xref: /openbmc/linux/mm/memcontrol.c (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69 
70 #include <linux/uaccess.h>
71 
72 #include <trace/events/vmscan.h>
73 
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76 
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78 
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82 
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket;
85 
86 /* Kernel memory accounting disabled? */
87 bool cgroup_memory_nokmem;
88 
89 /* Whether the swap controller is active */
90 #ifdef CONFIG_MEMCG_SWAP
91 bool cgroup_memory_noswap __read_mostly;
92 #else
93 #define cgroup_memory_noswap		1
94 #endif
95 
96 #ifdef CONFIG_CGROUP_WRITEBACK
97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98 #endif
99 
100 /* Whether legacy memory+swap accounting is active */
101 static bool do_memsw_account(void)
102 {
103 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104 }
105 
106 #define THRESHOLDS_EVENTS_TARGET 128
107 #define SOFTLIMIT_EVENTS_TARGET 1024
108 
109 /*
110  * Cgroups above their limits are maintained in a RB-Tree, independent of
111  * their hierarchy representation
112  */
113 
114 struct mem_cgroup_tree_per_node {
115 	struct rb_root rb_root;
116 	struct rb_node *rb_rightmost;
117 	spinlock_t lock;
118 };
119 
120 struct mem_cgroup_tree {
121 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122 };
123 
124 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125 
126 /* for OOM */
127 struct mem_cgroup_eventfd_list {
128 	struct list_head list;
129 	struct eventfd_ctx *eventfd;
130 };
131 
132 /*
133  * cgroup_event represents events which userspace want to receive.
134  */
135 struct mem_cgroup_event {
136 	/*
137 	 * memcg which the event belongs to.
138 	 */
139 	struct mem_cgroup *memcg;
140 	/*
141 	 * eventfd to signal userspace about the event.
142 	 */
143 	struct eventfd_ctx *eventfd;
144 	/*
145 	 * Each of these stored in a list by the cgroup.
146 	 */
147 	struct list_head list;
148 	/*
149 	 * register_event() callback will be used to add new userspace
150 	 * waiter for changes related to this event.  Use eventfd_signal()
151 	 * on eventfd to send notification to userspace.
152 	 */
153 	int (*register_event)(struct mem_cgroup *memcg,
154 			      struct eventfd_ctx *eventfd, const char *args);
155 	/*
156 	 * unregister_event() callback will be called when userspace closes
157 	 * the eventfd or on cgroup removing.  This callback must be set,
158 	 * if you want provide notification functionality.
159 	 */
160 	void (*unregister_event)(struct mem_cgroup *memcg,
161 				 struct eventfd_ctx *eventfd);
162 	/*
163 	 * All fields below needed to unregister event when
164 	 * userspace closes eventfd.
165 	 */
166 	poll_table pt;
167 	wait_queue_head_t *wqh;
168 	wait_queue_entry_t wait;
169 	struct work_struct remove;
170 };
171 
172 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174 
175 /* Stuffs for move charges at task migration. */
176 /*
177  * Types of charges to be moved.
178  */
179 #define MOVE_ANON	0x1U
180 #define MOVE_FILE	0x2U
181 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
182 
183 /* "mc" and its members are protected by cgroup_mutex */
184 static struct move_charge_struct {
185 	spinlock_t	  lock; /* for from, to */
186 	struct mm_struct  *mm;
187 	struct mem_cgroup *from;
188 	struct mem_cgroup *to;
189 	unsigned long flags;
190 	unsigned long precharge;
191 	unsigned long moved_charge;
192 	unsigned long moved_swap;
193 	struct task_struct *moving_task;	/* a task moving charges */
194 	wait_queue_head_t waitq;		/* a waitq for other context */
195 } mc = {
196 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198 };
199 
200 /*
201  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
202  * limit reclaim to prevent infinite loops, if they ever occur.
203  */
204 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
205 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
206 
207 /* for encoding cft->private value on file */
208 enum res_type {
209 	_MEM,
210 	_MEMSWAP,
211 	_OOM_TYPE,
212 	_KMEM,
213 	_TCP,
214 };
215 
216 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
217 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
218 #define MEMFILE_ATTR(val)	((val) & 0xffff)
219 /* Used for OOM notifier */
220 #define OOM_CONTROL		(0)
221 
222 /*
223  * Iteration constructs for visiting all cgroups (under a tree).  If
224  * loops are exited prematurely (break), mem_cgroup_iter_break() must
225  * be used for reference counting.
226  */
227 #define for_each_mem_cgroup_tree(iter, root)		\
228 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
229 	     iter != NULL;				\
230 	     iter = mem_cgroup_iter(root, iter, NULL))
231 
232 #define for_each_mem_cgroup(iter)			\
233 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
234 	     iter != NULL;				\
235 	     iter = mem_cgroup_iter(NULL, iter, NULL))
236 
237 static inline bool should_force_charge(void)
238 {
239 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
240 		(current->flags & PF_EXITING);
241 }
242 
243 /* Some nice accessors for the vmpressure. */
244 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
245 {
246 	if (!memcg)
247 		memcg = root_mem_cgroup;
248 	return &memcg->vmpressure;
249 }
250 
251 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
252 {
253 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
254 }
255 
256 #ifdef CONFIG_MEMCG_KMEM
257 extern spinlock_t css_set_lock;
258 
259 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
260 				      unsigned int nr_pages);
261 
262 static void obj_cgroup_release(struct percpu_ref *ref)
263 {
264 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
265 	unsigned int nr_bytes;
266 	unsigned int nr_pages;
267 	unsigned long flags;
268 
269 	/*
270 	 * At this point all allocated objects are freed, and
271 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
272 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
273 	 *
274 	 * The following sequence can lead to it:
275 	 * 1) CPU0: objcg == stock->cached_objcg
276 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
277 	 *          PAGE_SIZE bytes are charged
278 	 * 3) CPU1: a process from another memcg is allocating something,
279 	 *          the stock if flushed,
280 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
281 	 * 5) CPU0: we do release this object,
282 	 *          92 bytes are added to stock->nr_bytes
283 	 * 6) CPU0: stock is flushed,
284 	 *          92 bytes are added to objcg->nr_charged_bytes
285 	 *
286 	 * In the result, nr_charged_bytes == PAGE_SIZE.
287 	 * This page will be uncharged in obj_cgroup_release().
288 	 */
289 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
290 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
291 	nr_pages = nr_bytes >> PAGE_SHIFT;
292 
293 	if (nr_pages)
294 		obj_cgroup_uncharge_pages(objcg, nr_pages);
295 
296 	spin_lock_irqsave(&css_set_lock, flags);
297 	list_del(&objcg->list);
298 	spin_unlock_irqrestore(&css_set_lock, flags);
299 
300 	percpu_ref_exit(ref);
301 	kfree_rcu(objcg, rcu);
302 }
303 
304 static struct obj_cgroup *obj_cgroup_alloc(void)
305 {
306 	struct obj_cgroup *objcg;
307 	int ret;
308 
309 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
310 	if (!objcg)
311 		return NULL;
312 
313 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
314 			      GFP_KERNEL);
315 	if (ret) {
316 		kfree(objcg);
317 		return NULL;
318 	}
319 	INIT_LIST_HEAD(&objcg->list);
320 	return objcg;
321 }
322 
323 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
324 				  struct mem_cgroup *parent)
325 {
326 	struct obj_cgroup *objcg, *iter;
327 
328 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
329 
330 	spin_lock_irq(&css_set_lock);
331 
332 	/* 1) Ready to reparent active objcg. */
333 	list_add(&objcg->list, &memcg->objcg_list);
334 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
335 	list_for_each_entry(iter, &memcg->objcg_list, list)
336 		WRITE_ONCE(iter->memcg, parent);
337 	/* 3) Move already reparented objcgs to the parent's list */
338 	list_splice(&memcg->objcg_list, &parent->objcg_list);
339 
340 	spin_unlock_irq(&css_set_lock);
341 
342 	percpu_ref_kill(&objcg->refcnt);
343 }
344 
345 /*
346  * This will be used as a shrinker list's index.
347  * The main reason for not using cgroup id for this:
348  *  this works better in sparse environments, where we have a lot of memcgs,
349  *  but only a few kmem-limited. Or also, if we have, for instance, 200
350  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
351  *  200 entry array for that.
352  *
353  * The current size of the caches array is stored in memcg_nr_cache_ids. It
354  * will double each time we have to increase it.
355  */
356 static DEFINE_IDA(memcg_cache_ida);
357 int memcg_nr_cache_ids;
358 
359 /* Protects memcg_nr_cache_ids */
360 static DECLARE_RWSEM(memcg_cache_ids_sem);
361 
362 void memcg_get_cache_ids(void)
363 {
364 	down_read(&memcg_cache_ids_sem);
365 }
366 
367 void memcg_put_cache_ids(void)
368 {
369 	up_read(&memcg_cache_ids_sem);
370 }
371 
372 /*
373  * MIN_SIZE is different than 1, because we would like to avoid going through
374  * the alloc/free process all the time. In a small machine, 4 kmem-limited
375  * cgroups is a reasonable guess. In the future, it could be a parameter or
376  * tunable, but that is strictly not necessary.
377  *
378  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
379  * this constant directly from cgroup, but it is understandable that this is
380  * better kept as an internal representation in cgroup.c. In any case, the
381  * cgrp_id space is not getting any smaller, and we don't have to necessarily
382  * increase ours as well if it increases.
383  */
384 #define MEMCG_CACHES_MIN_SIZE 4
385 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
386 
387 /*
388  * A lot of the calls to the cache allocation functions are expected to be
389  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
390  * conditional to this static branch, we'll have to allow modules that does
391  * kmem_cache_alloc and the such to see this symbol as well
392  */
393 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
394 EXPORT_SYMBOL(memcg_kmem_enabled_key);
395 #endif
396 
397 /**
398  * mem_cgroup_css_from_page - css of the memcg associated with a page
399  * @page: page of interest
400  *
401  * If memcg is bound to the default hierarchy, css of the memcg associated
402  * with @page is returned.  The returned css remains associated with @page
403  * until it is released.
404  *
405  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
406  * is returned.
407  */
408 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
409 {
410 	struct mem_cgroup *memcg;
411 
412 	memcg = page_memcg(page);
413 
414 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
415 		memcg = root_mem_cgroup;
416 
417 	return &memcg->css;
418 }
419 
420 /**
421  * page_cgroup_ino - return inode number of the memcg a page is charged to
422  * @page: the page
423  *
424  * Look up the closest online ancestor of the memory cgroup @page is charged to
425  * and return its inode number or 0 if @page is not charged to any cgroup. It
426  * is safe to call this function without holding a reference to @page.
427  *
428  * Note, this function is inherently racy, because there is nothing to prevent
429  * the cgroup inode from getting torn down and potentially reallocated a moment
430  * after page_cgroup_ino() returns, so it only should be used by callers that
431  * do not care (such as procfs interfaces).
432  */
433 ino_t page_cgroup_ino(struct page *page)
434 {
435 	struct mem_cgroup *memcg;
436 	unsigned long ino = 0;
437 
438 	rcu_read_lock();
439 	memcg = page_memcg_check(page);
440 
441 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
442 		memcg = parent_mem_cgroup(memcg);
443 	if (memcg)
444 		ino = cgroup_ino(memcg->css.cgroup);
445 	rcu_read_unlock();
446 	return ino;
447 }
448 
449 static struct mem_cgroup_per_node *
450 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
451 {
452 	int nid = page_to_nid(page);
453 
454 	return memcg->nodeinfo[nid];
455 }
456 
457 static struct mem_cgroup_tree_per_node *
458 soft_limit_tree_node(int nid)
459 {
460 	return soft_limit_tree.rb_tree_per_node[nid];
461 }
462 
463 static struct mem_cgroup_tree_per_node *
464 soft_limit_tree_from_page(struct page *page)
465 {
466 	int nid = page_to_nid(page);
467 
468 	return soft_limit_tree.rb_tree_per_node[nid];
469 }
470 
471 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
472 					 struct mem_cgroup_tree_per_node *mctz,
473 					 unsigned long new_usage_in_excess)
474 {
475 	struct rb_node **p = &mctz->rb_root.rb_node;
476 	struct rb_node *parent = NULL;
477 	struct mem_cgroup_per_node *mz_node;
478 	bool rightmost = true;
479 
480 	if (mz->on_tree)
481 		return;
482 
483 	mz->usage_in_excess = new_usage_in_excess;
484 	if (!mz->usage_in_excess)
485 		return;
486 	while (*p) {
487 		parent = *p;
488 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
489 					tree_node);
490 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
491 			p = &(*p)->rb_left;
492 			rightmost = false;
493 		} else {
494 			p = &(*p)->rb_right;
495 		}
496 	}
497 
498 	if (rightmost)
499 		mctz->rb_rightmost = &mz->tree_node;
500 
501 	rb_link_node(&mz->tree_node, parent, p);
502 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
503 	mz->on_tree = true;
504 }
505 
506 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
507 					 struct mem_cgroup_tree_per_node *mctz)
508 {
509 	if (!mz->on_tree)
510 		return;
511 
512 	if (&mz->tree_node == mctz->rb_rightmost)
513 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
514 
515 	rb_erase(&mz->tree_node, &mctz->rb_root);
516 	mz->on_tree = false;
517 }
518 
519 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
520 				       struct mem_cgroup_tree_per_node *mctz)
521 {
522 	unsigned long flags;
523 
524 	spin_lock_irqsave(&mctz->lock, flags);
525 	__mem_cgroup_remove_exceeded(mz, mctz);
526 	spin_unlock_irqrestore(&mctz->lock, flags);
527 }
528 
529 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
530 {
531 	unsigned long nr_pages = page_counter_read(&memcg->memory);
532 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
533 	unsigned long excess = 0;
534 
535 	if (nr_pages > soft_limit)
536 		excess = nr_pages - soft_limit;
537 
538 	return excess;
539 }
540 
541 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
542 {
543 	unsigned long excess;
544 	struct mem_cgroup_per_node *mz;
545 	struct mem_cgroup_tree_per_node *mctz;
546 
547 	mctz = soft_limit_tree_from_page(page);
548 	if (!mctz)
549 		return;
550 	/*
551 	 * Necessary to update all ancestors when hierarchy is used.
552 	 * because their event counter is not touched.
553 	 */
554 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
555 		mz = mem_cgroup_page_nodeinfo(memcg, page);
556 		excess = soft_limit_excess(memcg);
557 		/*
558 		 * We have to update the tree if mz is on RB-tree or
559 		 * mem is over its softlimit.
560 		 */
561 		if (excess || mz->on_tree) {
562 			unsigned long flags;
563 
564 			spin_lock_irqsave(&mctz->lock, flags);
565 			/* if on-tree, remove it */
566 			if (mz->on_tree)
567 				__mem_cgroup_remove_exceeded(mz, mctz);
568 			/*
569 			 * Insert again. mz->usage_in_excess will be updated.
570 			 * If excess is 0, no tree ops.
571 			 */
572 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
573 			spin_unlock_irqrestore(&mctz->lock, flags);
574 		}
575 	}
576 }
577 
578 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
579 {
580 	struct mem_cgroup_tree_per_node *mctz;
581 	struct mem_cgroup_per_node *mz;
582 	int nid;
583 
584 	for_each_node(nid) {
585 		mz = memcg->nodeinfo[nid];
586 		mctz = soft_limit_tree_node(nid);
587 		if (mctz)
588 			mem_cgroup_remove_exceeded(mz, mctz);
589 	}
590 }
591 
592 static struct mem_cgroup_per_node *
593 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
594 {
595 	struct mem_cgroup_per_node *mz;
596 
597 retry:
598 	mz = NULL;
599 	if (!mctz->rb_rightmost)
600 		goto done;		/* Nothing to reclaim from */
601 
602 	mz = rb_entry(mctz->rb_rightmost,
603 		      struct mem_cgroup_per_node, tree_node);
604 	/*
605 	 * Remove the node now but someone else can add it back,
606 	 * we will to add it back at the end of reclaim to its correct
607 	 * position in the tree.
608 	 */
609 	__mem_cgroup_remove_exceeded(mz, mctz);
610 	if (!soft_limit_excess(mz->memcg) ||
611 	    !css_tryget(&mz->memcg->css))
612 		goto retry;
613 done:
614 	return mz;
615 }
616 
617 static struct mem_cgroup_per_node *
618 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
619 {
620 	struct mem_cgroup_per_node *mz;
621 
622 	spin_lock_irq(&mctz->lock);
623 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
624 	spin_unlock_irq(&mctz->lock);
625 	return mz;
626 }
627 
628 /**
629  * __mod_memcg_state - update cgroup memory statistics
630  * @memcg: the memory cgroup
631  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
632  * @val: delta to add to the counter, can be negative
633  */
634 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
635 {
636 	if (mem_cgroup_disabled())
637 		return;
638 
639 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
640 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
641 }
642 
643 /* idx can be of type enum memcg_stat_item or node_stat_item. */
644 static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
645 {
646 	long x = READ_ONCE(memcg->vmstats.state[idx]);
647 #ifdef CONFIG_SMP
648 	if (x < 0)
649 		x = 0;
650 #endif
651 	return x;
652 }
653 
654 /* idx can be of type enum memcg_stat_item or node_stat_item. */
655 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
656 {
657 	long x = 0;
658 	int cpu;
659 
660 	for_each_possible_cpu(cpu)
661 		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
662 #ifdef CONFIG_SMP
663 	if (x < 0)
664 		x = 0;
665 #endif
666 	return x;
667 }
668 
669 static struct mem_cgroup_per_node *
670 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
671 {
672 	struct mem_cgroup *parent;
673 
674 	parent = parent_mem_cgroup(pn->memcg);
675 	if (!parent)
676 		return NULL;
677 	return parent->nodeinfo[nid];
678 }
679 
680 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
681 			      int val)
682 {
683 	struct mem_cgroup_per_node *pn;
684 	struct mem_cgroup *memcg;
685 	long x, threshold = MEMCG_CHARGE_BATCH;
686 
687 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
688 	memcg = pn->memcg;
689 
690 	/* Update memcg */
691 	__mod_memcg_state(memcg, idx, val);
692 
693 	/* Update lruvec */
694 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
695 
696 	if (vmstat_item_in_bytes(idx))
697 		threshold <<= PAGE_SHIFT;
698 
699 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
700 	if (unlikely(abs(x) > threshold)) {
701 		pg_data_t *pgdat = lruvec_pgdat(lruvec);
702 		struct mem_cgroup_per_node *pi;
703 
704 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
705 			atomic_long_add(x, &pi->lruvec_stat[idx]);
706 		x = 0;
707 	}
708 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
709 }
710 
711 /**
712  * __mod_lruvec_state - update lruvec memory statistics
713  * @lruvec: the lruvec
714  * @idx: the stat item
715  * @val: delta to add to the counter, can be negative
716  *
717  * The lruvec is the intersection of the NUMA node and a cgroup. This
718  * function updates the all three counters that are affected by a
719  * change of state at this level: per-node, per-cgroup, per-lruvec.
720  */
721 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
722 			int val)
723 {
724 	/* Update node */
725 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
726 
727 	/* Update memcg and lruvec */
728 	if (!mem_cgroup_disabled())
729 		__mod_memcg_lruvec_state(lruvec, idx, val);
730 }
731 
732 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
733 			     int val)
734 {
735 	struct page *head = compound_head(page); /* rmap on tail pages */
736 	struct mem_cgroup *memcg;
737 	pg_data_t *pgdat = page_pgdat(page);
738 	struct lruvec *lruvec;
739 
740 	rcu_read_lock();
741 	memcg = page_memcg(head);
742 	/* Untracked pages have no memcg, no lruvec. Update only the node */
743 	if (!memcg) {
744 		rcu_read_unlock();
745 		__mod_node_page_state(pgdat, idx, val);
746 		return;
747 	}
748 
749 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
750 	__mod_lruvec_state(lruvec, idx, val);
751 	rcu_read_unlock();
752 }
753 EXPORT_SYMBOL(__mod_lruvec_page_state);
754 
755 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
756 {
757 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
758 	struct mem_cgroup *memcg;
759 	struct lruvec *lruvec;
760 
761 	rcu_read_lock();
762 	memcg = mem_cgroup_from_obj(p);
763 
764 	/*
765 	 * Untracked pages have no memcg, no lruvec. Update only the
766 	 * node. If we reparent the slab objects to the root memcg,
767 	 * when we free the slab object, we need to update the per-memcg
768 	 * vmstats to keep it correct for the root memcg.
769 	 */
770 	if (!memcg) {
771 		__mod_node_page_state(pgdat, idx, val);
772 	} else {
773 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 		__mod_lruvec_state(lruvec, idx, val);
775 	}
776 	rcu_read_unlock();
777 }
778 
779 /*
780  * mod_objcg_mlstate() may be called with irq enabled, so
781  * mod_memcg_lruvec_state() should be used.
782  */
783 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
784 				     struct pglist_data *pgdat,
785 				     enum node_stat_item idx, int nr)
786 {
787 	struct mem_cgroup *memcg;
788 	struct lruvec *lruvec;
789 
790 	rcu_read_lock();
791 	memcg = obj_cgroup_memcg(objcg);
792 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
793 	mod_memcg_lruvec_state(lruvec, idx, nr);
794 	rcu_read_unlock();
795 }
796 
797 /**
798  * __count_memcg_events - account VM events in a cgroup
799  * @memcg: the memory cgroup
800  * @idx: the event item
801  * @count: the number of events that occurred
802  */
803 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
804 			  unsigned long count)
805 {
806 	if (mem_cgroup_disabled())
807 		return;
808 
809 	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
810 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
811 }
812 
813 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
814 {
815 	return READ_ONCE(memcg->vmstats.events[event]);
816 }
817 
818 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
819 {
820 	long x = 0;
821 	int cpu;
822 
823 	for_each_possible_cpu(cpu)
824 		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
825 	return x;
826 }
827 
828 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
829 					 struct page *page,
830 					 int nr_pages)
831 {
832 	/* pagein of a big page is an event. So, ignore page size */
833 	if (nr_pages > 0)
834 		__count_memcg_events(memcg, PGPGIN, 1);
835 	else {
836 		__count_memcg_events(memcg, PGPGOUT, 1);
837 		nr_pages = -nr_pages; /* for event */
838 	}
839 
840 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
841 }
842 
843 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
844 				       enum mem_cgroup_events_target target)
845 {
846 	unsigned long val, next;
847 
848 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
849 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
850 	/* from time_after() in jiffies.h */
851 	if ((long)(next - val) < 0) {
852 		switch (target) {
853 		case MEM_CGROUP_TARGET_THRESH:
854 			next = val + THRESHOLDS_EVENTS_TARGET;
855 			break;
856 		case MEM_CGROUP_TARGET_SOFTLIMIT:
857 			next = val + SOFTLIMIT_EVENTS_TARGET;
858 			break;
859 		default:
860 			break;
861 		}
862 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
863 		return true;
864 	}
865 	return false;
866 }
867 
868 /*
869  * Check events in order.
870  *
871  */
872 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
873 {
874 	/* threshold event is triggered in finer grain than soft limit */
875 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
876 						MEM_CGROUP_TARGET_THRESH))) {
877 		bool do_softlimit;
878 
879 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
880 						MEM_CGROUP_TARGET_SOFTLIMIT);
881 		mem_cgroup_threshold(memcg);
882 		if (unlikely(do_softlimit))
883 			mem_cgroup_update_tree(memcg, page);
884 	}
885 }
886 
887 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
888 {
889 	/*
890 	 * mm_update_next_owner() may clear mm->owner to NULL
891 	 * if it races with swapoff, page migration, etc.
892 	 * So this can be called with p == NULL.
893 	 */
894 	if (unlikely(!p))
895 		return NULL;
896 
897 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
898 }
899 EXPORT_SYMBOL(mem_cgroup_from_task);
900 
901 static __always_inline struct mem_cgroup *active_memcg(void)
902 {
903 	if (in_interrupt())
904 		return this_cpu_read(int_active_memcg);
905 	else
906 		return current->active_memcg;
907 }
908 
909 /**
910  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
911  * @mm: mm from which memcg should be extracted. It can be NULL.
912  *
913  * Obtain a reference on mm->memcg and returns it if successful. If mm
914  * is NULL, then the memcg is chosen as follows:
915  * 1) The active memcg, if set.
916  * 2) current->mm->memcg, if available
917  * 3) root memcg
918  * If mem_cgroup is disabled, NULL is returned.
919  */
920 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
921 {
922 	struct mem_cgroup *memcg;
923 
924 	if (mem_cgroup_disabled())
925 		return NULL;
926 
927 	/*
928 	 * Page cache insertions can happen without an
929 	 * actual mm context, e.g. during disk probing
930 	 * on boot, loopback IO, acct() writes etc.
931 	 *
932 	 * No need to css_get on root memcg as the reference
933 	 * counting is disabled on the root level in the
934 	 * cgroup core. See CSS_NO_REF.
935 	 */
936 	if (unlikely(!mm)) {
937 		memcg = active_memcg();
938 		if (unlikely(memcg)) {
939 			/* remote memcg must hold a ref */
940 			css_get(&memcg->css);
941 			return memcg;
942 		}
943 		mm = current->mm;
944 		if (unlikely(!mm))
945 			return root_mem_cgroup;
946 	}
947 
948 	rcu_read_lock();
949 	do {
950 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
951 		if (unlikely(!memcg))
952 			memcg = root_mem_cgroup;
953 	} while (!css_tryget(&memcg->css));
954 	rcu_read_unlock();
955 	return memcg;
956 }
957 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
958 
959 static __always_inline bool memcg_kmem_bypass(void)
960 {
961 	/* Allow remote memcg charging from any context. */
962 	if (unlikely(active_memcg()))
963 		return false;
964 
965 	/* Memcg to charge can't be determined. */
966 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
967 		return true;
968 
969 	return false;
970 }
971 
972 /**
973  * mem_cgroup_iter - iterate over memory cgroup hierarchy
974  * @root: hierarchy root
975  * @prev: previously returned memcg, NULL on first invocation
976  * @reclaim: cookie for shared reclaim walks, NULL for full walks
977  *
978  * Returns references to children of the hierarchy below @root, or
979  * @root itself, or %NULL after a full round-trip.
980  *
981  * Caller must pass the return value in @prev on subsequent
982  * invocations for reference counting, or use mem_cgroup_iter_break()
983  * to cancel a hierarchy walk before the round-trip is complete.
984  *
985  * Reclaimers can specify a node in @reclaim to divide up the memcgs
986  * in the hierarchy among all concurrent reclaimers operating on the
987  * same node.
988  */
989 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
990 				   struct mem_cgroup *prev,
991 				   struct mem_cgroup_reclaim_cookie *reclaim)
992 {
993 	struct mem_cgroup_reclaim_iter *iter;
994 	struct cgroup_subsys_state *css = NULL;
995 	struct mem_cgroup *memcg = NULL;
996 	struct mem_cgroup *pos = NULL;
997 
998 	if (mem_cgroup_disabled())
999 		return NULL;
1000 
1001 	if (!root)
1002 		root = root_mem_cgroup;
1003 
1004 	if (prev && !reclaim)
1005 		pos = prev;
1006 
1007 	rcu_read_lock();
1008 
1009 	if (reclaim) {
1010 		struct mem_cgroup_per_node *mz;
1011 
1012 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1013 		iter = &mz->iter;
1014 
1015 		if (prev && reclaim->generation != iter->generation)
1016 			goto out_unlock;
1017 
1018 		while (1) {
1019 			pos = READ_ONCE(iter->position);
1020 			if (!pos || css_tryget(&pos->css))
1021 				break;
1022 			/*
1023 			 * css reference reached zero, so iter->position will
1024 			 * be cleared by ->css_released. However, we should not
1025 			 * rely on this happening soon, because ->css_released
1026 			 * is called from a work queue, and by busy-waiting we
1027 			 * might block it. So we clear iter->position right
1028 			 * away.
1029 			 */
1030 			(void)cmpxchg(&iter->position, pos, NULL);
1031 		}
1032 	}
1033 
1034 	if (pos)
1035 		css = &pos->css;
1036 
1037 	for (;;) {
1038 		css = css_next_descendant_pre(css, &root->css);
1039 		if (!css) {
1040 			/*
1041 			 * Reclaimers share the hierarchy walk, and a
1042 			 * new one might jump in right at the end of
1043 			 * the hierarchy - make sure they see at least
1044 			 * one group and restart from the beginning.
1045 			 */
1046 			if (!prev)
1047 				continue;
1048 			break;
1049 		}
1050 
1051 		/*
1052 		 * Verify the css and acquire a reference.  The root
1053 		 * is provided by the caller, so we know it's alive
1054 		 * and kicking, and don't take an extra reference.
1055 		 */
1056 		memcg = mem_cgroup_from_css(css);
1057 
1058 		if (css == &root->css)
1059 			break;
1060 
1061 		if (css_tryget(css))
1062 			break;
1063 
1064 		memcg = NULL;
1065 	}
1066 
1067 	if (reclaim) {
1068 		/*
1069 		 * The position could have already been updated by a competing
1070 		 * thread, so check that the value hasn't changed since we read
1071 		 * it to avoid reclaiming from the same cgroup twice.
1072 		 */
1073 		(void)cmpxchg(&iter->position, pos, memcg);
1074 
1075 		if (pos)
1076 			css_put(&pos->css);
1077 
1078 		if (!memcg)
1079 			iter->generation++;
1080 		else if (!prev)
1081 			reclaim->generation = iter->generation;
1082 	}
1083 
1084 out_unlock:
1085 	rcu_read_unlock();
1086 	if (prev && prev != root)
1087 		css_put(&prev->css);
1088 
1089 	return memcg;
1090 }
1091 
1092 /**
1093  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1094  * @root: hierarchy root
1095  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1096  */
1097 void mem_cgroup_iter_break(struct mem_cgroup *root,
1098 			   struct mem_cgroup *prev)
1099 {
1100 	if (!root)
1101 		root = root_mem_cgroup;
1102 	if (prev && prev != root)
1103 		css_put(&prev->css);
1104 }
1105 
1106 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1107 					struct mem_cgroup *dead_memcg)
1108 {
1109 	struct mem_cgroup_reclaim_iter *iter;
1110 	struct mem_cgroup_per_node *mz;
1111 	int nid;
1112 
1113 	for_each_node(nid) {
1114 		mz = from->nodeinfo[nid];
1115 		iter = &mz->iter;
1116 		cmpxchg(&iter->position, dead_memcg, NULL);
1117 	}
1118 }
1119 
1120 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1121 {
1122 	struct mem_cgroup *memcg = dead_memcg;
1123 	struct mem_cgroup *last;
1124 
1125 	do {
1126 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1127 		last = memcg;
1128 	} while ((memcg = parent_mem_cgroup(memcg)));
1129 
1130 	/*
1131 	 * When cgruop1 non-hierarchy mode is used,
1132 	 * parent_mem_cgroup() does not walk all the way up to the
1133 	 * cgroup root (root_mem_cgroup). So we have to handle
1134 	 * dead_memcg from cgroup root separately.
1135 	 */
1136 	if (last != root_mem_cgroup)
1137 		__invalidate_reclaim_iterators(root_mem_cgroup,
1138 						dead_memcg);
1139 }
1140 
1141 /**
1142  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1143  * @memcg: hierarchy root
1144  * @fn: function to call for each task
1145  * @arg: argument passed to @fn
1146  *
1147  * This function iterates over tasks attached to @memcg or to any of its
1148  * descendants and calls @fn for each task. If @fn returns a non-zero
1149  * value, the function breaks the iteration loop and returns the value.
1150  * Otherwise, it will iterate over all tasks and return 0.
1151  *
1152  * This function must not be called for the root memory cgroup.
1153  */
1154 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1155 			  int (*fn)(struct task_struct *, void *), void *arg)
1156 {
1157 	struct mem_cgroup *iter;
1158 	int ret = 0;
1159 
1160 	BUG_ON(memcg == root_mem_cgroup);
1161 
1162 	for_each_mem_cgroup_tree(iter, memcg) {
1163 		struct css_task_iter it;
1164 		struct task_struct *task;
1165 
1166 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1167 		while (!ret && (task = css_task_iter_next(&it)))
1168 			ret = fn(task, arg);
1169 		css_task_iter_end(&it);
1170 		if (ret) {
1171 			mem_cgroup_iter_break(memcg, iter);
1172 			break;
1173 		}
1174 	}
1175 	return ret;
1176 }
1177 
1178 #ifdef CONFIG_DEBUG_VM
1179 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1180 {
1181 	struct mem_cgroup *memcg;
1182 
1183 	if (mem_cgroup_disabled())
1184 		return;
1185 
1186 	memcg = page_memcg(page);
1187 
1188 	if (!memcg)
1189 		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1190 	else
1191 		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1192 }
1193 #endif
1194 
1195 /**
1196  * lock_page_lruvec - lock and return lruvec for a given page.
1197  * @page: the page
1198  *
1199  * These functions are safe to use under any of the following conditions:
1200  * - page locked
1201  * - PageLRU cleared
1202  * - lock_page_memcg()
1203  * - page->_refcount is zero
1204  */
1205 struct lruvec *lock_page_lruvec(struct page *page)
1206 {
1207 	struct lruvec *lruvec;
1208 
1209 	lruvec = mem_cgroup_page_lruvec(page);
1210 	spin_lock(&lruvec->lru_lock);
1211 
1212 	lruvec_memcg_debug(lruvec, page);
1213 
1214 	return lruvec;
1215 }
1216 
1217 struct lruvec *lock_page_lruvec_irq(struct page *page)
1218 {
1219 	struct lruvec *lruvec;
1220 
1221 	lruvec = mem_cgroup_page_lruvec(page);
1222 	spin_lock_irq(&lruvec->lru_lock);
1223 
1224 	lruvec_memcg_debug(lruvec, page);
1225 
1226 	return lruvec;
1227 }
1228 
1229 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1230 {
1231 	struct lruvec *lruvec;
1232 
1233 	lruvec = mem_cgroup_page_lruvec(page);
1234 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1235 
1236 	lruvec_memcg_debug(lruvec, page);
1237 
1238 	return lruvec;
1239 }
1240 
1241 /**
1242  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1243  * @lruvec: mem_cgroup per zone lru vector
1244  * @lru: index of lru list the page is sitting on
1245  * @zid: zone id of the accounted pages
1246  * @nr_pages: positive when adding or negative when removing
1247  *
1248  * This function must be called under lru_lock, just before a page is added
1249  * to or just after a page is removed from an lru list (that ordering being
1250  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1251  */
1252 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1253 				int zid, int nr_pages)
1254 {
1255 	struct mem_cgroup_per_node *mz;
1256 	unsigned long *lru_size;
1257 	long size;
1258 
1259 	if (mem_cgroup_disabled())
1260 		return;
1261 
1262 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1263 	lru_size = &mz->lru_zone_size[zid][lru];
1264 
1265 	if (nr_pages < 0)
1266 		*lru_size += nr_pages;
1267 
1268 	size = *lru_size;
1269 	if (WARN_ONCE(size < 0,
1270 		"%s(%p, %d, %d): lru_size %ld\n",
1271 		__func__, lruvec, lru, nr_pages, size)) {
1272 		VM_BUG_ON(1);
1273 		*lru_size = 0;
1274 	}
1275 
1276 	if (nr_pages > 0)
1277 		*lru_size += nr_pages;
1278 }
1279 
1280 /**
1281  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1282  * @memcg: the memory cgroup
1283  *
1284  * Returns the maximum amount of memory @mem can be charged with, in
1285  * pages.
1286  */
1287 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1288 {
1289 	unsigned long margin = 0;
1290 	unsigned long count;
1291 	unsigned long limit;
1292 
1293 	count = page_counter_read(&memcg->memory);
1294 	limit = READ_ONCE(memcg->memory.max);
1295 	if (count < limit)
1296 		margin = limit - count;
1297 
1298 	if (do_memsw_account()) {
1299 		count = page_counter_read(&memcg->memsw);
1300 		limit = READ_ONCE(memcg->memsw.max);
1301 		if (count < limit)
1302 			margin = min(margin, limit - count);
1303 		else
1304 			margin = 0;
1305 	}
1306 
1307 	return margin;
1308 }
1309 
1310 /*
1311  * A routine for checking "mem" is under move_account() or not.
1312  *
1313  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1314  * moving cgroups. This is for waiting at high-memory pressure
1315  * caused by "move".
1316  */
1317 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1318 {
1319 	struct mem_cgroup *from;
1320 	struct mem_cgroup *to;
1321 	bool ret = false;
1322 	/*
1323 	 * Unlike task_move routines, we access mc.to, mc.from not under
1324 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1325 	 */
1326 	spin_lock(&mc.lock);
1327 	from = mc.from;
1328 	to = mc.to;
1329 	if (!from)
1330 		goto unlock;
1331 
1332 	ret = mem_cgroup_is_descendant(from, memcg) ||
1333 		mem_cgroup_is_descendant(to, memcg);
1334 unlock:
1335 	spin_unlock(&mc.lock);
1336 	return ret;
1337 }
1338 
1339 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1340 {
1341 	if (mc.moving_task && current != mc.moving_task) {
1342 		if (mem_cgroup_under_move(memcg)) {
1343 			DEFINE_WAIT(wait);
1344 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1345 			/* moving charge context might have finished. */
1346 			if (mc.moving_task)
1347 				schedule();
1348 			finish_wait(&mc.waitq, &wait);
1349 			return true;
1350 		}
1351 	}
1352 	return false;
1353 }
1354 
1355 struct memory_stat {
1356 	const char *name;
1357 	unsigned int idx;
1358 };
1359 
1360 static const struct memory_stat memory_stats[] = {
1361 	{ "anon",			NR_ANON_MAPPED			},
1362 	{ "file",			NR_FILE_PAGES			},
1363 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1364 	{ "pagetables",			NR_PAGETABLE			},
1365 	{ "percpu",			MEMCG_PERCPU_B			},
1366 	{ "sock",			MEMCG_SOCK			},
1367 	{ "shmem",			NR_SHMEM			},
1368 	{ "file_mapped",		NR_FILE_MAPPED			},
1369 	{ "file_dirty",			NR_FILE_DIRTY			},
1370 	{ "file_writeback",		NR_WRITEBACK			},
1371 #ifdef CONFIG_SWAP
1372 	{ "swapcached",			NR_SWAPCACHE			},
1373 #endif
1374 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1375 	{ "anon_thp",			NR_ANON_THPS			},
1376 	{ "file_thp",			NR_FILE_THPS			},
1377 	{ "shmem_thp",			NR_SHMEM_THPS			},
1378 #endif
1379 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1380 	{ "active_anon",		NR_ACTIVE_ANON			},
1381 	{ "inactive_file",		NR_INACTIVE_FILE		},
1382 	{ "active_file",		NR_ACTIVE_FILE			},
1383 	{ "unevictable",		NR_UNEVICTABLE			},
1384 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1385 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1386 
1387 	/* The memory events */
1388 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1389 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1390 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1391 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1392 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1393 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1394 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1395 };
1396 
1397 /* Translate stat items to the correct unit for memory.stat output */
1398 static int memcg_page_state_unit(int item)
1399 {
1400 	switch (item) {
1401 	case MEMCG_PERCPU_B:
1402 	case NR_SLAB_RECLAIMABLE_B:
1403 	case NR_SLAB_UNRECLAIMABLE_B:
1404 	case WORKINGSET_REFAULT_ANON:
1405 	case WORKINGSET_REFAULT_FILE:
1406 	case WORKINGSET_ACTIVATE_ANON:
1407 	case WORKINGSET_ACTIVATE_FILE:
1408 	case WORKINGSET_RESTORE_ANON:
1409 	case WORKINGSET_RESTORE_FILE:
1410 	case WORKINGSET_NODERECLAIM:
1411 		return 1;
1412 	case NR_KERNEL_STACK_KB:
1413 		return SZ_1K;
1414 	default:
1415 		return PAGE_SIZE;
1416 	}
1417 }
1418 
1419 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1420 						    int item)
1421 {
1422 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1423 }
1424 
1425 static char *memory_stat_format(struct mem_cgroup *memcg)
1426 {
1427 	struct seq_buf s;
1428 	int i;
1429 
1430 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1431 	if (!s.buffer)
1432 		return NULL;
1433 
1434 	/*
1435 	 * Provide statistics on the state of the memory subsystem as
1436 	 * well as cumulative event counters that show past behavior.
1437 	 *
1438 	 * This list is ordered following a combination of these gradients:
1439 	 * 1) generic big picture -> specifics and details
1440 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1441 	 *
1442 	 * Current memory state:
1443 	 */
1444 	cgroup_rstat_flush(memcg->css.cgroup);
1445 
1446 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1447 		u64 size;
1448 
1449 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1450 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1451 
1452 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1453 			size += memcg_page_state_output(memcg,
1454 							NR_SLAB_RECLAIMABLE_B);
1455 			seq_buf_printf(&s, "slab %llu\n", size);
1456 		}
1457 	}
1458 
1459 	/* Accumulated memory events */
1460 
1461 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1462 		       memcg_events(memcg, PGFAULT));
1463 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1464 		       memcg_events(memcg, PGMAJFAULT));
1465 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1466 		       memcg_events(memcg, PGREFILL));
1467 	seq_buf_printf(&s, "pgscan %lu\n",
1468 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1469 		       memcg_events(memcg, PGSCAN_DIRECT));
1470 	seq_buf_printf(&s, "pgsteal %lu\n",
1471 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1472 		       memcg_events(memcg, PGSTEAL_DIRECT));
1473 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1474 		       memcg_events(memcg, PGACTIVATE));
1475 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1476 		       memcg_events(memcg, PGDEACTIVATE));
1477 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1478 		       memcg_events(memcg, PGLAZYFREE));
1479 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1480 		       memcg_events(memcg, PGLAZYFREED));
1481 
1482 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1483 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1484 		       memcg_events(memcg, THP_FAULT_ALLOC));
1485 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1486 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1487 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1488 
1489 	/* The above should easily fit into one page */
1490 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1491 
1492 	return s.buffer;
1493 }
1494 
1495 #define K(x) ((x) << (PAGE_SHIFT-10))
1496 /**
1497  * mem_cgroup_print_oom_context: Print OOM information relevant to
1498  * memory controller.
1499  * @memcg: The memory cgroup that went over limit
1500  * @p: Task that is going to be killed
1501  *
1502  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1503  * enabled
1504  */
1505 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1506 {
1507 	rcu_read_lock();
1508 
1509 	if (memcg) {
1510 		pr_cont(",oom_memcg=");
1511 		pr_cont_cgroup_path(memcg->css.cgroup);
1512 	} else
1513 		pr_cont(",global_oom");
1514 	if (p) {
1515 		pr_cont(",task_memcg=");
1516 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1517 	}
1518 	rcu_read_unlock();
1519 }
1520 
1521 /**
1522  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1523  * memory controller.
1524  * @memcg: The memory cgroup that went over limit
1525  */
1526 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1527 {
1528 	char *buf;
1529 
1530 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1531 		K((u64)page_counter_read(&memcg->memory)),
1532 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1533 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1534 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1535 			K((u64)page_counter_read(&memcg->swap)),
1536 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1537 	else {
1538 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1539 			K((u64)page_counter_read(&memcg->memsw)),
1540 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1541 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1542 			K((u64)page_counter_read(&memcg->kmem)),
1543 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1544 	}
1545 
1546 	pr_info("Memory cgroup stats for ");
1547 	pr_cont_cgroup_path(memcg->css.cgroup);
1548 	pr_cont(":");
1549 	buf = memory_stat_format(memcg);
1550 	if (!buf)
1551 		return;
1552 	pr_info("%s", buf);
1553 	kfree(buf);
1554 }
1555 
1556 /*
1557  * Return the memory (and swap, if configured) limit for a memcg.
1558  */
1559 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1560 {
1561 	unsigned long max = READ_ONCE(memcg->memory.max);
1562 
1563 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1564 		if (mem_cgroup_swappiness(memcg))
1565 			max += min(READ_ONCE(memcg->swap.max),
1566 				   (unsigned long)total_swap_pages);
1567 	} else { /* v1 */
1568 		if (mem_cgroup_swappiness(memcg)) {
1569 			/* Calculate swap excess capacity from memsw limit */
1570 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1571 
1572 			max += min(swap, (unsigned long)total_swap_pages);
1573 		}
1574 	}
1575 	return max;
1576 }
1577 
1578 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1579 {
1580 	return page_counter_read(&memcg->memory);
1581 }
1582 
1583 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1584 				     int order)
1585 {
1586 	struct oom_control oc = {
1587 		.zonelist = NULL,
1588 		.nodemask = NULL,
1589 		.memcg = memcg,
1590 		.gfp_mask = gfp_mask,
1591 		.order = order,
1592 	};
1593 	bool ret = true;
1594 
1595 	if (mutex_lock_killable(&oom_lock))
1596 		return true;
1597 
1598 	if (mem_cgroup_margin(memcg) >= (1 << order))
1599 		goto unlock;
1600 
1601 	/*
1602 	 * A few threads which were not waiting at mutex_lock_killable() can
1603 	 * fail to bail out. Therefore, check again after holding oom_lock.
1604 	 */
1605 	ret = should_force_charge() || out_of_memory(&oc);
1606 
1607 unlock:
1608 	mutex_unlock(&oom_lock);
1609 	return ret;
1610 }
1611 
1612 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1613 				   pg_data_t *pgdat,
1614 				   gfp_t gfp_mask,
1615 				   unsigned long *total_scanned)
1616 {
1617 	struct mem_cgroup *victim = NULL;
1618 	int total = 0;
1619 	int loop = 0;
1620 	unsigned long excess;
1621 	unsigned long nr_scanned;
1622 	struct mem_cgroup_reclaim_cookie reclaim = {
1623 		.pgdat = pgdat,
1624 	};
1625 
1626 	excess = soft_limit_excess(root_memcg);
1627 
1628 	while (1) {
1629 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1630 		if (!victim) {
1631 			loop++;
1632 			if (loop >= 2) {
1633 				/*
1634 				 * If we have not been able to reclaim
1635 				 * anything, it might because there are
1636 				 * no reclaimable pages under this hierarchy
1637 				 */
1638 				if (!total)
1639 					break;
1640 				/*
1641 				 * We want to do more targeted reclaim.
1642 				 * excess >> 2 is not to excessive so as to
1643 				 * reclaim too much, nor too less that we keep
1644 				 * coming back to reclaim from this cgroup
1645 				 */
1646 				if (total >= (excess >> 2) ||
1647 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1648 					break;
1649 			}
1650 			continue;
1651 		}
1652 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1653 					pgdat, &nr_scanned);
1654 		*total_scanned += nr_scanned;
1655 		if (!soft_limit_excess(root_memcg))
1656 			break;
1657 	}
1658 	mem_cgroup_iter_break(root_memcg, victim);
1659 	return total;
1660 }
1661 
1662 #ifdef CONFIG_LOCKDEP
1663 static struct lockdep_map memcg_oom_lock_dep_map = {
1664 	.name = "memcg_oom_lock",
1665 };
1666 #endif
1667 
1668 static DEFINE_SPINLOCK(memcg_oom_lock);
1669 
1670 /*
1671  * Check OOM-Killer is already running under our hierarchy.
1672  * If someone is running, return false.
1673  */
1674 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1675 {
1676 	struct mem_cgroup *iter, *failed = NULL;
1677 
1678 	spin_lock(&memcg_oom_lock);
1679 
1680 	for_each_mem_cgroup_tree(iter, memcg) {
1681 		if (iter->oom_lock) {
1682 			/*
1683 			 * this subtree of our hierarchy is already locked
1684 			 * so we cannot give a lock.
1685 			 */
1686 			failed = iter;
1687 			mem_cgroup_iter_break(memcg, iter);
1688 			break;
1689 		} else
1690 			iter->oom_lock = true;
1691 	}
1692 
1693 	if (failed) {
1694 		/*
1695 		 * OK, we failed to lock the whole subtree so we have
1696 		 * to clean up what we set up to the failing subtree
1697 		 */
1698 		for_each_mem_cgroup_tree(iter, memcg) {
1699 			if (iter == failed) {
1700 				mem_cgroup_iter_break(memcg, iter);
1701 				break;
1702 			}
1703 			iter->oom_lock = false;
1704 		}
1705 	} else
1706 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1707 
1708 	spin_unlock(&memcg_oom_lock);
1709 
1710 	return !failed;
1711 }
1712 
1713 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1714 {
1715 	struct mem_cgroup *iter;
1716 
1717 	spin_lock(&memcg_oom_lock);
1718 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1719 	for_each_mem_cgroup_tree(iter, memcg)
1720 		iter->oom_lock = false;
1721 	spin_unlock(&memcg_oom_lock);
1722 }
1723 
1724 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1725 {
1726 	struct mem_cgroup *iter;
1727 
1728 	spin_lock(&memcg_oom_lock);
1729 	for_each_mem_cgroup_tree(iter, memcg)
1730 		iter->under_oom++;
1731 	spin_unlock(&memcg_oom_lock);
1732 }
1733 
1734 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1735 {
1736 	struct mem_cgroup *iter;
1737 
1738 	/*
1739 	 * Be careful about under_oom underflows because a child memcg
1740 	 * could have been added after mem_cgroup_mark_under_oom.
1741 	 */
1742 	spin_lock(&memcg_oom_lock);
1743 	for_each_mem_cgroup_tree(iter, memcg)
1744 		if (iter->under_oom > 0)
1745 			iter->under_oom--;
1746 	spin_unlock(&memcg_oom_lock);
1747 }
1748 
1749 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1750 
1751 struct oom_wait_info {
1752 	struct mem_cgroup *memcg;
1753 	wait_queue_entry_t	wait;
1754 };
1755 
1756 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1757 	unsigned mode, int sync, void *arg)
1758 {
1759 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1760 	struct mem_cgroup *oom_wait_memcg;
1761 	struct oom_wait_info *oom_wait_info;
1762 
1763 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1764 	oom_wait_memcg = oom_wait_info->memcg;
1765 
1766 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1767 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1768 		return 0;
1769 	return autoremove_wake_function(wait, mode, sync, arg);
1770 }
1771 
1772 static void memcg_oom_recover(struct mem_cgroup *memcg)
1773 {
1774 	/*
1775 	 * For the following lockless ->under_oom test, the only required
1776 	 * guarantee is that it must see the state asserted by an OOM when
1777 	 * this function is called as a result of userland actions
1778 	 * triggered by the notification of the OOM.  This is trivially
1779 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1780 	 * triggering notification.
1781 	 */
1782 	if (memcg && memcg->under_oom)
1783 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1784 }
1785 
1786 enum oom_status {
1787 	OOM_SUCCESS,
1788 	OOM_FAILED,
1789 	OOM_ASYNC,
1790 	OOM_SKIPPED
1791 };
1792 
1793 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1794 {
1795 	enum oom_status ret;
1796 	bool locked;
1797 
1798 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1799 		return OOM_SKIPPED;
1800 
1801 	memcg_memory_event(memcg, MEMCG_OOM);
1802 
1803 	/*
1804 	 * We are in the middle of the charge context here, so we
1805 	 * don't want to block when potentially sitting on a callstack
1806 	 * that holds all kinds of filesystem and mm locks.
1807 	 *
1808 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1809 	 * handling until the charge can succeed; remember the context and put
1810 	 * the task to sleep at the end of the page fault when all locks are
1811 	 * released.
1812 	 *
1813 	 * On the other hand, in-kernel OOM killer allows for an async victim
1814 	 * memory reclaim (oom_reaper) and that means that we are not solely
1815 	 * relying on the oom victim to make a forward progress and we can
1816 	 * invoke the oom killer here.
1817 	 *
1818 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1819 	 * victim and then we have to bail out from the charge path.
1820 	 */
1821 	if (memcg->oom_kill_disable) {
1822 		if (!current->in_user_fault)
1823 			return OOM_SKIPPED;
1824 		css_get(&memcg->css);
1825 		current->memcg_in_oom = memcg;
1826 		current->memcg_oom_gfp_mask = mask;
1827 		current->memcg_oom_order = order;
1828 
1829 		return OOM_ASYNC;
1830 	}
1831 
1832 	mem_cgroup_mark_under_oom(memcg);
1833 
1834 	locked = mem_cgroup_oom_trylock(memcg);
1835 
1836 	if (locked)
1837 		mem_cgroup_oom_notify(memcg);
1838 
1839 	mem_cgroup_unmark_under_oom(memcg);
1840 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1841 		ret = OOM_SUCCESS;
1842 	else
1843 		ret = OOM_FAILED;
1844 
1845 	if (locked)
1846 		mem_cgroup_oom_unlock(memcg);
1847 
1848 	return ret;
1849 }
1850 
1851 /**
1852  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1853  * @handle: actually kill/wait or just clean up the OOM state
1854  *
1855  * This has to be called at the end of a page fault if the memcg OOM
1856  * handler was enabled.
1857  *
1858  * Memcg supports userspace OOM handling where failed allocations must
1859  * sleep on a waitqueue until the userspace task resolves the
1860  * situation.  Sleeping directly in the charge context with all kinds
1861  * of locks held is not a good idea, instead we remember an OOM state
1862  * in the task and mem_cgroup_oom_synchronize() has to be called at
1863  * the end of the page fault to complete the OOM handling.
1864  *
1865  * Returns %true if an ongoing memcg OOM situation was detected and
1866  * completed, %false otherwise.
1867  */
1868 bool mem_cgroup_oom_synchronize(bool handle)
1869 {
1870 	struct mem_cgroup *memcg = current->memcg_in_oom;
1871 	struct oom_wait_info owait;
1872 	bool locked;
1873 
1874 	/* OOM is global, do not handle */
1875 	if (!memcg)
1876 		return false;
1877 
1878 	if (!handle)
1879 		goto cleanup;
1880 
1881 	owait.memcg = memcg;
1882 	owait.wait.flags = 0;
1883 	owait.wait.func = memcg_oom_wake_function;
1884 	owait.wait.private = current;
1885 	INIT_LIST_HEAD(&owait.wait.entry);
1886 
1887 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1888 	mem_cgroup_mark_under_oom(memcg);
1889 
1890 	locked = mem_cgroup_oom_trylock(memcg);
1891 
1892 	if (locked)
1893 		mem_cgroup_oom_notify(memcg);
1894 
1895 	if (locked && !memcg->oom_kill_disable) {
1896 		mem_cgroup_unmark_under_oom(memcg);
1897 		finish_wait(&memcg_oom_waitq, &owait.wait);
1898 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1899 					 current->memcg_oom_order);
1900 	} else {
1901 		schedule();
1902 		mem_cgroup_unmark_under_oom(memcg);
1903 		finish_wait(&memcg_oom_waitq, &owait.wait);
1904 	}
1905 
1906 	if (locked) {
1907 		mem_cgroup_oom_unlock(memcg);
1908 		/*
1909 		 * There is no guarantee that an OOM-lock contender
1910 		 * sees the wakeups triggered by the OOM kill
1911 		 * uncharges.  Wake any sleepers explicitly.
1912 		 */
1913 		memcg_oom_recover(memcg);
1914 	}
1915 cleanup:
1916 	current->memcg_in_oom = NULL;
1917 	css_put(&memcg->css);
1918 	return true;
1919 }
1920 
1921 /**
1922  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1923  * @victim: task to be killed by the OOM killer
1924  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1925  *
1926  * Returns a pointer to a memory cgroup, which has to be cleaned up
1927  * by killing all belonging OOM-killable tasks.
1928  *
1929  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1930  */
1931 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1932 					    struct mem_cgroup *oom_domain)
1933 {
1934 	struct mem_cgroup *oom_group = NULL;
1935 	struct mem_cgroup *memcg;
1936 
1937 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1938 		return NULL;
1939 
1940 	if (!oom_domain)
1941 		oom_domain = root_mem_cgroup;
1942 
1943 	rcu_read_lock();
1944 
1945 	memcg = mem_cgroup_from_task(victim);
1946 	if (memcg == root_mem_cgroup)
1947 		goto out;
1948 
1949 	/*
1950 	 * If the victim task has been asynchronously moved to a different
1951 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1952 	 * In this case it's better to ignore memory.group.oom.
1953 	 */
1954 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1955 		goto out;
1956 
1957 	/*
1958 	 * Traverse the memory cgroup hierarchy from the victim task's
1959 	 * cgroup up to the OOMing cgroup (or root) to find the
1960 	 * highest-level memory cgroup with oom.group set.
1961 	 */
1962 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1963 		if (memcg->oom_group)
1964 			oom_group = memcg;
1965 
1966 		if (memcg == oom_domain)
1967 			break;
1968 	}
1969 
1970 	if (oom_group)
1971 		css_get(&oom_group->css);
1972 out:
1973 	rcu_read_unlock();
1974 
1975 	return oom_group;
1976 }
1977 
1978 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1979 {
1980 	pr_info("Tasks in ");
1981 	pr_cont_cgroup_path(memcg->css.cgroup);
1982 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1983 }
1984 
1985 /**
1986  * lock_page_memcg - lock a page and memcg binding
1987  * @page: the page
1988  *
1989  * This function protects unlocked LRU pages from being moved to
1990  * another cgroup.
1991  *
1992  * It ensures lifetime of the locked memcg. Caller is responsible
1993  * for the lifetime of the page.
1994  */
1995 void lock_page_memcg(struct page *page)
1996 {
1997 	struct page *head = compound_head(page); /* rmap on tail pages */
1998 	struct mem_cgroup *memcg;
1999 	unsigned long flags;
2000 
2001 	/*
2002 	 * The RCU lock is held throughout the transaction.  The fast
2003 	 * path can get away without acquiring the memcg->move_lock
2004 	 * because page moving starts with an RCU grace period.
2005          */
2006 	rcu_read_lock();
2007 
2008 	if (mem_cgroup_disabled())
2009 		return;
2010 again:
2011 	memcg = page_memcg(head);
2012 	if (unlikely(!memcg))
2013 		return;
2014 
2015 #ifdef CONFIG_PROVE_LOCKING
2016 	local_irq_save(flags);
2017 	might_lock(&memcg->move_lock);
2018 	local_irq_restore(flags);
2019 #endif
2020 
2021 	if (atomic_read(&memcg->moving_account) <= 0)
2022 		return;
2023 
2024 	spin_lock_irqsave(&memcg->move_lock, flags);
2025 	if (memcg != page_memcg(head)) {
2026 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2027 		goto again;
2028 	}
2029 
2030 	/*
2031 	 * When charge migration first begins, we can have multiple
2032 	 * critical sections holding the fast-path RCU lock and one
2033 	 * holding the slowpath move_lock. Track the task who has the
2034 	 * move_lock for unlock_page_memcg().
2035 	 */
2036 	memcg->move_lock_task = current;
2037 	memcg->move_lock_flags = flags;
2038 }
2039 EXPORT_SYMBOL(lock_page_memcg);
2040 
2041 static void __unlock_page_memcg(struct mem_cgroup *memcg)
2042 {
2043 	if (memcg && memcg->move_lock_task == current) {
2044 		unsigned long flags = memcg->move_lock_flags;
2045 
2046 		memcg->move_lock_task = NULL;
2047 		memcg->move_lock_flags = 0;
2048 
2049 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2050 	}
2051 
2052 	rcu_read_unlock();
2053 }
2054 
2055 /**
2056  * unlock_page_memcg - unlock a page and memcg binding
2057  * @page: the page
2058  */
2059 void unlock_page_memcg(struct page *page)
2060 {
2061 	struct page *head = compound_head(page);
2062 
2063 	__unlock_page_memcg(page_memcg(head));
2064 }
2065 EXPORT_SYMBOL(unlock_page_memcg);
2066 
2067 struct obj_stock {
2068 #ifdef CONFIG_MEMCG_KMEM
2069 	struct obj_cgroup *cached_objcg;
2070 	struct pglist_data *cached_pgdat;
2071 	unsigned int nr_bytes;
2072 	int nr_slab_reclaimable_b;
2073 	int nr_slab_unreclaimable_b;
2074 #else
2075 	int dummy[0];
2076 #endif
2077 };
2078 
2079 struct memcg_stock_pcp {
2080 	struct mem_cgroup *cached; /* this never be root cgroup */
2081 	unsigned int nr_pages;
2082 	struct obj_stock task_obj;
2083 	struct obj_stock irq_obj;
2084 
2085 	struct work_struct work;
2086 	unsigned long flags;
2087 #define FLUSHING_CACHED_CHARGE	0
2088 };
2089 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2090 static DEFINE_MUTEX(percpu_charge_mutex);
2091 
2092 #ifdef CONFIG_MEMCG_KMEM
2093 static void drain_obj_stock(struct obj_stock *stock);
2094 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2095 				     struct mem_cgroup *root_memcg);
2096 
2097 #else
2098 static inline void drain_obj_stock(struct obj_stock *stock)
2099 {
2100 }
2101 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2102 				     struct mem_cgroup *root_memcg)
2103 {
2104 	return false;
2105 }
2106 #endif
2107 
2108 /*
2109  * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2110  * sequence used in this case to access content from object stock is slow.
2111  * To optimize for user context access, there are now two object stocks for
2112  * task context and interrupt context access respectively.
2113  *
2114  * The task context object stock can be accessed by disabling preemption only
2115  * which is cheap in non-preempt kernel. The interrupt context object stock
2116  * can only be accessed after disabling interrupt. User context code can
2117  * access interrupt object stock, but not vice versa.
2118  */
2119 static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2120 {
2121 	struct memcg_stock_pcp *stock;
2122 
2123 	if (likely(in_task())) {
2124 		*pflags = 0UL;
2125 		preempt_disable();
2126 		stock = this_cpu_ptr(&memcg_stock);
2127 		return &stock->task_obj;
2128 	}
2129 
2130 	local_irq_save(*pflags);
2131 	stock = this_cpu_ptr(&memcg_stock);
2132 	return &stock->irq_obj;
2133 }
2134 
2135 static inline void put_obj_stock(unsigned long flags)
2136 {
2137 	if (likely(in_task()))
2138 		preempt_enable();
2139 	else
2140 		local_irq_restore(flags);
2141 }
2142 
2143 /**
2144  * consume_stock: Try to consume stocked charge on this cpu.
2145  * @memcg: memcg to consume from.
2146  * @nr_pages: how many pages to charge.
2147  *
2148  * The charges will only happen if @memcg matches the current cpu's memcg
2149  * stock, and at least @nr_pages are available in that stock.  Failure to
2150  * service an allocation will refill the stock.
2151  *
2152  * returns true if successful, false otherwise.
2153  */
2154 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2155 {
2156 	struct memcg_stock_pcp *stock;
2157 	unsigned long flags;
2158 	bool ret = false;
2159 
2160 	if (nr_pages > MEMCG_CHARGE_BATCH)
2161 		return ret;
2162 
2163 	local_irq_save(flags);
2164 
2165 	stock = this_cpu_ptr(&memcg_stock);
2166 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2167 		stock->nr_pages -= nr_pages;
2168 		ret = true;
2169 	}
2170 
2171 	local_irq_restore(flags);
2172 
2173 	return ret;
2174 }
2175 
2176 /*
2177  * Returns stocks cached in percpu and reset cached information.
2178  */
2179 static void drain_stock(struct memcg_stock_pcp *stock)
2180 {
2181 	struct mem_cgroup *old = stock->cached;
2182 
2183 	if (!old)
2184 		return;
2185 
2186 	if (stock->nr_pages) {
2187 		page_counter_uncharge(&old->memory, stock->nr_pages);
2188 		if (do_memsw_account())
2189 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2190 		stock->nr_pages = 0;
2191 	}
2192 
2193 	css_put(&old->css);
2194 	stock->cached = NULL;
2195 }
2196 
2197 static void drain_local_stock(struct work_struct *dummy)
2198 {
2199 	struct memcg_stock_pcp *stock;
2200 	unsigned long flags;
2201 
2202 	/*
2203 	 * The only protection from memory hotplug vs. drain_stock races is
2204 	 * that we always operate on local CPU stock here with IRQ disabled
2205 	 */
2206 	local_irq_save(flags);
2207 
2208 	stock = this_cpu_ptr(&memcg_stock);
2209 	drain_obj_stock(&stock->irq_obj);
2210 	if (in_task())
2211 		drain_obj_stock(&stock->task_obj);
2212 	drain_stock(stock);
2213 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2214 
2215 	local_irq_restore(flags);
2216 }
2217 
2218 /*
2219  * Cache charges(val) to local per_cpu area.
2220  * This will be consumed by consume_stock() function, later.
2221  */
2222 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2223 {
2224 	struct memcg_stock_pcp *stock;
2225 	unsigned long flags;
2226 
2227 	local_irq_save(flags);
2228 
2229 	stock = this_cpu_ptr(&memcg_stock);
2230 	if (stock->cached != memcg) { /* reset if necessary */
2231 		drain_stock(stock);
2232 		css_get(&memcg->css);
2233 		stock->cached = memcg;
2234 	}
2235 	stock->nr_pages += nr_pages;
2236 
2237 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2238 		drain_stock(stock);
2239 
2240 	local_irq_restore(flags);
2241 }
2242 
2243 /*
2244  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2245  * of the hierarchy under it.
2246  */
2247 static void drain_all_stock(struct mem_cgroup *root_memcg)
2248 {
2249 	int cpu, curcpu;
2250 
2251 	/* If someone's already draining, avoid adding running more workers. */
2252 	if (!mutex_trylock(&percpu_charge_mutex))
2253 		return;
2254 	/*
2255 	 * Notify other cpus that system-wide "drain" is running
2256 	 * We do not care about races with the cpu hotplug because cpu down
2257 	 * as well as workers from this path always operate on the local
2258 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2259 	 */
2260 	curcpu = get_cpu();
2261 	for_each_online_cpu(cpu) {
2262 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2263 		struct mem_cgroup *memcg;
2264 		bool flush = false;
2265 
2266 		rcu_read_lock();
2267 		memcg = stock->cached;
2268 		if (memcg && stock->nr_pages &&
2269 		    mem_cgroup_is_descendant(memcg, root_memcg))
2270 			flush = true;
2271 		if (obj_stock_flush_required(stock, root_memcg))
2272 			flush = true;
2273 		rcu_read_unlock();
2274 
2275 		if (flush &&
2276 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2277 			if (cpu == curcpu)
2278 				drain_local_stock(&stock->work);
2279 			else
2280 				schedule_work_on(cpu, &stock->work);
2281 		}
2282 	}
2283 	put_cpu();
2284 	mutex_unlock(&percpu_charge_mutex);
2285 }
2286 
2287 static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2288 {
2289 	int nid;
2290 
2291 	for_each_node(nid) {
2292 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2293 		unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2294 		struct batched_lruvec_stat *lstatc;
2295 		int i;
2296 
2297 		lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2298 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2299 			stat[i] = lstatc->count[i];
2300 			lstatc->count[i] = 0;
2301 		}
2302 
2303 		do {
2304 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2305 				atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2306 		} while ((pn = parent_nodeinfo(pn, nid)));
2307 	}
2308 }
2309 
2310 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2311 {
2312 	struct memcg_stock_pcp *stock;
2313 	struct mem_cgroup *memcg;
2314 
2315 	stock = &per_cpu(memcg_stock, cpu);
2316 	drain_stock(stock);
2317 
2318 	for_each_mem_cgroup(memcg)
2319 		memcg_flush_lruvec_page_state(memcg, cpu);
2320 
2321 	return 0;
2322 }
2323 
2324 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2325 				  unsigned int nr_pages,
2326 				  gfp_t gfp_mask)
2327 {
2328 	unsigned long nr_reclaimed = 0;
2329 
2330 	do {
2331 		unsigned long pflags;
2332 
2333 		if (page_counter_read(&memcg->memory) <=
2334 		    READ_ONCE(memcg->memory.high))
2335 			continue;
2336 
2337 		memcg_memory_event(memcg, MEMCG_HIGH);
2338 
2339 		psi_memstall_enter(&pflags);
2340 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2341 							     gfp_mask, true);
2342 		psi_memstall_leave(&pflags);
2343 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2344 		 !mem_cgroup_is_root(memcg));
2345 
2346 	return nr_reclaimed;
2347 }
2348 
2349 static void high_work_func(struct work_struct *work)
2350 {
2351 	struct mem_cgroup *memcg;
2352 
2353 	memcg = container_of(work, struct mem_cgroup, high_work);
2354 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2355 }
2356 
2357 /*
2358  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2359  * enough to still cause a significant slowdown in most cases, while still
2360  * allowing diagnostics and tracing to proceed without becoming stuck.
2361  */
2362 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2363 
2364 /*
2365  * When calculating the delay, we use these either side of the exponentiation to
2366  * maintain precision and scale to a reasonable number of jiffies (see the table
2367  * below.
2368  *
2369  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2370  *   overage ratio to a delay.
2371  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2372  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2373  *   to produce a reasonable delay curve.
2374  *
2375  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2376  * reasonable delay curve compared to precision-adjusted overage, not
2377  * penalising heavily at first, but still making sure that growth beyond the
2378  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2379  * example, with a high of 100 megabytes:
2380  *
2381  *  +-------+------------------------+
2382  *  | usage | time to allocate in ms |
2383  *  +-------+------------------------+
2384  *  | 100M  |                      0 |
2385  *  | 101M  |                      6 |
2386  *  | 102M  |                     25 |
2387  *  | 103M  |                     57 |
2388  *  | 104M  |                    102 |
2389  *  | 105M  |                    159 |
2390  *  | 106M  |                    230 |
2391  *  | 107M  |                    313 |
2392  *  | 108M  |                    409 |
2393  *  | 109M  |                    518 |
2394  *  | 110M  |                    639 |
2395  *  | 111M  |                    774 |
2396  *  | 112M  |                    921 |
2397  *  | 113M  |                   1081 |
2398  *  | 114M  |                   1254 |
2399  *  | 115M  |                   1439 |
2400  *  | 116M  |                   1638 |
2401  *  | 117M  |                   1849 |
2402  *  | 118M  |                   2000 |
2403  *  | 119M  |                   2000 |
2404  *  | 120M  |                   2000 |
2405  *  +-------+------------------------+
2406  */
2407  #define MEMCG_DELAY_PRECISION_SHIFT 20
2408  #define MEMCG_DELAY_SCALING_SHIFT 14
2409 
2410 static u64 calculate_overage(unsigned long usage, unsigned long high)
2411 {
2412 	u64 overage;
2413 
2414 	if (usage <= high)
2415 		return 0;
2416 
2417 	/*
2418 	 * Prevent division by 0 in overage calculation by acting as if
2419 	 * it was a threshold of 1 page
2420 	 */
2421 	high = max(high, 1UL);
2422 
2423 	overage = usage - high;
2424 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2425 	return div64_u64(overage, high);
2426 }
2427 
2428 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2429 {
2430 	u64 overage, max_overage = 0;
2431 
2432 	do {
2433 		overage = calculate_overage(page_counter_read(&memcg->memory),
2434 					    READ_ONCE(memcg->memory.high));
2435 		max_overage = max(overage, max_overage);
2436 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2437 		 !mem_cgroup_is_root(memcg));
2438 
2439 	return max_overage;
2440 }
2441 
2442 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2443 {
2444 	u64 overage, max_overage = 0;
2445 
2446 	do {
2447 		overage = calculate_overage(page_counter_read(&memcg->swap),
2448 					    READ_ONCE(memcg->swap.high));
2449 		if (overage)
2450 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2451 		max_overage = max(overage, max_overage);
2452 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2453 		 !mem_cgroup_is_root(memcg));
2454 
2455 	return max_overage;
2456 }
2457 
2458 /*
2459  * Get the number of jiffies that we should penalise a mischievous cgroup which
2460  * is exceeding its memory.high by checking both it and its ancestors.
2461  */
2462 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2463 					  unsigned int nr_pages,
2464 					  u64 max_overage)
2465 {
2466 	unsigned long penalty_jiffies;
2467 
2468 	if (!max_overage)
2469 		return 0;
2470 
2471 	/*
2472 	 * We use overage compared to memory.high to calculate the number of
2473 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2474 	 * fairly lenient on small overages, and increasingly harsh when the
2475 	 * memcg in question makes it clear that it has no intention of stopping
2476 	 * its crazy behaviour, so we exponentially increase the delay based on
2477 	 * overage amount.
2478 	 */
2479 	penalty_jiffies = max_overage * max_overage * HZ;
2480 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2481 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2482 
2483 	/*
2484 	 * Factor in the task's own contribution to the overage, such that four
2485 	 * N-sized allocations are throttled approximately the same as one
2486 	 * 4N-sized allocation.
2487 	 *
2488 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2489 	 * larger the current charge patch is than that.
2490 	 */
2491 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2492 }
2493 
2494 /*
2495  * Scheduled by try_charge() to be executed from the userland return path
2496  * and reclaims memory over the high limit.
2497  */
2498 void mem_cgroup_handle_over_high(void)
2499 {
2500 	unsigned long penalty_jiffies;
2501 	unsigned long pflags;
2502 	unsigned long nr_reclaimed;
2503 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2504 	int nr_retries = MAX_RECLAIM_RETRIES;
2505 	struct mem_cgroup *memcg;
2506 	bool in_retry = false;
2507 
2508 	if (likely(!nr_pages))
2509 		return;
2510 
2511 	memcg = get_mem_cgroup_from_mm(current->mm);
2512 	current->memcg_nr_pages_over_high = 0;
2513 
2514 retry_reclaim:
2515 	/*
2516 	 * The allocating task should reclaim at least the batch size, but for
2517 	 * subsequent retries we only want to do what's necessary to prevent oom
2518 	 * or breaching resource isolation.
2519 	 *
2520 	 * This is distinct from memory.max or page allocator behaviour because
2521 	 * memory.high is currently batched, whereas memory.max and the page
2522 	 * allocator run every time an allocation is made.
2523 	 */
2524 	nr_reclaimed = reclaim_high(memcg,
2525 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2526 				    GFP_KERNEL);
2527 
2528 	/*
2529 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2530 	 * allocators proactively to slow down excessive growth.
2531 	 */
2532 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2533 					       mem_find_max_overage(memcg));
2534 
2535 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2536 						swap_find_max_overage(memcg));
2537 
2538 	/*
2539 	 * Clamp the max delay per usermode return so as to still keep the
2540 	 * application moving forwards and also permit diagnostics, albeit
2541 	 * extremely slowly.
2542 	 */
2543 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2544 
2545 	/*
2546 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2547 	 * that it's not even worth doing, in an attempt to be nice to those who
2548 	 * go only a small amount over their memory.high value and maybe haven't
2549 	 * been aggressively reclaimed enough yet.
2550 	 */
2551 	if (penalty_jiffies <= HZ / 100)
2552 		goto out;
2553 
2554 	/*
2555 	 * If reclaim is making forward progress but we're still over
2556 	 * memory.high, we want to encourage that rather than doing allocator
2557 	 * throttling.
2558 	 */
2559 	if (nr_reclaimed || nr_retries--) {
2560 		in_retry = true;
2561 		goto retry_reclaim;
2562 	}
2563 
2564 	/*
2565 	 * If we exit early, we're guaranteed to die (since
2566 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2567 	 * need to account for any ill-begotten jiffies to pay them off later.
2568 	 */
2569 	psi_memstall_enter(&pflags);
2570 	schedule_timeout_killable(penalty_jiffies);
2571 	psi_memstall_leave(&pflags);
2572 
2573 out:
2574 	css_put(&memcg->css);
2575 }
2576 
2577 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2578 			unsigned int nr_pages)
2579 {
2580 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2581 	int nr_retries = MAX_RECLAIM_RETRIES;
2582 	struct mem_cgroup *mem_over_limit;
2583 	struct page_counter *counter;
2584 	enum oom_status oom_status;
2585 	unsigned long nr_reclaimed;
2586 	bool may_swap = true;
2587 	bool drained = false;
2588 	unsigned long pflags;
2589 
2590 retry:
2591 	if (consume_stock(memcg, nr_pages))
2592 		return 0;
2593 
2594 	if (!do_memsw_account() ||
2595 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2596 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2597 			goto done_restock;
2598 		if (do_memsw_account())
2599 			page_counter_uncharge(&memcg->memsw, batch);
2600 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2601 	} else {
2602 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2603 		may_swap = false;
2604 	}
2605 
2606 	if (batch > nr_pages) {
2607 		batch = nr_pages;
2608 		goto retry;
2609 	}
2610 
2611 	/*
2612 	 * Memcg doesn't have a dedicated reserve for atomic
2613 	 * allocations. But like the global atomic pool, we need to
2614 	 * put the burden of reclaim on regular allocation requests
2615 	 * and let these go through as privileged allocations.
2616 	 */
2617 	if (gfp_mask & __GFP_ATOMIC)
2618 		goto force;
2619 
2620 	/*
2621 	 * Unlike in global OOM situations, memcg is not in a physical
2622 	 * memory shortage.  Allow dying and OOM-killed tasks to
2623 	 * bypass the last charges so that they can exit quickly and
2624 	 * free their memory.
2625 	 */
2626 	if (unlikely(should_force_charge()))
2627 		goto force;
2628 
2629 	/*
2630 	 * Prevent unbounded recursion when reclaim operations need to
2631 	 * allocate memory. This might exceed the limits temporarily,
2632 	 * but we prefer facilitating memory reclaim and getting back
2633 	 * under the limit over triggering OOM kills in these cases.
2634 	 */
2635 	if (unlikely(current->flags & PF_MEMALLOC))
2636 		goto force;
2637 
2638 	if (unlikely(task_in_memcg_oom(current)))
2639 		goto nomem;
2640 
2641 	if (!gfpflags_allow_blocking(gfp_mask))
2642 		goto nomem;
2643 
2644 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2645 
2646 	psi_memstall_enter(&pflags);
2647 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2648 						    gfp_mask, may_swap);
2649 	psi_memstall_leave(&pflags);
2650 
2651 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2652 		goto retry;
2653 
2654 	if (!drained) {
2655 		drain_all_stock(mem_over_limit);
2656 		drained = true;
2657 		goto retry;
2658 	}
2659 
2660 	if (gfp_mask & __GFP_NORETRY)
2661 		goto nomem;
2662 	/*
2663 	 * Even though the limit is exceeded at this point, reclaim
2664 	 * may have been able to free some pages.  Retry the charge
2665 	 * before killing the task.
2666 	 *
2667 	 * Only for regular pages, though: huge pages are rather
2668 	 * unlikely to succeed so close to the limit, and we fall back
2669 	 * to regular pages anyway in case of failure.
2670 	 */
2671 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2672 		goto retry;
2673 	/*
2674 	 * At task move, charge accounts can be doubly counted. So, it's
2675 	 * better to wait until the end of task_move if something is going on.
2676 	 */
2677 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2678 		goto retry;
2679 
2680 	if (nr_retries--)
2681 		goto retry;
2682 
2683 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2684 		goto nomem;
2685 
2686 	if (fatal_signal_pending(current))
2687 		goto force;
2688 
2689 	/*
2690 	 * keep retrying as long as the memcg oom killer is able to make
2691 	 * a forward progress or bypass the charge if the oom killer
2692 	 * couldn't make any progress.
2693 	 */
2694 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2695 		       get_order(nr_pages * PAGE_SIZE));
2696 	switch (oom_status) {
2697 	case OOM_SUCCESS:
2698 		nr_retries = MAX_RECLAIM_RETRIES;
2699 		goto retry;
2700 	case OOM_FAILED:
2701 		goto force;
2702 	default:
2703 		goto nomem;
2704 	}
2705 nomem:
2706 	if (!(gfp_mask & __GFP_NOFAIL))
2707 		return -ENOMEM;
2708 force:
2709 	/*
2710 	 * The allocation either can't fail or will lead to more memory
2711 	 * being freed very soon.  Allow memory usage go over the limit
2712 	 * temporarily by force charging it.
2713 	 */
2714 	page_counter_charge(&memcg->memory, nr_pages);
2715 	if (do_memsw_account())
2716 		page_counter_charge(&memcg->memsw, nr_pages);
2717 
2718 	return 0;
2719 
2720 done_restock:
2721 	if (batch > nr_pages)
2722 		refill_stock(memcg, batch - nr_pages);
2723 
2724 	/*
2725 	 * If the hierarchy is above the normal consumption range, schedule
2726 	 * reclaim on returning to userland.  We can perform reclaim here
2727 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2728 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2729 	 * not recorded as it most likely matches current's and won't
2730 	 * change in the meantime.  As high limit is checked again before
2731 	 * reclaim, the cost of mismatch is negligible.
2732 	 */
2733 	do {
2734 		bool mem_high, swap_high;
2735 
2736 		mem_high = page_counter_read(&memcg->memory) >
2737 			READ_ONCE(memcg->memory.high);
2738 		swap_high = page_counter_read(&memcg->swap) >
2739 			READ_ONCE(memcg->swap.high);
2740 
2741 		/* Don't bother a random interrupted task */
2742 		if (in_interrupt()) {
2743 			if (mem_high) {
2744 				schedule_work(&memcg->high_work);
2745 				break;
2746 			}
2747 			continue;
2748 		}
2749 
2750 		if (mem_high || swap_high) {
2751 			/*
2752 			 * The allocating tasks in this cgroup will need to do
2753 			 * reclaim or be throttled to prevent further growth
2754 			 * of the memory or swap footprints.
2755 			 *
2756 			 * Target some best-effort fairness between the tasks,
2757 			 * and distribute reclaim work and delay penalties
2758 			 * based on how much each task is actually allocating.
2759 			 */
2760 			current->memcg_nr_pages_over_high += batch;
2761 			set_notify_resume(current);
2762 			break;
2763 		}
2764 	} while ((memcg = parent_mem_cgroup(memcg)));
2765 
2766 	return 0;
2767 }
2768 
2769 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2770 			     unsigned int nr_pages)
2771 {
2772 	if (mem_cgroup_is_root(memcg))
2773 		return 0;
2774 
2775 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2776 }
2777 
2778 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2779 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2780 {
2781 	if (mem_cgroup_is_root(memcg))
2782 		return;
2783 
2784 	page_counter_uncharge(&memcg->memory, nr_pages);
2785 	if (do_memsw_account())
2786 		page_counter_uncharge(&memcg->memsw, nr_pages);
2787 }
2788 #endif
2789 
2790 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2791 {
2792 	VM_BUG_ON_PAGE(page_memcg(page), page);
2793 	/*
2794 	 * Any of the following ensures page's memcg stability:
2795 	 *
2796 	 * - the page lock
2797 	 * - LRU isolation
2798 	 * - lock_page_memcg()
2799 	 * - exclusive reference
2800 	 */
2801 	page->memcg_data = (unsigned long)memcg;
2802 }
2803 
2804 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2805 {
2806 	struct mem_cgroup *memcg;
2807 
2808 	rcu_read_lock();
2809 retry:
2810 	memcg = obj_cgroup_memcg(objcg);
2811 	if (unlikely(!css_tryget(&memcg->css)))
2812 		goto retry;
2813 	rcu_read_unlock();
2814 
2815 	return memcg;
2816 }
2817 
2818 #ifdef CONFIG_MEMCG_KMEM
2819 /*
2820  * The allocated objcg pointers array is not accounted directly.
2821  * Moreover, it should not come from DMA buffer and is not readily
2822  * reclaimable. So those GFP bits should be masked off.
2823  */
2824 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2825 
2826 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2827 				 gfp_t gfp, bool new_page)
2828 {
2829 	unsigned int objects = objs_per_slab_page(s, page);
2830 	unsigned long memcg_data;
2831 	void *vec;
2832 
2833 	gfp &= ~OBJCGS_CLEAR_MASK;
2834 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2835 			   page_to_nid(page));
2836 	if (!vec)
2837 		return -ENOMEM;
2838 
2839 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2840 	if (new_page) {
2841 		/*
2842 		 * If the slab page is brand new and nobody can yet access
2843 		 * it's memcg_data, no synchronization is required and
2844 		 * memcg_data can be simply assigned.
2845 		 */
2846 		page->memcg_data = memcg_data;
2847 	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2848 		/*
2849 		 * If the slab page is already in use, somebody can allocate
2850 		 * and assign obj_cgroups in parallel. In this case the existing
2851 		 * objcg vector should be reused.
2852 		 */
2853 		kfree(vec);
2854 		return 0;
2855 	}
2856 
2857 	kmemleak_not_leak(vec);
2858 	return 0;
2859 }
2860 
2861 /*
2862  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2863  *
2864  * A passed kernel object can be a slab object or a generic kernel page, so
2865  * different mechanisms for getting the memory cgroup pointer should be used.
2866  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2867  * can not know for sure how the kernel object is implemented.
2868  * mem_cgroup_from_obj() can be safely used in such cases.
2869  *
2870  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2871  * cgroup_mutex, etc.
2872  */
2873 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2874 {
2875 	struct page *page;
2876 
2877 	if (mem_cgroup_disabled())
2878 		return NULL;
2879 
2880 	page = virt_to_head_page(p);
2881 
2882 	/*
2883 	 * Slab objects are accounted individually, not per-page.
2884 	 * Memcg membership data for each individual object is saved in
2885 	 * the page->obj_cgroups.
2886 	 */
2887 	if (page_objcgs_check(page)) {
2888 		struct obj_cgroup *objcg;
2889 		unsigned int off;
2890 
2891 		off = obj_to_index(page->slab_cache, page, p);
2892 		objcg = page_objcgs(page)[off];
2893 		if (objcg)
2894 			return obj_cgroup_memcg(objcg);
2895 
2896 		return NULL;
2897 	}
2898 
2899 	/*
2900 	 * page_memcg_check() is used here, because page_has_obj_cgroups()
2901 	 * check above could fail because the object cgroups vector wasn't set
2902 	 * at that moment, but it can be set concurrently.
2903 	 * page_memcg_check(page) will guarantee that a proper memory
2904 	 * cgroup pointer or NULL will be returned.
2905 	 */
2906 	return page_memcg_check(page);
2907 }
2908 
2909 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2910 {
2911 	struct obj_cgroup *objcg = NULL;
2912 	struct mem_cgroup *memcg;
2913 
2914 	if (memcg_kmem_bypass())
2915 		return NULL;
2916 
2917 	rcu_read_lock();
2918 	if (unlikely(active_memcg()))
2919 		memcg = active_memcg();
2920 	else
2921 		memcg = mem_cgroup_from_task(current);
2922 
2923 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2924 		objcg = rcu_dereference(memcg->objcg);
2925 		if (objcg && obj_cgroup_tryget(objcg))
2926 			break;
2927 		objcg = NULL;
2928 	}
2929 	rcu_read_unlock();
2930 
2931 	return objcg;
2932 }
2933 
2934 static int memcg_alloc_cache_id(void)
2935 {
2936 	int id, size;
2937 	int err;
2938 
2939 	id = ida_simple_get(&memcg_cache_ida,
2940 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2941 	if (id < 0)
2942 		return id;
2943 
2944 	if (id < memcg_nr_cache_ids)
2945 		return id;
2946 
2947 	/*
2948 	 * There's no space for the new id in memcg_caches arrays,
2949 	 * so we have to grow them.
2950 	 */
2951 	down_write(&memcg_cache_ids_sem);
2952 
2953 	size = 2 * (id + 1);
2954 	if (size < MEMCG_CACHES_MIN_SIZE)
2955 		size = MEMCG_CACHES_MIN_SIZE;
2956 	else if (size > MEMCG_CACHES_MAX_SIZE)
2957 		size = MEMCG_CACHES_MAX_SIZE;
2958 
2959 	err = memcg_update_all_list_lrus(size);
2960 	if (!err)
2961 		memcg_nr_cache_ids = size;
2962 
2963 	up_write(&memcg_cache_ids_sem);
2964 
2965 	if (err) {
2966 		ida_simple_remove(&memcg_cache_ida, id);
2967 		return err;
2968 	}
2969 	return id;
2970 }
2971 
2972 static void memcg_free_cache_id(int id)
2973 {
2974 	ida_simple_remove(&memcg_cache_ida, id);
2975 }
2976 
2977 /*
2978  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2979  * @objcg: object cgroup to uncharge
2980  * @nr_pages: number of pages to uncharge
2981  */
2982 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2983 				      unsigned int nr_pages)
2984 {
2985 	struct mem_cgroup *memcg;
2986 
2987 	memcg = get_mem_cgroup_from_objcg(objcg);
2988 
2989 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2990 		page_counter_uncharge(&memcg->kmem, nr_pages);
2991 	refill_stock(memcg, nr_pages);
2992 
2993 	css_put(&memcg->css);
2994 }
2995 
2996 /*
2997  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2998  * @objcg: object cgroup to charge
2999  * @gfp: reclaim mode
3000  * @nr_pages: number of pages to charge
3001  *
3002  * Returns 0 on success, an error code on failure.
3003  */
3004 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3005 				   unsigned int nr_pages)
3006 {
3007 	struct page_counter *counter;
3008 	struct mem_cgroup *memcg;
3009 	int ret;
3010 
3011 	memcg = get_mem_cgroup_from_objcg(objcg);
3012 
3013 	ret = try_charge_memcg(memcg, gfp, nr_pages);
3014 	if (ret)
3015 		goto out;
3016 
3017 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3018 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3019 
3020 		/*
3021 		 * Enforce __GFP_NOFAIL allocation because callers are not
3022 		 * prepared to see failures and likely do not have any failure
3023 		 * handling code.
3024 		 */
3025 		if (gfp & __GFP_NOFAIL) {
3026 			page_counter_charge(&memcg->kmem, nr_pages);
3027 			goto out;
3028 		}
3029 		cancel_charge(memcg, nr_pages);
3030 		ret = -ENOMEM;
3031 	}
3032 out:
3033 	css_put(&memcg->css);
3034 
3035 	return ret;
3036 }
3037 
3038 /**
3039  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3040  * @page: page to charge
3041  * @gfp: reclaim mode
3042  * @order: allocation order
3043  *
3044  * Returns 0 on success, an error code on failure.
3045  */
3046 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3047 {
3048 	struct obj_cgroup *objcg;
3049 	int ret = 0;
3050 
3051 	objcg = get_obj_cgroup_from_current();
3052 	if (objcg) {
3053 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3054 		if (!ret) {
3055 			page->memcg_data = (unsigned long)objcg |
3056 				MEMCG_DATA_KMEM;
3057 			return 0;
3058 		}
3059 		obj_cgroup_put(objcg);
3060 	}
3061 	return ret;
3062 }
3063 
3064 /**
3065  * __memcg_kmem_uncharge_page: uncharge a kmem page
3066  * @page: page to uncharge
3067  * @order: allocation order
3068  */
3069 void __memcg_kmem_uncharge_page(struct page *page, int order)
3070 {
3071 	struct obj_cgroup *objcg;
3072 	unsigned int nr_pages = 1 << order;
3073 
3074 	if (!PageMemcgKmem(page))
3075 		return;
3076 
3077 	objcg = __page_objcg(page);
3078 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3079 	page->memcg_data = 0;
3080 	obj_cgroup_put(objcg);
3081 }
3082 
3083 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3084 		     enum node_stat_item idx, int nr)
3085 {
3086 	unsigned long flags;
3087 	struct obj_stock *stock = get_obj_stock(&flags);
3088 	int *bytes;
3089 
3090 	/*
3091 	 * Save vmstat data in stock and skip vmstat array update unless
3092 	 * accumulating over a page of vmstat data or when pgdat or idx
3093 	 * changes.
3094 	 */
3095 	if (stock->cached_objcg != objcg) {
3096 		drain_obj_stock(stock);
3097 		obj_cgroup_get(objcg);
3098 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3099 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3100 		stock->cached_objcg = objcg;
3101 		stock->cached_pgdat = pgdat;
3102 	} else if (stock->cached_pgdat != pgdat) {
3103 		/* Flush the existing cached vmstat data */
3104 		if (stock->nr_slab_reclaimable_b) {
3105 			mod_objcg_mlstate(objcg, pgdat, NR_SLAB_RECLAIMABLE_B,
3106 					  stock->nr_slab_reclaimable_b);
3107 			stock->nr_slab_reclaimable_b = 0;
3108 		}
3109 		if (stock->nr_slab_unreclaimable_b) {
3110 			mod_objcg_mlstate(objcg, pgdat, NR_SLAB_UNRECLAIMABLE_B,
3111 					  stock->nr_slab_unreclaimable_b);
3112 			stock->nr_slab_unreclaimable_b = 0;
3113 		}
3114 		stock->cached_pgdat = pgdat;
3115 	}
3116 
3117 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3118 					       : &stock->nr_slab_unreclaimable_b;
3119 	/*
3120 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3121 	 * cached locally at least once before pushing it out.
3122 	 */
3123 	if (!*bytes) {
3124 		*bytes = nr;
3125 		nr = 0;
3126 	} else {
3127 		*bytes += nr;
3128 		if (abs(*bytes) > PAGE_SIZE) {
3129 			nr = *bytes;
3130 			*bytes = 0;
3131 		} else {
3132 			nr = 0;
3133 		}
3134 	}
3135 	if (nr)
3136 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3137 
3138 	put_obj_stock(flags);
3139 }
3140 
3141 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3142 {
3143 	unsigned long flags;
3144 	struct obj_stock *stock = get_obj_stock(&flags);
3145 	bool ret = false;
3146 
3147 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3148 		stock->nr_bytes -= nr_bytes;
3149 		ret = true;
3150 	}
3151 
3152 	put_obj_stock(flags);
3153 
3154 	return ret;
3155 }
3156 
3157 static void drain_obj_stock(struct obj_stock *stock)
3158 {
3159 	struct obj_cgroup *old = stock->cached_objcg;
3160 
3161 	if (!old)
3162 		return;
3163 
3164 	if (stock->nr_bytes) {
3165 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3166 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3167 
3168 		if (nr_pages)
3169 			obj_cgroup_uncharge_pages(old, nr_pages);
3170 
3171 		/*
3172 		 * The leftover is flushed to the centralized per-memcg value.
3173 		 * On the next attempt to refill obj stock it will be moved
3174 		 * to a per-cpu stock (probably, on an other CPU), see
3175 		 * refill_obj_stock().
3176 		 *
3177 		 * How often it's flushed is a trade-off between the memory
3178 		 * limit enforcement accuracy and potential CPU contention,
3179 		 * so it might be changed in the future.
3180 		 */
3181 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3182 		stock->nr_bytes = 0;
3183 	}
3184 
3185 	/*
3186 	 * Flush the vmstat data in current stock
3187 	 */
3188 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3189 		if (stock->nr_slab_reclaimable_b) {
3190 			mod_objcg_mlstate(old, stock->cached_pgdat,
3191 					  NR_SLAB_RECLAIMABLE_B,
3192 					  stock->nr_slab_reclaimable_b);
3193 			stock->nr_slab_reclaimable_b = 0;
3194 		}
3195 		if (stock->nr_slab_unreclaimable_b) {
3196 			mod_objcg_mlstate(old, stock->cached_pgdat,
3197 					  NR_SLAB_UNRECLAIMABLE_B,
3198 					  stock->nr_slab_unreclaimable_b);
3199 			stock->nr_slab_unreclaimable_b = 0;
3200 		}
3201 		stock->cached_pgdat = NULL;
3202 	}
3203 
3204 	obj_cgroup_put(old);
3205 	stock->cached_objcg = NULL;
3206 }
3207 
3208 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3209 				     struct mem_cgroup *root_memcg)
3210 {
3211 	struct mem_cgroup *memcg;
3212 
3213 	if (in_task() && stock->task_obj.cached_objcg) {
3214 		memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3215 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3216 			return true;
3217 	}
3218 	if (stock->irq_obj.cached_objcg) {
3219 		memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3220 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3221 			return true;
3222 	}
3223 
3224 	return false;
3225 }
3226 
3227 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3228 			     bool allow_uncharge)
3229 {
3230 	unsigned long flags;
3231 	struct obj_stock *stock = get_obj_stock(&flags);
3232 	unsigned int nr_pages = 0;
3233 
3234 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3235 		drain_obj_stock(stock);
3236 		obj_cgroup_get(objcg);
3237 		stock->cached_objcg = objcg;
3238 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3239 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3240 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3241 	}
3242 	stock->nr_bytes += nr_bytes;
3243 
3244 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3245 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3246 		stock->nr_bytes &= (PAGE_SIZE - 1);
3247 	}
3248 
3249 	put_obj_stock(flags);
3250 
3251 	if (nr_pages)
3252 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3253 }
3254 
3255 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3256 {
3257 	unsigned int nr_pages, nr_bytes;
3258 	int ret;
3259 
3260 	if (consume_obj_stock(objcg, size))
3261 		return 0;
3262 
3263 	/*
3264 	 * In theory, objcg->nr_charged_bytes can have enough
3265 	 * pre-charged bytes to satisfy the allocation. However,
3266 	 * flushing objcg->nr_charged_bytes requires two atomic
3267 	 * operations, and objcg->nr_charged_bytes can't be big.
3268 	 * The shared objcg->nr_charged_bytes can also become a
3269 	 * performance bottleneck if all tasks of the same memcg are
3270 	 * trying to update it. So it's better to ignore it and try
3271 	 * grab some new pages. The stock's nr_bytes will be flushed to
3272 	 * objcg->nr_charged_bytes later on when objcg changes.
3273 	 *
3274 	 * The stock's nr_bytes may contain enough pre-charged bytes
3275 	 * to allow one less page from being charged, but we can't rely
3276 	 * on the pre-charged bytes not being changed outside of
3277 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3278 	 * pre-charged bytes as well when charging pages. To avoid a
3279 	 * page uncharge right after a page charge, we set the
3280 	 * allow_uncharge flag to false when calling refill_obj_stock()
3281 	 * to temporarily allow the pre-charged bytes to exceed the page
3282 	 * size limit. The maximum reachable value of the pre-charged
3283 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3284 	 * race.
3285 	 */
3286 	nr_pages = size >> PAGE_SHIFT;
3287 	nr_bytes = size & (PAGE_SIZE - 1);
3288 
3289 	if (nr_bytes)
3290 		nr_pages += 1;
3291 
3292 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3293 	if (!ret && nr_bytes)
3294 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3295 
3296 	return ret;
3297 }
3298 
3299 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3300 {
3301 	refill_obj_stock(objcg, size, true);
3302 }
3303 
3304 #endif /* CONFIG_MEMCG_KMEM */
3305 
3306 /*
3307  * Because page_memcg(head) is not set on tails, set it now.
3308  */
3309 void split_page_memcg(struct page *head, unsigned int nr)
3310 {
3311 	struct mem_cgroup *memcg = page_memcg(head);
3312 	int i;
3313 
3314 	if (mem_cgroup_disabled() || !memcg)
3315 		return;
3316 
3317 	for (i = 1; i < nr; i++)
3318 		head[i].memcg_data = head->memcg_data;
3319 
3320 	if (PageMemcgKmem(head))
3321 		obj_cgroup_get_many(__page_objcg(head), nr - 1);
3322 	else
3323 		css_get_many(&memcg->css, nr - 1);
3324 }
3325 
3326 #ifdef CONFIG_MEMCG_SWAP
3327 /**
3328  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3329  * @entry: swap entry to be moved
3330  * @from:  mem_cgroup which the entry is moved from
3331  * @to:  mem_cgroup which the entry is moved to
3332  *
3333  * It succeeds only when the swap_cgroup's record for this entry is the same
3334  * as the mem_cgroup's id of @from.
3335  *
3336  * Returns 0 on success, -EINVAL on failure.
3337  *
3338  * The caller must have charged to @to, IOW, called page_counter_charge() about
3339  * both res and memsw, and called css_get().
3340  */
3341 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3342 				struct mem_cgroup *from, struct mem_cgroup *to)
3343 {
3344 	unsigned short old_id, new_id;
3345 
3346 	old_id = mem_cgroup_id(from);
3347 	new_id = mem_cgroup_id(to);
3348 
3349 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3350 		mod_memcg_state(from, MEMCG_SWAP, -1);
3351 		mod_memcg_state(to, MEMCG_SWAP, 1);
3352 		return 0;
3353 	}
3354 	return -EINVAL;
3355 }
3356 #else
3357 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3358 				struct mem_cgroup *from, struct mem_cgroup *to)
3359 {
3360 	return -EINVAL;
3361 }
3362 #endif
3363 
3364 static DEFINE_MUTEX(memcg_max_mutex);
3365 
3366 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3367 				 unsigned long max, bool memsw)
3368 {
3369 	bool enlarge = false;
3370 	bool drained = false;
3371 	int ret;
3372 	bool limits_invariant;
3373 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3374 
3375 	do {
3376 		if (signal_pending(current)) {
3377 			ret = -EINTR;
3378 			break;
3379 		}
3380 
3381 		mutex_lock(&memcg_max_mutex);
3382 		/*
3383 		 * Make sure that the new limit (memsw or memory limit) doesn't
3384 		 * break our basic invariant rule memory.max <= memsw.max.
3385 		 */
3386 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3387 					   max <= memcg->memsw.max;
3388 		if (!limits_invariant) {
3389 			mutex_unlock(&memcg_max_mutex);
3390 			ret = -EINVAL;
3391 			break;
3392 		}
3393 		if (max > counter->max)
3394 			enlarge = true;
3395 		ret = page_counter_set_max(counter, max);
3396 		mutex_unlock(&memcg_max_mutex);
3397 
3398 		if (!ret)
3399 			break;
3400 
3401 		if (!drained) {
3402 			drain_all_stock(memcg);
3403 			drained = true;
3404 			continue;
3405 		}
3406 
3407 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3408 					GFP_KERNEL, !memsw)) {
3409 			ret = -EBUSY;
3410 			break;
3411 		}
3412 	} while (true);
3413 
3414 	if (!ret && enlarge)
3415 		memcg_oom_recover(memcg);
3416 
3417 	return ret;
3418 }
3419 
3420 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3421 					    gfp_t gfp_mask,
3422 					    unsigned long *total_scanned)
3423 {
3424 	unsigned long nr_reclaimed = 0;
3425 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3426 	unsigned long reclaimed;
3427 	int loop = 0;
3428 	struct mem_cgroup_tree_per_node *mctz;
3429 	unsigned long excess;
3430 	unsigned long nr_scanned;
3431 
3432 	if (order > 0)
3433 		return 0;
3434 
3435 	mctz = soft_limit_tree_node(pgdat->node_id);
3436 
3437 	/*
3438 	 * Do not even bother to check the largest node if the root
3439 	 * is empty. Do it lockless to prevent lock bouncing. Races
3440 	 * are acceptable as soft limit is best effort anyway.
3441 	 */
3442 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3443 		return 0;
3444 
3445 	/*
3446 	 * This loop can run a while, specially if mem_cgroup's continuously
3447 	 * keep exceeding their soft limit and putting the system under
3448 	 * pressure
3449 	 */
3450 	do {
3451 		if (next_mz)
3452 			mz = next_mz;
3453 		else
3454 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3455 		if (!mz)
3456 			break;
3457 
3458 		nr_scanned = 0;
3459 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3460 						    gfp_mask, &nr_scanned);
3461 		nr_reclaimed += reclaimed;
3462 		*total_scanned += nr_scanned;
3463 		spin_lock_irq(&mctz->lock);
3464 		__mem_cgroup_remove_exceeded(mz, mctz);
3465 
3466 		/*
3467 		 * If we failed to reclaim anything from this memory cgroup
3468 		 * it is time to move on to the next cgroup
3469 		 */
3470 		next_mz = NULL;
3471 		if (!reclaimed)
3472 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3473 
3474 		excess = soft_limit_excess(mz->memcg);
3475 		/*
3476 		 * One school of thought says that we should not add
3477 		 * back the node to the tree if reclaim returns 0.
3478 		 * But our reclaim could return 0, simply because due
3479 		 * to priority we are exposing a smaller subset of
3480 		 * memory to reclaim from. Consider this as a longer
3481 		 * term TODO.
3482 		 */
3483 		/* If excess == 0, no tree ops */
3484 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3485 		spin_unlock_irq(&mctz->lock);
3486 		css_put(&mz->memcg->css);
3487 		loop++;
3488 		/*
3489 		 * Could not reclaim anything and there are no more
3490 		 * mem cgroups to try or we seem to be looping without
3491 		 * reclaiming anything.
3492 		 */
3493 		if (!nr_reclaimed &&
3494 			(next_mz == NULL ||
3495 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3496 			break;
3497 	} while (!nr_reclaimed);
3498 	if (next_mz)
3499 		css_put(&next_mz->memcg->css);
3500 	return nr_reclaimed;
3501 }
3502 
3503 /*
3504  * Reclaims as many pages from the given memcg as possible.
3505  *
3506  * Caller is responsible for holding css reference for memcg.
3507  */
3508 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3509 {
3510 	int nr_retries = MAX_RECLAIM_RETRIES;
3511 
3512 	/* we call try-to-free pages for make this cgroup empty */
3513 	lru_add_drain_all();
3514 
3515 	drain_all_stock(memcg);
3516 
3517 	/* try to free all pages in this cgroup */
3518 	while (nr_retries && page_counter_read(&memcg->memory)) {
3519 		int progress;
3520 
3521 		if (signal_pending(current))
3522 			return -EINTR;
3523 
3524 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3525 							GFP_KERNEL, true);
3526 		if (!progress) {
3527 			nr_retries--;
3528 			/* maybe some writeback is necessary */
3529 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3530 		}
3531 
3532 	}
3533 
3534 	return 0;
3535 }
3536 
3537 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3538 					    char *buf, size_t nbytes,
3539 					    loff_t off)
3540 {
3541 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3542 
3543 	if (mem_cgroup_is_root(memcg))
3544 		return -EINVAL;
3545 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3546 }
3547 
3548 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3549 				     struct cftype *cft)
3550 {
3551 	return 1;
3552 }
3553 
3554 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3555 				      struct cftype *cft, u64 val)
3556 {
3557 	if (val == 1)
3558 		return 0;
3559 
3560 	pr_warn_once("Non-hierarchical mode is deprecated. "
3561 		     "Please report your usecase to linux-mm@kvack.org if you "
3562 		     "depend on this functionality.\n");
3563 
3564 	return -EINVAL;
3565 }
3566 
3567 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3568 {
3569 	unsigned long val;
3570 
3571 	if (mem_cgroup_is_root(memcg)) {
3572 		cgroup_rstat_flush(memcg->css.cgroup);
3573 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3574 			memcg_page_state(memcg, NR_ANON_MAPPED);
3575 		if (swap)
3576 			val += memcg_page_state(memcg, MEMCG_SWAP);
3577 	} else {
3578 		if (!swap)
3579 			val = page_counter_read(&memcg->memory);
3580 		else
3581 			val = page_counter_read(&memcg->memsw);
3582 	}
3583 	return val;
3584 }
3585 
3586 enum {
3587 	RES_USAGE,
3588 	RES_LIMIT,
3589 	RES_MAX_USAGE,
3590 	RES_FAILCNT,
3591 	RES_SOFT_LIMIT,
3592 };
3593 
3594 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3595 			       struct cftype *cft)
3596 {
3597 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3598 	struct page_counter *counter;
3599 
3600 	switch (MEMFILE_TYPE(cft->private)) {
3601 	case _MEM:
3602 		counter = &memcg->memory;
3603 		break;
3604 	case _MEMSWAP:
3605 		counter = &memcg->memsw;
3606 		break;
3607 	case _KMEM:
3608 		counter = &memcg->kmem;
3609 		break;
3610 	case _TCP:
3611 		counter = &memcg->tcpmem;
3612 		break;
3613 	default:
3614 		BUG();
3615 	}
3616 
3617 	switch (MEMFILE_ATTR(cft->private)) {
3618 	case RES_USAGE:
3619 		if (counter == &memcg->memory)
3620 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3621 		if (counter == &memcg->memsw)
3622 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3623 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3624 	case RES_LIMIT:
3625 		return (u64)counter->max * PAGE_SIZE;
3626 	case RES_MAX_USAGE:
3627 		return (u64)counter->watermark * PAGE_SIZE;
3628 	case RES_FAILCNT:
3629 		return counter->failcnt;
3630 	case RES_SOFT_LIMIT:
3631 		return (u64)memcg->soft_limit * PAGE_SIZE;
3632 	default:
3633 		BUG();
3634 	}
3635 }
3636 
3637 #ifdef CONFIG_MEMCG_KMEM
3638 static int memcg_online_kmem(struct mem_cgroup *memcg)
3639 {
3640 	struct obj_cgroup *objcg;
3641 	int memcg_id;
3642 
3643 	if (cgroup_memory_nokmem)
3644 		return 0;
3645 
3646 	BUG_ON(memcg->kmemcg_id >= 0);
3647 	BUG_ON(memcg->kmem_state);
3648 
3649 	memcg_id = memcg_alloc_cache_id();
3650 	if (memcg_id < 0)
3651 		return memcg_id;
3652 
3653 	objcg = obj_cgroup_alloc();
3654 	if (!objcg) {
3655 		memcg_free_cache_id(memcg_id);
3656 		return -ENOMEM;
3657 	}
3658 	objcg->memcg = memcg;
3659 	rcu_assign_pointer(memcg->objcg, objcg);
3660 
3661 	static_branch_enable(&memcg_kmem_enabled_key);
3662 
3663 	memcg->kmemcg_id = memcg_id;
3664 	memcg->kmem_state = KMEM_ONLINE;
3665 
3666 	return 0;
3667 }
3668 
3669 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3670 {
3671 	struct cgroup_subsys_state *css;
3672 	struct mem_cgroup *parent, *child;
3673 	int kmemcg_id;
3674 
3675 	if (memcg->kmem_state != KMEM_ONLINE)
3676 		return;
3677 
3678 	memcg->kmem_state = KMEM_ALLOCATED;
3679 
3680 	parent = parent_mem_cgroup(memcg);
3681 	if (!parent)
3682 		parent = root_mem_cgroup;
3683 
3684 	memcg_reparent_objcgs(memcg, parent);
3685 
3686 	kmemcg_id = memcg->kmemcg_id;
3687 	BUG_ON(kmemcg_id < 0);
3688 
3689 	/*
3690 	 * Change kmemcg_id of this cgroup and all its descendants to the
3691 	 * parent's id, and then move all entries from this cgroup's list_lrus
3692 	 * to ones of the parent. After we have finished, all list_lrus
3693 	 * corresponding to this cgroup are guaranteed to remain empty. The
3694 	 * ordering is imposed by list_lru_node->lock taken by
3695 	 * memcg_drain_all_list_lrus().
3696 	 */
3697 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3698 	css_for_each_descendant_pre(css, &memcg->css) {
3699 		child = mem_cgroup_from_css(css);
3700 		BUG_ON(child->kmemcg_id != kmemcg_id);
3701 		child->kmemcg_id = parent->kmemcg_id;
3702 	}
3703 	rcu_read_unlock();
3704 
3705 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3706 
3707 	memcg_free_cache_id(kmemcg_id);
3708 }
3709 
3710 static void memcg_free_kmem(struct mem_cgroup *memcg)
3711 {
3712 	/* css_alloc() failed, offlining didn't happen */
3713 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3714 		memcg_offline_kmem(memcg);
3715 }
3716 #else
3717 static int memcg_online_kmem(struct mem_cgroup *memcg)
3718 {
3719 	return 0;
3720 }
3721 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3722 {
3723 }
3724 static void memcg_free_kmem(struct mem_cgroup *memcg)
3725 {
3726 }
3727 #endif /* CONFIG_MEMCG_KMEM */
3728 
3729 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3730 				 unsigned long max)
3731 {
3732 	int ret;
3733 
3734 	mutex_lock(&memcg_max_mutex);
3735 	ret = page_counter_set_max(&memcg->kmem, max);
3736 	mutex_unlock(&memcg_max_mutex);
3737 	return ret;
3738 }
3739 
3740 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3741 {
3742 	int ret;
3743 
3744 	mutex_lock(&memcg_max_mutex);
3745 
3746 	ret = page_counter_set_max(&memcg->tcpmem, max);
3747 	if (ret)
3748 		goto out;
3749 
3750 	if (!memcg->tcpmem_active) {
3751 		/*
3752 		 * The active flag needs to be written after the static_key
3753 		 * update. This is what guarantees that the socket activation
3754 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3755 		 * for details, and note that we don't mark any socket as
3756 		 * belonging to this memcg until that flag is up.
3757 		 *
3758 		 * We need to do this, because static_keys will span multiple
3759 		 * sites, but we can't control their order. If we mark a socket
3760 		 * as accounted, but the accounting functions are not patched in
3761 		 * yet, we'll lose accounting.
3762 		 *
3763 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3764 		 * because when this value change, the code to process it is not
3765 		 * patched in yet.
3766 		 */
3767 		static_branch_inc(&memcg_sockets_enabled_key);
3768 		memcg->tcpmem_active = true;
3769 	}
3770 out:
3771 	mutex_unlock(&memcg_max_mutex);
3772 	return ret;
3773 }
3774 
3775 /*
3776  * The user of this function is...
3777  * RES_LIMIT.
3778  */
3779 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3780 				char *buf, size_t nbytes, loff_t off)
3781 {
3782 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3783 	unsigned long nr_pages;
3784 	int ret;
3785 
3786 	buf = strstrip(buf);
3787 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3788 	if (ret)
3789 		return ret;
3790 
3791 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3792 	case RES_LIMIT:
3793 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3794 			ret = -EINVAL;
3795 			break;
3796 		}
3797 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3798 		case _MEM:
3799 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3800 			break;
3801 		case _MEMSWAP:
3802 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3803 			break;
3804 		case _KMEM:
3805 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3806 				     "Please report your usecase to linux-mm@kvack.org if you "
3807 				     "depend on this functionality.\n");
3808 			ret = memcg_update_kmem_max(memcg, nr_pages);
3809 			break;
3810 		case _TCP:
3811 			ret = memcg_update_tcp_max(memcg, nr_pages);
3812 			break;
3813 		}
3814 		break;
3815 	case RES_SOFT_LIMIT:
3816 		memcg->soft_limit = nr_pages;
3817 		ret = 0;
3818 		break;
3819 	}
3820 	return ret ?: nbytes;
3821 }
3822 
3823 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3824 				size_t nbytes, loff_t off)
3825 {
3826 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3827 	struct page_counter *counter;
3828 
3829 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3830 	case _MEM:
3831 		counter = &memcg->memory;
3832 		break;
3833 	case _MEMSWAP:
3834 		counter = &memcg->memsw;
3835 		break;
3836 	case _KMEM:
3837 		counter = &memcg->kmem;
3838 		break;
3839 	case _TCP:
3840 		counter = &memcg->tcpmem;
3841 		break;
3842 	default:
3843 		BUG();
3844 	}
3845 
3846 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3847 	case RES_MAX_USAGE:
3848 		page_counter_reset_watermark(counter);
3849 		break;
3850 	case RES_FAILCNT:
3851 		counter->failcnt = 0;
3852 		break;
3853 	default:
3854 		BUG();
3855 	}
3856 
3857 	return nbytes;
3858 }
3859 
3860 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3861 					struct cftype *cft)
3862 {
3863 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3864 }
3865 
3866 #ifdef CONFIG_MMU
3867 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3868 					struct cftype *cft, u64 val)
3869 {
3870 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3871 
3872 	if (val & ~MOVE_MASK)
3873 		return -EINVAL;
3874 
3875 	/*
3876 	 * No kind of locking is needed in here, because ->can_attach() will
3877 	 * check this value once in the beginning of the process, and then carry
3878 	 * on with stale data. This means that changes to this value will only
3879 	 * affect task migrations starting after the change.
3880 	 */
3881 	memcg->move_charge_at_immigrate = val;
3882 	return 0;
3883 }
3884 #else
3885 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3886 					struct cftype *cft, u64 val)
3887 {
3888 	return -ENOSYS;
3889 }
3890 #endif
3891 
3892 #ifdef CONFIG_NUMA
3893 
3894 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3895 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3896 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3897 
3898 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3899 				int nid, unsigned int lru_mask, bool tree)
3900 {
3901 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3902 	unsigned long nr = 0;
3903 	enum lru_list lru;
3904 
3905 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3906 
3907 	for_each_lru(lru) {
3908 		if (!(BIT(lru) & lru_mask))
3909 			continue;
3910 		if (tree)
3911 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3912 		else
3913 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3914 	}
3915 	return nr;
3916 }
3917 
3918 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3919 					     unsigned int lru_mask,
3920 					     bool tree)
3921 {
3922 	unsigned long nr = 0;
3923 	enum lru_list lru;
3924 
3925 	for_each_lru(lru) {
3926 		if (!(BIT(lru) & lru_mask))
3927 			continue;
3928 		if (tree)
3929 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3930 		else
3931 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3932 	}
3933 	return nr;
3934 }
3935 
3936 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3937 {
3938 	struct numa_stat {
3939 		const char *name;
3940 		unsigned int lru_mask;
3941 	};
3942 
3943 	static const struct numa_stat stats[] = {
3944 		{ "total", LRU_ALL },
3945 		{ "file", LRU_ALL_FILE },
3946 		{ "anon", LRU_ALL_ANON },
3947 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3948 	};
3949 	const struct numa_stat *stat;
3950 	int nid;
3951 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3952 
3953 	cgroup_rstat_flush(memcg->css.cgroup);
3954 
3955 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3956 		seq_printf(m, "%s=%lu", stat->name,
3957 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3958 						   false));
3959 		for_each_node_state(nid, N_MEMORY)
3960 			seq_printf(m, " N%d=%lu", nid,
3961 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3962 							stat->lru_mask, false));
3963 		seq_putc(m, '\n');
3964 	}
3965 
3966 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3967 
3968 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3969 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3970 						   true));
3971 		for_each_node_state(nid, N_MEMORY)
3972 			seq_printf(m, " N%d=%lu", nid,
3973 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3974 							stat->lru_mask, true));
3975 		seq_putc(m, '\n');
3976 	}
3977 
3978 	return 0;
3979 }
3980 #endif /* CONFIG_NUMA */
3981 
3982 static const unsigned int memcg1_stats[] = {
3983 	NR_FILE_PAGES,
3984 	NR_ANON_MAPPED,
3985 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3986 	NR_ANON_THPS,
3987 #endif
3988 	NR_SHMEM,
3989 	NR_FILE_MAPPED,
3990 	NR_FILE_DIRTY,
3991 	NR_WRITEBACK,
3992 	MEMCG_SWAP,
3993 };
3994 
3995 static const char *const memcg1_stat_names[] = {
3996 	"cache",
3997 	"rss",
3998 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3999 	"rss_huge",
4000 #endif
4001 	"shmem",
4002 	"mapped_file",
4003 	"dirty",
4004 	"writeback",
4005 	"swap",
4006 };
4007 
4008 /* Universal VM events cgroup1 shows, original sort order */
4009 static const unsigned int memcg1_events[] = {
4010 	PGPGIN,
4011 	PGPGOUT,
4012 	PGFAULT,
4013 	PGMAJFAULT,
4014 };
4015 
4016 static int memcg_stat_show(struct seq_file *m, void *v)
4017 {
4018 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4019 	unsigned long memory, memsw;
4020 	struct mem_cgroup *mi;
4021 	unsigned int i;
4022 
4023 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4024 
4025 	cgroup_rstat_flush(memcg->css.cgroup);
4026 
4027 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4028 		unsigned long nr;
4029 
4030 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4031 			continue;
4032 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4033 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4034 	}
4035 
4036 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4037 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4038 			   memcg_events_local(memcg, memcg1_events[i]));
4039 
4040 	for (i = 0; i < NR_LRU_LISTS; i++)
4041 		seq_printf(m, "%s %lu\n", lru_list_name(i),
4042 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4043 			   PAGE_SIZE);
4044 
4045 	/* Hierarchical information */
4046 	memory = memsw = PAGE_COUNTER_MAX;
4047 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4048 		memory = min(memory, READ_ONCE(mi->memory.max));
4049 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4050 	}
4051 	seq_printf(m, "hierarchical_memory_limit %llu\n",
4052 		   (u64)memory * PAGE_SIZE);
4053 	if (do_memsw_account())
4054 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4055 			   (u64)memsw * PAGE_SIZE);
4056 
4057 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4058 		unsigned long nr;
4059 
4060 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4061 			continue;
4062 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4063 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4064 						(u64)nr * PAGE_SIZE);
4065 	}
4066 
4067 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4068 		seq_printf(m, "total_%s %llu\n",
4069 			   vm_event_name(memcg1_events[i]),
4070 			   (u64)memcg_events(memcg, memcg1_events[i]));
4071 
4072 	for (i = 0; i < NR_LRU_LISTS; i++)
4073 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4074 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4075 			   PAGE_SIZE);
4076 
4077 #ifdef CONFIG_DEBUG_VM
4078 	{
4079 		pg_data_t *pgdat;
4080 		struct mem_cgroup_per_node *mz;
4081 		unsigned long anon_cost = 0;
4082 		unsigned long file_cost = 0;
4083 
4084 		for_each_online_pgdat(pgdat) {
4085 			mz = memcg->nodeinfo[pgdat->node_id];
4086 
4087 			anon_cost += mz->lruvec.anon_cost;
4088 			file_cost += mz->lruvec.file_cost;
4089 		}
4090 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4091 		seq_printf(m, "file_cost %lu\n", file_cost);
4092 	}
4093 #endif
4094 
4095 	return 0;
4096 }
4097 
4098 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4099 				      struct cftype *cft)
4100 {
4101 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4102 
4103 	return mem_cgroup_swappiness(memcg);
4104 }
4105 
4106 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4107 				       struct cftype *cft, u64 val)
4108 {
4109 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4110 
4111 	if (val > 100)
4112 		return -EINVAL;
4113 
4114 	if (!mem_cgroup_is_root(memcg))
4115 		memcg->swappiness = val;
4116 	else
4117 		vm_swappiness = val;
4118 
4119 	return 0;
4120 }
4121 
4122 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4123 {
4124 	struct mem_cgroup_threshold_ary *t;
4125 	unsigned long usage;
4126 	int i;
4127 
4128 	rcu_read_lock();
4129 	if (!swap)
4130 		t = rcu_dereference(memcg->thresholds.primary);
4131 	else
4132 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4133 
4134 	if (!t)
4135 		goto unlock;
4136 
4137 	usage = mem_cgroup_usage(memcg, swap);
4138 
4139 	/*
4140 	 * current_threshold points to threshold just below or equal to usage.
4141 	 * If it's not true, a threshold was crossed after last
4142 	 * call of __mem_cgroup_threshold().
4143 	 */
4144 	i = t->current_threshold;
4145 
4146 	/*
4147 	 * Iterate backward over array of thresholds starting from
4148 	 * current_threshold and check if a threshold is crossed.
4149 	 * If none of thresholds below usage is crossed, we read
4150 	 * only one element of the array here.
4151 	 */
4152 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4153 		eventfd_signal(t->entries[i].eventfd, 1);
4154 
4155 	/* i = current_threshold + 1 */
4156 	i++;
4157 
4158 	/*
4159 	 * Iterate forward over array of thresholds starting from
4160 	 * current_threshold+1 and check if a threshold is crossed.
4161 	 * If none of thresholds above usage is crossed, we read
4162 	 * only one element of the array here.
4163 	 */
4164 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4165 		eventfd_signal(t->entries[i].eventfd, 1);
4166 
4167 	/* Update current_threshold */
4168 	t->current_threshold = i - 1;
4169 unlock:
4170 	rcu_read_unlock();
4171 }
4172 
4173 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4174 {
4175 	while (memcg) {
4176 		__mem_cgroup_threshold(memcg, false);
4177 		if (do_memsw_account())
4178 			__mem_cgroup_threshold(memcg, true);
4179 
4180 		memcg = parent_mem_cgroup(memcg);
4181 	}
4182 }
4183 
4184 static int compare_thresholds(const void *a, const void *b)
4185 {
4186 	const struct mem_cgroup_threshold *_a = a;
4187 	const struct mem_cgroup_threshold *_b = b;
4188 
4189 	if (_a->threshold > _b->threshold)
4190 		return 1;
4191 
4192 	if (_a->threshold < _b->threshold)
4193 		return -1;
4194 
4195 	return 0;
4196 }
4197 
4198 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4199 {
4200 	struct mem_cgroup_eventfd_list *ev;
4201 
4202 	spin_lock(&memcg_oom_lock);
4203 
4204 	list_for_each_entry(ev, &memcg->oom_notify, list)
4205 		eventfd_signal(ev->eventfd, 1);
4206 
4207 	spin_unlock(&memcg_oom_lock);
4208 	return 0;
4209 }
4210 
4211 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4212 {
4213 	struct mem_cgroup *iter;
4214 
4215 	for_each_mem_cgroup_tree(iter, memcg)
4216 		mem_cgroup_oom_notify_cb(iter);
4217 }
4218 
4219 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4220 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4221 {
4222 	struct mem_cgroup_thresholds *thresholds;
4223 	struct mem_cgroup_threshold_ary *new;
4224 	unsigned long threshold;
4225 	unsigned long usage;
4226 	int i, size, ret;
4227 
4228 	ret = page_counter_memparse(args, "-1", &threshold);
4229 	if (ret)
4230 		return ret;
4231 
4232 	mutex_lock(&memcg->thresholds_lock);
4233 
4234 	if (type == _MEM) {
4235 		thresholds = &memcg->thresholds;
4236 		usage = mem_cgroup_usage(memcg, false);
4237 	} else if (type == _MEMSWAP) {
4238 		thresholds = &memcg->memsw_thresholds;
4239 		usage = mem_cgroup_usage(memcg, true);
4240 	} else
4241 		BUG();
4242 
4243 	/* Check if a threshold crossed before adding a new one */
4244 	if (thresholds->primary)
4245 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4246 
4247 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4248 
4249 	/* Allocate memory for new array of thresholds */
4250 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4251 	if (!new) {
4252 		ret = -ENOMEM;
4253 		goto unlock;
4254 	}
4255 	new->size = size;
4256 
4257 	/* Copy thresholds (if any) to new array */
4258 	if (thresholds->primary)
4259 		memcpy(new->entries, thresholds->primary->entries,
4260 		       flex_array_size(new, entries, size - 1));
4261 
4262 	/* Add new threshold */
4263 	new->entries[size - 1].eventfd = eventfd;
4264 	new->entries[size - 1].threshold = threshold;
4265 
4266 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4267 	sort(new->entries, size, sizeof(*new->entries),
4268 			compare_thresholds, NULL);
4269 
4270 	/* Find current threshold */
4271 	new->current_threshold = -1;
4272 	for (i = 0; i < size; i++) {
4273 		if (new->entries[i].threshold <= usage) {
4274 			/*
4275 			 * new->current_threshold will not be used until
4276 			 * rcu_assign_pointer(), so it's safe to increment
4277 			 * it here.
4278 			 */
4279 			++new->current_threshold;
4280 		} else
4281 			break;
4282 	}
4283 
4284 	/* Free old spare buffer and save old primary buffer as spare */
4285 	kfree(thresholds->spare);
4286 	thresholds->spare = thresholds->primary;
4287 
4288 	rcu_assign_pointer(thresholds->primary, new);
4289 
4290 	/* To be sure that nobody uses thresholds */
4291 	synchronize_rcu();
4292 
4293 unlock:
4294 	mutex_unlock(&memcg->thresholds_lock);
4295 
4296 	return ret;
4297 }
4298 
4299 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4300 	struct eventfd_ctx *eventfd, const char *args)
4301 {
4302 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4303 }
4304 
4305 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4306 	struct eventfd_ctx *eventfd, const char *args)
4307 {
4308 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4309 }
4310 
4311 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4312 	struct eventfd_ctx *eventfd, enum res_type type)
4313 {
4314 	struct mem_cgroup_thresholds *thresholds;
4315 	struct mem_cgroup_threshold_ary *new;
4316 	unsigned long usage;
4317 	int i, j, size, entries;
4318 
4319 	mutex_lock(&memcg->thresholds_lock);
4320 
4321 	if (type == _MEM) {
4322 		thresholds = &memcg->thresholds;
4323 		usage = mem_cgroup_usage(memcg, false);
4324 	} else if (type == _MEMSWAP) {
4325 		thresholds = &memcg->memsw_thresholds;
4326 		usage = mem_cgroup_usage(memcg, true);
4327 	} else
4328 		BUG();
4329 
4330 	if (!thresholds->primary)
4331 		goto unlock;
4332 
4333 	/* Check if a threshold crossed before removing */
4334 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4335 
4336 	/* Calculate new number of threshold */
4337 	size = entries = 0;
4338 	for (i = 0; i < thresholds->primary->size; i++) {
4339 		if (thresholds->primary->entries[i].eventfd != eventfd)
4340 			size++;
4341 		else
4342 			entries++;
4343 	}
4344 
4345 	new = thresholds->spare;
4346 
4347 	/* If no items related to eventfd have been cleared, nothing to do */
4348 	if (!entries)
4349 		goto unlock;
4350 
4351 	/* Set thresholds array to NULL if we don't have thresholds */
4352 	if (!size) {
4353 		kfree(new);
4354 		new = NULL;
4355 		goto swap_buffers;
4356 	}
4357 
4358 	new->size = size;
4359 
4360 	/* Copy thresholds and find current threshold */
4361 	new->current_threshold = -1;
4362 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4363 		if (thresholds->primary->entries[i].eventfd == eventfd)
4364 			continue;
4365 
4366 		new->entries[j] = thresholds->primary->entries[i];
4367 		if (new->entries[j].threshold <= usage) {
4368 			/*
4369 			 * new->current_threshold will not be used
4370 			 * until rcu_assign_pointer(), so it's safe to increment
4371 			 * it here.
4372 			 */
4373 			++new->current_threshold;
4374 		}
4375 		j++;
4376 	}
4377 
4378 swap_buffers:
4379 	/* Swap primary and spare array */
4380 	thresholds->spare = thresholds->primary;
4381 
4382 	rcu_assign_pointer(thresholds->primary, new);
4383 
4384 	/* To be sure that nobody uses thresholds */
4385 	synchronize_rcu();
4386 
4387 	/* If all events are unregistered, free the spare array */
4388 	if (!new) {
4389 		kfree(thresholds->spare);
4390 		thresholds->spare = NULL;
4391 	}
4392 unlock:
4393 	mutex_unlock(&memcg->thresholds_lock);
4394 }
4395 
4396 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4397 	struct eventfd_ctx *eventfd)
4398 {
4399 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4400 }
4401 
4402 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4403 	struct eventfd_ctx *eventfd)
4404 {
4405 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4406 }
4407 
4408 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4409 	struct eventfd_ctx *eventfd, const char *args)
4410 {
4411 	struct mem_cgroup_eventfd_list *event;
4412 
4413 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4414 	if (!event)
4415 		return -ENOMEM;
4416 
4417 	spin_lock(&memcg_oom_lock);
4418 
4419 	event->eventfd = eventfd;
4420 	list_add(&event->list, &memcg->oom_notify);
4421 
4422 	/* already in OOM ? */
4423 	if (memcg->under_oom)
4424 		eventfd_signal(eventfd, 1);
4425 	spin_unlock(&memcg_oom_lock);
4426 
4427 	return 0;
4428 }
4429 
4430 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4431 	struct eventfd_ctx *eventfd)
4432 {
4433 	struct mem_cgroup_eventfd_list *ev, *tmp;
4434 
4435 	spin_lock(&memcg_oom_lock);
4436 
4437 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4438 		if (ev->eventfd == eventfd) {
4439 			list_del(&ev->list);
4440 			kfree(ev);
4441 		}
4442 	}
4443 
4444 	spin_unlock(&memcg_oom_lock);
4445 }
4446 
4447 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4448 {
4449 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4450 
4451 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4452 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4453 	seq_printf(sf, "oom_kill %lu\n",
4454 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4455 	return 0;
4456 }
4457 
4458 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4459 	struct cftype *cft, u64 val)
4460 {
4461 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4462 
4463 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4464 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4465 		return -EINVAL;
4466 
4467 	memcg->oom_kill_disable = val;
4468 	if (!val)
4469 		memcg_oom_recover(memcg);
4470 
4471 	return 0;
4472 }
4473 
4474 #ifdef CONFIG_CGROUP_WRITEBACK
4475 
4476 #include <trace/events/writeback.h>
4477 
4478 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4479 {
4480 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4481 }
4482 
4483 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4484 {
4485 	wb_domain_exit(&memcg->cgwb_domain);
4486 }
4487 
4488 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4489 {
4490 	wb_domain_size_changed(&memcg->cgwb_domain);
4491 }
4492 
4493 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4494 {
4495 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4496 
4497 	if (!memcg->css.parent)
4498 		return NULL;
4499 
4500 	return &memcg->cgwb_domain;
4501 }
4502 
4503 /**
4504  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4505  * @wb: bdi_writeback in question
4506  * @pfilepages: out parameter for number of file pages
4507  * @pheadroom: out parameter for number of allocatable pages according to memcg
4508  * @pdirty: out parameter for number of dirty pages
4509  * @pwriteback: out parameter for number of pages under writeback
4510  *
4511  * Determine the numbers of file, headroom, dirty, and writeback pages in
4512  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4513  * is a bit more involved.
4514  *
4515  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4516  * headroom is calculated as the lowest headroom of itself and the
4517  * ancestors.  Note that this doesn't consider the actual amount of
4518  * available memory in the system.  The caller should further cap
4519  * *@pheadroom accordingly.
4520  */
4521 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4522 			 unsigned long *pheadroom, unsigned long *pdirty,
4523 			 unsigned long *pwriteback)
4524 {
4525 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4526 	struct mem_cgroup *parent;
4527 
4528 	cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4529 
4530 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4531 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4532 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4533 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4534 
4535 	*pheadroom = PAGE_COUNTER_MAX;
4536 	while ((parent = parent_mem_cgroup(memcg))) {
4537 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4538 					    READ_ONCE(memcg->memory.high));
4539 		unsigned long used = page_counter_read(&memcg->memory);
4540 
4541 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4542 		memcg = parent;
4543 	}
4544 }
4545 
4546 /*
4547  * Foreign dirty flushing
4548  *
4549  * There's an inherent mismatch between memcg and writeback.  The former
4550  * tracks ownership per-page while the latter per-inode.  This was a
4551  * deliberate design decision because honoring per-page ownership in the
4552  * writeback path is complicated, may lead to higher CPU and IO overheads
4553  * and deemed unnecessary given that write-sharing an inode across
4554  * different cgroups isn't a common use-case.
4555  *
4556  * Combined with inode majority-writer ownership switching, this works well
4557  * enough in most cases but there are some pathological cases.  For
4558  * example, let's say there are two cgroups A and B which keep writing to
4559  * different but confined parts of the same inode.  B owns the inode and
4560  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4561  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4562  * triggering background writeback.  A will be slowed down without a way to
4563  * make writeback of the dirty pages happen.
4564  *
4565  * Conditions like the above can lead to a cgroup getting repeatedly and
4566  * severely throttled after making some progress after each
4567  * dirty_expire_interval while the underlying IO device is almost
4568  * completely idle.
4569  *
4570  * Solving this problem completely requires matching the ownership tracking
4571  * granularities between memcg and writeback in either direction.  However,
4572  * the more egregious behaviors can be avoided by simply remembering the
4573  * most recent foreign dirtying events and initiating remote flushes on
4574  * them when local writeback isn't enough to keep the memory clean enough.
4575  *
4576  * The following two functions implement such mechanism.  When a foreign
4577  * page - a page whose memcg and writeback ownerships don't match - is
4578  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4579  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4580  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4581  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4582  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4583  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4584  * limited to MEMCG_CGWB_FRN_CNT.
4585  *
4586  * The mechanism only remembers IDs and doesn't hold any object references.
4587  * As being wrong occasionally doesn't matter, updates and accesses to the
4588  * records are lockless and racy.
4589  */
4590 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4591 					     struct bdi_writeback *wb)
4592 {
4593 	struct mem_cgroup *memcg = page_memcg(page);
4594 	struct memcg_cgwb_frn *frn;
4595 	u64 now = get_jiffies_64();
4596 	u64 oldest_at = now;
4597 	int oldest = -1;
4598 	int i;
4599 
4600 	trace_track_foreign_dirty(page, wb);
4601 
4602 	/*
4603 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4604 	 * using it.  If not replace the oldest one which isn't being
4605 	 * written out.
4606 	 */
4607 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4608 		frn = &memcg->cgwb_frn[i];
4609 		if (frn->bdi_id == wb->bdi->id &&
4610 		    frn->memcg_id == wb->memcg_css->id)
4611 			break;
4612 		if (time_before64(frn->at, oldest_at) &&
4613 		    atomic_read(&frn->done.cnt) == 1) {
4614 			oldest = i;
4615 			oldest_at = frn->at;
4616 		}
4617 	}
4618 
4619 	if (i < MEMCG_CGWB_FRN_CNT) {
4620 		/*
4621 		 * Re-using an existing one.  Update timestamp lazily to
4622 		 * avoid making the cacheline hot.  We want them to be
4623 		 * reasonably up-to-date and significantly shorter than
4624 		 * dirty_expire_interval as that's what expires the record.
4625 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4626 		 */
4627 		unsigned long update_intv =
4628 			min_t(unsigned long, HZ,
4629 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4630 
4631 		if (time_before64(frn->at, now - update_intv))
4632 			frn->at = now;
4633 	} else if (oldest >= 0) {
4634 		/* replace the oldest free one */
4635 		frn = &memcg->cgwb_frn[oldest];
4636 		frn->bdi_id = wb->bdi->id;
4637 		frn->memcg_id = wb->memcg_css->id;
4638 		frn->at = now;
4639 	}
4640 }
4641 
4642 /* issue foreign writeback flushes for recorded foreign dirtying events */
4643 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4644 {
4645 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4646 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4647 	u64 now = jiffies_64;
4648 	int i;
4649 
4650 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4651 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4652 
4653 		/*
4654 		 * If the record is older than dirty_expire_interval,
4655 		 * writeback on it has already started.  No need to kick it
4656 		 * off again.  Also, don't start a new one if there's
4657 		 * already one in flight.
4658 		 */
4659 		if (time_after64(frn->at, now - intv) &&
4660 		    atomic_read(&frn->done.cnt) == 1) {
4661 			frn->at = 0;
4662 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4663 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4664 					       WB_REASON_FOREIGN_FLUSH,
4665 					       &frn->done);
4666 		}
4667 	}
4668 }
4669 
4670 #else	/* CONFIG_CGROUP_WRITEBACK */
4671 
4672 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4673 {
4674 	return 0;
4675 }
4676 
4677 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4678 {
4679 }
4680 
4681 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4682 {
4683 }
4684 
4685 #endif	/* CONFIG_CGROUP_WRITEBACK */
4686 
4687 /*
4688  * DO NOT USE IN NEW FILES.
4689  *
4690  * "cgroup.event_control" implementation.
4691  *
4692  * This is way over-engineered.  It tries to support fully configurable
4693  * events for each user.  Such level of flexibility is completely
4694  * unnecessary especially in the light of the planned unified hierarchy.
4695  *
4696  * Please deprecate this and replace with something simpler if at all
4697  * possible.
4698  */
4699 
4700 /*
4701  * Unregister event and free resources.
4702  *
4703  * Gets called from workqueue.
4704  */
4705 static void memcg_event_remove(struct work_struct *work)
4706 {
4707 	struct mem_cgroup_event *event =
4708 		container_of(work, struct mem_cgroup_event, remove);
4709 	struct mem_cgroup *memcg = event->memcg;
4710 
4711 	remove_wait_queue(event->wqh, &event->wait);
4712 
4713 	event->unregister_event(memcg, event->eventfd);
4714 
4715 	/* Notify userspace the event is going away. */
4716 	eventfd_signal(event->eventfd, 1);
4717 
4718 	eventfd_ctx_put(event->eventfd);
4719 	kfree(event);
4720 	css_put(&memcg->css);
4721 }
4722 
4723 /*
4724  * Gets called on EPOLLHUP on eventfd when user closes it.
4725  *
4726  * Called with wqh->lock held and interrupts disabled.
4727  */
4728 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4729 			    int sync, void *key)
4730 {
4731 	struct mem_cgroup_event *event =
4732 		container_of(wait, struct mem_cgroup_event, wait);
4733 	struct mem_cgroup *memcg = event->memcg;
4734 	__poll_t flags = key_to_poll(key);
4735 
4736 	if (flags & EPOLLHUP) {
4737 		/*
4738 		 * If the event has been detached at cgroup removal, we
4739 		 * can simply return knowing the other side will cleanup
4740 		 * for us.
4741 		 *
4742 		 * We can't race against event freeing since the other
4743 		 * side will require wqh->lock via remove_wait_queue(),
4744 		 * which we hold.
4745 		 */
4746 		spin_lock(&memcg->event_list_lock);
4747 		if (!list_empty(&event->list)) {
4748 			list_del_init(&event->list);
4749 			/*
4750 			 * We are in atomic context, but cgroup_event_remove()
4751 			 * may sleep, so we have to call it in workqueue.
4752 			 */
4753 			schedule_work(&event->remove);
4754 		}
4755 		spin_unlock(&memcg->event_list_lock);
4756 	}
4757 
4758 	return 0;
4759 }
4760 
4761 static void memcg_event_ptable_queue_proc(struct file *file,
4762 		wait_queue_head_t *wqh, poll_table *pt)
4763 {
4764 	struct mem_cgroup_event *event =
4765 		container_of(pt, struct mem_cgroup_event, pt);
4766 
4767 	event->wqh = wqh;
4768 	add_wait_queue(wqh, &event->wait);
4769 }
4770 
4771 /*
4772  * DO NOT USE IN NEW FILES.
4773  *
4774  * Parse input and register new cgroup event handler.
4775  *
4776  * Input must be in format '<event_fd> <control_fd> <args>'.
4777  * Interpretation of args is defined by control file implementation.
4778  */
4779 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4780 					 char *buf, size_t nbytes, loff_t off)
4781 {
4782 	struct cgroup_subsys_state *css = of_css(of);
4783 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4784 	struct mem_cgroup_event *event;
4785 	struct cgroup_subsys_state *cfile_css;
4786 	unsigned int efd, cfd;
4787 	struct fd efile;
4788 	struct fd cfile;
4789 	const char *name;
4790 	char *endp;
4791 	int ret;
4792 
4793 	buf = strstrip(buf);
4794 
4795 	efd = simple_strtoul(buf, &endp, 10);
4796 	if (*endp != ' ')
4797 		return -EINVAL;
4798 	buf = endp + 1;
4799 
4800 	cfd = simple_strtoul(buf, &endp, 10);
4801 	if ((*endp != ' ') && (*endp != '\0'))
4802 		return -EINVAL;
4803 	buf = endp + 1;
4804 
4805 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4806 	if (!event)
4807 		return -ENOMEM;
4808 
4809 	event->memcg = memcg;
4810 	INIT_LIST_HEAD(&event->list);
4811 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4812 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4813 	INIT_WORK(&event->remove, memcg_event_remove);
4814 
4815 	efile = fdget(efd);
4816 	if (!efile.file) {
4817 		ret = -EBADF;
4818 		goto out_kfree;
4819 	}
4820 
4821 	event->eventfd = eventfd_ctx_fileget(efile.file);
4822 	if (IS_ERR(event->eventfd)) {
4823 		ret = PTR_ERR(event->eventfd);
4824 		goto out_put_efile;
4825 	}
4826 
4827 	cfile = fdget(cfd);
4828 	if (!cfile.file) {
4829 		ret = -EBADF;
4830 		goto out_put_eventfd;
4831 	}
4832 
4833 	/* the process need read permission on control file */
4834 	/* AV: shouldn't we check that it's been opened for read instead? */
4835 	ret = file_permission(cfile.file, MAY_READ);
4836 	if (ret < 0)
4837 		goto out_put_cfile;
4838 
4839 	/*
4840 	 * Determine the event callbacks and set them in @event.  This used
4841 	 * to be done via struct cftype but cgroup core no longer knows
4842 	 * about these events.  The following is crude but the whole thing
4843 	 * is for compatibility anyway.
4844 	 *
4845 	 * DO NOT ADD NEW FILES.
4846 	 */
4847 	name = cfile.file->f_path.dentry->d_name.name;
4848 
4849 	if (!strcmp(name, "memory.usage_in_bytes")) {
4850 		event->register_event = mem_cgroup_usage_register_event;
4851 		event->unregister_event = mem_cgroup_usage_unregister_event;
4852 	} else if (!strcmp(name, "memory.oom_control")) {
4853 		event->register_event = mem_cgroup_oom_register_event;
4854 		event->unregister_event = mem_cgroup_oom_unregister_event;
4855 	} else if (!strcmp(name, "memory.pressure_level")) {
4856 		event->register_event = vmpressure_register_event;
4857 		event->unregister_event = vmpressure_unregister_event;
4858 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4859 		event->register_event = memsw_cgroup_usage_register_event;
4860 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4861 	} else {
4862 		ret = -EINVAL;
4863 		goto out_put_cfile;
4864 	}
4865 
4866 	/*
4867 	 * Verify @cfile should belong to @css.  Also, remaining events are
4868 	 * automatically removed on cgroup destruction but the removal is
4869 	 * asynchronous, so take an extra ref on @css.
4870 	 */
4871 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4872 					       &memory_cgrp_subsys);
4873 	ret = -EINVAL;
4874 	if (IS_ERR(cfile_css))
4875 		goto out_put_cfile;
4876 	if (cfile_css != css) {
4877 		css_put(cfile_css);
4878 		goto out_put_cfile;
4879 	}
4880 
4881 	ret = event->register_event(memcg, event->eventfd, buf);
4882 	if (ret)
4883 		goto out_put_css;
4884 
4885 	vfs_poll(efile.file, &event->pt);
4886 
4887 	spin_lock(&memcg->event_list_lock);
4888 	list_add(&event->list, &memcg->event_list);
4889 	spin_unlock(&memcg->event_list_lock);
4890 
4891 	fdput(cfile);
4892 	fdput(efile);
4893 
4894 	return nbytes;
4895 
4896 out_put_css:
4897 	css_put(css);
4898 out_put_cfile:
4899 	fdput(cfile);
4900 out_put_eventfd:
4901 	eventfd_ctx_put(event->eventfd);
4902 out_put_efile:
4903 	fdput(efile);
4904 out_kfree:
4905 	kfree(event);
4906 
4907 	return ret;
4908 }
4909 
4910 static struct cftype mem_cgroup_legacy_files[] = {
4911 	{
4912 		.name = "usage_in_bytes",
4913 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4914 		.read_u64 = mem_cgroup_read_u64,
4915 	},
4916 	{
4917 		.name = "max_usage_in_bytes",
4918 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4919 		.write = mem_cgroup_reset,
4920 		.read_u64 = mem_cgroup_read_u64,
4921 	},
4922 	{
4923 		.name = "limit_in_bytes",
4924 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4925 		.write = mem_cgroup_write,
4926 		.read_u64 = mem_cgroup_read_u64,
4927 	},
4928 	{
4929 		.name = "soft_limit_in_bytes",
4930 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4931 		.write = mem_cgroup_write,
4932 		.read_u64 = mem_cgroup_read_u64,
4933 	},
4934 	{
4935 		.name = "failcnt",
4936 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4937 		.write = mem_cgroup_reset,
4938 		.read_u64 = mem_cgroup_read_u64,
4939 	},
4940 	{
4941 		.name = "stat",
4942 		.seq_show = memcg_stat_show,
4943 	},
4944 	{
4945 		.name = "force_empty",
4946 		.write = mem_cgroup_force_empty_write,
4947 	},
4948 	{
4949 		.name = "use_hierarchy",
4950 		.write_u64 = mem_cgroup_hierarchy_write,
4951 		.read_u64 = mem_cgroup_hierarchy_read,
4952 	},
4953 	{
4954 		.name = "cgroup.event_control",		/* XXX: for compat */
4955 		.write = memcg_write_event_control,
4956 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4957 	},
4958 	{
4959 		.name = "swappiness",
4960 		.read_u64 = mem_cgroup_swappiness_read,
4961 		.write_u64 = mem_cgroup_swappiness_write,
4962 	},
4963 	{
4964 		.name = "move_charge_at_immigrate",
4965 		.read_u64 = mem_cgroup_move_charge_read,
4966 		.write_u64 = mem_cgroup_move_charge_write,
4967 	},
4968 	{
4969 		.name = "oom_control",
4970 		.seq_show = mem_cgroup_oom_control_read,
4971 		.write_u64 = mem_cgroup_oom_control_write,
4972 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4973 	},
4974 	{
4975 		.name = "pressure_level",
4976 	},
4977 #ifdef CONFIG_NUMA
4978 	{
4979 		.name = "numa_stat",
4980 		.seq_show = memcg_numa_stat_show,
4981 	},
4982 #endif
4983 	{
4984 		.name = "kmem.limit_in_bytes",
4985 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4986 		.write = mem_cgroup_write,
4987 		.read_u64 = mem_cgroup_read_u64,
4988 	},
4989 	{
4990 		.name = "kmem.usage_in_bytes",
4991 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4992 		.read_u64 = mem_cgroup_read_u64,
4993 	},
4994 	{
4995 		.name = "kmem.failcnt",
4996 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4997 		.write = mem_cgroup_reset,
4998 		.read_u64 = mem_cgroup_read_u64,
4999 	},
5000 	{
5001 		.name = "kmem.max_usage_in_bytes",
5002 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5003 		.write = mem_cgroup_reset,
5004 		.read_u64 = mem_cgroup_read_u64,
5005 	},
5006 #if defined(CONFIG_MEMCG_KMEM) && \
5007 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5008 	{
5009 		.name = "kmem.slabinfo",
5010 		.seq_show = memcg_slab_show,
5011 	},
5012 #endif
5013 	{
5014 		.name = "kmem.tcp.limit_in_bytes",
5015 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5016 		.write = mem_cgroup_write,
5017 		.read_u64 = mem_cgroup_read_u64,
5018 	},
5019 	{
5020 		.name = "kmem.tcp.usage_in_bytes",
5021 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5022 		.read_u64 = mem_cgroup_read_u64,
5023 	},
5024 	{
5025 		.name = "kmem.tcp.failcnt",
5026 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5027 		.write = mem_cgroup_reset,
5028 		.read_u64 = mem_cgroup_read_u64,
5029 	},
5030 	{
5031 		.name = "kmem.tcp.max_usage_in_bytes",
5032 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5033 		.write = mem_cgroup_reset,
5034 		.read_u64 = mem_cgroup_read_u64,
5035 	},
5036 	{ },	/* terminate */
5037 };
5038 
5039 /*
5040  * Private memory cgroup IDR
5041  *
5042  * Swap-out records and page cache shadow entries need to store memcg
5043  * references in constrained space, so we maintain an ID space that is
5044  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5045  * memory-controlled cgroups to 64k.
5046  *
5047  * However, there usually are many references to the offline CSS after
5048  * the cgroup has been destroyed, such as page cache or reclaimable
5049  * slab objects, that don't need to hang on to the ID. We want to keep
5050  * those dead CSS from occupying IDs, or we might quickly exhaust the
5051  * relatively small ID space and prevent the creation of new cgroups
5052  * even when there are much fewer than 64k cgroups - possibly none.
5053  *
5054  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5055  * be freed and recycled when it's no longer needed, which is usually
5056  * when the CSS is offlined.
5057  *
5058  * The only exception to that are records of swapped out tmpfs/shmem
5059  * pages that need to be attributed to live ancestors on swapin. But
5060  * those references are manageable from userspace.
5061  */
5062 
5063 static DEFINE_IDR(mem_cgroup_idr);
5064 
5065 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5066 {
5067 	if (memcg->id.id > 0) {
5068 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5069 		memcg->id.id = 0;
5070 	}
5071 }
5072 
5073 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5074 						  unsigned int n)
5075 {
5076 	refcount_add(n, &memcg->id.ref);
5077 }
5078 
5079 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5080 {
5081 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5082 		mem_cgroup_id_remove(memcg);
5083 
5084 		/* Memcg ID pins CSS */
5085 		css_put(&memcg->css);
5086 	}
5087 }
5088 
5089 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5090 {
5091 	mem_cgroup_id_put_many(memcg, 1);
5092 }
5093 
5094 /**
5095  * mem_cgroup_from_id - look up a memcg from a memcg id
5096  * @id: the memcg id to look up
5097  *
5098  * Caller must hold rcu_read_lock().
5099  */
5100 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5101 {
5102 	WARN_ON_ONCE(!rcu_read_lock_held());
5103 	return idr_find(&mem_cgroup_idr, id);
5104 }
5105 
5106 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5107 {
5108 	struct mem_cgroup_per_node *pn;
5109 	int tmp = node;
5110 	/*
5111 	 * This routine is called against possible nodes.
5112 	 * But it's BUG to call kmalloc() against offline node.
5113 	 *
5114 	 * TODO: this routine can waste much memory for nodes which will
5115 	 *       never be onlined. It's better to use memory hotplug callback
5116 	 *       function.
5117 	 */
5118 	if (!node_state(node, N_NORMAL_MEMORY))
5119 		tmp = -1;
5120 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5121 	if (!pn)
5122 		return 1;
5123 
5124 	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5125 						 GFP_KERNEL_ACCOUNT);
5126 	if (!pn->lruvec_stat_local) {
5127 		kfree(pn);
5128 		return 1;
5129 	}
5130 
5131 	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5132 					       GFP_KERNEL_ACCOUNT);
5133 	if (!pn->lruvec_stat_cpu) {
5134 		free_percpu(pn->lruvec_stat_local);
5135 		kfree(pn);
5136 		return 1;
5137 	}
5138 
5139 	lruvec_init(&pn->lruvec);
5140 	pn->usage_in_excess = 0;
5141 	pn->on_tree = false;
5142 	pn->memcg = memcg;
5143 
5144 	memcg->nodeinfo[node] = pn;
5145 	return 0;
5146 }
5147 
5148 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5149 {
5150 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5151 
5152 	if (!pn)
5153 		return;
5154 
5155 	free_percpu(pn->lruvec_stat_cpu);
5156 	free_percpu(pn->lruvec_stat_local);
5157 	kfree(pn);
5158 }
5159 
5160 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5161 {
5162 	int node;
5163 
5164 	for_each_node(node)
5165 		free_mem_cgroup_per_node_info(memcg, node);
5166 	free_percpu(memcg->vmstats_percpu);
5167 	kfree(memcg);
5168 }
5169 
5170 static void mem_cgroup_free(struct mem_cgroup *memcg)
5171 {
5172 	int cpu;
5173 
5174 	memcg_wb_domain_exit(memcg);
5175 	/*
5176 	 * Flush percpu lruvec stats to guarantee the value
5177 	 * correctness on parent's and all ancestor levels.
5178 	 */
5179 	for_each_online_cpu(cpu)
5180 		memcg_flush_lruvec_page_state(memcg, cpu);
5181 	__mem_cgroup_free(memcg);
5182 }
5183 
5184 static struct mem_cgroup *mem_cgroup_alloc(void)
5185 {
5186 	struct mem_cgroup *memcg;
5187 	unsigned int size;
5188 	int node;
5189 	int __maybe_unused i;
5190 	long error = -ENOMEM;
5191 
5192 	size = sizeof(struct mem_cgroup);
5193 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5194 
5195 	memcg = kzalloc(size, GFP_KERNEL);
5196 	if (!memcg)
5197 		return ERR_PTR(error);
5198 
5199 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5200 				 1, MEM_CGROUP_ID_MAX,
5201 				 GFP_KERNEL);
5202 	if (memcg->id.id < 0) {
5203 		error = memcg->id.id;
5204 		goto fail;
5205 	}
5206 
5207 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5208 						 GFP_KERNEL_ACCOUNT);
5209 	if (!memcg->vmstats_percpu)
5210 		goto fail;
5211 
5212 	for_each_node(node)
5213 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5214 			goto fail;
5215 
5216 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5217 		goto fail;
5218 
5219 	INIT_WORK(&memcg->high_work, high_work_func);
5220 	INIT_LIST_HEAD(&memcg->oom_notify);
5221 	mutex_init(&memcg->thresholds_lock);
5222 	spin_lock_init(&memcg->move_lock);
5223 	vmpressure_init(&memcg->vmpressure);
5224 	INIT_LIST_HEAD(&memcg->event_list);
5225 	spin_lock_init(&memcg->event_list_lock);
5226 	memcg->socket_pressure = jiffies;
5227 #ifdef CONFIG_MEMCG_KMEM
5228 	memcg->kmemcg_id = -1;
5229 	INIT_LIST_HEAD(&memcg->objcg_list);
5230 #endif
5231 #ifdef CONFIG_CGROUP_WRITEBACK
5232 	INIT_LIST_HEAD(&memcg->cgwb_list);
5233 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5234 		memcg->cgwb_frn[i].done =
5235 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5236 #endif
5237 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5238 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5239 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5240 	memcg->deferred_split_queue.split_queue_len = 0;
5241 #endif
5242 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5243 	return memcg;
5244 fail:
5245 	mem_cgroup_id_remove(memcg);
5246 	__mem_cgroup_free(memcg);
5247 	return ERR_PTR(error);
5248 }
5249 
5250 static struct cgroup_subsys_state * __ref
5251 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5252 {
5253 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5254 	struct mem_cgroup *memcg, *old_memcg;
5255 	long error = -ENOMEM;
5256 
5257 	old_memcg = set_active_memcg(parent);
5258 	memcg = mem_cgroup_alloc();
5259 	set_active_memcg(old_memcg);
5260 	if (IS_ERR(memcg))
5261 		return ERR_CAST(memcg);
5262 
5263 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5264 	memcg->soft_limit = PAGE_COUNTER_MAX;
5265 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5266 	if (parent) {
5267 		memcg->swappiness = mem_cgroup_swappiness(parent);
5268 		memcg->oom_kill_disable = parent->oom_kill_disable;
5269 
5270 		page_counter_init(&memcg->memory, &parent->memory);
5271 		page_counter_init(&memcg->swap, &parent->swap);
5272 		page_counter_init(&memcg->kmem, &parent->kmem);
5273 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5274 	} else {
5275 		page_counter_init(&memcg->memory, NULL);
5276 		page_counter_init(&memcg->swap, NULL);
5277 		page_counter_init(&memcg->kmem, NULL);
5278 		page_counter_init(&memcg->tcpmem, NULL);
5279 
5280 		root_mem_cgroup = memcg;
5281 		return &memcg->css;
5282 	}
5283 
5284 	/* The following stuff does not apply to the root */
5285 	error = memcg_online_kmem(memcg);
5286 	if (error)
5287 		goto fail;
5288 
5289 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5290 		static_branch_inc(&memcg_sockets_enabled_key);
5291 
5292 	return &memcg->css;
5293 fail:
5294 	mem_cgroup_id_remove(memcg);
5295 	mem_cgroup_free(memcg);
5296 	return ERR_PTR(error);
5297 }
5298 
5299 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5300 {
5301 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5302 
5303 	/*
5304 	 * A memcg must be visible for expand_shrinker_info()
5305 	 * by the time the maps are allocated. So, we allocate maps
5306 	 * here, when for_each_mem_cgroup() can't skip it.
5307 	 */
5308 	if (alloc_shrinker_info(memcg)) {
5309 		mem_cgroup_id_remove(memcg);
5310 		return -ENOMEM;
5311 	}
5312 
5313 	/* Online state pins memcg ID, memcg ID pins CSS */
5314 	refcount_set(&memcg->id.ref, 1);
5315 	css_get(css);
5316 	return 0;
5317 }
5318 
5319 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5320 {
5321 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5322 	struct mem_cgroup_event *event, *tmp;
5323 
5324 	/*
5325 	 * Unregister events and notify userspace.
5326 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5327 	 * directory to avoid race between userspace and kernelspace.
5328 	 */
5329 	spin_lock(&memcg->event_list_lock);
5330 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5331 		list_del_init(&event->list);
5332 		schedule_work(&event->remove);
5333 	}
5334 	spin_unlock(&memcg->event_list_lock);
5335 
5336 	page_counter_set_min(&memcg->memory, 0);
5337 	page_counter_set_low(&memcg->memory, 0);
5338 
5339 	memcg_offline_kmem(memcg);
5340 	reparent_shrinker_deferred(memcg);
5341 	wb_memcg_offline(memcg);
5342 
5343 	drain_all_stock(memcg);
5344 
5345 	mem_cgroup_id_put(memcg);
5346 }
5347 
5348 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5349 {
5350 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5351 
5352 	invalidate_reclaim_iterators(memcg);
5353 }
5354 
5355 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5356 {
5357 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5358 	int __maybe_unused i;
5359 
5360 #ifdef CONFIG_CGROUP_WRITEBACK
5361 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5362 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5363 #endif
5364 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5365 		static_branch_dec(&memcg_sockets_enabled_key);
5366 
5367 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5368 		static_branch_dec(&memcg_sockets_enabled_key);
5369 
5370 	vmpressure_cleanup(&memcg->vmpressure);
5371 	cancel_work_sync(&memcg->high_work);
5372 	mem_cgroup_remove_from_trees(memcg);
5373 	free_shrinker_info(memcg);
5374 	memcg_free_kmem(memcg);
5375 	mem_cgroup_free(memcg);
5376 }
5377 
5378 /**
5379  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5380  * @css: the target css
5381  *
5382  * Reset the states of the mem_cgroup associated with @css.  This is
5383  * invoked when the userland requests disabling on the default hierarchy
5384  * but the memcg is pinned through dependency.  The memcg should stop
5385  * applying policies and should revert to the vanilla state as it may be
5386  * made visible again.
5387  *
5388  * The current implementation only resets the essential configurations.
5389  * This needs to be expanded to cover all the visible parts.
5390  */
5391 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5392 {
5393 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5394 
5395 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5396 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5397 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5398 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5399 	page_counter_set_min(&memcg->memory, 0);
5400 	page_counter_set_low(&memcg->memory, 0);
5401 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5402 	memcg->soft_limit = PAGE_COUNTER_MAX;
5403 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5404 	memcg_wb_domain_size_changed(memcg);
5405 }
5406 
5407 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5408 {
5409 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5410 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5411 	struct memcg_vmstats_percpu *statc;
5412 	long delta, v;
5413 	int i;
5414 
5415 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5416 
5417 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5418 		/*
5419 		 * Collect the aggregated propagation counts of groups
5420 		 * below us. We're in a per-cpu loop here and this is
5421 		 * a global counter, so the first cycle will get them.
5422 		 */
5423 		delta = memcg->vmstats.state_pending[i];
5424 		if (delta)
5425 			memcg->vmstats.state_pending[i] = 0;
5426 
5427 		/* Add CPU changes on this level since the last flush */
5428 		v = READ_ONCE(statc->state[i]);
5429 		if (v != statc->state_prev[i]) {
5430 			delta += v - statc->state_prev[i];
5431 			statc->state_prev[i] = v;
5432 		}
5433 
5434 		if (!delta)
5435 			continue;
5436 
5437 		/* Aggregate counts on this level and propagate upwards */
5438 		memcg->vmstats.state[i] += delta;
5439 		if (parent)
5440 			parent->vmstats.state_pending[i] += delta;
5441 	}
5442 
5443 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5444 		delta = memcg->vmstats.events_pending[i];
5445 		if (delta)
5446 			memcg->vmstats.events_pending[i] = 0;
5447 
5448 		v = READ_ONCE(statc->events[i]);
5449 		if (v != statc->events_prev[i]) {
5450 			delta += v - statc->events_prev[i];
5451 			statc->events_prev[i] = v;
5452 		}
5453 
5454 		if (!delta)
5455 			continue;
5456 
5457 		memcg->vmstats.events[i] += delta;
5458 		if (parent)
5459 			parent->vmstats.events_pending[i] += delta;
5460 	}
5461 }
5462 
5463 #ifdef CONFIG_MMU
5464 /* Handlers for move charge at task migration. */
5465 static int mem_cgroup_do_precharge(unsigned long count)
5466 {
5467 	int ret;
5468 
5469 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5470 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5471 	if (!ret) {
5472 		mc.precharge += count;
5473 		return ret;
5474 	}
5475 
5476 	/* Try charges one by one with reclaim, but do not retry */
5477 	while (count--) {
5478 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5479 		if (ret)
5480 			return ret;
5481 		mc.precharge++;
5482 		cond_resched();
5483 	}
5484 	return 0;
5485 }
5486 
5487 union mc_target {
5488 	struct page	*page;
5489 	swp_entry_t	ent;
5490 };
5491 
5492 enum mc_target_type {
5493 	MC_TARGET_NONE = 0,
5494 	MC_TARGET_PAGE,
5495 	MC_TARGET_SWAP,
5496 	MC_TARGET_DEVICE,
5497 };
5498 
5499 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5500 						unsigned long addr, pte_t ptent)
5501 {
5502 	struct page *page = vm_normal_page(vma, addr, ptent);
5503 
5504 	if (!page || !page_mapped(page))
5505 		return NULL;
5506 	if (PageAnon(page)) {
5507 		if (!(mc.flags & MOVE_ANON))
5508 			return NULL;
5509 	} else {
5510 		if (!(mc.flags & MOVE_FILE))
5511 			return NULL;
5512 	}
5513 	if (!get_page_unless_zero(page))
5514 		return NULL;
5515 
5516 	return page;
5517 }
5518 
5519 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5520 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5521 			pte_t ptent, swp_entry_t *entry)
5522 {
5523 	struct page *page = NULL;
5524 	swp_entry_t ent = pte_to_swp_entry(ptent);
5525 
5526 	if (!(mc.flags & MOVE_ANON))
5527 		return NULL;
5528 
5529 	/*
5530 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5531 	 * a device and because they are not accessible by CPU they are store
5532 	 * as special swap entry in the CPU page table.
5533 	 */
5534 	if (is_device_private_entry(ent)) {
5535 		page = device_private_entry_to_page(ent);
5536 		/*
5537 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5538 		 * a refcount of 1 when free (unlike normal page)
5539 		 */
5540 		if (!page_ref_add_unless(page, 1, 1))
5541 			return NULL;
5542 		return page;
5543 	}
5544 
5545 	if (non_swap_entry(ent))
5546 		return NULL;
5547 
5548 	/*
5549 	 * Because lookup_swap_cache() updates some statistics counter,
5550 	 * we call find_get_page() with swapper_space directly.
5551 	 */
5552 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5553 	entry->val = ent.val;
5554 
5555 	return page;
5556 }
5557 #else
5558 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5559 			pte_t ptent, swp_entry_t *entry)
5560 {
5561 	return NULL;
5562 }
5563 #endif
5564 
5565 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5566 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5567 {
5568 	if (!vma->vm_file) /* anonymous vma */
5569 		return NULL;
5570 	if (!(mc.flags & MOVE_FILE))
5571 		return NULL;
5572 
5573 	/* page is moved even if it's not RSS of this task(page-faulted). */
5574 	/* shmem/tmpfs may report page out on swap: account for that too. */
5575 	return find_get_incore_page(vma->vm_file->f_mapping,
5576 			linear_page_index(vma, addr));
5577 }
5578 
5579 /**
5580  * mem_cgroup_move_account - move account of the page
5581  * @page: the page
5582  * @compound: charge the page as compound or small page
5583  * @from: mem_cgroup which the page is moved from.
5584  * @to:	mem_cgroup which the page is moved to. @from != @to.
5585  *
5586  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5587  *
5588  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5589  * from old cgroup.
5590  */
5591 static int mem_cgroup_move_account(struct page *page,
5592 				   bool compound,
5593 				   struct mem_cgroup *from,
5594 				   struct mem_cgroup *to)
5595 {
5596 	struct lruvec *from_vec, *to_vec;
5597 	struct pglist_data *pgdat;
5598 	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5599 	int ret;
5600 
5601 	VM_BUG_ON(from == to);
5602 	VM_BUG_ON_PAGE(PageLRU(page), page);
5603 	VM_BUG_ON(compound && !PageTransHuge(page));
5604 
5605 	/*
5606 	 * Prevent mem_cgroup_migrate() from looking at
5607 	 * page's memory cgroup of its source page while we change it.
5608 	 */
5609 	ret = -EBUSY;
5610 	if (!trylock_page(page))
5611 		goto out;
5612 
5613 	ret = -EINVAL;
5614 	if (page_memcg(page) != from)
5615 		goto out_unlock;
5616 
5617 	pgdat = page_pgdat(page);
5618 	from_vec = mem_cgroup_lruvec(from, pgdat);
5619 	to_vec = mem_cgroup_lruvec(to, pgdat);
5620 
5621 	lock_page_memcg(page);
5622 
5623 	if (PageAnon(page)) {
5624 		if (page_mapped(page)) {
5625 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5626 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5627 			if (PageTransHuge(page)) {
5628 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5629 						   -nr_pages);
5630 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5631 						   nr_pages);
5632 			}
5633 		}
5634 	} else {
5635 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5636 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5637 
5638 		if (PageSwapBacked(page)) {
5639 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5640 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5641 		}
5642 
5643 		if (page_mapped(page)) {
5644 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5645 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5646 		}
5647 
5648 		if (PageDirty(page)) {
5649 			struct address_space *mapping = page_mapping(page);
5650 
5651 			if (mapping_can_writeback(mapping)) {
5652 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5653 						   -nr_pages);
5654 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5655 						   nr_pages);
5656 			}
5657 		}
5658 	}
5659 
5660 	if (PageWriteback(page)) {
5661 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5662 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5663 	}
5664 
5665 	/*
5666 	 * All state has been migrated, let's switch to the new memcg.
5667 	 *
5668 	 * It is safe to change page's memcg here because the page
5669 	 * is referenced, charged, isolated, and locked: we can't race
5670 	 * with (un)charging, migration, LRU putback, or anything else
5671 	 * that would rely on a stable page's memory cgroup.
5672 	 *
5673 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5674 	 * to save space. As soon as we switch page's memory cgroup to a
5675 	 * new memcg that isn't locked, the above state can change
5676 	 * concurrently again. Make sure we're truly done with it.
5677 	 */
5678 	smp_mb();
5679 
5680 	css_get(&to->css);
5681 	css_put(&from->css);
5682 
5683 	page->memcg_data = (unsigned long)to;
5684 
5685 	__unlock_page_memcg(from);
5686 
5687 	ret = 0;
5688 
5689 	local_irq_disable();
5690 	mem_cgroup_charge_statistics(to, page, nr_pages);
5691 	memcg_check_events(to, page);
5692 	mem_cgroup_charge_statistics(from, page, -nr_pages);
5693 	memcg_check_events(from, page);
5694 	local_irq_enable();
5695 out_unlock:
5696 	unlock_page(page);
5697 out:
5698 	return ret;
5699 }
5700 
5701 /**
5702  * get_mctgt_type - get target type of moving charge
5703  * @vma: the vma the pte to be checked belongs
5704  * @addr: the address corresponding to the pte to be checked
5705  * @ptent: the pte to be checked
5706  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5707  *
5708  * Returns
5709  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5710  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5711  *     move charge. if @target is not NULL, the page is stored in target->page
5712  *     with extra refcnt got(Callers should handle it).
5713  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5714  *     target for charge migration. if @target is not NULL, the entry is stored
5715  *     in target->ent.
5716  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5717  *     (so ZONE_DEVICE page and thus not on the lru).
5718  *     For now we such page is charge like a regular page would be as for all
5719  *     intent and purposes it is just special memory taking the place of a
5720  *     regular page.
5721  *
5722  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5723  *
5724  * Called with pte lock held.
5725  */
5726 
5727 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5728 		unsigned long addr, pte_t ptent, union mc_target *target)
5729 {
5730 	struct page *page = NULL;
5731 	enum mc_target_type ret = MC_TARGET_NONE;
5732 	swp_entry_t ent = { .val = 0 };
5733 
5734 	if (pte_present(ptent))
5735 		page = mc_handle_present_pte(vma, addr, ptent);
5736 	else if (is_swap_pte(ptent))
5737 		page = mc_handle_swap_pte(vma, ptent, &ent);
5738 	else if (pte_none(ptent))
5739 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5740 
5741 	if (!page && !ent.val)
5742 		return ret;
5743 	if (page) {
5744 		/*
5745 		 * Do only loose check w/o serialization.
5746 		 * mem_cgroup_move_account() checks the page is valid or
5747 		 * not under LRU exclusion.
5748 		 */
5749 		if (page_memcg(page) == mc.from) {
5750 			ret = MC_TARGET_PAGE;
5751 			if (is_device_private_page(page))
5752 				ret = MC_TARGET_DEVICE;
5753 			if (target)
5754 				target->page = page;
5755 		}
5756 		if (!ret || !target)
5757 			put_page(page);
5758 	}
5759 	/*
5760 	 * There is a swap entry and a page doesn't exist or isn't charged.
5761 	 * But we cannot move a tail-page in a THP.
5762 	 */
5763 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5764 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5765 		ret = MC_TARGET_SWAP;
5766 		if (target)
5767 			target->ent = ent;
5768 	}
5769 	return ret;
5770 }
5771 
5772 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5773 /*
5774  * We don't consider PMD mapped swapping or file mapped pages because THP does
5775  * not support them for now.
5776  * Caller should make sure that pmd_trans_huge(pmd) is true.
5777  */
5778 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5779 		unsigned long addr, pmd_t pmd, union mc_target *target)
5780 {
5781 	struct page *page = NULL;
5782 	enum mc_target_type ret = MC_TARGET_NONE;
5783 
5784 	if (unlikely(is_swap_pmd(pmd))) {
5785 		VM_BUG_ON(thp_migration_supported() &&
5786 				  !is_pmd_migration_entry(pmd));
5787 		return ret;
5788 	}
5789 	page = pmd_page(pmd);
5790 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5791 	if (!(mc.flags & MOVE_ANON))
5792 		return ret;
5793 	if (page_memcg(page) == mc.from) {
5794 		ret = MC_TARGET_PAGE;
5795 		if (target) {
5796 			get_page(page);
5797 			target->page = page;
5798 		}
5799 	}
5800 	return ret;
5801 }
5802 #else
5803 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5804 		unsigned long addr, pmd_t pmd, union mc_target *target)
5805 {
5806 	return MC_TARGET_NONE;
5807 }
5808 #endif
5809 
5810 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5811 					unsigned long addr, unsigned long end,
5812 					struct mm_walk *walk)
5813 {
5814 	struct vm_area_struct *vma = walk->vma;
5815 	pte_t *pte;
5816 	spinlock_t *ptl;
5817 
5818 	ptl = pmd_trans_huge_lock(pmd, vma);
5819 	if (ptl) {
5820 		/*
5821 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5822 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5823 		 * this might change.
5824 		 */
5825 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5826 			mc.precharge += HPAGE_PMD_NR;
5827 		spin_unlock(ptl);
5828 		return 0;
5829 	}
5830 
5831 	if (pmd_trans_unstable(pmd))
5832 		return 0;
5833 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5834 	for (; addr != end; pte++, addr += PAGE_SIZE)
5835 		if (get_mctgt_type(vma, addr, *pte, NULL))
5836 			mc.precharge++;	/* increment precharge temporarily */
5837 	pte_unmap_unlock(pte - 1, ptl);
5838 	cond_resched();
5839 
5840 	return 0;
5841 }
5842 
5843 static const struct mm_walk_ops precharge_walk_ops = {
5844 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5845 };
5846 
5847 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5848 {
5849 	unsigned long precharge;
5850 
5851 	mmap_read_lock(mm);
5852 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5853 	mmap_read_unlock(mm);
5854 
5855 	precharge = mc.precharge;
5856 	mc.precharge = 0;
5857 
5858 	return precharge;
5859 }
5860 
5861 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5862 {
5863 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5864 
5865 	VM_BUG_ON(mc.moving_task);
5866 	mc.moving_task = current;
5867 	return mem_cgroup_do_precharge(precharge);
5868 }
5869 
5870 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5871 static void __mem_cgroup_clear_mc(void)
5872 {
5873 	struct mem_cgroup *from = mc.from;
5874 	struct mem_cgroup *to = mc.to;
5875 
5876 	/* we must uncharge all the leftover precharges from mc.to */
5877 	if (mc.precharge) {
5878 		cancel_charge(mc.to, mc.precharge);
5879 		mc.precharge = 0;
5880 	}
5881 	/*
5882 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5883 	 * we must uncharge here.
5884 	 */
5885 	if (mc.moved_charge) {
5886 		cancel_charge(mc.from, mc.moved_charge);
5887 		mc.moved_charge = 0;
5888 	}
5889 	/* we must fixup refcnts and charges */
5890 	if (mc.moved_swap) {
5891 		/* uncharge swap account from the old cgroup */
5892 		if (!mem_cgroup_is_root(mc.from))
5893 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5894 
5895 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5896 
5897 		/*
5898 		 * we charged both to->memory and to->memsw, so we
5899 		 * should uncharge to->memory.
5900 		 */
5901 		if (!mem_cgroup_is_root(mc.to))
5902 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5903 
5904 		mc.moved_swap = 0;
5905 	}
5906 	memcg_oom_recover(from);
5907 	memcg_oom_recover(to);
5908 	wake_up_all(&mc.waitq);
5909 }
5910 
5911 static void mem_cgroup_clear_mc(void)
5912 {
5913 	struct mm_struct *mm = mc.mm;
5914 
5915 	/*
5916 	 * we must clear moving_task before waking up waiters at the end of
5917 	 * task migration.
5918 	 */
5919 	mc.moving_task = NULL;
5920 	__mem_cgroup_clear_mc();
5921 	spin_lock(&mc.lock);
5922 	mc.from = NULL;
5923 	mc.to = NULL;
5924 	mc.mm = NULL;
5925 	spin_unlock(&mc.lock);
5926 
5927 	mmput(mm);
5928 }
5929 
5930 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5931 {
5932 	struct cgroup_subsys_state *css;
5933 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5934 	struct mem_cgroup *from;
5935 	struct task_struct *leader, *p;
5936 	struct mm_struct *mm;
5937 	unsigned long move_flags;
5938 	int ret = 0;
5939 
5940 	/* charge immigration isn't supported on the default hierarchy */
5941 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5942 		return 0;
5943 
5944 	/*
5945 	 * Multi-process migrations only happen on the default hierarchy
5946 	 * where charge immigration is not used.  Perform charge
5947 	 * immigration if @tset contains a leader and whine if there are
5948 	 * multiple.
5949 	 */
5950 	p = NULL;
5951 	cgroup_taskset_for_each_leader(leader, css, tset) {
5952 		WARN_ON_ONCE(p);
5953 		p = leader;
5954 		memcg = mem_cgroup_from_css(css);
5955 	}
5956 	if (!p)
5957 		return 0;
5958 
5959 	/*
5960 	 * We are now committed to this value whatever it is. Changes in this
5961 	 * tunable will only affect upcoming migrations, not the current one.
5962 	 * So we need to save it, and keep it going.
5963 	 */
5964 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5965 	if (!move_flags)
5966 		return 0;
5967 
5968 	from = mem_cgroup_from_task(p);
5969 
5970 	VM_BUG_ON(from == memcg);
5971 
5972 	mm = get_task_mm(p);
5973 	if (!mm)
5974 		return 0;
5975 	/* We move charges only when we move a owner of the mm */
5976 	if (mm->owner == p) {
5977 		VM_BUG_ON(mc.from);
5978 		VM_BUG_ON(mc.to);
5979 		VM_BUG_ON(mc.precharge);
5980 		VM_BUG_ON(mc.moved_charge);
5981 		VM_BUG_ON(mc.moved_swap);
5982 
5983 		spin_lock(&mc.lock);
5984 		mc.mm = mm;
5985 		mc.from = from;
5986 		mc.to = memcg;
5987 		mc.flags = move_flags;
5988 		spin_unlock(&mc.lock);
5989 		/* We set mc.moving_task later */
5990 
5991 		ret = mem_cgroup_precharge_mc(mm);
5992 		if (ret)
5993 			mem_cgroup_clear_mc();
5994 	} else {
5995 		mmput(mm);
5996 	}
5997 	return ret;
5998 }
5999 
6000 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6001 {
6002 	if (mc.to)
6003 		mem_cgroup_clear_mc();
6004 }
6005 
6006 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6007 				unsigned long addr, unsigned long end,
6008 				struct mm_walk *walk)
6009 {
6010 	int ret = 0;
6011 	struct vm_area_struct *vma = walk->vma;
6012 	pte_t *pte;
6013 	spinlock_t *ptl;
6014 	enum mc_target_type target_type;
6015 	union mc_target target;
6016 	struct page *page;
6017 
6018 	ptl = pmd_trans_huge_lock(pmd, vma);
6019 	if (ptl) {
6020 		if (mc.precharge < HPAGE_PMD_NR) {
6021 			spin_unlock(ptl);
6022 			return 0;
6023 		}
6024 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6025 		if (target_type == MC_TARGET_PAGE) {
6026 			page = target.page;
6027 			if (!isolate_lru_page(page)) {
6028 				if (!mem_cgroup_move_account(page, true,
6029 							     mc.from, mc.to)) {
6030 					mc.precharge -= HPAGE_PMD_NR;
6031 					mc.moved_charge += HPAGE_PMD_NR;
6032 				}
6033 				putback_lru_page(page);
6034 			}
6035 			put_page(page);
6036 		} else if (target_type == MC_TARGET_DEVICE) {
6037 			page = target.page;
6038 			if (!mem_cgroup_move_account(page, true,
6039 						     mc.from, mc.to)) {
6040 				mc.precharge -= HPAGE_PMD_NR;
6041 				mc.moved_charge += HPAGE_PMD_NR;
6042 			}
6043 			put_page(page);
6044 		}
6045 		spin_unlock(ptl);
6046 		return 0;
6047 	}
6048 
6049 	if (pmd_trans_unstable(pmd))
6050 		return 0;
6051 retry:
6052 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6053 	for (; addr != end; addr += PAGE_SIZE) {
6054 		pte_t ptent = *(pte++);
6055 		bool device = false;
6056 		swp_entry_t ent;
6057 
6058 		if (!mc.precharge)
6059 			break;
6060 
6061 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6062 		case MC_TARGET_DEVICE:
6063 			device = true;
6064 			fallthrough;
6065 		case MC_TARGET_PAGE:
6066 			page = target.page;
6067 			/*
6068 			 * We can have a part of the split pmd here. Moving it
6069 			 * can be done but it would be too convoluted so simply
6070 			 * ignore such a partial THP and keep it in original
6071 			 * memcg. There should be somebody mapping the head.
6072 			 */
6073 			if (PageTransCompound(page))
6074 				goto put;
6075 			if (!device && isolate_lru_page(page))
6076 				goto put;
6077 			if (!mem_cgroup_move_account(page, false,
6078 						mc.from, mc.to)) {
6079 				mc.precharge--;
6080 				/* we uncharge from mc.from later. */
6081 				mc.moved_charge++;
6082 			}
6083 			if (!device)
6084 				putback_lru_page(page);
6085 put:			/* get_mctgt_type() gets the page */
6086 			put_page(page);
6087 			break;
6088 		case MC_TARGET_SWAP:
6089 			ent = target.ent;
6090 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6091 				mc.precharge--;
6092 				mem_cgroup_id_get_many(mc.to, 1);
6093 				/* we fixup other refcnts and charges later. */
6094 				mc.moved_swap++;
6095 			}
6096 			break;
6097 		default:
6098 			break;
6099 		}
6100 	}
6101 	pte_unmap_unlock(pte - 1, ptl);
6102 	cond_resched();
6103 
6104 	if (addr != end) {
6105 		/*
6106 		 * We have consumed all precharges we got in can_attach().
6107 		 * We try charge one by one, but don't do any additional
6108 		 * charges to mc.to if we have failed in charge once in attach()
6109 		 * phase.
6110 		 */
6111 		ret = mem_cgroup_do_precharge(1);
6112 		if (!ret)
6113 			goto retry;
6114 	}
6115 
6116 	return ret;
6117 }
6118 
6119 static const struct mm_walk_ops charge_walk_ops = {
6120 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6121 };
6122 
6123 static void mem_cgroup_move_charge(void)
6124 {
6125 	lru_add_drain_all();
6126 	/*
6127 	 * Signal lock_page_memcg() to take the memcg's move_lock
6128 	 * while we're moving its pages to another memcg. Then wait
6129 	 * for already started RCU-only updates to finish.
6130 	 */
6131 	atomic_inc(&mc.from->moving_account);
6132 	synchronize_rcu();
6133 retry:
6134 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6135 		/*
6136 		 * Someone who are holding the mmap_lock might be waiting in
6137 		 * waitq. So we cancel all extra charges, wake up all waiters,
6138 		 * and retry. Because we cancel precharges, we might not be able
6139 		 * to move enough charges, but moving charge is a best-effort
6140 		 * feature anyway, so it wouldn't be a big problem.
6141 		 */
6142 		__mem_cgroup_clear_mc();
6143 		cond_resched();
6144 		goto retry;
6145 	}
6146 	/*
6147 	 * When we have consumed all precharges and failed in doing
6148 	 * additional charge, the page walk just aborts.
6149 	 */
6150 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6151 			NULL);
6152 
6153 	mmap_read_unlock(mc.mm);
6154 	atomic_dec(&mc.from->moving_account);
6155 }
6156 
6157 static void mem_cgroup_move_task(void)
6158 {
6159 	if (mc.to) {
6160 		mem_cgroup_move_charge();
6161 		mem_cgroup_clear_mc();
6162 	}
6163 }
6164 #else	/* !CONFIG_MMU */
6165 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6166 {
6167 	return 0;
6168 }
6169 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6170 {
6171 }
6172 static void mem_cgroup_move_task(void)
6173 {
6174 }
6175 #endif
6176 
6177 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6178 {
6179 	if (value == PAGE_COUNTER_MAX)
6180 		seq_puts(m, "max\n");
6181 	else
6182 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6183 
6184 	return 0;
6185 }
6186 
6187 static u64 memory_current_read(struct cgroup_subsys_state *css,
6188 			       struct cftype *cft)
6189 {
6190 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6191 
6192 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6193 }
6194 
6195 static int memory_min_show(struct seq_file *m, void *v)
6196 {
6197 	return seq_puts_memcg_tunable(m,
6198 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6199 }
6200 
6201 static ssize_t memory_min_write(struct kernfs_open_file *of,
6202 				char *buf, size_t nbytes, loff_t off)
6203 {
6204 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6205 	unsigned long min;
6206 	int err;
6207 
6208 	buf = strstrip(buf);
6209 	err = page_counter_memparse(buf, "max", &min);
6210 	if (err)
6211 		return err;
6212 
6213 	page_counter_set_min(&memcg->memory, min);
6214 
6215 	return nbytes;
6216 }
6217 
6218 static int memory_low_show(struct seq_file *m, void *v)
6219 {
6220 	return seq_puts_memcg_tunable(m,
6221 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6222 }
6223 
6224 static ssize_t memory_low_write(struct kernfs_open_file *of,
6225 				char *buf, size_t nbytes, loff_t off)
6226 {
6227 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6228 	unsigned long low;
6229 	int err;
6230 
6231 	buf = strstrip(buf);
6232 	err = page_counter_memparse(buf, "max", &low);
6233 	if (err)
6234 		return err;
6235 
6236 	page_counter_set_low(&memcg->memory, low);
6237 
6238 	return nbytes;
6239 }
6240 
6241 static int memory_high_show(struct seq_file *m, void *v)
6242 {
6243 	return seq_puts_memcg_tunable(m,
6244 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6245 }
6246 
6247 static ssize_t memory_high_write(struct kernfs_open_file *of,
6248 				 char *buf, size_t nbytes, loff_t off)
6249 {
6250 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6251 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6252 	bool drained = false;
6253 	unsigned long high;
6254 	int err;
6255 
6256 	buf = strstrip(buf);
6257 	err = page_counter_memparse(buf, "max", &high);
6258 	if (err)
6259 		return err;
6260 
6261 	page_counter_set_high(&memcg->memory, high);
6262 
6263 	for (;;) {
6264 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6265 		unsigned long reclaimed;
6266 
6267 		if (nr_pages <= high)
6268 			break;
6269 
6270 		if (signal_pending(current))
6271 			break;
6272 
6273 		if (!drained) {
6274 			drain_all_stock(memcg);
6275 			drained = true;
6276 			continue;
6277 		}
6278 
6279 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6280 							 GFP_KERNEL, true);
6281 
6282 		if (!reclaimed && !nr_retries--)
6283 			break;
6284 	}
6285 
6286 	memcg_wb_domain_size_changed(memcg);
6287 	return nbytes;
6288 }
6289 
6290 static int memory_max_show(struct seq_file *m, void *v)
6291 {
6292 	return seq_puts_memcg_tunable(m,
6293 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6294 }
6295 
6296 static ssize_t memory_max_write(struct kernfs_open_file *of,
6297 				char *buf, size_t nbytes, loff_t off)
6298 {
6299 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6300 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6301 	bool drained = false;
6302 	unsigned long max;
6303 	int err;
6304 
6305 	buf = strstrip(buf);
6306 	err = page_counter_memparse(buf, "max", &max);
6307 	if (err)
6308 		return err;
6309 
6310 	xchg(&memcg->memory.max, max);
6311 
6312 	for (;;) {
6313 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6314 
6315 		if (nr_pages <= max)
6316 			break;
6317 
6318 		if (signal_pending(current))
6319 			break;
6320 
6321 		if (!drained) {
6322 			drain_all_stock(memcg);
6323 			drained = true;
6324 			continue;
6325 		}
6326 
6327 		if (nr_reclaims) {
6328 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6329 							  GFP_KERNEL, true))
6330 				nr_reclaims--;
6331 			continue;
6332 		}
6333 
6334 		memcg_memory_event(memcg, MEMCG_OOM);
6335 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6336 			break;
6337 	}
6338 
6339 	memcg_wb_domain_size_changed(memcg);
6340 	return nbytes;
6341 }
6342 
6343 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6344 {
6345 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6346 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6347 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6348 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6349 	seq_printf(m, "oom_kill %lu\n",
6350 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6351 }
6352 
6353 static int memory_events_show(struct seq_file *m, void *v)
6354 {
6355 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6356 
6357 	__memory_events_show(m, memcg->memory_events);
6358 	return 0;
6359 }
6360 
6361 static int memory_events_local_show(struct seq_file *m, void *v)
6362 {
6363 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6364 
6365 	__memory_events_show(m, memcg->memory_events_local);
6366 	return 0;
6367 }
6368 
6369 static int memory_stat_show(struct seq_file *m, void *v)
6370 {
6371 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6372 	char *buf;
6373 
6374 	buf = memory_stat_format(memcg);
6375 	if (!buf)
6376 		return -ENOMEM;
6377 	seq_puts(m, buf);
6378 	kfree(buf);
6379 	return 0;
6380 }
6381 
6382 #ifdef CONFIG_NUMA
6383 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6384 						     int item)
6385 {
6386 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6387 }
6388 
6389 static int memory_numa_stat_show(struct seq_file *m, void *v)
6390 {
6391 	int i;
6392 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6393 
6394 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6395 		int nid;
6396 
6397 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6398 			continue;
6399 
6400 		seq_printf(m, "%s", memory_stats[i].name);
6401 		for_each_node_state(nid, N_MEMORY) {
6402 			u64 size;
6403 			struct lruvec *lruvec;
6404 
6405 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6406 			size = lruvec_page_state_output(lruvec,
6407 							memory_stats[i].idx);
6408 			seq_printf(m, " N%d=%llu", nid, size);
6409 		}
6410 		seq_putc(m, '\n');
6411 	}
6412 
6413 	return 0;
6414 }
6415 #endif
6416 
6417 static int memory_oom_group_show(struct seq_file *m, void *v)
6418 {
6419 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6420 
6421 	seq_printf(m, "%d\n", memcg->oom_group);
6422 
6423 	return 0;
6424 }
6425 
6426 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6427 				      char *buf, size_t nbytes, loff_t off)
6428 {
6429 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6430 	int ret, oom_group;
6431 
6432 	buf = strstrip(buf);
6433 	if (!buf)
6434 		return -EINVAL;
6435 
6436 	ret = kstrtoint(buf, 0, &oom_group);
6437 	if (ret)
6438 		return ret;
6439 
6440 	if (oom_group != 0 && oom_group != 1)
6441 		return -EINVAL;
6442 
6443 	memcg->oom_group = oom_group;
6444 
6445 	return nbytes;
6446 }
6447 
6448 static struct cftype memory_files[] = {
6449 	{
6450 		.name = "current",
6451 		.flags = CFTYPE_NOT_ON_ROOT,
6452 		.read_u64 = memory_current_read,
6453 	},
6454 	{
6455 		.name = "min",
6456 		.flags = CFTYPE_NOT_ON_ROOT,
6457 		.seq_show = memory_min_show,
6458 		.write = memory_min_write,
6459 	},
6460 	{
6461 		.name = "low",
6462 		.flags = CFTYPE_NOT_ON_ROOT,
6463 		.seq_show = memory_low_show,
6464 		.write = memory_low_write,
6465 	},
6466 	{
6467 		.name = "high",
6468 		.flags = CFTYPE_NOT_ON_ROOT,
6469 		.seq_show = memory_high_show,
6470 		.write = memory_high_write,
6471 	},
6472 	{
6473 		.name = "max",
6474 		.flags = CFTYPE_NOT_ON_ROOT,
6475 		.seq_show = memory_max_show,
6476 		.write = memory_max_write,
6477 	},
6478 	{
6479 		.name = "events",
6480 		.flags = CFTYPE_NOT_ON_ROOT,
6481 		.file_offset = offsetof(struct mem_cgroup, events_file),
6482 		.seq_show = memory_events_show,
6483 	},
6484 	{
6485 		.name = "events.local",
6486 		.flags = CFTYPE_NOT_ON_ROOT,
6487 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6488 		.seq_show = memory_events_local_show,
6489 	},
6490 	{
6491 		.name = "stat",
6492 		.seq_show = memory_stat_show,
6493 	},
6494 #ifdef CONFIG_NUMA
6495 	{
6496 		.name = "numa_stat",
6497 		.seq_show = memory_numa_stat_show,
6498 	},
6499 #endif
6500 	{
6501 		.name = "oom.group",
6502 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6503 		.seq_show = memory_oom_group_show,
6504 		.write = memory_oom_group_write,
6505 	},
6506 	{ }	/* terminate */
6507 };
6508 
6509 struct cgroup_subsys memory_cgrp_subsys = {
6510 	.css_alloc = mem_cgroup_css_alloc,
6511 	.css_online = mem_cgroup_css_online,
6512 	.css_offline = mem_cgroup_css_offline,
6513 	.css_released = mem_cgroup_css_released,
6514 	.css_free = mem_cgroup_css_free,
6515 	.css_reset = mem_cgroup_css_reset,
6516 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6517 	.can_attach = mem_cgroup_can_attach,
6518 	.cancel_attach = mem_cgroup_cancel_attach,
6519 	.post_attach = mem_cgroup_move_task,
6520 	.dfl_cftypes = memory_files,
6521 	.legacy_cftypes = mem_cgroup_legacy_files,
6522 	.early_init = 0,
6523 };
6524 
6525 /*
6526  * This function calculates an individual cgroup's effective
6527  * protection which is derived from its own memory.min/low, its
6528  * parent's and siblings' settings, as well as the actual memory
6529  * distribution in the tree.
6530  *
6531  * The following rules apply to the effective protection values:
6532  *
6533  * 1. At the first level of reclaim, effective protection is equal to
6534  *    the declared protection in memory.min and memory.low.
6535  *
6536  * 2. To enable safe delegation of the protection configuration, at
6537  *    subsequent levels the effective protection is capped to the
6538  *    parent's effective protection.
6539  *
6540  * 3. To make complex and dynamic subtrees easier to configure, the
6541  *    user is allowed to overcommit the declared protection at a given
6542  *    level. If that is the case, the parent's effective protection is
6543  *    distributed to the children in proportion to how much protection
6544  *    they have declared and how much of it they are utilizing.
6545  *
6546  *    This makes distribution proportional, but also work-conserving:
6547  *    if one cgroup claims much more protection than it uses memory,
6548  *    the unused remainder is available to its siblings.
6549  *
6550  * 4. Conversely, when the declared protection is undercommitted at a
6551  *    given level, the distribution of the larger parental protection
6552  *    budget is NOT proportional. A cgroup's protection from a sibling
6553  *    is capped to its own memory.min/low setting.
6554  *
6555  * 5. However, to allow protecting recursive subtrees from each other
6556  *    without having to declare each individual cgroup's fixed share
6557  *    of the ancestor's claim to protection, any unutilized -
6558  *    "floating" - protection from up the tree is distributed in
6559  *    proportion to each cgroup's *usage*. This makes the protection
6560  *    neutral wrt sibling cgroups and lets them compete freely over
6561  *    the shared parental protection budget, but it protects the
6562  *    subtree as a whole from neighboring subtrees.
6563  *
6564  * Note that 4. and 5. are not in conflict: 4. is about protecting
6565  * against immediate siblings whereas 5. is about protecting against
6566  * neighboring subtrees.
6567  */
6568 static unsigned long effective_protection(unsigned long usage,
6569 					  unsigned long parent_usage,
6570 					  unsigned long setting,
6571 					  unsigned long parent_effective,
6572 					  unsigned long siblings_protected)
6573 {
6574 	unsigned long protected;
6575 	unsigned long ep;
6576 
6577 	protected = min(usage, setting);
6578 	/*
6579 	 * If all cgroups at this level combined claim and use more
6580 	 * protection then what the parent affords them, distribute
6581 	 * shares in proportion to utilization.
6582 	 *
6583 	 * We are using actual utilization rather than the statically
6584 	 * claimed protection in order to be work-conserving: claimed
6585 	 * but unused protection is available to siblings that would
6586 	 * otherwise get a smaller chunk than what they claimed.
6587 	 */
6588 	if (siblings_protected > parent_effective)
6589 		return protected * parent_effective / siblings_protected;
6590 
6591 	/*
6592 	 * Ok, utilized protection of all children is within what the
6593 	 * parent affords them, so we know whatever this child claims
6594 	 * and utilizes is effectively protected.
6595 	 *
6596 	 * If there is unprotected usage beyond this value, reclaim
6597 	 * will apply pressure in proportion to that amount.
6598 	 *
6599 	 * If there is unutilized protection, the cgroup will be fully
6600 	 * shielded from reclaim, but we do return a smaller value for
6601 	 * protection than what the group could enjoy in theory. This
6602 	 * is okay. With the overcommit distribution above, effective
6603 	 * protection is always dependent on how memory is actually
6604 	 * consumed among the siblings anyway.
6605 	 */
6606 	ep = protected;
6607 
6608 	/*
6609 	 * If the children aren't claiming (all of) the protection
6610 	 * afforded to them by the parent, distribute the remainder in
6611 	 * proportion to the (unprotected) memory of each cgroup. That
6612 	 * way, cgroups that aren't explicitly prioritized wrt each
6613 	 * other compete freely over the allowance, but they are
6614 	 * collectively protected from neighboring trees.
6615 	 *
6616 	 * We're using unprotected memory for the weight so that if
6617 	 * some cgroups DO claim explicit protection, we don't protect
6618 	 * the same bytes twice.
6619 	 *
6620 	 * Check both usage and parent_usage against the respective
6621 	 * protected values. One should imply the other, but they
6622 	 * aren't read atomically - make sure the division is sane.
6623 	 */
6624 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6625 		return ep;
6626 	if (parent_effective > siblings_protected &&
6627 	    parent_usage > siblings_protected &&
6628 	    usage > protected) {
6629 		unsigned long unclaimed;
6630 
6631 		unclaimed = parent_effective - siblings_protected;
6632 		unclaimed *= usage - protected;
6633 		unclaimed /= parent_usage - siblings_protected;
6634 
6635 		ep += unclaimed;
6636 	}
6637 
6638 	return ep;
6639 }
6640 
6641 /**
6642  * mem_cgroup_protected - check if memory consumption is in the normal range
6643  * @root: the top ancestor of the sub-tree being checked
6644  * @memcg: the memory cgroup to check
6645  *
6646  * WARNING: This function is not stateless! It can only be used as part
6647  *          of a top-down tree iteration, not for isolated queries.
6648  */
6649 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6650 				     struct mem_cgroup *memcg)
6651 {
6652 	unsigned long usage, parent_usage;
6653 	struct mem_cgroup *parent;
6654 
6655 	if (mem_cgroup_disabled())
6656 		return;
6657 
6658 	if (!root)
6659 		root = root_mem_cgroup;
6660 
6661 	/*
6662 	 * Effective values of the reclaim targets are ignored so they
6663 	 * can be stale. Have a look at mem_cgroup_protection for more
6664 	 * details.
6665 	 * TODO: calculation should be more robust so that we do not need
6666 	 * that special casing.
6667 	 */
6668 	if (memcg == root)
6669 		return;
6670 
6671 	usage = page_counter_read(&memcg->memory);
6672 	if (!usage)
6673 		return;
6674 
6675 	parent = parent_mem_cgroup(memcg);
6676 	/* No parent means a non-hierarchical mode on v1 memcg */
6677 	if (!parent)
6678 		return;
6679 
6680 	if (parent == root) {
6681 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6682 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6683 		return;
6684 	}
6685 
6686 	parent_usage = page_counter_read(&parent->memory);
6687 
6688 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6689 			READ_ONCE(memcg->memory.min),
6690 			READ_ONCE(parent->memory.emin),
6691 			atomic_long_read(&parent->memory.children_min_usage)));
6692 
6693 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6694 			READ_ONCE(memcg->memory.low),
6695 			READ_ONCE(parent->memory.elow),
6696 			atomic_long_read(&parent->memory.children_low_usage)));
6697 }
6698 
6699 static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6700 			       gfp_t gfp)
6701 {
6702 	unsigned int nr_pages = thp_nr_pages(page);
6703 	int ret;
6704 
6705 	ret = try_charge(memcg, gfp, nr_pages);
6706 	if (ret)
6707 		goto out;
6708 
6709 	css_get(&memcg->css);
6710 	commit_charge(page, memcg);
6711 
6712 	local_irq_disable();
6713 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6714 	memcg_check_events(memcg, page);
6715 	local_irq_enable();
6716 out:
6717 	return ret;
6718 }
6719 
6720 /**
6721  * mem_cgroup_charge - charge a newly allocated page to a cgroup
6722  * @page: page to charge
6723  * @mm: mm context of the victim
6724  * @gfp_mask: reclaim mode
6725  *
6726  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6727  * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6728  * charge to the active memcg.
6729  *
6730  * Do not use this for pages allocated for swapin.
6731  *
6732  * Returns 0 on success. Otherwise, an error code is returned.
6733  */
6734 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6735 {
6736 	struct mem_cgroup *memcg;
6737 	int ret;
6738 
6739 	if (mem_cgroup_disabled())
6740 		return 0;
6741 
6742 	memcg = get_mem_cgroup_from_mm(mm);
6743 	ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6744 	css_put(&memcg->css);
6745 
6746 	return ret;
6747 }
6748 
6749 /**
6750  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6751  * @page: page to charge
6752  * @mm: mm context of the victim
6753  * @gfp: reclaim mode
6754  * @entry: swap entry for which the page is allocated
6755  *
6756  * This function charges a page allocated for swapin. Please call this before
6757  * adding the page to the swapcache.
6758  *
6759  * Returns 0 on success. Otherwise, an error code is returned.
6760  */
6761 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6762 				  gfp_t gfp, swp_entry_t entry)
6763 {
6764 	struct mem_cgroup *memcg;
6765 	unsigned short id;
6766 	int ret;
6767 
6768 	if (mem_cgroup_disabled())
6769 		return 0;
6770 
6771 	id = lookup_swap_cgroup_id(entry);
6772 	rcu_read_lock();
6773 	memcg = mem_cgroup_from_id(id);
6774 	if (!memcg || !css_tryget_online(&memcg->css))
6775 		memcg = get_mem_cgroup_from_mm(mm);
6776 	rcu_read_unlock();
6777 
6778 	ret = __mem_cgroup_charge(page, memcg, gfp);
6779 
6780 	css_put(&memcg->css);
6781 	return ret;
6782 }
6783 
6784 /*
6785  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6786  * @entry: swap entry for which the page is charged
6787  *
6788  * Call this function after successfully adding the charged page to swapcache.
6789  *
6790  * Note: This function assumes the page for which swap slot is being uncharged
6791  * is order 0 page.
6792  */
6793 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6794 {
6795 	/*
6796 	 * Cgroup1's unified memory+swap counter has been charged with the
6797 	 * new swapcache page, finish the transfer by uncharging the swap
6798 	 * slot. The swap slot would also get uncharged when it dies, but
6799 	 * it can stick around indefinitely and we'd count the page twice
6800 	 * the entire time.
6801 	 *
6802 	 * Cgroup2 has separate resource counters for memory and swap,
6803 	 * so this is a non-issue here. Memory and swap charge lifetimes
6804 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6805 	 * page to memory here, and uncharge swap when the slot is freed.
6806 	 */
6807 	if (!mem_cgroup_disabled() && do_memsw_account()) {
6808 		/*
6809 		 * The swap entry might not get freed for a long time,
6810 		 * let's not wait for it.  The page already received a
6811 		 * memory+swap charge, drop the swap entry duplicate.
6812 		 */
6813 		mem_cgroup_uncharge_swap(entry, 1);
6814 	}
6815 }
6816 
6817 struct uncharge_gather {
6818 	struct mem_cgroup *memcg;
6819 	unsigned long nr_memory;
6820 	unsigned long pgpgout;
6821 	unsigned long nr_kmem;
6822 	struct page *dummy_page;
6823 };
6824 
6825 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6826 {
6827 	memset(ug, 0, sizeof(*ug));
6828 }
6829 
6830 static void uncharge_batch(const struct uncharge_gather *ug)
6831 {
6832 	unsigned long flags;
6833 
6834 	if (ug->nr_memory) {
6835 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6836 		if (do_memsw_account())
6837 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6838 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6839 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6840 		memcg_oom_recover(ug->memcg);
6841 	}
6842 
6843 	local_irq_save(flags);
6844 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6845 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6846 	memcg_check_events(ug->memcg, ug->dummy_page);
6847 	local_irq_restore(flags);
6848 
6849 	/* drop reference from uncharge_page */
6850 	css_put(&ug->memcg->css);
6851 }
6852 
6853 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6854 {
6855 	unsigned long nr_pages;
6856 	struct mem_cgroup *memcg;
6857 	struct obj_cgroup *objcg;
6858 	bool use_objcg = PageMemcgKmem(page);
6859 
6860 	VM_BUG_ON_PAGE(PageLRU(page), page);
6861 
6862 	/*
6863 	 * Nobody should be changing or seriously looking at
6864 	 * page memcg or objcg at this point, we have fully
6865 	 * exclusive access to the page.
6866 	 */
6867 	if (use_objcg) {
6868 		objcg = __page_objcg(page);
6869 		/*
6870 		 * This get matches the put at the end of the function and
6871 		 * kmem pages do not hold memcg references anymore.
6872 		 */
6873 		memcg = get_mem_cgroup_from_objcg(objcg);
6874 	} else {
6875 		memcg = __page_memcg(page);
6876 	}
6877 
6878 	if (!memcg)
6879 		return;
6880 
6881 	if (ug->memcg != memcg) {
6882 		if (ug->memcg) {
6883 			uncharge_batch(ug);
6884 			uncharge_gather_clear(ug);
6885 		}
6886 		ug->memcg = memcg;
6887 		ug->dummy_page = page;
6888 
6889 		/* pairs with css_put in uncharge_batch */
6890 		css_get(&memcg->css);
6891 	}
6892 
6893 	nr_pages = compound_nr(page);
6894 
6895 	if (use_objcg) {
6896 		ug->nr_memory += nr_pages;
6897 		ug->nr_kmem += nr_pages;
6898 
6899 		page->memcg_data = 0;
6900 		obj_cgroup_put(objcg);
6901 	} else {
6902 		/* LRU pages aren't accounted at the root level */
6903 		if (!mem_cgroup_is_root(memcg))
6904 			ug->nr_memory += nr_pages;
6905 		ug->pgpgout++;
6906 
6907 		page->memcg_data = 0;
6908 	}
6909 
6910 	css_put(&memcg->css);
6911 }
6912 
6913 /**
6914  * mem_cgroup_uncharge - uncharge a page
6915  * @page: page to uncharge
6916  *
6917  * Uncharge a page previously charged with mem_cgroup_charge().
6918  */
6919 void mem_cgroup_uncharge(struct page *page)
6920 {
6921 	struct uncharge_gather ug;
6922 
6923 	if (mem_cgroup_disabled())
6924 		return;
6925 
6926 	/* Don't touch page->lru of any random page, pre-check: */
6927 	if (!page_memcg(page))
6928 		return;
6929 
6930 	uncharge_gather_clear(&ug);
6931 	uncharge_page(page, &ug);
6932 	uncharge_batch(&ug);
6933 }
6934 
6935 /**
6936  * mem_cgroup_uncharge_list - uncharge a list of page
6937  * @page_list: list of pages to uncharge
6938  *
6939  * Uncharge a list of pages previously charged with
6940  * mem_cgroup_charge().
6941  */
6942 void mem_cgroup_uncharge_list(struct list_head *page_list)
6943 {
6944 	struct uncharge_gather ug;
6945 	struct page *page;
6946 
6947 	if (mem_cgroup_disabled())
6948 		return;
6949 
6950 	uncharge_gather_clear(&ug);
6951 	list_for_each_entry(page, page_list, lru)
6952 		uncharge_page(page, &ug);
6953 	if (ug.memcg)
6954 		uncharge_batch(&ug);
6955 }
6956 
6957 /**
6958  * mem_cgroup_migrate - charge a page's replacement
6959  * @oldpage: currently circulating page
6960  * @newpage: replacement page
6961  *
6962  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6963  * be uncharged upon free.
6964  *
6965  * Both pages must be locked, @newpage->mapping must be set up.
6966  */
6967 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6968 {
6969 	struct mem_cgroup *memcg;
6970 	unsigned int nr_pages;
6971 	unsigned long flags;
6972 
6973 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6974 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6975 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6976 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6977 		       newpage);
6978 
6979 	if (mem_cgroup_disabled())
6980 		return;
6981 
6982 	/* Page cache replacement: new page already charged? */
6983 	if (page_memcg(newpage))
6984 		return;
6985 
6986 	memcg = page_memcg(oldpage);
6987 	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6988 	if (!memcg)
6989 		return;
6990 
6991 	/* Force-charge the new page. The old one will be freed soon */
6992 	nr_pages = thp_nr_pages(newpage);
6993 
6994 	if (!mem_cgroup_is_root(memcg)) {
6995 		page_counter_charge(&memcg->memory, nr_pages);
6996 		if (do_memsw_account())
6997 			page_counter_charge(&memcg->memsw, nr_pages);
6998 	}
6999 
7000 	css_get(&memcg->css);
7001 	commit_charge(newpage, memcg);
7002 
7003 	local_irq_save(flags);
7004 	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7005 	memcg_check_events(memcg, newpage);
7006 	local_irq_restore(flags);
7007 }
7008 
7009 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7010 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7011 
7012 void mem_cgroup_sk_alloc(struct sock *sk)
7013 {
7014 	struct mem_cgroup *memcg;
7015 
7016 	if (!mem_cgroup_sockets_enabled)
7017 		return;
7018 
7019 	/* Do not associate the sock with unrelated interrupted task's memcg. */
7020 	if (in_interrupt())
7021 		return;
7022 
7023 	rcu_read_lock();
7024 	memcg = mem_cgroup_from_task(current);
7025 	if (memcg == root_mem_cgroup)
7026 		goto out;
7027 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7028 		goto out;
7029 	if (css_tryget(&memcg->css))
7030 		sk->sk_memcg = memcg;
7031 out:
7032 	rcu_read_unlock();
7033 }
7034 
7035 void mem_cgroup_sk_free(struct sock *sk)
7036 {
7037 	if (sk->sk_memcg)
7038 		css_put(&sk->sk_memcg->css);
7039 }
7040 
7041 /**
7042  * mem_cgroup_charge_skmem - charge socket memory
7043  * @memcg: memcg to charge
7044  * @nr_pages: number of pages to charge
7045  *
7046  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7047  * @memcg's configured limit, %false if the charge had to be forced.
7048  */
7049 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7050 {
7051 	gfp_t gfp_mask = GFP_KERNEL;
7052 
7053 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7054 		struct page_counter *fail;
7055 
7056 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7057 			memcg->tcpmem_pressure = 0;
7058 			return true;
7059 		}
7060 		page_counter_charge(&memcg->tcpmem, nr_pages);
7061 		memcg->tcpmem_pressure = 1;
7062 		return false;
7063 	}
7064 
7065 	/* Don't block in the packet receive path */
7066 	if (in_softirq())
7067 		gfp_mask = GFP_NOWAIT;
7068 
7069 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7070 
7071 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7072 		return true;
7073 
7074 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7075 	return false;
7076 }
7077 
7078 /**
7079  * mem_cgroup_uncharge_skmem - uncharge socket memory
7080  * @memcg: memcg to uncharge
7081  * @nr_pages: number of pages to uncharge
7082  */
7083 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7084 {
7085 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7086 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7087 		return;
7088 	}
7089 
7090 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7091 
7092 	refill_stock(memcg, nr_pages);
7093 }
7094 
7095 static int __init cgroup_memory(char *s)
7096 {
7097 	char *token;
7098 
7099 	while ((token = strsep(&s, ",")) != NULL) {
7100 		if (!*token)
7101 			continue;
7102 		if (!strcmp(token, "nosocket"))
7103 			cgroup_memory_nosocket = true;
7104 		if (!strcmp(token, "nokmem"))
7105 			cgroup_memory_nokmem = true;
7106 	}
7107 	return 0;
7108 }
7109 __setup("cgroup.memory=", cgroup_memory);
7110 
7111 /*
7112  * subsys_initcall() for memory controller.
7113  *
7114  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7115  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7116  * basically everything that doesn't depend on a specific mem_cgroup structure
7117  * should be initialized from here.
7118  */
7119 static int __init mem_cgroup_init(void)
7120 {
7121 	int cpu, node;
7122 
7123 	/*
7124 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7125 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7126 	 * to work fine, we should make sure that the overfill threshold can't
7127 	 * exceed S32_MAX / PAGE_SIZE.
7128 	 */
7129 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7130 
7131 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7132 				  memcg_hotplug_cpu_dead);
7133 
7134 	for_each_possible_cpu(cpu)
7135 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7136 			  drain_local_stock);
7137 
7138 	for_each_node(node) {
7139 		struct mem_cgroup_tree_per_node *rtpn;
7140 
7141 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7142 				    node_online(node) ? node : NUMA_NO_NODE);
7143 
7144 		rtpn->rb_root = RB_ROOT;
7145 		rtpn->rb_rightmost = NULL;
7146 		spin_lock_init(&rtpn->lock);
7147 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7148 	}
7149 
7150 	return 0;
7151 }
7152 subsys_initcall(mem_cgroup_init);
7153 
7154 #ifdef CONFIG_MEMCG_SWAP
7155 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7156 {
7157 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7158 		/*
7159 		 * The root cgroup cannot be destroyed, so it's refcount must
7160 		 * always be >= 1.
7161 		 */
7162 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7163 			VM_BUG_ON(1);
7164 			break;
7165 		}
7166 		memcg = parent_mem_cgroup(memcg);
7167 		if (!memcg)
7168 			memcg = root_mem_cgroup;
7169 	}
7170 	return memcg;
7171 }
7172 
7173 /**
7174  * mem_cgroup_swapout - transfer a memsw charge to swap
7175  * @page: page whose memsw charge to transfer
7176  * @entry: swap entry to move the charge to
7177  *
7178  * Transfer the memsw charge of @page to @entry.
7179  */
7180 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7181 {
7182 	struct mem_cgroup *memcg, *swap_memcg;
7183 	unsigned int nr_entries;
7184 	unsigned short oldid;
7185 
7186 	VM_BUG_ON_PAGE(PageLRU(page), page);
7187 	VM_BUG_ON_PAGE(page_count(page), page);
7188 
7189 	if (mem_cgroup_disabled())
7190 		return;
7191 
7192 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7193 		return;
7194 
7195 	memcg = page_memcg(page);
7196 
7197 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7198 	if (!memcg)
7199 		return;
7200 
7201 	/*
7202 	 * In case the memcg owning these pages has been offlined and doesn't
7203 	 * have an ID allocated to it anymore, charge the closest online
7204 	 * ancestor for the swap instead and transfer the memory+swap charge.
7205 	 */
7206 	swap_memcg = mem_cgroup_id_get_online(memcg);
7207 	nr_entries = thp_nr_pages(page);
7208 	/* Get references for the tail pages, too */
7209 	if (nr_entries > 1)
7210 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7211 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7212 				   nr_entries);
7213 	VM_BUG_ON_PAGE(oldid, page);
7214 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7215 
7216 	page->memcg_data = 0;
7217 
7218 	if (!mem_cgroup_is_root(memcg))
7219 		page_counter_uncharge(&memcg->memory, nr_entries);
7220 
7221 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7222 		if (!mem_cgroup_is_root(swap_memcg))
7223 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7224 		page_counter_uncharge(&memcg->memsw, nr_entries);
7225 	}
7226 
7227 	/*
7228 	 * Interrupts should be disabled here because the caller holds the
7229 	 * i_pages lock which is taken with interrupts-off. It is
7230 	 * important here to have the interrupts disabled because it is the
7231 	 * only synchronisation we have for updating the per-CPU variables.
7232 	 */
7233 	VM_BUG_ON(!irqs_disabled());
7234 	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7235 	memcg_check_events(memcg, page);
7236 
7237 	css_put(&memcg->css);
7238 }
7239 
7240 /**
7241  * mem_cgroup_try_charge_swap - try charging swap space for a page
7242  * @page: page being added to swap
7243  * @entry: swap entry to charge
7244  *
7245  * Try to charge @page's memcg for the swap space at @entry.
7246  *
7247  * Returns 0 on success, -ENOMEM on failure.
7248  */
7249 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7250 {
7251 	unsigned int nr_pages = thp_nr_pages(page);
7252 	struct page_counter *counter;
7253 	struct mem_cgroup *memcg;
7254 	unsigned short oldid;
7255 
7256 	if (mem_cgroup_disabled())
7257 		return 0;
7258 
7259 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7260 		return 0;
7261 
7262 	memcg = page_memcg(page);
7263 
7264 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7265 	if (!memcg)
7266 		return 0;
7267 
7268 	if (!entry.val) {
7269 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7270 		return 0;
7271 	}
7272 
7273 	memcg = mem_cgroup_id_get_online(memcg);
7274 
7275 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7276 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7277 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7278 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7279 		mem_cgroup_id_put(memcg);
7280 		return -ENOMEM;
7281 	}
7282 
7283 	/* Get references for the tail pages, too */
7284 	if (nr_pages > 1)
7285 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7286 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7287 	VM_BUG_ON_PAGE(oldid, page);
7288 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7289 
7290 	return 0;
7291 }
7292 
7293 /**
7294  * mem_cgroup_uncharge_swap - uncharge swap space
7295  * @entry: swap entry to uncharge
7296  * @nr_pages: the amount of swap space to uncharge
7297  */
7298 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7299 {
7300 	struct mem_cgroup *memcg;
7301 	unsigned short id;
7302 
7303 	id = swap_cgroup_record(entry, 0, nr_pages);
7304 	rcu_read_lock();
7305 	memcg = mem_cgroup_from_id(id);
7306 	if (memcg) {
7307 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7308 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7309 				page_counter_uncharge(&memcg->swap, nr_pages);
7310 			else
7311 				page_counter_uncharge(&memcg->memsw, nr_pages);
7312 		}
7313 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7314 		mem_cgroup_id_put_many(memcg, nr_pages);
7315 	}
7316 	rcu_read_unlock();
7317 }
7318 
7319 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7320 {
7321 	long nr_swap_pages = get_nr_swap_pages();
7322 
7323 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7324 		return nr_swap_pages;
7325 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7326 		nr_swap_pages = min_t(long, nr_swap_pages,
7327 				      READ_ONCE(memcg->swap.max) -
7328 				      page_counter_read(&memcg->swap));
7329 	return nr_swap_pages;
7330 }
7331 
7332 bool mem_cgroup_swap_full(struct page *page)
7333 {
7334 	struct mem_cgroup *memcg;
7335 
7336 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7337 
7338 	if (vm_swap_full())
7339 		return true;
7340 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7341 		return false;
7342 
7343 	memcg = page_memcg(page);
7344 	if (!memcg)
7345 		return false;
7346 
7347 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7348 		unsigned long usage = page_counter_read(&memcg->swap);
7349 
7350 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7351 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7352 			return true;
7353 	}
7354 
7355 	return false;
7356 }
7357 
7358 static int __init setup_swap_account(char *s)
7359 {
7360 	if (!strcmp(s, "1"))
7361 		cgroup_memory_noswap = false;
7362 	else if (!strcmp(s, "0"))
7363 		cgroup_memory_noswap = true;
7364 	return 1;
7365 }
7366 __setup("swapaccount=", setup_swap_account);
7367 
7368 static u64 swap_current_read(struct cgroup_subsys_state *css,
7369 			     struct cftype *cft)
7370 {
7371 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7372 
7373 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7374 }
7375 
7376 static int swap_high_show(struct seq_file *m, void *v)
7377 {
7378 	return seq_puts_memcg_tunable(m,
7379 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7380 }
7381 
7382 static ssize_t swap_high_write(struct kernfs_open_file *of,
7383 			       char *buf, size_t nbytes, loff_t off)
7384 {
7385 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7386 	unsigned long high;
7387 	int err;
7388 
7389 	buf = strstrip(buf);
7390 	err = page_counter_memparse(buf, "max", &high);
7391 	if (err)
7392 		return err;
7393 
7394 	page_counter_set_high(&memcg->swap, high);
7395 
7396 	return nbytes;
7397 }
7398 
7399 static int swap_max_show(struct seq_file *m, void *v)
7400 {
7401 	return seq_puts_memcg_tunable(m,
7402 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7403 }
7404 
7405 static ssize_t swap_max_write(struct kernfs_open_file *of,
7406 			      char *buf, size_t nbytes, loff_t off)
7407 {
7408 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7409 	unsigned long max;
7410 	int err;
7411 
7412 	buf = strstrip(buf);
7413 	err = page_counter_memparse(buf, "max", &max);
7414 	if (err)
7415 		return err;
7416 
7417 	xchg(&memcg->swap.max, max);
7418 
7419 	return nbytes;
7420 }
7421 
7422 static int swap_events_show(struct seq_file *m, void *v)
7423 {
7424 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7425 
7426 	seq_printf(m, "high %lu\n",
7427 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7428 	seq_printf(m, "max %lu\n",
7429 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7430 	seq_printf(m, "fail %lu\n",
7431 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7432 
7433 	return 0;
7434 }
7435 
7436 static struct cftype swap_files[] = {
7437 	{
7438 		.name = "swap.current",
7439 		.flags = CFTYPE_NOT_ON_ROOT,
7440 		.read_u64 = swap_current_read,
7441 	},
7442 	{
7443 		.name = "swap.high",
7444 		.flags = CFTYPE_NOT_ON_ROOT,
7445 		.seq_show = swap_high_show,
7446 		.write = swap_high_write,
7447 	},
7448 	{
7449 		.name = "swap.max",
7450 		.flags = CFTYPE_NOT_ON_ROOT,
7451 		.seq_show = swap_max_show,
7452 		.write = swap_max_write,
7453 	},
7454 	{
7455 		.name = "swap.events",
7456 		.flags = CFTYPE_NOT_ON_ROOT,
7457 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7458 		.seq_show = swap_events_show,
7459 	},
7460 	{ }	/* terminate */
7461 };
7462 
7463 static struct cftype memsw_files[] = {
7464 	{
7465 		.name = "memsw.usage_in_bytes",
7466 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7467 		.read_u64 = mem_cgroup_read_u64,
7468 	},
7469 	{
7470 		.name = "memsw.max_usage_in_bytes",
7471 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7472 		.write = mem_cgroup_reset,
7473 		.read_u64 = mem_cgroup_read_u64,
7474 	},
7475 	{
7476 		.name = "memsw.limit_in_bytes",
7477 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7478 		.write = mem_cgroup_write,
7479 		.read_u64 = mem_cgroup_read_u64,
7480 	},
7481 	{
7482 		.name = "memsw.failcnt",
7483 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7484 		.write = mem_cgroup_reset,
7485 		.read_u64 = mem_cgroup_read_u64,
7486 	},
7487 	{ },	/* terminate */
7488 };
7489 
7490 /*
7491  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7492  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7493  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7494  * boot parameter. This may result in premature OOPS inside
7495  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7496  */
7497 static int __init mem_cgroup_swap_init(void)
7498 {
7499 	/* No memory control -> no swap control */
7500 	if (mem_cgroup_disabled())
7501 		cgroup_memory_noswap = true;
7502 
7503 	if (cgroup_memory_noswap)
7504 		return 0;
7505 
7506 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7507 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7508 
7509 	return 0;
7510 }
7511 core_initcall(mem_cgroup_swap_init);
7512 
7513 #endif /* CONFIG_MEMCG_SWAP */
7514