xref: /openbmc/linux/mm/memcontrol.c (revision 19d0070a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66 
67 #include <linux/uaccess.h>
68 
69 #include <trace/events/vmscan.h>
70 
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73 
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75 
76 #define MEM_CGROUP_RECLAIM_RETRIES	5
77 
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80 
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83 
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 bool cgroup_memory_noswap __read_mostly;
87 #else
88 #define cgroup_memory_noswap		1
89 #endif
90 
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
99 }
100 
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103 
104 /*
105  * Cgroups above their limits are maintained in a RB-Tree, independent of
106  * their hierarchy representation
107  */
108 
109 struct mem_cgroup_tree_per_node {
110 	struct rb_root rb_root;
111 	struct rb_node *rb_rightmost;
112 	spinlock_t lock;
113 };
114 
115 struct mem_cgroup_tree {
116 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118 
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120 
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 	struct list_head list;
124 	struct eventfd_ctx *eventfd;
125 };
126 
127 /*
128  * cgroup_event represents events which userspace want to receive.
129  */
130 struct mem_cgroup_event {
131 	/*
132 	 * memcg which the event belongs to.
133 	 */
134 	struct mem_cgroup *memcg;
135 	/*
136 	 * eventfd to signal userspace about the event.
137 	 */
138 	struct eventfd_ctx *eventfd;
139 	/*
140 	 * Each of these stored in a list by the cgroup.
141 	 */
142 	struct list_head list;
143 	/*
144 	 * register_event() callback will be used to add new userspace
145 	 * waiter for changes related to this event.  Use eventfd_signal()
146 	 * on eventfd to send notification to userspace.
147 	 */
148 	int (*register_event)(struct mem_cgroup *memcg,
149 			      struct eventfd_ctx *eventfd, const char *args);
150 	/*
151 	 * unregister_event() callback will be called when userspace closes
152 	 * the eventfd or on cgroup removing.  This callback must be set,
153 	 * if you want provide notification functionality.
154 	 */
155 	void (*unregister_event)(struct mem_cgroup *memcg,
156 				 struct eventfd_ctx *eventfd);
157 	/*
158 	 * All fields below needed to unregister event when
159 	 * userspace closes eventfd.
160 	 */
161 	poll_table pt;
162 	wait_queue_head_t *wqh;
163 	wait_queue_entry_t wait;
164 	struct work_struct remove;
165 };
166 
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169 
170 /* Stuffs for move charges at task migration. */
171 /*
172  * Types of charges to be moved.
173  */
174 #define MOVE_ANON	0x1U
175 #define MOVE_FILE	0x2U
176 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
177 
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 	spinlock_t	  lock; /* for from, to */
181 	struct mm_struct  *mm;
182 	struct mem_cgroup *from;
183 	struct mem_cgroup *to;
184 	unsigned long flags;
185 	unsigned long precharge;
186 	unsigned long moved_charge;
187 	unsigned long moved_swap;
188 	struct task_struct *moving_task;	/* a task moving charges */
189 	wait_queue_head_t waitq;		/* a waitq for other context */
190 } mc = {
191 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194 
195 /*
196  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197  * limit reclaim to prevent infinite loops, if they ever occur.
198  */
199 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
200 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
201 
202 enum charge_type {
203 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 	MEM_CGROUP_CHARGE_TYPE_ANON,
205 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
206 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
207 	NR_CHARGE_TYPE,
208 };
209 
210 /* for encoding cft->private value on file */
211 enum res_type {
212 	_MEM,
213 	_MEMSWAP,
214 	_OOM_TYPE,
215 	_KMEM,
216 	_TCP,
217 };
218 
219 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
220 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val)	((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL		(0)
224 
225 /*
226  * Iteration constructs for visiting all cgroups (under a tree).  If
227  * loops are exited prematurely (break), mem_cgroup_iter_break() must
228  * be used for reference counting.
229  */
230 #define for_each_mem_cgroup_tree(iter, root)		\
231 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
232 	     iter != NULL;				\
233 	     iter = mem_cgroup_iter(root, iter, NULL))
234 
235 #define for_each_mem_cgroup(iter)			\
236 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
237 	     iter != NULL;				\
238 	     iter = mem_cgroup_iter(NULL, iter, NULL))
239 
240 static inline bool should_force_charge(void)
241 {
242 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 		(current->flags & PF_EXITING);
244 }
245 
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248 {
249 	if (!memcg)
250 		memcg = root_mem_cgroup;
251 	return &memcg->vmpressure;
252 }
253 
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255 {
256 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257 }
258 
259 #ifdef CONFIG_MEMCG_KMEM
260 /*
261  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262  * The main reason for not using cgroup id for this:
263  *  this works better in sparse environments, where we have a lot of memcgs,
264  *  but only a few kmem-limited. Or also, if we have, for instance, 200
265  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
266  *  200 entry array for that.
267  *
268  * The current size of the caches array is stored in memcg_nr_cache_ids. It
269  * will double each time we have to increase it.
270  */
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
273 
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
276 
277 void memcg_get_cache_ids(void)
278 {
279 	down_read(&memcg_cache_ids_sem);
280 }
281 
282 void memcg_put_cache_ids(void)
283 {
284 	up_read(&memcg_cache_ids_sem);
285 }
286 
287 /*
288  * MIN_SIZE is different than 1, because we would like to avoid going through
289  * the alloc/free process all the time. In a small machine, 4 kmem-limited
290  * cgroups is a reasonable guess. In the future, it could be a parameter or
291  * tunable, but that is strictly not necessary.
292  *
293  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294  * this constant directly from cgroup, but it is understandable that this is
295  * better kept as an internal representation in cgroup.c. In any case, the
296  * cgrp_id space is not getting any smaller, and we don't have to necessarily
297  * increase ours as well if it increases.
298  */
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301 
302 /*
303  * A lot of the calls to the cache allocation functions are expected to be
304  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305  * conditional to this static branch, we'll have to allow modules that does
306  * kmem_cache_alloc and the such to see this symbol as well
307  */
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
310 
311 struct workqueue_struct *memcg_kmem_cache_wq;
312 #endif
313 
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316 
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318 {
319 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320 }
321 
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 					 int size, int old_size)
324 {
325 	struct memcg_shrinker_map *new, *old;
326 	int nid;
327 
328 	lockdep_assert_held(&memcg_shrinker_map_mutex);
329 
330 	for_each_node(nid) {
331 		old = rcu_dereference_protected(
332 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 		/* Not yet online memcg */
334 		if (!old)
335 			return 0;
336 
337 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
338 		if (!new)
339 			return -ENOMEM;
340 
341 		/* Set all old bits, clear all new bits */
342 		memset(new->map, (int)0xff, old_size);
343 		memset((void *)new->map + old_size, 0, size - old_size);
344 
345 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 	}
348 
349 	return 0;
350 }
351 
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353 {
354 	struct mem_cgroup_per_node *pn;
355 	struct memcg_shrinker_map *map;
356 	int nid;
357 
358 	if (mem_cgroup_is_root(memcg))
359 		return;
360 
361 	for_each_node(nid) {
362 		pn = mem_cgroup_nodeinfo(memcg, nid);
363 		map = rcu_dereference_protected(pn->shrinker_map, true);
364 		if (map)
365 			kvfree(map);
366 		rcu_assign_pointer(pn->shrinker_map, NULL);
367 	}
368 }
369 
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371 {
372 	struct memcg_shrinker_map *map;
373 	int nid, size, ret = 0;
374 
375 	if (mem_cgroup_is_root(memcg))
376 		return 0;
377 
378 	mutex_lock(&memcg_shrinker_map_mutex);
379 	size = memcg_shrinker_map_size;
380 	for_each_node(nid) {
381 		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
382 		if (!map) {
383 			memcg_free_shrinker_maps(memcg);
384 			ret = -ENOMEM;
385 			break;
386 		}
387 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 	}
389 	mutex_unlock(&memcg_shrinker_map_mutex);
390 
391 	return ret;
392 }
393 
394 int memcg_expand_shrinker_maps(int new_id)
395 {
396 	int size, old_size, ret = 0;
397 	struct mem_cgroup *memcg;
398 
399 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 	old_size = memcg_shrinker_map_size;
401 	if (size <= old_size)
402 		return 0;
403 
404 	mutex_lock(&memcg_shrinker_map_mutex);
405 	if (!root_mem_cgroup)
406 		goto unlock;
407 
408 	for_each_mem_cgroup(memcg) {
409 		if (mem_cgroup_is_root(memcg))
410 			continue;
411 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 		if (ret) {
413 			mem_cgroup_iter_break(NULL, memcg);
414 			goto unlock;
415 		}
416 	}
417 unlock:
418 	if (!ret)
419 		memcg_shrinker_map_size = size;
420 	mutex_unlock(&memcg_shrinker_map_mutex);
421 	return ret;
422 }
423 
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425 {
426 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 		struct memcg_shrinker_map *map;
428 
429 		rcu_read_lock();
430 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 		/* Pairs with smp mb in shrink_slab() */
432 		smp_mb__before_atomic();
433 		set_bit(shrinker_id, map->map);
434 		rcu_read_unlock();
435 	}
436 }
437 
438 /**
439  * mem_cgroup_css_from_page - css of the memcg associated with a page
440  * @page: page of interest
441  *
442  * If memcg is bound to the default hierarchy, css of the memcg associated
443  * with @page is returned.  The returned css remains associated with @page
444  * until it is released.
445  *
446  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447  * is returned.
448  */
449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450 {
451 	struct mem_cgroup *memcg;
452 
453 	memcg = page->mem_cgroup;
454 
455 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 		memcg = root_mem_cgroup;
457 
458 	return &memcg->css;
459 }
460 
461 /**
462  * page_cgroup_ino - return inode number of the memcg a page is charged to
463  * @page: the page
464  *
465  * Look up the closest online ancestor of the memory cgroup @page is charged to
466  * and return its inode number or 0 if @page is not charged to any cgroup. It
467  * is safe to call this function without holding a reference to @page.
468  *
469  * Note, this function is inherently racy, because there is nothing to prevent
470  * the cgroup inode from getting torn down and potentially reallocated a moment
471  * after page_cgroup_ino() returns, so it only should be used by callers that
472  * do not care (such as procfs interfaces).
473  */
474 ino_t page_cgroup_ino(struct page *page)
475 {
476 	struct mem_cgroup *memcg;
477 	unsigned long ino = 0;
478 
479 	rcu_read_lock();
480 	if (PageSlab(page) && !PageTail(page))
481 		memcg = memcg_from_slab_page(page);
482 	else
483 		memcg = READ_ONCE(page->mem_cgroup);
484 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 		memcg = parent_mem_cgroup(memcg);
486 	if (memcg)
487 		ino = cgroup_ino(memcg->css.cgroup);
488 	rcu_read_unlock();
489 	return ino;
490 }
491 
492 static struct mem_cgroup_per_node *
493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
494 {
495 	int nid = page_to_nid(page);
496 
497 	return memcg->nodeinfo[nid];
498 }
499 
500 static struct mem_cgroup_tree_per_node *
501 soft_limit_tree_node(int nid)
502 {
503 	return soft_limit_tree.rb_tree_per_node[nid];
504 }
505 
506 static struct mem_cgroup_tree_per_node *
507 soft_limit_tree_from_page(struct page *page)
508 {
509 	int nid = page_to_nid(page);
510 
511 	return soft_limit_tree.rb_tree_per_node[nid];
512 }
513 
514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 					 struct mem_cgroup_tree_per_node *mctz,
516 					 unsigned long new_usage_in_excess)
517 {
518 	struct rb_node **p = &mctz->rb_root.rb_node;
519 	struct rb_node *parent = NULL;
520 	struct mem_cgroup_per_node *mz_node;
521 	bool rightmost = true;
522 
523 	if (mz->on_tree)
524 		return;
525 
526 	mz->usage_in_excess = new_usage_in_excess;
527 	if (!mz->usage_in_excess)
528 		return;
529 	while (*p) {
530 		parent = *p;
531 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532 					tree_node);
533 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
534 			p = &(*p)->rb_left;
535 			rightmost = false;
536 		}
537 
538 		/*
539 		 * We can't avoid mem cgroups that are over their soft
540 		 * limit by the same amount
541 		 */
542 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 			p = &(*p)->rb_right;
544 	}
545 
546 	if (rightmost)
547 		mctz->rb_rightmost = &mz->tree_node;
548 
549 	rb_link_node(&mz->tree_node, parent, p);
550 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 	mz->on_tree = true;
552 }
553 
554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 					 struct mem_cgroup_tree_per_node *mctz)
556 {
557 	if (!mz->on_tree)
558 		return;
559 
560 	if (&mz->tree_node == mctz->rb_rightmost)
561 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
562 
563 	rb_erase(&mz->tree_node, &mctz->rb_root);
564 	mz->on_tree = false;
565 }
566 
567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 				       struct mem_cgroup_tree_per_node *mctz)
569 {
570 	unsigned long flags;
571 
572 	spin_lock_irqsave(&mctz->lock, flags);
573 	__mem_cgroup_remove_exceeded(mz, mctz);
574 	spin_unlock_irqrestore(&mctz->lock, flags);
575 }
576 
577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578 {
579 	unsigned long nr_pages = page_counter_read(&memcg->memory);
580 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 	unsigned long excess = 0;
582 
583 	if (nr_pages > soft_limit)
584 		excess = nr_pages - soft_limit;
585 
586 	return excess;
587 }
588 
589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590 {
591 	unsigned long excess;
592 	struct mem_cgroup_per_node *mz;
593 	struct mem_cgroup_tree_per_node *mctz;
594 
595 	mctz = soft_limit_tree_from_page(page);
596 	if (!mctz)
597 		return;
598 	/*
599 	 * Necessary to update all ancestors when hierarchy is used.
600 	 * because their event counter is not touched.
601 	 */
602 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603 		mz = mem_cgroup_page_nodeinfo(memcg, page);
604 		excess = soft_limit_excess(memcg);
605 		/*
606 		 * We have to update the tree if mz is on RB-tree or
607 		 * mem is over its softlimit.
608 		 */
609 		if (excess || mz->on_tree) {
610 			unsigned long flags;
611 
612 			spin_lock_irqsave(&mctz->lock, flags);
613 			/* if on-tree, remove it */
614 			if (mz->on_tree)
615 				__mem_cgroup_remove_exceeded(mz, mctz);
616 			/*
617 			 * Insert again. mz->usage_in_excess will be updated.
618 			 * If excess is 0, no tree ops.
619 			 */
620 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
621 			spin_unlock_irqrestore(&mctz->lock, flags);
622 		}
623 	}
624 }
625 
626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627 {
628 	struct mem_cgroup_tree_per_node *mctz;
629 	struct mem_cgroup_per_node *mz;
630 	int nid;
631 
632 	for_each_node(nid) {
633 		mz = mem_cgroup_nodeinfo(memcg, nid);
634 		mctz = soft_limit_tree_node(nid);
635 		if (mctz)
636 			mem_cgroup_remove_exceeded(mz, mctz);
637 	}
638 }
639 
640 static struct mem_cgroup_per_node *
641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
642 {
643 	struct mem_cgroup_per_node *mz;
644 
645 retry:
646 	mz = NULL;
647 	if (!mctz->rb_rightmost)
648 		goto done;		/* Nothing to reclaim from */
649 
650 	mz = rb_entry(mctz->rb_rightmost,
651 		      struct mem_cgroup_per_node, tree_node);
652 	/*
653 	 * Remove the node now but someone else can add it back,
654 	 * we will to add it back at the end of reclaim to its correct
655 	 * position in the tree.
656 	 */
657 	__mem_cgroup_remove_exceeded(mz, mctz);
658 	if (!soft_limit_excess(mz->memcg) ||
659 	    !css_tryget(&mz->memcg->css))
660 		goto retry;
661 done:
662 	return mz;
663 }
664 
665 static struct mem_cgroup_per_node *
666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
667 {
668 	struct mem_cgroup_per_node *mz;
669 
670 	spin_lock_irq(&mctz->lock);
671 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
672 	spin_unlock_irq(&mctz->lock);
673 	return mz;
674 }
675 
676 /**
677  * __mod_memcg_state - update cgroup memory statistics
678  * @memcg: the memory cgroup
679  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680  * @val: delta to add to the counter, can be negative
681  */
682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683 {
684 	long x;
685 
686 	if (mem_cgroup_disabled())
687 		return;
688 
689 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 		struct mem_cgroup *mi;
692 
693 		/*
694 		 * Batch local counters to keep them in sync with
695 		 * the hierarchical ones.
696 		 */
697 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 			atomic_long_add(x, &mi->vmstats[idx]);
700 		x = 0;
701 	}
702 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703 }
704 
705 static struct mem_cgroup_per_node *
706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707 {
708 	struct mem_cgroup *parent;
709 
710 	parent = parent_mem_cgroup(pn->memcg);
711 	if (!parent)
712 		return NULL;
713 	return mem_cgroup_nodeinfo(parent, nid);
714 }
715 
716 /**
717  * __mod_lruvec_state - update lruvec memory statistics
718  * @lruvec: the lruvec
719  * @idx: the stat item
720  * @val: delta to add to the counter, can be negative
721  *
722  * The lruvec is the intersection of the NUMA node and a cgroup. This
723  * function updates the all three counters that are affected by a
724  * change of state at this level: per-node, per-cgroup, per-lruvec.
725  */
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 			int val)
728 {
729 	pg_data_t *pgdat = lruvec_pgdat(lruvec);
730 	struct mem_cgroup_per_node *pn;
731 	struct mem_cgroup *memcg;
732 	long x;
733 
734 	/* Update node */
735 	__mod_node_page_state(pgdat, idx, val);
736 
737 	if (mem_cgroup_disabled())
738 		return;
739 
740 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741 	memcg = pn->memcg;
742 
743 	/* Update memcg */
744 	__mod_memcg_state(memcg, idx, val);
745 
746 	/* Update lruvec */
747 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748 
749 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 		struct mem_cgroup_per_node *pi;
752 
753 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 			atomic_long_add(x, &pi->lruvec_stat[idx]);
755 		x = 0;
756 	}
757 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758 }
759 
760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761 {
762 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 	struct mem_cgroup *memcg;
764 	struct lruvec *lruvec;
765 
766 	rcu_read_lock();
767 	memcg = mem_cgroup_from_obj(p);
768 
769 	/* Untracked pages have no memcg, no lruvec. Update only the node */
770 	if (!memcg || memcg == root_mem_cgroup) {
771 		__mod_node_page_state(pgdat, idx, val);
772 	} else {
773 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 		__mod_lruvec_state(lruvec, idx, val);
775 	}
776 	rcu_read_unlock();
777 }
778 
779 void mod_memcg_obj_state(void *p, int idx, int val)
780 {
781 	struct mem_cgroup *memcg;
782 
783 	rcu_read_lock();
784 	memcg = mem_cgroup_from_obj(p);
785 	if (memcg)
786 		mod_memcg_state(memcg, idx, val);
787 	rcu_read_unlock();
788 }
789 
790 /**
791  * __count_memcg_events - account VM events in a cgroup
792  * @memcg: the memory cgroup
793  * @idx: the event item
794  * @count: the number of events that occured
795  */
796 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
797 			  unsigned long count)
798 {
799 	unsigned long x;
800 
801 	if (mem_cgroup_disabled())
802 		return;
803 
804 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
805 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
806 		struct mem_cgroup *mi;
807 
808 		/*
809 		 * Batch local counters to keep them in sync with
810 		 * the hierarchical ones.
811 		 */
812 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
813 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
814 			atomic_long_add(x, &mi->vmevents[idx]);
815 		x = 0;
816 	}
817 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
818 }
819 
820 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
821 {
822 	return atomic_long_read(&memcg->vmevents[event]);
823 }
824 
825 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
826 {
827 	long x = 0;
828 	int cpu;
829 
830 	for_each_possible_cpu(cpu)
831 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
832 	return x;
833 }
834 
835 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
836 					 struct page *page,
837 					 int nr_pages)
838 {
839 	/* pagein of a big page is an event. So, ignore page size */
840 	if (nr_pages > 0)
841 		__count_memcg_events(memcg, PGPGIN, 1);
842 	else {
843 		__count_memcg_events(memcg, PGPGOUT, 1);
844 		nr_pages = -nr_pages; /* for event */
845 	}
846 
847 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
848 }
849 
850 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
851 				       enum mem_cgroup_events_target target)
852 {
853 	unsigned long val, next;
854 
855 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
856 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
857 	/* from time_after() in jiffies.h */
858 	if ((long)(next - val) < 0) {
859 		switch (target) {
860 		case MEM_CGROUP_TARGET_THRESH:
861 			next = val + THRESHOLDS_EVENTS_TARGET;
862 			break;
863 		case MEM_CGROUP_TARGET_SOFTLIMIT:
864 			next = val + SOFTLIMIT_EVENTS_TARGET;
865 			break;
866 		default:
867 			break;
868 		}
869 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
870 		return true;
871 	}
872 	return false;
873 }
874 
875 /*
876  * Check events in order.
877  *
878  */
879 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
880 {
881 	/* threshold event is triggered in finer grain than soft limit */
882 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
883 						MEM_CGROUP_TARGET_THRESH))) {
884 		bool do_softlimit;
885 
886 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
887 						MEM_CGROUP_TARGET_SOFTLIMIT);
888 		mem_cgroup_threshold(memcg);
889 		if (unlikely(do_softlimit))
890 			mem_cgroup_update_tree(memcg, page);
891 	}
892 }
893 
894 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
895 {
896 	/*
897 	 * mm_update_next_owner() may clear mm->owner to NULL
898 	 * if it races with swapoff, page migration, etc.
899 	 * So this can be called with p == NULL.
900 	 */
901 	if (unlikely(!p))
902 		return NULL;
903 
904 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
905 }
906 EXPORT_SYMBOL(mem_cgroup_from_task);
907 
908 /**
909  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
910  * @mm: mm from which memcg should be extracted. It can be NULL.
911  *
912  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
913  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
914  * returned.
915  */
916 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
917 {
918 	struct mem_cgroup *memcg;
919 
920 	if (mem_cgroup_disabled())
921 		return NULL;
922 
923 	rcu_read_lock();
924 	do {
925 		/*
926 		 * Page cache insertions can happen withou an
927 		 * actual mm context, e.g. during disk probing
928 		 * on boot, loopback IO, acct() writes etc.
929 		 */
930 		if (unlikely(!mm))
931 			memcg = root_mem_cgroup;
932 		else {
933 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
934 			if (unlikely(!memcg))
935 				memcg = root_mem_cgroup;
936 		}
937 	} while (!css_tryget(&memcg->css));
938 	rcu_read_unlock();
939 	return memcg;
940 }
941 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
942 
943 /**
944  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
945  * @page: page from which memcg should be extracted.
946  *
947  * Obtain a reference on page->memcg and returns it if successful. Otherwise
948  * root_mem_cgroup is returned.
949  */
950 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
951 {
952 	struct mem_cgroup *memcg = page->mem_cgroup;
953 
954 	if (mem_cgroup_disabled())
955 		return NULL;
956 
957 	rcu_read_lock();
958 	/* Page should not get uncharged and freed memcg under us. */
959 	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
960 		memcg = root_mem_cgroup;
961 	rcu_read_unlock();
962 	return memcg;
963 }
964 EXPORT_SYMBOL(get_mem_cgroup_from_page);
965 
966 /**
967  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
968  */
969 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
970 {
971 	if (unlikely(current->active_memcg)) {
972 		struct mem_cgroup *memcg;
973 
974 		rcu_read_lock();
975 		/* current->active_memcg must hold a ref. */
976 		if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
977 			memcg = root_mem_cgroup;
978 		else
979 			memcg = current->active_memcg;
980 		rcu_read_unlock();
981 		return memcg;
982 	}
983 	return get_mem_cgroup_from_mm(current->mm);
984 }
985 
986 /**
987  * mem_cgroup_iter - iterate over memory cgroup hierarchy
988  * @root: hierarchy root
989  * @prev: previously returned memcg, NULL on first invocation
990  * @reclaim: cookie for shared reclaim walks, NULL for full walks
991  *
992  * Returns references to children of the hierarchy below @root, or
993  * @root itself, or %NULL after a full round-trip.
994  *
995  * Caller must pass the return value in @prev on subsequent
996  * invocations for reference counting, or use mem_cgroup_iter_break()
997  * to cancel a hierarchy walk before the round-trip is complete.
998  *
999  * Reclaimers can specify a node and a priority level in @reclaim to
1000  * divide up the memcgs in the hierarchy among all concurrent
1001  * reclaimers operating on the same node and priority.
1002  */
1003 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1004 				   struct mem_cgroup *prev,
1005 				   struct mem_cgroup_reclaim_cookie *reclaim)
1006 {
1007 	struct mem_cgroup_reclaim_iter *iter;
1008 	struct cgroup_subsys_state *css = NULL;
1009 	struct mem_cgroup *memcg = NULL;
1010 	struct mem_cgroup *pos = NULL;
1011 
1012 	if (mem_cgroup_disabled())
1013 		return NULL;
1014 
1015 	if (!root)
1016 		root = root_mem_cgroup;
1017 
1018 	if (prev && !reclaim)
1019 		pos = prev;
1020 
1021 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1022 		if (prev)
1023 			goto out;
1024 		return root;
1025 	}
1026 
1027 	rcu_read_lock();
1028 
1029 	if (reclaim) {
1030 		struct mem_cgroup_per_node *mz;
1031 
1032 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1033 		iter = &mz->iter;
1034 
1035 		if (prev && reclaim->generation != iter->generation)
1036 			goto out_unlock;
1037 
1038 		while (1) {
1039 			pos = READ_ONCE(iter->position);
1040 			if (!pos || css_tryget(&pos->css))
1041 				break;
1042 			/*
1043 			 * css reference reached zero, so iter->position will
1044 			 * be cleared by ->css_released. However, we should not
1045 			 * rely on this happening soon, because ->css_released
1046 			 * is called from a work queue, and by busy-waiting we
1047 			 * might block it. So we clear iter->position right
1048 			 * away.
1049 			 */
1050 			(void)cmpxchg(&iter->position, pos, NULL);
1051 		}
1052 	}
1053 
1054 	if (pos)
1055 		css = &pos->css;
1056 
1057 	for (;;) {
1058 		css = css_next_descendant_pre(css, &root->css);
1059 		if (!css) {
1060 			/*
1061 			 * Reclaimers share the hierarchy walk, and a
1062 			 * new one might jump in right at the end of
1063 			 * the hierarchy - make sure they see at least
1064 			 * one group and restart from the beginning.
1065 			 */
1066 			if (!prev)
1067 				continue;
1068 			break;
1069 		}
1070 
1071 		/*
1072 		 * Verify the css and acquire a reference.  The root
1073 		 * is provided by the caller, so we know it's alive
1074 		 * and kicking, and don't take an extra reference.
1075 		 */
1076 		memcg = mem_cgroup_from_css(css);
1077 
1078 		if (css == &root->css)
1079 			break;
1080 
1081 		if (css_tryget(css))
1082 			break;
1083 
1084 		memcg = NULL;
1085 	}
1086 
1087 	if (reclaim) {
1088 		/*
1089 		 * The position could have already been updated by a competing
1090 		 * thread, so check that the value hasn't changed since we read
1091 		 * it to avoid reclaiming from the same cgroup twice.
1092 		 */
1093 		(void)cmpxchg(&iter->position, pos, memcg);
1094 
1095 		if (pos)
1096 			css_put(&pos->css);
1097 
1098 		if (!memcg)
1099 			iter->generation++;
1100 		else if (!prev)
1101 			reclaim->generation = iter->generation;
1102 	}
1103 
1104 out_unlock:
1105 	rcu_read_unlock();
1106 out:
1107 	if (prev && prev != root)
1108 		css_put(&prev->css);
1109 
1110 	return memcg;
1111 }
1112 
1113 /**
1114  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1115  * @root: hierarchy root
1116  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1117  */
1118 void mem_cgroup_iter_break(struct mem_cgroup *root,
1119 			   struct mem_cgroup *prev)
1120 {
1121 	if (!root)
1122 		root = root_mem_cgroup;
1123 	if (prev && prev != root)
1124 		css_put(&prev->css);
1125 }
1126 
1127 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1128 					struct mem_cgroup *dead_memcg)
1129 {
1130 	struct mem_cgroup_reclaim_iter *iter;
1131 	struct mem_cgroup_per_node *mz;
1132 	int nid;
1133 
1134 	for_each_node(nid) {
1135 		mz = mem_cgroup_nodeinfo(from, nid);
1136 		iter = &mz->iter;
1137 		cmpxchg(&iter->position, dead_memcg, NULL);
1138 	}
1139 }
1140 
1141 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1142 {
1143 	struct mem_cgroup *memcg = dead_memcg;
1144 	struct mem_cgroup *last;
1145 
1146 	do {
1147 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1148 		last = memcg;
1149 	} while ((memcg = parent_mem_cgroup(memcg)));
1150 
1151 	/*
1152 	 * When cgruop1 non-hierarchy mode is used,
1153 	 * parent_mem_cgroup() does not walk all the way up to the
1154 	 * cgroup root (root_mem_cgroup). So we have to handle
1155 	 * dead_memcg from cgroup root separately.
1156 	 */
1157 	if (last != root_mem_cgroup)
1158 		__invalidate_reclaim_iterators(root_mem_cgroup,
1159 						dead_memcg);
1160 }
1161 
1162 /**
1163  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1164  * @memcg: hierarchy root
1165  * @fn: function to call for each task
1166  * @arg: argument passed to @fn
1167  *
1168  * This function iterates over tasks attached to @memcg or to any of its
1169  * descendants and calls @fn for each task. If @fn returns a non-zero
1170  * value, the function breaks the iteration loop and returns the value.
1171  * Otherwise, it will iterate over all tasks and return 0.
1172  *
1173  * This function must not be called for the root memory cgroup.
1174  */
1175 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1176 			  int (*fn)(struct task_struct *, void *), void *arg)
1177 {
1178 	struct mem_cgroup *iter;
1179 	int ret = 0;
1180 
1181 	BUG_ON(memcg == root_mem_cgroup);
1182 
1183 	for_each_mem_cgroup_tree(iter, memcg) {
1184 		struct css_task_iter it;
1185 		struct task_struct *task;
1186 
1187 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1188 		while (!ret && (task = css_task_iter_next(&it)))
1189 			ret = fn(task, arg);
1190 		css_task_iter_end(&it);
1191 		if (ret) {
1192 			mem_cgroup_iter_break(memcg, iter);
1193 			break;
1194 		}
1195 	}
1196 	return ret;
1197 }
1198 
1199 /**
1200  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1201  * @page: the page
1202  * @pgdat: pgdat of the page
1203  *
1204  * This function relies on page->mem_cgroup being stable - see the
1205  * access rules in commit_charge().
1206  */
1207 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1208 {
1209 	struct mem_cgroup_per_node *mz;
1210 	struct mem_cgroup *memcg;
1211 	struct lruvec *lruvec;
1212 
1213 	if (mem_cgroup_disabled()) {
1214 		lruvec = &pgdat->__lruvec;
1215 		goto out;
1216 	}
1217 
1218 	memcg = page->mem_cgroup;
1219 	/*
1220 	 * Swapcache readahead pages are added to the LRU - and
1221 	 * possibly migrated - before they are charged.
1222 	 */
1223 	if (!memcg)
1224 		memcg = root_mem_cgroup;
1225 
1226 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1227 	lruvec = &mz->lruvec;
1228 out:
1229 	/*
1230 	 * Since a node can be onlined after the mem_cgroup was created,
1231 	 * we have to be prepared to initialize lruvec->zone here;
1232 	 * and if offlined then reonlined, we need to reinitialize it.
1233 	 */
1234 	if (unlikely(lruvec->pgdat != pgdat))
1235 		lruvec->pgdat = pgdat;
1236 	return lruvec;
1237 }
1238 
1239 /**
1240  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1241  * @lruvec: mem_cgroup per zone lru vector
1242  * @lru: index of lru list the page is sitting on
1243  * @zid: zone id of the accounted pages
1244  * @nr_pages: positive when adding or negative when removing
1245  *
1246  * This function must be called under lru_lock, just before a page is added
1247  * to or just after a page is removed from an lru list (that ordering being
1248  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1249  */
1250 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1251 				int zid, int nr_pages)
1252 {
1253 	struct mem_cgroup_per_node *mz;
1254 	unsigned long *lru_size;
1255 	long size;
1256 
1257 	if (mem_cgroup_disabled())
1258 		return;
1259 
1260 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1261 	lru_size = &mz->lru_zone_size[zid][lru];
1262 
1263 	if (nr_pages < 0)
1264 		*lru_size += nr_pages;
1265 
1266 	size = *lru_size;
1267 	if (WARN_ONCE(size < 0,
1268 		"%s(%p, %d, %d): lru_size %ld\n",
1269 		__func__, lruvec, lru, nr_pages, size)) {
1270 		VM_BUG_ON(1);
1271 		*lru_size = 0;
1272 	}
1273 
1274 	if (nr_pages > 0)
1275 		*lru_size += nr_pages;
1276 }
1277 
1278 /**
1279  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1280  * @memcg: the memory cgroup
1281  *
1282  * Returns the maximum amount of memory @mem can be charged with, in
1283  * pages.
1284  */
1285 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1286 {
1287 	unsigned long margin = 0;
1288 	unsigned long count;
1289 	unsigned long limit;
1290 
1291 	count = page_counter_read(&memcg->memory);
1292 	limit = READ_ONCE(memcg->memory.max);
1293 	if (count < limit)
1294 		margin = limit - count;
1295 
1296 	if (do_memsw_account()) {
1297 		count = page_counter_read(&memcg->memsw);
1298 		limit = READ_ONCE(memcg->memsw.max);
1299 		if (count < limit)
1300 			margin = min(margin, limit - count);
1301 		else
1302 			margin = 0;
1303 	}
1304 
1305 	return margin;
1306 }
1307 
1308 /*
1309  * A routine for checking "mem" is under move_account() or not.
1310  *
1311  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1312  * moving cgroups. This is for waiting at high-memory pressure
1313  * caused by "move".
1314  */
1315 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1316 {
1317 	struct mem_cgroup *from;
1318 	struct mem_cgroup *to;
1319 	bool ret = false;
1320 	/*
1321 	 * Unlike task_move routines, we access mc.to, mc.from not under
1322 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1323 	 */
1324 	spin_lock(&mc.lock);
1325 	from = mc.from;
1326 	to = mc.to;
1327 	if (!from)
1328 		goto unlock;
1329 
1330 	ret = mem_cgroup_is_descendant(from, memcg) ||
1331 		mem_cgroup_is_descendant(to, memcg);
1332 unlock:
1333 	spin_unlock(&mc.lock);
1334 	return ret;
1335 }
1336 
1337 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1338 {
1339 	if (mc.moving_task && current != mc.moving_task) {
1340 		if (mem_cgroup_under_move(memcg)) {
1341 			DEFINE_WAIT(wait);
1342 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1343 			/* moving charge context might have finished. */
1344 			if (mc.moving_task)
1345 				schedule();
1346 			finish_wait(&mc.waitq, &wait);
1347 			return true;
1348 		}
1349 	}
1350 	return false;
1351 }
1352 
1353 static char *memory_stat_format(struct mem_cgroup *memcg)
1354 {
1355 	struct seq_buf s;
1356 	int i;
1357 
1358 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1359 	if (!s.buffer)
1360 		return NULL;
1361 
1362 	/*
1363 	 * Provide statistics on the state of the memory subsystem as
1364 	 * well as cumulative event counters that show past behavior.
1365 	 *
1366 	 * This list is ordered following a combination of these gradients:
1367 	 * 1) generic big picture -> specifics and details
1368 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1369 	 *
1370 	 * Current memory state:
1371 	 */
1372 
1373 	seq_buf_printf(&s, "anon %llu\n",
1374 		       (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1375 		       PAGE_SIZE);
1376 	seq_buf_printf(&s, "file %llu\n",
1377 		       (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1378 		       PAGE_SIZE);
1379 	seq_buf_printf(&s, "kernel_stack %llu\n",
1380 		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1381 		       1024);
1382 	seq_buf_printf(&s, "slab %llu\n",
1383 		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1384 			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1385 		       PAGE_SIZE);
1386 	seq_buf_printf(&s, "sock %llu\n",
1387 		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1388 		       PAGE_SIZE);
1389 
1390 	seq_buf_printf(&s, "shmem %llu\n",
1391 		       (u64)memcg_page_state(memcg, NR_SHMEM) *
1392 		       PAGE_SIZE);
1393 	seq_buf_printf(&s, "file_mapped %llu\n",
1394 		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1395 		       PAGE_SIZE);
1396 	seq_buf_printf(&s, "file_dirty %llu\n",
1397 		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1398 		       PAGE_SIZE);
1399 	seq_buf_printf(&s, "file_writeback %llu\n",
1400 		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1401 		       PAGE_SIZE);
1402 
1403 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1404 	seq_buf_printf(&s, "anon_thp %llu\n",
1405 		       (u64)memcg_page_state(memcg, NR_ANON_THPS) *
1406 		       HPAGE_PMD_SIZE);
1407 #endif
1408 
1409 	for (i = 0; i < NR_LRU_LISTS; i++)
1410 		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1411 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1412 			       PAGE_SIZE);
1413 
1414 	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1415 		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1416 		       PAGE_SIZE);
1417 	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1418 		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1419 		       PAGE_SIZE);
1420 
1421 	/* Accumulated memory events */
1422 
1423 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1424 		       memcg_events(memcg, PGFAULT));
1425 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1426 		       memcg_events(memcg, PGMAJFAULT));
1427 
1428 	seq_buf_printf(&s, "workingset_refault %lu\n",
1429 		       memcg_page_state(memcg, WORKINGSET_REFAULT));
1430 	seq_buf_printf(&s, "workingset_activate %lu\n",
1431 		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1432 	seq_buf_printf(&s, "workingset_restore %lu\n",
1433 		       memcg_page_state(memcg, WORKINGSET_RESTORE));
1434 	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1435 		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1436 
1437 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1438 		       memcg_events(memcg, PGREFILL));
1439 	seq_buf_printf(&s, "pgscan %lu\n",
1440 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1441 		       memcg_events(memcg, PGSCAN_DIRECT));
1442 	seq_buf_printf(&s, "pgsteal %lu\n",
1443 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1444 		       memcg_events(memcg, PGSTEAL_DIRECT));
1445 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1446 		       memcg_events(memcg, PGACTIVATE));
1447 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1448 		       memcg_events(memcg, PGDEACTIVATE));
1449 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1450 		       memcg_events(memcg, PGLAZYFREE));
1451 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1452 		       memcg_events(memcg, PGLAZYFREED));
1453 
1454 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1455 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1456 		       memcg_events(memcg, THP_FAULT_ALLOC));
1457 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1458 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1459 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1460 
1461 	/* The above should easily fit into one page */
1462 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1463 
1464 	return s.buffer;
1465 }
1466 
1467 #define K(x) ((x) << (PAGE_SHIFT-10))
1468 /**
1469  * mem_cgroup_print_oom_context: Print OOM information relevant to
1470  * memory controller.
1471  * @memcg: The memory cgroup that went over limit
1472  * @p: Task that is going to be killed
1473  *
1474  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1475  * enabled
1476  */
1477 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1478 {
1479 	rcu_read_lock();
1480 
1481 	if (memcg) {
1482 		pr_cont(",oom_memcg=");
1483 		pr_cont_cgroup_path(memcg->css.cgroup);
1484 	} else
1485 		pr_cont(",global_oom");
1486 	if (p) {
1487 		pr_cont(",task_memcg=");
1488 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1489 	}
1490 	rcu_read_unlock();
1491 }
1492 
1493 /**
1494  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1495  * memory controller.
1496  * @memcg: The memory cgroup that went over limit
1497  */
1498 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1499 {
1500 	char *buf;
1501 
1502 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1503 		K((u64)page_counter_read(&memcg->memory)),
1504 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1505 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1506 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1507 			K((u64)page_counter_read(&memcg->swap)),
1508 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1509 	else {
1510 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1511 			K((u64)page_counter_read(&memcg->memsw)),
1512 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1513 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1514 			K((u64)page_counter_read(&memcg->kmem)),
1515 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1516 	}
1517 
1518 	pr_info("Memory cgroup stats for ");
1519 	pr_cont_cgroup_path(memcg->css.cgroup);
1520 	pr_cont(":");
1521 	buf = memory_stat_format(memcg);
1522 	if (!buf)
1523 		return;
1524 	pr_info("%s", buf);
1525 	kfree(buf);
1526 }
1527 
1528 /*
1529  * Return the memory (and swap, if configured) limit for a memcg.
1530  */
1531 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1532 {
1533 	unsigned long max;
1534 
1535 	max = READ_ONCE(memcg->memory.max);
1536 	if (mem_cgroup_swappiness(memcg)) {
1537 		unsigned long memsw_max;
1538 		unsigned long swap_max;
1539 
1540 		memsw_max = memcg->memsw.max;
1541 		swap_max = READ_ONCE(memcg->swap.max);
1542 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1543 		max = min(max + swap_max, memsw_max);
1544 	}
1545 	return max;
1546 }
1547 
1548 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1549 {
1550 	return page_counter_read(&memcg->memory);
1551 }
1552 
1553 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1554 				     int order)
1555 {
1556 	struct oom_control oc = {
1557 		.zonelist = NULL,
1558 		.nodemask = NULL,
1559 		.memcg = memcg,
1560 		.gfp_mask = gfp_mask,
1561 		.order = order,
1562 	};
1563 	bool ret;
1564 
1565 	if (mutex_lock_killable(&oom_lock))
1566 		return true;
1567 	/*
1568 	 * A few threads which were not waiting at mutex_lock_killable() can
1569 	 * fail to bail out. Therefore, check again after holding oom_lock.
1570 	 */
1571 	ret = should_force_charge() || out_of_memory(&oc);
1572 	mutex_unlock(&oom_lock);
1573 	return ret;
1574 }
1575 
1576 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1577 				   pg_data_t *pgdat,
1578 				   gfp_t gfp_mask,
1579 				   unsigned long *total_scanned)
1580 {
1581 	struct mem_cgroup *victim = NULL;
1582 	int total = 0;
1583 	int loop = 0;
1584 	unsigned long excess;
1585 	unsigned long nr_scanned;
1586 	struct mem_cgroup_reclaim_cookie reclaim = {
1587 		.pgdat = pgdat,
1588 	};
1589 
1590 	excess = soft_limit_excess(root_memcg);
1591 
1592 	while (1) {
1593 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1594 		if (!victim) {
1595 			loop++;
1596 			if (loop >= 2) {
1597 				/*
1598 				 * If we have not been able to reclaim
1599 				 * anything, it might because there are
1600 				 * no reclaimable pages under this hierarchy
1601 				 */
1602 				if (!total)
1603 					break;
1604 				/*
1605 				 * We want to do more targeted reclaim.
1606 				 * excess >> 2 is not to excessive so as to
1607 				 * reclaim too much, nor too less that we keep
1608 				 * coming back to reclaim from this cgroup
1609 				 */
1610 				if (total >= (excess >> 2) ||
1611 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1612 					break;
1613 			}
1614 			continue;
1615 		}
1616 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1617 					pgdat, &nr_scanned);
1618 		*total_scanned += nr_scanned;
1619 		if (!soft_limit_excess(root_memcg))
1620 			break;
1621 	}
1622 	mem_cgroup_iter_break(root_memcg, victim);
1623 	return total;
1624 }
1625 
1626 #ifdef CONFIG_LOCKDEP
1627 static struct lockdep_map memcg_oom_lock_dep_map = {
1628 	.name = "memcg_oom_lock",
1629 };
1630 #endif
1631 
1632 static DEFINE_SPINLOCK(memcg_oom_lock);
1633 
1634 /*
1635  * Check OOM-Killer is already running under our hierarchy.
1636  * If someone is running, return false.
1637  */
1638 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1639 {
1640 	struct mem_cgroup *iter, *failed = NULL;
1641 
1642 	spin_lock(&memcg_oom_lock);
1643 
1644 	for_each_mem_cgroup_tree(iter, memcg) {
1645 		if (iter->oom_lock) {
1646 			/*
1647 			 * this subtree of our hierarchy is already locked
1648 			 * so we cannot give a lock.
1649 			 */
1650 			failed = iter;
1651 			mem_cgroup_iter_break(memcg, iter);
1652 			break;
1653 		} else
1654 			iter->oom_lock = true;
1655 	}
1656 
1657 	if (failed) {
1658 		/*
1659 		 * OK, we failed to lock the whole subtree so we have
1660 		 * to clean up what we set up to the failing subtree
1661 		 */
1662 		for_each_mem_cgroup_tree(iter, memcg) {
1663 			if (iter == failed) {
1664 				mem_cgroup_iter_break(memcg, iter);
1665 				break;
1666 			}
1667 			iter->oom_lock = false;
1668 		}
1669 	} else
1670 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1671 
1672 	spin_unlock(&memcg_oom_lock);
1673 
1674 	return !failed;
1675 }
1676 
1677 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1678 {
1679 	struct mem_cgroup *iter;
1680 
1681 	spin_lock(&memcg_oom_lock);
1682 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1683 	for_each_mem_cgroup_tree(iter, memcg)
1684 		iter->oom_lock = false;
1685 	spin_unlock(&memcg_oom_lock);
1686 }
1687 
1688 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1689 {
1690 	struct mem_cgroup *iter;
1691 
1692 	spin_lock(&memcg_oom_lock);
1693 	for_each_mem_cgroup_tree(iter, memcg)
1694 		iter->under_oom++;
1695 	spin_unlock(&memcg_oom_lock);
1696 }
1697 
1698 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1699 {
1700 	struct mem_cgroup *iter;
1701 
1702 	/*
1703 	 * When a new child is created while the hierarchy is under oom,
1704 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1705 	 */
1706 	spin_lock(&memcg_oom_lock);
1707 	for_each_mem_cgroup_tree(iter, memcg)
1708 		if (iter->under_oom > 0)
1709 			iter->under_oom--;
1710 	spin_unlock(&memcg_oom_lock);
1711 }
1712 
1713 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1714 
1715 struct oom_wait_info {
1716 	struct mem_cgroup *memcg;
1717 	wait_queue_entry_t	wait;
1718 };
1719 
1720 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1721 	unsigned mode, int sync, void *arg)
1722 {
1723 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1724 	struct mem_cgroup *oom_wait_memcg;
1725 	struct oom_wait_info *oom_wait_info;
1726 
1727 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1728 	oom_wait_memcg = oom_wait_info->memcg;
1729 
1730 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1731 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1732 		return 0;
1733 	return autoremove_wake_function(wait, mode, sync, arg);
1734 }
1735 
1736 static void memcg_oom_recover(struct mem_cgroup *memcg)
1737 {
1738 	/*
1739 	 * For the following lockless ->under_oom test, the only required
1740 	 * guarantee is that it must see the state asserted by an OOM when
1741 	 * this function is called as a result of userland actions
1742 	 * triggered by the notification of the OOM.  This is trivially
1743 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1744 	 * triggering notification.
1745 	 */
1746 	if (memcg && memcg->under_oom)
1747 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1748 }
1749 
1750 enum oom_status {
1751 	OOM_SUCCESS,
1752 	OOM_FAILED,
1753 	OOM_ASYNC,
1754 	OOM_SKIPPED
1755 };
1756 
1757 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1758 {
1759 	enum oom_status ret;
1760 	bool locked;
1761 
1762 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1763 		return OOM_SKIPPED;
1764 
1765 	memcg_memory_event(memcg, MEMCG_OOM);
1766 
1767 	/*
1768 	 * We are in the middle of the charge context here, so we
1769 	 * don't want to block when potentially sitting on a callstack
1770 	 * that holds all kinds of filesystem and mm locks.
1771 	 *
1772 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1773 	 * handling until the charge can succeed; remember the context and put
1774 	 * the task to sleep at the end of the page fault when all locks are
1775 	 * released.
1776 	 *
1777 	 * On the other hand, in-kernel OOM killer allows for an async victim
1778 	 * memory reclaim (oom_reaper) and that means that we are not solely
1779 	 * relying on the oom victim to make a forward progress and we can
1780 	 * invoke the oom killer here.
1781 	 *
1782 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1783 	 * victim and then we have to bail out from the charge path.
1784 	 */
1785 	if (memcg->oom_kill_disable) {
1786 		if (!current->in_user_fault)
1787 			return OOM_SKIPPED;
1788 		css_get(&memcg->css);
1789 		current->memcg_in_oom = memcg;
1790 		current->memcg_oom_gfp_mask = mask;
1791 		current->memcg_oom_order = order;
1792 
1793 		return OOM_ASYNC;
1794 	}
1795 
1796 	mem_cgroup_mark_under_oom(memcg);
1797 
1798 	locked = mem_cgroup_oom_trylock(memcg);
1799 
1800 	if (locked)
1801 		mem_cgroup_oom_notify(memcg);
1802 
1803 	mem_cgroup_unmark_under_oom(memcg);
1804 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1805 		ret = OOM_SUCCESS;
1806 	else
1807 		ret = OOM_FAILED;
1808 
1809 	if (locked)
1810 		mem_cgroup_oom_unlock(memcg);
1811 
1812 	return ret;
1813 }
1814 
1815 /**
1816  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1817  * @handle: actually kill/wait or just clean up the OOM state
1818  *
1819  * This has to be called at the end of a page fault if the memcg OOM
1820  * handler was enabled.
1821  *
1822  * Memcg supports userspace OOM handling where failed allocations must
1823  * sleep on a waitqueue until the userspace task resolves the
1824  * situation.  Sleeping directly in the charge context with all kinds
1825  * of locks held is not a good idea, instead we remember an OOM state
1826  * in the task and mem_cgroup_oom_synchronize() has to be called at
1827  * the end of the page fault to complete the OOM handling.
1828  *
1829  * Returns %true if an ongoing memcg OOM situation was detected and
1830  * completed, %false otherwise.
1831  */
1832 bool mem_cgroup_oom_synchronize(bool handle)
1833 {
1834 	struct mem_cgroup *memcg = current->memcg_in_oom;
1835 	struct oom_wait_info owait;
1836 	bool locked;
1837 
1838 	/* OOM is global, do not handle */
1839 	if (!memcg)
1840 		return false;
1841 
1842 	if (!handle)
1843 		goto cleanup;
1844 
1845 	owait.memcg = memcg;
1846 	owait.wait.flags = 0;
1847 	owait.wait.func = memcg_oom_wake_function;
1848 	owait.wait.private = current;
1849 	INIT_LIST_HEAD(&owait.wait.entry);
1850 
1851 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1852 	mem_cgroup_mark_under_oom(memcg);
1853 
1854 	locked = mem_cgroup_oom_trylock(memcg);
1855 
1856 	if (locked)
1857 		mem_cgroup_oom_notify(memcg);
1858 
1859 	if (locked && !memcg->oom_kill_disable) {
1860 		mem_cgroup_unmark_under_oom(memcg);
1861 		finish_wait(&memcg_oom_waitq, &owait.wait);
1862 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1863 					 current->memcg_oom_order);
1864 	} else {
1865 		schedule();
1866 		mem_cgroup_unmark_under_oom(memcg);
1867 		finish_wait(&memcg_oom_waitq, &owait.wait);
1868 	}
1869 
1870 	if (locked) {
1871 		mem_cgroup_oom_unlock(memcg);
1872 		/*
1873 		 * There is no guarantee that an OOM-lock contender
1874 		 * sees the wakeups triggered by the OOM kill
1875 		 * uncharges.  Wake any sleepers explicitely.
1876 		 */
1877 		memcg_oom_recover(memcg);
1878 	}
1879 cleanup:
1880 	current->memcg_in_oom = NULL;
1881 	css_put(&memcg->css);
1882 	return true;
1883 }
1884 
1885 /**
1886  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1887  * @victim: task to be killed by the OOM killer
1888  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1889  *
1890  * Returns a pointer to a memory cgroup, which has to be cleaned up
1891  * by killing all belonging OOM-killable tasks.
1892  *
1893  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1894  */
1895 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1896 					    struct mem_cgroup *oom_domain)
1897 {
1898 	struct mem_cgroup *oom_group = NULL;
1899 	struct mem_cgroup *memcg;
1900 
1901 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1902 		return NULL;
1903 
1904 	if (!oom_domain)
1905 		oom_domain = root_mem_cgroup;
1906 
1907 	rcu_read_lock();
1908 
1909 	memcg = mem_cgroup_from_task(victim);
1910 	if (memcg == root_mem_cgroup)
1911 		goto out;
1912 
1913 	/*
1914 	 * If the victim task has been asynchronously moved to a different
1915 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1916 	 * In this case it's better to ignore memory.group.oom.
1917 	 */
1918 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1919 		goto out;
1920 
1921 	/*
1922 	 * Traverse the memory cgroup hierarchy from the victim task's
1923 	 * cgroup up to the OOMing cgroup (or root) to find the
1924 	 * highest-level memory cgroup with oom.group set.
1925 	 */
1926 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1927 		if (memcg->oom_group)
1928 			oom_group = memcg;
1929 
1930 		if (memcg == oom_domain)
1931 			break;
1932 	}
1933 
1934 	if (oom_group)
1935 		css_get(&oom_group->css);
1936 out:
1937 	rcu_read_unlock();
1938 
1939 	return oom_group;
1940 }
1941 
1942 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1943 {
1944 	pr_info("Tasks in ");
1945 	pr_cont_cgroup_path(memcg->css.cgroup);
1946 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1947 }
1948 
1949 /**
1950  * lock_page_memcg - lock a page->mem_cgroup binding
1951  * @page: the page
1952  *
1953  * This function protects unlocked LRU pages from being moved to
1954  * another cgroup.
1955  *
1956  * It ensures lifetime of the returned memcg. Caller is responsible
1957  * for the lifetime of the page; __unlock_page_memcg() is available
1958  * when @page might get freed inside the locked section.
1959  */
1960 struct mem_cgroup *lock_page_memcg(struct page *page)
1961 {
1962 	struct page *head = compound_head(page); /* rmap on tail pages */
1963 	struct mem_cgroup *memcg;
1964 	unsigned long flags;
1965 
1966 	/*
1967 	 * The RCU lock is held throughout the transaction.  The fast
1968 	 * path can get away without acquiring the memcg->move_lock
1969 	 * because page moving starts with an RCU grace period.
1970 	 *
1971 	 * The RCU lock also protects the memcg from being freed when
1972 	 * the page state that is going to change is the only thing
1973 	 * preventing the page itself from being freed. E.g. writeback
1974 	 * doesn't hold a page reference and relies on PG_writeback to
1975 	 * keep off truncation, migration and so forth.
1976          */
1977 	rcu_read_lock();
1978 
1979 	if (mem_cgroup_disabled())
1980 		return NULL;
1981 again:
1982 	memcg = head->mem_cgroup;
1983 	if (unlikely(!memcg))
1984 		return NULL;
1985 
1986 	if (atomic_read(&memcg->moving_account) <= 0)
1987 		return memcg;
1988 
1989 	spin_lock_irqsave(&memcg->move_lock, flags);
1990 	if (memcg != head->mem_cgroup) {
1991 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1992 		goto again;
1993 	}
1994 
1995 	/*
1996 	 * When charge migration first begins, we can have locked and
1997 	 * unlocked page stat updates happening concurrently.  Track
1998 	 * the task who has the lock for unlock_page_memcg().
1999 	 */
2000 	memcg->move_lock_task = current;
2001 	memcg->move_lock_flags = flags;
2002 
2003 	return memcg;
2004 }
2005 EXPORT_SYMBOL(lock_page_memcg);
2006 
2007 /**
2008  * __unlock_page_memcg - unlock and unpin a memcg
2009  * @memcg: the memcg
2010  *
2011  * Unlock and unpin a memcg returned by lock_page_memcg().
2012  */
2013 void __unlock_page_memcg(struct mem_cgroup *memcg)
2014 {
2015 	if (memcg && memcg->move_lock_task == current) {
2016 		unsigned long flags = memcg->move_lock_flags;
2017 
2018 		memcg->move_lock_task = NULL;
2019 		memcg->move_lock_flags = 0;
2020 
2021 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2022 	}
2023 
2024 	rcu_read_unlock();
2025 }
2026 
2027 /**
2028  * unlock_page_memcg - unlock a page->mem_cgroup binding
2029  * @page: the page
2030  */
2031 void unlock_page_memcg(struct page *page)
2032 {
2033 	struct page *head = compound_head(page);
2034 
2035 	__unlock_page_memcg(head->mem_cgroup);
2036 }
2037 EXPORT_SYMBOL(unlock_page_memcg);
2038 
2039 struct memcg_stock_pcp {
2040 	struct mem_cgroup *cached; /* this never be root cgroup */
2041 	unsigned int nr_pages;
2042 	struct work_struct work;
2043 	unsigned long flags;
2044 #define FLUSHING_CACHED_CHARGE	0
2045 };
2046 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2047 static DEFINE_MUTEX(percpu_charge_mutex);
2048 
2049 /**
2050  * consume_stock: Try to consume stocked charge on this cpu.
2051  * @memcg: memcg to consume from.
2052  * @nr_pages: how many pages to charge.
2053  *
2054  * The charges will only happen if @memcg matches the current cpu's memcg
2055  * stock, and at least @nr_pages are available in that stock.  Failure to
2056  * service an allocation will refill the stock.
2057  *
2058  * returns true if successful, false otherwise.
2059  */
2060 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2061 {
2062 	struct memcg_stock_pcp *stock;
2063 	unsigned long flags;
2064 	bool ret = false;
2065 
2066 	if (nr_pages > MEMCG_CHARGE_BATCH)
2067 		return ret;
2068 
2069 	local_irq_save(flags);
2070 
2071 	stock = this_cpu_ptr(&memcg_stock);
2072 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2073 		stock->nr_pages -= nr_pages;
2074 		ret = true;
2075 	}
2076 
2077 	local_irq_restore(flags);
2078 
2079 	return ret;
2080 }
2081 
2082 /*
2083  * Returns stocks cached in percpu and reset cached information.
2084  */
2085 static void drain_stock(struct memcg_stock_pcp *stock)
2086 {
2087 	struct mem_cgroup *old = stock->cached;
2088 
2089 	if (stock->nr_pages) {
2090 		page_counter_uncharge(&old->memory, stock->nr_pages);
2091 		if (do_memsw_account())
2092 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2093 		css_put_many(&old->css, stock->nr_pages);
2094 		stock->nr_pages = 0;
2095 	}
2096 	stock->cached = NULL;
2097 }
2098 
2099 static void drain_local_stock(struct work_struct *dummy)
2100 {
2101 	struct memcg_stock_pcp *stock;
2102 	unsigned long flags;
2103 
2104 	/*
2105 	 * The only protection from memory hotplug vs. drain_stock races is
2106 	 * that we always operate on local CPU stock here with IRQ disabled
2107 	 */
2108 	local_irq_save(flags);
2109 
2110 	stock = this_cpu_ptr(&memcg_stock);
2111 	drain_stock(stock);
2112 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2113 
2114 	local_irq_restore(flags);
2115 }
2116 
2117 /*
2118  * Cache charges(val) to local per_cpu area.
2119  * This will be consumed by consume_stock() function, later.
2120  */
2121 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2122 {
2123 	struct memcg_stock_pcp *stock;
2124 	unsigned long flags;
2125 
2126 	local_irq_save(flags);
2127 
2128 	stock = this_cpu_ptr(&memcg_stock);
2129 	if (stock->cached != memcg) { /* reset if necessary */
2130 		drain_stock(stock);
2131 		stock->cached = memcg;
2132 	}
2133 	stock->nr_pages += nr_pages;
2134 
2135 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2136 		drain_stock(stock);
2137 
2138 	local_irq_restore(flags);
2139 }
2140 
2141 /*
2142  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2143  * of the hierarchy under it.
2144  */
2145 static void drain_all_stock(struct mem_cgroup *root_memcg)
2146 {
2147 	int cpu, curcpu;
2148 
2149 	/* If someone's already draining, avoid adding running more workers. */
2150 	if (!mutex_trylock(&percpu_charge_mutex))
2151 		return;
2152 	/*
2153 	 * Notify other cpus that system-wide "drain" is running
2154 	 * We do not care about races with the cpu hotplug because cpu down
2155 	 * as well as workers from this path always operate on the local
2156 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2157 	 */
2158 	curcpu = get_cpu();
2159 	for_each_online_cpu(cpu) {
2160 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2161 		struct mem_cgroup *memcg;
2162 		bool flush = false;
2163 
2164 		rcu_read_lock();
2165 		memcg = stock->cached;
2166 		if (memcg && stock->nr_pages &&
2167 		    mem_cgroup_is_descendant(memcg, root_memcg))
2168 			flush = true;
2169 		rcu_read_unlock();
2170 
2171 		if (flush &&
2172 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2173 			if (cpu == curcpu)
2174 				drain_local_stock(&stock->work);
2175 			else
2176 				schedule_work_on(cpu, &stock->work);
2177 		}
2178 	}
2179 	put_cpu();
2180 	mutex_unlock(&percpu_charge_mutex);
2181 }
2182 
2183 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2184 {
2185 	struct memcg_stock_pcp *stock;
2186 	struct mem_cgroup *memcg, *mi;
2187 
2188 	stock = &per_cpu(memcg_stock, cpu);
2189 	drain_stock(stock);
2190 
2191 	for_each_mem_cgroup(memcg) {
2192 		int i;
2193 
2194 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2195 			int nid;
2196 			long x;
2197 
2198 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2199 			if (x)
2200 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2201 					atomic_long_add(x, &memcg->vmstats[i]);
2202 
2203 			if (i >= NR_VM_NODE_STAT_ITEMS)
2204 				continue;
2205 
2206 			for_each_node(nid) {
2207 				struct mem_cgroup_per_node *pn;
2208 
2209 				pn = mem_cgroup_nodeinfo(memcg, nid);
2210 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2211 				if (x)
2212 					do {
2213 						atomic_long_add(x, &pn->lruvec_stat[i]);
2214 					} while ((pn = parent_nodeinfo(pn, nid)));
2215 			}
2216 		}
2217 
2218 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2219 			long x;
2220 
2221 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2222 			if (x)
2223 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2224 					atomic_long_add(x, &memcg->vmevents[i]);
2225 		}
2226 	}
2227 
2228 	return 0;
2229 }
2230 
2231 static void reclaim_high(struct mem_cgroup *memcg,
2232 			 unsigned int nr_pages,
2233 			 gfp_t gfp_mask)
2234 {
2235 	do {
2236 		if (page_counter_read(&memcg->memory) <=
2237 		    READ_ONCE(memcg->memory.high))
2238 			continue;
2239 		memcg_memory_event(memcg, MEMCG_HIGH);
2240 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2241 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2242 		 !mem_cgroup_is_root(memcg));
2243 }
2244 
2245 static void high_work_func(struct work_struct *work)
2246 {
2247 	struct mem_cgroup *memcg;
2248 
2249 	memcg = container_of(work, struct mem_cgroup, high_work);
2250 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2251 }
2252 
2253 /*
2254  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2255  * enough to still cause a significant slowdown in most cases, while still
2256  * allowing diagnostics and tracing to proceed without becoming stuck.
2257  */
2258 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2259 
2260 /*
2261  * When calculating the delay, we use these either side of the exponentiation to
2262  * maintain precision and scale to a reasonable number of jiffies (see the table
2263  * below.
2264  *
2265  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2266  *   overage ratio to a delay.
2267  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2268  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2269  *   to produce a reasonable delay curve.
2270  *
2271  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2272  * reasonable delay curve compared to precision-adjusted overage, not
2273  * penalising heavily at first, but still making sure that growth beyond the
2274  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2275  * example, with a high of 100 megabytes:
2276  *
2277  *  +-------+------------------------+
2278  *  | usage | time to allocate in ms |
2279  *  +-------+------------------------+
2280  *  | 100M  |                      0 |
2281  *  | 101M  |                      6 |
2282  *  | 102M  |                     25 |
2283  *  | 103M  |                     57 |
2284  *  | 104M  |                    102 |
2285  *  | 105M  |                    159 |
2286  *  | 106M  |                    230 |
2287  *  | 107M  |                    313 |
2288  *  | 108M  |                    409 |
2289  *  | 109M  |                    518 |
2290  *  | 110M  |                    639 |
2291  *  | 111M  |                    774 |
2292  *  | 112M  |                    921 |
2293  *  | 113M  |                   1081 |
2294  *  | 114M  |                   1254 |
2295  *  | 115M  |                   1439 |
2296  *  | 116M  |                   1638 |
2297  *  | 117M  |                   1849 |
2298  *  | 118M  |                   2000 |
2299  *  | 119M  |                   2000 |
2300  *  | 120M  |                   2000 |
2301  *  +-------+------------------------+
2302  */
2303  #define MEMCG_DELAY_PRECISION_SHIFT 20
2304  #define MEMCG_DELAY_SCALING_SHIFT 14
2305 
2306 static u64 calculate_overage(unsigned long usage, unsigned long high)
2307 {
2308 	u64 overage;
2309 
2310 	if (usage <= high)
2311 		return 0;
2312 
2313 	/*
2314 	 * Prevent division by 0 in overage calculation by acting as if
2315 	 * it was a threshold of 1 page
2316 	 */
2317 	high = max(high, 1UL);
2318 
2319 	overage = usage - high;
2320 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2321 	return div64_u64(overage, high);
2322 }
2323 
2324 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2325 {
2326 	u64 overage, max_overage = 0;
2327 
2328 	do {
2329 		overage = calculate_overage(page_counter_read(&memcg->memory),
2330 					    READ_ONCE(memcg->memory.high));
2331 		max_overage = max(overage, max_overage);
2332 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2333 		 !mem_cgroup_is_root(memcg));
2334 
2335 	return max_overage;
2336 }
2337 
2338 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2339 {
2340 	u64 overage, max_overage = 0;
2341 
2342 	do {
2343 		overage = calculate_overage(page_counter_read(&memcg->swap),
2344 					    READ_ONCE(memcg->swap.high));
2345 		if (overage)
2346 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2347 		max_overage = max(overage, max_overage);
2348 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2349 		 !mem_cgroup_is_root(memcg));
2350 
2351 	return max_overage;
2352 }
2353 
2354 /*
2355  * Get the number of jiffies that we should penalise a mischievous cgroup which
2356  * is exceeding its memory.high by checking both it and its ancestors.
2357  */
2358 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2359 					  unsigned int nr_pages,
2360 					  u64 max_overage)
2361 {
2362 	unsigned long penalty_jiffies;
2363 
2364 	if (!max_overage)
2365 		return 0;
2366 
2367 	/*
2368 	 * We use overage compared to memory.high to calculate the number of
2369 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2370 	 * fairly lenient on small overages, and increasingly harsh when the
2371 	 * memcg in question makes it clear that it has no intention of stopping
2372 	 * its crazy behaviour, so we exponentially increase the delay based on
2373 	 * overage amount.
2374 	 */
2375 	penalty_jiffies = max_overage * max_overage * HZ;
2376 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2377 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2378 
2379 	/*
2380 	 * Factor in the task's own contribution to the overage, such that four
2381 	 * N-sized allocations are throttled approximately the same as one
2382 	 * 4N-sized allocation.
2383 	 *
2384 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2385 	 * larger the current charge patch is than that.
2386 	 */
2387 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2388 }
2389 
2390 /*
2391  * Scheduled by try_charge() to be executed from the userland return path
2392  * and reclaims memory over the high limit.
2393  */
2394 void mem_cgroup_handle_over_high(void)
2395 {
2396 	unsigned long penalty_jiffies;
2397 	unsigned long pflags;
2398 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2399 	struct mem_cgroup *memcg;
2400 
2401 	if (likely(!nr_pages))
2402 		return;
2403 
2404 	memcg = get_mem_cgroup_from_mm(current->mm);
2405 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2406 	current->memcg_nr_pages_over_high = 0;
2407 
2408 	/*
2409 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2410 	 * allocators proactively to slow down excessive growth.
2411 	 */
2412 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2413 					       mem_find_max_overage(memcg));
2414 
2415 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2416 						swap_find_max_overage(memcg));
2417 
2418 	/*
2419 	 * Clamp the max delay per usermode return so as to still keep the
2420 	 * application moving forwards and also permit diagnostics, albeit
2421 	 * extremely slowly.
2422 	 */
2423 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2424 
2425 	/*
2426 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2427 	 * that it's not even worth doing, in an attempt to be nice to those who
2428 	 * go only a small amount over their memory.high value and maybe haven't
2429 	 * been aggressively reclaimed enough yet.
2430 	 */
2431 	if (penalty_jiffies <= HZ / 100)
2432 		goto out;
2433 
2434 	/*
2435 	 * If we exit early, we're guaranteed to die (since
2436 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2437 	 * need to account for any ill-begotten jiffies to pay them off later.
2438 	 */
2439 	psi_memstall_enter(&pflags);
2440 	schedule_timeout_killable(penalty_jiffies);
2441 	psi_memstall_leave(&pflags);
2442 
2443 out:
2444 	css_put(&memcg->css);
2445 }
2446 
2447 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2448 		      unsigned int nr_pages)
2449 {
2450 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2451 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2452 	struct mem_cgroup *mem_over_limit;
2453 	struct page_counter *counter;
2454 	unsigned long nr_reclaimed;
2455 	bool may_swap = true;
2456 	bool drained = false;
2457 	enum oom_status oom_status;
2458 
2459 	if (mem_cgroup_is_root(memcg))
2460 		return 0;
2461 retry:
2462 	if (consume_stock(memcg, nr_pages))
2463 		return 0;
2464 
2465 	if (!do_memsw_account() ||
2466 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2467 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2468 			goto done_restock;
2469 		if (do_memsw_account())
2470 			page_counter_uncharge(&memcg->memsw, batch);
2471 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2472 	} else {
2473 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2474 		may_swap = false;
2475 	}
2476 
2477 	if (batch > nr_pages) {
2478 		batch = nr_pages;
2479 		goto retry;
2480 	}
2481 
2482 	/*
2483 	 * Memcg doesn't have a dedicated reserve for atomic
2484 	 * allocations. But like the global atomic pool, we need to
2485 	 * put the burden of reclaim on regular allocation requests
2486 	 * and let these go through as privileged allocations.
2487 	 */
2488 	if (gfp_mask & __GFP_ATOMIC)
2489 		goto force;
2490 
2491 	/*
2492 	 * Unlike in global OOM situations, memcg is not in a physical
2493 	 * memory shortage.  Allow dying and OOM-killed tasks to
2494 	 * bypass the last charges so that they can exit quickly and
2495 	 * free their memory.
2496 	 */
2497 	if (unlikely(should_force_charge()))
2498 		goto force;
2499 
2500 	/*
2501 	 * Prevent unbounded recursion when reclaim operations need to
2502 	 * allocate memory. This might exceed the limits temporarily,
2503 	 * but we prefer facilitating memory reclaim and getting back
2504 	 * under the limit over triggering OOM kills in these cases.
2505 	 */
2506 	if (unlikely(current->flags & PF_MEMALLOC))
2507 		goto force;
2508 
2509 	if (unlikely(task_in_memcg_oom(current)))
2510 		goto nomem;
2511 
2512 	if (!gfpflags_allow_blocking(gfp_mask))
2513 		goto nomem;
2514 
2515 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2516 
2517 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2518 						    gfp_mask, may_swap);
2519 
2520 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2521 		goto retry;
2522 
2523 	if (!drained) {
2524 		drain_all_stock(mem_over_limit);
2525 		drained = true;
2526 		goto retry;
2527 	}
2528 
2529 	if (gfp_mask & __GFP_NORETRY)
2530 		goto nomem;
2531 	/*
2532 	 * Even though the limit is exceeded at this point, reclaim
2533 	 * may have been able to free some pages.  Retry the charge
2534 	 * before killing the task.
2535 	 *
2536 	 * Only for regular pages, though: huge pages are rather
2537 	 * unlikely to succeed so close to the limit, and we fall back
2538 	 * to regular pages anyway in case of failure.
2539 	 */
2540 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2541 		goto retry;
2542 	/*
2543 	 * At task move, charge accounts can be doubly counted. So, it's
2544 	 * better to wait until the end of task_move if something is going on.
2545 	 */
2546 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2547 		goto retry;
2548 
2549 	if (nr_retries--)
2550 		goto retry;
2551 
2552 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2553 		goto nomem;
2554 
2555 	if (gfp_mask & __GFP_NOFAIL)
2556 		goto force;
2557 
2558 	if (fatal_signal_pending(current))
2559 		goto force;
2560 
2561 	/*
2562 	 * keep retrying as long as the memcg oom killer is able to make
2563 	 * a forward progress or bypass the charge if the oom killer
2564 	 * couldn't make any progress.
2565 	 */
2566 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2567 		       get_order(nr_pages * PAGE_SIZE));
2568 	switch (oom_status) {
2569 	case OOM_SUCCESS:
2570 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2571 		goto retry;
2572 	case OOM_FAILED:
2573 		goto force;
2574 	default:
2575 		goto nomem;
2576 	}
2577 nomem:
2578 	if (!(gfp_mask & __GFP_NOFAIL))
2579 		return -ENOMEM;
2580 force:
2581 	/*
2582 	 * The allocation either can't fail or will lead to more memory
2583 	 * being freed very soon.  Allow memory usage go over the limit
2584 	 * temporarily by force charging it.
2585 	 */
2586 	page_counter_charge(&memcg->memory, nr_pages);
2587 	if (do_memsw_account())
2588 		page_counter_charge(&memcg->memsw, nr_pages);
2589 	css_get_many(&memcg->css, nr_pages);
2590 
2591 	return 0;
2592 
2593 done_restock:
2594 	css_get_many(&memcg->css, batch);
2595 	if (batch > nr_pages)
2596 		refill_stock(memcg, batch - nr_pages);
2597 
2598 	/*
2599 	 * If the hierarchy is above the normal consumption range, schedule
2600 	 * reclaim on returning to userland.  We can perform reclaim here
2601 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2602 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2603 	 * not recorded as it most likely matches current's and won't
2604 	 * change in the meantime.  As high limit is checked again before
2605 	 * reclaim, the cost of mismatch is negligible.
2606 	 */
2607 	do {
2608 		bool mem_high, swap_high;
2609 
2610 		mem_high = page_counter_read(&memcg->memory) >
2611 			READ_ONCE(memcg->memory.high);
2612 		swap_high = page_counter_read(&memcg->swap) >
2613 			READ_ONCE(memcg->swap.high);
2614 
2615 		/* Don't bother a random interrupted task */
2616 		if (in_interrupt()) {
2617 			if (mem_high) {
2618 				schedule_work(&memcg->high_work);
2619 				break;
2620 			}
2621 			continue;
2622 		}
2623 
2624 		if (mem_high || swap_high) {
2625 			/*
2626 			 * The allocating tasks in this cgroup will need to do
2627 			 * reclaim or be throttled to prevent further growth
2628 			 * of the memory or swap footprints.
2629 			 *
2630 			 * Target some best-effort fairness between the tasks,
2631 			 * and distribute reclaim work and delay penalties
2632 			 * based on how much each task is actually allocating.
2633 			 */
2634 			current->memcg_nr_pages_over_high += batch;
2635 			set_notify_resume(current);
2636 			break;
2637 		}
2638 	} while ((memcg = parent_mem_cgroup(memcg)));
2639 
2640 	return 0;
2641 }
2642 
2643 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2644 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2645 {
2646 	if (mem_cgroup_is_root(memcg))
2647 		return;
2648 
2649 	page_counter_uncharge(&memcg->memory, nr_pages);
2650 	if (do_memsw_account())
2651 		page_counter_uncharge(&memcg->memsw, nr_pages);
2652 
2653 	css_put_many(&memcg->css, nr_pages);
2654 }
2655 #endif
2656 
2657 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2658 {
2659 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2660 	/*
2661 	 * Any of the following ensures page->mem_cgroup stability:
2662 	 *
2663 	 * - the page lock
2664 	 * - LRU isolation
2665 	 * - lock_page_memcg()
2666 	 * - exclusive reference
2667 	 */
2668 	page->mem_cgroup = memcg;
2669 }
2670 
2671 #ifdef CONFIG_MEMCG_KMEM
2672 /*
2673  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2674  *
2675  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2676  * cgroup_mutex, etc.
2677  */
2678 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2679 {
2680 	struct page *page;
2681 
2682 	if (mem_cgroup_disabled())
2683 		return NULL;
2684 
2685 	page = virt_to_head_page(p);
2686 
2687 	/*
2688 	 * Slab pages don't have page->mem_cgroup set because corresponding
2689 	 * kmem caches can be reparented during the lifetime. That's why
2690 	 * memcg_from_slab_page() should be used instead.
2691 	 */
2692 	if (PageSlab(page))
2693 		return memcg_from_slab_page(page);
2694 
2695 	/* All other pages use page->mem_cgroup */
2696 	return page->mem_cgroup;
2697 }
2698 
2699 static int memcg_alloc_cache_id(void)
2700 {
2701 	int id, size;
2702 	int err;
2703 
2704 	id = ida_simple_get(&memcg_cache_ida,
2705 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2706 	if (id < 0)
2707 		return id;
2708 
2709 	if (id < memcg_nr_cache_ids)
2710 		return id;
2711 
2712 	/*
2713 	 * There's no space for the new id in memcg_caches arrays,
2714 	 * so we have to grow them.
2715 	 */
2716 	down_write(&memcg_cache_ids_sem);
2717 
2718 	size = 2 * (id + 1);
2719 	if (size < MEMCG_CACHES_MIN_SIZE)
2720 		size = MEMCG_CACHES_MIN_SIZE;
2721 	else if (size > MEMCG_CACHES_MAX_SIZE)
2722 		size = MEMCG_CACHES_MAX_SIZE;
2723 
2724 	err = memcg_update_all_caches(size);
2725 	if (!err)
2726 		err = memcg_update_all_list_lrus(size);
2727 	if (!err)
2728 		memcg_nr_cache_ids = size;
2729 
2730 	up_write(&memcg_cache_ids_sem);
2731 
2732 	if (err) {
2733 		ida_simple_remove(&memcg_cache_ida, id);
2734 		return err;
2735 	}
2736 	return id;
2737 }
2738 
2739 static void memcg_free_cache_id(int id)
2740 {
2741 	ida_simple_remove(&memcg_cache_ida, id);
2742 }
2743 
2744 struct memcg_kmem_cache_create_work {
2745 	struct mem_cgroup *memcg;
2746 	struct kmem_cache *cachep;
2747 	struct work_struct work;
2748 };
2749 
2750 static void memcg_kmem_cache_create_func(struct work_struct *w)
2751 {
2752 	struct memcg_kmem_cache_create_work *cw =
2753 		container_of(w, struct memcg_kmem_cache_create_work, work);
2754 	struct mem_cgroup *memcg = cw->memcg;
2755 	struct kmem_cache *cachep = cw->cachep;
2756 
2757 	memcg_create_kmem_cache(memcg, cachep);
2758 
2759 	css_put(&memcg->css);
2760 	kfree(cw);
2761 }
2762 
2763 /*
2764  * Enqueue the creation of a per-memcg kmem_cache.
2765  */
2766 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2767 					       struct kmem_cache *cachep)
2768 {
2769 	struct memcg_kmem_cache_create_work *cw;
2770 
2771 	if (!css_tryget_online(&memcg->css))
2772 		return;
2773 
2774 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2775 	if (!cw) {
2776 		css_put(&memcg->css);
2777 		return;
2778 	}
2779 
2780 	cw->memcg = memcg;
2781 	cw->cachep = cachep;
2782 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2783 
2784 	queue_work(memcg_kmem_cache_wq, &cw->work);
2785 }
2786 
2787 static inline bool memcg_kmem_bypass(void)
2788 {
2789 	if (in_interrupt())
2790 		return true;
2791 
2792 	/* Allow remote memcg charging in kthread contexts. */
2793 	if ((!current->mm || (current->flags & PF_KTHREAD)) &&
2794 	     !current->active_memcg)
2795 		return true;
2796 	return false;
2797 }
2798 
2799 /**
2800  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2801  * @cachep: the original global kmem cache
2802  *
2803  * Return the kmem_cache we're supposed to use for a slab allocation.
2804  * We try to use the current memcg's version of the cache.
2805  *
2806  * If the cache does not exist yet, if we are the first user of it, we
2807  * create it asynchronously in a workqueue and let the current allocation
2808  * go through with the original cache.
2809  *
2810  * This function takes a reference to the cache it returns to assure it
2811  * won't get destroyed while we are working with it. Once the caller is
2812  * done with it, memcg_kmem_put_cache() must be called to release the
2813  * reference.
2814  */
2815 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2816 {
2817 	struct mem_cgroup *memcg;
2818 	struct kmem_cache *memcg_cachep;
2819 	struct memcg_cache_array *arr;
2820 	int kmemcg_id;
2821 
2822 	VM_BUG_ON(!is_root_cache(cachep));
2823 
2824 	if (memcg_kmem_bypass())
2825 		return cachep;
2826 
2827 	rcu_read_lock();
2828 
2829 	if (unlikely(current->active_memcg))
2830 		memcg = current->active_memcg;
2831 	else
2832 		memcg = mem_cgroup_from_task(current);
2833 
2834 	if (!memcg || memcg == root_mem_cgroup)
2835 		goto out_unlock;
2836 
2837 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2838 	if (kmemcg_id < 0)
2839 		goto out_unlock;
2840 
2841 	arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2842 
2843 	/*
2844 	 * Make sure we will access the up-to-date value. The code updating
2845 	 * memcg_caches issues a write barrier to match the data dependency
2846 	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2847 	 */
2848 	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2849 
2850 	/*
2851 	 * If we are in a safe context (can wait, and not in interrupt
2852 	 * context), we could be be predictable and return right away.
2853 	 * This would guarantee that the allocation being performed
2854 	 * already belongs in the new cache.
2855 	 *
2856 	 * However, there are some clashes that can arrive from locking.
2857 	 * For instance, because we acquire the slab_mutex while doing
2858 	 * memcg_create_kmem_cache, this means no further allocation
2859 	 * could happen with the slab_mutex held. So it's better to
2860 	 * defer everything.
2861 	 *
2862 	 * If the memcg is dying or memcg_cache is about to be released,
2863 	 * don't bother creating new kmem_caches. Because memcg_cachep
2864 	 * is ZEROed as the fist step of kmem offlining, we don't need
2865 	 * percpu_ref_tryget_live() here. css_tryget_online() check in
2866 	 * memcg_schedule_kmem_cache_create() will prevent us from
2867 	 * creation of a new kmem_cache.
2868 	 */
2869 	if (unlikely(!memcg_cachep))
2870 		memcg_schedule_kmem_cache_create(memcg, cachep);
2871 	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2872 		cachep = memcg_cachep;
2873 out_unlock:
2874 	rcu_read_unlock();
2875 	return cachep;
2876 }
2877 
2878 /**
2879  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2880  * @cachep: the cache returned by memcg_kmem_get_cache
2881  */
2882 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2883 {
2884 	if (!is_root_cache(cachep))
2885 		percpu_ref_put(&cachep->memcg_params.refcnt);
2886 }
2887 
2888 /**
2889  * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2890  * @memcg: memory cgroup to charge
2891  * @gfp: reclaim mode
2892  * @nr_pages: number of pages to charge
2893  *
2894  * Returns 0 on success, an error code on failure.
2895  */
2896 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2897 			unsigned int nr_pages)
2898 {
2899 	struct page_counter *counter;
2900 	int ret;
2901 
2902 	ret = try_charge(memcg, gfp, nr_pages);
2903 	if (ret)
2904 		return ret;
2905 
2906 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2907 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2908 
2909 		/*
2910 		 * Enforce __GFP_NOFAIL allocation because callers are not
2911 		 * prepared to see failures and likely do not have any failure
2912 		 * handling code.
2913 		 */
2914 		if (gfp & __GFP_NOFAIL) {
2915 			page_counter_charge(&memcg->kmem, nr_pages);
2916 			return 0;
2917 		}
2918 		cancel_charge(memcg, nr_pages);
2919 		return -ENOMEM;
2920 	}
2921 	return 0;
2922 }
2923 
2924 /**
2925  * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2926  * @memcg: memcg to uncharge
2927  * @nr_pages: number of pages to uncharge
2928  */
2929 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
2930 {
2931 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2932 		page_counter_uncharge(&memcg->kmem, nr_pages);
2933 
2934 	page_counter_uncharge(&memcg->memory, nr_pages);
2935 	if (do_memsw_account())
2936 		page_counter_uncharge(&memcg->memsw, nr_pages);
2937 }
2938 
2939 /**
2940  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2941  * @page: page to charge
2942  * @gfp: reclaim mode
2943  * @order: allocation order
2944  *
2945  * Returns 0 on success, an error code on failure.
2946  */
2947 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2948 {
2949 	struct mem_cgroup *memcg;
2950 	int ret = 0;
2951 
2952 	if (memcg_kmem_bypass())
2953 		return 0;
2954 
2955 	memcg = get_mem_cgroup_from_current();
2956 	if (!mem_cgroup_is_root(memcg)) {
2957 		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
2958 		if (!ret) {
2959 			page->mem_cgroup = memcg;
2960 			__SetPageKmemcg(page);
2961 		}
2962 	}
2963 	css_put(&memcg->css);
2964 	return ret;
2965 }
2966 
2967 /**
2968  * __memcg_kmem_uncharge_page: uncharge a kmem page
2969  * @page: page to uncharge
2970  * @order: allocation order
2971  */
2972 void __memcg_kmem_uncharge_page(struct page *page, int order)
2973 {
2974 	struct mem_cgroup *memcg = page->mem_cgroup;
2975 	unsigned int nr_pages = 1 << order;
2976 
2977 	if (!memcg)
2978 		return;
2979 
2980 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2981 	__memcg_kmem_uncharge(memcg, nr_pages);
2982 	page->mem_cgroup = NULL;
2983 
2984 	/* slab pages do not have PageKmemcg flag set */
2985 	if (PageKmemcg(page))
2986 		__ClearPageKmemcg(page);
2987 
2988 	css_put_many(&memcg->css, nr_pages);
2989 }
2990 #endif /* CONFIG_MEMCG_KMEM */
2991 
2992 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2993 
2994 /*
2995  * Because tail pages are not marked as "used", set it. We're under
2996  * pgdat->lru_lock and migration entries setup in all page mappings.
2997  */
2998 void mem_cgroup_split_huge_fixup(struct page *head)
2999 {
3000 	int i;
3001 
3002 	if (mem_cgroup_disabled())
3003 		return;
3004 
3005 	for (i = 1; i < HPAGE_PMD_NR; i++)
3006 		head[i].mem_cgroup = head->mem_cgroup;
3007 }
3008 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3009 
3010 #ifdef CONFIG_MEMCG_SWAP
3011 /**
3012  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3013  * @entry: swap entry to be moved
3014  * @from:  mem_cgroup which the entry is moved from
3015  * @to:  mem_cgroup which the entry is moved to
3016  *
3017  * It succeeds only when the swap_cgroup's record for this entry is the same
3018  * as the mem_cgroup's id of @from.
3019  *
3020  * Returns 0 on success, -EINVAL on failure.
3021  *
3022  * The caller must have charged to @to, IOW, called page_counter_charge() about
3023  * both res and memsw, and called css_get().
3024  */
3025 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3026 				struct mem_cgroup *from, struct mem_cgroup *to)
3027 {
3028 	unsigned short old_id, new_id;
3029 
3030 	old_id = mem_cgroup_id(from);
3031 	new_id = mem_cgroup_id(to);
3032 
3033 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3034 		mod_memcg_state(from, MEMCG_SWAP, -1);
3035 		mod_memcg_state(to, MEMCG_SWAP, 1);
3036 		return 0;
3037 	}
3038 	return -EINVAL;
3039 }
3040 #else
3041 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3042 				struct mem_cgroup *from, struct mem_cgroup *to)
3043 {
3044 	return -EINVAL;
3045 }
3046 #endif
3047 
3048 static DEFINE_MUTEX(memcg_max_mutex);
3049 
3050 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3051 				 unsigned long max, bool memsw)
3052 {
3053 	bool enlarge = false;
3054 	bool drained = false;
3055 	int ret;
3056 	bool limits_invariant;
3057 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3058 
3059 	do {
3060 		if (signal_pending(current)) {
3061 			ret = -EINTR;
3062 			break;
3063 		}
3064 
3065 		mutex_lock(&memcg_max_mutex);
3066 		/*
3067 		 * Make sure that the new limit (memsw or memory limit) doesn't
3068 		 * break our basic invariant rule memory.max <= memsw.max.
3069 		 */
3070 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3071 					   max <= memcg->memsw.max;
3072 		if (!limits_invariant) {
3073 			mutex_unlock(&memcg_max_mutex);
3074 			ret = -EINVAL;
3075 			break;
3076 		}
3077 		if (max > counter->max)
3078 			enlarge = true;
3079 		ret = page_counter_set_max(counter, max);
3080 		mutex_unlock(&memcg_max_mutex);
3081 
3082 		if (!ret)
3083 			break;
3084 
3085 		if (!drained) {
3086 			drain_all_stock(memcg);
3087 			drained = true;
3088 			continue;
3089 		}
3090 
3091 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3092 					GFP_KERNEL, !memsw)) {
3093 			ret = -EBUSY;
3094 			break;
3095 		}
3096 	} while (true);
3097 
3098 	if (!ret && enlarge)
3099 		memcg_oom_recover(memcg);
3100 
3101 	return ret;
3102 }
3103 
3104 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3105 					    gfp_t gfp_mask,
3106 					    unsigned long *total_scanned)
3107 {
3108 	unsigned long nr_reclaimed = 0;
3109 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3110 	unsigned long reclaimed;
3111 	int loop = 0;
3112 	struct mem_cgroup_tree_per_node *mctz;
3113 	unsigned long excess;
3114 	unsigned long nr_scanned;
3115 
3116 	if (order > 0)
3117 		return 0;
3118 
3119 	mctz = soft_limit_tree_node(pgdat->node_id);
3120 
3121 	/*
3122 	 * Do not even bother to check the largest node if the root
3123 	 * is empty. Do it lockless to prevent lock bouncing. Races
3124 	 * are acceptable as soft limit is best effort anyway.
3125 	 */
3126 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3127 		return 0;
3128 
3129 	/*
3130 	 * This loop can run a while, specially if mem_cgroup's continuously
3131 	 * keep exceeding their soft limit and putting the system under
3132 	 * pressure
3133 	 */
3134 	do {
3135 		if (next_mz)
3136 			mz = next_mz;
3137 		else
3138 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3139 		if (!mz)
3140 			break;
3141 
3142 		nr_scanned = 0;
3143 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3144 						    gfp_mask, &nr_scanned);
3145 		nr_reclaimed += reclaimed;
3146 		*total_scanned += nr_scanned;
3147 		spin_lock_irq(&mctz->lock);
3148 		__mem_cgroup_remove_exceeded(mz, mctz);
3149 
3150 		/*
3151 		 * If we failed to reclaim anything from this memory cgroup
3152 		 * it is time to move on to the next cgroup
3153 		 */
3154 		next_mz = NULL;
3155 		if (!reclaimed)
3156 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3157 
3158 		excess = soft_limit_excess(mz->memcg);
3159 		/*
3160 		 * One school of thought says that we should not add
3161 		 * back the node to the tree if reclaim returns 0.
3162 		 * But our reclaim could return 0, simply because due
3163 		 * to priority we are exposing a smaller subset of
3164 		 * memory to reclaim from. Consider this as a longer
3165 		 * term TODO.
3166 		 */
3167 		/* If excess == 0, no tree ops */
3168 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3169 		spin_unlock_irq(&mctz->lock);
3170 		css_put(&mz->memcg->css);
3171 		loop++;
3172 		/*
3173 		 * Could not reclaim anything and there are no more
3174 		 * mem cgroups to try or we seem to be looping without
3175 		 * reclaiming anything.
3176 		 */
3177 		if (!nr_reclaimed &&
3178 			(next_mz == NULL ||
3179 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3180 			break;
3181 	} while (!nr_reclaimed);
3182 	if (next_mz)
3183 		css_put(&next_mz->memcg->css);
3184 	return nr_reclaimed;
3185 }
3186 
3187 /*
3188  * Test whether @memcg has children, dead or alive.  Note that this
3189  * function doesn't care whether @memcg has use_hierarchy enabled and
3190  * returns %true if there are child csses according to the cgroup
3191  * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3192  */
3193 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3194 {
3195 	bool ret;
3196 
3197 	rcu_read_lock();
3198 	ret = css_next_child(NULL, &memcg->css);
3199 	rcu_read_unlock();
3200 	return ret;
3201 }
3202 
3203 /*
3204  * Reclaims as many pages from the given memcg as possible.
3205  *
3206  * Caller is responsible for holding css reference for memcg.
3207  */
3208 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3209 {
3210 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3211 
3212 	/* we call try-to-free pages for make this cgroup empty */
3213 	lru_add_drain_all();
3214 
3215 	drain_all_stock(memcg);
3216 
3217 	/* try to free all pages in this cgroup */
3218 	while (nr_retries && page_counter_read(&memcg->memory)) {
3219 		int progress;
3220 
3221 		if (signal_pending(current))
3222 			return -EINTR;
3223 
3224 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3225 							GFP_KERNEL, true);
3226 		if (!progress) {
3227 			nr_retries--;
3228 			/* maybe some writeback is necessary */
3229 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3230 		}
3231 
3232 	}
3233 
3234 	return 0;
3235 }
3236 
3237 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3238 					    char *buf, size_t nbytes,
3239 					    loff_t off)
3240 {
3241 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3242 
3243 	if (mem_cgroup_is_root(memcg))
3244 		return -EINVAL;
3245 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3246 }
3247 
3248 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3249 				     struct cftype *cft)
3250 {
3251 	return mem_cgroup_from_css(css)->use_hierarchy;
3252 }
3253 
3254 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3255 				      struct cftype *cft, u64 val)
3256 {
3257 	int retval = 0;
3258 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3259 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3260 
3261 	if (memcg->use_hierarchy == val)
3262 		return 0;
3263 
3264 	/*
3265 	 * If parent's use_hierarchy is set, we can't make any modifications
3266 	 * in the child subtrees. If it is unset, then the change can
3267 	 * occur, provided the current cgroup has no children.
3268 	 *
3269 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3270 	 * set if there are no children.
3271 	 */
3272 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3273 				(val == 1 || val == 0)) {
3274 		if (!memcg_has_children(memcg))
3275 			memcg->use_hierarchy = val;
3276 		else
3277 			retval = -EBUSY;
3278 	} else
3279 		retval = -EINVAL;
3280 
3281 	return retval;
3282 }
3283 
3284 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3285 {
3286 	unsigned long val;
3287 
3288 	if (mem_cgroup_is_root(memcg)) {
3289 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3290 			memcg_page_state(memcg, NR_ANON_MAPPED);
3291 		if (swap)
3292 			val += memcg_page_state(memcg, MEMCG_SWAP);
3293 	} else {
3294 		if (!swap)
3295 			val = page_counter_read(&memcg->memory);
3296 		else
3297 			val = page_counter_read(&memcg->memsw);
3298 	}
3299 	return val;
3300 }
3301 
3302 enum {
3303 	RES_USAGE,
3304 	RES_LIMIT,
3305 	RES_MAX_USAGE,
3306 	RES_FAILCNT,
3307 	RES_SOFT_LIMIT,
3308 };
3309 
3310 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3311 			       struct cftype *cft)
3312 {
3313 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3314 	struct page_counter *counter;
3315 
3316 	switch (MEMFILE_TYPE(cft->private)) {
3317 	case _MEM:
3318 		counter = &memcg->memory;
3319 		break;
3320 	case _MEMSWAP:
3321 		counter = &memcg->memsw;
3322 		break;
3323 	case _KMEM:
3324 		counter = &memcg->kmem;
3325 		break;
3326 	case _TCP:
3327 		counter = &memcg->tcpmem;
3328 		break;
3329 	default:
3330 		BUG();
3331 	}
3332 
3333 	switch (MEMFILE_ATTR(cft->private)) {
3334 	case RES_USAGE:
3335 		if (counter == &memcg->memory)
3336 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3337 		if (counter == &memcg->memsw)
3338 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3339 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3340 	case RES_LIMIT:
3341 		return (u64)counter->max * PAGE_SIZE;
3342 	case RES_MAX_USAGE:
3343 		return (u64)counter->watermark * PAGE_SIZE;
3344 	case RES_FAILCNT:
3345 		return counter->failcnt;
3346 	case RES_SOFT_LIMIT:
3347 		return (u64)memcg->soft_limit * PAGE_SIZE;
3348 	default:
3349 		BUG();
3350 	}
3351 }
3352 
3353 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3354 {
3355 	unsigned long stat[MEMCG_NR_STAT] = {0};
3356 	struct mem_cgroup *mi;
3357 	int node, cpu, i;
3358 
3359 	for_each_online_cpu(cpu)
3360 		for (i = 0; i < MEMCG_NR_STAT; i++)
3361 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3362 
3363 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3364 		for (i = 0; i < MEMCG_NR_STAT; i++)
3365 			atomic_long_add(stat[i], &mi->vmstats[i]);
3366 
3367 	for_each_node(node) {
3368 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3369 		struct mem_cgroup_per_node *pi;
3370 
3371 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3372 			stat[i] = 0;
3373 
3374 		for_each_online_cpu(cpu)
3375 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3376 				stat[i] += per_cpu(
3377 					pn->lruvec_stat_cpu->count[i], cpu);
3378 
3379 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3380 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3381 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3382 	}
3383 }
3384 
3385 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3386 {
3387 	unsigned long events[NR_VM_EVENT_ITEMS];
3388 	struct mem_cgroup *mi;
3389 	int cpu, i;
3390 
3391 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3392 		events[i] = 0;
3393 
3394 	for_each_online_cpu(cpu)
3395 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3396 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3397 					     cpu);
3398 
3399 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3400 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3401 			atomic_long_add(events[i], &mi->vmevents[i]);
3402 }
3403 
3404 #ifdef CONFIG_MEMCG_KMEM
3405 static int memcg_online_kmem(struct mem_cgroup *memcg)
3406 {
3407 	int memcg_id;
3408 
3409 	if (cgroup_memory_nokmem)
3410 		return 0;
3411 
3412 	BUG_ON(memcg->kmemcg_id >= 0);
3413 	BUG_ON(memcg->kmem_state);
3414 
3415 	memcg_id = memcg_alloc_cache_id();
3416 	if (memcg_id < 0)
3417 		return memcg_id;
3418 
3419 	static_branch_inc(&memcg_kmem_enabled_key);
3420 	/*
3421 	 * A memory cgroup is considered kmem-online as soon as it gets
3422 	 * kmemcg_id. Setting the id after enabling static branching will
3423 	 * guarantee no one starts accounting before all call sites are
3424 	 * patched.
3425 	 */
3426 	memcg->kmemcg_id = memcg_id;
3427 	memcg->kmem_state = KMEM_ONLINE;
3428 	INIT_LIST_HEAD(&memcg->kmem_caches);
3429 
3430 	return 0;
3431 }
3432 
3433 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3434 {
3435 	struct cgroup_subsys_state *css;
3436 	struct mem_cgroup *parent, *child;
3437 	int kmemcg_id;
3438 
3439 	if (memcg->kmem_state != KMEM_ONLINE)
3440 		return;
3441 	/*
3442 	 * Clear the online state before clearing memcg_caches array
3443 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3444 	 * guarantees that no cache will be created for this cgroup
3445 	 * after we are done (see memcg_create_kmem_cache()).
3446 	 */
3447 	memcg->kmem_state = KMEM_ALLOCATED;
3448 
3449 	parent = parent_mem_cgroup(memcg);
3450 	if (!parent)
3451 		parent = root_mem_cgroup;
3452 
3453 	/*
3454 	 * Deactivate and reparent kmem_caches.
3455 	 */
3456 	memcg_deactivate_kmem_caches(memcg, parent);
3457 
3458 	kmemcg_id = memcg->kmemcg_id;
3459 	BUG_ON(kmemcg_id < 0);
3460 
3461 	/*
3462 	 * Change kmemcg_id of this cgroup and all its descendants to the
3463 	 * parent's id, and then move all entries from this cgroup's list_lrus
3464 	 * to ones of the parent. After we have finished, all list_lrus
3465 	 * corresponding to this cgroup are guaranteed to remain empty. The
3466 	 * ordering is imposed by list_lru_node->lock taken by
3467 	 * memcg_drain_all_list_lrus().
3468 	 */
3469 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3470 	css_for_each_descendant_pre(css, &memcg->css) {
3471 		child = mem_cgroup_from_css(css);
3472 		BUG_ON(child->kmemcg_id != kmemcg_id);
3473 		child->kmemcg_id = parent->kmemcg_id;
3474 		if (!memcg->use_hierarchy)
3475 			break;
3476 	}
3477 	rcu_read_unlock();
3478 
3479 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3480 
3481 	memcg_free_cache_id(kmemcg_id);
3482 }
3483 
3484 static void memcg_free_kmem(struct mem_cgroup *memcg)
3485 {
3486 	/* css_alloc() failed, offlining didn't happen */
3487 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3488 		memcg_offline_kmem(memcg);
3489 
3490 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3491 		WARN_ON(!list_empty(&memcg->kmem_caches));
3492 		static_branch_dec(&memcg_kmem_enabled_key);
3493 	}
3494 }
3495 #else
3496 static int memcg_online_kmem(struct mem_cgroup *memcg)
3497 {
3498 	return 0;
3499 }
3500 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3501 {
3502 }
3503 static void memcg_free_kmem(struct mem_cgroup *memcg)
3504 {
3505 }
3506 #endif /* CONFIG_MEMCG_KMEM */
3507 
3508 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3509 				 unsigned long max)
3510 {
3511 	int ret;
3512 
3513 	mutex_lock(&memcg_max_mutex);
3514 	ret = page_counter_set_max(&memcg->kmem, max);
3515 	mutex_unlock(&memcg_max_mutex);
3516 	return ret;
3517 }
3518 
3519 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3520 {
3521 	int ret;
3522 
3523 	mutex_lock(&memcg_max_mutex);
3524 
3525 	ret = page_counter_set_max(&memcg->tcpmem, max);
3526 	if (ret)
3527 		goto out;
3528 
3529 	if (!memcg->tcpmem_active) {
3530 		/*
3531 		 * The active flag needs to be written after the static_key
3532 		 * update. This is what guarantees that the socket activation
3533 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3534 		 * for details, and note that we don't mark any socket as
3535 		 * belonging to this memcg until that flag is up.
3536 		 *
3537 		 * We need to do this, because static_keys will span multiple
3538 		 * sites, but we can't control their order. If we mark a socket
3539 		 * as accounted, but the accounting functions are not patched in
3540 		 * yet, we'll lose accounting.
3541 		 *
3542 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3543 		 * because when this value change, the code to process it is not
3544 		 * patched in yet.
3545 		 */
3546 		static_branch_inc(&memcg_sockets_enabled_key);
3547 		memcg->tcpmem_active = true;
3548 	}
3549 out:
3550 	mutex_unlock(&memcg_max_mutex);
3551 	return ret;
3552 }
3553 
3554 /*
3555  * The user of this function is...
3556  * RES_LIMIT.
3557  */
3558 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3559 				char *buf, size_t nbytes, loff_t off)
3560 {
3561 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3562 	unsigned long nr_pages;
3563 	int ret;
3564 
3565 	buf = strstrip(buf);
3566 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3567 	if (ret)
3568 		return ret;
3569 
3570 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3571 	case RES_LIMIT:
3572 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3573 			ret = -EINVAL;
3574 			break;
3575 		}
3576 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3577 		case _MEM:
3578 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3579 			break;
3580 		case _MEMSWAP:
3581 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3582 			break;
3583 		case _KMEM:
3584 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3585 				     "Please report your usecase to linux-mm@kvack.org if you "
3586 				     "depend on this functionality.\n");
3587 			ret = memcg_update_kmem_max(memcg, nr_pages);
3588 			break;
3589 		case _TCP:
3590 			ret = memcg_update_tcp_max(memcg, nr_pages);
3591 			break;
3592 		}
3593 		break;
3594 	case RES_SOFT_LIMIT:
3595 		memcg->soft_limit = nr_pages;
3596 		ret = 0;
3597 		break;
3598 	}
3599 	return ret ?: nbytes;
3600 }
3601 
3602 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3603 				size_t nbytes, loff_t off)
3604 {
3605 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3606 	struct page_counter *counter;
3607 
3608 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3609 	case _MEM:
3610 		counter = &memcg->memory;
3611 		break;
3612 	case _MEMSWAP:
3613 		counter = &memcg->memsw;
3614 		break;
3615 	case _KMEM:
3616 		counter = &memcg->kmem;
3617 		break;
3618 	case _TCP:
3619 		counter = &memcg->tcpmem;
3620 		break;
3621 	default:
3622 		BUG();
3623 	}
3624 
3625 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3626 	case RES_MAX_USAGE:
3627 		page_counter_reset_watermark(counter);
3628 		break;
3629 	case RES_FAILCNT:
3630 		counter->failcnt = 0;
3631 		break;
3632 	default:
3633 		BUG();
3634 	}
3635 
3636 	return nbytes;
3637 }
3638 
3639 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3640 					struct cftype *cft)
3641 {
3642 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3643 }
3644 
3645 #ifdef CONFIG_MMU
3646 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3647 					struct cftype *cft, u64 val)
3648 {
3649 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3650 
3651 	if (val & ~MOVE_MASK)
3652 		return -EINVAL;
3653 
3654 	/*
3655 	 * No kind of locking is needed in here, because ->can_attach() will
3656 	 * check this value once in the beginning of the process, and then carry
3657 	 * on with stale data. This means that changes to this value will only
3658 	 * affect task migrations starting after the change.
3659 	 */
3660 	memcg->move_charge_at_immigrate = val;
3661 	return 0;
3662 }
3663 #else
3664 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3665 					struct cftype *cft, u64 val)
3666 {
3667 	return -ENOSYS;
3668 }
3669 #endif
3670 
3671 #ifdef CONFIG_NUMA
3672 
3673 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3674 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3675 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3676 
3677 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3678 				int nid, unsigned int lru_mask, bool tree)
3679 {
3680 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3681 	unsigned long nr = 0;
3682 	enum lru_list lru;
3683 
3684 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3685 
3686 	for_each_lru(lru) {
3687 		if (!(BIT(lru) & lru_mask))
3688 			continue;
3689 		if (tree)
3690 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3691 		else
3692 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3693 	}
3694 	return nr;
3695 }
3696 
3697 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3698 					     unsigned int lru_mask,
3699 					     bool tree)
3700 {
3701 	unsigned long nr = 0;
3702 	enum lru_list lru;
3703 
3704 	for_each_lru(lru) {
3705 		if (!(BIT(lru) & lru_mask))
3706 			continue;
3707 		if (tree)
3708 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3709 		else
3710 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3711 	}
3712 	return nr;
3713 }
3714 
3715 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3716 {
3717 	struct numa_stat {
3718 		const char *name;
3719 		unsigned int lru_mask;
3720 	};
3721 
3722 	static const struct numa_stat stats[] = {
3723 		{ "total", LRU_ALL },
3724 		{ "file", LRU_ALL_FILE },
3725 		{ "anon", LRU_ALL_ANON },
3726 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3727 	};
3728 	const struct numa_stat *stat;
3729 	int nid;
3730 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3731 
3732 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3733 		seq_printf(m, "%s=%lu", stat->name,
3734 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3735 						   false));
3736 		for_each_node_state(nid, N_MEMORY)
3737 			seq_printf(m, " N%d=%lu", nid,
3738 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3739 							stat->lru_mask, false));
3740 		seq_putc(m, '\n');
3741 	}
3742 
3743 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3744 
3745 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3746 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3747 						   true));
3748 		for_each_node_state(nid, N_MEMORY)
3749 			seq_printf(m, " N%d=%lu", nid,
3750 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3751 							stat->lru_mask, true));
3752 		seq_putc(m, '\n');
3753 	}
3754 
3755 	return 0;
3756 }
3757 #endif /* CONFIG_NUMA */
3758 
3759 static const unsigned int memcg1_stats[] = {
3760 	NR_FILE_PAGES,
3761 	NR_ANON_MAPPED,
3762 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3763 	NR_ANON_THPS,
3764 #endif
3765 	NR_SHMEM,
3766 	NR_FILE_MAPPED,
3767 	NR_FILE_DIRTY,
3768 	NR_WRITEBACK,
3769 	MEMCG_SWAP,
3770 };
3771 
3772 static const char *const memcg1_stat_names[] = {
3773 	"cache",
3774 	"rss",
3775 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3776 	"rss_huge",
3777 #endif
3778 	"shmem",
3779 	"mapped_file",
3780 	"dirty",
3781 	"writeback",
3782 	"swap",
3783 };
3784 
3785 /* Universal VM events cgroup1 shows, original sort order */
3786 static const unsigned int memcg1_events[] = {
3787 	PGPGIN,
3788 	PGPGOUT,
3789 	PGFAULT,
3790 	PGMAJFAULT,
3791 };
3792 
3793 static int memcg_stat_show(struct seq_file *m, void *v)
3794 {
3795 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3796 	unsigned long memory, memsw;
3797 	struct mem_cgroup *mi;
3798 	unsigned int i;
3799 
3800 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3801 
3802 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3803 		unsigned long nr;
3804 
3805 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3806 			continue;
3807 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3808 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3809 		if (memcg1_stats[i] == NR_ANON_THPS)
3810 			nr *= HPAGE_PMD_NR;
3811 #endif
3812 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3813 	}
3814 
3815 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3816 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3817 			   memcg_events_local(memcg, memcg1_events[i]));
3818 
3819 	for (i = 0; i < NR_LRU_LISTS; i++)
3820 		seq_printf(m, "%s %lu\n", lru_list_name(i),
3821 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3822 			   PAGE_SIZE);
3823 
3824 	/* Hierarchical information */
3825 	memory = memsw = PAGE_COUNTER_MAX;
3826 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3827 		memory = min(memory, READ_ONCE(mi->memory.max));
3828 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
3829 	}
3830 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3831 		   (u64)memory * PAGE_SIZE);
3832 	if (do_memsw_account())
3833 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3834 			   (u64)memsw * PAGE_SIZE);
3835 
3836 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3837 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3838 			continue;
3839 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3840 			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3841 			   PAGE_SIZE);
3842 	}
3843 
3844 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3845 		seq_printf(m, "total_%s %llu\n",
3846 			   vm_event_name(memcg1_events[i]),
3847 			   (u64)memcg_events(memcg, memcg1_events[i]));
3848 
3849 	for (i = 0; i < NR_LRU_LISTS; i++)
3850 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3851 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3852 			   PAGE_SIZE);
3853 
3854 #ifdef CONFIG_DEBUG_VM
3855 	{
3856 		pg_data_t *pgdat;
3857 		struct mem_cgroup_per_node *mz;
3858 		unsigned long anon_cost = 0;
3859 		unsigned long file_cost = 0;
3860 
3861 		for_each_online_pgdat(pgdat) {
3862 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3863 
3864 			anon_cost += mz->lruvec.anon_cost;
3865 			file_cost += mz->lruvec.file_cost;
3866 		}
3867 		seq_printf(m, "anon_cost %lu\n", anon_cost);
3868 		seq_printf(m, "file_cost %lu\n", file_cost);
3869 	}
3870 #endif
3871 
3872 	return 0;
3873 }
3874 
3875 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3876 				      struct cftype *cft)
3877 {
3878 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3879 
3880 	return mem_cgroup_swappiness(memcg);
3881 }
3882 
3883 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3884 				       struct cftype *cft, u64 val)
3885 {
3886 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3887 
3888 	if (val > 100)
3889 		return -EINVAL;
3890 
3891 	if (css->parent)
3892 		memcg->swappiness = val;
3893 	else
3894 		vm_swappiness = val;
3895 
3896 	return 0;
3897 }
3898 
3899 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3900 {
3901 	struct mem_cgroup_threshold_ary *t;
3902 	unsigned long usage;
3903 	int i;
3904 
3905 	rcu_read_lock();
3906 	if (!swap)
3907 		t = rcu_dereference(memcg->thresholds.primary);
3908 	else
3909 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3910 
3911 	if (!t)
3912 		goto unlock;
3913 
3914 	usage = mem_cgroup_usage(memcg, swap);
3915 
3916 	/*
3917 	 * current_threshold points to threshold just below or equal to usage.
3918 	 * If it's not true, a threshold was crossed after last
3919 	 * call of __mem_cgroup_threshold().
3920 	 */
3921 	i = t->current_threshold;
3922 
3923 	/*
3924 	 * Iterate backward over array of thresholds starting from
3925 	 * current_threshold and check if a threshold is crossed.
3926 	 * If none of thresholds below usage is crossed, we read
3927 	 * only one element of the array here.
3928 	 */
3929 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3930 		eventfd_signal(t->entries[i].eventfd, 1);
3931 
3932 	/* i = current_threshold + 1 */
3933 	i++;
3934 
3935 	/*
3936 	 * Iterate forward over array of thresholds starting from
3937 	 * current_threshold+1 and check if a threshold is crossed.
3938 	 * If none of thresholds above usage is crossed, we read
3939 	 * only one element of the array here.
3940 	 */
3941 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3942 		eventfd_signal(t->entries[i].eventfd, 1);
3943 
3944 	/* Update current_threshold */
3945 	t->current_threshold = i - 1;
3946 unlock:
3947 	rcu_read_unlock();
3948 }
3949 
3950 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3951 {
3952 	while (memcg) {
3953 		__mem_cgroup_threshold(memcg, false);
3954 		if (do_memsw_account())
3955 			__mem_cgroup_threshold(memcg, true);
3956 
3957 		memcg = parent_mem_cgroup(memcg);
3958 	}
3959 }
3960 
3961 static int compare_thresholds(const void *a, const void *b)
3962 {
3963 	const struct mem_cgroup_threshold *_a = a;
3964 	const struct mem_cgroup_threshold *_b = b;
3965 
3966 	if (_a->threshold > _b->threshold)
3967 		return 1;
3968 
3969 	if (_a->threshold < _b->threshold)
3970 		return -1;
3971 
3972 	return 0;
3973 }
3974 
3975 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3976 {
3977 	struct mem_cgroup_eventfd_list *ev;
3978 
3979 	spin_lock(&memcg_oom_lock);
3980 
3981 	list_for_each_entry(ev, &memcg->oom_notify, list)
3982 		eventfd_signal(ev->eventfd, 1);
3983 
3984 	spin_unlock(&memcg_oom_lock);
3985 	return 0;
3986 }
3987 
3988 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3989 {
3990 	struct mem_cgroup *iter;
3991 
3992 	for_each_mem_cgroup_tree(iter, memcg)
3993 		mem_cgroup_oom_notify_cb(iter);
3994 }
3995 
3996 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3997 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3998 {
3999 	struct mem_cgroup_thresholds *thresholds;
4000 	struct mem_cgroup_threshold_ary *new;
4001 	unsigned long threshold;
4002 	unsigned long usage;
4003 	int i, size, ret;
4004 
4005 	ret = page_counter_memparse(args, "-1", &threshold);
4006 	if (ret)
4007 		return ret;
4008 
4009 	mutex_lock(&memcg->thresholds_lock);
4010 
4011 	if (type == _MEM) {
4012 		thresholds = &memcg->thresholds;
4013 		usage = mem_cgroup_usage(memcg, false);
4014 	} else if (type == _MEMSWAP) {
4015 		thresholds = &memcg->memsw_thresholds;
4016 		usage = mem_cgroup_usage(memcg, true);
4017 	} else
4018 		BUG();
4019 
4020 	/* Check if a threshold crossed before adding a new one */
4021 	if (thresholds->primary)
4022 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4023 
4024 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4025 
4026 	/* Allocate memory for new array of thresholds */
4027 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4028 	if (!new) {
4029 		ret = -ENOMEM;
4030 		goto unlock;
4031 	}
4032 	new->size = size;
4033 
4034 	/* Copy thresholds (if any) to new array */
4035 	if (thresholds->primary) {
4036 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4037 				sizeof(struct mem_cgroup_threshold));
4038 	}
4039 
4040 	/* Add new threshold */
4041 	new->entries[size - 1].eventfd = eventfd;
4042 	new->entries[size - 1].threshold = threshold;
4043 
4044 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4045 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4046 			compare_thresholds, NULL);
4047 
4048 	/* Find current threshold */
4049 	new->current_threshold = -1;
4050 	for (i = 0; i < size; i++) {
4051 		if (new->entries[i].threshold <= usage) {
4052 			/*
4053 			 * new->current_threshold will not be used until
4054 			 * rcu_assign_pointer(), so it's safe to increment
4055 			 * it here.
4056 			 */
4057 			++new->current_threshold;
4058 		} else
4059 			break;
4060 	}
4061 
4062 	/* Free old spare buffer and save old primary buffer as spare */
4063 	kfree(thresholds->spare);
4064 	thresholds->spare = thresholds->primary;
4065 
4066 	rcu_assign_pointer(thresholds->primary, new);
4067 
4068 	/* To be sure that nobody uses thresholds */
4069 	synchronize_rcu();
4070 
4071 unlock:
4072 	mutex_unlock(&memcg->thresholds_lock);
4073 
4074 	return ret;
4075 }
4076 
4077 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4078 	struct eventfd_ctx *eventfd, const char *args)
4079 {
4080 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4081 }
4082 
4083 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4084 	struct eventfd_ctx *eventfd, const char *args)
4085 {
4086 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4087 }
4088 
4089 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4090 	struct eventfd_ctx *eventfd, enum res_type type)
4091 {
4092 	struct mem_cgroup_thresholds *thresholds;
4093 	struct mem_cgroup_threshold_ary *new;
4094 	unsigned long usage;
4095 	int i, j, size, entries;
4096 
4097 	mutex_lock(&memcg->thresholds_lock);
4098 
4099 	if (type == _MEM) {
4100 		thresholds = &memcg->thresholds;
4101 		usage = mem_cgroup_usage(memcg, false);
4102 	} else if (type == _MEMSWAP) {
4103 		thresholds = &memcg->memsw_thresholds;
4104 		usage = mem_cgroup_usage(memcg, true);
4105 	} else
4106 		BUG();
4107 
4108 	if (!thresholds->primary)
4109 		goto unlock;
4110 
4111 	/* Check if a threshold crossed before removing */
4112 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4113 
4114 	/* Calculate new number of threshold */
4115 	size = entries = 0;
4116 	for (i = 0; i < thresholds->primary->size; i++) {
4117 		if (thresholds->primary->entries[i].eventfd != eventfd)
4118 			size++;
4119 		else
4120 			entries++;
4121 	}
4122 
4123 	new = thresholds->spare;
4124 
4125 	/* If no items related to eventfd have been cleared, nothing to do */
4126 	if (!entries)
4127 		goto unlock;
4128 
4129 	/* Set thresholds array to NULL if we don't have thresholds */
4130 	if (!size) {
4131 		kfree(new);
4132 		new = NULL;
4133 		goto swap_buffers;
4134 	}
4135 
4136 	new->size = size;
4137 
4138 	/* Copy thresholds and find current threshold */
4139 	new->current_threshold = -1;
4140 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4141 		if (thresholds->primary->entries[i].eventfd == eventfd)
4142 			continue;
4143 
4144 		new->entries[j] = thresholds->primary->entries[i];
4145 		if (new->entries[j].threshold <= usage) {
4146 			/*
4147 			 * new->current_threshold will not be used
4148 			 * until rcu_assign_pointer(), so it's safe to increment
4149 			 * it here.
4150 			 */
4151 			++new->current_threshold;
4152 		}
4153 		j++;
4154 	}
4155 
4156 swap_buffers:
4157 	/* Swap primary and spare array */
4158 	thresholds->spare = thresholds->primary;
4159 
4160 	rcu_assign_pointer(thresholds->primary, new);
4161 
4162 	/* To be sure that nobody uses thresholds */
4163 	synchronize_rcu();
4164 
4165 	/* If all events are unregistered, free the spare array */
4166 	if (!new) {
4167 		kfree(thresholds->spare);
4168 		thresholds->spare = NULL;
4169 	}
4170 unlock:
4171 	mutex_unlock(&memcg->thresholds_lock);
4172 }
4173 
4174 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4175 	struct eventfd_ctx *eventfd)
4176 {
4177 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4178 }
4179 
4180 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4181 	struct eventfd_ctx *eventfd)
4182 {
4183 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4184 }
4185 
4186 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4187 	struct eventfd_ctx *eventfd, const char *args)
4188 {
4189 	struct mem_cgroup_eventfd_list *event;
4190 
4191 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4192 	if (!event)
4193 		return -ENOMEM;
4194 
4195 	spin_lock(&memcg_oom_lock);
4196 
4197 	event->eventfd = eventfd;
4198 	list_add(&event->list, &memcg->oom_notify);
4199 
4200 	/* already in OOM ? */
4201 	if (memcg->under_oom)
4202 		eventfd_signal(eventfd, 1);
4203 	spin_unlock(&memcg_oom_lock);
4204 
4205 	return 0;
4206 }
4207 
4208 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4209 	struct eventfd_ctx *eventfd)
4210 {
4211 	struct mem_cgroup_eventfd_list *ev, *tmp;
4212 
4213 	spin_lock(&memcg_oom_lock);
4214 
4215 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4216 		if (ev->eventfd == eventfd) {
4217 			list_del(&ev->list);
4218 			kfree(ev);
4219 		}
4220 	}
4221 
4222 	spin_unlock(&memcg_oom_lock);
4223 }
4224 
4225 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4226 {
4227 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4228 
4229 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4230 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4231 	seq_printf(sf, "oom_kill %lu\n",
4232 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4233 	return 0;
4234 }
4235 
4236 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4237 	struct cftype *cft, u64 val)
4238 {
4239 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4240 
4241 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4242 	if (!css->parent || !((val == 0) || (val == 1)))
4243 		return -EINVAL;
4244 
4245 	memcg->oom_kill_disable = val;
4246 	if (!val)
4247 		memcg_oom_recover(memcg);
4248 
4249 	return 0;
4250 }
4251 
4252 #ifdef CONFIG_CGROUP_WRITEBACK
4253 
4254 #include <trace/events/writeback.h>
4255 
4256 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4257 {
4258 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4259 }
4260 
4261 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4262 {
4263 	wb_domain_exit(&memcg->cgwb_domain);
4264 }
4265 
4266 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4267 {
4268 	wb_domain_size_changed(&memcg->cgwb_domain);
4269 }
4270 
4271 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4272 {
4273 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4274 
4275 	if (!memcg->css.parent)
4276 		return NULL;
4277 
4278 	return &memcg->cgwb_domain;
4279 }
4280 
4281 /*
4282  * idx can be of type enum memcg_stat_item or node_stat_item.
4283  * Keep in sync with memcg_exact_page().
4284  */
4285 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4286 {
4287 	long x = atomic_long_read(&memcg->vmstats[idx]);
4288 	int cpu;
4289 
4290 	for_each_online_cpu(cpu)
4291 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4292 	if (x < 0)
4293 		x = 0;
4294 	return x;
4295 }
4296 
4297 /**
4298  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4299  * @wb: bdi_writeback in question
4300  * @pfilepages: out parameter for number of file pages
4301  * @pheadroom: out parameter for number of allocatable pages according to memcg
4302  * @pdirty: out parameter for number of dirty pages
4303  * @pwriteback: out parameter for number of pages under writeback
4304  *
4305  * Determine the numbers of file, headroom, dirty, and writeback pages in
4306  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4307  * is a bit more involved.
4308  *
4309  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4310  * headroom is calculated as the lowest headroom of itself and the
4311  * ancestors.  Note that this doesn't consider the actual amount of
4312  * available memory in the system.  The caller should further cap
4313  * *@pheadroom accordingly.
4314  */
4315 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4316 			 unsigned long *pheadroom, unsigned long *pdirty,
4317 			 unsigned long *pwriteback)
4318 {
4319 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4320 	struct mem_cgroup *parent;
4321 
4322 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4323 
4324 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4325 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4326 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4327 	*pheadroom = PAGE_COUNTER_MAX;
4328 
4329 	while ((parent = parent_mem_cgroup(memcg))) {
4330 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4331 					    READ_ONCE(memcg->memory.high));
4332 		unsigned long used = page_counter_read(&memcg->memory);
4333 
4334 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4335 		memcg = parent;
4336 	}
4337 }
4338 
4339 /*
4340  * Foreign dirty flushing
4341  *
4342  * There's an inherent mismatch between memcg and writeback.  The former
4343  * trackes ownership per-page while the latter per-inode.  This was a
4344  * deliberate design decision because honoring per-page ownership in the
4345  * writeback path is complicated, may lead to higher CPU and IO overheads
4346  * and deemed unnecessary given that write-sharing an inode across
4347  * different cgroups isn't a common use-case.
4348  *
4349  * Combined with inode majority-writer ownership switching, this works well
4350  * enough in most cases but there are some pathological cases.  For
4351  * example, let's say there are two cgroups A and B which keep writing to
4352  * different but confined parts of the same inode.  B owns the inode and
4353  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4354  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4355  * triggering background writeback.  A will be slowed down without a way to
4356  * make writeback of the dirty pages happen.
4357  *
4358  * Conditions like the above can lead to a cgroup getting repatedly and
4359  * severely throttled after making some progress after each
4360  * dirty_expire_interval while the underyling IO device is almost
4361  * completely idle.
4362  *
4363  * Solving this problem completely requires matching the ownership tracking
4364  * granularities between memcg and writeback in either direction.  However,
4365  * the more egregious behaviors can be avoided by simply remembering the
4366  * most recent foreign dirtying events and initiating remote flushes on
4367  * them when local writeback isn't enough to keep the memory clean enough.
4368  *
4369  * The following two functions implement such mechanism.  When a foreign
4370  * page - a page whose memcg and writeback ownerships don't match - is
4371  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4372  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4373  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4374  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4375  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4376  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4377  * limited to MEMCG_CGWB_FRN_CNT.
4378  *
4379  * The mechanism only remembers IDs and doesn't hold any object references.
4380  * As being wrong occasionally doesn't matter, updates and accesses to the
4381  * records are lockless and racy.
4382  */
4383 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4384 					     struct bdi_writeback *wb)
4385 {
4386 	struct mem_cgroup *memcg = page->mem_cgroup;
4387 	struct memcg_cgwb_frn *frn;
4388 	u64 now = get_jiffies_64();
4389 	u64 oldest_at = now;
4390 	int oldest = -1;
4391 	int i;
4392 
4393 	trace_track_foreign_dirty(page, wb);
4394 
4395 	/*
4396 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4397 	 * using it.  If not replace the oldest one which isn't being
4398 	 * written out.
4399 	 */
4400 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4401 		frn = &memcg->cgwb_frn[i];
4402 		if (frn->bdi_id == wb->bdi->id &&
4403 		    frn->memcg_id == wb->memcg_css->id)
4404 			break;
4405 		if (time_before64(frn->at, oldest_at) &&
4406 		    atomic_read(&frn->done.cnt) == 1) {
4407 			oldest = i;
4408 			oldest_at = frn->at;
4409 		}
4410 	}
4411 
4412 	if (i < MEMCG_CGWB_FRN_CNT) {
4413 		/*
4414 		 * Re-using an existing one.  Update timestamp lazily to
4415 		 * avoid making the cacheline hot.  We want them to be
4416 		 * reasonably up-to-date and significantly shorter than
4417 		 * dirty_expire_interval as that's what expires the record.
4418 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4419 		 */
4420 		unsigned long update_intv =
4421 			min_t(unsigned long, HZ,
4422 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4423 
4424 		if (time_before64(frn->at, now - update_intv))
4425 			frn->at = now;
4426 	} else if (oldest >= 0) {
4427 		/* replace the oldest free one */
4428 		frn = &memcg->cgwb_frn[oldest];
4429 		frn->bdi_id = wb->bdi->id;
4430 		frn->memcg_id = wb->memcg_css->id;
4431 		frn->at = now;
4432 	}
4433 }
4434 
4435 /* issue foreign writeback flushes for recorded foreign dirtying events */
4436 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4437 {
4438 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4439 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4440 	u64 now = jiffies_64;
4441 	int i;
4442 
4443 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4444 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4445 
4446 		/*
4447 		 * If the record is older than dirty_expire_interval,
4448 		 * writeback on it has already started.  No need to kick it
4449 		 * off again.  Also, don't start a new one if there's
4450 		 * already one in flight.
4451 		 */
4452 		if (time_after64(frn->at, now - intv) &&
4453 		    atomic_read(&frn->done.cnt) == 1) {
4454 			frn->at = 0;
4455 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4456 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4457 					       WB_REASON_FOREIGN_FLUSH,
4458 					       &frn->done);
4459 		}
4460 	}
4461 }
4462 
4463 #else	/* CONFIG_CGROUP_WRITEBACK */
4464 
4465 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4466 {
4467 	return 0;
4468 }
4469 
4470 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4471 {
4472 }
4473 
4474 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4475 {
4476 }
4477 
4478 #endif	/* CONFIG_CGROUP_WRITEBACK */
4479 
4480 /*
4481  * DO NOT USE IN NEW FILES.
4482  *
4483  * "cgroup.event_control" implementation.
4484  *
4485  * This is way over-engineered.  It tries to support fully configurable
4486  * events for each user.  Such level of flexibility is completely
4487  * unnecessary especially in the light of the planned unified hierarchy.
4488  *
4489  * Please deprecate this and replace with something simpler if at all
4490  * possible.
4491  */
4492 
4493 /*
4494  * Unregister event and free resources.
4495  *
4496  * Gets called from workqueue.
4497  */
4498 static void memcg_event_remove(struct work_struct *work)
4499 {
4500 	struct mem_cgroup_event *event =
4501 		container_of(work, struct mem_cgroup_event, remove);
4502 	struct mem_cgroup *memcg = event->memcg;
4503 
4504 	remove_wait_queue(event->wqh, &event->wait);
4505 
4506 	event->unregister_event(memcg, event->eventfd);
4507 
4508 	/* Notify userspace the event is going away. */
4509 	eventfd_signal(event->eventfd, 1);
4510 
4511 	eventfd_ctx_put(event->eventfd);
4512 	kfree(event);
4513 	css_put(&memcg->css);
4514 }
4515 
4516 /*
4517  * Gets called on EPOLLHUP on eventfd when user closes it.
4518  *
4519  * Called with wqh->lock held and interrupts disabled.
4520  */
4521 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4522 			    int sync, void *key)
4523 {
4524 	struct mem_cgroup_event *event =
4525 		container_of(wait, struct mem_cgroup_event, wait);
4526 	struct mem_cgroup *memcg = event->memcg;
4527 	__poll_t flags = key_to_poll(key);
4528 
4529 	if (flags & EPOLLHUP) {
4530 		/*
4531 		 * If the event has been detached at cgroup removal, we
4532 		 * can simply return knowing the other side will cleanup
4533 		 * for us.
4534 		 *
4535 		 * We can't race against event freeing since the other
4536 		 * side will require wqh->lock via remove_wait_queue(),
4537 		 * which we hold.
4538 		 */
4539 		spin_lock(&memcg->event_list_lock);
4540 		if (!list_empty(&event->list)) {
4541 			list_del_init(&event->list);
4542 			/*
4543 			 * We are in atomic context, but cgroup_event_remove()
4544 			 * may sleep, so we have to call it in workqueue.
4545 			 */
4546 			schedule_work(&event->remove);
4547 		}
4548 		spin_unlock(&memcg->event_list_lock);
4549 	}
4550 
4551 	return 0;
4552 }
4553 
4554 static void memcg_event_ptable_queue_proc(struct file *file,
4555 		wait_queue_head_t *wqh, poll_table *pt)
4556 {
4557 	struct mem_cgroup_event *event =
4558 		container_of(pt, struct mem_cgroup_event, pt);
4559 
4560 	event->wqh = wqh;
4561 	add_wait_queue(wqh, &event->wait);
4562 }
4563 
4564 /*
4565  * DO NOT USE IN NEW FILES.
4566  *
4567  * Parse input and register new cgroup event handler.
4568  *
4569  * Input must be in format '<event_fd> <control_fd> <args>'.
4570  * Interpretation of args is defined by control file implementation.
4571  */
4572 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4573 					 char *buf, size_t nbytes, loff_t off)
4574 {
4575 	struct cgroup_subsys_state *css = of_css(of);
4576 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4577 	struct mem_cgroup_event *event;
4578 	struct cgroup_subsys_state *cfile_css;
4579 	unsigned int efd, cfd;
4580 	struct fd efile;
4581 	struct fd cfile;
4582 	const char *name;
4583 	char *endp;
4584 	int ret;
4585 
4586 	buf = strstrip(buf);
4587 
4588 	efd = simple_strtoul(buf, &endp, 10);
4589 	if (*endp != ' ')
4590 		return -EINVAL;
4591 	buf = endp + 1;
4592 
4593 	cfd = simple_strtoul(buf, &endp, 10);
4594 	if ((*endp != ' ') && (*endp != '\0'))
4595 		return -EINVAL;
4596 	buf = endp + 1;
4597 
4598 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4599 	if (!event)
4600 		return -ENOMEM;
4601 
4602 	event->memcg = memcg;
4603 	INIT_LIST_HEAD(&event->list);
4604 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4605 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4606 	INIT_WORK(&event->remove, memcg_event_remove);
4607 
4608 	efile = fdget(efd);
4609 	if (!efile.file) {
4610 		ret = -EBADF;
4611 		goto out_kfree;
4612 	}
4613 
4614 	event->eventfd = eventfd_ctx_fileget(efile.file);
4615 	if (IS_ERR(event->eventfd)) {
4616 		ret = PTR_ERR(event->eventfd);
4617 		goto out_put_efile;
4618 	}
4619 
4620 	cfile = fdget(cfd);
4621 	if (!cfile.file) {
4622 		ret = -EBADF;
4623 		goto out_put_eventfd;
4624 	}
4625 
4626 	/* the process need read permission on control file */
4627 	/* AV: shouldn't we check that it's been opened for read instead? */
4628 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4629 	if (ret < 0)
4630 		goto out_put_cfile;
4631 
4632 	/*
4633 	 * Determine the event callbacks and set them in @event.  This used
4634 	 * to be done via struct cftype but cgroup core no longer knows
4635 	 * about these events.  The following is crude but the whole thing
4636 	 * is for compatibility anyway.
4637 	 *
4638 	 * DO NOT ADD NEW FILES.
4639 	 */
4640 	name = cfile.file->f_path.dentry->d_name.name;
4641 
4642 	if (!strcmp(name, "memory.usage_in_bytes")) {
4643 		event->register_event = mem_cgroup_usage_register_event;
4644 		event->unregister_event = mem_cgroup_usage_unregister_event;
4645 	} else if (!strcmp(name, "memory.oom_control")) {
4646 		event->register_event = mem_cgroup_oom_register_event;
4647 		event->unregister_event = mem_cgroup_oom_unregister_event;
4648 	} else if (!strcmp(name, "memory.pressure_level")) {
4649 		event->register_event = vmpressure_register_event;
4650 		event->unregister_event = vmpressure_unregister_event;
4651 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4652 		event->register_event = memsw_cgroup_usage_register_event;
4653 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4654 	} else {
4655 		ret = -EINVAL;
4656 		goto out_put_cfile;
4657 	}
4658 
4659 	/*
4660 	 * Verify @cfile should belong to @css.  Also, remaining events are
4661 	 * automatically removed on cgroup destruction but the removal is
4662 	 * asynchronous, so take an extra ref on @css.
4663 	 */
4664 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4665 					       &memory_cgrp_subsys);
4666 	ret = -EINVAL;
4667 	if (IS_ERR(cfile_css))
4668 		goto out_put_cfile;
4669 	if (cfile_css != css) {
4670 		css_put(cfile_css);
4671 		goto out_put_cfile;
4672 	}
4673 
4674 	ret = event->register_event(memcg, event->eventfd, buf);
4675 	if (ret)
4676 		goto out_put_css;
4677 
4678 	vfs_poll(efile.file, &event->pt);
4679 
4680 	spin_lock(&memcg->event_list_lock);
4681 	list_add(&event->list, &memcg->event_list);
4682 	spin_unlock(&memcg->event_list_lock);
4683 
4684 	fdput(cfile);
4685 	fdput(efile);
4686 
4687 	return nbytes;
4688 
4689 out_put_css:
4690 	css_put(css);
4691 out_put_cfile:
4692 	fdput(cfile);
4693 out_put_eventfd:
4694 	eventfd_ctx_put(event->eventfd);
4695 out_put_efile:
4696 	fdput(efile);
4697 out_kfree:
4698 	kfree(event);
4699 
4700 	return ret;
4701 }
4702 
4703 static struct cftype mem_cgroup_legacy_files[] = {
4704 	{
4705 		.name = "usage_in_bytes",
4706 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4707 		.read_u64 = mem_cgroup_read_u64,
4708 	},
4709 	{
4710 		.name = "max_usage_in_bytes",
4711 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4712 		.write = mem_cgroup_reset,
4713 		.read_u64 = mem_cgroup_read_u64,
4714 	},
4715 	{
4716 		.name = "limit_in_bytes",
4717 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4718 		.write = mem_cgroup_write,
4719 		.read_u64 = mem_cgroup_read_u64,
4720 	},
4721 	{
4722 		.name = "soft_limit_in_bytes",
4723 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4724 		.write = mem_cgroup_write,
4725 		.read_u64 = mem_cgroup_read_u64,
4726 	},
4727 	{
4728 		.name = "failcnt",
4729 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4730 		.write = mem_cgroup_reset,
4731 		.read_u64 = mem_cgroup_read_u64,
4732 	},
4733 	{
4734 		.name = "stat",
4735 		.seq_show = memcg_stat_show,
4736 	},
4737 	{
4738 		.name = "force_empty",
4739 		.write = mem_cgroup_force_empty_write,
4740 	},
4741 	{
4742 		.name = "use_hierarchy",
4743 		.write_u64 = mem_cgroup_hierarchy_write,
4744 		.read_u64 = mem_cgroup_hierarchy_read,
4745 	},
4746 	{
4747 		.name = "cgroup.event_control",		/* XXX: for compat */
4748 		.write = memcg_write_event_control,
4749 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4750 	},
4751 	{
4752 		.name = "swappiness",
4753 		.read_u64 = mem_cgroup_swappiness_read,
4754 		.write_u64 = mem_cgroup_swappiness_write,
4755 	},
4756 	{
4757 		.name = "move_charge_at_immigrate",
4758 		.read_u64 = mem_cgroup_move_charge_read,
4759 		.write_u64 = mem_cgroup_move_charge_write,
4760 	},
4761 	{
4762 		.name = "oom_control",
4763 		.seq_show = mem_cgroup_oom_control_read,
4764 		.write_u64 = mem_cgroup_oom_control_write,
4765 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4766 	},
4767 	{
4768 		.name = "pressure_level",
4769 	},
4770 #ifdef CONFIG_NUMA
4771 	{
4772 		.name = "numa_stat",
4773 		.seq_show = memcg_numa_stat_show,
4774 	},
4775 #endif
4776 	{
4777 		.name = "kmem.limit_in_bytes",
4778 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4779 		.write = mem_cgroup_write,
4780 		.read_u64 = mem_cgroup_read_u64,
4781 	},
4782 	{
4783 		.name = "kmem.usage_in_bytes",
4784 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4785 		.read_u64 = mem_cgroup_read_u64,
4786 	},
4787 	{
4788 		.name = "kmem.failcnt",
4789 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4790 		.write = mem_cgroup_reset,
4791 		.read_u64 = mem_cgroup_read_u64,
4792 	},
4793 	{
4794 		.name = "kmem.max_usage_in_bytes",
4795 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4796 		.write = mem_cgroup_reset,
4797 		.read_u64 = mem_cgroup_read_u64,
4798 	},
4799 #if defined(CONFIG_MEMCG_KMEM) && \
4800 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4801 	{
4802 		.name = "kmem.slabinfo",
4803 		.seq_start = memcg_slab_start,
4804 		.seq_next = memcg_slab_next,
4805 		.seq_stop = memcg_slab_stop,
4806 		.seq_show = memcg_slab_show,
4807 	},
4808 #endif
4809 	{
4810 		.name = "kmem.tcp.limit_in_bytes",
4811 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4812 		.write = mem_cgroup_write,
4813 		.read_u64 = mem_cgroup_read_u64,
4814 	},
4815 	{
4816 		.name = "kmem.tcp.usage_in_bytes",
4817 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4818 		.read_u64 = mem_cgroup_read_u64,
4819 	},
4820 	{
4821 		.name = "kmem.tcp.failcnt",
4822 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4823 		.write = mem_cgroup_reset,
4824 		.read_u64 = mem_cgroup_read_u64,
4825 	},
4826 	{
4827 		.name = "kmem.tcp.max_usage_in_bytes",
4828 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4829 		.write = mem_cgroup_reset,
4830 		.read_u64 = mem_cgroup_read_u64,
4831 	},
4832 	{ },	/* terminate */
4833 };
4834 
4835 /*
4836  * Private memory cgroup IDR
4837  *
4838  * Swap-out records and page cache shadow entries need to store memcg
4839  * references in constrained space, so we maintain an ID space that is
4840  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4841  * memory-controlled cgroups to 64k.
4842  *
4843  * However, there usually are many references to the offline CSS after
4844  * the cgroup has been destroyed, such as page cache or reclaimable
4845  * slab objects, that don't need to hang on to the ID. We want to keep
4846  * those dead CSS from occupying IDs, or we might quickly exhaust the
4847  * relatively small ID space and prevent the creation of new cgroups
4848  * even when there are much fewer than 64k cgroups - possibly none.
4849  *
4850  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4851  * be freed and recycled when it's no longer needed, which is usually
4852  * when the CSS is offlined.
4853  *
4854  * The only exception to that are records of swapped out tmpfs/shmem
4855  * pages that need to be attributed to live ancestors on swapin. But
4856  * those references are manageable from userspace.
4857  */
4858 
4859 static DEFINE_IDR(mem_cgroup_idr);
4860 
4861 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4862 {
4863 	if (memcg->id.id > 0) {
4864 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4865 		memcg->id.id = 0;
4866 	}
4867 }
4868 
4869 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4870 						  unsigned int n)
4871 {
4872 	refcount_add(n, &memcg->id.ref);
4873 }
4874 
4875 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4876 {
4877 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4878 		mem_cgroup_id_remove(memcg);
4879 
4880 		/* Memcg ID pins CSS */
4881 		css_put(&memcg->css);
4882 	}
4883 }
4884 
4885 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4886 {
4887 	mem_cgroup_id_put_many(memcg, 1);
4888 }
4889 
4890 /**
4891  * mem_cgroup_from_id - look up a memcg from a memcg id
4892  * @id: the memcg id to look up
4893  *
4894  * Caller must hold rcu_read_lock().
4895  */
4896 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4897 {
4898 	WARN_ON_ONCE(!rcu_read_lock_held());
4899 	return idr_find(&mem_cgroup_idr, id);
4900 }
4901 
4902 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4903 {
4904 	struct mem_cgroup_per_node *pn;
4905 	int tmp = node;
4906 	/*
4907 	 * This routine is called against possible nodes.
4908 	 * But it's BUG to call kmalloc() against offline node.
4909 	 *
4910 	 * TODO: this routine can waste much memory for nodes which will
4911 	 *       never be onlined. It's better to use memory hotplug callback
4912 	 *       function.
4913 	 */
4914 	if (!node_state(node, N_NORMAL_MEMORY))
4915 		tmp = -1;
4916 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4917 	if (!pn)
4918 		return 1;
4919 
4920 	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4921 	if (!pn->lruvec_stat_local) {
4922 		kfree(pn);
4923 		return 1;
4924 	}
4925 
4926 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4927 	if (!pn->lruvec_stat_cpu) {
4928 		free_percpu(pn->lruvec_stat_local);
4929 		kfree(pn);
4930 		return 1;
4931 	}
4932 
4933 	lruvec_init(&pn->lruvec);
4934 	pn->usage_in_excess = 0;
4935 	pn->on_tree = false;
4936 	pn->memcg = memcg;
4937 
4938 	memcg->nodeinfo[node] = pn;
4939 	return 0;
4940 }
4941 
4942 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4943 {
4944 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4945 
4946 	if (!pn)
4947 		return;
4948 
4949 	free_percpu(pn->lruvec_stat_cpu);
4950 	free_percpu(pn->lruvec_stat_local);
4951 	kfree(pn);
4952 }
4953 
4954 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4955 {
4956 	int node;
4957 
4958 	for_each_node(node)
4959 		free_mem_cgroup_per_node_info(memcg, node);
4960 	free_percpu(memcg->vmstats_percpu);
4961 	free_percpu(memcg->vmstats_local);
4962 	kfree(memcg);
4963 }
4964 
4965 static void mem_cgroup_free(struct mem_cgroup *memcg)
4966 {
4967 	memcg_wb_domain_exit(memcg);
4968 	/*
4969 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
4970 	 * on parent's and all ancestor levels.
4971 	 */
4972 	memcg_flush_percpu_vmstats(memcg);
4973 	memcg_flush_percpu_vmevents(memcg);
4974 	__mem_cgroup_free(memcg);
4975 }
4976 
4977 static struct mem_cgroup *mem_cgroup_alloc(void)
4978 {
4979 	struct mem_cgroup *memcg;
4980 	unsigned int size;
4981 	int node;
4982 	int __maybe_unused i;
4983 	long error = -ENOMEM;
4984 
4985 	size = sizeof(struct mem_cgroup);
4986 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4987 
4988 	memcg = kzalloc(size, GFP_KERNEL);
4989 	if (!memcg)
4990 		return ERR_PTR(error);
4991 
4992 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4993 				 1, MEM_CGROUP_ID_MAX,
4994 				 GFP_KERNEL);
4995 	if (memcg->id.id < 0) {
4996 		error = memcg->id.id;
4997 		goto fail;
4998 	}
4999 
5000 	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5001 	if (!memcg->vmstats_local)
5002 		goto fail;
5003 
5004 	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5005 	if (!memcg->vmstats_percpu)
5006 		goto fail;
5007 
5008 	for_each_node(node)
5009 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5010 			goto fail;
5011 
5012 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5013 		goto fail;
5014 
5015 	INIT_WORK(&memcg->high_work, high_work_func);
5016 	INIT_LIST_HEAD(&memcg->oom_notify);
5017 	mutex_init(&memcg->thresholds_lock);
5018 	spin_lock_init(&memcg->move_lock);
5019 	vmpressure_init(&memcg->vmpressure);
5020 	INIT_LIST_HEAD(&memcg->event_list);
5021 	spin_lock_init(&memcg->event_list_lock);
5022 	memcg->socket_pressure = jiffies;
5023 #ifdef CONFIG_MEMCG_KMEM
5024 	memcg->kmemcg_id = -1;
5025 #endif
5026 #ifdef CONFIG_CGROUP_WRITEBACK
5027 	INIT_LIST_HEAD(&memcg->cgwb_list);
5028 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5029 		memcg->cgwb_frn[i].done =
5030 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5031 #endif
5032 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5033 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5034 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5035 	memcg->deferred_split_queue.split_queue_len = 0;
5036 #endif
5037 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5038 	return memcg;
5039 fail:
5040 	mem_cgroup_id_remove(memcg);
5041 	__mem_cgroup_free(memcg);
5042 	return ERR_PTR(error);
5043 }
5044 
5045 static struct cgroup_subsys_state * __ref
5046 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5047 {
5048 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5049 	struct mem_cgroup *memcg;
5050 	long error = -ENOMEM;
5051 
5052 	memcg = mem_cgroup_alloc();
5053 	if (IS_ERR(memcg))
5054 		return ERR_CAST(memcg);
5055 
5056 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5057 	memcg->soft_limit = PAGE_COUNTER_MAX;
5058 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5059 	if (parent) {
5060 		memcg->swappiness = mem_cgroup_swappiness(parent);
5061 		memcg->oom_kill_disable = parent->oom_kill_disable;
5062 	}
5063 	if (parent && parent->use_hierarchy) {
5064 		memcg->use_hierarchy = true;
5065 		page_counter_init(&memcg->memory, &parent->memory);
5066 		page_counter_init(&memcg->swap, &parent->swap);
5067 		page_counter_init(&memcg->memsw, &parent->memsw);
5068 		page_counter_init(&memcg->kmem, &parent->kmem);
5069 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5070 	} else {
5071 		page_counter_init(&memcg->memory, NULL);
5072 		page_counter_init(&memcg->swap, NULL);
5073 		page_counter_init(&memcg->memsw, NULL);
5074 		page_counter_init(&memcg->kmem, NULL);
5075 		page_counter_init(&memcg->tcpmem, NULL);
5076 		/*
5077 		 * Deeper hierachy with use_hierarchy == false doesn't make
5078 		 * much sense so let cgroup subsystem know about this
5079 		 * unfortunate state in our controller.
5080 		 */
5081 		if (parent != root_mem_cgroup)
5082 			memory_cgrp_subsys.broken_hierarchy = true;
5083 	}
5084 
5085 	/* The following stuff does not apply to the root */
5086 	if (!parent) {
5087 #ifdef CONFIG_MEMCG_KMEM
5088 		INIT_LIST_HEAD(&memcg->kmem_caches);
5089 #endif
5090 		root_mem_cgroup = memcg;
5091 		return &memcg->css;
5092 	}
5093 
5094 	error = memcg_online_kmem(memcg);
5095 	if (error)
5096 		goto fail;
5097 
5098 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5099 		static_branch_inc(&memcg_sockets_enabled_key);
5100 
5101 	return &memcg->css;
5102 fail:
5103 	mem_cgroup_id_remove(memcg);
5104 	mem_cgroup_free(memcg);
5105 	return ERR_PTR(error);
5106 }
5107 
5108 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5109 {
5110 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5111 
5112 	/*
5113 	 * A memcg must be visible for memcg_expand_shrinker_maps()
5114 	 * by the time the maps are allocated. So, we allocate maps
5115 	 * here, when for_each_mem_cgroup() can't skip it.
5116 	 */
5117 	if (memcg_alloc_shrinker_maps(memcg)) {
5118 		mem_cgroup_id_remove(memcg);
5119 		return -ENOMEM;
5120 	}
5121 
5122 	/* Online state pins memcg ID, memcg ID pins CSS */
5123 	refcount_set(&memcg->id.ref, 1);
5124 	css_get(css);
5125 	return 0;
5126 }
5127 
5128 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5129 {
5130 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5131 	struct mem_cgroup_event *event, *tmp;
5132 
5133 	/*
5134 	 * Unregister events and notify userspace.
5135 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5136 	 * directory to avoid race between userspace and kernelspace.
5137 	 */
5138 	spin_lock(&memcg->event_list_lock);
5139 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5140 		list_del_init(&event->list);
5141 		schedule_work(&event->remove);
5142 	}
5143 	spin_unlock(&memcg->event_list_lock);
5144 
5145 	page_counter_set_min(&memcg->memory, 0);
5146 	page_counter_set_low(&memcg->memory, 0);
5147 
5148 	memcg_offline_kmem(memcg);
5149 	wb_memcg_offline(memcg);
5150 
5151 	drain_all_stock(memcg);
5152 
5153 	mem_cgroup_id_put(memcg);
5154 }
5155 
5156 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5157 {
5158 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5159 
5160 	invalidate_reclaim_iterators(memcg);
5161 }
5162 
5163 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5164 {
5165 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5166 	int __maybe_unused i;
5167 
5168 #ifdef CONFIG_CGROUP_WRITEBACK
5169 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5170 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5171 #endif
5172 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5173 		static_branch_dec(&memcg_sockets_enabled_key);
5174 
5175 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5176 		static_branch_dec(&memcg_sockets_enabled_key);
5177 
5178 	vmpressure_cleanup(&memcg->vmpressure);
5179 	cancel_work_sync(&memcg->high_work);
5180 	mem_cgroup_remove_from_trees(memcg);
5181 	memcg_free_shrinker_maps(memcg);
5182 	memcg_free_kmem(memcg);
5183 	mem_cgroup_free(memcg);
5184 }
5185 
5186 /**
5187  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5188  * @css: the target css
5189  *
5190  * Reset the states of the mem_cgroup associated with @css.  This is
5191  * invoked when the userland requests disabling on the default hierarchy
5192  * but the memcg is pinned through dependency.  The memcg should stop
5193  * applying policies and should revert to the vanilla state as it may be
5194  * made visible again.
5195  *
5196  * The current implementation only resets the essential configurations.
5197  * This needs to be expanded to cover all the visible parts.
5198  */
5199 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5200 {
5201 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5202 
5203 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5204 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5205 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5206 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5207 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5208 	page_counter_set_min(&memcg->memory, 0);
5209 	page_counter_set_low(&memcg->memory, 0);
5210 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5211 	memcg->soft_limit = PAGE_COUNTER_MAX;
5212 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5213 	memcg_wb_domain_size_changed(memcg);
5214 }
5215 
5216 #ifdef CONFIG_MMU
5217 /* Handlers for move charge at task migration. */
5218 static int mem_cgroup_do_precharge(unsigned long count)
5219 {
5220 	int ret;
5221 
5222 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5223 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5224 	if (!ret) {
5225 		mc.precharge += count;
5226 		return ret;
5227 	}
5228 
5229 	/* Try charges one by one with reclaim, but do not retry */
5230 	while (count--) {
5231 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5232 		if (ret)
5233 			return ret;
5234 		mc.precharge++;
5235 		cond_resched();
5236 	}
5237 	return 0;
5238 }
5239 
5240 union mc_target {
5241 	struct page	*page;
5242 	swp_entry_t	ent;
5243 };
5244 
5245 enum mc_target_type {
5246 	MC_TARGET_NONE = 0,
5247 	MC_TARGET_PAGE,
5248 	MC_TARGET_SWAP,
5249 	MC_TARGET_DEVICE,
5250 };
5251 
5252 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5253 						unsigned long addr, pte_t ptent)
5254 {
5255 	struct page *page = vm_normal_page(vma, addr, ptent);
5256 
5257 	if (!page || !page_mapped(page))
5258 		return NULL;
5259 	if (PageAnon(page)) {
5260 		if (!(mc.flags & MOVE_ANON))
5261 			return NULL;
5262 	} else {
5263 		if (!(mc.flags & MOVE_FILE))
5264 			return NULL;
5265 	}
5266 	if (!get_page_unless_zero(page))
5267 		return NULL;
5268 
5269 	return page;
5270 }
5271 
5272 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5273 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5274 			pte_t ptent, swp_entry_t *entry)
5275 {
5276 	struct page *page = NULL;
5277 	swp_entry_t ent = pte_to_swp_entry(ptent);
5278 
5279 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5280 		return NULL;
5281 
5282 	/*
5283 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5284 	 * a device and because they are not accessible by CPU they are store
5285 	 * as special swap entry in the CPU page table.
5286 	 */
5287 	if (is_device_private_entry(ent)) {
5288 		page = device_private_entry_to_page(ent);
5289 		/*
5290 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5291 		 * a refcount of 1 when free (unlike normal page)
5292 		 */
5293 		if (!page_ref_add_unless(page, 1, 1))
5294 			return NULL;
5295 		return page;
5296 	}
5297 
5298 	/*
5299 	 * Because lookup_swap_cache() updates some statistics counter,
5300 	 * we call find_get_page() with swapper_space directly.
5301 	 */
5302 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5303 	entry->val = ent.val;
5304 
5305 	return page;
5306 }
5307 #else
5308 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5309 			pte_t ptent, swp_entry_t *entry)
5310 {
5311 	return NULL;
5312 }
5313 #endif
5314 
5315 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5316 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5317 {
5318 	struct page *page = NULL;
5319 	struct address_space *mapping;
5320 	pgoff_t pgoff;
5321 
5322 	if (!vma->vm_file) /* anonymous vma */
5323 		return NULL;
5324 	if (!(mc.flags & MOVE_FILE))
5325 		return NULL;
5326 
5327 	mapping = vma->vm_file->f_mapping;
5328 	pgoff = linear_page_index(vma, addr);
5329 
5330 	/* page is moved even if it's not RSS of this task(page-faulted). */
5331 #ifdef CONFIG_SWAP
5332 	/* shmem/tmpfs may report page out on swap: account for that too. */
5333 	if (shmem_mapping(mapping)) {
5334 		page = find_get_entry(mapping, pgoff);
5335 		if (xa_is_value(page)) {
5336 			swp_entry_t swp = radix_to_swp_entry(page);
5337 			*entry = swp;
5338 			page = find_get_page(swap_address_space(swp),
5339 					     swp_offset(swp));
5340 		}
5341 	} else
5342 		page = find_get_page(mapping, pgoff);
5343 #else
5344 	page = find_get_page(mapping, pgoff);
5345 #endif
5346 	return page;
5347 }
5348 
5349 /**
5350  * mem_cgroup_move_account - move account of the page
5351  * @page: the page
5352  * @compound: charge the page as compound or small page
5353  * @from: mem_cgroup which the page is moved from.
5354  * @to:	mem_cgroup which the page is moved to. @from != @to.
5355  *
5356  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5357  *
5358  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5359  * from old cgroup.
5360  */
5361 static int mem_cgroup_move_account(struct page *page,
5362 				   bool compound,
5363 				   struct mem_cgroup *from,
5364 				   struct mem_cgroup *to)
5365 {
5366 	struct lruvec *from_vec, *to_vec;
5367 	struct pglist_data *pgdat;
5368 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5369 	int ret;
5370 
5371 	VM_BUG_ON(from == to);
5372 	VM_BUG_ON_PAGE(PageLRU(page), page);
5373 	VM_BUG_ON(compound && !PageTransHuge(page));
5374 
5375 	/*
5376 	 * Prevent mem_cgroup_migrate() from looking at
5377 	 * page->mem_cgroup of its source page while we change it.
5378 	 */
5379 	ret = -EBUSY;
5380 	if (!trylock_page(page))
5381 		goto out;
5382 
5383 	ret = -EINVAL;
5384 	if (page->mem_cgroup != from)
5385 		goto out_unlock;
5386 
5387 	pgdat = page_pgdat(page);
5388 	from_vec = mem_cgroup_lruvec(from, pgdat);
5389 	to_vec = mem_cgroup_lruvec(to, pgdat);
5390 
5391 	lock_page_memcg(page);
5392 
5393 	if (PageAnon(page)) {
5394 		if (page_mapped(page)) {
5395 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5396 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5397 			if (PageTransHuge(page)) {
5398 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5399 						   -nr_pages);
5400 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5401 						   nr_pages);
5402 			}
5403 
5404 		}
5405 	} else {
5406 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5407 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5408 
5409 		if (PageSwapBacked(page)) {
5410 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5411 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5412 		}
5413 
5414 		if (page_mapped(page)) {
5415 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5416 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5417 		}
5418 
5419 		if (PageDirty(page)) {
5420 			struct address_space *mapping = page_mapping(page);
5421 
5422 			if (mapping_cap_account_dirty(mapping)) {
5423 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5424 						   -nr_pages);
5425 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5426 						   nr_pages);
5427 			}
5428 		}
5429 	}
5430 
5431 	if (PageWriteback(page)) {
5432 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5433 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5434 	}
5435 
5436 	/*
5437 	 * All state has been migrated, let's switch to the new memcg.
5438 	 *
5439 	 * It is safe to change page->mem_cgroup here because the page
5440 	 * is referenced, charged, isolated, and locked: we can't race
5441 	 * with (un)charging, migration, LRU putback, or anything else
5442 	 * that would rely on a stable page->mem_cgroup.
5443 	 *
5444 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5445 	 * to save space. As soon as we switch page->mem_cgroup to a
5446 	 * new memcg that isn't locked, the above state can change
5447 	 * concurrently again. Make sure we're truly done with it.
5448 	 */
5449 	smp_mb();
5450 
5451 	page->mem_cgroup = to; 	/* caller should have done css_get */
5452 
5453 	__unlock_page_memcg(from);
5454 
5455 	ret = 0;
5456 
5457 	local_irq_disable();
5458 	mem_cgroup_charge_statistics(to, page, nr_pages);
5459 	memcg_check_events(to, page);
5460 	mem_cgroup_charge_statistics(from, page, -nr_pages);
5461 	memcg_check_events(from, page);
5462 	local_irq_enable();
5463 out_unlock:
5464 	unlock_page(page);
5465 out:
5466 	return ret;
5467 }
5468 
5469 /**
5470  * get_mctgt_type - get target type of moving charge
5471  * @vma: the vma the pte to be checked belongs
5472  * @addr: the address corresponding to the pte to be checked
5473  * @ptent: the pte to be checked
5474  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5475  *
5476  * Returns
5477  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5478  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5479  *     move charge. if @target is not NULL, the page is stored in target->page
5480  *     with extra refcnt got(Callers should handle it).
5481  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5482  *     target for charge migration. if @target is not NULL, the entry is stored
5483  *     in target->ent.
5484  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5485  *     (so ZONE_DEVICE page and thus not on the lru).
5486  *     For now we such page is charge like a regular page would be as for all
5487  *     intent and purposes it is just special memory taking the place of a
5488  *     regular page.
5489  *
5490  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5491  *
5492  * Called with pte lock held.
5493  */
5494 
5495 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5496 		unsigned long addr, pte_t ptent, union mc_target *target)
5497 {
5498 	struct page *page = NULL;
5499 	enum mc_target_type ret = MC_TARGET_NONE;
5500 	swp_entry_t ent = { .val = 0 };
5501 
5502 	if (pte_present(ptent))
5503 		page = mc_handle_present_pte(vma, addr, ptent);
5504 	else if (is_swap_pte(ptent))
5505 		page = mc_handle_swap_pte(vma, ptent, &ent);
5506 	else if (pte_none(ptent))
5507 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5508 
5509 	if (!page && !ent.val)
5510 		return ret;
5511 	if (page) {
5512 		/*
5513 		 * Do only loose check w/o serialization.
5514 		 * mem_cgroup_move_account() checks the page is valid or
5515 		 * not under LRU exclusion.
5516 		 */
5517 		if (page->mem_cgroup == mc.from) {
5518 			ret = MC_TARGET_PAGE;
5519 			if (is_device_private_page(page))
5520 				ret = MC_TARGET_DEVICE;
5521 			if (target)
5522 				target->page = page;
5523 		}
5524 		if (!ret || !target)
5525 			put_page(page);
5526 	}
5527 	/*
5528 	 * There is a swap entry and a page doesn't exist or isn't charged.
5529 	 * But we cannot move a tail-page in a THP.
5530 	 */
5531 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5532 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5533 		ret = MC_TARGET_SWAP;
5534 		if (target)
5535 			target->ent = ent;
5536 	}
5537 	return ret;
5538 }
5539 
5540 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5541 /*
5542  * We don't consider PMD mapped swapping or file mapped pages because THP does
5543  * not support them for now.
5544  * Caller should make sure that pmd_trans_huge(pmd) is true.
5545  */
5546 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5547 		unsigned long addr, pmd_t pmd, union mc_target *target)
5548 {
5549 	struct page *page = NULL;
5550 	enum mc_target_type ret = MC_TARGET_NONE;
5551 
5552 	if (unlikely(is_swap_pmd(pmd))) {
5553 		VM_BUG_ON(thp_migration_supported() &&
5554 				  !is_pmd_migration_entry(pmd));
5555 		return ret;
5556 	}
5557 	page = pmd_page(pmd);
5558 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5559 	if (!(mc.flags & MOVE_ANON))
5560 		return ret;
5561 	if (page->mem_cgroup == mc.from) {
5562 		ret = MC_TARGET_PAGE;
5563 		if (target) {
5564 			get_page(page);
5565 			target->page = page;
5566 		}
5567 	}
5568 	return ret;
5569 }
5570 #else
5571 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5572 		unsigned long addr, pmd_t pmd, union mc_target *target)
5573 {
5574 	return MC_TARGET_NONE;
5575 }
5576 #endif
5577 
5578 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5579 					unsigned long addr, unsigned long end,
5580 					struct mm_walk *walk)
5581 {
5582 	struct vm_area_struct *vma = walk->vma;
5583 	pte_t *pte;
5584 	spinlock_t *ptl;
5585 
5586 	ptl = pmd_trans_huge_lock(pmd, vma);
5587 	if (ptl) {
5588 		/*
5589 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5590 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5591 		 * this might change.
5592 		 */
5593 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5594 			mc.precharge += HPAGE_PMD_NR;
5595 		spin_unlock(ptl);
5596 		return 0;
5597 	}
5598 
5599 	if (pmd_trans_unstable(pmd))
5600 		return 0;
5601 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5602 	for (; addr != end; pte++, addr += PAGE_SIZE)
5603 		if (get_mctgt_type(vma, addr, *pte, NULL))
5604 			mc.precharge++;	/* increment precharge temporarily */
5605 	pte_unmap_unlock(pte - 1, ptl);
5606 	cond_resched();
5607 
5608 	return 0;
5609 }
5610 
5611 static const struct mm_walk_ops precharge_walk_ops = {
5612 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5613 };
5614 
5615 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5616 {
5617 	unsigned long precharge;
5618 
5619 	mmap_read_lock(mm);
5620 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5621 	mmap_read_unlock(mm);
5622 
5623 	precharge = mc.precharge;
5624 	mc.precharge = 0;
5625 
5626 	return precharge;
5627 }
5628 
5629 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5630 {
5631 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5632 
5633 	VM_BUG_ON(mc.moving_task);
5634 	mc.moving_task = current;
5635 	return mem_cgroup_do_precharge(precharge);
5636 }
5637 
5638 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5639 static void __mem_cgroup_clear_mc(void)
5640 {
5641 	struct mem_cgroup *from = mc.from;
5642 	struct mem_cgroup *to = mc.to;
5643 
5644 	/* we must uncharge all the leftover precharges from mc.to */
5645 	if (mc.precharge) {
5646 		cancel_charge(mc.to, mc.precharge);
5647 		mc.precharge = 0;
5648 	}
5649 	/*
5650 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5651 	 * we must uncharge here.
5652 	 */
5653 	if (mc.moved_charge) {
5654 		cancel_charge(mc.from, mc.moved_charge);
5655 		mc.moved_charge = 0;
5656 	}
5657 	/* we must fixup refcnts and charges */
5658 	if (mc.moved_swap) {
5659 		/* uncharge swap account from the old cgroup */
5660 		if (!mem_cgroup_is_root(mc.from))
5661 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5662 
5663 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5664 
5665 		/*
5666 		 * we charged both to->memory and to->memsw, so we
5667 		 * should uncharge to->memory.
5668 		 */
5669 		if (!mem_cgroup_is_root(mc.to))
5670 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5671 
5672 		css_put_many(&mc.to->css, mc.moved_swap);
5673 
5674 		mc.moved_swap = 0;
5675 	}
5676 	memcg_oom_recover(from);
5677 	memcg_oom_recover(to);
5678 	wake_up_all(&mc.waitq);
5679 }
5680 
5681 static void mem_cgroup_clear_mc(void)
5682 {
5683 	struct mm_struct *mm = mc.mm;
5684 
5685 	/*
5686 	 * we must clear moving_task before waking up waiters at the end of
5687 	 * task migration.
5688 	 */
5689 	mc.moving_task = NULL;
5690 	__mem_cgroup_clear_mc();
5691 	spin_lock(&mc.lock);
5692 	mc.from = NULL;
5693 	mc.to = NULL;
5694 	mc.mm = NULL;
5695 	spin_unlock(&mc.lock);
5696 
5697 	mmput(mm);
5698 }
5699 
5700 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5701 {
5702 	struct cgroup_subsys_state *css;
5703 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5704 	struct mem_cgroup *from;
5705 	struct task_struct *leader, *p;
5706 	struct mm_struct *mm;
5707 	unsigned long move_flags;
5708 	int ret = 0;
5709 
5710 	/* charge immigration isn't supported on the default hierarchy */
5711 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5712 		return 0;
5713 
5714 	/*
5715 	 * Multi-process migrations only happen on the default hierarchy
5716 	 * where charge immigration is not used.  Perform charge
5717 	 * immigration if @tset contains a leader and whine if there are
5718 	 * multiple.
5719 	 */
5720 	p = NULL;
5721 	cgroup_taskset_for_each_leader(leader, css, tset) {
5722 		WARN_ON_ONCE(p);
5723 		p = leader;
5724 		memcg = mem_cgroup_from_css(css);
5725 	}
5726 	if (!p)
5727 		return 0;
5728 
5729 	/*
5730 	 * We are now commited to this value whatever it is. Changes in this
5731 	 * tunable will only affect upcoming migrations, not the current one.
5732 	 * So we need to save it, and keep it going.
5733 	 */
5734 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5735 	if (!move_flags)
5736 		return 0;
5737 
5738 	from = mem_cgroup_from_task(p);
5739 
5740 	VM_BUG_ON(from == memcg);
5741 
5742 	mm = get_task_mm(p);
5743 	if (!mm)
5744 		return 0;
5745 	/* We move charges only when we move a owner of the mm */
5746 	if (mm->owner == p) {
5747 		VM_BUG_ON(mc.from);
5748 		VM_BUG_ON(mc.to);
5749 		VM_BUG_ON(mc.precharge);
5750 		VM_BUG_ON(mc.moved_charge);
5751 		VM_BUG_ON(mc.moved_swap);
5752 
5753 		spin_lock(&mc.lock);
5754 		mc.mm = mm;
5755 		mc.from = from;
5756 		mc.to = memcg;
5757 		mc.flags = move_flags;
5758 		spin_unlock(&mc.lock);
5759 		/* We set mc.moving_task later */
5760 
5761 		ret = mem_cgroup_precharge_mc(mm);
5762 		if (ret)
5763 			mem_cgroup_clear_mc();
5764 	} else {
5765 		mmput(mm);
5766 	}
5767 	return ret;
5768 }
5769 
5770 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5771 {
5772 	if (mc.to)
5773 		mem_cgroup_clear_mc();
5774 }
5775 
5776 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5777 				unsigned long addr, unsigned long end,
5778 				struct mm_walk *walk)
5779 {
5780 	int ret = 0;
5781 	struct vm_area_struct *vma = walk->vma;
5782 	pte_t *pte;
5783 	spinlock_t *ptl;
5784 	enum mc_target_type target_type;
5785 	union mc_target target;
5786 	struct page *page;
5787 
5788 	ptl = pmd_trans_huge_lock(pmd, vma);
5789 	if (ptl) {
5790 		if (mc.precharge < HPAGE_PMD_NR) {
5791 			spin_unlock(ptl);
5792 			return 0;
5793 		}
5794 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5795 		if (target_type == MC_TARGET_PAGE) {
5796 			page = target.page;
5797 			if (!isolate_lru_page(page)) {
5798 				if (!mem_cgroup_move_account(page, true,
5799 							     mc.from, mc.to)) {
5800 					mc.precharge -= HPAGE_PMD_NR;
5801 					mc.moved_charge += HPAGE_PMD_NR;
5802 				}
5803 				putback_lru_page(page);
5804 			}
5805 			put_page(page);
5806 		} else if (target_type == MC_TARGET_DEVICE) {
5807 			page = target.page;
5808 			if (!mem_cgroup_move_account(page, true,
5809 						     mc.from, mc.to)) {
5810 				mc.precharge -= HPAGE_PMD_NR;
5811 				mc.moved_charge += HPAGE_PMD_NR;
5812 			}
5813 			put_page(page);
5814 		}
5815 		spin_unlock(ptl);
5816 		return 0;
5817 	}
5818 
5819 	if (pmd_trans_unstable(pmd))
5820 		return 0;
5821 retry:
5822 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5823 	for (; addr != end; addr += PAGE_SIZE) {
5824 		pte_t ptent = *(pte++);
5825 		bool device = false;
5826 		swp_entry_t ent;
5827 
5828 		if (!mc.precharge)
5829 			break;
5830 
5831 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5832 		case MC_TARGET_DEVICE:
5833 			device = true;
5834 			fallthrough;
5835 		case MC_TARGET_PAGE:
5836 			page = target.page;
5837 			/*
5838 			 * We can have a part of the split pmd here. Moving it
5839 			 * can be done but it would be too convoluted so simply
5840 			 * ignore such a partial THP and keep it in original
5841 			 * memcg. There should be somebody mapping the head.
5842 			 */
5843 			if (PageTransCompound(page))
5844 				goto put;
5845 			if (!device && isolate_lru_page(page))
5846 				goto put;
5847 			if (!mem_cgroup_move_account(page, false,
5848 						mc.from, mc.to)) {
5849 				mc.precharge--;
5850 				/* we uncharge from mc.from later. */
5851 				mc.moved_charge++;
5852 			}
5853 			if (!device)
5854 				putback_lru_page(page);
5855 put:			/* get_mctgt_type() gets the page */
5856 			put_page(page);
5857 			break;
5858 		case MC_TARGET_SWAP:
5859 			ent = target.ent;
5860 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5861 				mc.precharge--;
5862 				mem_cgroup_id_get_many(mc.to, 1);
5863 				/* we fixup other refcnts and charges later. */
5864 				mc.moved_swap++;
5865 			}
5866 			break;
5867 		default:
5868 			break;
5869 		}
5870 	}
5871 	pte_unmap_unlock(pte - 1, ptl);
5872 	cond_resched();
5873 
5874 	if (addr != end) {
5875 		/*
5876 		 * We have consumed all precharges we got in can_attach().
5877 		 * We try charge one by one, but don't do any additional
5878 		 * charges to mc.to if we have failed in charge once in attach()
5879 		 * phase.
5880 		 */
5881 		ret = mem_cgroup_do_precharge(1);
5882 		if (!ret)
5883 			goto retry;
5884 	}
5885 
5886 	return ret;
5887 }
5888 
5889 static const struct mm_walk_ops charge_walk_ops = {
5890 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
5891 };
5892 
5893 static void mem_cgroup_move_charge(void)
5894 {
5895 	lru_add_drain_all();
5896 	/*
5897 	 * Signal lock_page_memcg() to take the memcg's move_lock
5898 	 * while we're moving its pages to another memcg. Then wait
5899 	 * for already started RCU-only updates to finish.
5900 	 */
5901 	atomic_inc(&mc.from->moving_account);
5902 	synchronize_rcu();
5903 retry:
5904 	if (unlikely(!mmap_read_trylock(mc.mm))) {
5905 		/*
5906 		 * Someone who are holding the mmap_lock might be waiting in
5907 		 * waitq. So we cancel all extra charges, wake up all waiters,
5908 		 * and retry. Because we cancel precharges, we might not be able
5909 		 * to move enough charges, but moving charge is a best-effort
5910 		 * feature anyway, so it wouldn't be a big problem.
5911 		 */
5912 		__mem_cgroup_clear_mc();
5913 		cond_resched();
5914 		goto retry;
5915 	}
5916 	/*
5917 	 * When we have consumed all precharges and failed in doing
5918 	 * additional charge, the page walk just aborts.
5919 	 */
5920 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5921 			NULL);
5922 
5923 	mmap_read_unlock(mc.mm);
5924 	atomic_dec(&mc.from->moving_account);
5925 }
5926 
5927 static void mem_cgroup_move_task(void)
5928 {
5929 	if (mc.to) {
5930 		mem_cgroup_move_charge();
5931 		mem_cgroup_clear_mc();
5932 	}
5933 }
5934 #else	/* !CONFIG_MMU */
5935 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5936 {
5937 	return 0;
5938 }
5939 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5940 {
5941 }
5942 static void mem_cgroup_move_task(void)
5943 {
5944 }
5945 #endif
5946 
5947 /*
5948  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5949  * to verify whether we're attached to the default hierarchy on each mount
5950  * attempt.
5951  */
5952 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5953 {
5954 	/*
5955 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5956 	 * guarantees that @root doesn't have any children, so turning it
5957 	 * on for the root memcg is enough.
5958 	 */
5959 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5960 		root_mem_cgroup->use_hierarchy = true;
5961 	else
5962 		root_mem_cgroup->use_hierarchy = false;
5963 }
5964 
5965 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5966 {
5967 	if (value == PAGE_COUNTER_MAX)
5968 		seq_puts(m, "max\n");
5969 	else
5970 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5971 
5972 	return 0;
5973 }
5974 
5975 static u64 memory_current_read(struct cgroup_subsys_state *css,
5976 			       struct cftype *cft)
5977 {
5978 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5979 
5980 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5981 }
5982 
5983 static int memory_min_show(struct seq_file *m, void *v)
5984 {
5985 	return seq_puts_memcg_tunable(m,
5986 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5987 }
5988 
5989 static ssize_t memory_min_write(struct kernfs_open_file *of,
5990 				char *buf, size_t nbytes, loff_t off)
5991 {
5992 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5993 	unsigned long min;
5994 	int err;
5995 
5996 	buf = strstrip(buf);
5997 	err = page_counter_memparse(buf, "max", &min);
5998 	if (err)
5999 		return err;
6000 
6001 	page_counter_set_min(&memcg->memory, min);
6002 
6003 	return nbytes;
6004 }
6005 
6006 static int memory_low_show(struct seq_file *m, void *v)
6007 {
6008 	return seq_puts_memcg_tunable(m,
6009 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6010 }
6011 
6012 static ssize_t memory_low_write(struct kernfs_open_file *of,
6013 				char *buf, size_t nbytes, loff_t off)
6014 {
6015 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6016 	unsigned long low;
6017 	int err;
6018 
6019 	buf = strstrip(buf);
6020 	err = page_counter_memparse(buf, "max", &low);
6021 	if (err)
6022 		return err;
6023 
6024 	page_counter_set_low(&memcg->memory, low);
6025 
6026 	return nbytes;
6027 }
6028 
6029 static int memory_high_show(struct seq_file *m, void *v)
6030 {
6031 	return seq_puts_memcg_tunable(m,
6032 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6033 }
6034 
6035 static ssize_t memory_high_write(struct kernfs_open_file *of,
6036 				 char *buf, size_t nbytes, loff_t off)
6037 {
6038 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6039 	unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6040 	bool drained = false;
6041 	unsigned long high;
6042 	int err;
6043 
6044 	buf = strstrip(buf);
6045 	err = page_counter_memparse(buf, "max", &high);
6046 	if (err)
6047 		return err;
6048 
6049 	page_counter_set_high(&memcg->memory, high);
6050 
6051 	for (;;) {
6052 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6053 		unsigned long reclaimed;
6054 
6055 		if (nr_pages <= high)
6056 			break;
6057 
6058 		if (signal_pending(current))
6059 			break;
6060 
6061 		if (!drained) {
6062 			drain_all_stock(memcg);
6063 			drained = true;
6064 			continue;
6065 		}
6066 
6067 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6068 							 GFP_KERNEL, true);
6069 
6070 		if (!reclaimed && !nr_retries--)
6071 			break;
6072 	}
6073 
6074 	return nbytes;
6075 }
6076 
6077 static int memory_max_show(struct seq_file *m, void *v)
6078 {
6079 	return seq_puts_memcg_tunable(m,
6080 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6081 }
6082 
6083 static ssize_t memory_max_write(struct kernfs_open_file *of,
6084 				char *buf, size_t nbytes, loff_t off)
6085 {
6086 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6087 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6088 	bool drained = false;
6089 	unsigned long max;
6090 	int err;
6091 
6092 	buf = strstrip(buf);
6093 	err = page_counter_memparse(buf, "max", &max);
6094 	if (err)
6095 		return err;
6096 
6097 	xchg(&memcg->memory.max, max);
6098 
6099 	for (;;) {
6100 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6101 
6102 		if (nr_pages <= max)
6103 			break;
6104 
6105 		if (signal_pending(current))
6106 			break;
6107 
6108 		if (!drained) {
6109 			drain_all_stock(memcg);
6110 			drained = true;
6111 			continue;
6112 		}
6113 
6114 		if (nr_reclaims) {
6115 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6116 							  GFP_KERNEL, true))
6117 				nr_reclaims--;
6118 			continue;
6119 		}
6120 
6121 		memcg_memory_event(memcg, MEMCG_OOM);
6122 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6123 			break;
6124 	}
6125 
6126 	memcg_wb_domain_size_changed(memcg);
6127 	return nbytes;
6128 }
6129 
6130 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6131 {
6132 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6133 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6134 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6135 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6136 	seq_printf(m, "oom_kill %lu\n",
6137 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6138 }
6139 
6140 static int memory_events_show(struct seq_file *m, void *v)
6141 {
6142 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6143 
6144 	__memory_events_show(m, memcg->memory_events);
6145 	return 0;
6146 }
6147 
6148 static int memory_events_local_show(struct seq_file *m, void *v)
6149 {
6150 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6151 
6152 	__memory_events_show(m, memcg->memory_events_local);
6153 	return 0;
6154 }
6155 
6156 static int memory_stat_show(struct seq_file *m, void *v)
6157 {
6158 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6159 	char *buf;
6160 
6161 	buf = memory_stat_format(memcg);
6162 	if (!buf)
6163 		return -ENOMEM;
6164 	seq_puts(m, buf);
6165 	kfree(buf);
6166 	return 0;
6167 }
6168 
6169 static int memory_oom_group_show(struct seq_file *m, void *v)
6170 {
6171 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6172 
6173 	seq_printf(m, "%d\n", memcg->oom_group);
6174 
6175 	return 0;
6176 }
6177 
6178 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6179 				      char *buf, size_t nbytes, loff_t off)
6180 {
6181 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6182 	int ret, oom_group;
6183 
6184 	buf = strstrip(buf);
6185 	if (!buf)
6186 		return -EINVAL;
6187 
6188 	ret = kstrtoint(buf, 0, &oom_group);
6189 	if (ret)
6190 		return ret;
6191 
6192 	if (oom_group != 0 && oom_group != 1)
6193 		return -EINVAL;
6194 
6195 	memcg->oom_group = oom_group;
6196 
6197 	return nbytes;
6198 }
6199 
6200 static struct cftype memory_files[] = {
6201 	{
6202 		.name = "current",
6203 		.flags = CFTYPE_NOT_ON_ROOT,
6204 		.read_u64 = memory_current_read,
6205 	},
6206 	{
6207 		.name = "min",
6208 		.flags = CFTYPE_NOT_ON_ROOT,
6209 		.seq_show = memory_min_show,
6210 		.write = memory_min_write,
6211 	},
6212 	{
6213 		.name = "low",
6214 		.flags = CFTYPE_NOT_ON_ROOT,
6215 		.seq_show = memory_low_show,
6216 		.write = memory_low_write,
6217 	},
6218 	{
6219 		.name = "high",
6220 		.flags = CFTYPE_NOT_ON_ROOT,
6221 		.seq_show = memory_high_show,
6222 		.write = memory_high_write,
6223 	},
6224 	{
6225 		.name = "max",
6226 		.flags = CFTYPE_NOT_ON_ROOT,
6227 		.seq_show = memory_max_show,
6228 		.write = memory_max_write,
6229 	},
6230 	{
6231 		.name = "events",
6232 		.flags = CFTYPE_NOT_ON_ROOT,
6233 		.file_offset = offsetof(struct mem_cgroup, events_file),
6234 		.seq_show = memory_events_show,
6235 	},
6236 	{
6237 		.name = "events.local",
6238 		.flags = CFTYPE_NOT_ON_ROOT,
6239 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6240 		.seq_show = memory_events_local_show,
6241 	},
6242 	{
6243 		.name = "stat",
6244 		.seq_show = memory_stat_show,
6245 	},
6246 	{
6247 		.name = "oom.group",
6248 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6249 		.seq_show = memory_oom_group_show,
6250 		.write = memory_oom_group_write,
6251 	},
6252 	{ }	/* terminate */
6253 };
6254 
6255 struct cgroup_subsys memory_cgrp_subsys = {
6256 	.css_alloc = mem_cgroup_css_alloc,
6257 	.css_online = mem_cgroup_css_online,
6258 	.css_offline = mem_cgroup_css_offline,
6259 	.css_released = mem_cgroup_css_released,
6260 	.css_free = mem_cgroup_css_free,
6261 	.css_reset = mem_cgroup_css_reset,
6262 	.can_attach = mem_cgroup_can_attach,
6263 	.cancel_attach = mem_cgroup_cancel_attach,
6264 	.post_attach = mem_cgroup_move_task,
6265 	.bind = mem_cgroup_bind,
6266 	.dfl_cftypes = memory_files,
6267 	.legacy_cftypes = mem_cgroup_legacy_files,
6268 	.early_init = 0,
6269 };
6270 
6271 /*
6272  * This function calculates an individual cgroup's effective
6273  * protection which is derived from its own memory.min/low, its
6274  * parent's and siblings' settings, as well as the actual memory
6275  * distribution in the tree.
6276  *
6277  * The following rules apply to the effective protection values:
6278  *
6279  * 1. At the first level of reclaim, effective protection is equal to
6280  *    the declared protection in memory.min and memory.low.
6281  *
6282  * 2. To enable safe delegation of the protection configuration, at
6283  *    subsequent levels the effective protection is capped to the
6284  *    parent's effective protection.
6285  *
6286  * 3. To make complex and dynamic subtrees easier to configure, the
6287  *    user is allowed to overcommit the declared protection at a given
6288  *    level. If that is the case, the parent's effective protection is
6289  *    distributed to the children in proportion to how much protection
6290  *    they have declared and how much of it they are utilizing.
6291  *
6292  *    This makes distribution proportional, but also work-conserving:
6293  *    if one cgroup claims much more protection than it uses memory,
6294  *    the unused remainder is available to its siblings.
6295  *
6296  * 4. Conversely, when the declared protection is undercommitted at a
6297  *    given level, the distribution of the larger parental protection
6298  *    budget is NOT proportional. A cgroup's protection from a sibling
6299  *    is capped to its own memory.min/low setting.
6300  *
6301  * 5. However, to allow protecting recursive subtrees from each other
6302  *    without having to declare each individual cgroup's fixed share
6303  *    of the ancestor's claim to protection, any unutilized -
6304  *    "floating" - protection from up the tree is distributed in
6305  *    proportion to each cgroup's *usage*. This makes the protection
6306  *    neutral wrt sibling cgroups and lets them compete freely over
6307  *    the shared parental protection budget, but it protects the
6308  *    subtree as a whole from neighboring subtrees.
6309  *
6310  * Note that 4. and 5. are not in conflict: 4. is about protecting
6311  * against immediate siblings whereas 5. is about protecting against
6312  * neighboring subtrees.
6313  */
6314 static unsigned long effective_protection(unsigned long usage,
6315 					  unsigned long parent_usage,
6316 					  unsigned long setting,
6317 					  unsigned long parent_effective,
6318 					  unsigned long siblings_protected)
6319 {
6320 	unsigned long protected;
6321 	unsigned long ep;
6322 
6323 	protected = min(usage, setting);
6324 	/*
6325 	 * If all cgroups at this level combined claim and use more
6326 	 * protection then what the parent affords them, distribute
6327 	 * shares in proportion to utilization.
6328 	 *
6329 	 * We are using actual utilization rather than the statically
6330 	 * claimed protection in order to be work-conserving: claimed
6331 	 * but unused protection is available to siblings that would
6332 	 * otherwise get a smaller chunk than what they claimed.
6333 	 */
6334 	if (siblings_protected > parent_effective)
6335 		return protected * parent_effective / siblings_protected;
6336 
6337 	/*
6338 	 * Ok, utilized protection of all children is within what the
6339 	 * parent affords them, so we know whatever this child claims
6340 	 * and utilizes is effectively protected.
6341 	 *
6342 	 * If there is unprotected usage beyond this value, reclaim
6343 	 * will apply pressure in proportion to that amount.
6344 	 *
6345 	 * If there is unutilized protection, the cgroup will be fully
6346 	 * shielded from reclaim, but we do return a smaller value for
6347 	 * protection than what the group could enjoy in theory. This
6348 	 * is okay. With the overcommit distribution above, effective
6349 	 * protection is always dependent on how memory is actually
6350 	 * consumed among the siblings anyway.
6351 	 */
6352 	ep = protected;
6353 
6354 	/*
6355 	 * If the children aren't claiming (all of) the protection
6356 	 * afforded to them by the parent, distribute the remainder in
6357 	 * proportion to the (unprotected) memory of each cgroup. That
6358 	 * way, cgroups that aren't explicitly prioritized wrt each
6359 	 * other compete freely over the allowance, but they are
6360 	 * collectively protected from neighboring trees.
6361 	 *
6362 	 * We're using unprotected memory for the weight so that if
6363 	 * some cgroups DO claim explicit protection, we don't protect
6364 	 * the same bytes twice.
6365 	 *
6366 	 * Check both usage and parent_usage against the respective
6367 	 * protected values. One should imply the other, but they
6368 	 * aren't read atomically - make sure the division is sane.
6369 	 */
6370 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6371 		return ep;
6372 	if (parent_effective > siblings_protected &&
6373 	    parent_usage > siblings_protected &&
6374 	    usage > protected) {
6375 		unsigned long unclaimed;
6376 
6377 		unclaimed = parent_effective - siblings_protected;
6378 		unclaimed *= usage - protected;
6379 		unclaimed /= parent_usage - siblings_protected;
6380 
6381 		ep += unclaimed;
6382 	}
6383 
6384 	return ep;
6385 }
6386 
6387 /**
6388  * mem_cgroup_protected - check if memory consumption is in the normal range
6389  * @root: the top ancestor of the sub-tree being checked
6390  * @memcg: the memory cgroup to check
6391  *
6392  * WARNING: This function is not stateless! It can only be used as part
6393  *          of a top-down tree iteration, not for isolated queries.
6394  *
6395  * Returns one of the following:
6396  *   MEMCG_PROT_NONE: cgroup memory is not protected
6397  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
6398  *     an unprotected supply of reclaimable memory from other cgroups.
6399  *   MEMCG_PROT_MIN: cgroup memory is protected
6400  */
6401 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6402 						struct mem_cgroup *memcg)
6403 {
6404 	unsigned long usage, parent_usage;
6405 	struct mem_cgroup *parent;
6406 
6407 	if (mem_cgroup_disabled())
6408 		return MEMCG_PROT_NONE;
6409 
6410 	if (!root)
6411 		root = root_mem_cgroup;
6412 	if (memcg == root)
6413 		return MEMCG_PROT_NONE;
6414 
6415 	usage = page_counter_read(&memcg->memory);
6416 	if (!usage)
6417 		return MEMCG_PROT_NONE;
6418 
6419 	parent = parent_mem_cgroup(memcg);
6420 	/* No parent means a non-hierarchical mode on v1 memcg */
6421 	if (!parent)
6422 		return MEMCG_PROT_NONE;
6423 
6424 	if (parent == root) {
6425 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6426 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6427 		goto out;
6428 	}
6429 
6430 	parent_usage = page_counter_read(&parent->memory);
6431 
6432 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6433 			READ_ONCE(memcg->memory.min),
6434 			READ_ONCE(parent->memory.emin),
6435 			atomic_long_read(&parent->memory.children_min_usage)));
6436 
6437 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6438 			READ_ONCE(memcg->memory.low),
6439 			READ_ONCE(parent->memory.elow),
6440 			atomic_long_read(&parent->memory.children_low_usage)));
6441 
6442 out:
6443 	if (usage <= memcg->memory.emin)
6444 		return MEMCG_PROT_MIN;
6445 	else if (usage <= memcg->memory.elow)
6446 		return MEMCG_PROT_LOW;
6447 	else
6448 		return MEMCG_PROT_NONE;
6449 }
6450 
6451 /**
6452  * mem_cgroup_charge - charge a newly allocated page to a cgroup
6453  * @page: page to charge
6454  * @mm: mm context of the victim
6455  * @gfp_mask: reclaim mode
6456  *
6457  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6458  * pages according to @gfp_mask if necessary.
6459  *
6460  * Returns 0 on success. Otherwise, an error code is returned.
6461  */
6462 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6463 {
6464 	unsigned int nr_pages = hpage_nr_pages(page);
6465 	struct mem_cgroup *memcg = NULL;
6466 	int ret = 0;
6467 
6468 	if (mem_cgroup_disabled())
6469 		goto out;
6470 
6471 	if (PageSwapCache(page)) {
6472 		swp_entry_t ent = { .val = page_private(page), };
6473 		unsigned short id;
6474 
6475 		/*
6476 		 * Every swap fault against a single page tries to charge the
6477 		 * page, bail as early as possible.  shmem_unuse() encounters
6478 		 * already charged pages, too.  page->mem_cgroup is protected
6479 		 * by the page lock, which serializes swap cache removal, which
6480 		 * in turn serializes uncharging.
6481 		 */
6482 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6483 		if (compound_head(page)->mem_cgroup)
6484 			goto out;
6485 
6486 		id = lookup_swap_cgroup_id(ent);
6487 		rcu_read_lock();
6488 		memcg = mem_cgroup_from_id(id);
6489 		if (memcg && !css_tryget_online(&memcg->css))
6490 			memcg = NULL;
6491 		rcu_read_unlock();
6492 	}
6493 
6494 	if (!memcg)
6495 		memcg = get_mem_cgroup_from_mm(mm);
6496 
6497 	ret = try_charge(memcg, gfp_mask, nr_pages);
6498 	if (ret)
6499 		goto out_put;
6500 
6501 	commit_charge(page, memcg);
6502 
6503 	local_irq_disable();
6504 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6505 	memcg_check_events(memcg, page);
6506 	local_irq_enable();
6507 
6508 	if (PageSwapCache(page)) {
6509 		swp_entry_t entry = { .val = page_private(page) };
6510 		/*
6511 		 * The swap entry might not get freed for a long time,
6512 		 * let's not wait for it.  The page already received a
6513 		 * memory+swap charge, drop the swap entry duplicate.
6514 		 */
6515 		mem_cgroup_uncharge_swap(entry, nr_pages);
6516 	}
6517 
6518 out_put:
6519 	css_put(&memcg->css);
6520 out:
6521 	return ret;
6522 }
6523 
6524 struct uncharge_gather {
6525 	struct mem_cgroup *memcg;
6526 	unsigned long nr_pages;
6527 	unsigned long pgpgout;
6528 	unsigned long nr_kmem;
6529 	struct page *dummy_page;
6530 };
6531 
6532 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6533 {
6534 	memset(ug, 0, sizeof(*ug));
6535 }
6536 
6537 static void uncharge_batch(const struct uncharge_gather *ug)
6538 {
6539 	unsigned long flags;
6540 
6541 	if (!mem_cgroup_is_root(ug->memcg)) {
6542 		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6543 		if (do_memsw_account())
6544 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6545 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6546 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6547 		memcg_oom_recover(ug->memcg);
6548 	}
6549 
6550 	local_irq_save(flags);
6551 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6552 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6553 	memcg_check_events(ug->memcg, ug->dummy_page);
6554 	local_irq_restore(flags);
6555 
6556 	if (!mem_cgroup_is_root(ug->memcg))
6557 		css_put_many(&ug->memcg->css, ug->nr_pages);
6558 }
6559 
6560 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6561 {
6562 	unsigned long nr_pages;
6563 
6564 	VM_BUG_ON_PAGE(PageLRU(page), page);
6565 
6566 	if (!page->mem_cgroup)
6567 		return;
6568 
6569 	/*
6570 	 * Nobody should be changing or seriously looking at
6571 	 * page->mem_cgroup at this point, we have fully
6572 	 * exclusive access to the page.
6573 	 */
6574 
6575 	if (ug->memcg != page->mem_cgroup) {
6576 		if (ug->memcg) {
6577 			uncharge_batch(ug);
6578 			uncharge_gather_clear(ug);
6579 		}
6580 		ug->memcg = page->mem_cgroup;
6581 	}
6582 
6583 	nr_pages = compound_nr(page);
6584 	ug->nr_pages += nr_pages;
6585 
6586 	if (!PageKmemcg(page)) {
6587 		ug->pgpgout++;
6588 	} else {
6589 		ug->nr_kmem += nr_pages;
6590 		__ClearPageKmemcg(page);
6591 	}
6592 
6593 	ug->dummy_page = page;
6594 	page->mem_cgroup = NULL;
6595 }
6596 
6597 static void uncharge_list(struct list_head *page_list)
6598 {
6599 	struct uncharge_gather ug;
6600 	struct list_head *next;
6601 
6602 	uncharge_gather_clear(&ug);
6603 
6604 	/*
6605 	 * Note that the list can be a single page->lru; hence the
6606 	 * do-while loop instead of a simple list_for_each_entry().
6607 	 */
6608 	next = page_list->next;
6609 	do {
6610 		struct page *page;
6611 
6612 		page = list_entry(next, struct page, lru);
6613 		next = page->lru.next;
6614 
6615 		uncharge_page(page, &ug);
6616 	} while (next != page_list);
6617 
6618 	if (ug.memcg)
6619 		uncharge_batch(&ug);
6620 }
6621 
6622 /**
6623  * mem_cgroup_uncharge - uncharge a page
6624  * @page: page to uncharge
6625  *
6626  * Uncharge a page previously charged with mem_cgroup_charge().
6627  */
6628 void mem_cgroup_uncharge(struct page *page)
6629 {
6630 	struct uncharge_gather ug;
6631 
6632 	if (mem_cgroup_disabled())
6633 		return;
6634 
6635 	/* Don't touch page->lru of any random page, pre-check: */
6636 	if (!page->mem_cgroup)
6637 		return;
6638 
6639 	uncharge_gather_clear(&ug);
6640 	uncharge_page(page, &ug);
6641 	uncharge_batch(&ug);
6642 }
6643 
6644 /**
6645  * mem_cgroup_uncharge_list - uncharge a list of page
6646  * @page_list: list of pages to uncharge
6647  *
6648  * Uncharge a list of pages previously charged with
6649  * mem_cgroup_charge().
6650  */
6651 void mem_cgroup_uncharge_list(struct list_head *page_list)
6652 {
6653 	if (mem_cgroup_disabled())
6654 		return;
6655 
6656 	if (!list_empty(page_list))
6657 		uncharge_list(page_list);
6658 }
6659 
6660 /**
6661  * mem_cgroup_migrate - charge a page's replacement
6662  * @oldpage: currently circulating page
6663  * @newpage: replacement page
6664  *
6665  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6666  * be uncharged upon free.
6667  *
6668  * Both pages must be locked, @newpage->mapping must be set up.
6669  */
6670 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6671 {
6672 	struct mem_cgroup *memcg;
6673 	unsigned int nr_pages;
6674 	unsigned long flags;
6675 
6676 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6677 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6678 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6679 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6680 		       newpage);
6681 
6682 	if (mem_cgroup_disabled())
6683 		return;
6684 
6685 	/* Page cache replacement: new page already charged? */
6686 	if (newpage->mem_cgroup)
6687 		return;
6688 
6689 	/* Swapcache readahead pages can get replaced before being charged */
6690 	memcg = oldpage->mem_cgroup;
6691 	if (!memcg)
6692 		return;
6693 
6694 	/* Force-charge the new page. The old one will be freed soon */
6695 	nr_pages = hpage_nr_pages(newpage);
6696 
6697 	page_counter_charge(&memcg->memory, nr_pages);
6698 	if (do_memsw_account())
6699 		page_counter_charge(&memcg->memsw, nr_pages);
6700 	css_get_many(&memcg->css, nr_pages);
6701 
6702 	commit_charge(newpage, memcg);
6703 
6704 	local_irq_save(flags);
6705 	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6706 	memcg_check_events(memcg, newpage);
6707 	local_irq_restore(flags);
6708 }
6709 
6710 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6711 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6712 
6713 void mem_cgroup_sk_alloc(struct sock *sk)
6714 {
6715 	struct mem_cgroup *memcg;
6716 
6717 	if (!mem_cgroup_sockets_enabled)
6718 		return;
6719 
6720 	/* Do not associate the sock with unrelated interrupted task's memcg. */
6721 	if (in_interrupt())
6722 		return;
6723 
6724 	rcu_read_lock();
6725 	memcg = mem_cgroup_from_task(current);
6726 	if (memcg == root_mem_cgroup)
6727 		goto out;
6728 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6729 		goto out;
6730 	if (css_tryget(&memcg->css))
6731 		sk->sk_memcg = memcg;
6732 out:
6733 	rcu_read_unlock();
6734 }
6735 
6736 void mem_cgroup_sk_free(struct sock *sk)
6737 {
6738 	if (sk->sk_memcg)
6739 		css_put(&sk->sk_memcg->css);
6740 }
6741 
6742 /**
6743  * mem_cgroup_charge_skmem - charge socket memory
6744  * @memcg: memcg to charge
6745  * @nr_pages: number of pages to charge
6746  *
6747  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6748  * @memcg's configured limit, %false if the charge had to be forced.
6749  */
6750 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6751 {
6752 	gfp_t gfp_mask = GFP_KERNEL;
6753 
6754 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6755 		struct page_counter *fail;
6756 
6757 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6758 			memcg->tcpmem_pressure = 0;
6759 			return true;
6760 		}
6761 		page_counter_charge(&memcg->tcpmem, nr_pages);
6762 		memcg->tcpmem_pressure = 1;
6763 		return false;
6764 	}
6765 
6766 	/* Don't block in the packet receive path */
6767 	if (in_softirq())
6768 		gfp_mask = GFP_NOWAIT;
6769 
6770 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6771 
6772 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6773 		return true;
6774 
6775 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6776 	return false;
6777 }
6778 
6779 /**
6780  * mem_cgroup_uncharge_skmem - uncharge socket memory
6781  * @memcg: memcg to uncharge
6782  * @nr_pages: number of pages to uncharge
6783  */
6784 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6785 {
6786 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6787 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6788 		return;
6789 	}
6790 
6791 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6792 
6793 	refill_stock(memcg, nr_pages);
6794 }
6795 
6796 static int __init cgroup_memory(char *s)
6797 {
6798 	char *token;
6799 
6800 	while ((token = strsep(&s, ",")) != NULL) {
6801 		if (!*token)
6802 			continue;
6803 		if (!strcmp(token, "nosocket"))
6804 			cgroup_memory_nosocket = true;
6805 		if (!strcmp(token, "nokmem"))
6806 			cgroup_memory_nokmem = true;
6807 	}
6808 	return 0;
6809 }
6810 __setup("cgroup.memory=", cgroup_memory);
6811 
6812 /*
6813  * subsys_initcall() for memory controller.
6814  *
6815  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6816  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6817  * basically everything that doesn't depend on a specific mem_cgroup structure
6818  * should be initialized from here.
6819  */
6820 static int __init mem_cgroup_init(void)
6821 {
6822 	int cpu, node;
6823 
6824 #ifdef CONFIG_MEMCG_KMEM
6825 	/*
6826 	 * Kmem cache creation is mostly done with the slab_mutex held,
6827 	 * so use a workqueue with limited concurrency to avoid stalling
6828 	 * all worker threads in case lots of cgroups are created and
6829 	 * destroyed simultaneously.
6830 	 */
6831 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6832 	BUG_ON(!memcg_kmem_cache_wq);
6833 #endif
6834 
6835 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6836 				  memcg_hotplug_cpu_dead);
6837 
6838 	for_each_possible_cpu(cpu)
6839 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6840 			  drain_local_stock);
6841 
6842 	for_each_node(node) {
6843 		struct mem_cgroup_tree_per_node *rtpn;
6844 
6845 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6846 				    node_online(node) ? node : NUMA_NO_NODE);
6847 
6848 		rtpn->rb_root = RB_ROOT;
6849 		rtpn->rb_rightmost = NULL;
6850 		spin_lock_init(&rtpn->lock);
6851 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6852 	}
6853 
6854 	return 0;
6855 }
6856 subsys_initcall(mem_cgroup_init);
6857 
6858 #ifdef CONFIG_MEMCG_SWAP
6859 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6860 {
6861 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6862 		/*
6863 		 * The root cgroup cannot be destroyed, so it's refcount must
6864 		 * always be >= 1.
6865 		 */
6866 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6867 			VM_BUG_ON(1);
6868 			break;
6869 		}
6870 		memcg = parent_mem_cgroup(memcg);
6871 		if (!memcg)
6872 			memcg = root_mem_cgroup;
6873 	}
6874 	return memcg;
6875 }
6876 
6877 /**
6878  * mem_cgroup_swapout - transfer a memsw charge to swap
6879  * @page: page whose memsw charge to transfer
6880  * @entry: swap entry to move the charge to
6881  *
6882  * Transfer the memsw charge of @page to @entry.
6883  */
6884 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6885 {
6886 	struct mem_cgroup *memcg, *swap_memcg;
6887 	unsigned int nr_entries;
6888 	unsigned short oldid;
6889 
6890 	VM_BUG_ON_PAGE(PageLRU(page), page);
6891 	VM_BUG_ON_PAGE(page_count(page), page);
6892 
6893 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6894 		return;
6895 
6896 	memcg = page->mem_cgroup;
6897 
6898 	/* Readahead page, never charged */
6899 	if (!memcg)
6900 		return;
6901 
6902 	/*
6903 	 * In case the memcg owning these pages has been offlined and doesn't
6904 	 * have an ID allocated to it anymore, charge the closest online
6905 	 * ancestor for the swap instead and transfer the memory+swap charge.
6906 	 */
6907 	swap_memcg = mem_cgroup_id_get_online(memcg);
6908 	nr_entries = hpage_nr_pages(page);
6909 	/* Get references for the tail pages, too */
6910 	if (nr_entries > 1)
6911 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6912 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6913 				   nr_entries);
6914 	VM_BUG_ON_PAGE(oldid, page);
6915 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6916 
6917 	page->mem_cgroup = NULL;
6918 
6919 	if (!mem_cgroup_is_root(memcg))
6920 		page_counter_uncharge(&memcg->memory, nr_entries);
6921 
6922 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
6923 		if (!mem_cgroup_is_root(swap_memcg))
6924 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6925 		page_counter_uncharge(&memcg->memsw, nr_entries);
6926 	}
6927 
6928 	/*
6929 	 * Interrupts should be disabled here because the caller holds the
6930 	 * i_pages lock which is taken with interrupts-off. It is
6931 	 * important here to have the interrupts disabled because it is the
6932 	 * only synchronisation we have for updating the per-CPU variables.
6933 	 */
6934 	VM_BUG_ON(!irqs_disabled());
6935 	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
6936 	memcg_check_events(memcg, page);
6937 
6938 	if (!mem_cgroup_is_root(memcg))
6939 		css_put_many(&memcg->css, nr_entries);
6940 }
6941 
6942 /**
6943  * mem_cgroup_try_charge_swap - try charging swap space for a page
6944  * @page: page being added to swap
6945  * @entry: swap entry to charge
6946  *
6947  * Try to charge @page's memcg for the swap space at @entry.
6948  *
6949  * Returns 0 on success, -ENOMEM on failure.
6950  */
6951 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6952 {
6953 	unsigned int nr_pages = hpage_nr_pages(page);
6954 	struct page_counter *counter;
6955 	struct mem_cgroup *memcg;
6956 	unsigned short oldid;
6957 
6958 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
6959 		return 0;
6960 
6961 	memcg = page->mem_cgroup;
6962 
6963 	/* Readahead page, never charged */
6964 	if (!memcg)
6965 		return 0;
6966 
6967 	if (!entry.val) {
6968 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6969 		return 0;
6970 	}
6971 
6972 	memcg = mem_cgroup_id_get_online(memcg);
6973 
6974 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
6975 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6976 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6977 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6978 		mem_cgroup_id_put(memcg);
6979 		return -ENOMEM;
6980 	}
6981 
6982 	/* Get references for the tail pages, too */
6983 	if (nr_pages > 1)
6984 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6985 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6986 	VM_BUG_ON_PAGE(oldid, page);
6987 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6988 
6989 	return 0;
6990 }
6991 
6992 /**
6993  * mem_cgroup_uncharge_swap - uncharge swap space
6994  * @entry: swap entry to uncharge
6995  * @nr_pages: the amount of swap space to uncharge
6996  */
6997 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6998 {
6999 	struct mem_cgroup *memcg;
7000 	unsigned short id;
7001 
7002 	id = swap_cgroup_record(entry, 0, nr_pages);
7003 	rcu_read_lock();
7004 	memcg = mem_cgroup_from_id(id);
7005 	if (memcg) {
7006 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7007 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7008 				page_counter_uncharge(&memcg->swap, nr_pages);
7009 			else
7010 				page_counter_uncharge(&memcg->memsw, nr_pages);
7011 		}
7012 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7013 		mem_cgroup_id_put_many(memcg, nr_pages);
7014 	}
7015 	rcu_read_unlock();
7016 }
7017 
7018 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7019 {
7020 	long nr_swap_pages = get_nr_swap_pages();
7021 
7022 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7023 		return nr_swap_pages;
7024 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7025 		nr_swap_pages = min_t(long, nr_swap_pages,
7026 				      READ_ONCE(memcg->swap.max) -
7027 				      page_counter_read(&memcg->swap));
7028 	return nr_swap_pages;
7029 }
7030 
7031 bool mem_cgroup_swap_full(struct page *page)
7032 {
7033 	struct mem_cgroup *memcg;
7034 
7035 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7036 
7037 	if (vm_swap_full())
7038 		return true;
7039 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7040 		return false;
7041 
7042 	memcg = page->mem_cgroup;
7043 	if (!memcg)
7044 		return false;
7045 
7046 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7047 		unsigned long usage = page_counter_read(&memcg->swap);
7048 
7049 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7050 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7051 			return true;
7052 	}
7053 
7054 	return false;
7055 }
7056 
7057 static int __init setup_swap_account(char *s)
7058 {
7059 	if (!strcmp(s, "1"))
7060 		cgroup_memory_noswap = 0;
7061 	else if (!strcmp(s, "0"))
7062 		cgroup_memory_noswap = 1;
7063 	return 1;
7064 }
7065 __setup("swapaccount=", setup_swap_account);
7066 
7067 static u64 swap_current_read(struct cgroup_subsys_state *css,
7068 			     struct cftype *cft)
7069 {
7070 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7071 
7072 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7073 }
7074 
7075 static int swap_high_show(struct seq_file *m, void *v)
7076 {
7077 	return seq_puts_memcg_tunable(m,
7078 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7079 }
7080 
7081 static ssize_t swap_high_write(struct kernfs_open_file *of,
7082 			       char *buf, size_t nbytes, loff_t off)
7083 {
7084 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7085 	unsigned long high;
7086 	int err;
7087 
7088 	buf = strstrip(buf);
7089 	err = page_counter_memparse(buf, "max", &high);
7090 	if (err)
7091 		return err;
7092 
7093 	page_counter_set_high(&memcg->swap, high);
7094 
7095 	return nbytes;
7096 }
7097 
7098 static int swap_max_show(struct seq_file *m, void *v)
7099 {
7100 	return seq_puts_memcg_tunable(m,
7101 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7102 }
7103 
7104 static ssize_t swap_max_write(struct kernfs_open_file *of,
7105 			      char *buf, size_t nbytes, loff_t off)
7106 {
7107 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7108 	unsigned long max;
7109 	int err;
7110 
7111 	buf = strstrip(buf);
7112 	err = page_counter_memparse(buf, "max", &max);
7113 	if (err)
7114 		return err;
7115 
7116 	xchg(&memcg->swap.max, max);
7117 
7118 	return nbytes;
7119 }
7120 
7121 static int swap_events_show(struct seq_file *m, void *v)
7122 {
7123 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7124 
7125 	seq_printf(m, "high %lu\n",
7126 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7127 	seq_printf(m, "max %lu\n",
7128 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7129 	seq_printf(m, "fail %lu\n",
7130 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7131 
7132 	return 0;
7133 }
7134 
7135 static struct cftype swap_files[] = {
7136 	{
7137 		.name = "swap.current",
7138 		.flags = CFTYPE_NOT_ON_ROOT,
7139 		.read_u64 = swap_current_read,
7140 	},
7141 	{
7142 		.name = "swap.high",
7143 		.flags = CFTYPE_NOT_ON_ROOT,
7144 		.seq_show = swap_high_show,
7145 		.write = swap_high_write,
7146 	},
7147 	{
7148 		.name = "swap.max",
7149 		.flags = CFTYPE_NOT_ON_ROOT,
7150 		.seq_show = swap_max_show,
7151 		.write = swap_max_write,
7152 	},
7153 	{
7154 		.name = "swap.events",
7155 		.flags = CFTYPE_NOT_ON_ROOT,
7156 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7157 		.seq_show = swap_events_show,
7158 	},
7159 	{ }	/* terminate */
7160 };
7161 
7162 static struct cftype memsw_files[] = {
7163 	{
7164 		.name = "memsw.usage_in_bytes",
7165 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7166 		.read_u64 = mem_cgroup_read_u64,
7167 	},
7168 	{
7169 		.name = "memsw.max_usage_in_bytes",
7170 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7171 		.write = mem_cgroup_reset,
7172 		.read_u64 = mem_cgroup_read_u64,
7173 	},
7174 	{
7175 		.name = "memsw.limit_in_bytes",
7176 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7177 		.write = mem_cgroup_write,
7178 		.read_u64 = mem_cgroup_read_u64,
7179 	},
7180 	{
7181 		.name = "memsw.failcnt",
7182 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7183 		.write = mem_cgroup_reset,
7184 		.read_u64 = mem_cgroup_read_u64,
7185 	},
7186 	{ },	/* terminate */
7187 };
7188 
7189 /*
7190  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7191  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7192  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7193  * boot parameter. This may result in premature OOPS inside
7194  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7195  */
7196 static int __init mem_cgroup_swap_init(void)
7197 {
7198 	/* No memory control -> no swap control */
7199 	if (mem_cgroup_disabled())
7200 		cgroup_memory_noswap = true;
7201 
7202 	if (cgroup_memory_noswap)
7203 		return 0;
7204 
7205 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7206 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7207 
7208 	return 0;
7209 }
7210 core_initcall(mem_cgroup_swap_init);
7211 
7212 #endif /* CONFIG_MEMCG_SWAP */
7213