_account++; 3253 } 3254 3255 static inline void memcg_resume_kmem_account(void) 3256 { 3257 VM_BUG_ON(!current->mm); 3258 current->memcg_kmem_skip_account--; 3259 } 3260 3261 static void kmem_cache_destroy_work_func(struct work_struct *w) 3262 { 3263 struct kmem_cache *cachep; 3264 struct memcg_cache_params *p; 3265 3266 p = container_of(w, struct memcg_cache_params, destroy); 3267 3268 cachep = memcg_params_to_cache(p); 3269 3270 /* 3271 * If we get down to 0 after shrink, we could delete right away. 3272 * However, memcg_release_pages() already puts us back in the workqueue 3273 * in that case. If we proceed deleting, we'll get a dangling 3274 * reference, and removing the object from the workqueue in that case 3275 * is unnecessary complication. We are not a fast path. 3276 * 3277 * Note that this case is fundamentally different from racing with 3278 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in 3279 * kmem_cache_shrink, not only we would be reinserting a dead cache 3280 * into the queue, but doing so from inside the worker racing to 3281 * destroy it. 3282 * 3283 * So if we aren't down to zero, we'll just schedule a worker and try 3284 * again 3285 */ 3286 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) 3287 kmem_cache_shrink(cachep); 3288 else 3289 kmem_cache_destroy(cachep); 3290 } 3291 3292 void mem_cgroup_destroy_cache(struct kmem_cache *cachep) 3293 { 3294 if (!cachep->memcg_params->dead) 3295 return; 3296 3297 /* 3298 * There are many ways in which we can get here. 3299 * 3300 * We can get to a memory-pressure situation while the delayed work is 3301 * still pending to run. The vmscan shrinkers can then release all 3302 * cache memory and get us to destruction. If this is the case, we'll 3303 * be executed twice, which is a bug (the second time will execute over 3304 * bogus data). In this case, cancelling the work should be fine. 3305 * 3306 * But we can also get here from the worker itself, if 3307 * kmem_cache_shrink is enough to shake all the remaining objects and 3308 * get the page count to 0. In this case, we'll deadlock if we try to 3309 * cancel the work (the worker runs with an internal lock held, which 3310 * is the same lock we would hold for cancel_work_sync().) 3311 * 3312 * Since we can't possibly know who got us here, just refrain from 3313 * running if there is already work pending 3314 */ 3315 if (work_pending(&cachep->memcg_params->destroy)) 3316 return; 3317 /* 3318 * We have to defer the actual destroying to a workqueue, because 3319 * we might currently be in a context that cannot sleep. 3320 */ 3321 schedule_work(&cachep->memcg_params->destroy); 3322 } 3323 3324 int __kmem_cache_destroy_memcg_children(struct kmem_cache *s) 3325 { 3326 struct kmem_cache *c; 3327 int i, failed = 0; 3328 3329 /* 3330 * If the cache is being destroyed, we trust that there is no one else 3331 * requesting objects from it. Even if there are, the sanity checks in 3332 * kmem_cache_destroy should caught this ill-case. 3333 * 3334 * Still, we don't want anyone else freeing memcg_caches under our 3335 * noses, which can happen if a new memcg comes to life. As usual, 3336 * we'll take the activate_kmem_mutex to protect ourselves against 3337 * this. 3338 */ 3339 mutex_lock(&activate_kmem_mutex); 3340 for_each_memcg_cache_index(i) { 3341 c = cache_from_memcg_idx(s, i); 3342 if (!c) 3343 continue; 3344 3345 /* 3346 * We will now manually delete the caches, so to avoid races 3347 * we need to cancel all pending destruction workers and 3348 * proceed with destruction ourselves. 3349 * 3350 * kmem_cache_destroy() will call kmem_cache_shrink internally, 3351 * and that could spawn the workers again: it is likely that 3352 * the cache still have active pages until this very moment. 3353 * This would lead us back to mem_cgroup_destroy_cache. 3354 * 3355 * But that will not execute at all if the "dead" flag is not 3356 * set, so flip it down to guarantee we are in control. 3357 */ 3358 c->memcg_params->dead = false; 3359 cancel_work_sync(&c->memcg_params->destroy); 3360 kmem_cache_destroy(c); 3361 3362 if (cache_from_memcg_idx(s, i)) 3363 failed++; 3364 } 3365 mutex_unlock(&activate_kmem_mutex); 3366 return failed; 3367 } 3368 3369 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3370 { 3371 struct kmem_cache *cachep; 3372 struct memcg_cache_params *params; 3373 3374 if (!memcg_kmem_is_active(memcg)) 3375 return; 3376 3377 mutex_lock(&memcg->slab_caches_mutex); 3378 list_for_each_entry(params, &memcg->memcg_slab_caches, list) { 3379 cachep = memcg_params_to_cache(params); 3380 cachep->memcg_params->dead = true; 3381 schedule_work(&cachep->memcg_params->destroy); 3382 } 3383 mutex_unlock(&memcg->slab_caches_mutex); 3384 } 3385 3386 struct create_work { 3387 struct mem_cgroup *memcg; 3388 struct kmem_cache *cachep; 3389 struct work_struct work; 3390 }; 3391 3392 static void memcg_create_cache_work_func(struct work_struct *w) 3393 { 3394 struct create_work *cw = container_of(w, struct create_work, work); 3395 struct mem_cgroup *memcg = cw->memcg; 3396 struct kmem_cache *cachep = cw->cachep; 3397 3398 kmem_cache_create_memcg(memcg, cachep); 3399 css_put(&memcg->css); 3400 kfree(cw); 3401 } 3402 3403 /* 3404 * Enqueue the creation of a per-memcg kmem_cache. 3405 */ 3406 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3407 struct kmem_cache *cachep) 3408 { 3409 struct create_work *cw; 3410 3411 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT); 3412 if (cw == NULL) { 3413 css_put(&memcg->css); 3414 return; 3415 } 3416 3417 cw->memcg = memcg; 3418 cw->cachep = cachep; 3419 3420 INIT_WORK(&cw->work, memcg_create_cache_work_func); 3421 schedule_work(&cw->work); 3422 } 3423 3424 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3425 struct kmem_cache *cachep) 3426 { 3427 /* 3428 * We need to stop accounting when we kmalloc, because if the 3429 * corresponding kmalloc cache is not yet created, the first allocation 3430 * in __memcg_create_cache_enqueue will recurse. 3431 * 3432 * However, it is better to enclose the whole function. Depending on 3433 * the debugging options enabled, INIT_WORK(), for instance, can 3434 * trigger an allocation. This too, will make us recurse. Because at 3435 * this point we can't allow ourselves back into memcg_kmem_get_cache, 3436 * the safest choice is to do it like this, wrapping the whole function. 3437 */ 3438 memcg_stop_kmem_account(); 3439 __memcg_create_cache_enqueue(memcg, cachep); 3440 memcg_resume_kmem_account(); 3441 } 3442 /* 3443 * Return the kmem_cache we're supposed to use for a slab allocation. 3444 * We try to use the current memcg's version of the cache. 3445 * 3446 * If the cache does not exist yet, if we are the first user of it, 3447 * we either create it immediately, if possible, or create it asynchronously 3448 * in a workqueue. 3449 * In the latter case, we will let the current allocation go through with 3450 * the original cache. 3451 * 3452 * Can't be called in interrupt context or from kernel threads. 3453 * This function needs to be called with rcu_read_lock() held. 3454 */ 3455 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, 3456 gfp_t gfp) 3457 { 3458 struct mem_cgroup *memcg; 3459 struct kmem_cache *memcg_cachep; 3460 3461 VM_BUG_ON(!cachep->memcg_params); 3462 VM_BUG_ON(!cachep->memcg_params->is_root_cache); 3463 3464 if (!current->mm || current->memcg_kmem_skip_account) 3465 return cachep; 3466 3467 rcu_read_lock(); 3468 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); 3469 3470 if (!memcg_can_account_kmem(memcg)) 3471 goto out; 3472 3473 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg)); 3474 if (likely(memcg_cachep)) { 3475 cachep = memcg_cachep; 3476 goto out; 3477 } 3478 3479 /* The corresponding put will be done in the workqueue. */ 3480 if (!css_tryget(&memcg->css)) 3481 goto out; 3482 rcu_read_unlock(); 3483 3484 /* 3485 * If we are in a safe context (can wait, and not in interrupt 3486 * context), we could be be predictable and return right away. 3487 * This would guarantee that the allocation being performed 3488 * already belongs in the new cache. 3489 * 3490 * However, there are some clashes that can arrive from locking. 3491 * For instance, because we acquire the slab_mutex while doing 3492 * kmem_cache_dup, this means no further allocation could happen 3493 * with the slab_mutex held. 3494 * 3495 * Also, because cache creation issue get_online_cpus(), this 3496 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex, 3497 * that ends up reversed during cpu hotplug. (cpuset allocates 3498 * a bunch of GFP_KERNEL memory during cpuup). Due to all that, 3499 * better to defer everything. 3500 */ 3501 memcg_create_cache_enqueue(memcg, cachep); 3502 return cachep; 3503 out: 3504 rcu_read_unlock(); 3505 return cachep; 3506 } 3507 EXPORT_SYMBOL(__memcg_kmem_get_cache); 3508 3509 /* 3510 * We need to verify if the allocation against current->mm->owner's memcg is 3511 * possible for the given order. But the page is not allocated yet, so we'll 3512 * need a further commit step to do the final arrangements. 3513 * 3514 * It is possible for the task to switch cgroups in this mean time, so at 3515 * commit time, we can't rely on task conversion any longer. We'll then use 3516 * the handle argument to return to the caller which cgroup we should commit 3517 * against. We could also return the memcg directly and avoid the pointer 3518 * passing, but a boolean return value gives better semantics considering 3519 * the compiled-out case as well. 3520 * 3521 * Returning true means the allocation is possible. 3522 */ 3523 bool 3524 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) 3525 { 3526 struct mem_cgroup *memcg; 3527 int ret; 3528 3529 *_memcg = NULL; 3530 3531 /* 3532 * Disabling accounting is only relevant for some specific memcg 3533 * internal allocations. Therefore we would initially not have such 3534 * check here, since direct calls to the page allocator that are marked 3535 * with GFP_KMEMCG only happen outside memcg core. We are mostly 3536 * concerned with cache allocations, and by having this test at 3537 * memcg_kmem_get_cache, we are already able to relay the allocation to 3538 * the root cache and bypass the memcg cache altogether. 3539 * 3540 * There is one exception, though: the SLUB allocator does not create 3541 * large order caches, but rather service large kmallocs directly from 3542 * the page allocator. Therefore, the following sequence when backed by 3543 * the SLUB allocator: 3544 * 3545 * memcg_stop_kmem_account(); 3546 * kmalloc(<large_number>) 3547 * memcg_resume_kmem_account(); 3548 * 3549 * would effectively ignore the fact that we should skip accounting, 3550 * since it will drive us directly to this function without passing 3551 * through the cache selector memcg_kmem_get_cache. Such large 3552 * allocations are extremely rare but can happen, for instance, for the 3553 * cache arrays. We bring this test here. 3554 */ 3555 if (!current->mm || current->memcg_kmem_skip_account) 3556 return true; 3557 3558 memcg = get_mem_cgroup_from_mm(current->mm); 3559 3560 if (!memcg_can_account_kmem(memcg)) { 3561 css_put(&memcg->css); 3562 return true; 3563 } 3564 3565 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); 3566 if (!ret) 3567 *_memcg = memcg; 3568 3569 css_put(&memcg->css); 3570 return (ret == 0); 3571 } 3572 3573 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, 3574 int order) 3575 { 3576 struct page_cgroup *pc; 3577 3578 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3579 3580 /* The page allocation failed. Revert */ 3581 if (!page) { 3582 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3583 return; 3584 } 3585 3586 pc = lookup_page_cgroup(page); 3587 lock_page_cgroup(pc); 3588 pc->mem_cgroup = memcg; 3589 SetPageCgroupUsed(pc); 3590 unlock_page_cgroup(pc); 3591 } 3592 3593 void __memcg_kmem_uncharge_pages(struct page *page, int order) 3594 { 3595 struct mem_cgroup *memcg = NULL; 3596 struct page_cgroup *pc; 3597 3598 3599 pc = lookup_page_cgroup(page); 3600 /* 3601 * Fast unlocked return. Theoretically might have changed, have to 3602 * check again after locking. 3603 */ 3604 if (!PageCgroupUsed(pc)) 3605 return; 3606 3607 lock_page_cgroup(pc); 3608 if (PageCgroupUsed(pc)) { 3609 memcg = pc->mem_cgroup; 3610 ClearPageCgroupUsed(pc); 3611 } 3612 unlock_page_cgroup(pc); 3613 3614 /* 3615 * We trust that only if there is a memcg associated with the page, it 3616 * is a valid allocation 3617 */ 3618 if (!memcg) 3619 return; 3620 3621 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 3622 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3623 } 3624 #else 3625 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3626 { 3627 } 3628 #endif /* CONFIG_MEMCG_KMEM */ 3629 3630 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3631 3632 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 3633 /* 3634 * Because tail pages are not marked as "used", set it. We're under 3635 * zone->lru_lock, 'splitting on pmd' and compound_lock. 3636 * charge/uncharge will be never happen and move_account() is done under 3637 * compound_lock(), so we don't have to take care of races. 3638 */ 3639 void mem_cgroup_split_huge_fixup(struct page *head) 3640 { 3641 struct page_cgroup *head_pc = lookup_page_cgroup(head); 3642 struct page_cgroup *pc; 3643 struct mem_cgroup *memcg; 3644 int i; 3645 3646 if (mem_cgroup_disabled()) 3647 return; 3648 3649 memcg = head_pc->mem_cgroup; 3650 for (i = 1; i < HPAGE_PMD_NR; i++) { 3651 pc = head_pc + i; 3652 pc->mem_cgroup = memcg; 3653 smp_wmb();/* see __commit_charge() */ 3654 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 3655 } 3656 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 3657 HPAGE_PMD_NR); 3658 } 3659 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3660 3661 /** 3662 * mem_cgroup_move_account - move account of the page 3663 * @page: the page 3664 * @nr_pages: number of regular pages (>1 for huge pages) 3665 * @pc: page_cgroup of the page. 3666 * @from: mem_cgroup which the page is moved from. 3667 * @to: mem_cgroup which the page is moved to. @from != @to. 3668 * 3669 * The caller must confirm following. 3670 * - page is not on LRU (isolate_page() is useful.) 3671 * - compound_lock is held when nr_pages > 1 3672 * 3673 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 3674 * from old cgroup. 3675 */ 3676 static int mem_cgroup_move_account(struct page *page, 3677 unsigned int nr_pages, 3678 struct page_cgroup *pc, 3679 struct mem_cgroup *from, 3680 struct mem_cgroup *to) 3681 { 3682 unsigned long flags; 3683 int ret; 3684 bool anon = PageAnon(page); 3685 3686 VM_BUG_ON(from == to); 3687 VM_BUG_ON_PAGE(PageLRU(page), page); 3688 /* 3689 * The page is isolated from LRU. So, collapse function 3690 * will not handle this page. But page splitting can happen. 3691 * Do this check under compound_page_lock(). The caller should 3692 * hold it. 3693 */ 3694 ret = -EBUSY; 3695 if (nr_pages > 1 && !PageTransHuge(page)) 3696 goto out; 3697 3698 lock_page_cgroup(pc); 3699 3700 ret = -EINVAL; 3701 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 3702 goto unlock; 3703 3704 move_lock_mem_cgroup(from, &flags); 3705 3706 if (!anon && page_mapped(page)) { 3707 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 3708 nr_pages); 3709 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 3710 nr_pages); 3711 } 3712 3713 if (PageWriteback(page)) { 3714 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], 3715 nr_pages); 3716 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], 3717 nr_pages); 3718 } 3719 3720 mem_cgroup_charge_statistics(from, page, anon, -nr_pages); 3721 3722 /* caller should have done css_get */ 3723 pc->mem_cgroup = to; 3724 mem_cgroup_charge_statistics(to, page, anon, nr_pages); 3725 move_unlock_mem_cgroup(from, &flags); 3726 ret = 0; 3727 unlock: 3728 unlock_page_cgroup(pc); 3729 /* 3730 * check events 3731 */ 3732 memcg_check_events(to, page); 3733 memcg_check_events(from, page); 3734 out: 3735 return ret; 3736 } 3737 3738 /** 3739 * mem_cgroup_move_parent - moves page to the parent group 3740 * @page: the page to move 3741 * @pc: page_cgroup of the page 3742 * @child: page's cgroup 3743 * 3744 * move charges to its parent or the root cgroup if the group has no 3745 * parent (aka use_hierarchy==0). 3746 * Although this might fail (get_page_unless_zero, isolate_lru_page or 3747 * mem_cgroup_move_account fails) the failure is always temporary and 3748 * it signals a race with a page removal/uncharge or migration. In the 3749 * first case the page is on the way out and it will vanish from the LRU 3750 * on the next attempt and the call should be retried later. 3751 * Isolation from the LRU fails only if page has been isolated from 3752 * the LRU since we looked at it and that usually means either global 3753 * reclaim or migration going on. The page will either get back to the 3754 * LRU or vanish. 3755 * Finaly mem_cgroup_move_account fails only if the page got uncharged 3756 * (!PageCgroupUsed) or moved to a different group. The page will 3757 * disappear in the next attempt. 3758 */ 3759 static int mem_cgroup_move_parent(struct page *page, 3760 struct page_cgroup *pc, 3761 struct mem_cgroup *child) 3762 { 3763 struct mem_cgroup *parent; 3764 unsigned int nr_pages; 3765 unsigned long uninitialized_var(flags); 3766 int ret; 3767 3768 VM_BUG_ON(mem_cgroup_is_root(child)); 3769 3770 ret = -EBUSY; 3771 if (!get_page_unless_zero(page)) 3772 goto out; 3773 if (isolate_lru_page(page)) 3774 goto put; 3775 3776 nr_pages = hpage_nr_pages(page); 3777 3778 parent = parent_mem_cgroup(child); 3779 /* 3780 * If no parent, move charges to root cgroup. 3781 */ 3782 if (!parent) 3783 parent = root_mem_cgroup; 3784 3785 if (nr_pages > 1) { 3786 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 3787 flags = compound_lock_irqsave(page); 3788 } 3789 3790 ret = mem_cgroup_move_account(page, nr_pages, 3791 pc, child, parent); 3792 if (!ret) 3793 __mem_cgroup_cancel_local_charge(child, nr_pages); 3794 3795 if (nr_pages > 1) 3796 compound_unlock_irqrestore(page, flags); 3797 putback_lru_page(page); 3798 put: 3799 put_page(page); 3800 out: 3801 return ret; 3802 } 3803 3804 int mem_cgroup_charge_anon(struct page *page, 3805 struct mm_struct *mm, gfp_t gfp_mask) 3806 { 3807 unsigned int nr_pages = 1; 3808 struct mem_cgroup *memcg; 3809 bool oom = true; 3810 3811 if (mem_cgroup_disabled()) 3812 return 0; 3813 3814 VM_BUG_ON_PAGE(page_mapped(page), page); 3815 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page); 3816 VM_BUG_ON(!mm); 3817 3818 if (PageTransHuge(page)) { 3819 nr_pages <<= compound_order(page); 3820 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 3821 /* 3822 * Never OOM-kill a process for a huge page. The 3823 * fault handler will fall back to regular pages. 3824 */ 3825 oom = false; 3826 } 3827 3828 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom); 3829 if (!memcg) 3830 return -ENOMEM; 3831 __mem_cgroup_commit_charge(memcg, page, nr_pages, 3832 MEM_CGROUP_CHARGE_TYPE_ANON, false); 3833 return 0; 3834 } 3835 3836 /* 3837 * While swap-in, try_charge -> commit or cancel, the page is locked. 3838 * And when try_charge() successfully returns, one refcnt to memcg without 3839 * struct page_cgroup is acquired. This refcnt will be consumed by 3840 * "commit()" or removed by "cancel()" 3841 */ 3842 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, 3843 struct page *page, 3844 gfp_t mask, 3845 struct mem_cgroup **memcgp) 3846 { 3847 struct mem_cgroup *memcg = NULL; 3848 struct page_cgroup *pc; 3849 int ret; 3850 3851 pc = lookup_page_cgroup(page); 3852 /* 3853 * Every swap fault against a single page tries to charge the 3854 * page, bail as early as possible. shmem_unuse() encounters 3855 * already charged pages, too. The USED bit is protected by 3856 * the page lock, which serializes swap cache removal, which 3857 * in turn serializes uncharging. 3858 */ 3859 if (PageCgroupUsed(pc)) 3860 goto out; 3861 if (do_swap_account) 3862 memcg = try_get_mem_cgroup_from_page(page); 3863 if (!memcg) 3864 memcg = get_mem_cgroup_from_mm(mm); 3865 ret = mem_cgroup_try_charge(memcg, mask, 1, true); 3866 css_put(&memcg->css); 3867 if (ret == -EINTR) 3868 memcg = root_mem_cgroup; 3869 else if (ret) 3870 return ret; 3871 out: 3872 *memcgp = memcg; 3873 return 0; 3874 } 3875 3876 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, 3877 gfp_t gfp_mask, struct mem_cgroup **memcgp) 3878 { 3879 if (mem_cgroup_disabled()) { 3880 *memcgp = NULL; 3881 return 0; 3882 } 3883 /* 3884 * A racing thread's fault, or swapoff, may have already 3885 * updated the pte, and even removed page from swap cache: in 3886 * those cases unuse_pte()'s pte_same() test will fail; but 3887 * there's also a KSM case which does need to charge the page. 3888 */ 3889 if (!PageSwapCache(page)) { 3890 struct mem_cgroup *memcg; 3891 3892 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true); 3893 if (!memcg) 3894 return -ENOMEM; 3895 *memcgp = memcg; 3896 return 0; 3897 } 3898 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); 3899 } 3900 3901 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 3902 { 3903 if (mem_cgroup_disabled()) 3904 return; 3905 if (!memcg) 3906 return; 3907 __mem_cgroup_cancel_charge(memcg, 1); 3908 } 3909 3910 static void 3911 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 3912 enum charge_type ctype) 3913 { 3914 if (mem_cgroup_disabled()) 3915 return; 3916 if (!memcg) 3917 return; 3918 3919 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 3920 /* 3921 * Now swap is on-memory. This means this page may be 3922 * counted both as mem and swap....double count. 3923 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 3924 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 3925 * may call delete_from_swap_cache() before reach here. 3926 */ 3927 if (do_swap_account && PageSwapCache(page)) { 3928 swp_entry_t ent = {.val = page_private(page)}; 3929 mem_cgroup_uncharge_swap(ent); 3930 } 3931 } 3932 3933 void mem_cgroup_commit_charge_swapin(struct page *page, 3934 struct mem_cgroup *memcg) 3935 { 3936 __mem_cgroup_commit_charge_swapin(page, memcg, 3937 MEM_CGROUP_CHARGE_TYPE_ANON); 3938 } 3939 3940 int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm, 3941 gfp_t gfp_mask) 3942 { 3943 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 3944 struct mem_cgroup *memcg; 3945 int ret; 3946 3947 if (mem_cgroup_disabled()) 3948 return 0; 3949 if (PageCompound(page)) 3950 return 0; 3951 3952 if (PageSwapCache(page)) { /* shmem */ 3953 ret = __mem_cgroup_try_charge_swapin(mm, page, 3954 gfp_mask, &memcg); 3955 if (ret) 3956 return ret; 3957 __mem_cgroup_commit_charge_swapin(page, memcg, type); 3958 return 0; 3959 } 3960 3961 /* 3962 * Page cache insertions can happen without an actual mm 3963 * context, e.g. during disk probing on boot. 3964 */ 3965 if (unlikely(!mm)) 3966 memcg = root_mem_cgroup; 3967 else { 3968 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true); 3969 if (!memcg) 3970 return -ENOMEM; 3971 } 3972 __mem_cgroup_commit_charge(memcg, page, 1, type, false); 3973 return 0; 3974 } 3975 3976 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 3977 unsigned int nr_pages, 3978 const enum charge_type ctype) 3979 { 3980 struct memcg_batch_info *batch = NULL; 3981 bool uncharge_memsw = true; 3982 3983 /* If swapout, usage of swap doesn't decrease */ 3984 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 3985 uncharge_memsw = false; 3986 3987 batch = ¤t->memcg_batch; 3988 /* 3989 * In usual, we do css_get() when we remember memcg pointer. 3990 * But in this case, we keep res->usage until end of a series of 3991 * uncharges. Then, it's ok to ignore memcg's refcnt. 3992 */ 3993 if (!batch->memcg) 3994 batch->memcg = memcg; 3995 /* 3996 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 3997 * In those cases, all pages freed continuously can be expected to be in 3998 * the same cgroup and we have chance to coalesce uncharges. 3999 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 4000 * because we want to do uncharge as soon as possible. 4001 */ 4002 4003 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 4004 goto direct_uncharge; 4005 4006 if (nr_pages > 1) 4007 goto direct_uncharge; 4008 4009 /* 4010 * In typical case, batch->memcg == mem. This means we can 4011 * merge a series of uncharges to an uncharge of res_counter. 4012 * If not, we uncharge res_counter ony by one. 4013 */ 4014 if (batch->memcg != memcg) 4015 goto direct_uncharge; 4016 /* remember freed charge and uncharge it later */ 4017 batch->nr_pages++; 4018 if (uncharge_memsw) 4019 batch->memsw_nr_pages++; 4020 return; 4021 direct_uncharge: 4022 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 4023 if (uncharge_memsw) 4024 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 4025 if (unlikely(batch->memcg != memcg)) 4026 memcg_oom_recover(memcg); 4027 } 4028 4029 /* 4030 * uncharge if !page_mapped(page) 4031 */ 4032 static struct mem_cgroup * 4033 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 4034 bool end_migration) 4035 { 4036 struct mem_cgroup *memcg = NULL; 4037 unsigned int nr_pages = 1; 4038 struct page_cgroup *pc; 4039 bool anon; 4040 4041 if (mem_cgroup_disabled()) 4042 return NULL; 4043 4044 if (PageTransHuge(page)) { 4045 nr_pages <<= compound_order(page); 4046 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 4047 } 4048 /* 4049 * Check if our page_cgroup is valid 4050 */ 4051 pc = lookup_page_cgroup(page); 4052 if (unlikely(!PageCgroupUsed(pc))) 4053 return NULL; 4054 4055 lock_page_cgroup(pc); 4056 4057 memcg = pc->mem_cgroup; 4058 4059 if (!PageCgroupUsed(pc)) 4060 goto unlock_out; 4061 4062 anon = PageAnon(page); 4063 4064 switch (ctype) { 4065 case MEM_CGROUP_CHARGE_TYPE_ANON: 4066 /* 4067 * Generally PageAnon tells if it's the anon statistics to be 4068 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 4069 * used before page reached the stage of being marked PageAnon. 4070 */ 4071 anon = true; 4072 /* fallthrough */ 4073 case MEM_CGROUP_CHARGE_TYPE_DROP: 4074 /* See mem_cgroup_prepare_migration() */ 4075 if (page_mapped(page)) 4076 goto unlock_out; 4077 /* 4078 * Pages under migration may not be uncharged. But 4079 * end_migration() /must/ be the one uncharging the 4080 * unused post-migration page and so it has to call 4081 * here with the migration bit still set. See the 4082 * res_counter handling below. 4083 */ 4084 if (!end_migration && PageCgroupMigration(pc)) 4085 goto unlock_out; 4086 break; 4087 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 4088 if (!PageAnon(page)) { /* Shared memory */ 4089 if (page->mapping && !page_is_file_cache(page)) 4090 goto unlock_out; 4091 } else if (page_mapped(page)) /* Anon */ 4092 goto unlock_out; 4093 break; 4094 default: 4095 break; 4096 } 4097 4098 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages); 4099 4100 ClearPageCgroupUsed(pc); 4101 /* 4102 * pc->mem_cgroup is not cleared here. It will be accessed when it's 4103 * freed from LRU. This is safe because uncharged page is expected not 4104 * to be reused (freed soon). Exception is SwapCache, it's handled by 4105 * special functions. 4106 */ 4107 4108 unlock_page_cgroup(pc); 4109 /* 4110 * even after unlock, we have memcg->res.usage here and this memcg 4111 * will never be freed, so it's safe to call css_get(). 4112 */ 4113 memcg_check_events(memcg, page); 4114 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 4115 mem_cgroup_swap_statistics(memcg, true); 4116 css_get(&memcg->css); 4117 } 4118 /* 4119 * Migration does not charge the res_counter for the 4120 * replacement page, so leave it alone when phasing out the 4121 * page that is unused after the migration. 4122 */ 4123 if (!end_migration && !mem_cgroup_is_root(memcg)) 4124 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 4125 4126 return memcg; 4127 4128 unlock_out: 4129 unlock_page_cgroup(pc); 4130 return NULL; 4131 } 4132 4133 void mem_cgroup_uncharge_page(struct page *page) 4134 { 4135 /* early check. */ 4136 if (page_mapped(page)) 4137 return; 4138 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page); 4139 /* 4140 * If the page is in swap cache, uncharge should be deferred 4141 * to the swap path, which also properly accounts swap usage 4142 * and handles memcg lifetime. 4143 * 4144 * Note that this check is not stable and reclaim may add the 4145 * page to swap cache at any time after this. However, if the 4146 * page is not in swap cache by the time page->mapcount hits 4147 * 0, there won't be any page table references to the swap 4148 * slot, and reclaim will free it and not actually write the 4149 * page to disk. 4150 */ 4151 if (PageSwapCache(page)) 4152 return; 4153 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 4154 } 4155 4156 void mem_cgroup_uncharge_cache_page(struct page *page) 4157 { 4158 VM_BUG_ON_PAGE(page_mapped(page), page); 4159 VM_BUG_ON_PAGE(page->mapping, page); 4160 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 4161 } 4162 4163 /* 4164 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 4165 * In that cases, pages are freed continuously and we can expect pages 4166 * are in the same memcg. All these calls itself limits the number of 4167 * pages freed at once, then uncharge_start/end() is called properly. 4168 * This may be called prural(2) times in a context, 4169 */ 4170 4171 void mem_cgroup_uncharge_start(void) 4172 { 4173 current->memcg_batch.do_batch++; 4174 /* We can do nest. */ 4175 if (current->memcg_batch.do_batch == 1) { 4176 current->memcg_batch.memcg = NULL; 4177 current->memcg_batch.nr_pages = 0; 4178 current->memcg_batch.memsw_nr_pages = 0; 4179 } 4180 } 4181 4182 void mem_cgroup_uncharge_end(void) 4183 { 4184 struct memcg_batch_info *batch = ¤t->memcg_batch; 4185 4186 if (!batch->do_batch) 4187 return; 4188 4189 batch->do_batch--; 4190 if (batch->do_batch) /* If stacked, do nothing. */ 4191 return; 4192 4193 if (!batch->memcg) 4194 return; 4195 /* 4196 * This "batch->memcg" is valid without any css_get/put etc... 4197 * bacause we hide charges behind us. 4198 */ 4199 if (batch->nr_pages) 4200 res_counter_uncharge(&batch->memcg->res, 4201 batch->nr_pages * PAGE_SIZE); 4202 if (batch->memsw_nr_pages) 4203 res_counter_uncharge(&batch->memcg->memsw, 4204 batch->memsw_nr_pages * PAGE_SIZE); 4205 memcg_oom_recover(batch->memcg); 4206 /* forget this pointer (for sanity check) */ 4207 batch->memcg = NULL; 4208 } 4209 4210 #ifdef CONFIG_SWAP 4211 /* 4212 * called after __delete_from_swap_cache() and drop "page" account. 4213 * memcg information is recorded to swap_cgroup of "ent" 4214 */ 4215 void 4216 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 4217 { 4218 struct mem_cgroup *memcg; 4219 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 4220 4221 if (!swapout) /* this was a swap cache but the swap is unused ! */ 4222 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 4223 4224 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 4225 4226 /* 4227 * record memcg information, if swapout && memcg != NULL, 4228 * css_get() was called in uncharge(). 4229 */ 4230 if (do_swap_account && swapout && memcg) 4231 swap_cgroup_record(ent, mem_cgroup_id(memcg)); 4232 } 4233 #endif 4234 4235 #ifdef CONFIG_MEMCG_SWAP 4236 /* 4237 * called from swap_entry_free(). remove record in swap_cgroup and 4238 * uncharge "memsw" account. 4239 */ 4240 void mem_cgroup_uncharge_swap(swp_entry_t ent) 4241 { 4242 struct mem_cgroup *memcg; 4243 unsigned short id; 4244 4245 if (!do_swap_account) 4246 return; 4247 4248 id = swap_cgroup_record(ent, 0); 4249 rcu_read_lock(); 4250 memcg = mem_cgroup_lookup(id); 4251 if (memcg) { 4252 /* 4253 * We uncharge this because swap is freed. 4254 * This memcg can be obsolete one. We avoid calling css_tryget 4255 */ 4256 if (!mem_cgroup_is_root(memcg)) 4257 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 4258 mem_cgroup_swap_statistics(memcg, false); 4259 css_put(&memcg->css); 4260 } 4261 rcu_read_unlock(); 4262 } 4263 4264 /** 4265 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 4266 * @entry: swap entry to be moved 4267 * @from: mem_cgroup which the entry is moved from 4268 * @to: mem_cgroup which the entry is moved to 4269 * 4270 * It succeeds only when the swap_cgroup's record for this entry is the same 4271 * as the mem_cgroup's id of @from. 4272 * 4273 * Returns 0 on success, -EINVAL on failure. 4274 * 4275 * The caller must have charged to @to, IOW, called res_counter_charge() about 4276 * both res and memsw, and called css_get(). 4277 */ 4278 static int mem_cgroup_move_swap_account(swp_entry_t entry, 4279 struct mem_cgroup *from, struct mem_cgroup *to) 4280 { 4281 unsigned short old_id, new_id; 4282 4283 old_id = mem_cgroup_id(from); 4284 new_id = mem_cgroup_id(to); 4285 4286 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 4287 mem_cgroup_swap_statistics(from, false); 4288 mem_cgroup_swap_statistics(to, true); 4289 /* 4290 * This function is only called from task migration context now. 4291 * It postpones res_counter and refcount handling till the end 4292 * of task migration(mem_cgroup_clear_mc()) for performance 4293 * improvement. But we cannot postpone css_get(to) because if 4294 * the process that has been moved to @to does swap-in, the 4295 * refcount of @to might be decreased to 0. 4296 * 4297 * We are in attach() phase, so the cgroup is guaranteed to be 4298 * alive, so we can just call css_get(). 4299 */ 4300 css_get(&to->css); 4301 return 0; 4302 } 4303 return -EINVAL; 4304 } 4305 #else 4306 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 4307 struct mem_cgroup *from, struct mem_cgroup *to) 4308 { 4309 return -EINVAL; 4310 } 4311 #endif 4312 4313 /* 4314 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 4315 * page belongs to. 4316 */ 4317 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 4318 struct mem_cgroup **memcgp) 4319 { 4320 struct mem_cgroup *memcg = NULL; 4321 unsigned int nr_pages = 1; 4322 struct page_cgroup *pc; 4323 enum charge_type ctype; 4324 4325 *memcgp = NULL; 4326 4327 if (mem_cgroup_disabled()) 4328 return; 4329 4330 if (PageTransHuge(page)) 4331 nr_pages <<= compound_order(page); 4332 4333 pc = lookup_page_cgroup(page); 4334 lock_page_cgroup(pc); 4335 if (PageCgroupUsed(pc)) { 4336 memcg = pc->mem_cgroup; 4337 css_get(&memcg->css); 4338 /* 4339 * At migrating an anonymous page, its mapcount goes down 4340 * to 0 and uncharge() will be called. But, even if it's fully 4341 * unmapped, migration may fail and this page has to be 4342 * charged again. We set MIGRATION flag here and delay uncharge 4343 * until end_migration() is called 4344 * 4345 * Corner Case Thinking 4346 * A) 4347 * When the old page was mapped as Anon and it's unmap-and-freed 4348 * while migration was ongoing. 4349 * If unmap finds the old page, uncharge() of it will be delayed 4350 * until end_migration(). If unmap finds a new page, it's 4351 * uncharged when it make mapcount to be 1->0. If unmap code 4352 * finds swap_migration_entry, the new page will not be mapped 4353 * and end_migration() will find it(mapcount==0). 4354 * 4355 * B) 4356 * When the old page was mapped but migraion fails, the kernel 4357 * remaps it. A charge for it is kept by MIGRATION flag even 4358 * if mapcount goes down to 0. We can do remap successfully 4359 * without charging it again. 4360 * 4361 * C) 4362 * The "old" page is under lock_page() until the end of 4363 * migration, so, the old page itself will not be swapped-out. 4364 * If the new page is swapped out before end_migraton, our 4365 * hook to usual swap-out path will catch the event. 4366 */ 4367 if (PageAnon(page)) 4368 SetPageCgroupMigration(pc); 4369 } 4370 unlock_page_cgroup(pc); 4371 /* 4372 * If the page is not charged at this point, 4373 * we return here. 4374 */ 4375 if (!memcg) 4376 return; 4377 4378 *memcgp = memcg; 4379 /* 4380 * We charge new page before it's used/mapped. So, even if unlock_page() 4381 * is called before end_migration, we can catch all events on this new 4382 * page. In the case new page is migrated but not remapped, new page's 4383 * mapcount will be finally 0 and we call uncharge in end_migration(). 4384 */ 4385 if (PageAnon(page)) 4386 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 4387 else 4388 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 4389 /* 4390 * The page is committed to the memcg, but it's not actually 4391 * charged to the res_counter since we plan on replacing the 4392 * old one and only one page is going to be left afterwards. 4393 */ 4394 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); 4395 } 4396 4397 /* remove redundant charge if migration failed*/ 4398 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 4399 struct page *oldpage, struct page *newpage, bool migration_ok) 4400 { 4401 struct page *used, *unused; 4402 struct page_cgroup *pc; 4403 bool anon; 4404 4405 if (!memcg) 4406 return; 4407 4408 if (!migration_ok) { 4409 used = oldpage; 4410 unused = newpage; 4411 } else { 4412 used = newpage; 4413 unused = oldpage; 4414 } 4415 anon = PageAnon(used); 4416 __mem_cgroup_uncharge_common(unused, 4417 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 4418 : MEM_CGROUP_CHARGE_TYPE_CACHE, 4419 true); 4420 css_put(&memcg->css); 4421 /* 4422 * We disallowed uncharge of pages under migration because mapcount 4423 * of the page goes down to zero, temporarly. 4424 * Clear the flag and check the page should be charged. 4425 */ 4426 pc = lookup_page_cgroup(oldpage); 4427 lock_page_cgroup(pc); 4428 ClearPageCgroupMigration(pc); 4429 unlock_page_cgroup(pc); 4430 4431 /* 4432 * If a page is a file cache, radix-tree replacement is very atomic 4433 * and we can skip this check. When it was an Anon page, its mapcount 4434 * goes down to 0. But because we added MIGRATION flage, it's not 4435 * uncharged yet. There are several case but page->mapcount check 4436 * and USED bit check in mem_cgroup_uncharge_page() will do enough 4437 * check. (see prepare_charge() also) 4438 */ 4439 if (anon) 4440 mem_cgroup_uncharge_page(used); 4441 } 4442 4443 /* 4444 * At replace page cache, newpage is not under any memcg but it's on 4445 * LRU. So, this function doesn't touch res_counter but handles LRU 4446 * in correct way. Both pages are locked so we cannot race with uncharge. 4447 */ 4448 void mem_cgroup_replace_page_cache(struct page *oldpage, 4449 struct page *newpage) 4450 { 4451 struct mem_cgroup *memcg = NULL; 4452 struct page_cgroup *pc; 4453 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4454 4455 if (mem_cgroup_disabled()) 4456 return; 4457 4458 pc = lookup_page_cgroup(oldpage); 4459 /* fix accounting on old pages */ 4460 lock_page_cgroup(pc); 4461 if (PageCgroupUsed(pc)) { 4462 memcg = pc->mem_cgroup; 4463 mem_cgroup_charge_statistics(memcg, oldpage, false, -1); 4464 ClearPageCgroupUsed(pc); 4465 } 4466 unlock_page_cgroup(pc); 4467 4468 /* 4469 * When called from shmem_replace_page(), in some cases the 4470 * oldpage has already been charged, and in some cases not. 4471 */ 4472 if (!memcg) 4473 return; 4474 /* 4475 * Even if newpage->mapping was NULL before starting replacement, 4476 * the newpage may be on LRU(or pagevec for LRU) already. We lock 4477 * LRU while we overwrite pc->mem_cgroup. 4478 */ 4479 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 4480 } 4481 4482 #ifdef CONFIG_DEBUG_VM 4483 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 4484 { 4485 struct page_cgroup *pc; 4486 4487 pc = lookup_page_cgroup(page); 4488 /* 4489 * Can be NULL while feeding pages into the page allocator for 4490 * the first time, i.e. during boot or memory hotplug; 4491 * or when mem_cgroup_disabled(). 4492 */ 4493 if (likely(pc) && PageCgroupUsed(pc)) 4494 return pc; 4495 return NULL; 4496 } 4497 4498 bool mem_cgroup_bad_page_check(struct page *page) 4499 { 4500 if (mem_cgroup_disabled()) 4501 return false; 4502 4503 return lookup_page_cgroup_used(page) != NULL; 4504 } 4505 4506 void mem_cgroup_print_bad_page(struct page *page) 4507 { 4508 struct page_cgroup *pc; 4509 4510 pc = lookup_page_cgroup_used(page); 4511 if (pc) { 4512 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 4513 pc, pc->flags, pc->mem_cgroup); 4514 } 4515 } 4516 #endif 4517 4518 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 4519 unsigned long long val) 4520 { 4521 int retry_count; 4522 u64 memswlimit, memlimit; 4523 int ret = 0; 4524 int children = mem_cgroup_count_children(memcg); 4525 u64 curusage, oldusage; 4526 int enlarge; 4527 4528 /* 4529 * For keeping hierarchical_reclaim simple, how long we should retry 4530 * is depends on callers. We set our retry-count to be function 4531 * of # of children which we should visit in this loop. 4532 */ 4533 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 4534 4535 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4536 4537 enlarge = 0; 4538 while (retry_count) { 4539 if (signal_pending(current)) { 4540 ret = -EINTR; 4541 break; 4542 } 4543 /* 4544 * Rather than hide all in some function, I do this in 4545 * open coded manner. You see what this really does. 4546 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4547 */ 4548 mutex_lock(&set_limit_mutex); 4549 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4550 if (memswlimit < val) { 4551 ret = -EINVAL; 4552 mutex_unlock(&set_limit_mutex); 4553 break; 4554 } 4555 4556 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4557 if (memlimit < val) 4558 enlarge = 1; 4559 4560 ret = res_counter_set_limit(&memcg->res, val); 4561 if (!ret) { 4562 if (memswlimit == val) 4563 memcg->memsw_is_minimum = true; 4564 else 4565 memcg->memsw_is_minimum = false; 4566 } 4567 mutex_unlock(&set_limit_mutex); 4568 4569 if (!ret) 4570 break; 4571 4572 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4573 MEM_CGROUP_RECLAIM_SHRINK); 4574 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4575 /* Usage is reduced ? */ 4576 if (curusage >= oldusage) 4577 retry_count--; 4578 else 4579 oldusage = curusage; 4580 } 4581 if (!ret && enlarge) 4582 memcg_oom_recover(memcg); 4583 4584 return ret; 4585 } 4586 4587 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 4588 unsigned long long val) 4589 { 4590 int retry_count; 4591 u64 memlimit, memswlimit, oldusage, curusage; 4592 int children = mem_cgroup_count_children(memcg); 4593 int ret = -EBUSY; 4594 int enlarge = 0; 4595 4596 /* see mem_cgroup_resize_res_limit */ 4597 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 4598 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4599 while (retry_count) { 4600 if (signal_pending(current)) { 4601 ret = -EINTR; 4602 break; 4603 } 4604 /* 4605 * Rather than hide all in some function, I do this in 4606 * open coded manner. You see what this really does. 4607 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4608 */ 4609 mutex_lock(&set_limit_mutex); 4610 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4611 if (memlimit > val) { 4612 ret = -EINVAL; 4613 mutex_unlock(&set_limit_mutex); 4614 break; 4615 } 4616 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4617 if (memswlimit < val) 4618 enlarge = 1; 4619 ret = res_counter_set_limit(&memcg->memsw, val); 4620 if (!ret) { 4621 if (memlimit == val) 4622 memcg->memsw_is_minimum = true; 4623 else 4624 memcg->memsw_is_minimum = false; 4625 } 4626 mutex_unlock(&set_limit_mutex); 4627 4628 if (!ret) 4629 break; 4630 4631 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4632 MEM_CGROUP_RECLAIM_NOSWAP | 4633 MEM_CGROUP_RECLAIM_SHRINK); 4634 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4635 /* Usage is reduced ? */ 4636 if (curusage >= oldusage) 4637 retry_count--; 4638 else 4639 oldusage = curusage; 4640 } 4641 if (!ret && enlarge) 4642 memcg_oom_recover(memcg); 4643 return ret; 4644 } 4645 4646 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 4647 gfp_t gfp_mask, 4648 unsigned long *total_scanned) 4649 { 4650 unsigned long nr_reclaimed = 0; 4651 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 4652 unsigned long reclaimed; 4653 int loop = 0; 4654 struct mem_cgroup_tree_per_zone *mctz; 4655 unsigned long long excess; 4656 unsigned long nr_scanned; 4657 4658 if (order > 0) 4659 return 0; 4660 4661 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 4662 /* 4663 * This loop can run a while, specially if mem_cgroup's continuously 4664 * keep exceeding their soft limit and putting the system under 4665 * pressure 4666 */ 4667 do { 4668 if (next_mz) 4669 mz = next_mz; 4670 else 4671 mz = mem_cgroup_largest_soft_limit_node(mctz); 4672 if (!mz) 4673 break; 4674 4675 nr_scanned = 0; 4676 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 4677 gfp_mask, &nr_scanned); 4678 nr_reclaimed += reclaimed; 4679 *total_scanned += nr_scanned; 4680 spin_lock(&mctz->lock); 4681 4682 /* 4683 * If we failed to reclaim anything from this memory cgroup 4684 * it is time to move on to the next cgroup 4685 */ 4686 next_mz = NULL; 4687 if (!reclaimed) { 4688 do { 4689 /* 4690 * Loop until we find yet another one. 4691 * 4692 * By the time we get the soft_limit lock 4693 * again, someone might have aded the 4694 * group back on the RB tree. Iterate to 4695 * make sure we get a different mem. 4696 * mem_cgroup_largest_soft_limit_node returns 4697 * NULL if no other cgroup is present on 4698 * the tree 4699 */ 4700 next_mz = 4701 __mem_cgroup_largest_soft_limit_node(mctz); 4702 if (next_mz == mz) 4703 css_put(&next_mz->memcg->css); 4704 else /* next_mz == NULL or other memcg */ 4705 break; 4706 } while (1); 4707 } 4708 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 4709 excess = res_counter_soft_limit_excess(&mz->memcg->res); 4710 /* 4711 * One school of thought says that we should not add 4712 * back the node to the tree if reclaim returns 0. 4713 * But our reclaim could return 0, simply because due 4714 * to priority we are exposing a smaller subset of 4715 * memory to reclaim from. Consider this as a longer 4716 * term TODO. 4717 */ 4718 /* If excess == 0, no tree ops */ 4719 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); 4720 spin_unlock(&mctz->lock); 4721 css_put(&mz->memcg->css); 4722 loop++; 4723 /* 4724 * Could not reclaim anything and there are no more 4725 * mem cgroups to try or we seem to be looping without 4726 * reclaiming anything. 4727 */ 4728 if (!nr_reclaimed && 4729 (next_mz == NULL || 4730 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 4731 break; 4732 } while (!nr_reclaimed); 4733 if (next_mz) 4734 css_put(&next_mz->memcg->css); 4735 return nr_reclaimed; 4736 } 4737 4738 /** 4739 * mem_cgroup_force_empty_list - clears LRU of a group 4740 * @memcg: group to clear 4741 * @node: NUMA node 4742 * @zid: zone id 4743 * @lru: lru to to clear 4744 * 4745 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 4746 * reclaim the pages page themselves - pages are moved to the parent (or root) 4747 * group. 4748 */ 4749 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 4750 int node, int zid, enum lru_list lru) 4751 { 4752 struct lruvec *lruvec; 4753 unsigned long flags; 4754 struct list_head *list; 4755 struct page *busy; 4756 struct zone *zone; 4757 4758 zone = &NODE_DATA(node)->node_zones[zid]; 4759 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 4760 list = &lruvec->lists[lru]; 4761 4762 busy = NULL; 4763 do { 4764 struct page_cgroup *pc; 4765 struct page *page; 4766 4767 spin_lock_irqsave(&zone->lru_lock, flags); 4768 if (list_empty(list)) { 4769 spin_unlock_irqrestore(&zone->lru_lock, flags); 4770 break; 4771 } 4772 page = list_entry(list->prev, struct page, lru); 4773 if (busy == page) { 4774 list_move(&page->lru, list); 4775 busy = NULL; 4776 spin_unlock_irqrestore(&zone->lru_lock, flags); 4777 continue; 4778 } 4779 spin_unlock_irqrestore(&zone->lru_lock, flags); 4780 4781 pc = lookup_page_cgroup(page); 4782 4783 if (mem_cgroup_move_parent(page, pc, memcg)) { 4784 /* found lock contention or "pc" is obsolete. */ 4785 busy = page; 4786 cond_resched(); 4787 } else 4788 busy = NULL; 4789 } while (!list_empty(list)); 4790 } 4791 4792 /* 4793 * make mem_cgroup's charge to be 0 if there is no task by moving 4794 * all the charges and pages to the parent. 4795 * This enables deleting this mem_cgroup. 4796 * 4797 * Caller is responsible for holding css reference on the memcg. 4798 */ 4799 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) 4800 { 4801 int node, zid; 4802 u64 usage; 4803 4804 do { 4805 /* This is for making all *used* pages to be on LRU. */ 4806 lru_add_drain_all(); 4807 drain_all_stock_sync(memcg); 4808 mem_cgroup_start_move(memcg); 4809 for_each_node_state(node, N_MEMORY) { 4810 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4811 enum lru_list lru; 4812 for_each_lru(lru) { 4813 mem_cgroup_force_empty_list(memcg, 4814 node, zid, lru); 4815 } 4816 } 4817 } 4818 mem_cgroup_end_move(memcg); 4819 memcg_oom_recover(memcg); 4820 cond_resched(); 4821 4822 /* 4823 * Kernel memory may not necessarily be trackable to a specific 4824 * process. So they are not migrated, and therefore we can't 4825 * expect their value to drop to 0 here. 4826 * Having res filled up with kmem only is enough. 4827 * 4828 * This is a safety check because mem_cgroup_force_empty_list 4829 * could have raced with mem_cgroup_replace_page_cache callers 4830 * so the lru seemed empty but the page could have been added 4831 * right after the check. RES_USAGE should be safe as we always 4832 * charge before adding to the LRU. 4833 */ 4834 usage = res_counter_read_u64(&memcg->res, RES_USAGE) - 4835 res_counter_read_u64(&memcg->kmem, RES_USAGE); 4836 } while (usage > 0); 4837 } 4838 4839 static inline bool memcg_has_children(struct mem_cgroup *memcg) 4840 { 4841 lockdep_assert_held(&memcg_create_mutex); 4842 /* 4843 * The lock does not prevent addition or deletion to the list 4844 * of children, but it prevents a new child from being 4845 * initialized based on this parent in css_online(), so it's 4846 * enough to decide whether hierarchically inherited 4847 * attributes can still be changed or not. 4848 */ 4849 return memcg->use_hierarchy && 4850 !list_empty(&memcg->css.cgroup->children); 4851 } 4852 4853 /* 4854 * Reclaims as many pages from the given memcg as possible and moves 4855 * the rest to the parent. 4856 * 4857 * Caller is responsible for holding css reference for memcg. 4858 */ 4859 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 4860 { 4861 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 4862 struct cgroup *cgrp = memcg->css.cgroup; 4863 4864 /* returns EBUSY if there is a task or if we come here twice. */ 4865 if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children)) 4866 return -EBUSY; 4867 4868 /* we call try-to-free pages for make this cgroup empty */ 4869 lru_add_drain_all(); 4870 /* try to free all pages in this cgroup */ 4871 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 4872 int progress; 4873 4874 if (signal_pending(current)) 4875 return -EINTR; 4876 4877 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 4878 false); 4879 if (!progress) { 4880 nr_retries--; 4881 /* maybe some writeback is necessary */ 4882 congestion_wait(BLK_RW_ASYNC, HZ/10); 4883 } 4884 4885 } 4886 lru_add_drain(); 4887 mem_cgroup_reparent_charges(memcg); 4888 4889 return 0; 4890 } 4891 4892 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css, 4893 unsigned int event) 4894 { 4895 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4896 4897 if (mem_cgroup_is_root(memcg)) 4898 return -EINVAL; 4899 return mem_cgroup_force_empty(memcg); 4900 } 4901 4902 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 4903 struct cftype *cft) 4904 { 4905 return mem_cgroup_from_css(css)->use_hierarchy; 4906 } 4907 4908 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 4909 struct cftype *cft, u64 val) 4910 { 4911 int retval = 0; 4912 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4913 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css)); 4914 4915 mutex_lock(&memcg_create_mutex); 4916 4917 if (memcg->use_hierarchy == val) 4918 goto out; 4919 4920 /* 4921 * If parent's use_hierarchy is set, we can't make any modifications 4922 * in the child subtrees. If it is unset, then the change can 4923 * occur, provided the current cgroup has no children. 4924 * 4925 * For the root cgroup, parent_mem is NULL, we allow value to be 4926 * set if there are no children. 4927 */ 4928 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 4929 (val == 1 || val == 0)) { 4930 if (list_empty(&memcg->css.cgroup->children)) 4931 memcg->use_hierarchy = val; 4932 else 4933 retval = -EBUSY; 4934 } else 4935 retval = -EINVAL; 4936 4937 out: 4938 mutex_unlock(&memcg_create_mutex); 4939 4940 return retval; 4941 } 4942 4943 4944 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 4945 enum mem_cgroup_stat_index idx) 4946 { 4947 struct mem_cgroup *iter; 4948 long val = 0; 4949 4950 /* Per-cpu values can be negative, use a signed accumulator */ 4951 for_each_mem_cgroup_tree(iter, memcg) 4952 val += mem_cgroup_read_stat(iter, idx); 4953 4954 if (val < 0) /* race ? */ 4955 val = 0; 4956 return val; 4957 } 4958 4959 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 4960 { 4961 u64 val; 4962 4963 if (!mem_cgroup_is_root(memcg)) { 4964 if (!swap) 4965 return res_counter_read_u64(&memcg->res, RES_USAGE); 4966 else 4967 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 4968 } 4969 4970 /* 4971 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS 4972 * as well as in MEM_CGROUP_STAT_RSS_HUGE. 4973 */ 4974 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 4975 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 4976 4977 if (swap) 4978 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 4979 4980 return val << PAGE_SHIFT; 4981 } 4982 4983 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 4984 struct cftype *cft) 4985 { 4986 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4987 u64 val; 4988 int name; 4989 enum res_type type; 4990 4991 type = MEMFILE_TYPE(cft->private); 4992 name = MEMFILE_ATTR(cft->private); 4993 4994 switch (type) { 4995 case _MEM: 4996 if (name == RES_USAGE) 4997 val = mem_cgroup_usage(memcg, false); 4998 else 4999 val = res_counter_read_u64(&memcg->res, name); 5000 break; 5001 case _MEMSWAP: 5002 if (name == RES_USAGE) 5003 val = mem_cgroup_usage(memcg, true); 5004 else 5005 val = res_counter_read_u64(&memcg->memsw, name); 5006 break; 5007 case _KMEM: 5008 val = res_counter_read_u64(&memcg->kmem, name); 5009 break; 5010 default: 5011 BUG(); 5012 } 5013 5014 return val; 5015 } 5016 5017 #ifdef CONFIG_MEMCG_KMEM 5018 /* should be called with activate_kmem_mutex held */ 5019 static int __memcg_activate_kmem(struct mem_cgroup *memcg, 5020 unsigned long long limit) 5021 { 5022 int err = 0; 5023 int memcg_id; 5024 5025 if (memcg_kmem_is_active(memcg)) 5026 return 0; 5027 5028 /* 5029 * We are going to allocate memory for data shared by all memory 5030 * cgroups so let's stop accounting here. 5031 */ 5032 memcg_stop_kmem_account(); 5033 5034 /* 5035 * For simplicity, we won't allow this to be disabled. It also can't 5036 * be changed if the cgroup has children already, or if tasks had 5037 * already joined. 5038 * 5039 * If tasks join before we set the limit, a person looking at 5040 * kmem.usage_in_bytes will have no way to determine when it took 5041 * place, which makes the value quite meaningless. 5042 * 5043 * After it first became limited, changes in the value of the limit are 5044 * of course permitted. 5045 */ 5046 mutex_lock(&memcg_create_mutex); 5047 if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg)) 5048 err = -EBUSY; 5049 mutex_unlock(&memcg_create_mutex); 5050 if (err) 5051 goto out; 5052 5053 memcg_id = ida_simple_get(&kmem_limited_groups, 5054 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 5055 if (memcg_id < 0) { 5056 err = memcg_id; 5057 goto out; 5058 } 5059 5060 /* 5061 * Make sure we have enough space for this cgroup in each root cache's 5062 * memcg_params. 5063 */ 5064 err = memcg_update_all_caches(memcg_id + 1); 5065 if (err) 5066 goto out_rmid; 5067 5068 memcg->kmemcg_id = memcg_id; 5069 INIT_LIST_HEAD(&memcg->memcg_slab_caches); 5070 mutex_init(&memcg->slab_caches_mutex); 5071 5072 /* 5073 * We couldn't have accounted to this cgroup, because it hasn't got the 5074 * active bit set yet, so this should succeed. 5075 */ 5076 err = res_counter_set_limit(&memcg->kmem, limit); 5077 VM_BUG_ON(err); 5078 5079 static_key_slow_inc(&memcg_kmem_enabled_key); 5080 /* 5081 * Setting the active bit after enabling static branching will 5082 * guarantee no one starts accounting before all call sites are 5083 * patched. 5084 */ 5085 memcg_kmem_set_active(memcg); 5086 out: 5087 memcg_resume_kmem_account(); 5088 return err; 5089 5090 out_rmid: 5091 ida_simple_remove(&kmem_limited_groups, memcg_id); 5092 goto out; 5093 } 5094 5095 static int memcg_activate_kmem(struct mem_cgroup *memcg, 5096 unsigned long long limit) 5097 { 5098 int ret; 5099 5100 mutex_lock(&activate_kmem_mutex); 5101 ret = __memcg_activate_kmem(memcg, limit); 5102 mutex_unlock(&activate_kmem_mutex); 5103 return ret; 5104 } 5105 5106 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 5107 unsigned long long val) 5108 { 5109 int ret; 5110 5111 if (!memcg_kmem_is_active(memcg)) 5112 ret = memcg_activate_kmem(memcg, val); 5113 else 5114 ret = res_counter_set_limit(&memcg->kmem, val); 5115 return ret; 5116 } 5117 5118 static int memcg_propagate_kmem(struct mem_cgroup *memcg) 5119 { 5120 int ret = 0; 5121 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5122 5123 if (!parent) 5124 return 0; 5125 5126 mutex_lock(&activate_kmem_mutex); 5127 /* 5128 * If the parent cgroup is not kmem-active now, it cannot be activated 5129 * after this point, because it has at least one child already. 5130 */ 5131 if (memcg_kmem_is_active(parent)) 5132 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX); 5133 mutex_unlock(&activate_kmem_mutex); 5134 return ret; 5135 } 5136 #else 5137 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 5138 unsigned long long val) 5139 { 5140 return -EINVAL; 5141 } 5142 #endif /* CONFIG_MEMCG_KMEM */ 5143 5144 /* 5145 * The user of this function is... 5146 * RES_LIMIT. 5147 */ 5148 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft, 5149 char *buffer) 5150 { 5151 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5152 enum res_type type; 5153 int name; 5154 unsigned long long val; 5155 int ret; 5156 5157 type = MEMFILE_TYPE(cft->private); 5158 name = MEMFILE_ATTR(cft->private); 5159 5160 switch (name) { 5161 case RES_LIMIT: 5162 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 5163 ret = -EINVAL; 5164 break; 5165 } 5166 /* This function does all necessary parse...reuse it */ 5167 ret = res_counter_memparse_write_strategy(buffer, &val); 5168 if (ret) 5169 break; 5170 if (type == _MEM) 5171 ret = mem_cgroup_resize_limit(memcg, val); 5172 else if (type == _MEMSWAP) 5173 ret = mem_cgroup_resize_memsw_limit(memcg, val); 5174 else if (type == _KMEM) 5175 ret = memcg_update_kmem_limit(memcg, val); 5176 else 5177 return -EINVAL; 5178 break; 5179 case RES_SOFT_LIMIT: 5180 ret = res_counter_memparse_write_strategy(buffer, &val); 5181 if (ret) 5182 break; 5183 /* 5184 * For memsw, soft limits are hard to implement in terms 5185 * of semantics, for now, we support soft limits for 5186 * control without swap 5187 */ 5188 if (type == _MEM) 5189 ret = res_counter_set_soft_limit(&memcg->res, val); 5190 else 5191 ret = -EINVAL; 5192 break; 5193 default: 5194 ret = -EINVAL; /* should be BUG() ? */ 5195 break; 5196 } 5197 return ret; 5198 } 5199 5200 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 5201 unsigned long long *mem_limit, unsigned long long *memsw_limit) 5202 { 5203 unsigned long long min_limit, min_memsw_limit, tmp; 5204 5205 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 5206 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5207 if (!memcg->use_hierarchy) 5208 goto out; 5209 5210 while (css_parent(&memcg->css)) { 5211 memcg = mem_cgroup_from_css(css_parent(&memcg->css)); 5212 if (!memcg->use_hierarchy) 5213 break; 5214 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 5215 min_limit = min(min_limit, tmp); 5216 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5217 min_memsw_limit = min(min_memsw_limit, tmp); 5218 } 5219 out: 5220 *mem_limit = min_limit; 5221 *memsw_limit = min_memsw_limit; 5222 } 5223 5224 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event) 5225 { 5226 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5227 int name; 5228 enum res_type type; 5229 5230 type = MEMFILE_TYPE(event); 5231 name = MEMFILE_ATTR(event); 5232 5233 switch (name) { 5234 case RES_MAX_USAGE: 5235 if (type == _MEM) 5236 res_counter_reset_max(&memcg->res); 5237 else if (type == _MEMSWAP) 5238 res_counter_reset_max(&memcg->memsw); 5239 else if (type == _KMEM) 5240 res_counter_reset_max(&memcg->kmem); 5241 else 5242 return -EINVAL; 5243 break; 5244 case RES_FAILCNT: 5245 if (type == _MEM) 5246 res_counter_reset_failcnt(&memcg->res); 5247 else if (type == _MEMSWAP) 5248 res_counter_reset_failcnt(&memcg->memsw); 5249 else if (type == _KMEM) 5250 res_counter_reset_failcnt(&memcg->kmem); 5251 else 5252 return -EINVAL; 5253 break; 5254 } 5255 5256 return 0; 5257 } 5258 5259 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 5260 struct cftype *cft) 5261 { 5262 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 5263 } 5264 5265 #ifdef CONFIG_MMU 5266 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 5267 struct cftype *cft, u64 val) 5268 { 5269 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5270 5271 if (val >= (1 << NR_MOVE_TYPE)) 5272 return -EINVAL; 5273 5274 /* 5275 * No kind of locking is needed in here, because ->can_attach() will 5276 * check this value once in the beginning of the process, and then carry 5277 * on with stale data. This means that changes to this value will only 5278 * affect task migrations starting after the change. 5279 */ 5280 memcg->move_charge_at_immigrate = val; 5281 return 0; 5282 } 5283 #else 5284 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 5285 struct cftype *cft, u64 val) 5286 { 5287 return -ENOSYS; 5288 } 5289 #endif 5290 5291 #ifdef CONFIG_NUMA 5292 static int memcg_numa_stat_show(struct seq_file *m, void *v) 5293 { 5294 struct numa_stat { 5295 const char *name; 5296 unsigned int lru_mask; 5297 }; 5298 5299 static const struct numa_stat stats[] = { 5300 { "total", LRU_ALL }, 5301 { "file", LRU_ALL_FILE }, 5302 { "anon", LRU_ALL_ANON }, 5303 { "unevictable", BIT(LRU_UNEVICTABLE) }, 5304 }; 5305 const struct numa_stat *stat; 5306 int nid; 5307 unsigned long nr; 5308 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5309 5310 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 5311 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 5312 seq_printf(m, "%s=%lu", stat->name, nr); 5313 for_each_node_state(nid, N_MEMORY) { 5314 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5315 stat->lru_mask); 5316 seq_printf(m, " N%d=%lu", nid, nr); 5317 } 5318 seq_putc(m, '\n'); 5319 } 5320 5321 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 5322 struct mem_cgroup *iter; 5323 5324 nr = 0; 5325 for_each_mem_cgroup_tree(iter, memcg) 5326 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 5327 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 5328 for_each_node_state(nid, N_MEMORY) { 5329 nr = 0; 5330 for_each_mem_cgroup_tree(iter, memcg) 5331 nr += mem_cgroup_node_nr_lru_pages( 5332 iter, nid, stat->lru_mask); 5333 seq_printf(m, " N%d=%lu", nid, nr); 5334 } 5335 seq_putc(m, '\n'); 5336 } 5337 5338 return 0; 5339 } 5340 #endif /* CONFIG_NUMA */ 5341 5342 static inline void mem_cgroup_lru_names_not_uptodate(void) 5343 { 5344 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 5345 } 5346 5347 static int memcg_stat_show(struct seq_file *m, void *v) 5348 { 5349 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5350 struct mem_cgroup *mi; 5351 unsigned int i; 5352 5353 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5354 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5355 continue; 5356 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 5357 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 5358 } 5359 5360 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 5361 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 5362 mem_cgroup_read_events(memcg, i)); 5363 5364 for (i = 0; i < NR_LRU_LISTS; i++) 5365 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 5366 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 5367 5368 /* Hierarchical information */ 5369 { 5370 unsigned long long limit, memsw_limit; 5371 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 5372 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 5373 if (do_swap_account) 5374 seq_printf(m, "hierarchical_memsw_limit %llu\n", 5375 memsw_limit); 5376 } 5377 5378 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5379 long long val = 0; 5380 5381 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5382 continue; 5383 for_each_mem_cgroup_tree(mi, memcg) 5384 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 5385 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 5386 } 5387 5388 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 5389 unsigned long long val = 0; 5390 5391 for_each_mem_cgroup_tree(mi, memcg) 5392 val += mem_cgroup_read_events(mi, i); 5393 seq_printf(m, "total_%s %llu\n", 5394 mem_cgroup_events_names[i], val); 5395 } 5396 5397 for (i = 0; i < NR_LRU_LISTS; i++) { 5398 unsigned long long val = 0; 5399 5400 for_each_mem_cgroup_tree(mi, memcg) 5401 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 5402 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 5403 } 5404 5405 #ifdef CONFIG_DEBUG_VM 5406 { 5407 int nid, zid; 5408 struct mem_cgroup_per_zone *mz; 5409 struct zone_reclaim_stat *rstat; 5410 unsigned long recent_rotated[2] = {0, 0}; 5411 unsigned long recent_scanned[2] = {0, 0}; 5412 5413 for_each_online_node(nid) 5414 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 5415 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 5416 rstat = &mz->lruvec.reclaim_stat; 5417 5418 recent_rotated[0] += rstat->recent_rotated[0]; 5419 recent_rotated[1] += rstat->recent_rotated[1]; 5420 recent_scanned[0] += rstat->recent_scanned[0]; 5421 recent_scanned[1] += rstat->recent_scanned[1]; 5422 } 5423 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 5424 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 5425 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 5426 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 5427 } 5428 #endif 5429 5430 return 0; 5431 } 5432 5433 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 5434 struct cftype *cft) 5435 { 5436 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5437 5438 return mem_cgroup_swappiness(memcg); 5439 } 5440 5441 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 5442 struct cftype *cft, u64 val) 5443 { 5444 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5445 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); 5446 5447 if (val > 100 || !parent) 5448 return -EINVAL; 5449 5450 mutex_lock(&memcg_create_mutex); 5451 5452 /* If under hierarchy, only empty-root can set this value */ 5453 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5454 mutex_unlock(&memcg_create_mutex); 5455 return -EINVAL; 5456 } 5457 5458 memcg->swappiness = val; 5459 5460 mutex_unlock(&memcg_create_mutex); 5461 5462 return 0; 5463 } 5464 5465 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 5466 { 5467 struct mem_cgroup_threshold_ary *t; 5468 u64 usage; 5469 int i; 5470 5471 rcu_read_lock(); 5472 if (!swap) 5473 t = rcu_dereference(memcg->thresholds.primary); 5474 else 5475 t = rcu_dereference(memcg->memsw_thresholds.primary); 5476 5477 if (!t) 5478 goto unlock; 5479 5480 usage = mem_cgroup_usage(memcg, swap); 5481 5482 /* 5483 * current_threshold points to threshold just below or equal to usage. 5484 * If it's not true, a threshold was crossed after last 5485 * call of __mem_cgroup_threshold(). 5486 */ 5487 i = t->current_threshold; 5488 5489 /* 5490 * Iterate backward over array of thresholds starting from 5491 * current_threshold and check if a threshold is crossed. 5492 * If none of thresholds below usage is crossed, we read 5493 * only one element of the array here. 5494 */ 5495 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 5496 eventfd_signal(t->entries[i].eventfd, 1); 5497 5498 /* i = current_threshold + 1 */ 5499 i++; 5500 5501 /* 5502 * Iterate forward over array of thresholds starting from 5503 * current_threshold+1 and check if a threshold is crossed. 5504 * If none of thresholds above usage is crossed, we read 5505 * only one element of the array here. 5506 */ 5507 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 5508 eventfd_signal(t->entries[i].eventfd, 1); 5509 5510 /* Update current_threshold */ 5511 t->current_threshold = i - 1; 5512 unlock: 5513 rcu_read_unlock(); 5514 } 5515 5516 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 5517 { 5518 while (memcg) { 5519 __mem_cgroup_threshold(memcg, false); 5520 if (do_swap_account) 5521 __mem_cgroup_threshold(memcg, true); 5522 5523 memcg = parent_mem_cgroup(memcg); 5524 } 5525 } 5526 5527 static int compare_thresholds(const void *a, const void *b) 5528 { 5529 const struct mem_cgroup_threshold *_a = a; 5530 const struct mem_cgroup_threshold *_b = b; 5531 5532 if (_a->threshold > _b->threshold) 5533 return 1; 5534 5535 if (_a->threshold < _b->threshold) 5536 return -1; 5537 5538 return 0; 5539 } 5540 5541 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 5542 { 5543 struct mem_cgroup_eventfd_list *ev; 5544 5545 list_for_each_entry(ev, &memcg->oom_notify, list) 5546 eventfd_signal(ev->eventfd, 1); 5547 return 0; 5548 } 5549 5550 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 5551 { 5552 struct mem_cgroup *iter; 5553 5554 for_each_mem_cgroup_tree(iter, memcg) 5555 mem_cgroup_oom_notify_cb(iter); 5556 } 5557 5558 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 5559 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 5560 { 5561 struct mem_cgroup_thresholds *thresholds; 5562 struct mem_cgroup_threshold_ary *new; 5563 u64 threshold, usage; 5564 int i, size, ret; 5565 5566 ret = res_counter_memparse_write_strategy(args, &threshold); 5567 if (ret) 5568 return ret; 5569 5570 mutex_lock(&memcg->thresholds_lock); 5571 5572 if (type == _MEM) 5573 thresholds = &memcg->thresholds; 5574 else if (type == _MEMSWAP) 5575 thresholds = &memcg->memsw_thresholds; 5576 else 5577 BUG(); 5578 5579 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5580 5581 /* Check if a threshold crossed before adding a new one */ 5582 if (thresholds->primary) 5583 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5584 5585 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 5586 5587 /* Allocate memory for new array of thresholds */ 5588 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 5589 GFP_KERNEL); 5590 if (!new) { 5591 ret = -ENOMEM; 5592 goto unlock; 5593 } 5594 new->size = size; 5595 5596 /* Copy thresholds (if any) to new array */ 5597 if (thresholds->primary) { 5598 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 5599 sizeof(struct mem_cgroup_threshold)); 5600 } 5601 5602 /* Add new threshold */ 5603 new->entries[size - 1].eventfd = eventfd; 5604 new->entries[size - 1].threshold = threshold; 5605 5606 /* Sort thresholds. Registering of new threshold isn't time-critical */ 5607 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 5608 compare_thresholds, NULL); 5609 5610 /* Find current threshold */ 5611 new->current_threshold = -1; 5612 for (i = 0; i < size; i++) { 5613 if (new->entries[i].threshold <= usage) { 5614 /* 5615 * new->current_threshold will not be used until 5616 * rcu_assign_pointer(), so it's safe to increment 5617 * it here. 5618 */ 5619 ++new->current_threshold; 5620 } else 5621 break; 5622 } 5623 5624 /* Free old spare buffer and save old primary buffer as spare */ 5625 kfree(thresholds->spare); 5626 thresholds->spare = thresholds->primary; 5627 5628 rcu_assign_pointer(thresholds->primary, new); 5629 5630 /* To be sure that nobody uses thresholds */ 5631 synchronize_rcu(); 5632 5633 unlock: 5634 mutex_unlock(&memcg->thresholds_lock); 5635 5636 return ret; 5637 } 5638 5639 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 5640 struct eventfd_ctx *eventfd, const char *args) 5641 { 5642 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 5643 } 5644 5645 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 5646 struct eventfd_ctx *eventfd, const char *args) 5647 { 5648 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 5649 } 5650 5651 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 5652 struct eventfd_ctx *eventfd, enum res_type type) 5653 { 5654 struct mem_cgroup_thresholds *thresholds; 5655 struct mem_cgroup_threshold_ary *new; 5656 u64 usage; 5657 int i, j, size; 5658 5659 mutex_lock(&memcg->thresholds_lock); 5660 if (type == _MEM) 5661 thresholds = &memcg->thresholds; 5662 else if (type == _MEMSWAP) 5663 thresholds = &memcg->memsw_thresholds; 5664 else 5665 BUG(); 5666 5667 if (!thresholds->primary) 5668 goto unlock; 5669 5670 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5671 5672 /* Check if a threshold crossed before removing */ 5673 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5674 5675 /* Calculate new number of threshold */ 5676 size = 0; 5677 for (i = 0; i < thresholds->primary->size; i++) { 5678 if (thresholds->primary->entries[i].eventfd != eventfd) 5679 size++; 5680 } 5681 5682 new = thresholds->spare; 5683 5684 /* Set thresholds array to NULL if we don't have thresholds */ 5685 if (!size) { 5686 kfree(new); 5687 new = NULL; 5688 goto swap_buffers; 5689 } 5690 5691 new->size = size; 5692 5693 /* Copy thresholds and find current threshold */ 5694 new->current_threshold = -1; 5695 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 5696 if (thresholds->primary->entries[i].eventfd == eventfd) 5697 continue; 5698 5699 new->entries[j] = thresholds->primary->entries[i]; 5700 if (new->entries[j].threshold <= usage) { 5701 /* 5702 * new->current_threshold will not be used 5703 * until rcu_assign_pointer(), so it's safe to increment 5704 * it here. 5705 */ 5706 ++new->current_threshold; 5707 } 5708 j++; 5709 } 5710 5711 swap_buffers: 5712 /* Swap primary and spare array */ 5713 thresholds->spare = thresholds->primary; 5714 /* If all events are unregistered, free the spare array */ 5715 if (!new) { 5716 kfree(thresholds->spare); 5717 thresholds->spare = NULL; 5718 } 5719 5720 rcu_assign_pointer(thresholds->primary, new); 5721 5722 /* To be sure that nobody uses thresholds */ 5723 synchronize_rcu(); 5724 unlock: 5725 mutex_unlock(&memcg->thresholds_lock); 5726 } 5727 5728 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 5729 struct eventfd_ctx *eventfd) 5730 { 5731 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 5732 } 5733 5734 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 5735 struct eventfd_ctx *eventfd) 5736 { 5737 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 5738 } 5739 5740 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 5741 struct eventfd_ctx *eventfd, const char *args) 5742 { 5743 struct mem_cgroup_eventfd_list *event; 5744 5745 event = kmalloc(sizeof(*event), GFP_KERNEL); 5746 if (!event) 5747 return -ENOMEM; 5748 5749 spin_lock(&memcg_oom_lock); 5750 5751 event->eventfd = eventfd; 5752 list_add(&event->list, &memcg->oom_notify); 5753 5754 /* already in OOM ? */ 5755 if (atomic_read(&memcg->under_oom)) 5756 eventfd_signal(eventfd, 1); 5757 spin_unlock(&memcg_oom_lock); 5758 5759 return 0; 5760 } 5761 5762 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 5763 struct eventfd_ctx *eventfd) 5764 { 5765 struct mem_cgroup_eventfd_list *ev, *tmp; 5766 5767 spin_lock(&memcg_oom_lock); 5768 5769 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 5770 if (ev->eventfd == eventfd) { 5771 list_del(&ev->list); 5772 kfree(ev); 5773 } 5774 } 5775 5776 spin_unlock(&memcg_oom_lock); 5777 } 5778 5779 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 5780 { 5781 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5782 5783 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 5784 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom)); 5785 return 0; 5786 } 5787 5788 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 5789 struct cftype *cft, u64 val) 5790 { 5791 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5792 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); 5793 5794 /* cannot set to root cgroup and only 0 and 1 are allowed */ 5795 if (!parent || !((val == 0) || (val == 1))) 5796 return -EINVAL; 5797 5798 mutex_lock(&memcg_create_mutex); 5799 /* oom-kill-disable is a flag for subhierarchy. */ 5800 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5801 mutex_unlock(&memcg_create_mutex); 5802 return -EINVAL; 5803 } 5804 memcg->oom_kill_disable = val; 5805 if (!val) 5806 memcg_oom_recover(memcg); 5807 mutex_unlock(&memcg_create_mutex); 5808 return 0; 5809 } 5810 5811 #ifdef CONFIG_MEMCG_KMEM 5812 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5813 { 5814 int ret; 5815 5816 memcg->kmemcg_id = -1; 5817 ret = memcg_propagate_kmem(memcg); 5818 if (ret) 5819 return ret; 5820 5821 return mem_cgroup_sockets_init(memcg, ss); 5822 } 5823 5824 static void memcg_destroy_kmem(struct mem_cgroup *memcg) 5825 { 5826 mem_cgroup_sockets_destroy(memcg); 5827 } 5828 5829 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 5830 { 5831 if (!memcg_kmem_is_active(memcg)) 5832 return; 5833 5834 /* 5835 * kmem charges can outlive the cgroup. In the case of slab 5836 * pages, for instance, a page contain objects from various 5837 * processes. As we prevent from taking a reference for every 5838 * such allocation we have to be careful when doing uncharge 5839 * (see memcg_uncharge_kmem) and here during offlining. 5840 * 5841 * The idea is that that only the _last_ uncharge which sees 5842 * the dead memcg will drop the last reference. An additional 5843 * reference is taken here before the group is marked dead 5844 * which is then paired with css_put during uncharge resp. here. 5845 * 5846 * Although this might sound strange as this path is called from 5847 * css_offline() when the referencemight have dropped down to 0 5848 * and shouldn't be incremented anymore (css_tryget would fail) 5849 * we do not have other options because of the kmem allocations 5850 * lifetime. 5851 */ 5852 css_get(&memcg->css); 5853 5854 memcg_kmem_mark_dead(memcg); 5855 5856 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) 5857 return; 5858 5859 if (memcg_kmem_test_and_clear_dead(memcg)) 5860 css_put(&memcg->css); 5861 } 5862 #else 5863 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5864 { 5865 return 0; 5866 } 5867 5868 static void memcg_destroy_kmem(struct mem_cgroup *memcg) 5869 { 5870 } 5871 5872 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 5873 { 5874 } 5875 #endif 5876 5877 /* 5878 * DO NOT USE IN NEW FILES. 5879 * 5880 * "cgroup.event_control" implementation. 5881 * 5882 * This is way over-engineered. It tries to support fully configurable 5883 * events for each user. Such level of flexibility is completely 5884 * unnecessary especially in the light of the planned unified hierarchy. 5885 * 5886 * Please deprecate this and replace with something simpler if at all 5887 * possible. 5888 */ 5889 5890 /* 5891 * Unregister event and free resources. 5892 * 5893 * Gets called from workqueue. 5894 */ 5895 static void memcg_event_remove(struct work_struct *work) 5896 { 5897 struct mem_cgroup_event *event = 5898 container_of(work, struct mem_cgroup_event, remove); 5899 struct mem_cgroup *memcg = event->memcg; 5900 5901 remove_wait_queue(event->wqh, &event->wait); 5902 5903 event->unregister_event(memcg, event->eventfd); 5904 5905 /* Notify userspace the event is going away. */ 5906 eventfd_signal(event->eventfd, 1); 5907 5908 eventfd_ctx_put(event->eventfd); 5909 kfree(event); 5910 css_put(&memcg->css); 5911 } 5912 5913 /* 5914 * Gets called on POLLHUP on eventfd when user closes it. 5915 * 5916 * Called with wqh->lock held and interrupts disabled. 5917 */ 5918 static int memcg_event_wake(wait_queue_t *wait, unsigned mode, 5919 int sync, void *key) 5920 { 5921 struct mem_cgroup_event *event = 5922 container_of(wait, struct mem_cgroup_event, wait); 5923 struct mem_cgroup *memcg = event->memcg; 5924 unsigned long flags = (unsigned long)key; 5925 5926 if (flags & POLLHUP) { 5927 /* 5928 * If the event has been detached at cgroup removal, we 5929 * can simply return knowing the other side will cleanup 5930 * for us. 5931 * 5932 * We can't race against event freeing since the other 5933 * side will require wqh->lock via remove_wait_queue(), 5934 * which we hold. 5935 */ 5936 spin_lock(&memcg->event_list_lock); 5937 if (!list_empty(&event->list)) { 5938 list_del_init(&event->list); 5939 /* 5940 * We are in atomic context, but cgroup_event_remove() 5941 * may sleep, so we have to call it in workqueue. 5942 */ 5943 schedule_work(&event->remove); 5944 } 5945 spin_unlock(&memcg->event_list_lock); 5946 } 5947 5948 return 0; 5949 } 5950 5951 static void memcg_event_ptable_queue_proc(struct file *file, 5952 wait_queue_head_t *wqh, poll_table *pt) 5953 { 5954 struct mem_cgroup_event *event = 5955 container_of(pt, struct mem_cgroup_event, pt); 5956 5957 event->wqh = wqh; 5958 add_wait_queue(wqh, &event->wait); 5959 } 5960 5961 /* 5962 * DO NOT USE IN NEW FILES. 5963 * 5964 * Parse input and register new cgroup event handler. 5965 * 5966 * Input must be in format '<event_fd> <control_fd> <args>'. 5967 * Interpretation of args is defined by control file implementation. 5968 */ 5969 static int memcg_write_event_control(struct cgroup_subsys_state *css, 5970 struct cftype *cft, char *buffer) 5971 { 5972 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5973 struct mem_cgroup_event *event; 5974 struct cgroup_subsys_state *cfile_css; 5975 unsigned int efd, cfd; 5976 struct fd efile; 5977 struct fd cfile; 5978 const char *name; 5979 char *endp; 5980 int ret; 5981 5982 efd = simple_strtoul(buffer, &endp, 10); 5983 if (*endp != ' ') 5984 return -EINVAL; 5985 buffer = endp + 1; 5986 5987 cfd = simple_strtoul(buffer, &endp, 10); 5988 if ((*endp != ' ') && (*endp != '\0')) 5989 return -EINVAL; 5990 buffer = endp + 1; 5991 5992 event = kzalloc(sizeof(*event), GFP_KERNEL); 5993 if (!event) 5994 return -ENOMEM; 5995 5996 event->memcg = memcg; 5997 INIT_LIST_HEAD(&event->list); 5998 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 5999 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 6000 INIT_WORK(&event->remove, memcg_event_remove); 6001 6002 efile = fdget(efd); 6003 if (!efile.file) { 6004 ret = -EBADF; 6005 goto out_kfree; 6006 } 6007 6008 event->eventfd = eventfd_ctx_fileget(efile.file); 6009 if (IS_ERR(event->eventfd)) { 6010 ret = PTR_ERR(event->eventfd); 6011 goto out_put_efile; 6012 } 6013 6014 cfile = fdget(cfd); 6015 if (!cfile.file) { 6016 ret = -EBADF; 6017 goto out_put_eventfd; 6018 } 6019 6020 /* the process need read permission on control file */ 6021 /* AV: shouldn't we check that it's been opened for read instead? */ 6022 ret = inode_permission(file_inode(cfile.file), MAY_READ); 6023 if (ret < 0) 6024 goto out_put_cfile; 6025 6026 /* 6027 * Determine the event callbacks and set them in @event. This used 6028 * to be done via struct cftype but cgroup core no longer knows 6029 * about these events. The following is crude but the whole thing 6030 * is for compatibility anyway. 6031 * 6032 * DO NOT ADD NEW FILES. 6033 */ 6034 name = cfile.file->f_dentry->d_name.name; 6035 6036 if (!strcmp(name, "memory.usage_in_bytes")) { 6037 event->register_event = mem_cgroup_usage_register_event; 6038 event->unregister_event = mem_cgroup_usage_unregister_event; 6039 } else if (!strcmp(name, "memory.oom_control")) { 6040 event->register_event = mem_cgroup_oom_register_event; 6041 event->unregister_event = mem_cgroup_oom_unregister_event; 6042 } else if (!strcmp(name, "memory.pressure_level")) { 6043 event->register_event = vmpressure_register_event; 6044 event->unregister_event = vmpressure_unregister_event; 6045 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 6046 event->register_event = memsw_cgroup_usage_register_event; 6047 event->unregister_event = memsw_cgroup_usage_unregister_event; 6048 } else { 6049 ret = -EINVAL; 6050 goto out_put_cfile; 6051 } 6052 6053 /* 6054 * Verify @cfile should belong to @css. Also, remaining events are 6055 * automatically removed on cgroup destruction but the removal is 6056 * asynchronous, so take an extra ref on @css. 6057 */ 6058 cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent, 6059 &memory_cgrp_subsys); 6060 ret = -EINVAL; 6061 if (IS_ERR(cfile_css)) 6062 goto out_put_cfile; 6063 if (cfile_css != css) { 6064 css_put(cfile_css); 6065 goto out_put_cfile; 6066 } 6067 6068 ret = event->register_event(memcg, event->eventfd, buffer); 6069 if (ret) 6070 goto out_put_css; 6071 6072 efile.file->f_op->poll(efile.file, &event->pt); 6073 6074 spin_lock(&memcg->event_list_lock); 6075 list_add(&event->list, &memcg->event_list); 6076 spin_unlock(&memcg->event_list_lock); 6077 6078 fdput(cfile); 6079 fdput(efile); 6080 6081 return 0; 6082 6083 out_put_css: 6084 css_put(css); 6085 out_put_cfile: 6086 fdput(cfile); 6087 out_put_eventfd: 6088 eventfd_ctx_put(event->eventfd); 6089 out_put_efile: 6090 fdput(efile); 6091 out_kfree: 6092 kfree(event); 6093 6094 return ret; 6095 } 6096 6097 static struct cftype mem_cgroup_files[] = { 6098 { 6099 .name = "usage_in_bytes", 6100 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 6101 .read_u64 = mem_cgroup_read_u64, 6102 }, 6103 { 6104 .name = "max_usage_in_bytes", 6105 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 6106 .trigger = mem_cgroup_reset, 6107 .read_u64 = mem_cgroup_read_u64, 6108 }, 6109 { 6110 .name = "limit_in_bytes", 6111 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 6112 .write_string = mem_cgroup_write, 6113 .read_u64 = mem_cgroup_read_u64, 6114 }, 6115 { 6116 .name = "soft_limit_in_bytes", 6117 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 6118 .write_string = mem_cgroup_write, 6119 .read_u64 = mem_cgroup_read_u64, 6120 }, 6121 { 6122 .name = "failcnt", 6123 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 6124 .trigger = mem_cgroup_reset, 6125 .read_u64 = mem_cgroup_read_u64, 6126 }, 6127 { 6128 .name = "stat", 6129 .seq_show = memcg_stat_show, 6130 }, 6131 { 6132 .name = "force_empty", 6133 .trigger = mem_cgroup_force_empty_write, 6134 }, 6135 { 6136 .name = "use_hierarchy", 6137 .flags = CFTYPE_INSANE, 6138 .write_u64 = mem_cgroup_hierarchy_write, 6139 .read_u64 = mem_cgroup_hierarchy_read, 6140 }, 6141 { 6142 .name = "cgroup.event_control", /* XXX: for compat */ 6143 .write_string = memcg_write_event_control, 6144 .flags = CFTYPE_NO_PREFIX, 6145 .mode = S_IWUGO, 6146 }, 6147 { 6148 .name = "swappiness", 6149 .read_u64 = mem_cgroup_swappiness_read, 6150 .write_u64 = mem_cgroup_swappiness_write, 6151 }, 6152 { 6153 .name = "move_charge_at_immigrate", 6154 .read_u64 = mem_cgroup_move_charge_read, 6155 .write_u64 = mem_cgroup_move_charge_write, 6156 }, 6157 { 6158 .name = "oom_control", 6159 .seq_show = mem_cgroup_oom_control_read, 6160 .write_u64 = mem_cgroup_oom_control_write, 6161 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 6162 }, 6163 { 6164 .name = "pressure_level", 6165 }, 6166 #ifdef CONFIG_NUMA 6167 { 6168 .name = "numa_stat", 6169 .seq_show = memcg_numa_stat_show, 6170 }, 6171 #endif 6172 #ifdef CONFIG_MEMCG_KMEM 6173 { 6174 .name = "kmem.limit_in_bytes", 6175 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 6176 .write_string = mem_cgroup_write, 6177 .read_u64 = mem_cgroup_read_u64, 6178 }, 6179 { 6180 .name = "kmem.usage_in_bytes", 6181 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 6182 .read_u64 = mem_cgroup_read_u64, 6183 }, 6184 { 6185 .name = "kmem.failcnt", 6186 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 6187 .trigger = mem_cgroup_reset, 6188 .read_u64 = mem_cgroup_read_u64, 6189 }, 6190 { 6191 .name = "kmem.max_usage_in_bytes", 6192 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 6193 .trigger = mem_cgroup_reset, 6194 .read_u64 = mem_cgroup_read_u64, 6195 }, 6196 #ifdef CONFIG_SLABINFO 6197 { 6198 .name = "kmem.slabinfo", 6199 .seq_show = mem_cgroup_slabinfo_read, 6200 }, 6201 #endif 6202 #endif 6203 { }, /* terminate */ 6204 }; 6205 6206 #ifdef CONFIG_MEMCG_SWAP 6207 static struct cftype memsw_cgroup_files[] = { 6208 { 6209 .name = "memsw.usage_in_bytes", 6210 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6211 .read_u64 = mem_cgroup_read_u64, 6212 }, 6213 { 6214 .name = "memsw.max_usage_in_bytes", 6215 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6216 .trigger = mem_cgroup_reset, 6217 .read_u64 = mem_cgroup_read_u64, 6218 }, 6219 { 6220 .name = "memsw.limit_in_bytes", 6221 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6222 .write_string = mem_cgroup_write, 6223 .read_u64 = mem_cgroup_read_u64, 6224 }, 6225 { 6226 .name = "memsw.failcnt", 6227 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6228 .trigger = mem_cgroup_reset, 6229 .read_u64 = mem_cgroup_read_u64, 6230 }, 6231 { }, /* terminate */ 6232 }; 6233 #endif 6234 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6235 { 6236 struct mem_cgroup_per_node *pn; 6237 struct mem_cgroup_per_zone *mz; 6238 int zone, tmp = node; 6239 /* 6240 * This routine is called against possible nodes. 6241 * But it's BUG to call kmalloc() against offline node. 6242 * 6243 * TODO: this routine can waste much memory for nodes which will 6244 * never be onlined. It's better to use memory hotplug callback 6245 * function. 6246 */ 6247 if (!node_state(node, N_NORMAL_MEMORY)) 6248 tmp = -1; 6249 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 6250 if (!pn) 6251 return 1; 6252 6253 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6254 mz = &pn->zoneinfo[zone]; 6255 lruvec_init(&mz->lruvec); 6256 mz->usage_in_excess = 0; 6257 mz->on_tree = false; 6258 mz->memcg = memcg; 6259 } 6260 memcg->nodeinfo[node] = pn; 6261 return 0; 6262 } 6263 6264 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6265 { 6266 kfree(memcg->nodeinfo[node]); 6267 } 6268 6269 static struct mem_cgroup *mem_cgroup_alloc(void) 6270 { 6271 struct mem_cgroup *memcg; 6272 size_t size; 6273 6274 size = sizeof(struct mem_cgroup); 6275 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 6276 6277 memcg = kzalloc(size, GFP_KERNEL); 6278 if (!memcg) 6279 return NULL; 6280 6281 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 6282 if (!memcg->stat) 6283 goto out_free; 6284 spin_lock_init(&memcg->pcp_counter_lock); 6285 return memcg; 6286 6287 out_free: 6288 kfree(memcg); 6289 return NULL; 6290 } 6291 6292 /* 6293 * At destroying mem_cgroup, references from swap_cgroup can remain. 6294 * (scanning all at force_empty is too costly...) 6295 * 6296 * Instead of clearing all references at force_empty, we remember 6297 * the number of reference from swap_cgroup and free mem_cgroup when 6298 * it goes down to 0. 6299 * 6300 * Removal of cgroup itself succeeds regardless of refs from swap. 6301 */ 6302 6303 static void __mem_cgroup_free(struct mem_cgroup *memcg) 6304 { 6305 int node; 6306 6307 mem_cgroup_remove_from_trees(memcg); 6308 6309 for_each_node(node) 6310 free_mem_cgroup_per_zone_info(memcg, node); 6311 6312 free_percpu(memcg->stat); 6313 6314 /* 6315 * We need to make sure that (at least for now), the jump label 6316 * destruction code runs outside of the cgroup lock. This is because 6317 * get_online_cpus(), which is called from the static_branch update, 6318 * can't be called inside the cgroup_lock. cpusets are the ones 6319 * enforcing this dependency, so if they ever change, we might as well. 6320 * 6321 * schedule_work() will guarantee this happens. Be careful if you need 6322 * to move this code around, and make sure it is outside 6323 * the cgroup_lock. 6324 */ 6325 disarm_static_keys(memcg); 6326 kfree(memcg); 6327 } 6328 6329 /* 6330 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 6331 */ 6332 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 6333 { 6334 if (!memcg->res.parent) 6335 return NULL; 6336 return mem_cgroup_from_res_counter(memcg->res.parent, res); 6337 } 6338 EXPORT_SYMBOL(parent_mem_cgroup); 6339 6340 static void __init mem_cgroup_soft_limit_tree_init(void) 6341 { 6342 struct mem_cgroup_tree_per_node *rtpn; 6343 struct mem_cgroup_tree_per_zone *rtpz; 6344 int tmp, node, zone; 6345 6346 for_each_node(node) { 6347 tmp = node; 6348 if (!node_state(node, N_NORMAL_MEMORY)) 6349 tmp = -1; 6350 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 6351 BUG_ON(!rtpn); 6352 6353 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6354 6355 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6356 rtpz = &rtpn->rb_tree_per_zone[zone]; 6357 rtpz->rb_root = RB_ROOT; 6358 spin_lock_init(&rtpz->lock); 6359 } 6360 } 6361 } 6362 6363 static struct cgroup_subsys_state * __ref 6364 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6365 { 6366 struct mem_cgroup *memcg; 6367 long error = -ENOMEM; 6368 int node; 6369 6370 memcg = mem_cgroup_alloc(); 6371 if (!memcg) 6372 return ERR_PTR(error); 6373 6374 for_each_node(node) 6375 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 6376 goto free_out; 6377 6378 /* root ? */ 6379 if (parent_css == NULL) { 6380 root_mem_cgroup = memcg; 6381 res_counter_init(&memcg->res, NULL); 6382 res_counter_init(&memcg->memsw, NULL); 6383 res_counter_init(&memcg->kmem, NULL); 6384 } 6385 6386 memcg->last_scanned_node = MAX_NUMNODES; 6387 INIT_LIST_HEAD(&memcg->oom_notify); 6388 memcg->move_charge_at_immigrate = 0; 6389 mutex_init(&memcg->thresholds_lock); 6390 spin_lock_init(&memcg->move_lock); 6391 vmpressure_init(&memcg->vmpressure); 6392 INIT_LIST_HEAD(&memcg->event_list); 6393 spin_lock_init(&memcg->event_list_lock); 6394 6395 return &memcg->css; 6396 6397 free_out: 6398 __mem_cgroup_free(memcg); 6399 return ERR_PTR(error); 6400 } 6401 6402 static int 6403 mem_cgroup_css_online(struct cgroup_subsys_state *css) 6404 { 6405 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6406 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css)); 6407 6408 if (css->cgroup->id > MEM_CGROUP_ID_MAX) 6409 return -ENOSPC; 6410 6411 if (!parent) 6412 return 0; 6413 6414 mutex_lock(&memcg_create_mutex); 6415 6416 memcg->use_hierarchy = parent->use_hierarchy; 6417 memcg->oom_kill_disable = parent->oom_kill_disable; 6418 memcg->swappiness = mem_cgroup_swappiness(parent); 6419 6420 if (parent->use_hierarchy) { 6421 res_counter_init(&memcg->res, &parent->res); 6422 res_counter_init(&memcg->memsw, &parent->memsw); 6423 res_counter_init(&memcg->kmem, &parent->kmem); 6424 6425 /* 6426 * No need to take a reference to the parent because cgroup 6427 * core guarantees its existence. 6428 */ 6429 } else { 6430 res_counter_init(&memcg->res, NULL); 6431 res_counter_init(&memcg->memsw, NULL); 6432 res_counter_init(&memcg->kmem, NULL); 6433 /* 6434 * Deeper hierachy with use_hierarchy == false doesn't make 6435 * much sense so let cgroup subsystem know about this 6436 * unfortunate state in our controller. 6437 */ 6438 if (parent != root_mem_cgroup) 6439 memory_cgrp_subsys.broken_hierarchy = true; 6440 } 6441 mutex_unlock(&memcg_create_mutex); 6442 6443 return memcg_init_kmem(memcg, &memory_cgrp_subsys); 6444 } 6445 6446 /* 6447 * Announce all parents that a group from their hierarchy is gone. 6448 */ 6449 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg) 6450 { 6451 struct mem_cgroup *parent = memcg; 6452 6453 while ((parent = parent_mem_cgroup(parent))) 6454 mem_cgroup_iter_invalidate(parent); 6455 6456 /* 6457 * if the root memcg is not hierarchical we have to check it 6458 * explicitely. 6459 */ 6460 if (!root_mem_cgroup->use_hierarchy) 6461 mem_cgroup_iter_invalidate(root_mem_cgroup); 6462 } 6463 6464 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 6465 { 6466 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6467 struct mem_cgroup_event *event, *tmp; 6468 struct cgroup_subsys_state *iter; 6469 6470 /* 6471 * Unregister events and notify userspace. 6472 * Notify userspace about cgroup removing only after rmdir of cgroup 6473 * directory to avoid race between userspace and kernelspace. 6474 */ 6475 spin_lock(&memcg->event_list_lock); 6476 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 6477 list_del_init(&event->list); 6478 schedule_work(&event->remove); 6479 } 6480 spin_unlock(&memcg->event_list_lock); 6481 6482 kmem_cgroup_css_offline(memcg); 6483 6484 mem_cgroup_invalidate_reclaim_iterators(memcg); 6485 6486 /* 6487 * This requires that offlining is serialized. Right now that is 6488 * guaranteed because css_killed_work_fn() holds the cgroup_mutex. 6489 */ 6490 css_for_each_descendant_post(iter, css) 6491 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter)); 6492 6493 mem_cgroup_destroy_all_caches(memcg); 6494 vmpressure_cleanup(&memcg->vmpressure); 6495 } 6496 6497 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 6498 { 6499 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6500 /* 6501 * XXX: css_offline() would be where we should reparent all 6502 * memory to prepare the cgroup for destruction. However, 6503 * memcg does not do css_tryget() and res_counter charging 6504 * under the same RCU lock region, which means that charging 6505 * could race with offlining. Offlining only happens to 6506 * cgroups with no tasks in them but charges can show up 6507 * without any tasks from the swapin path when the target 6508 * memcg is looked up from the swapout record and not from the 6509 * current task as it usually is. A race like this can leak 6510 * charges and put pages with stale cgroup pointers into 6511 * circulation: 6512 * 6513 * #0 #1 6514 * lookup_swap_cgroup_id() 6515 * rcu_read_lock() 6516 * mem_cgroup_lookup() 6517 * css_tryget() 6518 * rcu_read_unlock() 6519 * disable css_tryget() 6520 * call_rcu() 6521 * offline_css() 6522 * reparent_charges() 6523 * res_counter_charge() 6524 * css_put() 6525 * css_free() 6526 * pc->mem_cgroup = dead memcg 6527 * add page to lru 6528 * 6529 * The bulk of the charges are still moved in offline_css() to 6530 * avoid pinning a lot of pages in case a long-term reference 6531 * like a swapout record is deferring the css_free() to long 6532 * after offlining. But this makes sure we catch any charges 6533 * made after offlining: 6534 */ 6535 mem_cgroup_reparent_charges(memcg); 6536 6537 memcg_destroy_kmem(memcg); 6538 __mem_cgroup_free(memcg); 6539 } 6540 6541 #ifdef CONFIG_MMU 6542 /* Handlers for move charge at task migration. */ 6543 #define PRECHARGE_COUNT_AT_ONCE 256 6544 static int mem_cgroup_do_precharge(unsigned long count) 6545 { 6546 int ret = 0; 6547 int batch_count = PRECHARGE_COUNT_AT_ONCE; 6548 struct mem_cgroup *memcg = mc.to; 6549 6550 if (mem_cgroup_is_root(memcg)) { 6551 mc.precharge += count; 6552 /* we don't need css_get for root */ 6553 return ret; 6554 } 6555 /* try to charge at once */ 6556 if (count > 1) { 6557 struct res_counter *dummy; 6558 /* 6559 * "memcg" cannot be under rmdir() because we've already checked 6560 * by cgroup_lock_live_cgroup() that it is not removed and we 6561 * are still under the same cgroup_mutex. So we can postpone 6562 * css_get(). 6563 */ 6564 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 6565 goto one_by_one; 6566 if (do_swap_account && res_counter_charge(&memcg->memsw, 6567 PAGE_SIZE * count, &dummy)) { 6568 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 6569 goto one_by_one; 6570 } 6571 mc.precharge += count; 6572 return ret; 6573 } 6574 one_by_one: 6575 /* fall back to one by one charge */ 6576 while (count--) { 6577 if (signal_pending(current)) { 6578 ret = -EINTR; 6579 break; 6580 } 6581 if (!batch_count--) { 6582 batch_count = PRECHARGE_COUNT_AT_ONCE; 6583 cond_resched(); 6584 } 6585 ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false); 6586 if (ret) 6587 /* mem_cgroup_clear_mc() will do uncharge later */ 6588 return ret; 6589 mc.precharge++; 6590 } 6591 return ret; 6592 } 6593 6594 /** 6595 * get_mctgt_type - get target type of moving charge 6596 * @vma: the vma the pte to be checked belongs 6597 * @addr: the address corresponding to the pte to be checked 6598 * @ptent: the pte to be checked 6599 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6600 * 6601 * Returns 6602 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 6603 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 6604 * move charge. if @target is not NULL, the page is stored in target->page 6605 * with extra refcnt got(Callers should handle it). 6606 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 6607 * target for charge migration. if @target is not NULL, the entry is stored 6608 * in target->ent. 6609 * 6610 * Called with pte lock held. 6611 */ 6612 union mc_target { 6613 struct page *page; 6614 swp_entry_t ent; 6615 }; 6616 6617 enum mc_target_type { 6618 MC_TARGET_NONE = 0, 6619 MC_TARGET_PAGE, 6620 MC_TARGET_SWAP, 6621 }; 6622 6623 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 6624 unsigned long addr, pte_t ptent) 6625 { 6626 struct page *page = vm_normal_page(vma, addr, ptent); 6627 6628 if (!page || !page_mapped(page)) 6629 return NULL; 6630 if (PageAnon(page)) { 6631 /* we don't move shared anon */ 6632 if (!move_anon()) 6633 return NULL; 6634 } else if (!move_file()) 6635 /* we ignore mapcount for file pages */ 6636 return NULL; 6637 if (!get_page_unless_zero(page)) 6638 return NULL; 6639 6640 return page; 6641 } 6642 6643 #ifdef CONFIG_SWAP 6644 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6645 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6646 { 6647 struct page *page = NULL; 6648 swp_entry_t ent = pte_to_swp_entry(ptent); 6649 6650 if (!move_anon() || non_swap_entry(ent)) 6651 return NULL; 6652 /* 6653 * Because lookup_swap_cache() updates some statistics counter, 6654 * we call find_get_page() with swapper_space directly. 6655 */ 6656 page = find_get_page(swap_address_space(ent), ent.val); 6657 if (do_swap_account) 6658 entry->val = ent.val; 6659 6660 return page; 6661 } 6662 #else 6663 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6664 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6665 { 6666 return NULL; 6667 } 6668 #endif 6669 6670 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 6671 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6672 { 6673 struct page *page = NULL; 6674 struct address_space *mapping; 6675 pgoff_t pgoff; 6676 6677 if (!vma->vm_file) /* anonymous vma */ 6678 return NULL; 6679 if (!move_file()) 6680 return NULL; 6681 6682 mapping = vma->vm_file->f_mapping; 6683 if (pte_none(ptent)) 6684 pgoff = linear_page_index(vma, addr); 6685 else /* pte_file(ptent) is true */ 6686 pgoff = pte_to_pgoff(ptent); 6687 6688 /* page is moved even if it's not RSS of this task(page-faulted). */ 6689 page = find_get_page(mapping, pgoff); 6690 6691 #ifdef CONFIG_SWAP 6692 /* shmem/tmpfs may report page out on swap: account for that too. */ 6693 if (radix_tree_exceptional_entry(page)) { 6694 swp_entry_t swap = radix_to_swp_entry(page); 6695 if (do_swap_account) 6696 *entry = swap; 6697 page = find_get_page(swap_address_space(swap), swap.val); 6698 } 6699 #endif 6700 return page; 6701 } 6702 6703 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6704 unsigned long addr, pte_t ptent, union mc_target *target) 6705 { 6706 struct page *page = NULL; 6707 struct page_cgroup *pc; 6708 enum mc_target_type ret = MC_TARGET_NONE; 6709 swp_entry_t ent = { .val = 0 }; 6710 6711 if (pte_present(ptent)) 6712 page = mc_handle_present_pte(vma, addr, ptent); 6713 else if (is_swap_pte(ptent)) 6714 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 6715 else if (pte_none(ptent) || pte_file(ptent)) 6716 page = mc_handle_file_pte(vma, addr, ptent, &ent); 6717 6718 if (!page && !ent.val) 6719 return ret; 6720 if (page) { 6721 pc = lookup_page_cgroup(page); 6722 /* 6723 * Do only loose check w/o page_cgroup lock. 6724 * mem_cgroup_move_account() checks the pc is valid or not under 6725 * the lock. 6726 */ 6727 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6728 ret = MC_TARGET_PAGE; 6729 if (target) 6730 target->page = page; 6731 } 6732 if (!ret || !target) 6733 put_page(page); 6734 } 6735 /* There is a swap entry and a page doesn't exist or isn't charged */ 6736 if (ent.val && !ret && 6737 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 6738 ret = MC_TARGET_SWAP; 6739 if (target) 6740 target->ent = ent; 6741 } 6742 return ret; 6743 } 6744 6745 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6746 /* 6747 * We don't consider swapping or file mapped pages because THP does not 6748 * support them for now. 6749 * Caller should make sure that pmd_trans_huge(pmd) is true. 6750 */ 6751 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6752 unsigned long addr, pmd_t pmd, union mc_target *target) 6753 { 6754 struct page *page = NULL; 6755 struct page_cgroup *pc; 6756 enum mc_target_type ret = MC_TARGET_NONE; 6757 6758 page = pmd_page(pmd); 6759 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 6760 if (!move_anon()) 6761 return ret; 6762 pc = lookup_page_cgroup(page); 6763 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6764 ret = MC_TARGET_PAGE; 6765 if (target) { 6766 get_page(page); 6767 target->page = page; 6768 } 6769 } 6770 return ret; 6771 } 6772 #else 6773 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6774 unsigned long addr, pmd_t pmd, union mc_target *target) 6775 { 6776 return MC_TARGET_NONE; 6777 } 6778 #endif 6779 6780 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6781 unsigned long addr, unsigned long end, 6782 struct mm_walk *walk) 6783 { 6784 struct vm_area_struct *vma = walk->private; 6785 pte_t *pte; 6786 spinlock_t *ptl; 6787 6788 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 6789 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6790 mc.precharge += HPAGE_PMD_NR; 6791 spin_unlock(ptl); 6792 return 0; 6793 } 6794 6795 if (pmd_trans_unstable(pmd)) 6796 return 0; 6797 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6798 for (; addr != end; pte++, addr += PAGE_SIZE) 6799 if (get_mctgt_type(vma, addr, *pte, NULL)) 6800 mc.precharge++; /* increment precharge temporarily */ 6801 pte_unmap_unlock(pte - 1, ptl); 6802 cond_resched(); 6803 6804 return 0; 6805 } 6806 6807 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6808 { 6809 unsigned long precharge; 6810 struct vm_area_struct *vma; 6811 6812 down_read(&mm->mmap_sem); 6813 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6814 struct mm_walk mem_cgroup_count_precharge_walk = { 6815 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6816 .mm = mm, 6817 .private = vma, 6818 }; 6819 if (is_vm_hugetlb_page(vma)) 6820 continue; 6821 walk_page_range(vma->vm_start, vma->vm_end, 6822 &mem_cgroup_count_precharge_walk); 6823 } 6824 up_read(&mm->mmap_sem); 6825 6826 precharge = mc.precharge; 6827 mc.precharge = 0; 6828 6829 return precharge; 6830 } 6831 6832 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6833 { 6834 unsigned long precharge = mem_cgroup_count_precharge(mm); 6835 6836 VM_BUG_ON(mc.moving_task); 6837 mc.moving_task = current; 6838 return mem_cgroup_do_precharge(precharge); 6839 } 6840 6841 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6842 static void __mem_cgroup_clear_mc(void) 6843 { 6844 struct mem_cgroup *from = mc.from; 6845 struct mem_cgroup *to = mc.to; 6846 int i; 6847 6848 /* we must uncharge all the leftover precharges from mc.to */ 6849 if (mc.precharge) { 6850 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 6851 mc.precharge = 0; 6852 } 6853 /* 6854 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6855 * we must uncharge here. 6856 */ 6857 if (mc.moved_charge) { 6858 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6859 mc.moved_charge = 0; 6860 } 6861 /* we must fixup refcnts and charges */ 6862 if (mc.moved_swap) { 6863 /* uncharge swap account from the old cgroup */ 6864 if (!mem_cgroup_is_root(mc.from)) 6865 res_counter_uncharge(&mc.from->memsw, 6866 PAGE_SIZE * mc.moved_swap); 6867 6868 for (i = 0; i < mc.moved_swap; i++) 6869 css_put(&mc.from->css); 6870 6871 if (!mem_cgroup_is_root(mc.to)) { 6872 /* 6873 * we charged both to->res and to->memsw, so we should 6874 * uncharge to->res. 6875 */ 6876 res_counter_uncharge(&mc.to->res, 6877 PAGE_SIZE * mc.moved_swap); 6878 } 6879 /* we've already done css_get(mc.to) */ 6880 mc.moved_swap = 0; 6881 } 6882 memcg_oom_recover(from); 6883 memcg_oom_recover(to); 6884 wake_up_all(&mc.waitq); 6885 } 6886 6887 static void mem_cgroup_clear_mc(void) 6888 { 6889 struct mem_cgroup *from = mc.from; 6890 6891 /* 6892 * we must clear moving_task before waking up waiters at the end of 6893 * task migration. 6894 */ 6895 mc.moving_task = NULL; 6896 __mem_cgroup_clear_mc(); 6897 spin_lock(&mc.lock); 6898 mc.from = NULL; 6899 mc.to = NULL; 6900 spin_unlock(&mc.lock); 6901 mem_cgroup_end_move(from); 6902 } 6903 6904 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 6905 struct cgroup_taskset *tset) 6906 { 6907 struct task_struct *p = cgroup_taskset_first(tset); 6908 int ret = 0; 6909 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6910 unsigned long move_charge_at_immigrate; 6911 6912 /* 6913 * We are now commited to this value whatever it is. Changes in this 6914 * tunable will only affect upcoming migrations, not the current one. 6915 * So we need to save it, and keep it going. 6916 */ 6917 move_charge_at_immigrate = memcg->move_charge_at_immigrate; 6918 if (move_charge_at_immigrate) { 6919 struct mm_struct *mm; 6920 struct mem_cgroup *from = mem_cgroup_from_task(p); 6921 6922 VM_BUG_ON(from == memcg); 6923 6924 mm = get_task_mm(p); 6925 if (!mm) 6926 return 0; 6927 /* We move charges only when we move a owner of the mm */ 6928 if (mm->owner == p) { 6929 VM_BUG_ON(mc.from); 6930 VM_BUG_ON(mc.to); 6931 VM_BUG_ON(mc.precharge); 6932 VM_BUG_ON(mc.moved_charge); 6933 VM_BUG_ON(mc.moved_swap); 6934 mem_cgroup_start_move(from); 6935 spin_lock(&mc.lock); 6936 mc.from = from; 6937 mc.to = memcg; 6938 mc.immigrate_flags = move_charge_at_immigrate; 6939 spin_unlock(&mc.lock); 6940 /* We set mc.moving_task later */ 6941 6942 ret = mem_cgroup_precharge_mc(mm); 6943 if (ret) 6944 mem_cgroup_clear_mc(); 6945 } 6946 mmput(mm); 6947 } 6948 return ret; 6949 } 6950 6951 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 6952 struct cgroup_taskset *tset) 6953 { 6954 mem_cgroup_clear_mc(); 6955 } 6956 6957 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6958 unsigned long addr, unsigned long end, 6959 struct mm_walk *walk) 6960 { 6961 int ret = 0; 6962 struct vm_area_struct *vma = walk->private; 6963 pte_t *pte; 6964 spinlock_t *ptl; 6965 enum mc_target_type target_type; 6966 union mc_target target; 6967 struct page *page; 6968 struct page_cgroup *pc; 6969 6970 /* 6971 * We don't take compound_lock() here but no race with splitting thp 6972 * happens because: 6973 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 6974 * under splitting, which means there's no concurrent thp split, 6975 * - if another thread runs into split_huge_page() just after we 6976 * entered this if-block, the thread must wait for page table lock 6977 * to be unlocked in __split_huge_page_splitting(), where the main 6978 * part of thp split is not executed yet. 6979 */ 6980 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 6981 if (mc.precharge < HPAGE_PMD_NR) { 6982 spin_unlock(ptl); 6983 return 0; 6984 } 6985 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6986 if (target_type == MC_TARGET_PAGE) { 6987 page = target.page; 6988 if (!isolate_lru_page(page)) { 6989 pc = lookup_page_cgroup(page); 6990 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 6991 pc, mc.from, mc.to)) { 6992 mc.precharge -= HPAGE_PMD_NR; 6993 mc.moved_charge += HPAGE_PMD_NR; 6994 } 6995 putback_lru_page(page); 6996 } 6997 put_page(page); 6998 } 6999 spin_unlock(ptl); 7000 return 0; 7001 } 7002 7003 if (pmd_trans_unstable(pmd)) 7004 return 0; 7005 retry: 7006 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 7007 for (; addr != end; addr += PAGE_SIZE) { 7008 pte_t ptent = *(pte++); 7009 swp_entry_t ent; 7010 7011 if (!mc.precharge) 7012 break; 7013 7014 switch (get_mctgt_type(vma, addr, ptent, &target)) { 7015 case MC_TARGET_PAGE: 7016 page = target.page; 7017 if (isolate_lru_page(page)) 7018 goto put; 7019 pc = lookup_page_cgroup(page); 7020 if (!mem_cgroup_move_account(page, 1, pc, 7021 mc.from, mc.to)) { 7022 mc.precharge--; 7023 /* we uncharge from mc.from later. */ 7024 mc.moved_charge++; 7025 } 7026 putback_lru_page(page); 7027 put: /* get_mctgt_type() gets the page */ 7028 put_page(page); 7029 break; 7030 case MC_TARGET_SWAP: 7031 ent = target.ent; 7032 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 7033 mc.precharge--; 7034 /* we fixup refcnts and charges later. */ 7035 mc.moved_swap++; 7036 } 7037 break; 7038 default: 7039 break; 7040 } 7041 } 7042 pte_unmap_unlock(pte - 1, ptl); 7043 cond_resched(); 7044 7045 if (addr != end) { 7046 /* 7047 * We have consumed all precharges we got in can_attach(). 7048 * We try charge one by one, but don't do any additional 7049 * charges to mc.to if we have failed in charge once in attach() 7050 * phase. 7051 */ 7052 ret = mem_cgroup_do_precharge(1); 7053 if (!ret) 7054 goto retry; 7055 } 7056 7057 return ret; 7058 } 7059 7060 static void mem_cgroup_move_charge(struct mm_struct *mm) 7061 { 7062 struct vm_area_struct *vma; 7063 7064 lru_add_drain_all(); 7065 retry: 7066 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 7067 /* 7068 * Someone who are holding the mmap_sem might be waiting in 7069 * waitq. So we cancel all extra charges, wake up all waiters, 7070 * and retry. Because we cancel precharges, we might not be able 7071 * to move enough charges, but moving charge is a best-effort 7072 * feature anyway, so it wouldn't be a big problem. 7073 */ 7074 __mem_cgroup_clear_mc(); 7075 cond_resched(); 7076 goto retry; 7077 } 7078 for (vma = mm->mmap; vma; vma = vma->vm_next) { 7079 int ret; 7080 struct mm_walk mem_cgroup_move_charge_walk = { 7081 .pmd_entry = mem_cgroup_move_charge_pte_range, 7082 .mm = mm, 7083 .private = vma, 7084 }; 7085 if (is_vm_hugetlb_page(vma)) 7086 continue; 7087 ret = walk_page_range(vma->vm_start, vma->vm_end, 7088 &mem_cgroup_move_charge_walk); 7089 if (ret) 7090 /* 7091 * means we have consumed all precharges and failed in 7092 * doing additional charge. Just abandon here. 7093 */ 7094 break; 7095 } 7096 up_read(&mm->mmap_sem); 7097 } 7098 7099 static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 7100 struct cgroup_taskset *tset) 7101 { 7102 struct task_struct *p = cgroup_taskset_first(tset); 7103 struct mm_struct *mm = get_task_mm(p); 7104 7105 if (mm) { 7106 if (mc.to) 7107 mem_cgroup_move_charge(mm); 7108 mmput(mm); 7109 } 7110 if (mc.to) 7111 mem_cgroup_clear_mc(); 7112 } 7113 #else /* !CONFIG_MMU */ 7114 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 7115 struct cgroup_taskset *tset) 7116 { 7117 return 0; 7118 } 7119 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 7120 struct cgroup_taskset *tset) 7121 { 7122 } 7123 static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 7124 struct cgroup_taskset *tset) 7125 { 7126 } 7127 #endif 7128 7129 /* 7130 * Cgroup retains root cgroups across [un]mount cycles making it necessary 7131 * to verify sane_behavior flag on each mount attempt. 7132 */ 7133 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 7134 { 7135 /* 7136 * use_hierarchy is forced with sane_behavior. cgroup core 7137 * guarantees that @root doesn't have any children, so turning it 7138 * on for the root memcg is enough. 7139 */ 7140 if (cgroup_sane_behavior(root_css->cgroup)) 7141 mem_cgroup_from_css(root_css)->use_hierarchy = true; 7142 } 7143 7144 struct cgroup_subsys memory_cgrp_subsys = { 7145 .css_alloc = mem_cgroup_css_alloc, 7146 .css_online = mem_cgroup_css_online, 7147 .css_offline = mem_cgroup_css_offline, 7148 .css_free = mem_cgroup_css_free, 7149 .can_attach = mem_cgroup_can_attach, 7150 .cancel_attach = mem_cgroup_cancel_attach, 7151 .attach = mem_cgroup_move_task, 7152 .bind = mem_cgroup_bind, 7153 .base_cftypes = mem_cgroup_files, 7154 .early_init = 0, 7155 }; 7156 7157 #ifdef CONFIG_MEMCG_SWAP 7158 static int __init enable_swap_account(char *s) 7159 { 7160 if (!strcmp(s, "1")) 7161 really_do_swap_account = 1; 7162 else if (!strcmp(s, "0")) 7163 really_do_swap_account = 0; 7164 return 1; 7165 } 7166 __setup("swapaccount=", enable_swap_account); 7167 7168 static void __init memsw_file_init(void) 7169 { 7170 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files)); 7171 } 7172 7173 static void __init enable_swap_cgroup(void) 7174 { 7175 if (!mem_cgroup_disabled() && really_do_swap_account) { 7176 do_swap_account = 1; 7177 memsw_file_init(); 7178 } 7179 } 7180 7181 #else 7182 static void __init enable_swap_cgroup(void) 7183 { 7184 } 7185 #endif 7186 7187 /* 7188 * subsys_initcall() for memory controller. 7189 * 7190 * Some parts like hotcpu_notifier() have to be initialized from this context 7191 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 7192 * everything that doesn't depend on a specific mem_cgroup structure should 7193 * be initialized from here. 7194 */ 7195 static int __init mem_cgroup_init(void) 7196 { 7197 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 7198 enable_swap_cgroup(); 7199 mem_cgroup_soft_limit_tree_init(); 7200 memcg_stock_init(); 7201 return 0; 7202 } 7203 subsys_initcall(mem_cgroup_init); 7204