xref: /openbmc/linux/mm/memcontrol.c (revision 19dc81b4017baffd6e919fd71cfc8dcbd5442e15)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69 
70 #include <linux/uaccess.h>
71 
72 #include <trace/events/vmscan.h>
73 
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76 
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78 
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82 
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket __ro_after_init;
85 
86 /* Kernel memory accounting disabled? */
87 static bool cgroup_memory_nokmem __ro_after_init;
88 
89 /* Whether the swap controller is active */
90 #ifdef CONFIG_MEMCG_SWAP
91 bool cgroup_memory_noswap __ro_after_init;
92 #else
93 #define cgroup_memory_noswap		1
94 #endif
95 
96 #ifdef CONFIG_CGROUP_WRITEBACK
97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98 #endif
99 
100 /* Whether legacy memory+swap accounting is active */
101 static bool do_memsw_account(void)
102 {
103 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104 }
105 
106 #define THRESHOLDS_EVENTS_TARGET 128
107 #define SOFTLIMIT_EVENTS_TARGET 1024
108 
109 /*
110  * Cgroups above their limits are maintained in a RB-Tree, independent of
111  * their hierarchy representation
112  */
113 
114 struct mem_cgroup_tree_per_node {
115 	struct rb_root rb_root;
116 	struct rb_node *rb_rightmost;
117 	spinlock_t lock;
118 };
119 
120 struct mem_cgroup_tree {
121 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122 };
123 
124 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125 
126 /* for OOM */
127 struct mem_cgroup_eventfd_list {
128 	struct list_head list;
129 	struct eventfd_ctx *eventfd;
130 };
131 
132 /*
133  * cgroup_event represents events which userspace want to receive.
134  */
135 struct mem_cgroup_event {
136 	/*
137 	 * memcg which the event belongs to.
138 	 */
139 	struct mem_cgroup *memcg;
140 	/*
141 	 * eventfd to signal userspace about the event.
142 	 */
143 	struct eventfd_ctx *eventfd;
144 	/*
145 	 * Each of these stored in a list by the cgroup.
146 	 */
147 	struct list_head list;
148 	/*
149 	 * register_event() callback will be used to add new userspace
150 	 * waiter for changes related to this event.  Use eventfd_signal()
151 	 * on eventfd to send notification to userspace.
152 	 */
153 	int (*register_event)(struct mem_cgroup *memcg,
154 			      struct eventfd_ctx *eventfd, const char *args);
155 	/*
156 	 * unregister_event() callback will be called when userspace closes
157 	 * the eventfd or on cgroup removing.  This callback must be set,
158 	 * if you want provide notification functionality.
159 	 */
160 	void (*unregister_event)(struct mem_cgroup *memcg,
161 				 struct eventfd_ctx *eventfd);
162 	/*
163 	 * All fields below needed to unregister event when
164 	 * userspace closes eventfd.
165 	 */
166 	poll_table pt;
167 	wait_queue_head_t *wqh;
168 	wait_queue_entry_t wait;
169 	struct work_struct remove;
170 };
171 
172 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174 
175 /* Stuffs for move charges at task migration. */
176 /*
177  * Types of charges to be moved.
178  */
179 #define MOVE_ANON	0x1U
180 #define MOVE_FILE	0x2U
181 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
182 
183 /* "mc" and its members are protected by cgroup_mutex */
184 static struct move_charge_struct {
185 	spinlock_t	  lock; /* for from, to */
186 	struct mm_struct  *mm;
187 	struct mem_cgroup *from;
188 	struct mem_cgroup *to;
189 	unsigned long flags;
190 	unsigned long precharge;
191 	unsigned long moved_charge;
192 	unsigned long moved_swap;
193 	struct task_struct *moving_task;	/* a task moving charges */
194 	wait_queue_head_t waitq;		/* a waitq for other context */
195 } mc = {
196 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198 };
199 
200 /*
201  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
202  * limit reclaim to prevent infinite loops, if they ever occur.
203  */
204 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
205 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
206 
207 /* for encoding cft->private value on file */
208 enum res_type {
209 	_MEM,
210 	_MEMSWAP,
211 	_OOM_TYPE,
212 	_KMEM,
213 	_TCP,
214 };
215 
216 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
217 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
218 #define MEMFILE_ATTR(val)	((val) & 0xffff)
219 /* Used for OOM notifier */
220 #define OOM_CONTROL		(0)
221 
222 /*
223  * Iteration constructs for visiting all cgroups (under a tree).  If
224  * loops are exited prematurely (break), mem_cgroup_iter_break() must
225  * be used for reference counting.
226  */
227 #define for_each_mem_cgroup_tree(iter, root)		\
228 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
229 	     iter != NULL;				\
230 	     iter = mem_cgroup_iter(root, iter, NULL))
231 
232 #define for_each_mem_cgroup(iter)			\
233 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
234 	     iter != NULL;				\
235 	     iter = mem_cgroup_iter(NULL, iter, NULL))
236 
237 static inline bool task_is_dying(void)
238 {
239 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
240 		(current->flags & PF_EXITING);
241 }
242 
243 /* Some nice accessors for the vmpressure. */
244 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
245 {
246 	if (!memcg)
247 		memcg = root_mem_cgroup;
248 	return &memcg->vmpressure;
249 }
250 
251 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
252 {
253 	return container_of(vmpr, struct mem_cgroup, vmpressure);
254 }
255 
256 #ifdef CONFIG_MEMCG_KMEM
257 static DEFINE_SPINLOCK(objcg_lock);
258 
259 bool mem_cgroup_kmem_disabled(void)
260 {
261 	return cgroup_memory_nokmem;
262 }
263 
264 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
265 				      unsigned int nr_pages);
266 
267 static void obj_cgroup_release(struct percpu_ref *ref)
268 {
269 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
270 	unsigned int nr_bytes;
271 	unsigned int nr_pages;
272 	unsigned long flags;
273 
274 	/*
275 	 * At this point all allocated objects are freed, and
276 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
277 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
278 	 *
279 	 * The following sequence can lead to it:
280 	 * 1) CPU0: objcg == stock->cached_objcg
281 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
282 	 *          PAGE_SIZE bytes are charged
283 	 * 3) CPU1: a process from another memcg is allocating something,
284 	 *          the stock if flushed,
285 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
286 	 * 5) CPU0: we do release this object,
287 	 *          92 bytes are added to stock->nr_bytes
288 	 * 6) CPU0: stock is flushed,
289 	 *          92 bytes are added to objcg->nr_charged_bytes
290 	 *
291 	 * In the result, nr_charged_bytes == PAGE_SIZE.
292 	 * This page will be uncharged in obj_cgroup_release().
293 	 */
294 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
295 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
296 	nr_pages = nr_bytes >> PAGE_SHIFT;
297 
298 	if (nr_pages)
299 		obj_cgroup_uncharge_pages(objcg, nr_pages);
300 
301 	spin_lock_irqsave(&objcg_lock, flags);
302 	list_del(&objcg->list);
303 	spin_unlock_irqrestore(&objcg_lock, flags);
304 
305 	percpu_ref_exit(ref);
306 	kfree_rcu(objcg, rcu);
307 }
308 
309 static struct obj_cgroup *obj_cgroup_alloc(void)
310 {
311 	struct obj_cgroup *objcg;
312 	int ret;
313 
314 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
315 	if (!objcg)
316 		return NULL;
317 
318 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
319 			      GFP_KERNEL);
320 	if (ret) {
321 		kfree(objcg);
322 		return NULL;
323 	}
324 	INIT_LIST_HEAD(&objcg->list);
325 	return objcg;
326 }
327 
328 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
329 				  struct mem_cgroup *parent)
330 {
331 	struct obj_cgroup *objcg, *iter;
332 
333 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
334 
335 	spin_lock_irq(&objcg_lock);
336 
337 	/* 1) Ready to reparent active objcg. */
338 	list_add(&objcg->list, &memcg->objcg_list);
339 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
340 	list_for_each_entry(iter, &memcg->objcg_list, list)
341 		WRITE_ONCE(iter->memcg, parent);
342 	/* 3) Move already reparented objcgs to the parent's list */
343 	list_splice(&memcg->objcg_list, &parent->objcg_list);
344 
345 	spin_unlock_irq(&objcg_lock);
346 
347 	percpu_ref_kill(&objcg->refcnt);
348 }
349 
350 /*
351  * This will be used as a shrinker list's index.
352  * The main reason for not using cgroup id for this:
353  *  this works better in sparse environments, where we have a lot of memcgs,
354  *  but only a few kmem-limited. Or also, if we have, for instance, 200
355  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
356  *  200 entry array for that.
357  *
358  * The current size of the caches array is stored in memcg_nr_cache_ids. It
359  * will double each time we have to increase it.
360  */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363 
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366 
367 void memcg_get_cache_ids(void)
368 {
369 	down_read(&memcg_cache_ids_sem);
370 }
371 
372 void memcg_put_cache_ids(void)
373 {
374 	up_read(&memcg_cache_ids_sem);
375 }
376 
377 /*
378  * MIN_SIZE is different than 1, because we would like to avoid going through
379  * the alloc/free process all the time. In a small machine, 4 kmem-limited
380  * cgroups is a reasonable guess. In the future, it could be a parameter or
381  * tunable, but that is strictly not necessary.
382  *
383  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384  * this constant directly from cgroup, but it is understandable that this is
385  * better kept as an internal representation in cgroup.c. In any case, the
386  * cgrp_id space is not getting any smaller, and we don't have to necessarily
387  * increase ours as well if it increases.
388  */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391 
392 /*
393  * A lot of the calls to the cache allocation functions are expected to be
394  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395  * conditional to this static branch, we'll have to allow modules that does
396  * kmem_cache_alloc and the such to see this symbol as well
397  */
398 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 #endif
401 
402 /**
403  * mem_cgroup_css_from_page - css of the memcg associated with a page
404  * @page: page of interest
405  *
406  * If memcg is bound to the default hierarchy, css of the memcg associated
407  * with @page is returned.  The returned css remains associated with @page
408  * until it is released.
409  *
410  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
411  * is returned.
412  */
413 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
414 {
415 	struct mem_cgroup *memcg;
416 
417 	memcg = page_memcg(page);
418 
419 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
420 		memcg = root_mem_cgroup;
421 
422 	return &memcg->css;
423 }
424 
425 /**
426  * page_cgroup_ino - return inode number of the memcg a page is charged to
427  * @page: the page
428  *
429  * Look up the closest online ancestor of the memory cgroup @page is charged to
430  * and return its inode number or 0 if @page is not charged to any cgroup. It
431  * is safe to call this function without holding a reference to @page.
432  *
433  * Note, this function is inherently racy, because there is nothing to prevent
434  * the cgroup inode from getting torn down and potentially reallocated a moment
435  * after page_cgroup_ino() returns, so it only should be used by callers that
436  * do not care (such as procfs interfaces).
437  */
438 ino_t page_cgroup_ino(struct page *page)
439 {
440 	struct mem_cgroup *memcg;
441 	unsigned long ino = 0;
442 
443 	rcu_read_lock();
444 	memcg = page_memcg_check(page);
445 
446 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
447 		memcg = parent_mem_cgroup(memcg);
448 	if (memcg)
449 		ino = cgroup_ino(memcg->css.cgroup);
450 	rcu_read_unlock();
451 	return ino;
452 }
453 
454 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
455 					 struct mem_cgroup_tree_per_node *mctz,
456 					 unsigned long new_usage_in_excess)
457 {
458 	struct rb_node **p = &mctz->rb_root.rb_node;
459 	struct rb_node *parent = NULL;
460 	struct mem_cgroup_per_node *mz_node;
461 	bool rightmost = true;
462 
463 	if (mz->on_tree)
464 		return;
465 
466 	mz->usage_in_excess = new_usage_in_excess;
467 	if (!mz->usage_in_excess)
468 		return;
469 	while (*p) {
470 		parent = *p;
471 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
472 					tree_node);
473 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
474 			p = &(*p)->rb_left;
475 			rightmost = false;
476 		} else {
477 			p = &(*p)->rb_right;
478 		}
479 	}
480 
481 	if (rightmost)
482 		mctz->rb_rightmost = &mz->tree_node;
483 
484 	rb_link_node(&mz->tree_node, parent, p);
485 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
486 	mz->on_tree = true;
487 }
488 
489 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
490 					 struct mem_cgroup_tree_per_node *mctz)
491 {
492 	if (!mz->on_tree)
493 		return;
494 
495 	if (&mz->tree_node == mctz->rb_rightmost)
496 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
497 
498 	rb_erase(&mz->tree_node, &mctz->rb_root);
499 	mz->on_tree = false;
500 }
501 
502 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
503 				       struct mem_cgroup_tree_per_node *mctz)
504 {
505 	unsigned long flags;
506 
507 	spin_lock_irqsave(&mctz->lock, flags);
508 	__mem_cgroup_remove_exceeded(mz, mctz);
509 	spin_unlock_irqrestore(&mctz->lock, flags);
510 }
511 
512 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
513 {
514 	unsigned long nr_pages = page_counter_read(&memcg->memory);
515 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
516 	unsigned long excess = 0;
517 
518 	if (nr_pages > soft_limit)
519 		excess = nr_pages - soft_limit;
520 
521 	return excess;
522 }
523 
524 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
525 {
526 	unsigned long excess;
527 	struct mem_cgroup_per_node *mz;
528 	struct mem_cgroup_tree_per_node *mctz;
529 
530 	mctz = soft_limit_tree.rb_tree_per_node[nid];
531 	if (!mctz)
532 		return;
533 	/*
534 	 * Necessary to update all ancestors when hierarchy is used.
535 	 * because their event counter is not touched.
536 	 */
537 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
538 		mz = memcg->nodeinfo[nid];
539 		excess = soft_limit_excess(memcg);
540 		/*
541 		 * We have to update the tree if mz is on RB-tree or
542 		 * mem is over its softlimit.
543 		 */
544 		if (excess || mz->on_tree) {
545 			unsigned long flags;
546 
547 			spin_lock_irqsave(&mctz->lock, flags);
548 			/* if on-tree, remove it */
549 			if (mz->on_tree)
550 				__mem_cgroup_remove_exceeded(mz, mctz);
551 			/*
552 			 * Insert again. mz->usage_in_excess will be updated.
553 			 * If excess is 0, no tree ops.
554 			 */
555 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
556 			spin_unlock_irqrestore(&mctz->lock, flags);
557 		}
558 	}
559 }
560 
561 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
562 {
563 	struct mem_cgroup_tree_per_node *mctz;
564 	struct mem_cgroup_per_node *mz;
565 	int nid;
566 
567 	for_each_node(nid) {
568 		mz = memcg->nodeinfo[nid];
569 		mctz = soft_limit_tree.rb_tree_per_node[nid];
570 		if (mctz)
571 			mem_cgroup_remove_exceeded(mz, mctz);
572 	}
573 }
574 
575 static struct mem_cgroup_per_node *
576 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
577 {
578 	struct mem_cgroup_per_node *mz;
579 
580 retry:
581 	mz = NULL;
582 	if (!mctz->rb_rightmost)
583 		goto done;		/* Nothing to reclaim from */
584 
585 	mz = rb_entry(mctz->rb_rightmost,
586 		      struct mem_cgroup_per_node, tree_node);
587 	/*
588 	 * Remove the node now but someone else can add it back,
589 	 * we will to add it back at the end of reclaim to its correct
590 	 * position in the tree.
591 	 */
592 	__mem_cgroup_remove_exceeded(mz, mctz);
593 	if (!soft_limit_excess(mz->memcg) ||
594 	    !css_tryget(&mz->memcg->css))
595 		goto retry;
596 done:
597 	return mz;
598 }
599 
600 static struct mem_cgroup_per_node *
601 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
602 {
603 	struct mem_cgroup_per_node *mz;
604 
605 	spin_lock_irq(&mctz->lock);
606 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
607 	spin_unlock_irq(&mctz->lock);
608 	return mz;
609 }
610 
611 /*
612  * memcg and lruvec stats flushing
613  *
614  * Many codepaths leading to stats update or read are performance sensitive and
615  * adding stats flushing in such codepaths is not desirable. So, to optimize the
616  * flushing the kernel does:
617  *
618  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
619  *    rstat update tree grow unbounded.
620  *
621  * 2) Flush the stats synchronously on reader side only when there are more than
622  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
623  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
624  *    only for 2 seconds due to (1).
625  */
626 static void flush_memcg_stats_dwork(struct work_struct *w);
627 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
628 static DEFINE_SPINLOCK(stats_flush_lock);
629 static DEFINE_PER_CPU(unsigned int, stats_updates);
630 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
631 
632 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
633 {
634 	unsigned int x;
635 
636 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
637 
638 	x = __this_cpu_add_return(stats_updates, abs(val));
639 	if (x > MEMCG_CHARGE_BATCH) {
640 		atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
641 		__this_cpu_write(stats_updates, 0);
642 	}
643 }
644 
645 static void __mem_cgroup_flush_stats(void)
646 {
647 	unsigned long flag;
648 
649 	if (!spin_trylock_irqsave(&stats_flush_lock, flag))
650 		return;
651 
652 	cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
653 	atomic_set(&stats_flush_threshold, 0);
654 	spin_unlock_irqrestore(&stats_flush_lock, flag);
655 }
656 
657 void mem_cgroup_flush_stats(void)
658 {
659 	if (atomic_read(&stats_flush_threshold) > num_online_cpus())
660 		__mem_cgroup_flush_stats();
661 }
662 
663 static void flush_memcg_stats_dwork(struct work_struct *w)
664 {
665 	__mem_cgroup_flush_stats();
666 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
667 }
668 
669 /**
670  * __mod_memcg_state - update cgroup memory statistics
671  * @memcg: the memory cgroup
672  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
673  * @val: delta to add to the counter, can be negative
674  */
675 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
676 {
677 	if (mem_cgroup_disabled())
678 		return;
679 
680 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
681 	memcg_rstat_updated(memcg, val);
682 }
683 
684 /* idx can be of type enum memcg_stat_item or node_stat_item. */
685 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
686 {
687 	long x = 0;
688 	int cpu;
689 
690 	for_each_possible_cpu(cpu)
691 		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
692 #ifdef CONFIG_SMP
693 	if (x < 0)
694 		x = 0;
695 #endif
696 	return x;
697 }
698 
699 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
700 			      int val)
701 {
702 	struct mem_cgroup_per_node *pn;
703 	struct mem_cgroup *memcg;
704 
705 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
706 	memcg = pn->memcg;
707 
708 	/* Update memcg */
709 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
710 
711 	/* Update lruvec */
712 	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
713 
714 	memcg_rstat_updated(memcg, val);
715 }
716 
717 /**
718  * __mod_lruvec_state - update lruvec memory statistics
719  * @lruvec: the lruvec
720  * @idx: the stat item
721  * @val: delta to add to the counter, can be negative
722  *
723  * The lruvec is the intersection of the NUMA node and a cgroup. This
724  * function updates the all three counters that are affected by a
725  * change of state at this level: per-node, per-cgroup, per-lruvec.
726  */
727 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
728 			int val)
729 {
730 	/* Update node */
731 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
732 
733 	/* Update memcg and lruvec */
734 	if (!mem_cgroup_disabled())
735 		__mod_memcg_lruvec_state(lruvec, idx, val);
736 }
737 
738 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
739 			     int val)
740 {
741 	struct page *head = compound_head(page); /* rmap on tail pages */
742 	struct mem_cgroup *memcg;
743 	pg_data_t *pgdat = page_pgdat(page);
744 	struct lruvec *lruvec;
745 
746 	rcu_read_lock();
747 	memcg = page_memcg(head);
748 	/* Untracked pages have no memcg, no lruvec. Update only the node */
749 	if (!memcg) {
750 		rcu_read_unlock();
751 		__mod_node_page_state(pgdat, idx, val);
752 		return;
753 	}
754 
755 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
756 	__mod_lruvec_state(lruvec, idx, val);
757 	rcu_read_unlock();
758 }
759 EXPORT_SYMBOL(__mod_lruvec_page_state);
760 
761 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
762 {
763 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
764 	struct mem_cgroup *memcg;
765 	struct lruvec *lruvec;
766 
767 	rcu_read_lock();
768 	memcg = mem_cgroup_from_obj(p);
769 
770 	/*
771 	 * Untracked pages have no memcg, no lruvec. Update only the
772 	 * node. If we reparent the slab objects to the root memcg,
773 	 * when we free the slab object, we need to update the per-memcg
774 	 * vmstats to keep it correct for the root memcg.
775 	 */
776 	if (!memcg) {
777 		__mod_node_page_state(pgdat, idx, val);
778 	} else {
779 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
780 		__mod_lruvec_state(lruvec, idx, val);
781 	}
782 	rcu_read_unlock();
783 }
784 
785 /**
786  * __count_memcg_events - account VM events in a cgroup
787  * @memcg: the memory cgroup
788  * @idx: the event item
789  * @count: the number of events that occurred
790  */
791 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
792 			  unsigned long count)
793 {
794 	if (mem_cgroup_disabled())
795 		return;
796 
797 	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
798 	memcg_rstat_updated(memcg, count);
799 }
800 
801 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
802 {
803 	return READ_ONCE(memcg->vmstats.events[event]);
804 }
805 
806 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
807 {
808 	long x = 0;
809 	int cpu;
810 
811 	for_each_possible_cpu(cpu)
812 		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
813 	return x;
814 }
815 
816 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
817 					 int nr_pages)
818 {
819 	/* pagein of a big page is an event. So, ignore page size */
820 	if (nr_pages > 0)
821 		__count_memcg_events(memcg, PGPGIN, 1);
822 	else {
823 		__count_memcg_events(memcg, PGPGOUT, 1);
824 		nr_pages = -nr_pages; /* for event */
825 	}
826 
827 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
828 }
829 
830 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
831 				       enum mem_cgroup_events_target target)
832 {
833 	unsigned long val, next;
834 
835 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
836 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
837 	/* from time_after() in jiffies.h */
838 	if ((long)(next - val) < 0) {
839 		switch (target) {
840 		case MEM_CGROUP_TARGET_THRESH:
841 			next = val + THRESHOLDS_EVENTS_TARGET;
842 			break;
843 		case MEM_CGROUP_TARGET_SOFTLIMIT:
844 			next = val + SOFTLIMIT_EVENTS_TARGET;
845 			break;
846 		default:
847 			break;
848 		}
849 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
850 		return true;
851 	}
852 	return false;
853 }
854 
855 /*
856  * Check events in order.
857  *
858  */
859 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
860 {
861 	/* threshold event is triggered in finer grain than soft limit */
862 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
863 						MEM_CGROUP_TARGET_THRESH))) {
864 		bool do_softlimit;
865 
866 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
867 						MEM_CGROUP_TARGET_SOFTLIMIT);
868 		mem_cgroup_threshold(memcg);
869 		if (unlikely(do_softlimit))
870 			mem_cgroup_update_tree(memcg, nid);
871 	}
872 }
873 
874 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
875 {
876 	/*
877 	 * mm_update_next_owner() may clear mm->owner to NULL
878 	 * if it races with swapoff, page migration, etc.
879 	 * So this can be called with p == NULL.
880 	 */
881 	if (unlikely(!p))
882 		return NULL;
883 
884 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
885 }
886 EXPORT_SYMBOL(mem_cgroup_from_task);
887 
888 static __always_inline struct mem_cgroup *active_memcg(void)
889 {
890 	if (!in_task())
891 		return this_cpu_read(int_active_memcg);
892 	else
893 		return current->active_memcg;
894 }
895 
896 /**
897  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
898  * @mm: mm from which memcg should be extracted. It can be NULL.
899  *
900  * Obtain a reference on mm->memcg and returns it if successful. If mm
901  * is NULL, then the memcg is chosen as follows:
902  * 1) The active memcg, if set.
903  * 2) current->mm->memcg, if available
904  * 3) root memcg
905  * If mem_cgroup is disabled, NULL is returned.
906  */
907 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
908 {
909 	struct mem_cgroup *memcg;
910 
911 	if (mem_cgroup_disabled())
912 		return NULL;
913 
914 	/*
915 	 * Page cache insertions can happen without an
916 	 * actual mm context, e.g. during disk probing
917 	 * on boot, loopback IO, acct() writes etc.
918 	 *
919 	 * No need to css_get on root memcg as the reference
920 	 * counting is disabled on the root level in the
921 	 * cgroup core. See CSS_NO_REF.
922 	 */
923 	if (unlikely(!mm)) {
924 		memcg = active_memcg();
925 		if (unlikely(memcg)) {
926 			/* remote memcg must hold a ref */
927 			css_get(&memcg->css);
928 			return memcg;
929 		}
930 		mm = current->mm;
931 		if (unlikely(!mm))
932 			return root_mem_cgroup;
933 	}
934 
935 	rcu_read_lock();
936 	do {
937 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
938 		if (unlikely(!memcg))
939 			memcg = root_mem_cgroup;
940 	} while (!css_tryget(&memcg->css));
941 	rcu_read_unlock();
942 	return memcg;
943 }
944 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
945 
946 static __always_inline bool memcg_kmem_bypass(void)
947 {
948 	/* Allow remote memcg charging from any context. */
949 	if (unlikely(active_memcg()))
950 		return false;
951 
952 	/* Memcg to charge can't be determined. */
953 	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
954 		return true;
955 
956 	return false;
957 }
958 
959 /**
960  * mem_cgroup_iter - iterate over memory cgroup hierarchy
961  * @root: hierarchy root
962  * @prev: previously returned memcg, NULL on first invocation
963  * @reclaim: cookie for shared reclaim walks, NULL for full walks
964  *
965  * Returns references to children of the hierarchy below @root, or
966  * @root itself, or %NULL after a full round-trip.
967  *
968  * Caller must pass the return value in @prev on subsequent
969  * invocations for reference counting, or use mem_cgroup_iter_break()
970  * to cancel a hierarchy walk before the round-trip is complete.
971  *
972  * Reclaimers can specify a node in @reclaim to divide up the memcgs
973  * in the hierarchy among all concurrent reclaimers operating on the
974  * same node.
975  */
976 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
977 				   struct mem_cgroup *prev,
978 				   struct mem_cgroup_reclaim_cookie *reclaim)
979 {
980 	struct mem_cgroup_reclaim_iter *iter;
981 	struct cgroup_subsys_state *css = NULL;
982 	struct mem_cgroup *memcg = NULL;
983 	struct mem_cgroup *pos = NULL;
984 
985 	if (mem_cgroup_disabled())
986 		return NULL;
987 
988 	if (!root)
989 		root = root_mem_cgroup;
990 
991 	if (prev && !reclaim)
992 		pos = prev;
993 
994 	rcu_read_lock();
995 
996 	if (reclaim) {
997 		struct mem_cgroup_per_node *mz;
998 
999 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1000 		iter = &mz->iter;
1001 
1002 		if (prev && reclaim->generation != iter->generation)
1003 			goto out_unlock;
1004 
1005 		while (1) {
1006 			pos = READ_ONCE(iter->position);
1007 			if (!pos || css_tryget(&pos->css))
1008 				break;
1009 			/*
1010 			 * css reference reached zero, so iter->position will
1011 			 * be cleared by ->css_released. However, we should not
1012 			 * rely on this happening soon, because ->css_released
1013 			 * is called from a work queue, and by busy-waiting we
1014 			 * might block it. So we clear iter->position right
1015 			 * away.
1016 			 */
1017 			(void)cmpxchg(&iter->position, pos, NULL);
1018 		}
1019 	}
1020 
1021 	if (pos)
1022 		css = &pos->css;
1023 
1024 	for (;;) {
1025 		css = css_next_descendant_pre(css, &root->css);
1026 		if (!css) {
1027 			/*
1028 			 * Reclaimers share the hierarchy walk, and a
1029 			 * new one might jump in right at the end of
1030 			 * the hierarchy - make sure they see at least
1031 			 * one group and restart from the beginning.
1032 			 */
1033 			if (!prev)
1034 				continue;
1035 			break;
1036 		}
1037 
1038 		/*
1039 		 * Verify the css and acquire a reference.  The root
1040 		 * is provided by the caller, so we know it's alive
1041 		 * and kicking, and don't take an extra reference.
1042 		 */
1043 		memcg = mem_cgroup_from_css(css);
1044 
1045 		if (css == &root->css)
1046 			break;
1047 
1048 		if (css_tryget(css))
1049 			break;
1050 
1051 		memcg = NULL;
1052 	}
1053 
1054 	if (reclaim) {
1055 		/*
1056 		 * The position could have already been updated by a competing
1057 		 * thread, so check that the value hasn't changed since we read
1058 		 * it to avoid reclaiming from the same cgroup twice.
1059 		 */
1060 		(void)cmpxchg(&iter->position, pos, memcg);
1061 
1062 		if (pos)
1063 			css_put(&pos->css);
1064 
1065 		if (!memcg)
1066 			iter->generation++;
1067 		else if (!prev)
1068 			reclaim->generation = iter->generation;
1069 	}
1070 
1071 out_unlock:
1072 	rcu_read_unlock();
1073 	if (prev && prev != root)
1074 		css_put(&prev->css);
1075 
1076 	return memcg;
1077 }
1078 
1079 /**
1080  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1081  * @root: hierarchy root
1082  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1083  */
1084 void mem_cgroup_iter_break(struct mem_cgroup *root,
1085 			   struct mem_cgroup *prev)
1086 {
1087 	if (!root)
1088 		root = root_mem_cgroup;
1089 	if (prev && prev != root)
1090 		css_put(&prev->css);
1091 }
1092 
1093 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1094 					struct mem_cgroup *dead_memcg)
1095 {
1096 	struct mem_cgroup_reclaim_iter *iter;
1097 	struct mem_cgroup_per_node *mz;
1098 	int nid;
1099 
1100 	for_each_node(nid) {
1101 		mz = from->nodeinfo[nid];
1102 		iter = &mz->iter;
1103 		cmpxchg(&iter->position, dead_memcg, NULL);
1104 	}
1105 }
1106 
1107 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1108 {
1109 	struct mem_cgroup *memcg = dead_memcg;
1110 	struct mem_cgroup *last;
1111 
1112 	do {
1113 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1114 		last = memcg;
1115 	} while ((memcg = parent_mem_cgroup(memcg)));
1116 
1117 	/*
1118 	 * When cgruop1 non-hierarchy mode is used,
1119 	 * parent_mem_cgroup() does not walk all the way up to the
1120 	 * cgroup root (root_mem_cgroup). So we have to handle
1121 	 * dead_memcg from cgroup root separately.
1122 	 */
1123 	if (last != root_mem_cgroup)
1124 		__invalidate_reclaim_iterators(root_mem_cgroup,
1125 						dead_memcg);
1126 }
1127 
1128 /**
1129  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1130  * @memcg: hierarchy root
1131  * @fn: function to call for each task
1132  * @arg: argument passed to @fn
1133  *
1134  * This function iterates over tasks attached to @memcg or to any of its
1135  * descendants and calls @fn for each task. If @fn returns a non-zero
1136  * value, the function breaks the iteration loop and returns the value.
1137  * Otherwise, it will iterate over all tasks and return 0.
1138  *
1139  * This function must not be called for the root memory cgroup.
1140  */
1141 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1142 			  int (*fn)(struct task_struct *, void *), void *arg)
1143 {
1144 	struct mem_cgroup *iter;
1145 	int ret = 0;
1146 
1147 	BUG_ON(memcg == root_mem_cgroup);
1148 
1149 	for_each_mem_cgroup_tree(iter, memcg) {
1150 		struct css_task_iter it;
1151 		struct task_struct *task;
1152 
1153 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1154 		while (!ret && (task = css_task_iter_next(&it)))
1155 			ret = fn(task, arg);
1156 		css_task_iter_end(&it);
1157 		if (ret) {
1158 			mem_cgroup_iter_break(memcg, iter);
1159 			break;
1160 		}
1161 	}
1162 	return ret;
1163 }
1164 
1165 #ifdef CONFIG_DEBUG_VM
1166 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1167 {
1168 	struct mem_cgroup *memcg;
1169 
1170 	if (mem_cgroup_disabled())
1171 		return;
1172 
1173 	memcg = folio_memcg(folio);
1174 
1175 	if (!memcg)
1176 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1177 	else
1178 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1179 }
1180 #endif
1181 
1182 /**
1183  * folio_lruvec_lock - Lock the lruvec for a folio.
1184  * @folio: Pointer to the folio.
1185  *
1186  * These functions are safe to use under any of the following conditions:
1187  * - folio locked
1188  * - folio_test_lru false
1189  * - folio_memcg_lock()
1190  * - folio frozen (refcount of 0)
1191  *
1192  * Return: The lruvec this folio is on with its lock held.
1193  */
1194 struct lruvec *folio_lruvec_lock(struct folio *folio)
1195 {
1196 	struct lruvec *lruvec = folio_lruvec(folio);
1197 
1198 	spin_lock(&lruvec->lru_lock);
1199 	lruvec_memcg_debug(lruvec, folio);
1200 
1201 	return lruvec;
1202 }
1203 
1204 /**
1205  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1206  * @folio: Pointer to the folio.
1207  *
1208  * These functions are safe to use under any of the following conditions:
1209  * - folio locked
1210  * - folio_test_lru false
1211  * - folio_memcg_lock()
1212  * - folio frozen (refcount of 0)
1213  *
1214  * Return: The lruvec this folio is on with its lock held and interrupts
1215  * disabled.
1216  */
1217 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1218 {
1219 	struct lruvec *lruvec = folio_lruvec(folio);
1220 
1221 	spin_lock_irq(&lruvec->lru_lock);
1222 	lruvec_memcg_debug(lruvec, folio);
1223 
1224 	return lruvec;
1225 }
1226 
1227 /**
1228  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1229  * @folio: Pointer to the folio.
1230  * @flags: Pointer to irqsave flags.
1231  *
1232  * These functions are safe to use under any of the following conditions:
1233  * - folio locked
1234  * - folio_test_lru false
1235  * - folio_memcg_lock()
1236  * - folio frozen (refcount of 0)
1237  *
1238  * Return: The lruvec this folio is on with its lock held and interrupts
1239  * disabled.
1240  */
1241 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1242 		unsigned long *flags)
1243 {
1244 	struct lruvec *lruvec = folio_lruvec(folio);
1245 
1246 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1247 	lruvec_memcg_debug(lruvec, folio);
1248 
1249 	return lruvec;
1250 }
1251 
1252 /**
1253  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1254  * @lruvec: mem_cgroup per zone lru vector
1255  * @lru: index of lru list the page is sitting on
1256  * @zid: zone id of the accounted pages
1257  * @nr_pages: positive when adding or negative when removing
1258  *
1259  * This function must be called under lru_lock, just before a page is added
1260  * to or just after a page is removed from an lru list (that ordering being
1261  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1262  */
1263 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1264 				int zid, int nr_pages)
1265 {
1266 	struct mem_cgroup_per_node *mz;
1267 	unsigned long *lru_size;
1268 	long size;
1269 
1270 	if (mem_cgroup_disabled())
1271 		return;
1272 
1273 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1274 	lru_size = &mz->lru_zone_size[zid][lru];
1275 
1276 	if (nr_pages < 0)
1277 		*lru_size += nr_pages;
1278 
1279 	size = *lru_size;
1280 	if (WARN_ONCE(size < 0,
1281 		"%s(%p, %d, %d): lru_size %ld\n",
1282 		__func__, lruvec, lru, nr_pages, size)) {
1283 		VM_BUG_ON(1);
1284 		*lru_size = 0;
1285 	}
1286 
1287 	if (nr_pages > 0)
1288 		*lru_size += nr_pages;
1289 }
1290 
1291 /**
1292  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1293  * @memcg: the memory cgroup
1294  *
1295  * Returns the maximum amount of memory @mem can be charged with, in
1296  * pages.
1297  */
1298 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1299 {
1300 	unsigned long margin = 0;
1301 	unsigned long count;
1302 	unsigned long limit;
1303 
1304 	count = page_counter_read(&memcg->memory);
1305 	limit = READ_ONCE(memcg->memory.max);
1306 	if (count < limit)
1307 		margin = limit - count;
1308 
1309 	if (do_memsw_account()) {
1310 		count = page_counter_read(&memcg->memsw);
1311 		limit = READ_ONCE(memcg->memsw.max);
1312 		if (count < limit)
1313 			margin = min(margin, limit - count);
1314 		else
1315 			margin = 0;
1316 	}
1317 
1318 	return margin;
1319 }
1320 
1321 /*
1322  * A routine for checking "mem" is under move_account() or not.
1323  *
1324  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1325  * moving cgroups. This is for waiting at high-memory pressure
1326  * caused by "move".
1327  */
1328 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1329 {
1330 	struct mem_cgroup *from;
1331 	struct mem_cgroup *to;
1332 	bool ret = false;
1333 	/*
1334 	 * Unlike task_move routines, we access mc.to, mc.from not under
1335 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1336 	 */
1337 	spin_lock(&mc.lock);
1338 	from = mc.from;
1339 	to = mc.to;
1340 	if (!from)
1341 		goto unlock;
1342 
1343 	ret = mem_cgroup_is_descendant(from, memcg) ||
1344 		mem_cgroup_is_descendant(to, memcg);
1345 unlock:
1346 	spin_unlock(&mc.lock);
1347 	return ret;
1348 }
1349 
1350 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1351 {
1352 	if (mc.moving_task && current != mc.moving_task) {
1353 		if (mem_cgroup_under_move(memcg)) {
1354 			DEFINE_WAIT(wait);
1355 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1356 			/* moving charge context might have finished. */
1357 			if (mc.moving_task)
1358 				schedule();
1359 			finish_wait(&mc.waitq, &wait);
1360 			return true;
1361 		}
1362 	}
1363 	return false;
1364 }
1365 
1366 struct memory_stat {
1367 	const char *name;
1368 	unsigned int idx;
1369 };
1370 
1371 static const struct memory_stat memory_stats[] = {
1372 	{ "anon",			NR_ANON_MAPPED			},
1373 	{ "file",			NR_FILE_PAGES			},
1374 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1375 	{ "pagetables",			NR_PAGETABLE			},
1376 	{ "percpu",			MEMCG_PERCPU_B			},
1377 	{ "sock",			MEMCG_SOCK			},
1378 	{ "vmalloc",			MEMCG_VMALLOC			},
1379 	{ "shmem",			NR_SHMEM			},
1380 	{ "file_mapped",		NR_FILE_MAPPED			},
1381 	{ "file_dirty",			NR_FILE_DIRTY			},
1382 	{ "file_writeback",		NR_WRITEBACK			},
1383 #ifdef CONFIG_SWAP
1384 	{ "swapcached",			NR_SWAPCACHE			},
1385 #endif
1386 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1387 	{ "anon_thp",			NR_ANON_THPS			},
1388 	{ "file_thp",			NR_FILE_THPS			},
1389 	{ "shmem_thp",			NR_SHMEM_THPS			},
1390 #endif
1391 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1392 	{ "active_anon",		NR_ACTIVE_ANON			},
1393 	{ "inactive_file",		NR_INACTIVE_FILE		},
1394 	{ "active_file",		NR_ACTIVE_FILE			},
1395 	{ "unevictable",		NR_UNEVICTABLE			},
1396 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1397 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1398 
1399 	/* The memory events */
1400 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1401 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1402 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1403 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1404 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1405 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1406 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1407 };
1408 
1409 /* Translate stat items to the correct unit for memory.stat output */
1410 static int memcg_page_state_unit(int item)
1411 {
1412 	switch (item) {
1413 	case MEMCG_PERCPU_B:
1414 	case NR_SLAB_RECLAIMABLE_B:
1415 	case NR_SLAB_UNRECLAIMABLE_B:
1416 	case WORKINGSET_REFAULT_ANON:
1417 	case WORKINGSET_REFAULT_FILE:
1418 	case WORKINGSET_ACTIVATE_ANON:
1419 	case WORKINGSET_ACTIVATE_FILE:
1420 	case WORKINGSET_RESTORE_ANON:
1421 	case WORKINGSET_RESTORE_FILE:
1422 	case WORKINGSET_NODERECLAIM:
1423 		return 1;
1424 	case NR_KERNEL_STACK_KB:
1425 		return SZ_1K;
1426 	default:
1427 		return PAGE_SIZE;
1428 	}
1429 }
1430 
1431 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1432 						    int item)
1433 {
1434 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1435 }
1436 
1437 static char *memory_stat_format(struct mem_cgroup *memcg)
1438 {
1439 	struct seq_buf s;
1440 	int i;
1441 
1442 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1443 	if (!s.buffer)
1444 		return NULL;
1445 
1446 	/*
1447 	 * Provide statistics on the state of the memory subsystem as
1448 	 * well as cumulative event counters that show past behavior.
1449 	 *
1450 	 * This list is ordered following a combination of these gradients:
1451 	 * 1) generic big picture -> specifics and details
1452 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1453 	 *
1454 	 * Current memory state:
1455 	 */
1456 	mem_cgroup_flush_stats();
1457 
1458 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1459 		u64 size;
1460 
1461 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1462 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1463 
1464 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1465 			size += memcg_page_state_output(memcg,
1466 							NR_SLAB_RECLAIMABLE_B);
1467 			seq_buf_printf(&s, "slab %llu\n", size);
1468 		}
1469 	}
1470 
1471 	/* Accumulated memory events */
1472 
1473 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1474 		       memcg_events(memcg, PGFAULT));
1475 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1476 		       memcg_events(memcg, PGMAJFAULT));
1477 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1478 		       memcg_events(memcg, PGREFILL));
1479 	seq_buf_printf(&s, "pgscan %lu\n",
1480 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1481 		       memcg_events(memcg, PGSCAN_DIRECT));
1482 	seq_buf_printf(&s, "pgsteal %lu\n",
1483 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1484 		       memcg_events(memcg, PGSTEAL_DIRECT));
1485 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1486 		       memcg_events(memcg, PGACTIVATE));
1487 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1488 		       memcg_events(memcg, PGDEACTIVATE));
1489 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1490 		       memcg_events(memcg, PGLAZYFREE));
1491 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1492 		       memcg_events(memcg, PGLAZYFREED));
1493 
1494 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1495 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1496 		       memcg_events(memcg, THP_FAULT_ALLOC));
1497 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1498 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1499 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1500 
1501 	/* The above should easily fit into one page */
1502 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1503 
1504 	return s.buffer;
1505 }
1506 
1507 #define K(x) ((x) << (PAGE_SHIFT-10))
1508 /**
1509  * mem_cgroup_print_oom_context: Print OOM information relevant to
1510  * memory controller.
1511  * @memcg: The memory cgroup that went over limit
1512  * @p: Task that is going to be killed
1513  *
1514  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1515  * enabled
1516  */
1517 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1518 {
1519 	rcu_read_lock();
1520 
1521 	if (memcg) {
1522 		pr_cont(",oom_memcg=");
1523 		pr_cont_cgroup_path(memcg->css.cgroup);
1524 	} else
1525 		pr_cont(",global_oom");
1526 	if (p) {
1527 		pr_cont(",task_memcg=");
1528 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1529 	}
1530 	rcu_read_unlock();
1531 }
1532 
1533 /**
1534  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1535  * memory controller.
1536  * @memcg: The memory cgroup that went over limit
1537  */
1538 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1539 {
1540 	char *buf;
1541 
1542 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1543 		K((u64)page_counter_read(&memcg->memory)),
1544 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1545 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1546 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1547 			K((u64)page_counter_read(&memcg->swap)),
1548 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1549 	else {
1550 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1551 			K((u64)page_counter_read(&memcg->memsw)),
1552 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1553 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1554 			K((u64)page_counter_read(&memcg->kmem)),
1555 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1556 	}
1557 
1558 	pr_info("Memory cgroup stats for ");
1559 	pr_cont_cgroup_path(memcg->css.cgroup);
1560 	pr_cont(":");
1561 	buf = memory_stat_format(memcg);
1562 	if (!buf)
1563 		return;
1564 	pr_info("%s", buf);
1565 	kfree(buf);
1566 }
1567 
1568 /*
1569  * Return the memory (and swap, if configured) limit for a memcg.
1570  */
1571 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1572 {
1573 	unsigned long max = READ_ONCE(memcg->memory.max);
1574 
1575 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1576 		if (mem_cgroup_swappiness(memcg))
1577 			max += min(READ_ONCE(memcg->swap.max),
1578 				   (unsigned long)total_swap_pages);
1579 	} else { /* v1 */
1580 		if (mem_cgroup_swappiness(memcg)) {
1581 			/* Calculate swap excess capacity from memsw limit */
1582 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1583 
1584 			max += min(swap, (unsigned long)total_swap_pages);
1585 		}
1586 	}
1587 	return max;
1588 }
1589 
1590 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1591 {
1592 	return page_counter_read(&memcg->memory);
1593 }
1594 
1595 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1596 				     int order)
1597 {
1598 	struct oom_control oc = {
1599 		.zonelist = NULL,
1600 		.nodemask = NULL,
1601 		.memcg = memcg,
1602 		.gfp_mask = gfp_mask,
1603 		.order = order,
1604 	};
1605 	bool ret = true;
1606 
1607 	if (mutex_lock_killable(&oom_lock))
1608 		return true;
1609 
1610 	if (mem_cgroup_margin(memcg) >= (1 << order))
1611 		goto unlock;
1612 
1613 	/*
1614 	 * A few threads which were not waiting at mutex_lock_killable() can
1615 	 * fail to bail out. Therefore, check again after holding oom_lock.
1616 	 */
1617 	ret = task_is_dying() || out_of_memory(&oc);
1618 
1619 unlock:
1620 	mutex_unlock(&oom_lock);
1621 	return ret;
1622 }
1623 
1624 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1625 				   pg_data_t *pgdat,
1626 				   gfp_t gfp_mask,
1627 				   unsigned long *total_scanned)
1628 {
1629 	struct mem_cgroup *victim = NULL;
1630 	int total = 0;
1631 	int loop = 0;
1632 	unsigned long excess;
1633 	unsigned long nr_scanned;
1634 	struct mem_cgroup_reclaim_cookie reclaim = {
1635 		.pgdat = pgdat,
1636 	};
1637 
1638 	excess = soft_limit_excess(root_memcg);
1639 
1640 	while (1) {
1641 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1642 		if (!victim) {
1643 			loop++;
1644 			if (loop >= 2) {
1645 				/*
1646 				 * If we have not been able to reclaim
1647 				 * anything, it might because there are
1648 				 * no reclaimable pages under this hierarchy
1649 				 */
1650 				if (!total)
1651 					break;
1652 				/*
1653 				 * We want to do more targeted reclaim.
1654 				 * excess >> 2 is not to excessive so as to
1655 				 * reclaim too much, nor too less that we keep
1656 				 * coming back to reclaim from this cgroup
1657 				 */
1658 				if (total >= (excess >> 2) ||
1659 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1660 					break;
1661 			}
1662 			continue;
1663 		}
1664 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1665 					pgdat, &nr_scanned);
1666 		*total_scanned += nr_scanned;
1667 		if (!soft_limit_excess(root_memcg))
1668 			break;
1669 	}
1670 	mem_cgroup_iter_break(root_memcg, victim);
1671 	return total;
1672 }
1673 
1674 #ifdef CONFIG_LOCKDEP
1675 static struct lockdep_map memcg_oom_lock_dep_map = {
1676 	.name = "memcg_oom_lock",
1677 };
1678 #endif
1679 
1680 static DEFINE_SPINLOCK(memcg_oom_lock);
1681 
1682 /*
1683  * Check OOM-Killer is already running under our hierarchy.
1684  * If someone is running, return false.
1685  */
1686 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1687 {
1688 	struct mem_cgroup *iter, *failed = NULL;
1689 
1690 	spin_lock(&memcg_oom_lock);
1691 
1692 	for_each_mem_cgroup_tree(iter, memcg) {
1693 		if (iter->oom_lock) {
1694 			/*
1695 			 * this subtree of our hierarchy is already locked
1696 			 * so we cannot give a lock.
1697 			 */
1698 			failed = iter;
1699 			mem_cgroup_iter_break(memcg, iter);
1700 			break;
1701 		} else
1702 			iter->oom_lock = true;
1703 	}
1704 
1705 	if (failed) {
1706 		/*
1707 		 * OK, we failed to lock the whole subtree so we have
1708 		 * to clean up what we set up to the failing subtree
1709 		 */
1710 		for_each_mem_cgroup_tree(iter, memcg) {
1711 			if (iter == failed) {
1712 				mem_cgroup_iter_break(memcg, iter);
1713 				break;
1714 			}
1715 			iter->oom_lock = false;
1716 		}
1717 	} else
1718 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1719 
1720 	spin_unlock(&memcg_oom_lock);
1721 
1722 	return !failed;
1723 }
1724 
1725 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1726 {
1727 	struct mem_cgroup *iter;
1728 
1729 	spin_lock(&memcg_oom_lock);
1730 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1731 	for_each_mem_cgroup_tree(iter, memcg)
1732 		iter->oom_lock = false;
1733 	spin_unlock(&memcg_oom_lock);
1734 }
1735 
1736 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1737 {
1738 	struct mem_cgroup *iter;
1739 
1740 	spin_lock(&memcg_oom_lock);
1741 	for_each_mem_cgroup_tree(iter, memcg)
1742 		iter->under_oom++;
1743 	spin_unlock(&memcg_oom_lock);
1744 }
1745 
1746 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1747 {
1748 	struct mem_cgroup *iter;
1749 
1750 	/*
1751 	 * Be careful about under_oom underflows because a child memcg
1752 	 * could have been added after mem_cgroup_mark_under_oom.
1753 	 */
1754 	spin_lock(&memcg_oom_lock);
1755 	for_each_mem_cgroup_tree(iter, memcg)
1756 		if (iter->under_oom > 0)
1757 			iter->under_oom--;
1758 	spin_unlock(&memcg_oom_lock);
1759 }
1760 
1761 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1762 
1763 struct oom_wait_info {
1764 	struct mem_cgroup *memcg;
1765 	wait_queue_entry_t	wait;
1766 };
1767 
1768 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1769 	unsigned mode, int sync, void *arg)
1770 {
1771 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1772 	struct mem_cgroup *oom_wait_memcg;
1773 	struct oom_wait_info *oom_wait_info;
1774 
1775 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1776 	oom_wait_memcg = oom_wait_info->memcg;
1777 
1778 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1779 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1780 		return 0;
1781 	return autoremove_wake_function(wait, mode, sync, arg);
1782 }
1783 
1784 static void memcg_oom_recover(struct mem_cgroup *memcg)
1785 {
1786 	/*
1787 	 * For the following lockless ->under_oom test, the only required
1788 	 * guarantee is that it must see the state asserted by an OOM when
1789 	 * this function is called as a result of userland actions
1790 	 * triggered by the notification of the OOM.  This is trivially
1791 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1792 	 * triggering notification.
1793 	 */
1794 	if (memcg && memcg->under_oom)
1795 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1796 }
1797 
1798 enum oom_status {
1799 	OOM_SUCCESS,
1800 	OOM_FAILED,
1801 	OOM_ASYNC,
1802 	OOM_SKIPPED
1803 };
1804 
1805 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1806 {
1807 	enum oom_status ret;
1808 	bool locked;
1809 
1810 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1811 		return OOM_SKIPPED;
1812 
1813 	memcg_memory_event(memcg, MEMCG_OOM);
1814 
1815 	/*
1816 	 * We are in the middle of the charge context here, so we
1817 	 * don't want to block when potentially sitting on a callstack
1818 	 * that holds all kinds of filesystem and mm locks.
1819 	 *
1820 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1821 	 * handling until the charge can succeed; remember the context and put
1822 	 * the task to sleep at the end of the page fault when all locks are
1823 	 * released.
1824 	 *
1825 	 * On the other hand, in-kernel OOM killer allows for an async victim
1826 	 * memory reclaim (oom_reaper) and that means that we are not solely
1827 	 * relying on the oom victim to make a forward progress and we can
1828 	 * invoke the oom killer here.
1829 	 *
1830 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1831 	 * victim and then we have to bail out from the charge path.
1832 	 */
1833 	if (memcg->oom_kill_disable) {
1834 		if (!current->in_user_fault)
1835 			return OOM_SKIPPED;
1836 		css_get(&memcg->css);
1837 		current->memcg_in_oom = memcg;
1838 		current->memcg_oom_gfp_mask = mask;
1839 		current->memcg_oom_order = order;
1840 
1841 		return OOM_ASYNC;
1842 	}
1843 
1844 	mem_cgroup_mark_under_oom(memcg);
1845 
1846 	locked = mem_cgroup_oom_trylock(memcg);
1847 
1848 	if (locked)
1849 		mem_cgroup_oom_notify(memcg);
1850 
1851 	mem_cgroup_unmark_under_oom(memcg);
1852 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1853 		ret = OOM_SUCCESS;
1854 	else
1855 		ret = OOM_FAILED;
1856 
1857 	if (locked)
1858 		mem_cgroup_oom_unlock(memcg);
1859 
1860 	return ret;
1861 }
1862 
1863 /**
1864  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1865  * @handle: actually kill/wait or just clean up the OOM state
1866  *
1867  * This has to be called at the end of a page fault if the memcg OOM
1868  * handler was enabled.
1869  *
1870  * Memcg supports userspace OOM handling where failed allocations must
1871  * sleep on a waitqueue until the userspace task resolves the
1872  * situation.  Sleeping directly in the charge context with all kinds
1873  * of locks held is not a good idea, instead we remember an OOM state
1874  * in the task and mem_cgroup_oom_synchronize() has to be called at
1875  * the end of the page fault to complete the OOM handling.
1876  *
1877  * Returns %true if an ongoing memcg OOM situation was detected and
1878  * completed, %false otherwise.
1879  */
1880 bool mem_cgroup_oom_synchronize(bool handle)
1881 {
1882 	struct mem_cgroup *memcg = current->memcg_in_oom;
1883 	struct oom_wait_info owait;
1884 	bool locked;
1885 
1886 	/* OOM is global, do not handle */
1887 	if (!memcg)
1888 		return false;
1889 
1890 	if (!handle)
1891 		goto cleanup;
1892 
1893 	owait.memcg = memcg;
1894 	owait.wait.flags = 0;
1895 	owait.wait.func = memcg_oom_wake_function;
1896 	owait.wait.private = current;
1897 	INIT_LIST_HEAD(&owait.wait.entry);
1898 
1899 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1900 	mem_cgroup_mark_under_oom(memcg);
1901 
1902 	locked = mem_cgroup_oom_trylock(memcg);
1903 
1904 	if (locked)
1905 		mem_cgroup_oom_notify(memcg);
1906 
1907 	if (locked && !memcg->oom_kill_disable) {
1908 		mem_cgroup_unmark_under_oom(memcg);
1909 		finish_wait(&memcg_oom_waitq, &owait.wait);
1910 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1911 					 current->memcg_oom_order);
1912 	} else {
1913 		schedule();
1914 		mem_cgroup_unmark_under_oom(memcg);
1915 		finish_wait(&memcg_oom_waitq, &owait.wait);
1916 	}
1917 
1918 	if (locked) {
1919 		mem_cgroup_oom_unlock(memcg);
1920 		/*
1921 		 * There is no guarantee that an OOM-lock contender
1922 		 * sees the wakeups triggered by the OOM kill
1923 		 * uncharges.  Wake any sleepers explicitly.
1924 		 */
1925 		memcg_oom_recover(memcg);
1926 	}
1927 cleanup:
1928 	current->memcg_in_oom = NULL;
1929 	css_put(&memcg->css);
1930 	return true;
1931 }
1932 
1933 /**
1934  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1935  * @victim: task to be killed by the OOM killer
1936  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1937  *
1938  * Returns a pointer to a memory cgroup, which has to be cleaned up
1939  * by killing all belonging OOM-killable tasks.
1940  *
1941  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1942  */
1943 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1944 					    struct mem_cgroup *oom_domain)
1945 {
1946 	struct mem_cgroup *oom_group = NULL;
1947 	struct mem_cgroup *memcg;
1948 
1949 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1950 		return NULL;
1951 
1952 	if (!oom_domain)
1953 		oom_domain = root_mem_cgroup;
1954 
1955 	rcu_read_lock();
1956 
1957 	memcg = mem_cgroup_from_task(victim);
1958 	if (memcg == root_mem_cgroup)
1959 		goto out;
1960 
1961 	/*
1962 	 * If the victim task has been asynchronously moved to a different
1963 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1964 	 * In this case it's better to ignore memory.group.oom.
1965 	 */
1966 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1967 		goto out;
1968 
1969 	/*
1970 	 * Traverse the memory cgroup hierarchy from the victim task's
1971 	 * cgroup up to the OOMing cgroup (or root) to find the
1972 	 * highest-level memory cgroup with oom.group set.
1973 	 */
1974 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1975 		if (memcg->oom_group)
1976 			oom_group = memcg;
1977 
1978 		if (memcg == oom_domain)
1979 			break;
1980 	}
1981 
1982 	if (oom_group)
1983 		css_get(&oom_group->css);
1984 out:
1985 	rcu_read_unlock();
1986 
1987 	return oom_group;
1988 }
1989 
1990 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1991 {
1992 	pr_info("Tasks in ");
1993 	pr_cont_cgroup_path(memcg->css.cgroup);
1994 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1995 }
1996 
1997 /**
1998  * folio_memcg_lock - Bind a folio to its memcg.
1999  * @folio: The folio.
2000  *
2001  * This function prevents unlocked LRU folios from being moved to
2002  * another cgroup.
2003  *
2004  * It ensures lifetime of the bound memcg.  The caller is responsible
2005  * for the lifetime of the folio.
2006  */
2007 void folio_memcg_lock(struct folio *folio)
2008 {
2009 	struct mem_cgroup *memcg;
2010 	unsigned long flags;
2011 
2012 	/*
2013 	 * The RCU lock is held throughout the transaction.  The fast
2014 	 * path can get away without acquiring the memcg->move_lock
2015 	 * because page moving starts with an RCU grace period.
2016          */
2017 	rcu_read_lock();
2018 
2019 	if (mem_cgroup_disabled())
2020 		return;
2021 again:
2022 	memcg = folio_memcg(folio);
2023 	if (unlikely(!memcg))
2024 		return;
2025 
2026 #ifdef CONFIG_PROVE_LOCKING
2027 	local_irq_save(flags);
2028 	might_lock(&memcg->move_lock);
2029 	local_irq_restore(flags);
2030 #endif
2031 
2032 	if (atomic_read(&memcg->moving_account) <= 0)
2033 		return;
2034 
2035 	spin_lock_irqsave(&memcg->move_lock, flags);
2036 	if (memcg != folio_memcg(folio)) {
2037 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2038 		goto again;
2039 	}
2040 
2041 	/*
2042 	 * When charge migration first begins, we can have multiple
2043 	 * critical sections holding the fast-path RCU lock and one
2044 	 * holding the slowpath move_lock. Track the task who has the
2045 	 * move_lock for unlock_page_memcg().
2046 	 */
2047 	memcg->move_lock_task = current;
2048 	memcg->move_lock_flags = flags;
2049 }
2050 
2051 void lock_page_memcg(struct page *page)
2052 {
2053 	folio_memcg_lock(page_folio(page));
2054 }
2055 
2056 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2057 {
2058 	if (memcg && memcg->move_lock_task == current) {
2059 		unsigned long flags = memcg->move_lock_flags;
2060 
2061 		memcg->move_lock_task = NULL;
2062 		memcg->move_lock_flags = 0;
2063 
2064 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2065 	}
2066 
2067 	rcu_read_unlock();
2068 }
2069 
2070 /**
2071  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2072  * @folio: The folio.
2073  *
2074  * This releases the binding created by folio_memcg_lock().  This does
2075  * not change the accounting of this folio to its memcg, but it does
2076  * permit others to change it.
2077  */
2078 void folio_memcg_unlock(struct folio *folio)
2079 {
2080 	__folio_memcg_unlock(folio_memcg(folio));
2081 }
2082 
2083 void unlock_page_memcg(struct page *page)
2084 {
2085 	folio_memcg_unlock(page_folio(page));
2086 }
2087 
2088 struct obj_stock {
2089 #ifdef CONFIG_MEMCG_KMEM
2090 	struct obj_cgroup *cached_objcg;
2091 	struct pglist_data *cached_pgdat;
2092 	unsigned int nr_bytes;
2093 	int nr_slab_reclaimable_b;
2094 	int nr_slab_unreclaimable_b;
2095 #else
2096 	int dummy[0];
2097 #endif
2098 };
2099 
2100 struct memcg_stock_pcp {
2101 	struct mem_cgroup *cached; /* this never be root cgroup */
2102 	unsigned int nr_pages;
2103 	struct obj_stock task_obj;
2104 	struct obj_stock irq_obj;
2105 
2106 	struct work_struct work;
2107 	unsigned long flags;
2108 #define FLUSHING_CACHED_CHARGE	0
2109 };
2110 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2111 static DEFINE_MUTEX(percpu_charge_mutex);
2112 
2113 #ifdef CONFIG_MEMCG_KMEM
2114 static void drain_obj_stock(struct obj_stock *stock);
2115 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2116 				     struct mem_cgroup *root_memcg);
2117 
2118 #else
2119 static inline void drain_obj_stock(struct obj_stock *stock)
2120 {
2121 }
2122 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2123 				     struct mem_cgroup *root_memcg)
2124 {
2125 	return false;
2126 }
2127 #endif
2128 
2129 /**
2130  * consume_stock: Try to consume stocked charge on this cpu.
2131  * @memcg: memcg to consume from.
2132  * @nr_pages: how many pages to charge.
2133  *
2134  * The charges will only happen if @memcg matches the current cpu's memcg
2135  * stock, and at least @nr_pages are available in that stock.  Failure to
2136  * service an allocation will refill the stock.
2137  *
2138  * returns true if successful, false otherwise.
2139  */
2140 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2141 {
2142 	struct memcg_stock_pcp *stock;
2143 	unsigned long flags;
2144 	bool ret = false;
2145 
2146 	if (nr_pages > MEMCG_CHARGE_BATCH)
2147 		return ret;
2148 
2149 	local_irq_save(flags);
2150 
2151 	stock = this_cpu_ptr(&memcg_stock);
2152 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2153 		stock->nr_pages -= nr_pages;
2154 		ret = true;
2155 	}
2156 
2157 	local_irq_restore(flags);
2158 
2159 	return ret;
2160 }
2161 
2162 /*
2163  * Returns stocks cached in percpu and reset cached information.
2164  */
2165 static void drain_stock(struct memcg_stock_pcp *stock)
2166 {
2167 	struct mem_cgroup *old = stock->cached;
2168 
2169 	if (!old)
2170 		return;
2171 
2172 	if (stock->nr_pages) {
2173 		page_counter_uncharge(&old->memory, stock->nr_pages);
2174 		if (do_memsw_account())
2175 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2176 		stock->nr_pages = 0;
2177 	}
2178 
2179 	css_put(&old->css);
2180 	stock->cached = NULL;
2181 }
2182 
2183 static void drain_local_stock(struct work_struct *dummy)
2184 {
2185 	struct memcg_stock_pcp *stock;
2186 	unsigned long flags;
2187 
2188 	/*
2189 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2190 	 * drain_stock races is that we always operate on local CPU stock
2191 	 * here with IRQ disabled
2192 	 */
2193 	local_irq_save(flags);
2194 
2195 	stock = this_cpu_ptr(&memcg_stock);
2196 	drain_obj_stock(&stock->irq_obj);
2197 	if (in_task())
2198 		drain_obj_stock(&stock->task_obj);
2199 	drain_stock(stock);
2200 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2201 
2202 	local_irq_restore(flags);
2203 }
2204 
2205 /*
2206  * Cache charges(val) to local per_cpu area.
2207  * This will be consumed by consume_stock() function, later.
2208  */
2209 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2210 {
2211 	struct memcg_stock_pcp *stock;
2212 	unsigned long flags;
2213 
2214 	local_irq_save(flags);
2215 
2216 	stock = this_cpu_ptr(&memcg_stock);
2217 	if (stock->cached != memcg) { /* reset if necessary */
2218 		drain_stock(stock);
2219 		css_get(&memcg->css);
2220 		stock->cached = memcg;
2221 	}
2222 	stock->nr_pages += nr_pages;
2223 
2224 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2225 		drain_stock(stock);
2226 
2227 	local_irq_restore(flags);
2228 }
2229 
2230 /*
2231  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2232  * of the hierarchy under it.
2233  */
2234 static void drain_all_stock(struct mem_cgroup *root_memcg)
2235 {
2236 	int cpu, curcpu;
2237 
2238 	/* If someone's already draining, avoid adding running more workers. */
2239 	if (!mutex_trylock(&percpu_charge_mutex))
2240 		return;
2241 	/*
2242 	 * Notify other cpus that system-wide "drain" is running
2243 	 * We do not care about races with the cpu hotplug because cpu down
2244 	 * as well as workers from this path always operate on the local
2245 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2246 	 */
2247 	curcpu = get_cpu();
2248 	for_each_online_cpu(cpu) {
2249 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2250 		struct mem_cgroup *memcg;
2251 		bool flush = false;
2252 
2253 		rcu_read_lock();
2254 		memcg = stock->cached;
2255 		if (memcg && stock->nr_pages &&
2256 		    mem_cgroup_is_descendant(memcg, root_memcg))
2257 			flush = true;
2258 		else if (obj_stock_flush_required(stock, root_memcg))
2259 			flush = true;
2260 		rcu_read_unlock();
2261 
2262 		if (flush &&
2263 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2264 			if (cpu == curcpu)
2265 				drain_local_stock(&stock->work);
2266 			else
2267 				schedule_work_on(cpu, &stock->work);
2268 		}
2269 	}
2270 	put_cpu();
2271 	mutex_unlock(&percpu_charge_mutex);
2272 }
2273 
2274 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2275 {
2276 	struct memcg_stock_pcp *stock;
2277 
2278 	stock = &per_cpu(memcg_stock, cpu);
2279 	drain_stock(stock);
2280 
2281 	return 0;
2282 }
2283 
2284 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2285 				  unsigned int nr_pages,
2286 				  gfp_t gfp_mask)
2287 {
2288 	unsigned long nr_reclaimed = 0;
2289 
2290 	do {
2291 		unsigned long pflags;
2292 
2293 		if (page_counter_read(&memcg->memory) <=
2294 		    READ_ONCE(memcg->memory.high))
2295 			continue;
2296 
2297 		memcg_memory_event(memcg, MEMCG_HIGH);
2298 
2299 		psi_memstall_enter(&pflags);
2300 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2301 							     gfp_mask, true);
2302 		psi_memstall_leave(&pflags);
2303 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2304 		 !mem_cgroup_is_root(memcg));
2305 
2306 	return nr_reclaimed;
2307 }
2308 
2309 static void high_work_func(struct work_struct *work)
2310 {
2311 	struct mem_cgroup *memcg;
2312 
2313 	memcg = container_of(work, struct mem_cgroup, high_work);
2314 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2315 }
2316 
2317 /*
2318  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2319  * enough to still cause a significant slowdown in most cases, while still
2320  * allowing diagnostics and tracing to proceed without becoming stuck.
2321  */
2322 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2323 
2324 /*
2325  * When calculating the delay, we use these either side of the exponentiation to
2326  * maintain precision and scale to a reasonable number of jiffies (see the table
2327  * below.
2328  *
2329  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2330  *   overage ratio to a delay.
2331  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2332  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2333  *   to produce a reasonable delay curve.
2334  *
2335  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2336  * reasonable delay curve compared to precision-adjusted overage, not
2337  * penalising heavily at first, but still making sure that growth beyond the
2338  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2339  * example, with a high of 100 megabytes:
2340  *
2341  *  +-------+------------------------+
2342  *  | usage | time to allocate in ms |
2343  *  +-------+------------------------+
2344  *  | 100M  |                      0 |
2345  *  | 101M  |                      6 |
2346  *  | 102M  |                     25 |
2347  *  | 103M  |                     57 |
2348  *  | 104M  |                    102 |
2349  *  | 105M  |                    159 |
2350  *  | 106M  |                    230 |
2351  *  | 107M  |                    313 |
2352  *  | 108M  |                    409 |
2353  *  | 109M  |                    518 |
2354  *  | 110M  |                    639 |
2355  *  | 111M  |                    774 |
2356  *  | 112M  |                    921 |
2357  *  | 113M  |                   1081 |
2358  *  | 114M  |                   1254 |
2359  *  | 115M  |                   1439 |
2360  *  | 116M  |                   1638 |
2361  *  | 117M  |                   1849 |
2362  *  | 118M  |                   2000 |
2363  *  | 119M  |                   2000 |
2364  *  | 120M  |                   2000 |
2365  *  +-------+------------------------+
2366  */
2367  #define MEMCG_DELAY_PRECISION_SHIFT 20
2368  #define MEMCG_DELAY_SCALING_SHIFT 14
2369 
2370 static u64 calculate_overage(unsigned long usage, unsigned long high)
2371 {
2372 	u64 overage;
2373 
2374 	if (usage <= high)
2375 		return 0;
2376 
2377 	/*
2378 	 * Prevent division by 0 in overage calculation by acting as if
2379 	 * it was a threshold of 1 page
2380 	 */
2381 	high = max(high, 1UL);
2382 
2383 	overage = usage - high;
2384 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2385 	return div64_u64(overage, high);
2386 }
2387 
2388 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2389 {
2390 	u64 overage, max_overage = 0;
2391 
2392 	do {
2393 		overage = calculate_overage(page_counter_read(&memcg->memory),
2394 					    READ_ONCE(memcg->memory.high));
2395 		max_overage = max(overage, max_overage);
2396 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2397 		 !mem_cgroup_is_root(memcg));
2398 
2399 	return max_overage;
2400 }
2401 
2402 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2403 {
2404 	u64 overage, max_overage = 0;
2405 
2406 	do {
2407 		overage = calculate_overage(page_counter_read(&memcg->swap),
2408 					    READ_ONCE(memcg->swap.high));
2409 		if (overage)
2410 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2411 		max_overage = max(overage, max_overage);
2412 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2413 		 !mem_cgroup_is_root(memcg));
2414 
2415 	return max_overage;
2416 }
2417 
2418 /*
2419  * Get the number of jiffies that we should penalise a mischievous cgroup which
2420  * is exceeding its memory.high by checking both it and its ancestors.
2421  */
2422 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2423 					  unsigned int nr_pages,
2424 					  u64 max_overage)
2425 {
2426 	unsigned long penalty_jiffies;
2427 
2428 	if (!max_overage)
2429 		return 0;
2430 
2431 	/*
2432 	 * We use overage compared to memory.high to calculate the number of
2433 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2434 	 * fairly lenient on small overages, and increasingly harsh when the
2435 	 * memcg in question makes it clear that it has no intention of stopping
2436 	 * its crazy behaviour, so we exponentially increase the delay based on
2437 	 * overage amount.
2438 	 */
2439 	penalty_jiffies = max_overage * max_overage * HZ;
2440 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2441 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2442 
2443 	/*
2444 	 * Factor in the task's own contribution to the overage, such that four
2445 	 * N-sized allocations are throttled approximately the same as one
2446 	 * 4N-sized allocation.
2447 	 *
2448 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2449 	 * larger the current charge patch is than that.
2450 	 */
2451 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2452 }
2453 
2454 /*
2455  * Scheduled by try_charge() to be executed from the userland return path
2456  * and reclaims memory over the high limit.
2457  */
2458 void mem_cgroup_handle_over_high(void)
2459 {
2460 	unsigned long penalty_jiffies;
2461 	unsigned long pflags;
2462 	unsigned long nr_reclaimed;
2463 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2464 	int nr_retries = MAX_RECLAIM_RETRIES;
2465 	struct mem_cgroup *memcg;
2466 	bool in_retry = false;
2467 
2468 	if (likely(!nr_pages))
2469 		return;
2470 
2471 	memcg = get_mem_cgroup_from_mm(current->mm);
2472 	current->memcg_nr_pages_over_high = 0;
2473 
2474 retry_reclaim:
2475 	/*
2476 	 * The allocating task should reclaim at least the batch size, but for
2477 	 * subsequent retries we only want to do what's necessary to prevent oom
2478 	 * or breaching resource isolation.
2479 	 *
2480 	 * This is distinct from memory.max or page allocator behaviour because
2481 	 * memory.high is currently batched, whereas memory.max and the page
2482 	 * allocator run every time an allocation is made.
2483 	 */
2484 	nr_reclaimed = reclaim_high(memcg,
2485 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2486 				    GFP_KERNEL);
2487 
2488 	/*
2489 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2490 	 * allocators proactively to slow down excessive growth.
2491 	 */
2492 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2493 					       mem_find_max_overage(memcg));
2494 
2495 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2496 						swap_find_max_overage(memcg));
2497 
2498 	/*
2499 	 * Clamp the max delay per usermode return so as to still keep the
2500 	 * application moving forwards and also permit diagnostics, albeit
2501 	 * extremely slowly.
2502 	 */
2503 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2504 
2505 	/*
2506 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2507 	 * that it's not even worth doing, in an attempt to be nice to those who
2508 	 * go only a small amount over their memory.high value and maybe haven't
2509 	 * been aggressively reclaimed enough yet.
2510 	 */
2511 	if (penalty_jiffies <= HZ / 100)
2512 		goto out;
2513 
2514 	/*
2515 	 * If reclaim is making forward progress but we're still over
2516 	 * memory.high, we want to encourage that rather than doing allocator
2517 	 * throttling.
2518 	 */
2519 	if (nr_reclaimed || nr_retries--) {
2520 		in_retry = true;
2521 		goto retry_reclaim;
2522 	}
2523 
2524 	/*
2525 	 * If we exit early, we're guaranteed to die (since
2526 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2527 	 * need to account for any ill-begotten jiffies to pay them off later.
2528 	 */
2529 	psi_memstall_enter(&pflags);
2530 	schedule_timeout_killable(penalty_jiffies);
2531 	psi_memstall_leave(&pflags);
2532 
2533 out:
2534 	css_put(&memcg->css);
2535 }
2536 
2537 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2538 			unsigned int nr_pages)
2539 {
2540 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2541 	int nr_retries = MAX_RECLAIM_RETRIES;
2542 	struct mem_cgroup *mem_over_limit;
2543 	struct page_counter *counter;
2544 	enum oom_status oom_status;
2545 	unsigned long nr_reclaimed;
2546 	bool passed_oom = false;
2547 	bool may_swap = true;
2548 	bool drained = false;
2549 	unsigned long pflags;
2550 
2551 retry:
2552 	if (consume_stock(memcg, nr_pages))
2553 		return 0;
2554 
2555 	if (!do_memsw_account() ||
2556 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2557 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2558 			goto done_restock;
2559 		if (do_memsw_account())
2560 			page_counter_uncharge(&memcg->memsw, batch);
2561 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2562 	} else {
2563 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2564 		may_swap = false;
2565 	}
2566 
2567 	if (batch > nr_pages) {
2568 		batch = nr_pages;
2569 		goto retry;
2570 	}
2571 
2572 	/*
2573 	 * Memcg doesn't have a dedicated reserve for atomic
2574 	 * allocations. But like the global atomic pool, we need to
2575 	 * put the burden of reclaim on regular allocation requests
2576 	 * and let these go through as privileged allocations.
2577 	 */
2578 	if (gfp_mask & __GFP_ATOMIC)
2579 		goto force;
2580 
2581 	/*
2582 	 * Prevent unbounded recursion when reclaim operations need to
2583 	 * allocate memory. This might exceed the limits temporarily,
2584 	 * but we prefer facilitating memory reclaim and getting back
2585 	 * under the limit over triggering OOM kills in these cases.
2586 	 */
2587 	if (unlikely(current->flags & PF_MEMALLOC))
2588 		goto force;
2589 
2590 	if (unlikely(task_in_memcg_oom(current)))
2591 		goto nomem;
2592 
2593 	if (!gfpflags_allow_blocking(gfp_mask))
2594 		goto nomem;
2595 
2596 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2597 
2598 	psi_memstall_enter(&pflags);
2599 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2600 						    gfp_mask, may_swap);
2601 	psi_memstall_leave(&pflags);
2602 
2603 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2604 		goto retry;
2605 
2606 	if (!drained) {
2607 		drain_all_stock(mem_over_limit);
2608 		drained = true;
2609 		goto retry;
2610 	}
2611 
2612 	if (gfp_mask & __GFP_NORETRY)
2613 		goto nomem;
2614 	/*
2615 	 * Even though the limit is exceeded at this point, reclaim
2616 	 * may have been able to free some pages.  Retry the charge
2617 	 * before killing the task.
2618 	 *
2619 	 * Only for regular pages, though: huge pages are rather
2620 	 * unlikely to succeed so close to the limit, and we fall back
2621 	 * to regular pages anyway in case of failure.
2622 	 */
2623 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2624 		goto retry;
2625 	/*
2626 	 * At task move, charge accounts can be doubly counted. So, it's
2627 	 * better to wait until the end of task_move if something is going on.
2628 	 */
2629 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2630 		goto retry;
2631 
2632 	if (nr_retries--)
2633 		goto retry;
2634 
2635 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2636 		goto nomem;
2637 
2638 	/* Avoid endless loop for tasks bypassed by the oom killer */
2639 	if (passed_oom && task_is_dying())
2640 		goto nomem;
2641 
2642 	/*
2643 	 * keep retrying as long as the memcg oom killer is able to make
2644 	 * a forward progress or bypass the charge if the oom killer
2645 	 * couldn't make any progress.
2646 	 */
2647 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2648 		       get_order(nr_pages * PAGE_SIZE));
2649 	if (oom_status == OOM_SUCCESS) {
2650 		passed_oom = true;
2651 		nr_retries = MAX_RECLAIM_RETRIES;
2652 		goto retry;
2653 	}
2654 nomem:
2655 	if (!(gfp_mask & __GFP_NOFAIL))
2656 		return -ENOMEM;
2657 force:
2658 	/*
2659 	 * The allocation either can't fail or will lead to more memory
2660 	 * being freed very soon.  Allow memory usage go over the limit
2661 	 * temporarily by force charging it.
2662 	 */
2663 	page_counter_charge(&memcg->memory, nr_pages);
2664 	if (do_memsw_account())
2665 		page_counter_charge(&memcg->memsw, nr_pages);
2666 
2667 	return 0;
2668 
2669 done_restock:
2670 	if (batch > nr_pages)
2671 		refill_stock(memcg, batch - nr_pages);
2672 
2673 	/*
2674 	 * If the hierarchy is above the normal consumption range, schedule
2675 	 * reclaim on returning to userland.  We can perform reclaim here
2676 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2677 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2678 	 * not recorded as it most likely matches current's and won't
2679 	 * change in the meantime.  As high limit is checked again before
2680 	 * reclaim, the cost of mismatch is negligible.
2681 	 */
2682 	do {
2683 		bool mem_high, swap_high;
2684 
2685 		mem_high = page_counter_read(&memcg->memory) >
2686 			READ_ONCE(memcg->memory.high);
2687 		swap_high = page_counter_read(&memcg->swap) >
2688 			READ_ONCE(memcg->swap.high);
2689 
2690 		/* Don't bother a random interrupted task */
2691 		if (in_interrupt()) {
2692 			if (mem_high) {
2693 				schedule_work(&memcg->high_work);
2694 				break;
2695 			}
2696 			continue;
2697 		}
2698 
2699 		if (mem_high || swap_high) {
2700 			/*
2701 			 * The allocating tasks in this cgroup will need to do
2702 			 * reclaim or be throttled to prevent further growth
2703 			 * of the memory or swap footprints.
2704 			 *
2705 			 * Target some best-effort fairness between the tasks,
2706 			 * and distribute reclaim work and delay penalties
2707 			 * based on how much each task is actually allocating.
2708 			 */
2709 			current->memcg_nr_pages_over_high += batch;
2710 			set_notify_resume(current);
2711 			break;
2712 		}
2713 	} while ((memcg = parent_mem_cgroup(memcg)));
2714 
2715 	return 0;
2716 }
2717 
2718 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2719 			     unsigned int nr_pages)
2720 {
2721 	if (mem_cgroup_is_root(memcg))
2722 		return 0;
2723 
2724 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2725 }
2726 
2727 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2728 {
2729 	if (mem_cgroup_is_root(memcg))
2730 		return;
2731 
2732 	page_counter_uncharge(&memcg->memory, nr_pages);
2733 	if (do_memsw_account())
2734 		page_counter_uncharge(&memcg->memsw, nr_pages);
2735 }
2736 
2737 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2738 {
2739 	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2740 	/*
2741 	 * Any of the following ensures page's memcg stability:
2742 	 *
2743 	 * - the page lock
2744 	 * - LRU isolation
2745 	 * - lock_page_memcg()
2746 	 * - exclusive reference
2747 	 */
2748 	folio->memcg_data = (unsigned long)memcg;
2749 }
2750 
2751 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2752 {
2753 	struct mem_cgroup *memcg;
2754 
2755 	rcu_read_lock();
2756 retry:
2757 	memcg = obj_cgroup_memcg(objcg);
2758 	if (unlikely(!css_tryget(&memcg->css)))
2759 		goto retry;
2760 	rcu_read_unlock();
2761 
2762 	return memcg;
2763 }
2764 
2765 #ifdef CONFIG_MEMCG_KMEM
2766 /*
2767  * The allocated objcg pointers array is not accounted directly.
2768  * Moreover, it should not come from DMA buffer and is not readily
2769  * reclaimable. So those GFP bits should be masked off.
2770  */
2771 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2772 
2773 /*
2774  * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2775  * sequence used in this case to access content from object stock is slow.
2776  * To optimize for user context access, there are now two object stocks for
2777  * task context and interrupt context access respectively.
2778  *
2779  * The task context object stock can be accessed by disabling preemption only
2780  * which is cheap in non-preempt kernel. The interrupt context object stock
2781  * can only be accessed after disabling interrupt. User context code can
2782  * access interrupt object stock, but not vice versa.
2783  */
2784 static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2785 {
2786 	struct memcg_stock_pcp *stock;
2787 
2788 	if (likely(in_task())) {
2789 		*pflags = 0UL;
2790 		preempt_disable();
2791 		stock = this_cpu_ptr(&memcg_stock);
2792 		return &stock->task_obj;
2793 	}
2794 
2795 	local_irq_save(*pflags);
2796 	stock = this_cpu_ptr(&memcg_stock);
2797 	return &stock->irq_obj;
2798 }
2799 
2800 static inline void put_obj_stock(unsigned long flags)
2801 {
2802 	if (likely(in_task()))
2803 		preempt_enable();
2804 	else
2805 		local_irq_restore(flags);
2806 }
2807 
2808 /*
2809  * mod_objcg_mlstate() may be called with irq enabled, so
2810  * mod_memcg_lruvec_state() should be used.
2811  */
2812 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2813 				     struct pglist_data *pgdat,
2814 				     enum node_stat_item idx, int nr)
2815 {
2816 	struct mem_cgroup *memcg;
2817 	struct lruvec *lruvec;
2818 
2819 	rcu_read_lock();
2820 	memcg = obj_cgroup_memcg(objcg);
2821 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2822 	mod_memcg_lruvec_state(lruvec, idx, nr);
2823 	rcu_read_unlock();
2824 }
2825 
2826 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2827 				 gfp_t gfp, bool new_slab)
2828 {
2829 	unsigned int objects = objs_per_slab(s, slab);
2830 	unsigned long memcg_data;
2831 	void *vec;
2832 
2833 	gfp &= ~OBJCGS_CLEAR_MASK;
2834 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2835 			   slab_nid(slab));
2836 	if (!vec)
2837 		return -ENOMEM;
2838 
2839 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2840 	if (new_slab) {
2841 		/*
2842 		 * If the slab is brand new and nobody can yet access its
2843 		 * memcg_data, no synchronization is required and memcg_data can
2844 		 * be simply assigned.
2845 		 */
2846 		slab->memcg_data = memcg_data;
2847 	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2848 		/*
2849 		 * If the slab is already in use, somebody can allocate and
2850 		 * assign obj_cgroups in parallel. In this case the existing
2851 		 * objcg vector should be reused.
2852 		 */
2853 		kfree(vec);
2854 		return 0;
2855 	}
2856 
2857 	kmemleak_not_leak(vec);
2858 	return 0;
2859 }
2860 
2861 /*
2862  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2863  *
2864  * A passed kernel object can be a slab object or a generic kernel page, so
2865  * different mechanisms for getting the memory cgroup pointer should be used.
2866  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2867  * can not know for sure how the kernel object is implemented.
2868  * mem_cgroup_from_obj() can be safely used in such cases.
2869  *
2870  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2871  * cgroup_mutex, etc.
2872  */
2873 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2874 {
2875 	struct folio *folio;
2876 
2877 	if (mem_cgroup_disabled())
2878 		return NULL;
2879 
2880 	folio = virt_to_folio(p);
2881 
2882 	/*
2883 	 * Slab objects are accounted individually, not per-page.
2884 	 * Memcg membership data for each individual object is saved in
2885 	 * slab->memcg_data.
2886 	 */
2887 	if (folio_test_slab(folio)) {
2888 		struct obj_cgroup **objcgs;
2889 		struct slab *slab;
2890 		unsigned int off;
2891 
2892 		slab = folio_slab(folio);
2893 		objcgs = slab_objcgs(slab);
2894 		if (!objcgs)
2895 			return NULL;
2896 
2897 		off = obj_to_index(slab->slab_cache, slab, p);
2898 		if (objcgs[off])
2899 			return obj_cgroup_memcg(objcgs[off]);
2900 
2901 		return NULL;
2902 	}
2903 
2904 	/*
2905 	 * page_memcg_check() is used here, because in theory we can encounter
2906 	 * a folio where the slab flag has been cleared already, but
2907 	 * slab->memcg_data has not been freed yet
2908 	 * page_memcg_check(page) will guarantee that a proper memory
2909 	 * cgroup pointer or NULL will be returned.
2910 	 */
2911 	return page_memcg_check(folio_page(folio, 0));
2912 }
2913 
2914 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2915 {
2916 	struct obj_cgroup *objcg = NULL;
2917 	struct mem_cgroup *memcg;
2918 
2919 	if (memcg_kmem_bypass())
2920 		return NULL;
2921 
2922 	rcu_read_lock();
2923 	if (unlikely(active_memcg()))
2924 		memcg = active_memcg();
2925 	else
2926 		memcg = mem_cgroup_from_task(current);
2927 
2928 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2929 		objcg = rcu_dereference(memcg->objcg);
2930 		if (objcg && obj_cgroup_tryget(objcg))
2931 			break;
2932 		objcg = NULL;
2933 	}
2934 	rcu_read_unlock();
2935 
2936 	return objcg;
2937 }
2938 
2939 static int memcg_alloc_cache_id(void)
2940 {
2941 	int id, size;
2942 	int err;
2943 
2944 	id = ida_simple_get(&memcg_cache_ida,
2945 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2946 	if (id < 0)
2947 		return id;
2948 
2949 	if (id < memcg_nr_cache_ids)
2950 		return id;
2951 
2952 	/*
2953 	 * There's no space for the new id in memcg_caches arrays,
2954 	 * so we have to grow them.
2955 	 */
2956 	down_write(&memcg_cache_ids_sem);
2957 
2958 	size = 2 * (id + 1);
2959 	if (size < MEMCG_CACHES_MIN_SIZE)
2960 		size = MEMCG_CACHES_MIN_SIZE;
2961 	else if (size > MEMCG_CACHES_MAX_SIZE)
2962 		size = MEMCG_CACHES_MAX_SIZE;
2963 
2964 	err = memcg_update_all_list_lrus(size);
2965 	if (!err)
2966 		memcg_nr_cache_ids = size;
2967 
2968 	up_write(&memcg_cache_ids_sem);
2969 
2970 	if (err) {
2971 		ida_simple_remove(&memcg_cache_ida, id);
2972 		return err;
2973 	}
2974 	return id;
2975 }
2976 
2977 static void memcg_free_cache_id(int id)
2978 {
2979 	ida_simple_remove(&memcg_cache_ida, id);
2980 }
2981 
2982 /*
2983  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2984  * @objcg: object cgroup to uncharge
2985  * @nr_pages: number of pages to uncharge
2986  */
2987 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2988 				      unsigned int nr_pages)
2989 {
2990 	struct mem_cgroup *memcg;
2991 
2992 	memcg = get_mem_cgroup_from_objcg(objcg);
2993 
2994 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2995 		page_counter_uncharge(&memcg->kmem, nr_pages);
2996 	refill_stock(memcg, nr_pages);
2997 
2998 	css_put(&memcg->css);
2999 }
3000 
3001 /*
3002  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3003  * @objcg: object cgroup to charge
3004  * @gfp: reclaim mode
3005  * @nr_pages: number of pages to charge
3006  *
3007  * Returns 0 on success, an error code on failure.
3008  */
3009 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3010 				   unsigned int nr_pages)
3011 {
3012 	struct mem_cgroup *memcg;
3013 	int ret;
3014 
3015 	memcg = get_mem_cgroup_from_objcg(objcg);
3016 
3017 	ret = try_charge_memcg(memcg, gfp, nr_pages);
3018 	if (ret)
3019 		goto out;
3020 
3021 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3022 		page_counter_charge(&memcg->kmem, nr_pages);
3023 out:
3024 	css_put(&memcg->css);
3025 
3026 	return ret;
3027 }
3028 
3029 /**
3030  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3031  * @page: page to charge
3032  * @gfp: reclaim mode
3033  * @order: allocation order
3034  *
3035  * Returns 0 on success, an error code on failure.
3036  */
3037 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3038 {
3039 	struct obj_cgroup *objcg;
3040 	int ret = 0;
3041 
3042 	objcg = get_obj_cgroup_from_current();
3043 	if (objcg) {
3044 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3045 		if (!ret) {
3046 			page->memcg_data = (unsigned long)objcg |
3047 				MEMCG_DATA_KMEM;
3048 			return 0;
3049 		}
3050 		obj_cgroup_put(objcg);
3051 	}
3052 	return ret;
3053 }
3054 
3055 /**
3056  * __memcg_kmem_uncharge_page: uncharge a kmem page
3057  * @page: page to uncharge
3058  * @order: allocation order
3059  */
3060 void __memcg_kmem_uncharge_page(struct page *page, int order)
3061 {
3062 	struct folio *folio = page_folio(page);
3063 	struct obj_cgroup *objcg;
3064 	unsigned int nr_pages = 1 << order;
3065 
3066 	if (!folio_memcg_kmem(folio))
3067 		return;
3068 
3069 	objcg = __folio_objcg(folio);
3070 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3071 	folio->memcg_data = 0;
3072 	obj_cgroup_put(objcg);
3073 }
3074 
3075 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3076 		     enum node_stat_item idx, int nr)
3077 {
3078 	unsigned long flags;
3079 	struct obj_stock *stock = get_obj_stock(&flags);
3080 	int *bytes;
3081 
3082 	/*
3083 	 * Save vmstat data in stock and skip vmstat array update unless
3084 	 * accumulating over a page of vmstat data or when pgdat or idx
3085 	 * changes.
3086 	 */
3087 	if (stock->cached_objcg != objcg) {
3088 		drain_obj_stock(stock);
3089 		obj_cgroup_get(objcg);
3090 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3091 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3092 		stock->cached_objcg = objcg;
3093 		stock->cached_pgdat = pgdat;
3094 	} else if (stock->cached_pgdat != pgdat) {
3095 		/* Flush the existing cached vmstat data */
3096 		struct pglist_data *oldpg = stock->cached_pgdat;
3097 
3098 		if (stock->nr_slab_reclaimable_b) {
3099 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3100 					  stock->nr_slab_reclaimable_b);
3101 			stock->nr_slab_reclaimable_b = 0;
3102 		}
3103 		if (stock->nr_slab_unreclaimable_b) {
3104 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3105 					  stock->nr_slab_unreclaimable_b);
3106 			stock->nr_slab_unreclaimable_b = 0;
3107 		}
3108 		stock->cached_pgdat = pgdat;
3109 	}
3110 
3111 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3112 					       : &stock->nr_slab_unreclaimable_b;
3113 	/*
3114 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3115 	 * cached locally at least once before pushing it out.
3116 	 */
3117 	if (!*bytes) {
3118 		*bytes = nr;
3119 		nr = 0;
3120 	} else {
3121 		*bytes += nr;
3122 		if (abs(*bytes) > PAGE_SIZE) {
3123 			nr = *bytes;
3124 			*bytes = 0;
3125 		} else {
3126 			nr = 0;
3127 		}
3128 	}
3129 	if (nr)
3130 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3131 
3132 	put_obj_stock(flags);
3133 }
3134 
3135 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3136 {
3137 	unsigned long flags;
3138 	struct obj_stock *stock = get_obj_stock(&flags);
3139 	bool ret = false;
3140 
3141 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3142 		stock->nr_bytes -= nr_bytes;
3143 		ret = true;
3144 	}
3145 
3146 	put_obj_stock(flags);
3147 
3148 	return ret;
3149 }
3150 
3151 static void drain_obj_stock(struct obj_stock *stock)
3152 {
3153 	struct obj_cgroup *old = stock->cached_objcg;
3154 
3155 	if (!old)
3156 		return;
3157 
3158 	if (stock->nr_bytes) {
3159 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3160 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3161 
3162 		if (nr_pages)
3163 			obj_cgroup_uncharge_pages(old, nr_pages);
3164 
3165 		/*
3166 		 * The leftover is flushed to the centralized per-memcg value.
3167 		 * On the next attempt to refill obj stock it will be moved
3168 		 * to a per-cpu stock (probably, on an other CPU), see
3169 		 * refill_obj_stock().
3170 		 *
3171 		 * How often it's flushed is a trade-off between the memory
3172 		 * limit enforcement accuracy and potential CPU contention,
3173 		 * so it might be changed in the future.
3174 		 */
3175 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3176 		stock->nr_bytes = 0;
3177 	}
3178 
3179 	/*
3180 	 * Flush the vmstat data in current stock
3181 	 */
3182 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3183 		if (stock->nr_slab_reclaimable_b) {
3184 			mod_objcg_mlstate(old, stock->cached_pgdat,
3185 					  NR_SLAB_RECLAIMABLE_B,
3186 					  stock->nr_slab_reclaimable_b);
3187 			stock->nr_slab_reclaimable_b = 0;
3188 		}
3189 		if (stock->nr_slab_unreclaimable_b) {
3190 			mod_objcg_mlstate(old, stock->cached_pgdat,
3191 					  NR_SLAB_UNRECLAIMABLE_B,
3192 					  stock->nr_slab_unreclaimable_b);
3193 			stock->nr_slab_unreclaimable_b = 0;
3194 		}
3195 		stock->cached_pgdat = NULL;
3196 	}
3197 
3198 	obj_cgroup_put(old);
3199 	stock->cached_objcg = NULL;
3200 }
3201 
3202 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3203 				     struct mem_cgroup *root_memcg)
3204 {
3205 	struct mem_cgroup *memcg;
3206 
3207 	if (in_task() && stock->task_obj.cached_objcg) {
3208 		memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3209 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3210 			return true;
3211 	}
3212 	if (stock->irq_obj.cached_objcg) {
3213 		memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3214 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3215 			return true;
3216 	}
3217 
3218 	return false;
3219 }
3220 
3221 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3222 			     bool allow_uncharge)
3223 {
3224 	unsigned long flags;
3225 	struct obj_stock *stock = get_obj_stock(&flags);
3226 	unsigned int nr_pages = 0;
3227 
3228 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3229 		drain_obj_stock(stock);
3230 		obj_cgroup_get(objcg);
3231 		stock->cached_objcg = objcg;
3232 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3233 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3234 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3235 	}
3236 	stock->nr_bytes += nr_bytes;
3237 
3238 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3239 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3240 		stock->nr_bytes &= (PAGE_SIZE - 1);
3241 	}
3242 
3243 	put_obj_stock(flags);
3244 
3245 	if (nr_pages)
3246 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3247 }
3248 
3249 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3250 {
3251 	unsigned int nr_pages, nr_bytes;
3252 	int ret;
3253 
3254 	if (consume_obj_stock(objcg, size))
3255 		return 0;
3256 
3257 	/*
3258 	 * In theory, objcg->nr_charged_bytes can have enough
3259 	 * pre-charged bytes to satisfy the allocation. However,
3260 	 * flushing objcg->nr_charged_bytes requires two atomic
3261 	 * operations, and objcg->nr_charged_bytes can't be big.
3262 	 * The shared objcg->nr_charged_bytes can also become a
3263 	 * performance bottleneck if all tasks of the same memcg are
3264 	 * trying to update it. So it's better to ignore it and try
3265 	 * grab some new pages. The stock's nr_bytes will be flushed to
3266 	 * objcg->nr_charged_bytes later on when objcg changes.
3267 	 *
3268 	 * The stock's nr_bytes may contain enough pre-charged bytes
3269 	 * to allow one less page from being charged, but we can't rely
3270 	 * on the pre-charged bytes not being changed outside of
3271 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3272 	 * pre-charged bytes as well when charging pages. To avoid a
3273 	 * page uncharge right after a page charge, we set the
3274 	 * allow_uncharge flag to false when calling refill_obj_stock()
3275 	 * to temporarily allow the pre-charged bytes to exceed the page
3276 	 * size limit. The maximum reachable value of the pre-charged
3277 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3278 	 * race.
3279 	 */
3280 	nr_pages = size >> PAGE_SHIFT;
3281 	nr_bytes = size & (PAGE_SIZE - 1);
3282 
3283 	if (nr_bytes)
3284 		nr_pages += 1;
3285 
3286 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3287 	if (!ret && nr_bytes)
3288 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3289 
3290 	return ret;
3291 }
3292 
3293 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3294 {
3295 	refill_obj_stock(objcg, size, true);
3296 }
3297 
3298 #endif /* CONFIG_MEMCG_KMEM */
3299 
3300 /*
3301  * Because page_memcg(head) is not set on tails, set it now.
3302  */
3303 void split_page_memcg(struct page *head, unsigned int nr)
3304 {
3305 	struct folio *folio = page_folio(head);
3306 	struct mem_cgroup *memcg = folio_memcg(folio);
3307 	int i;
3308 
3309 	if (mem_cgroup_disabled() || !memcg)
3310 		return;
3311 
3312 	for (i = 1; i < nr; i++)
3313 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3314 
3315 	if (folio_memcg_kmem(folio))
3316 		obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3317 	else
3318 		css_get_many(&memcg->css, nr - 1);
3319 }
3320 
3321 #ifdef CONFIG_MEMCG_SWAP
3322 /**
3323  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3324  * @entry: swap entry to be moved
3325  * @from:  mem_cgroup which the entry is moved from
3326  * @to:  mem_cgroup which the entry is moved to
3327  *
3328  * It succeeds only when the swap_cgroup's record for this entry is the same
3329  * as the mem_cgroup's id of @from.
3330  *
3331  * Returns 0 on success, -EINVAL on failure.
3332  *
3333  * The caller must have charged to @to, IOW, called page_counter_charge() about
3334  * both res and memsw, and called css_get().
3335  */
3336 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3337 				struct mem_cgroup *from, struct mem_cgroup *to)
3338 {
3339 	unsigned short old_id, new_id;
3340 
3341 	old_id = mem_cgroup_id(from);
3342 	new_id = mem_cgroup_id(to);
3343 
3344 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3345 		mod_memcg_state(from, MEMCG_SWAP, -1);
3346 		mod_memcg_state(to, MEMCG_SWAP, 1);
3347 		return 0;
3348 	}
3349 	return -EINVAL;
3350 }
3351 #else
3352 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3353 				struct mem_cgroup *from, struct mem_cgroup *to)
3354 {
3355 	return -EINVAL;
3356 }
3357 #endif
3358 
3359 static DEFINE_MUTEX(memcg_max_mutex);
3360 
3361 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3362 				 unsigned long max, bool memsw)
3363 {
3364 	bool enlarge = false;
3365 	bool drained = false;
3366 	int ret;
3367 	bool limits_invariant;
3368 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3369 
3370 	do {
3371 		if (signal_pending(current)) {
3372 			ret = -EINTR;
3373 			break;
3374 		}
3375 
3376 		mutex_lock(&memcg_max_mutex);
3377 		/*
3378 		 * Make sure that the new limit (memsw or memory limit) doesn't
3379 		 * break our basic invariant rule memory.max <= memsw.max.
3380 		 */
3381 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3382 					   max <= memcg->memsw.max;
3383 		if (!limits_invariant) {
3384 			mutex_unlock(&memcg_max_mutex);
3385 			ret = -EINVAL;
3386 			break;
3387 		}
3388 		if (max > counter->max)
3389 			enlarge = true;
3390 		ret = page_counter_set_max(counter, max);
3391 		mutex_unlock(&memcg_max_mutex);
3392 
3393 		if (!ret)
3394 			break;
3395 
3396 		if (!drained) {
3397 			drain_all_stock(memcg);
3398 			drained = true;
3399 			continue;
3400 		}
3401 
3402 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3403 					GFP_KERNEL, !memsw)) {
3404 			ret = -EBUSY;
3405 			break;
3406 		}
3407 	} while (true);
3408 
3409 	if (!ret && enlarge)
3410 		memcg_oom_recover(memcg);
3411 
3412 	return ret;
3413 }
3414 
3415 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3416 					    gfp_t gfp_mask,
3417 					    unsigned long *total_scanned)
3418 {
3419 	unsigned long nr_reclaimed = 0;
3420 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3421 	unsigned long reclaimed;
3422 	int loop = 0;
3423 	struct mem_cgroup_tree_per_node *mctz;
3424 	unsigned long excess;
3425 	unsigned long nr_scanned;
3426 
3427 	if (order > 0)
3428 		return 0;
3429 
3430 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3431 
3432 	/*
3433 	 * Do not even bother to check the largest node if the root
3434 	 * is empty. Do it lockless to prevent lock bouncing. Races
3435 	 * are acceptable as soft limit is best effort anyway.
3436 	 */
3437 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3438 		return 0;
3439 
3440 	/*
3441 	 * This loop can run a while, specially if mem_cgroup's continuously
3442 	 * keep exceeding their soft limit and putting the system under
3443 	 * pressure
3444 	 */
3445 	do {
3446 		if (next_mz)
3447 			mz = next_mz;
3448 		else
3449 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3450 		if (!mz)
3451 			break;
3452 
3453 		nr_scanned = 0;
3454 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3455 						    gfp_mask, &nr_scanned);
3456 		nr_reclaimed += reclaimed;
3457 		*total_scanned += nr_scanned;
3458 		spin_lock_irq(&mctz->lock);
3459 		__mem_cgroup_remove_exceeded(mz, mctz);
3460 
3461 		/*
3462 		 * If we failed to reclaim anything from this memory cgroup
3463 		 * it is time to move on to the next cgroup
3464 		 */
3465 		next_mz = NULL;
3466 		if (!reclaimed)
3467 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3468 
3469 		excess = soft_limit_excess(mz->memcg);
3470 		/*
3471 		 * One school of thought says that we should not add
3472 		 * back the node to the tree if reclaim returns 0.
3473 		 * But our reclaim could return 0, simply because due
3474 		 * to priority we are exposing a smaller subset of
3475 		 * memory to reclaim from. Consider this as a longer
3476 		 * term TODO.
3477 		 */
3478 		/* If excess == 0, no tree ops */
3479 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3480 		spin_unlock_irq(&mctz->lock);
3481 		css_put(&mz->memcg->css);
3482 		loop++;
3483 		/*
3484 		 * Could not reclaim anything and there are no more
3485 		 * mem cgroups to try or we seem to be looping without
3486 		 * reclaiming anything.
3487 		 */
3488 		if (!nr_reclaimed &&
3489 			(next_mz == NULL ||
3490 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3491 			break;
3492 	} while (!nr_reclaimed);
3493 	if (next_mz)
3494 		css_put(&next_mz->memcg->css);
3495 	return nr_reclaimed;
3496 }
3497 
3498 /*
3499  * Reclaims as many pages from the given memcg as possible.
3500  *
3501  * Caller is responsible for holding css reference for memcg.
3502  */
3503 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3504 {
3505 	int nr_retries = MAX_RECLAIM_RETRIES;
3506 
3507 	/* we call try-to-free pages for make this cgroup empty */
3508 	lru_add_drain_all();
3509 
3510 	drain_all_stock(memcg);
3511 
3512 	/* try to free all pages in this cgroup */
3513 	while (nr_retries && page_counter_read(&memcg->memory)) {
3514 		if (signal_pending(current))
3515 			return -EINTR;
3516 
3517 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true))
3518 			nr_retries--;
3519 	}
3520 
3521 	return 0;
3522 }
3523 
3524 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3525 					    char *buf, size_t nbytes,
3526 					    loff_t off)
3527 {
3528 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3529 
3530 	if (mem_cgroup_is_root(memcg))
3531 		return -EINVAL;
3532 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3533 }
3534 
3535 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3536 				     struct cftype *cft)
3537 {
3538 	return 1;
3539 }
3540 
3541 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3542 				      struct cftype *cft, u64 val)
3543 {
3544 	if (val == 1)
3545 		return 0;
3546 
3547 	pr_warn_once("Non-hierarchical mode is deprecated. "
3548 		     "Please report your usecase to linux-mm@kvack.org if you "
3549 		     "depend on this functionality.\n");
3550 
3551 	return -EINVAL;
3552 }
3553 
3554 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3555 {
3556 	unsigned long val;
3557 
3558 	if (mem_cgroup_is_root(memcg)) {
3559 		mem_cgroup_flush_stats();
3560 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3561 			memcg_page_state(memcg, NR_ANON_MAPPED);
3562 		if (swap)
3563 			val += memcg_page_state(memcg, MEMCG_SWAP);
3564 	} else {
3565 		if (!swap)
3566 			val = page_counter_read(&memcg->memory);
3567 		else
3568 			val = page_counter_read(&memcg->memsw);
3569 	}
3570 	return val;
3571 }
3572 
3573 enum {
3574 	RES_USAGE,
3575 	RES_LIMIT,
3576 	RES_MAX_USAGE,
3577 	RES_FAILCNT,
3578 	RES_SOFT_LIMIT,
3579 };
3580 
3581 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3582 			       struct cftype *cft)
3583 {
3584 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3585 	struct page_counter *counter;
3586 
3587 	switch (MEMFILE_TYPE(cft->private)) {
3588 	case _MEM:
3589 		counter = &memcg->memory;
3590 		break;
3591 	case _MEMSWAP:
3592 		counter = &memcg->memsw;
3593 		break;
3594 	case _KMEM:
3595 		counter = &memcg->kmem;
3596 		break;
3597 	case _TCP:
3598 		counter = &memcg->tcpmem;
3599 		break;
3600 	default:
3601 		BUG();
3602 	}
3603 
3604 	switch (MEMFILE_ATTR(cft->private)) {
3605 	case RES_USAGE:
3606 		if (counter == &memcg->memory)
3607 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3608 		if (counter == &memcg->memsw)
3609 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3610 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3611 	case RES_LIMIT:
3612 		return (u64)counter->max * PAGE_SIZE;
3613 	case RES_MAX_USAGE:
3614 		return (u64)counter->watermark * PAGE_SIZE;
3615 	case RES_FAILCNT:
3616 		return counter->failcnt;
3617 	case RES_SOFT_LIMIT:
3618 		return (u64)memcg->soft_limit * PAGE_SIZE;
3619 	default:
3620 		BUG();
3621 	}
3622 }
3623 
3624 #ifdef CONFIG_MEMCG_KMEM
3625 static int memcg_online_kmem(struct mem_cgroup *memcg)
3626 {
3627 	struct obj_cgroup *objcg;
3628 	int memcg_id;
3629 
3630 	if (cgroup_memory_nokmem)
3631 		return 0;
3632 
3633 	BUG_ON(memcg->kmemcg_id >= 0);
3634 
3635 	memcg_id = memcg_alloc_cache_id();
3636 	if (memcg_id < 0)
3637 		return memcg_id;
3638 
3639 	objcg = obj_cgroup_alloc();
3640 	if (!objcg) {
3641 		memcg_free_cache_id(memcg_id);
3642 		return -ENOMEM;
3643 	}
3644 	objcg->memcg = memcg;
3645 	rcu_assign_pointer(memcg->objcg, objcg);
3646 
3647 	static_branch_enable(&memcg_kmem_enabled_key);
3648 
3649 	memcg->kmemcg_id = memcg_id;
3650 
3651 	return 0;
3652 }
3653 
3654 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3655 {
3656 	struct mem_cgroup *parent;
3657 	int kmemcg_id;
3658 
3659 	if (memcg->kmemcg_id == -1)
3660 		return;
3661 
3662 	parent = parent_mem_cgroup(memcg);
3663 	if (!parent)
3664 		parent = root_mem_cgroup;
3665 
3666 	memcg_reparent_objcgs(memcg, parent);
3667 
3668 	kmemcg_id = memcg->kmemcg_id;
3669 	BUG_ON(kmemcg_id < 0);
3670 
3671 	/*
3672 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3673 	 * corresponding to this cgroup are guaranteed to remain empty.
3674 	 * The ordering is imposed by list_lru_node->lock taken by
3675 	 * memcg_drain_all_list_lrus().
3676 	 */
3677 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3678 
3679 	memcg_free_cache_id(kmemcg_id);
3680 	memcg->kmemcg_id = -1;
3681 }
3682 #else
3683 static int memcg_online_kmem(struct mem_cgroup *memcg)
3684 {
3685 	return 0;
3686 }
3687 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3688 {
3689 }
3690 #endif /* CONFIG_MEMCG_KMEM */
3691 
3692 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3693 {
3694 	int ret;
3695 
3696 	mutex_lock(&memcg_max_mutex);
3697 
3698 	ret = page_counter_set_max(&memcg->tcpmem, max);
3699 	if (ret)
3700 		goto out;
3701 
3702 	if (!memcg->tcpmem_active) {
3703 		/*
3704 		 * The active flag needs to be written after the static_key
3705 		 * update. This is what guarantees that the socket activation
3706 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3707 		 * for details, and note that we don't mark any socket as
3708 		 * belonging to this memcg until that flag is up.
3709 		 *
3710 		 * We need to do this, because static_keys will span multiple
3711 		 * sites, but we can't control their order. If we mark a socket
3712 		 * as accounted, but the accounting functions are not patched in
3713 		 * yet, we'll lose accounting.
3714 		 *
3715 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3716 		 * because when this value change, the code to process it is not
3717 		 * patched in yet.
3718 		 */
3719 		static_branch_inc(&memcg_sockets_enabled_key);
3720 		memcg->tcpmem_active = true;
3721 	}
3722 out:
3723 	mutex_unlock(&memcg_max_mutex);
3724 	return ret;
3725 }
3726 
3727 /*
3728  * The user of this function is...
3729  * RES_LIMIT.
3730  */
3731 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3732 				char *buf, size_t nbytes, loff_t off)
3733 {
3734 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3735 	unsigned long nr_pages;
3736 	int ret;
3737 
3738 	buf = strstrip(buf);
3739 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3740 	if (ret)
3741 		return ret;
3742 
3743 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3744 	case RES_LIMIT:
3745 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3746 			ret = -EINVAL;
3747 			break;
3748 		}
3749 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3750 		case _MEM:
3751 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3752 			break;
3753 		case _MEMSWAP:
3754 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3755 			break;
3756 		case _KMEM:
3757 			/* kmem.limit_in_bytes is deprecated. */
3758 			ret = -EOPNOTSUPP;
3759 			break;
3760 		case _TCP:
3761 			ret = memcg_update_tcp_max(memcg, nr_pages);
3762 			break;
3763 		}
3764 		break;
3765 	case RES_SOFT_LIMIT:
3766 		memcg->soft_limit = nr_pages;
3767 		ret = 0;
3768 		break;
3769 	}
3770 	return ret ?: nbytes;
3771 }
3772 
3773 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3774 				size_t nbytes, loff_t off)
3775 {
3776 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3777 	struct page_counter *counter;
3778 
3779 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3780 	case _MEM:
3781 		counter = &memcg->memory;
3782 		break;
3783 	case _MEMSWAP:
3784 		counter = &memcg->memsw;
3785 		break;
3786 	case _KMEM:
3787 		counter = &memcg->kmem;
3788 		break;
3789 	case _TCP:
3790 		counter = &memcg->tcpmem;
3791 		break;
3792 	default:
3793 		BUG();
3794 	}
3795 
3796 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3797 	case RES_MAX_USAGE:
3798 		page_counter_reset_watermark(counter);
3799 		break;
3800 	case RES_FAILCNT:
3801 		counter->failcnt = 0;
3802 		break;
3803 	default:
3804 		BUG();
3805 	}
3806 
3807 	return nbytes;
3808 }
3809 
3810 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3811 					struct cftype *cft)
3812 {
3813 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3814 }
3815 
3816 #ifdef CONFIG_MMU
3817 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3818 					struct cftype *cft, u64 val)
3819 {
3820 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3821 
3822 	if (val & ~MOVE_MASK)
3823 		return -EINVAL;
3824 
3825 	/*
3826 	 * No kind of locking is needed in here, because ->can_attach() will
3827 	 * check this value once in the beginning of the process, and then carry
3828 	 * on with stale data. This means that changes to this value will only
3829 	 * affect task migrations starting after the change.
3830 	 */
3831 	memcg->move_charge_at_immigrate = val;
3832 	return 0;
3833 }
3834 #else
3835 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3836 					struct cftype *cft, u64 val)
3837 {
3838 	return -ENOSYS;
3839 }
3840 #endif
3841 
3842 #ifdef CONFIG_NUMA
3843 
3844 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3845 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3846 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3847 
3848 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3849 				int nid, unsigned int lru_mask, bool tree)
3850 {
3851 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3852 	unsigned long nr = 0;
3853 	enum lru_list lru;
3854 
3855 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3856 
3857 	for_each_lru(lru) {
3858 		if (!(BIT(lru) & lru_mask))
3859 			continue;
3860 		if (tree)
3861 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3862 		else
3863 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3864 	}
3865 	return nr;
3866 }
3867 
3868 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3869 					     unsigned int lru_mask,
3870 					     bool tree)
3871 {
3872 	unsigned long nr = 0;
3873 	enum lru_list lru;
3874 
3875 	for_each_lru(lru) {
3876 		if (!(BIT(lru) & lru_mask))
3877 			continue;
3878 		if (tree)
3879 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3880 		else
3881 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3882 	}
3883 	return nr;
3884 }
3885 
3886 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3887 {
3888 	struct numa_stat {
3889 		const char *name;
3890 		unsigned int lru_mask;
3891 	};
3892 
3893 	static const struct numa_stat stats[] = {
3894 		{ "total", LRU_ALL },
3895 		{ "file", LRU_ALL_FILE },
3896 		{ "anon", LRU_ALL_ANON },
3897 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3898 	};
3899 	const struct numa_stat *stat;
3900 	int nid;
3901 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3902 
3903 	mem_cgroup_flush_stats();
3904 
3905 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3906 		seq_printf(m, "%s=%lu", stat->name,
3907 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3908 						   false));
3909 		for_each_node_state(nid, N_MEMORY)
3910 			seq_printf(m, " N%d=%lu", nid,
3911 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3912 							stat->lru_mask, false));
3913 		seq_putc(m, '\n');
3914 	}
3915 
3916 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3917 
3918 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3919 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3920 						   true));
3921 		for_each_node_state(nid, N_MEMORY)
3922 			seq_printf(m, " N%d=%lu", nid,
3923 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3924 							stat->lru_mask, true));
3925 		seq_putc(m, '\n');
3926 	}
3927 
3928 	return 0;
3929 }
3930 #endif /* CONFIG_NUMA */
3931 
3932 static const unsigned int memcg1_stats[] = {
3933 	NR_FILE_PAGES,
3934 	NR_ANON_MAPPED,
3935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3936 	NR_ANON_THPS,
3937 #endif
3938 	NR_SHMEM,
3939 	NR_FILE_MAPPED,
3940 	NR_FILE_DIRTY,
3941 	NR_WRITEBACK,
3942 	MEMCG_SWAP,
3943 };
3944 
3945 static const char *const memcg1_stat_names[] = {
3946 	"cache",
3947 	"rss",
3948 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3949 	"rss_huge",
3950 #endif
3951 	"shmem",
3952 	"mapped_file",
3953 	"dirty",
3954 	"writeback",
3955 	"swap",
3956 };
3957 
3958 /* Universal VM events cgroup1 shows, original sort order */
3959 static const unsigned int memcg1_events[] = {
3960 	PGPGIN,
3961 	PGPGOUT,
3962 	PGFAULT,
3963 	PGMAJFAULT,
3964 };
3965 
3966 static int memcg_stat_show(struct seq_file *m, void *v)
3967 {
3968 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3969 	unsigned long memory, memsw;
3970 	struct mem_cgroup *mi;
3971 	unsigned int i;
3972 
3973 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3974 
3975 	mem_cgroup_flush_stats();
3976 
3977 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3978 		unsigned long nr;
3979 
3980 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3981 			continue;
3982 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3983 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3984 	}
3985 
3986 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3987 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3988 			   memcg_events_local(memcg, memcg1_events[i]));
3989 
3990 	for (i = 0; i < NR_LRU_LISTS; i++)
3991 		seq_printf(m, "%s %lu\n", lru_list_name(i),
3992 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3993 			   PAGE_SIZE);
3994 
3995 	/* Hierarchical information */
3996 	memory = memsw = PAGE_COUNTER_MAX;
3997 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3998 		memory = min(memory, READ_ONCE(mi->memory.max));
3999 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4000 	}
4001 	seq_printf(m, "hierarchical_memory_limit %llu\n",
4002 		   (u64)memory * PAGE_SIZE);
4003 	if (do_memsw_account())
4004 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4005 			   (u64)memsw * PAGE_SIZE);
4006 
4007 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4008 		unsigned long nr;
4009 
4010 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4011 			continue;
4012 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4013 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4014 						(u64)nr * PAGE_SIZE);
4015 	}
4016 
4017 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4018 		seq_printf(m, "total_%s %llu\n",
4019 			   vm_event_name(memcg1_events[i]),
4020 			   (u64)memcg_events(memcg, memcg1_events[i]));
4021 
4022 	for (i = 0; i < NR_LRU_LISTS; i++)
4023 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4024 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4025 			   PAGE_SIZE);
4026 
4027 #ifdef CONFIG_DEBUG_VM
4028 	{
4029 		pg_data_t *pgdat;
4030 		struct mem_cgroup_per_node *mz;
4031 		unsigned long anon_cost = 0;
4032 		unsigned long file_cost = 0;
4033 
4034 		for_each_online_pgdat(pgdat) {
4035 			mz = memcg->nodeinfo[pgdat->node_id];
4036 
4037 			anon_cost += mz->lruvec.anon_cost;
4038 			file_cost += mz->lruvec.file_cost;
4039 		}
4040 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4041 		seq_printf(m, "file_cost %lu\n", file_cost);
4042 	}
4043 #endif
4044 
4045 	return 0;
4046 }
4047 
4048 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4049 				      struct cftype *cft)
4050 {
4051 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4052 
4053 	return mem_cgroup_swappiness(memcg);
4054 }
4055 
4056 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4057 				       struct cftype *cft, u64 val)
4058 {
4059 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4060 
4061 	if (val > 200)
4062 		return -EINVAL;
4063 
4064 	if (!mem_cgroup_is_root(memcg))
4065 		memcg->swappiness = val;
4066 	else
4067 		vm_swappiness = val;
4068 
4069 	return 0;
4070 }
4071 
4072 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4073 {
4074 	struct mem_cgroup_threshold_ary *t;
4075 	unsigned long usage;
4076 	int i;
4077 
4078 	rcu_read_lock();
4079 	if (!swap)
4080 		t = rcu_dereference(memcg->thresholds.primary);
4081 	else
4082 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4083 
4084 	if (!t)
4085 		goto unlock;
4086 
4087 	usage = mem_cgroup_usage(memcg, swap);
4088 
4089 	/*
4090 	 * current_threshold points to threshold just below or equal to usage.
4091 	 * If it's not true, a threshold was crossed after last
4092 	 * call of __mem_cgroup_threshold().
4093 	 */
4094 	i = t->current_threshold;
4095 
4096 	/*
4097 	 * Iterate backward over array of thresholds starting from
4098 	 * current_threshold and check if a threshold is crossed.
4099 	 * If none of thresholds below usage is crossed, we read
4100 	 * only one element of the array here.
4101 	 */
4102 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4103 		eventfd_signal(t->entries[i].eventfd, 1);
4104 
4105 	/* i = current_threshold + 1 */
4106 	i++;
4107 
4108 	/*
4109 	 * Iterate forward over array of thresholds starting from
4110 	 * current_threshold+1 and check if a threshold is crossed.
4111 	 * If none of thresholds above usage is crossed, we read
4112 	 * only one element of the array here.
4113 	 */
4114 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4115 		eventfd_signal(t->entries[i].eventfd, 1);
4116 
4117 	/* Update current_threshold */
4118 	t->current_threshold = i - 1;
4119 unlock:
4120 	rcu_read_unlock();
4121 }
4122 
4123 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4124 {
4125 	while (memcg) {
4126 		__mem_cgroup_threshold(memcg, false);
4127 		if (do_memsw_account())
4128 			__mem_cgroup_threshold(memcg, true);
4129 
4130 		memcg = parent_mem_cgroup(memcg);
4131 	}
4132 }
4133 
4134 static int compare_thresholds(const void *a, const void *b)
4135 {
4136 	const struct mem_cgroup_threshold *_a = a;
4137 	const struct mem_cgroup_threshold *_b = b;
4138 
4139 	if (_a->threshold > _b->threshold)
4140 		return 1;
4141 
4142 	if (_a->threshold < _b->threshold)
4143 		return -1;
4144 
4145 	return 0;
4146 }
4147 
4148 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4149 {
4150 	struct mem_cgroup_eventfd_list *ev;
4151 
4152 	spin_lock(&memcg_oom_lock);
4153 
4154 	list_for_each_entry(ev, &memcg->oom_notify, list)
4155 		eventfd_signal(ev->eventfd, 1);
4156 
4157 	spin_unlock(&memcg_oom_lock);
4158 	return 0;
4159 }
4160 
4161 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4162 {
4163 	struct mem_cgroup *iter;
4164 
4165 	for_each_mem_cgroup_tree(iter, memcg)
4166 		mem_cgroup_oom_notify_cb(iter);
4167 }
4168 
4169 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4170 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4171 {
4172 	struct mem_cgroup_thresholds *thresholds;
4173 	struct mem_cgroup_threshold_ary *new;
4174 	unsigned long threshold;
4175 	unsigned long usage;
4176 	int i, size, ret;
4177 
4178 	ret = page_counter_memparse(args, "-1", &threshold);
4179 	if (ret)
4180 		return ret;
4181 
4182 	mutex_lock(&memcg->thresholds_lock);
4183 
4184 	if (type == _MEM) {
4185 		thresholds = &memcg->thresholds;
4186 		usage = mem_cgroup_usage(memcg, false);
4187 	} else if (type == _MEMSWAP) {
4188 		thresholds = &memcg->memsw_thresholds;
4189 		usage = mem_cgroup_usage(memcg, true);
4190 	} else
4191 		BUG();
4192 
4193 	/* Check if a threshold crossed before adding a new one */
4194 	if (thresholds->primary)
4195 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4196 
4197 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4198 
4199 	/* Allocate memory for new array of thresholds */
4200 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4201 	if (!new) {
4202 		ret = -ENOMEM;
4203 		goto unlock;
4204 	}
4205 	new->size = size;
4206 
4207 	/* Copy thresholds (if any) to new array */
4208 	if (thresholds->primary)
4209 		memcpy(new->entries, thresholds->primary->entries,
4210 		       flex_array_size(new, entries, size - 1));
4211 
4212 	/* Add new threshold */
4213 	new->entries[size - 1].eventfd = eventfd;
4214 	new->entries[size - 1].threshold = threshold;
4215 
4216 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4217 	sort(new->entries, size, sizeof(*new->entries),
4218 			compare_thresholds, NULL);
4219 
4220 	/* Find current threshold */
4221 	new->current_threshold = -1;
4222 	for (i = 0; i < size; i++) {
4223 		if (new->entries[i].threshold <= usage) {
4224 			/*
4225 			 * new->current_threshold will not be used until
4226 			 * rcu_assign_pointer(), so it's safe to increment
4227 			 * it here.
4228 			 */
4229 			++new->current_threshold;
4230 		} else
4231 			break;
4232 	}
4233 
4234 	/* Free old spare buffer and save old primary buffer as spare */
4235 	kfree(thresholds->spare);
4236 	thresholds->spare = thresholds->primary;
4237 
4238 	rcu_assign_pointer(thresholds->primary, new);
4239 
4240 	/* To be sure that nobody uses thresholds */
4241 	synchronize_rcu();
4242 
4243 unlock:
4244 	mutex_unlock(&memcg->thresholds_lock);
4245 
4246 	return ret;
4247 }
4248 
4249 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4250 	struct eventfd_ctx *eventfd, const char *args)
4251 {
4252 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4253 }
4254 
4255 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4256 	struct eventfd_ctx *eventfd, const char *args)
4257 {
4258 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4259 }
4260 
4261 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4262 	struct eventfd_ctx *eventfd, enum res_type type)
4263 {
4264 	struct mem_cgroup_thresholds *thresholds;
4265 	struct mem_cgroup_threshold_ary *new;
4266 	unsigned long usage;
4267 	int i, j, size, entries;
4268 
4269 	mutex_lock(&memcg->thresholds_lock);
4270 
4271 	if (type == _MEM) {
4272 		thresholds = &memcg->thresholds;
4273 		usage = mem_cgroup_usage(memcg, false);
4274 	} else if (type == _MEMSWAP) {
4275 		thresholds = &memcg->memsw_thresholds;
4276 		usage = mem_cgroup_usage(memcg, true);
4277 	} else
4278 		BUG();
4279 
4280 	if (!thresholds->primary)
4281 		goto unlock;
4282 
4283 	/* Check if a threshold crossed before removing */
4284 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4285 
4286 	/* Calculate new number of threshold */
4287 	size = entries = 0;
4288 	for (i = 0; i < thresholds->primary->size; i++) {
4289 		if (thresholds->primary->entries[i].eventfd != eventfd)
4290 			size++;
4291 		else
4292 			entries++;
4293 	}
4294 
4295 	new = thresholds->spare;
4296 
4297 	/* If no items related to eventfd have been cleared, nothing to do */
4298 	if (!entries)
4299 		goto unlock;
4300 
4301 	/* Set thresholds array to NULL if we don't have thresholds */
4302 	if (!size) {
4303 		kfree(new);
4304 		new = NULL;
4305 		goto swap_buffers;
4306 	}
4307 
4308 	new->size = size;
4309 
4310 	/* Copy thresholds and find current threshold */
4311 	new->current_threshold = -1;
4312 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4313 		if (thresholds->primary->entries[i].eventfd == eventfd)
4314 			continue;
4315 
4316 		new->entries[j] = thresholds->primary->entries[i];
4317 		if (new->entries[j].threshold <= usage) {
4318 			/*
4319 			 * new->current_threshold will not be used
4320 			 * until rcu_assign_pointer(), so it's safe to increment
4321 			 * it here.
4322 			 */
4323 			++new->current_threshold;
4324 		}
4325 		j++;
4326 	}
4327 
4328 swap_buffers:
4329 	/* Swap primary and spare array */
4330 	thresholds->spare = thresholds->primary;
4331 
4332 	rcu_assign_pointer(thresholds->primary, new);
4333 
4334 	/* To be sure that nobody uses thresholds */
4335 	synchronize_rcu();
4336 
4337 	/* If all events are unregistered, free the spare array */
4338 	if (!new) {
4339 		kfree(thresholds->spare);
4340 		thresholds->spare = NULL;
4341 	}
4342 unlock:
4343 	mutex_unlock(&memcg->thresholds_lock);
4344 }
4345 
4346 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4347 	struct eventfd_ctx *eventfd)
4348 {
4349 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4350 }
4351 
4352 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4353 	struct eventfd_ctx *eventfd)
4354 {
4355 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4356 }
4357 
4358 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4359 	struct eventfd_ctx *eventfd, const char *args)
4360 {
4361 	struct mem_cgroup_eventfd_list *event;
4362 
4363 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4364 	if (!event)
4365 		return -ENOMEM;
4366 
4367 	spin_lock(&memcg_oom_lock);
4368 
4369 	event->eventfd = eventfd;
4370 	list_add(&event->list, &memcg->oom_notify);
4371 
4372 	/* already in OOM ? */
4373 	if (memcg->under_oom)
4374 		eventfd_signal(eventfd, 1);
4375 	spin_unlock(&memcg_oom_lock);
4376 
4377 	return 0;
4378 }
4379 
4380 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4381 	struct eventfd_ctx *eventfd)
4382 {
4383 	struct mem_cgroup_eventfd_list *ev, *tmp;
4384 
4385 	spin_lock(&memcg_oom_lock);
4386 
4387 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4388 		if (ev->eventfd == eventfd) {
4389 			list_del(&ev->list);
4390 			kfree(ev);
4391 		}
4392 	}
4393 
4394 	spin_unlock(&memcg_oom_lock);
4395 }
4396 
4397 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4398 {
4399 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4400 
4401 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4402 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4403 	seq_printf(sf, "oom_kill %lu\n",
4404 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4405 	return 0;
4406 }
4407 
4408 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4409 	struct cftype *cft, u64 val)
4410 {
4411 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4412 
4413 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4414 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4415 		return -EINVAL;
4416 
4417 	memcg->oom_kill_disable = val;
4418 	if (!val)
4419 		memcg_oom_recover(memcg);
4420 
4421 	return 0;
4422 }
4423 
4424 #ifdef CONFIG_CGROUP_WRITEBACK
4425 
4426 #include <trace/events/writeback.h>
4427 
4428 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4429 {
4430 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4431 }
4432 
4433 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4434 {
4435 	wb_domain_exit(&memcg->cgwb_domain);
4436 }
4437 
4438 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4439 {
4440 	wb_domain_size_changed(&memcg->cgwb_domain);
4441 }
4442 
4443 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4444 {
4445 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4446 
4447 	if (!memcg->css.parent)
4448 		return NULL;
4449 
4450 	return &memcg->cgwb_domain;
4451 }
4452 
4453 /**
4454  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4455  * @wb: bdi_writeback in question
4456  * @pfilepages: out parameter for number of file pages
4457  * @pheadroom: out parameter for number of allocatable pages according to memcg
4458  * @pdirty: out parameter for number of dirty pages
4459  * @pwriteback: out parameter for number of pages under writeback
4460  *
4461  * Determine the numbers of file, headroom, dirty, and writeback pages in
4462  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4463  * is a bit more involved.
4464  *
4465  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4466  * headroom is calculated as the lowest headroom of itself and the
4467  * ancestors.  Note that this doesn't consider the actual amount of
4468  * available memory in the system.  The caller should further cap
4469  * *@pheadroom accordingly.
4470  */
4471 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4472 			 unsigned long *pheadroom, unsigned long *pdirty,
4473 			 unsigned long *pwriteback)
4474 {
4475 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4476 	struct mem_cgroup *parent;
4477 
4478 	mem_cgroup_flush_stats();
4479 
4480 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4481 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4482 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4483 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4484 
4485 	*pheadroom = PAGE_COUNTER_MAX;
4486 	while ((parent = parent_mem_cgroup(memcg))) {
4487 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4488 					    READ_ONCE(memcg->memory.high));
4489 		unsigned long used = page_counter_read(&memcg->memory);
4490 
4491 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4492 		memcg = parent;
4493 	}
4494 }
4495 
4496 /*
4497  * Foreign dirty flushing
4498  *
4499  * There's an inherent mismatch between memcg and writeback.  The former
4500  * tracks ownership per-page while the latter per-inode.  This was a
4501  * deliberate design decision because honoring per-page ownership in the
4502  * writeback path is complicated, may lead to higher CPU and IO overheads
4503  * and deemed unnecessary given that write-sharing an inode across
4504  * different cgroups isn't a common use-case.
4505  *
4506  * Combined with inode majority-writer ownership switching, this works well
4507  * enough in most cases but there are some pathological cases.  For
4508  * example, let's say there are two cgroups A and B which keep writing to
4509  * different but confined parts of the same inode.  B owns the inode and
4510  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4511  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4512  * triggering background writeback.  A will be slowed down without a way to
4513  * make writeback of the dirty pages happen.
4514  *
4515  * Conditions like the above can lead to a cgroup getting repeatedly and
4516  * severely throttled after making some progress after each
4517  * dirty_expire_interval while the underlying IO device is almost
4518  * completely idle.
4519  *
4520  * Solving this problem completely requires matching the ownership tracking
4521  * granularities between memcg and writeback in either direction.  However,
4522  * the more egregious behaviors can be avoided by simply remembering the
4523  * most recent foreign dirtying events and initiating remote flushes on
4524  * them when local writeback isn't enough to keep the memory clean enough.
4525  *
4526  * The following two functions implement such mechanism.  When a foreign
4527  * page - a page whose memcg and writeback ownerships don't match - is
4528  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4529  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4530  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4531  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4532  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4533  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4534  * limited to MEMCG_CGWB_FRN_CNT.
4535  *
4536  * The mechanism only remembers IDs and doesn't hold any object references.
4537  * As being wrong occasionally doesn't matter, updates and accesses to the
4538  * records are lockless and racy.
4539  */
4540 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4541 					     struct bdi_writeback *wb)
4542 {
4543 	struct mem_cgroup *memcg = folio_memcg(folio);
4544 	struct memcg_cgwb_frn *frn;
4545 	u64 now = get_jiffies_64();
4546 	u64 oldest_at = now;
4547 	int oldest = -1;
4548 	int i;
4549 
4550 	trace_track_foreign_dirty(folio, wb);
4551 
4552 	/*
4553 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4554 	 * using it.  If not replace the oldest one which isn't being
4555 	 * written out.
4556 	 */
4557 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4558 		frn = &memcg->cgwb_frn[i];
4559 		if (frn->bdi_id == wb->bdi->id &&
4560 		    frn->memcg_id == wb->memcg_css->id)
4561 			break;
4562 		if (time_before64(frn->at, oldest_at) &&
4563 		    atomic_read(&frn->done.cnt) == 1) {
4564 			oldest = i;
4565 			oldest_at = frn->at;
4566 		}
4567 	}
4568 
4569 	if (i < MEMCG_CGWB_FRN_CNT) {
4570 		/*
4571 		 * Re-using an existing one.  Update timestamp lazily to
4572 		 * avoid making the cacheline hot.  We want them to be
4573 		 * reasonably up-to-date and significantly shorter than
4574 		 * dirty_expire_interval as that's what expires the record.
4575 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4576 		 */
4577 		unsigned long update_intv =
4578 			min_t(unsigned long, HZ,
4579 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4580 
4581 		if (time_before64(frn->at, now - update_intv))
4582 			frn->at = now;
4583 	} else if (oldest >= 0) {
4584 		/* replace the oldest free one */
4585 		frn = &memcg->cgwb_frn[oldest];
4586 		frn->bdi_id = wb->bdi->id;
4587 		frn->memcg_id = wb->memcg_css->id;
4588 		frn->at = now;
4589 	}
4590 }
4591 
4592 /* issue foreign writeback flushes for recorded foreign dirtying events */
4593 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4594 {
4595 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4596 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4597 	u64 now = jiffies_64;
4598 	int i;
4599 
4600 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4601 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4602 
4603 		/*
4604 		 * If the record is older than dirty_expire_interval,
4605 		 * writeback on it has already started.  No need to kick it
4606 		 * off again.  Also, don't start a new one if there's
4607 		 * already one in flight.
4608 		 */
4609 		if (time_after64(frn->at, now - intv) &&
4610 		    atomic_read(&frn->done.cnt) == 1) {
4611 			frn->at = 0;
4612 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4613 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4614 					       WB_REASON_FOREIGN_FLUSH,
4615 					       &frn->done);
4616 		}
4617 	}
4618 }
4619 
4620 #else	/* CONFIG_CGROUP_WRITEBACK */
4621 
4622 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4623 {
4624 	return 0;
4625 }
4626 
4627 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4628 {
4629 }
4630 
4631 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4632 {
4633 }
4634 
4635 #endif	/* CONFIG_CGROUP_WRITEBACK */
4636 
4637 /*
4638  * DO NOT USE IN NEW FILES.
4639  *
4640  * "cgroup.event_control" implementation.
4641  *
4642  * This is way over-engineered.  It tries to support fully configurable
4643  * events for each user.  Such level of flexibility is completely
4644  * unnecessary especially in the light of the planned unified hierarchy.
4645  *
4646  * Please deprecate this and replace with something simpler if at all
4647  * possible.
4648  */
4649 
4650 /*
4651  * Unregister event and free resources.
4652  *
4653  * Gets called from workqueue.
4654  */
4655 static void memcg_event_remove(struct work_struct *work)
4656 {
4657 	struct mem_cgroup_event *event =
4658 		container_of(work, struct mem_cgroup_event, remove);
4659 	struct mem_cgroup *memcg = event->memcg;
4660 
4661 	remove_wait_queue(event->wqh, &event->wait);
4662 
4663 	event->unregister_event(memcg, event->eventfd);
4664 
4665 	/* Notify userspace the event is going away. */
4666 	eventfd_signal(event->eventfd, 1);
4667 
4668 	eventfd_ctx_put(event->eventfd);
4669 	kfree(event);
4670 	css_put(&memcg->css);
4671 }
4672 
4673 /*
4674  * Gets called on EPOLLHUP on eventfd when user closes it.
4675  *
4676  * Called with wqh->lock held and interrupts disabled.
4677  */
4678 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4679 			    int sync, void *key)
4680 {
4681 	struct mem_cgroup_event *event =
4682 		container_of(wait, struct mem_cgroup_event, wait);
4683 	struct mem_cgroup *memcg = event->memcg;
4684 	__poll_t flags = key_to_poll(key);
4685 
4686 	if (flags & EPOLLHUP) {
4687 		/*
4688 		 * If the event has been detached at cgroup removal, we
4689 		 * can simply return knowing the other side will cleanup
4690 		 * for us.
4691 		 *
4692 		 * We can't race against event freeing since the other
4693 		 * side will require wqh->lock via remove_wait_queue(),
4694 		 * which we hold.
4695 		 */
4696 		spin_lock(&memcg->event_list_lock);
4697 		if (!list_empty(&event->list)) {
4698 			list_del_init(&event->list);
4699 			/*
4700 			 * We are in atomic context, but cgroup_event_remove()
4701 			 * may sleep, so we have to call it in workqueue.
4702 			 */
4703 			schedule_work(&event->remove);
4704 		}
4705 		spin_unlock(&memcg->event_list_lock);
4706 	}
4707 
4708 	return 0;
4709 }
4710 
4711 static void memcg_event_ptable_queue_proc(struct file *file,
4712 		wait_queue_head_t *wqh, poll_table *pt)
4713 {
4714 	struct mem_cgroup_event *event =
4715 		container_of(pt, struct mem_cgroup_event, pt);
4716 
4717 	event->wqh = wqh;
4718 	add_wait_queue(wqh, &event->wait);
4719 }
4720 
4721 /*
4722  * DO NOT USE IN NEW FILES.
4723  *
4724  * Parse input and register new cgroup event handler.
4725  *
4726  * Input must be in format '<event_fd> <control_fd> <args>'.
4727  * Interpretation of args is defined by control file implementation.
4728  */
4729 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4730 					 char *buf, size_t nbytes, loff_t off)
4731 {
4732 	struct cgroup_subsys_state *css = of_css(of);
4733 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4734 	struct mem_cgroup_event *event;
4735 	struct cgroup_subsys_state *cfile_css;
4736 	unsigned int efd, cfd;
4737 	struct fd efile;
4738 	struct fd cfile;
4739 	const char *name;
4740 	char *endp;
4741 	int ret;
4742 
4743 	buf = strstrip(buf);
4744 
4745 	efd = simple_strtoul(buf, &endp, 10);
4746 	if (*endp != ' ')
4747 		return -EINVAL;
4748 	buf = endp + 1;
4749 
4750 	cfd = simple_strtoul(buf, &endp, 10);
4751 	if ((*endp != ' ') && (*endp != '\0'))
4752 		return -EINVAL;
4753 	buf = endp + 1;
4754 
4755 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4756 	if (!event)
4757 		return -ENOMEM;
4758 
4759 	event->memcg = memcg;
4760 	INIT_LIST_HEAD(&event->list);
4761 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4762 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4763 	INIT_WORK(&event->remove, memcg_event_remove);
4764 
4765 	efile = fdget(efd);
4766 	if (!efile.file) {
4767 		ret = -EBADF;
4768 		goto out_kfree;
4769 	}
4770 
4771 	event->eventfd = eventfd_ctx_fileget(efile.file);
4772 	if (IS_ERR(event->eventfd)) {
4773 		ret = PTR_ERR(event->eventfd);
4774 		goto out_put_efile;
4775 	}
4776 
4777 	cfile = fdget(cfd);
4778 	if (!cfile.file) {
4779 		ret = -EBADF;
4780 		goto out_put_eventfd;
4781 	}
4782 
4783 	/* the process need read permission on control file */
4784 	/* AV: shouldn't we check that it's been opened for read instead? */
4785 	ret = file_permission(cfile.file, MAY_READ);
4786 	if (ret < 0)
4787 		goto out_put_cfile;
4788 
4789 	/*
4790 	 * Determine the event callbacks and set them in @event.  This used
4791 	 * to be done via struct cftype but cgroup core no longer knows
4792 	 * about these events.  The following is crude but the whole thing
4793 	 * is for compatibility anyway.
4794 	 *
4795 	 * DO NOT ADD NEW FILES.
4796 	 */
4797 	name = cfile.file->f_path.dentry->d_name.name;
4798 
4799 	if (!strcmp(name, "memory.usage_in_bytes")) {
4800 		event->register_event = mem_cgroup_usage_register_event;
4801 		event->unregister_event = mem_cgroup_usage_unregister_event;
4802 	} else if (!strcmp(name, "memory.oom_control")) {
4803 		event->register_event = mem_cgroup_oom_register_event;
4804 		event->unregister_event = mem_cgroup_oom_unregister_event;
4805 	} else if (!strcmp(name, "memory.pressure_level")) {
4806 		event->register_event = vmpressure_register_event;
4807 		event->unregister_event = vmpressure_unregister_event;
4808 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4809 		event->register_event = memsw_cgroup_usage_register_event;
4810 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4811 	} else {
4812 		ret = -EINVAL;
4813 		goto out_put_cfile;
4814 	}
4815 
4816 	/*
4817 	 * Verify @cfile should belong to @css.  Also, remaining events are
4818 	 * automatically removed on cgroup destruction but the removal is
4819 	 * asynchronous, so take an extra ref on @css.
4820 	 */
4821 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4822 					       &memory_cgrp_subsys);
4823 	ret = -EINVAL;
4824 	if (IS_ERR(cfile_css))
4825 		goto out_put_cfile;
4826 	if (cfile_css != css) {
4827 		css_put(cfile_css);
4828 		goto out_put_cfile;
4829 	}
4830 
4831 	ret = event->register_event(memcg, event->eventfd, buf);
4832 	if (ret)
4833 		goto out_put_css;
4834 
4835 	vfs_poll(efile.file, &event->pt);
4836 
4837 	spin_lock_irq(&memcg->event_list_lock);
4838 	list_add(&event->list, &memcg->event_list);
4839 	spin_unlock_irq(&memcg->event_list_lock);
4840 
4841 	fdput(cfile);
4842 	fdput(efile);
4843 
4844 	return nbytes;
4845 
4846 out_put_css:
4847 	css_put(css);
4848 out_put_cfile:
4849 	fdput(cfile);
4850 out_put_eventfd:
4851 	eventfd_ctx_put(event->eventfd);
4852 out_put_efile:
4853 	fdput(efile);
4854 out_kfree:
4855 	kfree(event);
4856 
4857 	return ret;
4858 }
4859 
4860 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4861 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4862 {
4863 	/*
4864 	 * Deprecated.
4865 	 * Please, take a look at tools/cgroup/slabinfo.py .
4866 	 */
4867 	return 0;
4868 }
4869 #endif
4870 
4871 static struct cftype mem_cgroup_legacy_files[] = {
4872 	{
4873 		.name = "usage_in_bytes",
4874 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4875 		.read_u64 = mem_cgroup_read_u64,
4876 	},
4877 	{
4878 		.name = "max_usage_in_bytes",
4879 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4880 		.write = mem_cgroup_reset,
4881 		.read_u64 = mem_cgroup_read_u64,
4882 	},
4883 	{
4884 		.name = "limit_in_bytes",
4885 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4886 		.write = mem_cgroup_write,
4887 		.read_u64 = mem_cgroup_read_u64,
4888 	},
4889 	{
4890 		.name = "soft_limit_in_bytes",
4891 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4892 		.write = mem_cgroup_write,
4893 		.read_u64 = mem_cgroup_read_u64,
4894 	},
4895 	{
4896 		.name = "failcnt",
4897 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4898 		.write = mem_cgroup_reset,
4899 		.read_u64 = mem_cgroup_read_u64,
4900 	},
4901 	{
4902 		.name = "stat",
4903 		.seq_show = memcg_stat_show,
4904 	},
4905 	{
4906 		.name = "force_empty",
4907 		.write = mem_cgroup_force_empty_write,
4908 	},
4909 	{
4910 		.name = "use_hierarchy",
4911 		.write_u64 = mem_cgroup_hierarchy_write,
4912 		.read_u64 = mem_cgroup_hierarchy_read,
4913 	},
4914 	{
4915 		.name = "cgroup.event_control",		/* XXX: for compat */
4916 		.write = memcg_write_event_control,
4917 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4918 	},
4919 	{
4920 		.name = "swappiness",
4921 		.read_u64 = mem_cgroup_swappiness_read,
4922 		.write_u64 = mem_cgroup_swappiness_write,
4923 	},
4924 	{
4925 		.name = "move_charge_at_immigrate",
4926 		.read_u64 = mem_cgroup_move_charge_read,
4927 		.write_u64 = mem_cgroup_move_charge_write,
4928 	},
4929 	{
4930 		.name = "oom_control",
4931 		.seq_show = mem_cgroup_oom_control_read,
4932 		.write_u64 = mem_cgroup_oom_control_write,
4933 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4934 	},
4935 	{
4936 		.name = "pressure_level",
4937 	},
4938 #ifdef CONFIG_NUMA
4939 	{
4940 		.name = "numa_stat",
4941 		.seq_show = memcg_numa_stat_show,
4942 	},
4943 #endif
4944 	{
4945 		.name = "kmem.limit_in_bytes",
4946 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4947 		.write = mem_cgroup_write,
4948 		.read_u64 = mem_cgroup_read_u64,
4949 	},
4950 	{
4951 		.name = "kmem.usage_in_bytes",
4952 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4953 		.read_u64 = mem_cgroup_read_u64,
4954 	},
4955 	{
4956 		.name = "kmem.failcnt",
4957 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4958 		.write = mem_cgroup_reset,
4959 		.read_u64 = mem_cgroup_read_u64,
4960 	},
4961 	{
4962 		.name = "kmem.max_usage_in_bytes",
4963 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4964 		.write = mem_cgroup_reset,
4965 		.read_u64 = mem_cgroup_read_u64,
4966 	},
4967 #if defined(CONFIG_MEMCG_KMEM) && \
4968 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4969 	{
4970 		.name = "kmem.slabinfo",
4971 		.seq_show = mem_cgroup_slab_show,
4972 	},
4973 #endif
4974 	{
4975 		.name = "kmem.tcp.limit_in_bytes",
4976 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4977 		.write = mem_cgroup_write,
4978 		.read_u64 = mem_cgroup_read_u64,
4979 	},
4980 	{
4981 		.name = "kmem.tcp.usage_in_bytes",
4982 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4983 		.read_u64 = mem_cgroup_read_u64,
4984 	},
4985 	{
4986 		.name = "kmem.tcp.failcnt",
4987 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4988 		.write = mem_cgroup_reset,
4989 		.read_u64 = mem_cgroup_read_u64,
4990 	},
4991 	{
4992 		.name = "kmem.tcp.max_usage_in_bytes",
4993 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4994 		.write = mem_cgroup_reset,
4995 		.read_u64 = mem_cgroup_read_u64,
4996 	},
4997 	{ },	/* terminate */
4998 };
4999 
5000 /*
5001  * Private memory cgroup IDR
5002  *
5003  * Swap-out records and page cache shadow entries need to store memcg
5004  * references in constrained space, so we maintain an ID space that is
5005  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5006  * memory-controlled cgroups to 64k.
5007  *
5008  * However, there usually are many references to the offline CSS after
5009  * the cgroup has been destroyed, such as page cache or reclaimable
5010  * slab objects, that don't need to hang on to the ID. We want to keep
5011  * those dead CSS from occupying IDs, or we might quickly exhaust the
5012  * relatively small ID space and prevent the creation of new cgroups
5013  * even when there are much fewer than 64k cgroups - possibly none.
5014  *
5015  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5016  * be freed and recycled when it's no longer needed, which is usually
5017  * when the CSS is offlined.
5018  *
5019  * The only exception to that are records of swapped out tmpfs/shmem
5020  * pages that need to be attributed to live ancestors on swapin. But
5021  * those references are manageable from userspace.
5022  */
5023 
5024 static DEFINE_IDR(mem_cgroup_idr);
5025 
5026 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5027 {
5028 	if (memcg->id.id > 0) {
5029 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5030 		memcg->id.id = 0;
5031 	}
5032 }
5033 
5034 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5035 						  unsigned int n)
5036 {
5037 	refcount_add(n, &memcg->id.ref);
5038 }
5039 
5040 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5041 {
5042 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5043 		mem_cgroup_id_remove(memcg);
5044 
5045 		/* Memcg ID pins CSS */
5046 		css_put(&memcg->css);
5047 	}
5048 }
5049 
5050 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5051 {
5052 	mem_cgroup_id_put_many(memcg, 1);
5053 }
5054 
5055 /**
5056  * mem_cgroup_from_id - look up a memcg from a memcg id
5057  * @id: the memcg id to look up
5058  *
5059  * Caller must hold rcu_read_lock().
5060  */
5061 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5062 {
5063 	WARN_ON_ONCE(!rcu_read_lock_held());
5064 	return idr_find(&mem_cgroup_idr, id);
5065 }
5066 
5067 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5068 {
5069 	struct mem_cgroup_per_node *pn;
5070 	int tmp = node;
5071 	/*
5072 	 * This routine is called against possible nodes.
5073 	 * But it's BUG to call kmalloc() against offline node.
5074 	 *
5075 	 * TODO: this routine can waste much memory for nodes which will
5076 	 *       never be onlined. It's better to use memory hotplug callback
5077 	 *       function.
5078 	 */
5079 	if (!node_state(node, N_NORMAL_MEMORY))
5080 		tmp = -1;
5081 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5082 	if (!pn)
5083 		return 1;
5084 
5085 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5086 						   GFP_KERNEL_ACCOUNT);
5087 	if (!pn->lruvec_stats_percpu) {
5088 		kfree(pn);
5089 		return 1;
5090 	}
5091 
5092 	lruvec_init(&pn->lruvec);
5093 	pn->usage_in_excess = 0;
5094 	pn->on_tree = false;
5095 	pn->memcg = memcg;
5096 
5097 	memcg->nodeinfo[node] = pn;
5098 	return 0;
5099 }
5100 
5101 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5102 {
5103 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5104 
5105 	if (!pn)
5106 		return;
5107 
5108 	free_percpu(pn->lruvec_stats_percpu);
5109 	kfree(pn);
5110 }
5111 
5112 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5113 {
5114 	int node;
5115 
5116 	for_each_node(node)
5117 		free_mem_cgroup_per_node_info(memcg, node);
5118 	free_percpu(memcg->vmstats_percpu);
5119 	kfree(memcg);
5120 }
5121 
5122 static void mem_cgroup_free(struct mem_cgroup *memcg)
5123 {
5124 	memcg_wb_domain_exit(memcg);
5125 	__mem_cgroup_free(memcg);
5126 }
5127 
5128 static struct mem_cgroup *mem_cgroup_alloc(void)
5129 {
5130 	struct mem_cgroup *memcg;
5131 	int node;
5132 	int __maybe_unused i;
5133 	long error = -ENOMEM;
5134 
5135 	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5136 	if (!memcg)
5137 		return ERR_PTR(error);
5138 
5139 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5140 				 1, MEM_CGROUP_ID_MAX,
5141 				 GFP_KERNEL);
5142 	if (memcg->id.id < 0) {
5143 		error = memcg->id.id;
5144 		goto fail;
5145 	}
5146 
5147 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5148 						 GFP_KERNEL_ACCOUNT);
5149 	if (!memcg->vmstats_percpu)
5150 		goto fail;
5151 
5152 	for_each_node(node)
5153 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5154 			goto fail;
5155 
5156 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5157 		goto fail;
5158 
5159 	INIT_WORK(&memcg->high_work, high_work_func);
5160 	INIT_LIST_HEAD(&memcg->oom_notify);
5161 	mutex_init(&memcg->thresholds_lock);
5162 	spin_lock_init(&memcg->move_lock);
5163 	vmpressure_init(&memcg->vmpressure);
5164 	INIT_LIST_HEAD(&memcg->event_list);
5165 	spin_lock_init(&memcg->event_list_lock);
5166 	memcg->socket_pressure = jiffies;
5167 #ifdef CONFIG_MEMCG_KMEM
5168 	memcg->kmemcg_id = -1;
5169 	INIT_LIST_HEAD(&memcg->objcg_list);
5170 #endif
5171 #ifdef CONFIG_CGROUP_WRITEBACK
5172 	INIT_LIST_HEAD(&memcg->cgwb_list);
5173 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5174 		memcg->cgwb_frn[i].done =
5175 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5176 #endif
5177 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5178 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5179 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5180 	memcg->deferred_split_queue.split_queue_len = 0;
5181 #endif
5182 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5183 	return memcg;
5184 fail:
5185 	mem_cgroup_id_remove(memcg);
5186 	__mem_cgroup_free(memcg);
5187 	return ERR_PTR(error);
5188 }
5189 
5190 static struct cgroup_subsys_state * __ref
5191 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5192 {
5193 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5194 	struct mem_cgroup *memcg, *old_memcg;
5195 	long error = -ENOMEM;
5196 
5197 	old_memcg = set_active_memcg(parent);
5198 	memcg = mem_cgroup_alloc();
5199 	set_active_memcg(old_memcg);
5200 	if (IS_ERR(memcg))
5201 		return ERR_CAST(memcg);
5202 
5203 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5204 	memcg->soft_limit = PAGE_COUNTER_MAX;
5205 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5206 	if (parent) {
5207 		memcg->swappiness = mem_cgroup_swappiness(parent);
5208 		memcg->oom_kill_disable = parent->oom_kill_disable;
5209 
5210 		page_counter_init(&memcg->memory, &parent->memory);
5211 		page_counter_init(&memcg->swap, &parent->swap);
5212 		page_counter_init(&memcg->kmem, &parent->kmem);
5213 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5214 	} else {
5215 		page_counter_init(&memcg->memory, NULL);
5216 		page_counter_init(&memcg->swap, NULL);
5217 		page_counter_init(&memcg->kmem, NULL);
5218 		page_counter_init(&memcg->tcpmem, NULL);
5219 
5220 		root_mem_cgroup = memcg;
5221 		return &memcg->css;
5222 	}
5223 
5224 	/* The following stuff does not apply to the root */
5225 	error = memcg_online_kmem(memcg);
5226 	if (error)
5227 		goto fail;
5228 
5229 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5230 		static_branch_inc(&memcg_sockets_enabled_key);
5231 
5232 	return &memcg->css;
5233 fail:
5234 	mem_cgroup_id_remove(memcg);
5235 	mem_cgroup_free(memcg);
5236 	return ERR_PTR(error);
5237 }
5238 
5239 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5240 {
5241 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5242 
5243 	/*
5244 	 * A memcg must be visible for expand_shrinker_info()
5245 	 * by the time the maps are allocated. So, we allocate maps
5246 	 * here, when for_each_mem_cgroup() can't skip it.
5247 	 */
5248 	if (alloc_shrinker_info(memcg)) {
5249 		mem_cgroup_id_remove(memcg);
5250 		return -ENOMEM;
5251 	}
5252 
5253 	/* Online state pins memcg ID, memcg ID pins CSS */
5254 	refcount_set(&memcg->id.ref, 1);
5255 	css_get(css);
5256 
5257 	if (unlikely(mem_cgroup_is_root(memcg)))
5258 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5259 				   2UL*HZ);
5260 	return 0;
5261 }
5262 
5263 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5264 {
5265 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5266 	struct mem_cgroup_event *event, *tmp;
5267 
5268 	/*
5269 	 * Unregister events and notify userspace.
5270 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5271 	 * directory to avoid race between userspace and kernelspace.
5272 	 */
5273 	spin_lock_irq(&memcg->event_list_lock);
5274 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5275 		list_del_init(&event->list);
5276 		schedule_work(&event->remove);
5277 	}
5278 	spin_unlock_irq(&memcg->event_list_lock);
5279 
5280 	page_counter_set_min(&memcg->memory, 0);
5281 	page_counter_set_low(&memcg->memory, 0);
5282 
5283 	memcg_offline_kmem(memcg);
5284 	reparent_shrinker_deferred(memcg);
5285 	wb_memcg_offline(memcg);
5286 
5287 	drain_all_stock(memcg);
5288 
5289 	mem_cgroup_id_put(memcg);
5290 }
5291 
5292 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5293 {
5294 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5295 
5296 	invalidate_reclaim_iterators(memcg);
5297 }
5298 
5299 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5300 {
5301 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5302 	int __maybe_unused i;
5303 
5304 #ifdef CONFIG_CGROUP_WRITEBACK
5305 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5306 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5307 #endif
5308 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5309 		static_branch_dec(&memcg_sockets_enabled_key);
5310 
5311 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5312 		static_branch_dec(&memcg_sockets_enabled_key);
5313 
5314 	vmpressure_cleanup(&memcg->vmpressure);
5315 	cancel_work_sync(&memcg->high_work);
5316 	mem_cgroup_remove_from_trees(memcg);
5317 	free_shrinker_info(memcg);
5318 
5319 	/* Need to offline kmem if online_css() fails */
5320 	memcg_offline_kmem(memcg);
5321 	mem_cgroup_free(memcg);
5322 }
5323 
5324 /**
5325  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5326  * @css: the target css
5327  *
5328  * Reset the states of the mem_cgroup associated with @css.  This is
5329  * invoked when the userland requests disabling on the default hierarchy
5330  * but the memcg is pinned through dependency.  The memcg should stop
5331  * applying policies and should revert to the vanilla state as it may be
5332  * made visible again.
5333  *
5334  * The current implementation only resets the essential configurations.
5335  * This needs to be expanded to cover all the visible parts.
5336  */
5337 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5338 {
5339 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5340 
5341 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5342 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5343 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5344 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5345 	page_counter_set_min(&memcg->memory, 0);
5346 	page_counter_set_low(&memcg->memory, 0);
5347 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5348 	memcg->soft_limit = PAGE_COUNTER_MAX;
5349 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5350 	memcg_wb_domain_size_changed(memcg);
5351 }
5352 
5353 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5354 {
5355 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5356 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5357 	struct memcg_vmstats_percpu *statc;
5358 	long delta, v;
5359 	int i, nid;
5360 
5361 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5362 
5363 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5364 		/*
5365 		 * Collect the aggregated propagation counts of groups
5366 		 * below us. We're in a per-cpu loop here and this is
5367 		 * a global counter, so the first cycle will get them.
5368 		 */
5369 		delta = memcg->vmstats.state_pending[i];
5370 		if (delta)
5371 			memcg->vmstats.state_pending[i] = 0;
5372 
5373 		/* Add CPU changes on this level since the last flush */
5374 		v = READ_ONCE(statc->state[i]);
5375 		if (v != statc->state_prev[i]) {
5376 			delta += v - statc->state_prev[i];
5377 			statc->state_prev[i] = v;
5378 		}
5379 
5380 		if (!delta)
5381 			continue;
5382 
5383 		/* Aggregate counts on this level and propagate upwards */
5384 		memcg->vmstats.state[i] += delta;
5385 		if (parent)
5386 			parent->vmstats.state_pending[i] += delta;
5387 	}
5388 
5389 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5390 		delta = memcg->vmstats.events_pending[i];
5391 		if (delta)
5392 			memcg->vmstats.events_pending[i] = 0;
5393 
5394 		v = READ_ONCE(statc->events[i]);
5395 		if (v != statc->events_prev[i]) {
5396 			delta += v - statc->events_prev[i];
5397 			statc->events_prev[i] = v;
5398 		}
5399 
5400 		if (!delta)
5401 			continue;
5402 
5403 		memcg->vmstats.events[i] += delta;
5404 		if (parent)
5405 			parent->vmstats.events_pending[i] += delta;
5406 	}
5407 
5408 	for_each_node_state(nid, N_MEMORY) {
5409 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5410 		struct mem_cgroup_per_node *ppn = NULL;
5411 		struct lruvec_stats_percpu *lstatc;
5412 
5413 		if (parent)
5414 			ppn = parent->nodeinfo[nid];
5415 
5416 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5417 
5418 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5419 			delta = pn->lruvec_stats.state_pending[i];
5420 			if (delta)
5421 				pn->lruvec_stats.state_pending[i] = 0;
5422 
5423 			v = READ_ONCE(lstatc->state[i]);
5424 			if (v != lstatc->state_prev[i]) {
5425 				delta += v - lstatc->state_prev[i];
5426 				lstatc->state_prev[i] = v;
5427 			}
5428 
5429 			if (!delta)
5430 				continue;
5431 
5432 			pn->lruvec_stats.state[i] += delta;
5433 			if (ppn)
5434 				ppn->lruvec_stats.state_pending[i] += delta;
5435 		}
5436 	}
5437 }
5438 
5439 #ifdef CONFIG_MMU
5440 /* Handlers for move charge at task migration. */
5441 static int mem_cgroup_do_precharge(unsigned long count)
5442 {
5443 	int ret;
5444 
5445 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5446 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5447 	if (!ret) {
5448 		mc.precharge += count;
5449 		return ret;
5450 	}
5451 
5452 	/* Try charges one by one with reclaim, but do not retry */
5453 	while (count--) {
5454 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5455 		if (ret)
5456 			return ret;
5457 		mc.precharge++;
5458 		cond_resched();
5459 	}
5460 	return 0;
5461 }
5462 
5463 union mc_target {
5464 	struct page	*page;
5465 	swp_entry_t	ent;
5466 };
5467 
5468 enum mc_target_type {
5469 	MC_TARGET_NONE = 0,
5470 	MC_TARGET_PAGE,
5471 	MC_TARGET_SWAP,
5472 	MC_TARGET_DEVICE,
5473 };
5474 
5475 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5476 						unsigned long addr, pte_t ptent)
5477 {
5478 	struct page *page = vm_normal_page(vma, addr, ptent);
5479 
5480 	if (!page || !page_mapped(page))
5481 		return NULL;
5482 	if (PageAnon(page)) {
5483 		if (!(mc.flags & MOVE_ANON))
5484 			return NULL;
5485 	} else {
5486 		if (!(mc.flags & MOVE_FILE))
5487 			return NULL;
5488 	}
5489 	if (!get_page_unless_zero(page))
5490 		return NULL;
5491 
5492 	return page;
5493 }
5494 
5495 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5496 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5497 			pte_t ptent, swp_entry_t *entry)
5498 {
5499 	struct page *page = NULL;
5500 	swp_entry_t ent = pte_to_swp_entry(ptent);
5501 
5502 	if (!(mc.flags & MOVE_ANON))
5503 		return NULL;
5504 
5505 	/*
5506 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5507 	 * a device and because they are not accessible by CPU they are store
5508 	 * as special swap entry in the CPU page table.
5509 	 */
5510 	if (is_device_private_entry(ent)) {
5511 		page = pfn_swap_entry_to_page(ent);
5512 		/*
5513 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5514 		 * a refcount of 1 when free (unlike normal page)
5515 		 */
5516 		if (!page_ref_add_unless(page, 1, 1))
5517 			return NULL;
5518 		return page;
5519 	}
5520 
5521 	if (non_swap_entry(ent))
5522 		return NULL;
5523 
5524 	/*
5525 	 * Because lookup_swap_cache() updates some statistics counter,
5526 	 * we call find_get_page() with swapper_space directly.
5527 	 */
5528 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5529 	entry->val = ent.val;
5530 
5531 	return page;
5532 }
5533 #else
5534 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5535 			pte_t ptent, swp_entry_t *entry)
5536 {
5537 	return NULL;
5538 }
5539 #endif
5540 
5541 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5542 			unsigned long addr, pte_t ptent)
5543 {
5544 	if (!vma->vm_file) /* anonymous vma */
5545 		return NULL;
5546 	if (!(mc.flags & MOVE_FILE))
5547 		return NULL;
5548 
5549 	/* page is moved even if it's not RSS of this task(page-faulted). */
5550 	/* shmem/tmpfs may report page out on swap: account for that too. */
5551 	return find_get_incore_page(vma->vm_file->f_mapping,
5552 			linear_page_index(vma, addr));
5553 }
5554 
5555 /**
5556  * mem_cgroup_move_account - move account of the page
5557  * @page: the page
5558  * @compound: charge the page as compound or small page
5559  * @from: mem_cgroup which the page is moved from.
5560  * @to:	mem_cgroup which the page is moved to. @from != @to.
5561  *
5562  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5563  *
5564  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5565  * from old cgroup.
5566  */
5567 static int mem_cgroup_move_account(struct page *page,
5568 				   bool compound,
5569 				   struct mem_cgroup *from,
5570 				   struct mem_cgroup *to)
5571 {
5572 	struct folio *folio = page_folio(page);
5573 	struct lruvec *from_vec, *to_vec;
5574 	struct pglist_data *pgdat;
5575 	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5576 	int nid, ret;
5577 
5578 	VM_BUG_ON(from == to);
5579 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5580 	VM_BUG_ON(compound && !folio_test_large(folio));
5581 
5582 	/*
5583 	 * Prevent mem_cgroup_migrate() from looking at
5584 	 * page's memory cgroup of its source page while we change it.
5585 	 */
5586 	ret = -EBUSY;
5587 	if (!folio_trylock(folio))
5588 		goto out;
5589 
5590 	ret = -EINVAL;
5591 	if (folio_memcg(folio) != from)
5592 		goto out_unlock;
5593 
5594 	pgdat = folio_pgdat(folio);
5595 	from_vec = mem_cgroup_lruvec(from, pgdat);
5596 	to_vec = mem_cgroup_lruvec(to, pgdat);
5597 
5598 	folio_memcg_lock(folio);
5599 
5600 	if (folio_test_anon(folio)) {
5601 		if (folio_mapped(folio)) {
5602 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5603 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5604 			if (folio_test_transhuge(folio)) {
5605 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5606 						   -nr_pages);
5607 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5608 						   nr_pages);
5609 			}
5610 		}
5611 	} else {
5612 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5613 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5614 
5615 		if (folio_test_swapbacked(folio)) {
5616 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5617 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5618 		}
5619 
5620 		if (folio_mapped(folio)) {
5621 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5622 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5623 		}
5624 
5625 		if (folio_test_dirty(folio)) {
5626 			struct address_space *mapping = folio_mapping(folio);
5627 
5628 			if (mapping_can_writeback(mapping)) {
5629 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5630 						   -nr_pages);
5631 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5632 						   nr_pages);
5633 			}
5634 		}
5635 	}
5636 
5637 	if (folio_test_writeback(folio)) {
5638 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5639 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5640 	}
5641 
5642 	/*
5643 	 * All state has been migrated, let's switch to the new memcg.
5644 	 *
5645 	 * It is safe to change page's memcg here because the page
5646 	 * is referenced, charged, isolated, and locked: we can't race
5647 	 * with (un)charging, migration, LRU putback, or anything else
5648 	 * that would rely on a stable page's memory cgroup.
5649 	 *
5650 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5651 	 * to save space. As soon as we switch page's memory cgroup to a
5652 	 * new memcg that isn't locked, the above state can change
5653 	 * concurrently again. Make sure we're truly done with it.
5654 	 */
5655 	smp_mb();
5656 
5657 	css_get(&to->css);
5658 	css_put(&from->css);
5659 
5660 	folio->memcg_data = (unsigned long)to;
5661 
5662 	__folio_memcg_unlock(from);
5663 
5664 	ret = 0;
5665 	nid = folio_nid(folio);
5666 
5667 	local_irq_disable();
5668 	mem_cgroup_charge_statistics(to, nr_pages);
5669 	memcg_check_events(to, nid);
5670 	mem_cgroup_charge_statistics(from, -nr_pages);
5671 	memcg_check_events(from, nid);
5672 	local_irq_enable();
5673 out_unlock:
5674 	folio_unlock(folio);
5675 out:
5676 	return ret;
5677 }
5678 
5679 /**
5680  * get_mctgt_type - get target type of moving charge
5681  * @vma: the vma the pte to be checked belongs
5682  * @addr: the address corresponding to the pte to be checked
5683  * @ptent: the pte to be checked
5684  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5685  *
5686  * Returns
5687  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5688  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5689  *     move charge. if @target is not NULL, the page is stored in target->page
5690  *     with extra refcnt got(Callers should handle it).
5691  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5692  *     target for charge migration. if @target is not NULL, the entry is stored
5693  *     in target->ent.
5694  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5695  *     (so ZONE_DEVICE page and thus not on the lru).
5696  *     For now we such page is charge like a regular page would be as for all
5697  *     intent and purposes it is just special memory taking the place of a
5698  *     regular page.
5699  *
5700  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5701  *
5702  * Called with pte lock held.
5703  */
5704 
5705 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5706 		unsigned long addr, pte_t ptent, union mc_target *target)
5707 {
5708 	struct page *page = NULL;
5709 	enum mc_target_type ret = MC_TARGET_NONE;
5710 	swp_entry_t ent = { .val = 0 };
5711 
5712 	if (pte_present(ptent))
5713 		page = mc_handle_present_pte(vma, addr, ptent);
5714 	else if (is_swap_pte(ptent))
5715 		page = mc_handle_swap_pte(vma, ptent, &ent);
5716 	else if (pte_none(ptent))
5717 		page = mc_handle_file_pte(vma, addr, ptent);
5718 
5719 	if (!page && !ent.val)
5720 		return ret;
5721 	if (page) {
5722 		/*
5723 		 * Do only loose check w/o serialization.
5724 		 * mem_cgroup_move_account() checks the page is valid or
5725 		 * not under LRU exclusion.
5726 		 */
5727 		if (page_memcg(page) == mc.from) {
5728 			ret = MC_TARGET_PAGE;
5729 			if (is_device_private_page(page))
5730 				ret = MC_TARGET_DEVICE;
5731 			if (target)
5732 				target->page = page;
5733 		}
5734 		if (!ret || !target)
5735 			put_page(page);
5736 	}
5737 	/*
5738 	 * There is a swap entry and a page doesn't exist or isn't charged.
5739 	 * But we cannot move a tail-page in a THP.
5740 	 */
5741 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5742 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5743 		ret = MC_TARGET_SWAP;
5744 		if (target)
5745 			target->ent = ent;
5746 	}
5747 	return ret;
5748 }
5749 
5750 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5751 /*
5752  * We don't consider PMD mapped swapping or file mapped pages because THP does
5753  * not support them for now.
5754  * Caller should make sure that pmd_trans_huge(pmd) is true.
5755  */
5756 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5757 		unsigned long addr, pmd_t pmd, union mc_target *target)
5758 {
5759 	struct page *page = NULL;
5760 	enum mc_target_type ret = MC_TARGET_NONE;
5761 
5762 	if (unlikely(is_swap_pmd(pmd))) {
5763 		VM_BUG_ON(thp_migration_supported() &&
5764 				  !is_pmd_migration_entry(pmd));
5765 		return ret;
5766 	}
5767 	page = pmd_page(pmd);
5768 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5769 	if (!(mc.flags & MOVE_ANON))
5770 		return ret;
5771 	if (page_memcg(page) == mc.from) {
5772 		ret = MC_TARGET_PAGE;
5773 		if (target) {
5774 			get_page(page);
5775 			target->page = page;
5776 		}
5777 	}
5778 	return ret;
5779 }
5780 #else
5781 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5782 		unsigned long addr, pmd_t pmd, union mc_target *target)
5783 {
5784 	return MC_TARGET_NONE;
5785 }
5786 #endif
5787 
5788 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5789 					unsigned long addr, unsigned long end,
5790 					struct mm_walk *walk)
5791 {
5792 	struct vm_area_struct *vma = walk->vma;
5793 	pte_t *pte;
5794 	spinlock_t *ptl;
5795 
5796 	ptl = pmd_trans_huge_lock(pmd, vma);
5797 	if (ptl) {
5798 		/*
5799 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5800 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5801 		 * this might change.
5802 		 */
5803 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5804 			mc.precharge += HPAGE_PMD_NR;
5805 		spin_unlock(ptl);
5806 		return 0;
5807 	}
5808 
5809 	if (pmd_trans_unstable(pmd))
5810 		return 0;
5811 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5812 	for (; addr != end; pte++, addr += PAGE_SIZE)
5813 		if (get_mctgt_type(vma, addr, *pte, NULL))
5814 			mc.precharge++;	/* increment precharge temporarily */
5815 	pte_unmap_unlock(pte - 1, ptl);
5816 	cond_resched();
5817 
5818 	return 0;
5819 }
5820 
5821 static const struct mm_walk_ops precharge_walk_ops = {
5822 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5823 };
5824 
5825 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5826 {
5827 	unsigned long precharge;
5828 
5829 	mmap_read_lock(mm);
5830 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5831 	mmap_read_unlock(mm);
5832 
5833 	precharge = mc.precharge;
5834 	mc.precharge = 0;
5835 
5836 	return precharge;
5837 }
5838 
5839 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5840 {
5841 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5842 
5843 	VM_BUG_ON(mc.moving_task);
5844 	mc.moving_task = current;
5845 	return mem_cgroup_do_precharge(precharge);
5846 }
5847 
5848 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5849 static void __mem_cgroup_clear_mc(void)
5850 {
5851 	struct mem_cgroup *from = mc.from;
5852 	struct mem_cgroup *to = mc.to;
5853 
5854 	/* we must uncharge all the leftover precharges from mc.to */
5855 	if (mc.precharge) {
5856 		cancel_charge(mc.to, mc.precharge);
5857 		mc.precharge = 0;
5858 	}
5859 	/*
5860 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5861 	 * we must uncharge here.
5862 	 */
5863 	if (mc.moved_charge) {
5864 		cancel_charge(mc.from, mc.moved_charge);
5865 		mc.moved_charge = 0;
5866 	}
5867 	/* we must fixup refcnts and charges */
5868 	if (mc.moved_swap) {
5869 		/* uncharge swap account from the old cgroup */
5870 		if (!mem_cgroup_is_root(mc.from))
5871 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5872 
5873 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5874 
5875 		/*
5876 		 * we charged both to->memory and to->memsw, so we
5877 		 * should uncharge to->memory.
5878 		 */
5879 		if (!mem_cgroup_is_root(mc.to))
5880 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5881 
5882 		mc.moved_swap = 0;
5883 	}
5884 	memcg_oom_recover(from);
5885 	memcg_oom_recover(to);
5886 	wake_up_all(&mc.waitq);
5887 }
5888 
5889 static void mem_cgroup_clear_mc(void)
5890 {
5891 	struct mm_struct *mm = mc.mm;
5892 
5893 	/*
5894 	 * we must clear moving_task before waking up waiters at the end of
5895 	 * task migration.
5896 	 */
5897 	mc.moving_task = NULL;
5898 	__mem_cgroup_clear_mc();
5899 	spin_lock(&mc.lock);
5900 	mc.from = NULL;
5901 	mc.to = NULL;
5902 	mc.mm = NULL;
5903 	spin_unlock(&mc.lock);
5904 
5905 	mmput(mm);
5906 }
5907 
5908 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5909 {
5910 	struct cgroup_subsys_state *css;
5911 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5912 	struct mem_cgroup *from;
5913 	struct task_struct *leader, *p;
5914 	struct mm_struct *mm;
5915 	unsigned long move_flags;
5916 	int ret = 0;
5917 
5918 	/* charge immigration isn't supported on the default hierarchy */
5919 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5920 		return 0;
5921 
5922 	/*
5923 	 * Multi-process migrations only happen on the default hierarchy
5924 	 * where charge immigration is not used.  Perform charge
5925 	 * immigration if @tset contains a leader and whine if there are
5926 	 * multiple.
5927 	 */
5928 	p = NULL;
5929 	cgroup_taskset_for_each_leader(leader, css, tset) {
5930 		WARN_ON_ONCE(p);
5931 		p = leader;
5932 		memcg = mem_cgroup_from_css(css);
5933 	}
5934 	if (!p)
5935 		return 0;
5936 
5937 	/*
5938 	 * We are now committed to this value whatever it is. Changes in this
5939 	 * tunable will only affect upcoming migrations, not the current one.
5940 	 * So we need to save it, and keep it going.
5941 	 */
5942 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5943 	if (!move_flags)
5944 		return 0;
5945 
5946 	from = mem_cgroup_from_task(p);
5947 
5948 	VM_BUG_ON(from == memcg);
5949 
5950 	mm = get_task_mm(p);
5951 	if (!mm)
5952 		return 0;
5953 	/* We move charges only when we move a owner of the mm */
5954 	if (mm->owner == p) {
5955 		VM_BUG_ON(mc.from);
5956 		VM_BUG_ON(mc.to);
5957 		VM_BUG_ON(mc.precharge);
5958 		VM_BUG_ON(mc.moved_charge);
5959 		VM_BUG_ON(mc.moved_swap);
5960 
5961 		spin_lock(&mc.lock);
5962 		mc.mm = mm;
5963 		mc.from = from;
5964 		mc.to = memcg;
5965 		mc.flags = move_flags;
5966 		spin_unlock(&mc.lock);
5967 		/* We set mc.moving_task later */
5968 
5969 		ret = mem_cgroup_precharge_mc(mm);
5970 		if (ret)
5971 			mem_cgroup_clear_mc();
5972 	} else {
5973 		mmput(mm);
5974 	}
5975 	return ret;
5976 }
5977 
5978 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5979 {
5980 	if (mc.to)
5981 		mem_cgroup_clear_mc();
5982 }
5983 
5984 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5985 				unsigned long addr, unsigned long end,
5986 				struct mm_walk *walk)
5987 {
5988 	int ret = 0;
5989 	struct vm_area_struct *vma = walk->vma;
5990 	pte_t *pte;
5991 	spinlock_t *ptl;
5992 	enum mc_target_type target_type;
5993 	union mc_target target;
5994 	struct page *page;
5995 
5996 	ptl = pmd_trans_huge_lock(pmd, vma);
5997 	if (ptl) {
5998 		if (mc.precharge < HPAGE_PMD_NR) {
5999 			spin_unlock(ptl);
6000 			return 0;
6001 		}
6002 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6003 		if (target_type == MC_TARGET_PAGE) {
6004 			page = target.page;
6005 			if (!isolate_lru_page(page)) {
6006 				if (!mem_cgroup_move_account(page, true,
6007 							     mc.from, mc.to)) {
6008 					mc.precharge -= HPAGE_PMD_NR;
6009 					mc.moved_charge += HPAGE_PMD_NR;
6010 				}
6011 				putback_lru_page(page);
6012 			}
6013 			put_page(page);
6014 		} else if (target_type == MC_TARGET_DEVICE) {
6015 			page = target.page;
6016 			if (!mem_cgroup_move_account(page, true,
6017 						     mc.from, mc.to)) {
6018 				mc.precharge -= HPAGE_PMD_NR;
6019 				mc.moved_charge += HPAGE_PMD_NR;
6020 			}
6021 			put_page(page);
6022 		}
6023 		spin_unlock(ptl);
6024 		return 0;
6025 	}
6026 
6027 	if (pmd_trans_unstable(pmd))
6028 		return 0;
6029 retry:
6030 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6031 	for (; addr != end; addr += PAGE_SIZE) {
6032 		pte_t ptent = *(pte++);
6033 		bool device = false;
6034 		swp_entry_t ent;
6035 
6036 		if (!mc.precharge)
6037 			break;
6038 
6039 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6040 		case MC_TARGET_DEVICE:
6041 			device = true;
6042 			fallthrough;
6043 		case MC_TARGET_PAGE:
6044 			page = target.page;
6045 			/*
6046 			 * We can have a part of the split pmd here. Moving it
6047 			 * can be done but it would be too convoluted so simply
6048 			 * ignore such a partial THP and keep it in original
6049 			 * memcg. There should be somebody mapping the head.
6050 			 */
6051 			if (PageTransCompound(page))
6052 				goto put;
6053 			if (!device && isolate_lru_page(page))
6054 				goto put;
6055 			if (!mem_cgroup_move_account(page, false,
6056 						mc.from, mc.to)) {
6057 				mc.precharge--;
6058 				/* we uncharge from mc.from later. */
6059 				mc.moved_charge++;
6060 			}
6061 			if (!device)
6062 				putback_lru_page(page);
6063 put:			/* get_mctgt_type() gets the page */
6064 			put_page(page);
6065 			break;
6066 		case MC_TARGET_SWAP:
6067 			ent = target.ent;
6068 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6069 				mc.precharge--;
6070 				mem_cgroup_id_get_many(mc.to, 1);
6071 				/* we fixup other refcnts and charges later. */
6072 				mc.moved_swap++;
6073 			}
6074 			break;
6075 		default:
6076 			break;
6077 		}
6078 	}
6079 	pte_unmap_unlock(pte - 1, ptl);
6080 	cond_resched();
6081 
6082 	if (addr != end) {
6083 		/*
6084 		 * We have consumed all precharges we got in can_attach().
6085 		 * We try charge one by one, but don't do any additional
6086 		 * charges to mc.to if we have failed in charge once in attach()
6087 		 * phase.
6088 		 */
6089 		ret = mem_cgroup_do_precharge(1);
6090 		if (!ret)
6091 			goto retry;
6092 	}
6093 
6094 	return ret;
6095 }
6096 
6097 static const struct mm_walk_ops charge_walk_ops = {
6098 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6099 };
6100 
6101 static void mem_cgroup_move_charge(void)
6102 {
6103 	lru_add_drain_all();
6104 	/*
6105 	 * Signal lock_page_memcg() to take the memcg's move_lock
6106 	 * while we're moving its pages to another memcg. Then wait
6107 	 * for already started RCU-only updates to finish.
6108 	 */
6109 	atomic_inc(&mc.from->moving_account);
6110 	synchronize_rcu();
6111 retry:
6112 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6113 		/*
6114 		 * Someone who are holding the mmap_lock might be waiting in
6115 		 * waitq. So we cancel all extra charges, wake up all waiters,
6116 		 * and retry. Because we cancel precharges, we might not be able
6117 		 * to move enough charges, but moving charge is a best-effort
6118 		 * feature anyway, so it wouldn't be a big problem.
6119 		 */
6120 		__mem_cgroup_clear_mc();
6121 		cond_resched();
6122 		goto retry;
6123 	}
6124 	/*
6125 	 * When we have consumed all precharges and failed in doing
6126 	 * additional charge, the page walk just aborts.
6127 	 */
6128 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6129 			NULL);
6130 
6131 	mmap_read_unlock(mc.mm);
6132 	atomic_dec(&mc.from->moving_account);
6133 }
6134 
6135 static void mem_cgroup_move_task(void)
6136 {
6137 	if (mc.to) {
6138 		mem_cgroup_move_charge();
6139 		mem_cgroup_clear_mc();
6140 	}
6141 }
6142 #else	/* !CONFIG_MMU */
6143 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6144 {
6145 	return 0;
6146 }
6147 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6148 {
6149 }
6150 static void mem_cgroup_move_task(void)
6151 {
6152 }
6153 #endif
6154 
6155 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6156 {
6157 	if (value == PAGE_COUNTER_MAX)
6158 		seq_puts(m, "max\n");
6159 	else
6160 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6161 
6162 	return 0;
6163 }
6164 
6165 static u64 memory_current_read(struct cgroup_subsys_state *css,
6166 			       struct cftype *cft)
6167 {
6168 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6169 
6170 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6171 }
6172 
6173 static int memory_min_show(struct seq_file *m, void *v)
6174 {
6175 	return seq_puts_memcg_tunable(m,
6176 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6177 }
6178 
6179 static ssize_t memory_min_write(struct kernfs_open_file *of,
6180 				char *buf, size_t nbytes, loff_t off)
6181 {
6182 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6183 	unsigned long min;
6184 	int err;
6185 
6186 	buf = strstrip(buf);
6187 	err = page_counter_memparse(buf, "max", &min);
6188 	if (err)
6189 		return err;
6190 
6191 	page_counter_set_min(&memcg->memory, min);
6192 
6193 	return nbytes;
6194 }
6195 
6196 static int memory_low_show(struct seq_file *m, void *v)
6197 {
6198 	return seq_puts_memcg_tunable(m,
6199 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6200 }
6201 
6202 static ssize_t memory_low_write(struct kernfs_open_file *of,
6203 				char *buf, size_t nbytes, loff_t off)
6204 {
6205 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6206 	unsigned long low;
6207 	int err;
6208 
6209 	buf = strstrip(buf);
6210 	err = page_counter_memparse(buf, "max", &low);
6211 	if (err)
6212 		return err;
6213 
6214 	page_counter_set_low(&memcg->memory, low);
6215 
6216 	return nbytes;
6217 }
6218 
6219 static int memory_high_show(struct seq_file *m, void *v)
6220 {
6221 	return seq_puts_memcg_tunable(m,
6222 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6223 }
6224 
6225 static ssize_t memory_high_write(struct kernfs_open_file *of,
6226 				 char *buf, size_t nbytes, loff_t off)
6227 {
6228 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6229 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6230 	bool drained = false;
6231 	unsigned long high;
6232 	int err;
6233 
6234 	buf = strstrip(buf);
6235 	err = page_counter_memparse(buf, "max", &high);
6236 	if (err)
6237 		return err;
6238 
6239 	page_counter_set_high(&memcg->memory, high);
6240 
6241 	for (;;) {
6242 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6243 		unsigned long reclaimed;
6244 
6245 		if (nr_pages <= high)
6246 			break;
6247 
6248 		if (signal_pending(current))
6249 			break;
6250 
6251 		if (!drained) {
6252 			drain_all_stock(memcg);
6253 			drained = true;
6254 			continue;
6255 		}
6256 
6257 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6258 							 GFP_KERNEL, true);
6259 
6260 		if (!reclaimed && !nr_retries--)
6261 			break;
6262 	}
6263 
6264 	memcg_wb_domain_size_changed(memcg);
6265 	return nbytes;
6266 }
6267 
6268 static int memory_max_show(struct seq_file *m, void *v)
6269 {
6270 	return seq_puts_memcg_tunable(m,
6271 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6272 }
6273 
6274 static ssize_t memory_max_write(struct kernfs_open_file *of,
6275 				char *buf, size_t nbytes, loff_t off)
6276 {
6277 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6278 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6279 	bool drained = false;
6280 	unsigned long max;
6281 	int err;
6282 
6283 	buf = strstrip(buf);
6284 	err = page_counter_memparse(buf, "max", &max);
6285 	if (err)
6286 		return err;
6287 
6288 	xchg(&memcg->memory.max, max);
6289 
6290 	for (;;) {
6291 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6292 
6293 		if (nr_pages <= max)
6294 			break;
6295 
6296 		if (signal_pending(current))
6297 			break;
6298 
6299 		if (!drained) {
6300 			drain_all_stock(memcg);
6301 			drained = true;
6302 			continue;
6303 		}
6304 
6305 		if (nr_reclaims) {
6306 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6307 							  GFP_KERNEL, true))
6308 				nr_reclaims--;
6309 			continue;
6310 		}
6311 
6312 		memcg_memory_event(memcg, MEMCG_OOM);
6313 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6314 			break;
6315 	}
6316 
6317 	memcg_wb_domain_size_changed(memcg);
6318 	return nbytes;
6319 }
6320 
6321 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6322 {
6323 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6324 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6325 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6326 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6327 	seq_printf(m, "oom_kill %lu\n",
6328 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6329 	seq_printf(m, "oom_group_kill %lu\n",
6330 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6331 }
6332 
6333 static int memory_events_show(struct seq_file *m, void *v)
6334 {
6335 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6336 
6337 	__memory_events_show(m, memcg->memory_events);
6338 	return 0;
6339 }
6340 
6341 static int memory_events_local_show(struct seq_file *m, void *v)
6342 {
6343 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6344 
6345 	__memory_events_show(m, memcg->memory_events_local);
6346 	return 0;
6347 }
6348 
6349 static int memory_stat_show(struct seq_file *m, void *v)
6350 {
6351 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6352 	char *buf;
6353 
6354 	buf = memory_stat_format(memcg);
6355 	if (!buf)
6356 		return -ENOMEM;
6357 	seq_puts(m, buf);
6358 	kfree(buf);
6359 	return 0;
6360 }
6361 
6362 #ifdef CONFIG_NUMA
6363 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6364 						     int item)
6365 {
6366 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6367 }
6368 
6369 static int memory_numa_stat_show(struct seq_file *m, void *v)
6370 {
6371 	int i;
6372 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6373 
6374 	mem_cgroup_flush_stats();
6375 
6376 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6377 		int nid;
6378 
6379 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6380 			continue;
6381 
6382 		seq_printf(m, "%s", memory_stats[i].name);
6383 		for_each_node_state(nid, N_MEMORY) {
6384 			u64 size;
6385 			struct lruvec *lruvec;
6386 
6387 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6388 			size = lruvec_page_state_output(lruvec,
6389 							memory_stats[i].idx);
6390 			seq_printf(m, " N%d=%llu", nid, size);
6391 		}
6392 		seq_putc(m, '\n');
6393 	}
6394 
6395 	return 0;
6396 }
6397 #endif
6398 
6399 static int memory_oom_group_show(struct seq_file *m, void *v)
6400 {
6401 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6402 
6403 	seq_printf(m, "%d\n", memcg->oom_group);
6404 
6405 	return 0;
6406 }
6407 
6408 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6409 				      char *buf, size_t nbytes, loff_t off)
6410 {
6411 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6412 	int ret, oom_group;
6413 
6414 	buf = strstrip(buf);
6415 	if (!buf)
6416 		return -EINVAL;
6417 
6418 	ret = kstrtoint(buf, 0, &oom_group);
6419 	if (ret)
6420 		return ret;
6421 
6422 	if (oom_group != 0 && oom_group != 1)
6423 		return -EINVAL;
6424 
6425 	memcg->oom_group = oom_group;
6426 
6427 	return nbytes;
6428 }
6429 
6430 static struct cftype memory_files[] = {
6431 	{
6432 		.name = "current",
6433 		.flags = CFTYPE_NOT_ON_ROOT,
6434 		.read_u64 = memory_current_read,
6435 	},
6436 	{
6437 		.name = "min",
6438 		.flags = CFTYPE_NOT_ON_ROOT,
6439 		.seq_show = memory_min_show,
6440 		.write = memory_min_write,
6441 	},
6442 	{
6443 		.name = "low",
6444 		.flags = CFTYPE_NOT_ON_ROOT,
6445 		.seq_show = memory_low_show,
6446 		.write = memory_low_write,
6447 	},
6448 	{
6449 		.name = "high",
6450 		.flags = CFTYPE_NOT_ON_ROOT,
6451 		.seq_show = memory_high_show,
6452 		.write = memory_high_write,
6453 	},
6454 	{
6455 		.name = "max",
6456 		.flags = CFTYPE_NOT_ON_ROOT,
6457 		.seq_show = memory_max_show,
6458 		.write = memory_max_write,
6459 	},
6460 	{
6461 		.name = "events",
6462 		.flags = CFTYPE_NOT_ON_ROOT,
6463 		.file_offset = offsetof(struct mem_cgroup, events_file),
6464 		.seq_show = memory_events_show,
6465 	},
6466 	{
6467 		.name = "events.local",
6468 		.flags = CFTYPE_NOT_ON_ROOT,
6469 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6470 		.seq_show = memory_events_local_show,
6471 	},
6472 	{
6473 		.name = "stat",
6474 		.seq_show = memory_stat_show,
6475 	},
6476 #ifdef CONFIG_NUMA
6477 	{
6478 		.name = "numa_stat",
6479 		.seq_show = memory_numa_stat_show,
6480 	},
6481 #endif
6482 	{
6483 		.name = "oom.group",
6484 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6485 		.seq_show = memory_oom_group_show,
6486 		.write = memory_oom_group_write,
6487 	},
6488 	{ }	/* terminate */
6489 };
6490 
6491 struct cgroup_subsys memory_cgrp_subsys = {
6492 	.css_alloc = mem_cgroup_css_alloc,
6493 	.css_online = mem_cgroup_css_online,
6494 	.css_offline = mem_cgroup_css_offline,
6495 	.css_released = mem_cgroup_css_released,
6496 	.css_free = mem_cgroup_css_free,
6497 	.css_reset = mem_cgroup_css_reset,
6498 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6499 	.can_attach = mem_cgroup_can_attach,
6500 	.cancel_attach = mem_cgroup_cancel_attach,
6501 	.post_attach = mem_cgroup_move_task,
6502 	.dfl_cftypes = memory_files,
6503 	.legacy_cftypes = mem_cgroup_legacy_files,
6504 	.early_init = 0,
6505 };
6506 
6507 /*
6508  * This function calculates an individual cgroup's effective
6509  * protection which is derived from its own memory.min/low, its
6510  * parent's and siblings' settings, as well as the actual memory
6511  * distribution in the tree.
6512  *
6513  * The following rules apply to the effective protection values:
6514  *
6515  * 1. At the first level of reclaim, effective protection is equal to
6516  *    the declared protection in memory.min and memory.low.
6517  *
6518  * 2. To enable safe delegation of the protection configuration, at
6519  *    subsequent levels the effective protection is capped to the
6520  *    parent's effective protection.
6521  *
6522  * 3. To make complex and dynamic subtrees easier to configure, the
6523  *    user is allowed to overcommit the declared protection at a given
6524  *    level. If that is the case, the parent's effective protection is
6525  *    distributed to the children in proportion to how much protection
6526  *    they have declared and how much of it they are utilizing.
6527  *
6528  *    This makes distribution proportional, but also work-conserving:
6529  *    if one cgroup claims much more protection than it uses memory,
6530  *    the unused remainder is available to its siblings.
6531  *
6532  * 4. Conversely, when the declared protection is undercommitted at a
6533  *    given level, the distribution of the larger parental protection
6534  *    budget is NOT proportional. A cgroup's protection from a sibling
6535  *    is capped to its own memory.min/low setting.
6536  *
6537  * 5. However, to allow protecting recursive subtrees from each other
6538  *    without having to declare each individual cgroup's fixed share
6539  *    of the ancestor's claim to protection, any unutilized -
6540  *    "floating" - protection from up the tree is distributed in
6541  *    proportion to each cgroup's *usage*. This makes the protection
6542  *    neutral wrt sibling cgroups and lets them compete freely over
6543  *    the shared parental protection budget, but it protects the
6544  *    subtree as a whole from neighboring subtrees.
6545  *
6546  * Note that 4. and 5. are not in conflict: 4. is about protecting
6547  * against immediate siblings whereas 5. is about protecting against
6548  * neighboring subtrees.
6549  */
6550 static unsigned long effective_protection(unsigned long usage,
6551 					  unsigned long parent_usage,
6552 					  unsigned long setting,
6553 					  unsigned long parent_effective,
6554 					  unsigned long siblings_protected)
6555 {
6556 	unsigned long protected;
6557 	unsigned long ep;
6558 
6559 	protected = min(usage, setting);
6560 	/*
6561 	 * If all cgroups at this level combined claim and use more
6562 	 * protection then what the parent affords them, distribute
6563 	 * shares in proportion to utilization.
6564 	 *
6565 	 * We are using actual utilization rather than the statically
6566 	 * claimed protection in order to be work-conserving: claimed
6567 	 * but unused protection is available to siblings that would
6568 	 * otherwise get a smaller chunk than what they claimed.
6569 	 */
6570 	if (siblings_protected > parent_effective)
6571 		return protected * parent_effective / siblings_protected;
6572 
6573 	/*
6574 	 * Ok, utilized protection of all children is within what the
6575 	 * parent affords them, so we know whatever this child claims
6576 	 * and utilizes is effectively protected.
6577 	 *
6578 	 * If there is unprotected usage beyond this value, reclaim
6579 	 * will apply pressure in proportion to that amount.
6580 	 *
6581 	 * If there is unutilized protection, the cgroup will be fully
6582 	 * shielded from reclaim, but we do return a smaller value for
6583 	 * protection than what the group could enjoy in theory. This
6584 	 * is okay. With the overcommit distribution above, effective
6585 	 * protection is always dependent on how memory is actually
6586 	 * consumed among the siblings anyway.
6587 	 */
6588 	ep = protected;
6589 
6590 	/*
6591 	 * If the children aren't claiming (all of) the protection
6592 	 * afforded to them by the parent, distribute the remainder in
6593 	 * proportion to the (unprotected) memory of each cgroup. That
6594 	 * way, cgroups that aren't explicitly prioritized wrt each
6595 	 * other compete freely over the allowance, but they are
6596 	 * collectively protected from neighboring trees.
6597 	 *
6598 	 * We're using unprotected memory for the weight so that if
6599 	 * some cgroups DO claim explicit protection, we don't protect
6600 	 * the same bytes twice.
6601 	 *
6602 	 * Check both usage and parent_usage against the respective
6603 	 * protected values. One should imply the other, but they
6604 	 * aren't read atomically - make sure the division is sane.
6605 	 */
6606 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6607 		return ep;
6608 	if (parent_effective > siblings_protected &&
6609 	    parent_usage > siblings_protected &&
6610 	    usage > protected) {
6611 		unsigned long unclaimed;
6612 
6613 		unclaimed = parent_effective - siblings_protected;
6614 		unclaimed *= usage - protected;
6615 		unclaimed /= parent_usage - siblings_protected;
6616 
6617 		ep += unclaimed;
6618 	}
6619 
6620 	return ep;
6621 }
6622 
6623 /**
6624  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6625  * @root: the top ancestor of the sub-tree being checked
6626  * @memcg: the memory cgroup to check
6627  *
6628  * WARNING: This function is not stateless! It can only be used as part
6629  *          of a top-down tree iteration, not for isolated queries.
6630  */
6631 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6632 				     struct mem_cgroup *memcg)
6633 {
6634 	unsigned long usage, parent_usage;
6635 	struct mem_cgroup *parent;
6636 
6637 	if (mem_cgroup_disabled())
6638 		return;
6639 
6640 	if (!root)
6641 		root = root_mem_cgroup;
6642 
6643 	/*
6644 	 * Effective values of the reclaim targets are ignored so they
6645 	 * can be stale. Have a look at mem_cgroup_protection for more
6646 	 * details.
6647 	 * TODO: calculation should be more robust so that we do not need
6648 	 * that special casing.
6649 	 */
6650 	if (memcg == root)
6651 		return;
6652 
6653 	usage = page_counter_read(&memcg->memory);
6654 	if (!usage)
6655 		return;
6656 
6657 	parent = parent_mem_cgroup(memcg);
6658 	/* No parent means a non-hierarchical mode on v1 memcg */
6659 	if (!parent)
6660 		return;
6661 
6662 	if (parent == root) {
6663 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6664 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6665 		return;
6666 	}
6667 
6668 	parent_usage = page_counter_read(&parent->memory);
6669 
6670 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6671 			READ_ONCE(memcg->memory.min),
6672 			READ_ONCE(parent->memory.emin),
6673 			atomic_long_read(&parent->memory.children_min_usage)));
6674 
6675 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6676 			READ_ONCE(memcg->memory.low),
6677 			READ_ONCE(parent->memory.elow),
6678 			atomic_long_read(&parent->memory.children_low_usage)));
6679 }
6680 
6681 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6682 			gfp_t gfp)
6683 {
6684 	long nr_pages = folio_nr_pages(folio);
6685 	int ret;
6686 
6687 	ret = try_charge(memcg, gfp, nr_pages);
6688 	if (ret)
6689 		goto out;
6690 
6691 	css_get(&memcg->css);
6692 	commit_charge(folio, memcg);
6693 
6694 	local_irq_disable();
6695 	mem_cgroup_charge_statistics(memcg, nr_pages);
6696 	memcg_check_events(memcg, folio_nid(folio));
6697 	local_irq_enable();
6698 out:
6699 	return ret;
6700 }
6701 
6702 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6703 {
6704 	struct mem_cgroup *memcg;
6705 	int ret;
6706 
6707 	memcg = get_mem_cgroup_from_mm(mm);
6708 	ret = charge_memcg(folio, memcg, gfp);
6709 	css_put(&memcg->css);
6710 
6711 	return ret;
6712 }
6713 
6714 /**
6715  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6716  * @page: page to charge
6717  * @mm: mm context of the victim
6718  * @gfp: reclaim mode
6719  * @entry: swap entry for which the page is allocated
6720  *
6721  * This function charges a page allocated for swapin. Please call this before
6722  * adding the page to the swapcache.
6723  *
6724  * Returns 0 on success. Otherwise, an error code is returned.
6725  */
6726 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6727 				  gfp_t gfp, swp_entry_t entry)
6728 {
6729 	struct folio *folio = page_folio(page);
6730 	struct mem_cgroup *memcg;
6731 	unsigned short id;
6732 	int ret;
6733 
6734 	if (mem_cgroup_disabled())
6735 		return 0;
6736 
6737 	id = lookup_swap_cgroup_id(entry);
6738 	rcu_read_lock();
6739 	memcg = mem_cgroup_from_id(id);
6740 	if (!memcg || !css_tryget_online(&memcg->css))
6741 		memcg = get_mem_cgroup_from_mm(mm);
6742 	rcu_read_unlock();
6743 
6744 	ret = charge_memcg(folio, memcg, gfp);
6745 
6746 	css_put(&memcg->css);
6747 	return ret;
6748 }
6749 
6750 /*
6751  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6752  * @entry: swap entry for which the page is charged
6753  *
6754  * Call this function after successfully adding the charged page to swapcache.
6755  *
6756  * Note: This function assumes the page for which swap slot is being uncharged
6757  * is order 0 page.
6758  */
6759 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6760 {
6761 	/*
6762 	 * Cgroup1's unified memory+swap counter has been charged with the
6763 	 * new swapcache page, finish the transfer by uncharging the swap
6764 	 * slot. The swap slot would also get uncharged when it dies, but
6765 	 * it can stick around indefinitely and we'd count the page twice
6766 	 * the entire time.
6767 	 *
6768 	 * Cgroup2 has separate resource counters for memory and swap,
6769 	 * so this is a non-issue here. Memory and swap charge lifetimes
6770 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6771 	 * page to memory here, and uncharge swap when the slot is freed.
6772 	 */
6773 	if (!mem_cgroup_disabled() && do_memsw_account()) {
6774 		/*
6775 		 * The swap entry might not get freed for a long time,
6776 		 * let's not wait for it.  The page already received a
6777 		 * memory+swap charge, drop the swap entry duplicate.
6778 		 */
6779 		mem_cgroup_uncharge_swap(entry, 1);
6780 	}
6781 }
6782 
6783 struct uncharge_gather {
6784 	struct mem_cgroup *memcg;
6785 	unsigned long nr_memory;
6786 	unsigned long pgpgout;
6787 	unsigned long nr_kmem;
6788 	int nid;
6789 };
6790 
6791 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6792 {
6793 	memset(ug, 0, sizeof(*ug));
6794 }
6795 
6796 static void uncharge_batch(const struct uncharge_gather *ug)
6797 {
6798 	unsigned long flags;
6799 
6800 	if (ug->nr_memory) {
6801 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6802 		if (do_memsw_account())
6803 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6804 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6805 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6806 		memcg_oom_recover(ug->memcg);
6807 	}
6808 
6809 	local_irq_save(flags);
6810 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6811 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6812 	memcg_check_events(ug->memcg, ug->nid);
6813 	local_irq_restore(flags);
6814 
6815 	/* drop reference from uncharge_folio */
6816 	css_put(&ug->memcg->css);
6817 }
6818 
6819 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6820 {
6821 	long nr_pages;
6822 	struct mem_cgroup *memcg;
6823 	struct obj_cgroup *objcg;
6824 	bool use_objcg = folio_memcg_kmem(folio);
6825 
6826 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6827 
6828 	/*
6829 	 * Nobody should be changing or seriously looking at
6830 	 * folio memcg or objcg at this point, we have fully
6831 	 * exclusive access to the folio.
6832 	 */
6833 	if (use_objcg) {
6834 		objcg = __folio_objcg(folio);
6835 		/*
6836 		 * This get matches the put at the end of the function and
6837 		 * kmem pages do not hold memcg references anymore.
6838 		 */
6839 		memcg = get_mem_cgroup_from_objcg(objcg);
6840 	} else {
6841 		memcg = __folio_memcg(folio);
6842 	}
6843 
6844 	if (!memcg)
6845 		return;
6846 
6847 	if (ug->memcg != memcg) {
6848 		if (ug->memcg) {
6849 			uncharge_batch(ug);
6850 			uncharge_gather_clear(ug);
6851 		}
6852 		ug->memcg = memcg;
6853 		ug->nid = folio_nid(folio);
6854 
6855 		/* pairs with css_put in uncharge_batch */
6856 		css_get(&memcg->css);
6857 	}
6858 
6859 	nr_pages = folio_nr_pages(folio);
6860 
6861 	if (use_objcg) {
6862 		ug->nr_memory += nr_pages;
6863 		ug->nr_kmem += nr_pages;
6864 
6865 		folio->memcg_data = 0;
6866 		obj_cgroup_put(objcg);
6867 	} else {
6868 		/* LRU pages aren't accounted at the root level */
6869 		if (!mem_cgroup_is_root(memcg))
6870 			ug->nr_memory += nr_pages;
6871 		ug->pgpgout++;
6872 
6873 		folio->memcg_data = 0;
6874 	}
6875 
6876 	css_put(&memcg->css);
6877 }
6878 
6879 void __mem_cgroup_uncharge(struct folio *folio)
6880 {
6881 	struct uncharge_gather ug;
6882 
6883 	/* Don't touch folio->lru of any random page, pre-check: */
6884 	if (!folio_memcg(folio))
6885 		return;
6886 
6887 	uncharge_gather_clear(&ug);
6888 	uncharge_folio(folio, &ug);
6889 	uncharge_batch(&ug);
6890 }
6891 
6892 /**
6893  * __mem_cgroup_uncharge_list - uncharge a list of page
6894  * @page_list: list of pages to uncharge
6895  *
6896  * Uncharge a list of pages previously charged with
6897  * __mem_cgroup_charge().
6898  */
6899 void __mem_cgroup_uncharge_list(struct list_head *page_list)
6900 {
6901 	struct uncharge_gather ug;
6902 	struct folio *folio;
6903 
6904 	uncharge_gather_clear(&ug);
6905 	list_for_each_entry(folio, page_list, lru)
6906 		uncharge_folio(folio, &ug);
6907 	if (ug.memcg)
6908 		uncharge_batch(&ug);
6909 }
6910 
6911 /**
6912  * mem_cgroup_migrate - Charge a folio's replacement.
6913  * @old: Currently circulating folio.
6914  * @new: Replacement folio.
6915  *
6916  * Charge @new as a replacement folio for @old. @old will
6917  * be uncharged upon free.
6918  *
6919  * Both folios must be locked, @new->mapping must be set up.
6920  */
6921 void mem_cgroup_migrate(struct folio *old, struct folio *new)
6922 {
6923 	struct mem_cgroup *memcg;
6924 	long nr_pages = folio_nr_pages(new);
6925 	unsigned long flags;
6926 
6927 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
6928 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
6929 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
6930 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
6931 
6932 	if (mem_cgroup_disabled())
6933 		return;
6934 
6935 	/* Page cache replacement: new folio already charged? */
6936 	if (folio_memcg(new))
6937 		return;
6938 
6939 	memcg = folio_memcg(old);
6940 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
6941 	if (!memcg)
6942 		return;
6943 
6944 	/* Force-charge the new page. The old one will be freed soon */
6945 	if (!mem_cgroup_is_root(memcg)) {
6946 		page_counter_charge(&memcg->memory, nr_pages);
6947 		if (do_memsw_account())
6948 			page_counter_charge(&memcg->memsw, nr_pages);
6949 	}
6950 
6951 	css_get(&memcg->css);
6952 	commit_charge(new, memcg);
6953 
6954 	local_irq_save(flags);
6955 	mem_cgroup_charge_statistics(memcg, nr_pages);
6956 	memcg_check_events(memcg, folio_nid(new));
6957 	local_irq_restore(flags);
6958 }
6959 
6960 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6961 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6962 
6963 void mem_cgroup_sk_alloc(struct sock *sk)
6964 {
6965 	struct mem_cgroup *memcg;
6966 
6967 	if (!mem_cgroup_sockets_enabled)
6968 		return;
6969 
6970 	/* Do not associate the sock with unrelated interrupted task's memcg. */
6971 	if (in_interrupt())
6972 		return;
6973 
6974 	rcu_read_lock();
6975 	memcg = mem_cgroup_from_task(current);
6976 	if (memcg == root_mem_cgroup)
6977 		goto out;
6978 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6979 		goto out;
6980 	if (css_tryget(&memcg->css))
6981 		sk->sk_memcg = memcg;
6982 out:
6983 	rcu_read_unlock();
6984 }
6985 
6986 void mem_cgroup_sk_free(struct sock *sk)
6987 {
6988 	if (sk->sk_memcg)
6989 		css_put(&sk->sk_memcg->css);
6990 }
6991 
6992 /**
6993  * mem_cgroup_charge_skmem - charge socket memory
6994  * @memcg: memcg to charge
6995  * @nr_pages: number of pages to charge
6996  * @gfp_mask: reclaim mode
6997  *
6998  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6999  * @memcg's configured limit, %false if it doesn't.
7000  */
7001 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7002 			     gfp_t gfp_mask)
7003 {
7004 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7005 		struct page_counter *fail;
7006 
7007 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7008 			memcg->tcpmem_pressure = 0;
7009 			return true;
7010 		}
7011 		memcg->tcpmem_pressure = 1;
7012 		if (gfp_mask & __GFP_NOFAIL) {
7013 			page_counter_charge(&memcg->tcpmem, nr_pages);
7014 			return true;
7015 		}
7016 		return false;
7017 	}
7018 
7019 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7020 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7021 		return true;
7022 	}
7023 
7024 	return false;
7025 }
7026 
7027 /**
7028  * mem_cgroup_uncharge_skmem - uncharge socket memory
7029  * @memcg: memcg to uncharge
7030  * @nr_pages: number of pages to uncharge
7031  */
7032 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7033 {
7034 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7035 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7036 		return;
7037 	}
7038 
7039 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7040 
7041 	refill_stock(memcg, nr_pages);
7042 }
7043 
7044 static int __init cgroup_memory(char *s)
7045 {
7046 	char *token;
7047 
7048 	while ((token = strsep(&s, ",")) != NULL) {
7049 		if (!*token)
7050 			continue;
7051 		if (!strcmp(token, "nosocket"))
7052 			cgroup_memory_nosocket = true;
7053 		if (!strcmp(token, "nokmem"))
7054 			cgroup_memory_nokmem = true;
7055 	}
7056 	return 0;
7057 }
7058 __setup("cgroup.memory=", cgroup_memory);
7059 
7060 /*
7061  * subsys_initcall() for memory controller.
7062  *
7063  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7064  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7065  * basically everything that doesn't depend on a specific mem_cgroup structure
7066  * should be initialized from here.
7067  */
7068 static int __init mem_cgroup_init(void)
7069 {
7070 	int cpu, node;
7071 
7072 	/*
7073 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7074 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7075 	 * to work fine, we should make sure that the overfill threshold can't
7076 	 * exceed S32_MAX / PAGE_SIZE.
7077 	 */
7078 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7079 
7080 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7081 				  memcg_hotplug_cpu_dead);
7082 
7083 	for_each_possible_cpu(cpu)
7084 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7085 			  drain_local_stock);
7086 
7087 	for_each_node(node) {
7088 		struct mem_cgroup_tree_per_node *rtpn;
7089 
7090 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7091 				    node_online(node) ? node : NUMA_NO_NODE);
7092 
7093 		rtpn->rb_root = RB_ROOT;
7094 		rtpn->rb_rightmost = NULL;
7095 		spin_lock_init(&rtpn->lock);
7096 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7097 	}
7098 
7099 	return 0;
7100 }
7101 subsys_initcall(mem_cgroup_init);
7102 
7103 #ifdef CONFIG_MEMCG_SWAP
7104 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7105 {
7106 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7107 		/*
7108 		 * The root cgroup cannot be destroyed, so it's refcount must
7109 		 * always be >= 1.
7110 		 */
7111 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7112 			VM_BUG_ON(1);
7113 			break;
7114 		}
7115 		memcg = parent_mem_cgroup(memcg);
7116 		if (!memcg)
7117 			memcg = root_mem_cgroup;
7118 	}
7119 	return memcg;
7120 }
7121 
7122 /**
7123  * mem_cgroup_swapout - transfer a memsw charge to swap
7124  * @page: page whose memsw charge to transfer
7125  * @entry: swap entry to move the charge to
7126  *
7127  * Transfer the memsw charge of @page to @entry.
7128  */
7129 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7130 {
7131 	struct mem_cgroup *memcg, *swap_memcg;
7132 	unsigned int nr_entries;
7133 	unsigned short oldid;
7134 
7135 	VM_BUG_ON_PAGE(PageLRU(page), page);
7136 	VM_BUG_ON_PAGE(page_count(page), page);
7137 
7138 	if (mem_cgroup_disabled())
7139 		return;
7140 
7141 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7142 		return;
7143 
7144 	memcg = page_memcg(page);
7145 
7146 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7147 	if (!memcg)
7148 		return;
7149 
7150 	/*
7151 	 * In case the memcg owning these pages has been offlined and doesn't
7152 	 * have an ID allocated to it anymore, charge the closest online
7153 	 * ancestor for the swap instead and transfer the memory+swap charge.
7154 	 */
7155 	swap_memcg = mem_cgroup_id_get_online(memcg);
7156 	nr_entries = thp_nr_pages(page);
7157 	/* Get references for the tail pages, too */
7158 	if (nr_entries > 1)
7159 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7160 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7161 				   nr_entries);
7162 	VM_BUG_ON_PAGE(oldid, page);
7163 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7164 
7165 	page->memcg_data = 0;
7166 
7167 	if (!mem_cgroup_is_root(memcg))
7168 		page_counter_uncharge(&memcg->memory, nr_entries);
7169 
7170 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7171 		if (!mem_cgroup_is_root(swap_memcg))
7172 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7173 		page_counter_uncharge(&memcg->memsw, nr_entries);
7174 	}
7175 
7176 	/*
7177 	 * Interrupts should be disabled here because the caller holds the
7178 	 * i_pages lock which is taken with interrupts-off. It is
7179 	 * important here to have the interrupts disabled because it is the
7180 	 * only synchronisation we have for updating the per-CPU variables.
7181 	 */
7182 	VM_BUG_ON(!irqs_disabled());
7183 	mem_cgroup_charge_statistics(memcg, -nr_entries);
7184 	memcg_check_events(memcg, page_to_nid(page));
7185 
7186 	css_put(&memcg->css);
7187 }
7188 
7189 /**
7190  * __mem_cgroup_try_charge_swap - try charging swap space for a page
7191  * @page: page being added to swap
7192  * @entry: swap entry to charge
7193  *
7194  * Try to charge @page's memcg for the swap space at @entry.
7195  *
7196  * Returns 0 on success, -ENOMEM on failure.
7197  */
7198 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7199 {
7200 	unsigned int nr_pages = thp_nr_pages(page);
7201 	struct page_counter *counter;
7202 	struct mem_cgroup *memcg;
7203 	unsigned short oldid;
7204 
7205 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7206 		return 0;
7207 
7208 	memcg = page_memcg(page);
7209 
7210 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7211 	if (!memcg)
7212 		return 0;
7213 
7214 	if (!entry.val) {
7215 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7216 		return 0;
7217 	}
7218 
7219 	memcg = mem_cgroup_id_get_online(memcg);
7220 
7221 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7222 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7223 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7224 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7225 		mem_cgroup_id_put(memcg);
7226 		return -ENOMEM;
7227 	}
7228 
7229 	/* Get references for the tail pages, too */
7230 	if (nr_pages > 1)
7231 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7232 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7233 	VM_BUG_ON_PAGE(oldid, page);
7234 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7235 
7236 	return 0;
7237 }
7238 
7239 /**
7240  * __mem_cgroup_uncharge_swap - uncharge swap space
7241  * @entry: swap entry to uncharge
7242  * @nr_pages: the amount of swap space to uncharge
7243  */
7244 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7245 {
7246 	struct mem_cgroup *memcg;
7247 	unsigned short id;
7248 
7249 	id = swap_cgroup_record(entry, 0, nr_pages);
7250 	rcu_read_lock();
7251 	memcg = mem_cgroup_from_id(id);
7252 	if (memcg) {
7253 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7254 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7255 				page_counter_uncharge(&memcg->swap, nr_pages);
7256 			else
7257 				page_counter_uncharge(&memcg->memsw, nr_pages);
7258 		}
7259 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7260 		mem_cgroup_id_put_many(memcg, nr_pages);
7261 	}
7262 	rcu_read_unlock();
7263 }
7264 
7265 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7266 {
7267 	long nr_swap_pages = get_nr_swap_pages();
7268 
7269 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7270 		return nr_swap_pages;
7271 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7272 		nr_swap_pages = min_t(long, nr_swap_pages,
7273 				      READ_ONCE(memcg->swap.max) -
7274 				      page_counter_read(&memcg->swap));
7275 	return nr_swap_pages;
7276 }
7277 
7278 bool mem_cgroup_swap_full(struct page *page)
7279 {
7280 	struct mem_cgroup *memcg;
7281 
7282 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7283 
7284 	if (vm_swap_full())
7285 		return true;
7286 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7287 		return false;
7288 
7289 	memcg = page_memcg(page);
7290 	if (!memcg)
7291 		return false;
7292 
7293 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7294 		unsigned long usage = page_counter_read(&memcg->swap);
7295 
7296 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7297 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7298 			return true;
7299 	}
7300 
7301 	return false;
7302 }
7303 
7304 static int __init setup_swap_account(char *s)
7305 {
7306 	if (!strcmp(s, "1"))
7307 		cgroup_memory_noswap = false;
7308 	else if (!strcmp(s, "0"))
7309 		cgroup_memory_noswap = true;
7310 	return 1;
7311 }
7312 __setup("swapaccount=", setup_swap_account);
7313 
7314 static u64 swap_current_read(struct cgroup_subsys_state *css,
7315 			     struct cftype *cft)
7316 {
7317 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7318 
7319 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7320 }
7321 
7322 static int swap_high_show(struct seq_file *m, void *v)
7323 {
7324 	return seq_puts_memcg_tunable(m,
7325 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7326 }
7327 
7328 static ssize_t swap_high_write(struct kernfs_open_file *of,
7329 			       char *buf, size_t nbytes, loff_t off)
7330 {
7331 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7332 	unsigned long high;
7333 	int err;
7334 
7335 	buf = strstrip(buf);
7336 	err = page_counter_memparse(buf, "max", &high);
7337 	if (err)
7338 		return err;
7339 
7340 	page_counter_set_high(&memcg->swap, high);
7341 
7342 	return nbytes;
7343 }
7344 
7345 static int swap_max_show(struct seq_file *m, void *v)
7346 {
7347 	return seq_puts_memcg_tunable(m,
7348 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7349 }
7350 
7351 static ssize_t swap_max_write(struct kernfs_open_file *of,
7352 			      char *buf, size_t nbytes, loff_t off)
7353 {
7354 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7355 	unsigned long max;
7356 	int err;
7357 
7358 	buf = strstrip(buf);
7359 	err = page_counter_memparse(buf, "max", &max);
7360 	if (err)
7361 		return err;
7362 
7363 	xchg(&memcg->swap.max, max);
7364 
7365 	return nbytes;
7366 }
7367 
7368 static int swap_events_show(struct seq_file *m, void *v)
7369 {
7370 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7371 
7372 	seq_printf(m, "high %lu\n",
7373 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7374 	seq_printf(m, "max %lu\n",
7375 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7376 	seq_printf(m, "fail %lu\n",
7377 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7378 
7379 	return 0;
7380 }
7381 
7382 static struct cftype swap_files[] = {
7383 	{
7384 		.name = "swap.current",
7385 		.flags = CFTYPE_NOT_ON_ROOT,
7386 		.read_u64 = swap_current_read,
7387 	},
7388 	{
7389 		.name = "swap.high",
7390 		.flags = CFTYPE_NOT_ON_ROOT,
7391 		.seq_show = swap_high_show,
7392 		.write = swap_high_write,
7393 	},
7394 	{
7395 		.name = "swap.max",
7396 		.flags = CFTYPE_NOT_ON_ROOT,
7397 		.seq_show = swap_max_show,
7398 		.write = swap_max_write,
7399 	},
7400 	{
7401 		.name = "swap.events",
7402 		.flags = CFTYPE_NOT_ON_ROOT,
7403 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7404 		.seq_show = swap_events_show,
7405 	},
7406 	{ }	/* terminate */
7407 };
7408 
7409 static struct cftype memsw_files[] = {
7410 	{
7411 		.name = "memsw.usage_in_bytes",
7412 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7413 		.read_u64 = mem_cgroup_read_u64,
7414 	},
7415 	{
7416 		.name = "memsw.max_usage_in_bytes",
7417 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7418 		.write = mem_cgroup_reset,
7419 		.read_u64 = mem_cgroup_read_u64,
7420 	},
7421 	{
7422 		.name = "memsw.limit_in_bytes",
7423 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7424 		.write = mem_cgroup_write,
7425 		.read_u64 = mem_cgroup_read_u64,
7426 	},
7427 	{
7428 		.name = "memsw.failcnt",
7429 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7430 		.write = mem_cgroup_reset,
7431 		.read_u64 = mem_cgroup_read_u64,
7432 	},
7433 	{ },	/* terminate */
7434 };
7435 
7436 /*
7437  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7438  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7439  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7440  * boot parameter. This may result in premature OOPS inside
7441  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7442  */
7443 static int __init mem_cgroup_swap_init(void)
7444 {
7445 	/* No memory control -> no swap control */
7446 	if (mem_cgroup_disabled())
7447 		cgroup_memory_noswap = true;
7448 
7449 	if (cgroup_memory_noswap)
7450 		return 0;
7451 
7452 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7453 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7454 
7455 	return 0;
7456 }
7457 core_initcall(mem_cgroup_swap_init);
7458 
7459 #endif /* CONFIG_MEMCG_SWAP */
7460