xref: /openbmc/linux/mm/memcontrol.c (revision 1802d0beecafe581ad584634ba92f8a471d8a63a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/mm.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include "internal.h"
61 #include <net/sock.h>
62 #include <net/ip.h>
63 #include "slab.h"
64 
65 #include <linux/uaccess.h>
66 
67 #include <trace/events/vmscan.h>
68 
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71 
72 struct mem_cgroup *root_mem_cgroup __read_mostly;
73 
74 #define MEM_CGROUP_RECLAIM_RETRIES	5
75 
76 /* Socket memory accounting disabled? */
77 static bool cgroup_memory_nosocket;
78 
79 /* Kernel memory accounting disabled? */
80 static bool cgroup_memory_nokmem;
81 
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 int do_swap_account __read_mostly;
85 #else
86 #define do_swap_account		0
87 #endif
88 
89 /* Whether legacy memory+swap accounting is active */
90 static bool do_memsw_account(void)
91 {
92 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
93 }
94 
95 static const char *const mem_cgroup_lru_names[] = {
96 	"inactive_anon",
97 	"active_anon",
98 	"inactive_file",
99 	"active_file",
100 	"unevictable",
101 };
102 
103 #define THRESHOLDS_EVENTS_TARGET 128
104 #define SOFTLIMIT_EVENTS_TARGET 1024
105 #define NUMAINFO_EVENTS_TARGET	1024
106 
107 /*
108  * Cgroups above their limits are maintained in a RB-Tree, independent of
109  * their hierarchy representation
110  */
111 
112 struct mem_cgroup_tree_per_node {
113 	struct rb_root rb_root;
114 	struct rb_node *rb_rightmost;
115 	spinlock_t lock;
116 };
117 
118 struct mem_cgroup_tree {
119 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
120 };
121 
122 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
123 
124 /* for OOM */
125 struct mem_cgroup_eventfd_list {
126 	struct list_head list;
127 	struct eventfd_ctx *eventfd;
128 };
129 
130 /*
131  * cgroup_event represents events which userspace want to receive.
132  */
133 struct mem_cgroup_event {
134 	/*
135 	 * memcg which the event belongs to.
136 	 */
137 	struct mem_cgroup *memcg;
138 	/*
139 	 * eventfd to signal userspace about the event.
140 	 */
141 	struct eventfd_ctx *eventfd;
142 	/*
143 	 * Each of these stored in a list by the cgroup.
144 	 */
145 	struct list_head list;
146 	/*
147 	 * register_event() callback will be used to add new userspace
148 	 * waiter for changes related to this event.  Use eventfd_signal()
149 	 * on eventfd to send notification to userspace.
150 	 */
151 	int (*register_event)(struct mem_cgroup *memcg,
152 			      struct eventfd_ctx *eventfd, const char *args);
153 	/*
154 	 * unregister_event() callback will be called when userspace closes
155 	 * the eventfd or on cgroup removing.  This callback must be set,
156 	 * if you want provide notification functionality.
157 	 */
158 	void (*unregister_event)(struct mem_cgroup *memcg,
159 				 struct eventfd_ctx *eventfd);
160 	/*
161 	 * All fields below needed to unregister event when
162 	 * userspace closes eventfd.
163 	 */
164 	poll_table pt;
165 	wait_queue_head_t *wqh;
166 	wait_queue_entry_t wait;
167 	struct work_struct remove;
168 };
169 
170 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
171 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
172 
173 /* Stuffs for move charges at task migration. */
174 /*
175  * Types of charges to be moved.
176  */
177 #define MOVE_ANON	0x1U
178 #define MOVE_FILE	0x2U
179 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
180 
181 /* "mc" and its members are protected by cgroup_mutex */
182 static struct move_charge_struct {
183 	spinlock_t	  lock; /* for from, to */
184 	struct mm_struct  *mm;
185 	struct mem_cgroup *from;
186 	struct mem_cgroup *to;
187 	unsigned long flags;
188 	unsigned long precharge;
189 	unsigned long moved_charge;
190 	unsigned long moved_swap;
191 	struct task_struct *moving_task;	/* a task moving charges */
192 	wait_queue_head_t waitq;		/* a waitq for other context */
193 } mc = {
194 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
195 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
196 };
197 
198 /*
199  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
200  * limit reclaim to prevent infinite loops, if they ever occur.
201  */
202 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
203 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
204 
205 enum charge_type {
206 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
207 	MEM_CGROUP_CHARGE_TYPE_ANON,
208 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
209 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
210 	NR_CHARGE_TYPE,
211 };
212 
213 /* for encoding cft->private value on file */
214 enum res_type {
215 	_MEM,
216 	_MEMSWAP,
217 	_OOM_TYPE,
218 	_KMEM,
219 	_TCP,
220 };
221 
222 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
223 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
224 #define MEMFILE_ATTR(val)	((val) & 0xffff)
225 /* Used for OOM nofiier */
226 #define OOM_CONTROL		(0)
227 
228 /*
229  * Iteration constructs for visiting all cgroups (under a tree).  If
230  * loops are exited prematurely (break), mem_cgroup_iter_break() must
231  * be used for reference counting.
232  */
233 #define for_each_mem_cgroup_tree(iter, root)		\
234 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
235 	     iter != NULL;				\
236 	     iter = mem_cgroup_iter(root, iter, NULL))
237 
238 #define for_each_mem_cgroup(iter)			\
239 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
240 	     iter != NULL;				\
241 	     iter = mem_cgroup_iter(NULL, iter, NULL))
242 
243 static inline bool should_force_charge(void)
244 {
245 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
246 		(current->flags & PF_EXITING);
247 }
248 
249 /* Some nice accessors for the vmpressure. */
250 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
251 {
252 	if (!memcg)
253 		memcg = root_mem_cgroup;
254 	return &memcg->vmpressure;
255 }
256 
257 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
258 {
259 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
260 }
261 
262 #ifdef CONFIG_MEMCG_KMEM
263 /*
264  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
265  * The main reason for not using cgroup id for this:
266  *  this works better in sparse environments, where we have a lot of memcgs,
267  *  but only a few kmem-limited. Or also, if we have, for instance, 200
268  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
269  *  200 entry array for that.
270  *
271  * The current size of the caches array is stored in memcg_nr_cache_ids. It
272  * will double each time we have to increase it.
273  */
274 static DEFINE_IDA(memcg_cache_ida);
275 int memcg_nr_cache_ids;
276 
277 /* Protects memcg_nr_cache_ids */
278 static DECLARE_RWSEM(memcg_cache_ids_sem);
279 
280 void memcg_get_cache_ids(void)
281 {
282 	down_read(&memcg_cache_ids_sem);
283 }
284 
285 void memcg_put_cache_ids(void)
286 {
287 	up_read(&memcg_cache_ids_sem);
288 }
289 
290 /*
291  * MIN_SIZE is different than 1, because we would like to avoid going through
292  * the alloc/free process all the time. In a small machine, 4 kmem-limited
293  * cgroups is a reasonable guess. In the future, it could be a parameter or
294  * tunable, but that is strictly not necessary.
295  *
296  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
297  * this constant directly from cgroup, but it is understandable that this is
298  * better kept as an internal representation in cgroup.c. In any case, the
299  * cgrp_id space is not getting any smaller, and we don't have to necessarily
300  * increase ours as well if it increases.
301  */
302 #define MEMCG_CACHES_MIN_SIZE 4
303 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
304 
305 /*
306  * A lot of the calls to the cache allocation functions are expected to be
307  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
308  * conditional to this static branch, we'll have to allow modules that does
309  * kmem_cache_alloc and the such to see this symbol as well
310  */
311 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
312 EXPORT_SYMBOL(memcg_kmem_enabled_key);
313 
314 struct workqueue_struct *memcg_kmem_cache_wq;
315 
316 static int memcg_shrinker_map_size;
317 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
318 
319 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
320 {
321 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
322 }
323 
324 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
325 					 int size, int old_size)
326 {
327 	struct memcg_shrinker_map *new, *old;
328 	int nid;
329 
330 	lockdep_assert_held(&memcg_shrinker_map_mutex);
331 
332 	for_each_node(nid) {
333 		old = rcu_dereference_protected(
334 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
335 		/* Not yet online memcg */
336 		if (!old)
337 			return 0;
338 
339 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
340 		if (!new)
341 			return -ENOMEM;
342 
343 		/* Set all old bits, clear all new bits */
344 		memset(new->map, (int)0xff, old_size);
345 		memset((void *)new->map + old_size, 0, size - old_size);
346 
347 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
348 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
349 	}
350 
351 	return 0;
352 }
353 
354 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
355 {
356 	struct mem_cgroup_per_node *pn;
357 	struct memcg_shrinker_map *map;
358 	int nid;
359 
360 	if (mem_cgroup_is_root(memcg))
361 		return;
362 
363 	for_each_node(nid) {
364 		pn = mem_cgroup_nodeinfo(memcg, nid);
365 		map = rcu_dereference_protected(pn->shrinker_map, true);
366 		if (map)
367 			kvfree(map);
368 		rcu_assign_pointer(pn->shrinker_map, NULL);
369 	}
370 }
371 
372 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
373 {
374 	struct memcg_shrinker_map *map;
375 	int nid, size, ret = 0;
376 
377 	if (mem_cgroup_is_root(memcg))
378 		return 0;
379 
380 	mutex_lock(&memcg_shrinker_map_mutex);
381 	size = memcg_shrinker_map_size;
382 	for_each_node(nid) {
383 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
384 		if (!map) {
385 			memcg_free_shrinker_maps(memcg);
386 			ret = -ENOMEM;
387 			break;
388 		}
389 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
390 	}
391 	mutex_unlock(&memcg_shrinker_map_mutex);
392 
393 	return ret;
394 }
395 
396 int memcg_expand_shrinker_maps(int new_id)
397 {
398 	int size, old_size, ret = 0;
399 	struct mem_cgroup *memcg;
400 
401 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
402 	old_size = memcg_shrinker_map_size;
403 	if (size <= old_size)
404 		return 0;
405 
406 	mutex_lock(&memcg_shrinker_map_mutex);
407 	if (!root_mem_cgroup)
408 		goto unlock;
409 
410 	for_each_mem_cgroup(memcg) {
411 		if (mem_cgroup_is_root(memcg))
412 			continue;
413 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
414 		if (ret)
415 			goto unlock;
416 	}
417 unlock:
418 	if (!ret)
419 		memcg_shrinker_map_size = size;
420 	mutex_unlock(&memcg_shrinker_map_mutex);
421 	return ret;
422 }
423 
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425 {
426 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 		struct memcg_shrinker_map *map;
428 
429 		rcu_read_lock();
430 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 		/* Pairs with smp mb in shrink_slab() */
432 		smp_mb__before_atomic();
433 		set_bit(shrinker_id, map->map);
434 		rcu_read_unlock();
435 	}
436 }
437 
438 #else /* CONFIG_MEMCG_KMEM */
439 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
440 {
441 	return 0;
442 }
443 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
444 #endif /* CONFIG_MEMCG_KMEM */
445 
446 /**
447  * mem_cgroup_css_from_page - css of the memcg associated with a page
448  * @page: page of interest
449  *
450  * If memcg is bound to the default hierarchy, css of the memcg associated
451  * with @page is returned.  The returned css remains associated with @page
452  * until it is released.
453  *
454  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
455  * is returned.
456  */
457 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
458 {
459 	struct mem_cgroup *memcg;
460 
461 	memcg = page->mem_cgroup;
462 
463 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
464 		memcg = root_mem_cgroup;
465 
466 	return &memcg->css;
467 }
468 
469 /**
470  * page_cgroup_ino - return inode number of the memcg a page is charged to
471  * @page: the page
472  *
473  * Look up the closest online ancestor of the memory cgroup @page is charged to
474  * and return its inode number or 0 if @page is not charged to any cgroup. It
475  * is safe to call this function without holding a reference to @page.
476  *
477  * Note, this function is inherently racy, because there is nothing to prevent
478  * the cgroup inode from getting torn down and potentially reallocated a moment
479  * after page_cgroup_ino() returns, so it only should be used by callers that
480  * do not care (such as procfs interfaces).
481  */
482 ino_t page_cgroup_ino(struct page *page)
483 {
484 	struct mem_cgroup *memcg;
485 	unsigned long ino = 0;
486 
487 	rcu_read_lock();
488 	memcg = READ_ONCE(page->mem_cgroup);
489 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
490 		memcg = parent_mem_cgroup(memcg);
491 	if (memcg)
492 		ino = cgroup_ino(memcg->css.cgroup);
493 	rcu_read_unlock();
494 	return ino;
495 }
496 
497 static struct mem_cgroup_per_node *
498 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
499 {
500 	int nid = page_to_nid(page);
501 
502 	return memcg->nodeinfo[nid];
503 }
504 
505 static struct mem_cgroup_tree_per_node *
506 soft_limit_tree_node(int nid)
507 {
508 	return soft_limit_tree.rb_tree_per_node[nid];
509 }
510 
511 static struct mem_cgroup_tree_per_node *
512 soft_limit_tree_from_page(struct page *page)
513 {
514 	int nid = page_to_nid(page);
515 
516 	return soft_limit_tree.rb_tree_per_node[nid];
517 }
518 
519 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
520 					 struct mem_cgroup_tree_per_node *mctz,
521 					 unsigned long new_usage_in_excess)
522 {
523 	struct rb_node **p = &mctz->rb_root.rb_node;
524 	struct rb_node *parent = NULL;
525 	struct mem_cgroup_per_node *mz_node;
526 	bool rightmost = true;
527 
528 	if (mz->on_tree)
529 		return;
530 
531 	mz->usage_in_excess = new_usage_in_excess;
532 	if (!mz->usage_in_excess)
533 		return;
534 	while (*p) {
535 		parent = *p;
536 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
537 					tree_node);
538 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
539 			p = &(*p)->rb_left;
540 			rightmost = false;
541 		}
542 
543 		/*
544 		 * We can't avoid mem cgroups that are over their soft
545 		 * limit by the same amount
546 		 */
547 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
548 			p = &(*p)->rb_right;
549 	}
550 
551 	if (rightmost)
552 		mctz->rb_rightmost = &mz->tree_node;
553 
554 	rb_link_node(&mz->tree_node, parent, p);
555 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
556 	mz->on_tree = true;
557 }
558 
559 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
560 					 struct mem_cgroup_tree_per_node *mctz)
561 {
562 	if (!mz->on_tree)
563 		return;
564 
565 	if (&mz->tree_node == mctz->rb_rightmost)
566 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
567 
568 	rb_erase(&mz->tree_node, &mctz->rb_root);
569 	mz->on_tree = false;
570 }
571 
572 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
573 				       struct mem_cgroup_tree_per_node *mctz)
574 {
575 	unsigned long flags;
576 
577 	spin_lock_irqsave(&mctz->lock, flags);
578 	__mem_cgroup_remove_exceeded(mz, mctz);
579 	spin_unlock_irqrestore(&mctz->lock, flags);
580 }
581 
582 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
583 {
584 	unsigned long nr_pages = page_counter_read(&memcg->memory);
585 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
586 	unsigned long excess = 0;
587 
588 	if (nr_pages > soft_limit)
589 		excess = nr_pages - soft_limit;
590 
591 	return excess;
592 }
593 
594 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
595 {
596 	unsigned long excess;
597 	struct mem_cgroup_per_node *mz;
598 	struct mem_cgroup_tree_per_node *mctz;
599 
600 	mctz = soft_limit_tree_from_page(page);
601 	if (!mctz)
602 		return;
603 	/*
604 	 * Necessary to update all ancestors when hierarchy is used.
605 	 * because their event counter is not touched.
606 	 */
607 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
608 		mz = mem_cgroup_page_nodeinfo(memcg, page);
609 		excess = soft_limit_excess(memcg);
610 		/*
611 		 * We have to update the tree if mz is on RB-tree or
612 		 * mem is over its softlimit.
613 		 */
614 		if (excess || mz->on_tree) {
615 			unsigned long flags;
616 
617 			spin_lock_irqsave(&mctz->lock, flags);
618 			/* if on-tree, remove it */
619 			if (mz->on_tree)
620 				__mem_cgroup_remove_exceeded(mz, mctz);
621 			/*
622 			 * Insert again. mz->usage_in_excess will be updated.
623 			 * If excess is 0, no tree ops.
624 			 */
625 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
626 			spin_unlock_irqrestore(&mctz->lock, flags);
627 		}
628 	}
629 }
630 
631 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
632 {
633 	struct mem_cgroup_tree_per_node *mctz;
634 	struct mem_cgroup_per_node *mz;
635 	int nid;
636 
637 	for_each_node(nid) {
638 		mz = mem_cgroup_nodeinfo(memcg, nid);
639 		mctz = soft_limit_tree_node(nid);
640 		if (mctz)
641 			mem_cgroup_remove_exceeded(mz, mctz);
642 	}
643 }
644 
645 static struct mem_cgroup_per_node *
646 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
647 {
648 	struct mem_cgroup_per_node *mz;
649 
650 retry:
651 	mz = NULL;
652 	if (!mctz->rb_rightmost)
653 		goto done;		/* Nothing to reclaim from */
654 
655 	mz = rb_entry(mctz->rb_rightmost,
656 		      struct mem_cgroup_per_node, tree_node);
657 	/*
658 	 * Remove the node now but someone else can add it back,
659 	 * we will to add it back at the end of reclaim to its correct
660 	 * position in the tree.
661 	 */
662 	__mem_cgroup_remove_exceeded(mz, mctz);
663 	if (!soft_limit_excess(mz->memcg) ||
664 	    !css_tryget_online(&mz->memcg->css))
665 		goto retry;
666 done:
667 	return mz;
668 }
669 
670 static struct mem_cgroup_per_node *
671 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
672 {
673 	struct mem_cgroup_per_node *mz;
674 
675 	spin_lock_irq(&mctz->lock);
676 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
677 	spin_unlock_irq(&mctz->lock);
678 	return mz;
679 }
680 
681 /**
682  * __mod_memcg_state - update cgroup memory statistics
683  * @memcg: the memory cgroup
684  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
685  * @val: delta to add to the counter, can be negative
686  */
687 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
688 {
689 	long x;
690 
691 	if (mem_cgroup_disabled())
692 		return;
693 
694 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
695 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
696 		struct mem_cgroup *mi;
697 
698 		atomic_long_add(x, &memcg->vmstats_local[idx]);
699 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
700 			atomic_long_add(x, &mi->vmstats[idx]);
701 		x = 0;
702 	}
703 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
704 }
705 
706 static struct mem_cgroup_per_node *
707 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
708 {
709 	struct mem_cgroup *parent;
710 
711 	parent = parent_mem_cgroup(pn->memcg);
712 	if (!parent)
713 		return NULL;
714 	return mem_cgroup_nodeinfo(parent, nid);
715 }
716 
717 /**
718  * __mod_lruvec_state - update lruvec memory statistics
719  * @lruvec: the lruvec
720  * @idx: the stat item
721  * @val: delta to add to the counter, can be negative
722  *
723  * The lruvec is the intersection of the NUMA node and a cgroup. This
724  * function updates the all three counters that are affected by a
725  * change of state at this level: per-node, per-cgroup, per-lruvec.
726  */
727 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
728 			int val)
729 {
730 	pg_data_t *pgdat = lruvec_pgdat(lruvec);
731 	struct mem_cgroup_per_node *pn;
732 	struct mem_cgroup *memcg;
733 	long x;
734 
735 	/* Update node */
736 	__mod_node_page_state(pgdat, idx, val);
737 
738 	if (mem_cgroup_disabled())
739 		return;
740 
741 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
742 	memcg = pn->memcg;
743 
744 	/* Update memcg */
745 	__mod_memcg_state(memcg, idx, val);
746 
747 	/* Update lruvec */
748 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
749 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
750 		struct mem_cgroup_per_node *pi;
751 
752 		atomic_long_add(x, &pn->lruvec_stat_local[idx]);
753 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 			atomic_long_add(x, &pi->lruvec_stat[idx]);
755 		x = 0;
756 	}
757 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758 }
759 
760 /**
761  * __count_memcg_events - account VM events in a cgroup
762  * @memcg: the memory cgroup
763  * @idx: the event item
764  * @count: the number of events that occured
765  */
766 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
767 			  unsigned long count)
768 {
769 	unsigned long x;
770 
771 	if (mem_cgroup_disabled())
772 		return;
773 
774 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
775 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
776 		struct mem_cgroup *mi;
777 
778 		atomic_long_add(x, &memcg->vmevents_local[idx]);
779 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
780 			atomic_long_add(x, &mi->vmevents[idx]);
781 		x = 0;
782 	}
783 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
784 }
785 
786 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
787 {
788 	return atomic_long_read(&memcg->vmevents[event]);
789 }
790 
791 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
792 {
793 	return atomic_long_read(&memcg->vmevents_local[event]);
794 }
795 
796 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
797 					 struct page *page,
798 					 bool compound, int nr_pages)
799 {
800 	/*
801 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
802 	 * counted as CACHE even if it's on ANON LRU.
803 	 */
804 	if (PageAnon(page))
805 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
806 	else {
807 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
808 		if (PageSwapBacked(page))
809 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
810 	}
811 
812 	if (compound) {
813 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
814 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
815 	}
816 
817 	/* pagein of a big page is an event. So, ignore page size */
818 	if (nr_pages > 0)
819 		__count_memcg_events(memcg, PGPGIN, 1);
820 	else {
821 		__count_memcg_events(memcg, PGPGOUT, 1);
822 		nr_pages = -nr_pages; /* for event */
823 	}
824 
825 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
826 }
827 
828 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
829 				       enum mem_cgroup_events_target target)
830 {
831 	unsigned long val, next;
832 
833 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
834 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
835 	/* from time_after() in jiffies.h */
836 	if ((long)(next - val) < 0) {
837 		switch (target) {
838 		case MEM_CGROUP_TARGET_THRESH:
839 			next = val + THRESHOLDS_EVENTS_TARGET;
840 			break;
841 		case MEM_CGROUP_TARGET_SOFTLIMIT:
842 			next = val + SOFTLIMIT_EVENTS_TARGET;
843 			break;
844 		case MEM_CGROUP_TARGET_NUMAINFO:
845 			next = val + NUMAINFO_EVENTS_TARGET;
846 			break;
847 		default:
848 			break;
849 		}
850 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
851 		return true;
852 	}
853 	return false;
854 }
855 
856 /*
857  * Check events in order.
858  *
859  */
860 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
861 {
862 	/* threshold event is triggered in finer grain than soft limit */
863 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
864 						MEM_CGROUP_TARGET_THRESH))) {
865 		bool do_softlimit;
866 		bool do_numainfo __maybe_unused;
867 
868 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
869 						MEM_CGROUP_TARGET_SOFTLIMIT);
870 #if MAX_NUMNODES > 1
871 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
872 						MEM_CGROUP_TARGET_NUMAINFO);
873 #endif
874 		mem_cgroup_threshold(memcg);
875 		if (unlikely(do_softlimit))
876 			mem_cgroup_update_tree(memcg, page);
877 #if MAX_NUMNODES > 1
878 		if (unlikely(do_numainfo))
879 			atomic_inc(&memcg->numainfo_events);
880 #endif
881 	}
882 }
883 
884 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
885 {
886 	/*
887 	 * mm_update_next_owner() may clear mm->owner to NULL
888 	 * if it races with swapoff, page migration, etc.
889 	 * So this can be called with p == NULL.
890 	 */
891 	if (unlikely(!p))
892 		return NULL;
893 
894 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
895 }
896 EXPORT_SYMBOL(mem_cgroup_from_task);
897 
898 /**
899  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
900  * @mm: mm from which memcg should be extracted. It can be NULL.
901  *
902  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
903  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
904  * returned.
905  */
906 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
907 {
908 	struct mem_cgroup *memcg;
909 
910 	if (mem_cgroup_disabled())
911 		return NULL;
912 
913 	rcu_read_lock();
914 	do {
915 		/*
916 		 * Page cache insertions can happen withou an
917 		 * actual mm context, e.g. during disk probing
918 		 * on boot, loopback IO, acct() writes etc.
919 		 */
920 		if (unlikely(!mm))
921 			memcg = root_mem_cgroup;
922 		else {
923 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
924 			if (unlikely(!memcg))
925 				memcg = root_mem_cgroup;
926 		}
927 	} while (!css_tryget_online(&memcg->css));
928 	rcu_read_unlock();
929 	return memcg;
930 }
931 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
932 
933 /**
934  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
935  * @page: page from which memcg should be extracted.
936  *
937  * Obtain a reference on page->memcg and returns it if successful. Otherwise
938  * root_mem_cgroup is returned.
939  */
940 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
941 {
942 	struct mem_cgroup *memcg = page->mem_cgroup;
943 
944 	if (mem_cgroup_disabled())
945 		return NULL;
946 
947 	rcu_read_lock();
948 	if (!memcg || !css_tryget_online(&memcg->css))
949 		memcg = root_mem_cgroup;
950 	rcu_read_unlock();
951 	return memcg;
952 }
953 EXPORT_SYMBOL(get_mem_cgroup_from_page);
954 
955 /**
956  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
957  */
958 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
959 {
960 	if (unlikely(current->active_memcg)) {
961 		struct mem_cgroup *memcg = root_mem_cgroup;
962 
963 		rcu_read_lock();
964 		if (css_tryget_online(&current->active_memcg->css))
965 			memcg = current->active_memcg;
966 		rcu_read_unlock();
967 		return memcg;
968 	}
969 	return get_mem_cgroup_from_mm(current->mm);
970 }
971 
972 /**
973  * mem_cgroup_iter - iterate over memory cgroup hierarchy
974  * @root: hierarchy root
975  * @prev: previously returned memcg, NULL on first invocation
976  * @reclaim: cookie for shared reclaim walks, NULL for full walks
977  *
978  * Returns references to children of the hierarchy below @root, or
979  * @root itself, or %NULL after a full round-trip.
980  *
981  * Caller must pass the return value in @prev on subsequent
982  * invocations for reference counting, or use mem_cgroup_iter_break()
983  * to cancel a hierarchy walk before the round-trip is complete.
984  *
985  * Reclaimers can specify a node and a priority level in @reclaim to
986  * divide up the memcgs in the hierarchy among all concurrent
987  * reclaimers operating on the same node and priority.
988  */
989 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
990 				   struct mem_cgroup *prev,
991 				   struct mem_cgroup_reclaim_cookie *reclaim)
992 {
993 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
994 	struct cgroup_subsys_state *css = NULL;
995 	struct mem_cgroup *memcg = NULL;
996 	struct mem_cgroup *pos = NULL;
997 
998 	if (mem_cgroup_disabled())
999 		return NULL;
1000 
1001 	if (!root)
1002 		root = root_mem_cgroup;
1003 
1004 	if (prev && !reclaim)
1005 		pos = prev;
1006 
1007 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1008 		if (prev)
1009 			goto out;
1010 		return root;
1011 	}
1012 
1013 	rcu_read_lock();
1014 
1015 	if (reclaim) {
1016 		struct mem_cgroup_per_node *mz;
1017 
1018 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1019 		iter = &mz->iter[reclaim->priority];
1020 
1021 		if (prev && reclaim->generation != iter->generation)
1022 			goto out_unlock;
1023 
1024 		while (1) {
1025 			pos = READ_ONCE(iter->position);
1026 			if (!pos || css_tryget(&pos->css))
1027 				break;
1028 			/*
1029 			 * css reference reached zero, so iter->position will
1030 			 * be cleared by ->css_released. However, we should not
1031 			 * rely on this happening soon, because ->css_released
1032 			 * is called from a work queue, and by busy-waiting we
1033 			 * might block it. So we clear iter->position right
1034 			 * away.
1035 			 */
1036 			(void)cmpxchg(&iter->position, pos, NULL);
1037 		}
1038 	}
1039 
1040 	if (pos)
1041 		css = &pos->css;
1042 
1043 	for (;;) {
1044 		css = css_next_descendant_pre(css, &root->css);
1045 		if (!css) {
1046 			/*
1047 			 * Reclaimers share the hierarchy walk, and a
1048 			 * new one might jump in right at the end of
1049 			 * the hierarchy - make sure they see at least
1050 			 * one group and restart from the beginning.
1051 			 */
1052 			if (!prev)
1053 				continue;
1054 			break;
1055 		}
1056 
1057 		/*
1058 		 * Verify the css and acquire a reference.  The root
1059 		 * is provided by the caller, so we know it's alive
1060 		 * and kicking, and don't take an extra reference.
1061 		 */
1062 		memcg = mem_cgroup_from_css(css);
1063 
1064 		if (css == &root->css)
1065 			break;
1066 
1067 		if (css_tryget(css))
1068 			break;
1069 
1070 		memcg = NULL;
1071 	}
1072 
1073 	if (reclaim) {
1074 		/*
1075 		 * The position could have already been updated by a competing
1076 		 * thread, so check that the value hasn't changed since we read
1077 		 * it to avoid reclaiming from the same cgroup twice.
1078 		 */
1079 		(void)cmpxchg(&iter->position, pos, memcg);
1080 
1081 		if (pos)
1082 			css_put(&pos->css);
1083 
1084 		if (!memcg)
1085 			iter->generation++;
1086 		else if (!prev)
1087 			reclaim->generation = iter->generation;
1088 	}
1089 
1090 out_unlock:
1091 	rcu_read_unlock();
1092 out:
1093 	if (prev && prev != root)
1094 		css_put(&prev->css);
1095 
1096 	return memcg;
1097 }
1098 
1099 /**
1100  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1101  * @root: hierarchy root
1102  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1103  */
1104 void mem_cgroup_iter_break(struct mem_cgroup *root,
1105 			   struct mem_cgroup *prev)
1106 {
1107 	if (!root)
1108 		root = root_mem_cgroup;
1109 	if (prev && prev != root)
1110 		css_put(&prev->css);
1111 }
1112 
1113 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1114 {
1115 	struct mem_cgroup *memcg = dead_memcg;
1116 	struct mem_cgroup_reclaim_iter *iter;
1117 	struct mem_cgroup_per_node *mz;
1118 	int nid;
1119 	int i;
1120 
1121 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1122 		for_each_node(nid) {
1123 			mz = mem_cgroup_nodeinfo(memcg, nid);
1124 			for (i = 0; i <= DEF_PRIORITY; i++) {
1125 				iter = &mz->iter[i];
1126 				cmpxchg(&iter->position,
1127 					dead_memcg, NULL);
1128 			}
1129 		}
1130 	}
1131 }
1132 
1133 /**
1134  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1135  * @memcg: hierarchy root
1136  * @fn: function to call for each task
1137  * @arg: argument passed to @fn
1138  *
1139  * This function iterates over tasks attached to @memcg or to any of its
1140  * descendants and calls @fn for each task. If @fn returns a non-zero
1141  * value, the function breaks the iteration loop and returns the value.
1142  * Otherwise, it will iterate over all tasks and return 0.
1143  *
1144  * This function must not be called for the root memory cgroup.
1145  */
1146 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1147 			  int (*fn)(struct task_struct *, void *), void *arg)
1148 {
1149 	struct mem_cgroup *iter;
1150 	int ret = 0;
1151 
1152 	BUG_ON(memcg == root_mem_cgroup);
1153 
1154 	for_each_mem_cgroup_tree(iter, memcg) {
1155 		struct css_task_iter it;
1156 		struct task_struct *task;
1157 
1158 		css_task_iter_start(&iter->css, 0, &it);
1159 		while (!ret && (task = css_task_iter_next(&it)))
1160 			ret = fn(task, arg);
1161 		css_task_iter_end(&it);
1162 		if (ret) {
1163 			mem_cgroup_iter_break(memcg, iter);
1164 			break;
1165 		}
1166 	}
1167 	return ret;
1168 }
1169 
1170 /**
1171  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1172  * @page: the page
1173  * @pgdat: pgdat of the page
1174  *
1175  * This function is only safe when following the LRU page isolation
1176  * and putback protocol: the LRU lock must be held, and the page must
1177  * either be PageLRU() or the caller must have isolated/allocated it.
1178  */
1179 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1180 {
1181 	struct mem_cgroup_per_node *mz;
1182 	struct mem_cgroup *memcg;
1183 	struct lruvec *lruvec;
1184 
1185 	if (mem_cgroup_disabled()) {
1186 		lruvec = &pgdat->lruvec;
1187 		goto out;
1188 	}
1189 
1190 	memcg = page->mem_cgroup;
1191 	/*
1192 	 * Swapcache readahead pages are added to the LRU - and
1193 	 * possibly migrated - before they are charged.
1194 	 */
1195 	if (!memcg)
1196 		memcg = root_mem_cgroup;
1197 
1198 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1199 	lruvec = &mz->lruvec;
1200 out:
1201 	/*
1202 	 * Since a node can be onlined after the mem_cgroup was created,
1203 	 * we have to be prepared to initialize lruvec->zone here;
1204 	 * and if offlined then reonlined, we need to reinitialize it.
1205 	 */
1206 	if (unlikely(lruvec->pgdat != pgdat))
1207 		lruvec->pgdat = pgdat;
1208 	return lruvec;
1209 }
1210 
1211 /**
1212  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1213  * @lruvec: mem_cgroup per zone lru vector
1214  * @lru: index of lru list the page is sitting on
1215  * @zid: zone id of the accounted pages
1216  * @nr_pages: positive when adding or negative when removing
1217  *
1218  * This function must be called under lru_lock, just before a page is added
1219  * to or just after a page is removed from an lru list (that ordering being
1220  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1221  */
1222 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1223 				int zid, int nr_pages)
1224 {
1225 	struct mem_cgroup_per_node *mz;
1226 	unsigned long *lru_size;
1227 	long size;
1228 
1229 	if (mem_cgroup_disabled())
1230 		return;
1231 
1232 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1233 	lru_size = &mz->lru_zone_size[zid][lru];
1234 
1235 	if (nr_pages < 0)
1236 		*lru_size += nr_pages;
1237 
1238 	size = *lru_size;
1239 	if (WARN_ONCE(size < 0,
1240 		"%s(%p, %d, %d): lru_size %ld\n",
1241 		__func__, lruvec, lru, nr_pages, size)) {
1242 		VM_BUG_ON(1);
1243 		*lru_size = 0;
1244 	}
1245 
1246 	if (nr_pages > 0)
1247 		*lru_size += nr_pages;
1248 }
1249 
1250 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1251 {
1252 	struct mem_cgroup *task_memcg;
1253 	struct task_struct *p;
1254 	bool ret;
1255 
1256 	p = find_lock_task_mm(task);
1257 	if (p) {
1258 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1259 		task_unlock(p);
1260 	} else {
1261 		/*
1262 		 * All threads may have already detached their mm's, but the oom
1263 		 * killer still needs to detect if they have already been oom
1264 		 * killed to prevent needlessly killing additional tasks.
1265 		 */
1266 		rcu_read_lock();
1267 		task_memcg = mem_cgroup_from_task(task);
1268 		css_get(&task_memcg->css);
1269 		rcu_read_unlock();
1270 	}
1271 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1272 	css_put(&task_memcg->css);
1273 	return ret;
1274 }
1275 
1276 /**
1277  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1278  * @memcg: the memory cgroup
1279  *
1280  * Returns the maximum amount of memory @mem can be charged with, in
1281  * pages.
1282  */
1283 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1284 {
1285 	unsigned long margin = 0;
1286 	unsigned long count;
1287 	unsigned long limit;
1288 
1289 	count = page_counter_read(&memcg->memory);
1290 	limit = READ_ONCE(memcg->memory.max);
1291 	if (count < limit)
1292 		margin = limit - count;
1293 
1294 	if (do_memsw_account()) {
1295 		count = page_counter_read(&memcg->memsw);
1296 		limit = READ_ONCE(memcg->memsw.max);
1297 		if (count <= limit)
1298 			margin = min(margin, limit - count);
1299 		else
1300 			margin = 0;
1301 	}
1302 
1303 	return margin;
1304 }
1305 
1306 /*
1307  * A routine for checking "mem" is under move_account() or not.
1308  *
1309  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1310  * moving cgroups. This is for waiting at high-memory pressure
1311  * caused by "move".
1312  */
1313 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1314 {
1315 	struct mem_cgroup *from;
1316 	struct mem_cgroup *to;
1317 	bool ret = false;
1318 	/*
1319 	 * Unlike task_move routines, we access mc.to, mc.from not under
1320 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1321 	 */
1322 	spin_lock(&mc.lock);
1323 	from = mc.from;
1324 	to = mc.to;
1325 	if (!from)
1326 		goto unlock;
1327 
1328 	ret = mem_cgroup_is_descendant(from, memcg) ||
1329 		mem_cgroup_is_descendant(to, memcg);
1330 unlock:
1331 	spin_unlock(&mc.lock);
1332 	return ret;
1333 }
1334 
1335 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1336 {
1337 	if (mc.moving_task && current != mc.moving_task) {
1338 		if (mem_cgroup_under_move(memcg)) {
1339 			DEFINE_WAIT(wait);
1340 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1341 			/* moving charge context might have finished. */
1342 			if (mc.moving_task)
1343 				schedule();
1344 			finish_wait(&mc.waitq, &wait);
1345 			return true;
1346 		}
1347 	}
1348 	return false;
1349 }
1350 
1351 static const unsigned int memcg1_stats[] = {
1352 	MEMCG_CACHE,
1353 	MEMCG_RSS,
1354 	MEMCG_RSS_HUGE,
1355 	NR_SHMEM,
1356 	NR_FILE_MAPPED,
1357 	NR_FILE_DIRTY,
1358 	NR_WRITEBACK,
1359 	MEMCG_SWAP,
1360 };
1361 
1362 static const char *const memcg1_stat_names[] = {
1363 	"cache",
1364 	"rss",
1365 	"rss_huge",
1366 	"shmem",
1367 	"mapped_file",
1368 	"dirty",
1369 	"writeback",
1370 	"swap",
1371 };
1372 
1373 #define K(x) ((x) << (PAGE_SHIFT-10))
1374 /**
1375  * mem_cgroup_print_oom_context: Print OOM information relevant to
1376  * memory controller.
1377  * @memcg: The memory cgroup that went over limit
1378  * @p: Task that is going to be killed
1379  *
1380  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1381  * enabled
1382  */
1383 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1384 {
1385 	rcu_read_lock();
1386 
1387 	if (memcg) {
1388 		pr_cont(",oom_memcg=");
1389 		pr_cont_cgroup_path(memcg->css.cgroup);
1390 	} else
1391 		pr_cont(",global_oom");
1392 	if (p) {
1393 		pr_cont(",task_memcg=");
1394 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1395 	}
1396 	rcu_read_unlock();
1397 }
1398 
1399 /**
1400  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1401  * memory controller.
1402  * @memcg: The memory cgroup that went over limit
1403  */
1404 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1405 {
1406 	struct mem_cgroup *iter;
1407 	unsigned int i;
1408 
1409 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1410 		K((u64)page_counter_read(&memcg->memory)),
1411 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1412 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1413 		K((u64)page_counter_read(&memcg->memsw)),
1414 		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1415 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1416 		K((u64)page_counter_read(&memcg->kmem)),
1417 		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1418 
1419 	for_each_mem_cgroup_tree(iter, memcg) {
1420 		pr_info("Memory cgroup stats for ");
1421 		pr_cont_cgroup_path(iter->css.cgroup);
1422 		pr_cont(":");
1423 
1424 		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1425 			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1426 				continue;
1427 			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1428 				K(memcg_page_state_local(iter,
1429 							 memcg1_stats[i])));
1430 		}
1431 
1432 		for (i = 0; i < NR_LRU_LISTS; i++)
1433 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1434 				K(memcg_page_state_local(iter,
1435 							 NR_LRU_BASE + i)));
1436 
1437 		pr_cont("\n");
1438 	}
1439 }
1440 
1441 /*
1442  * Return the memory (and swap, if configured) limit for a memcg.
1443  */
1444 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1445 {
1446 	unsigned long max;
1447 
1448 	max = memcg->memory.max;
1449 	if (mem_cgroup_swappiness(memcg)) {
1450 		unsigned long memsw_max;
1451 		unsigned long swap_max;
1452 
1453 		memsw_max = memcg->memsw.max;
1454 		swap_max = memcg->swap.max;
1455 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1456 		max = min(max + swap_max, memsw_max);
1457 	}
1458 	return max;
1459 }
1460 
1461 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1462 				     int order)
1463 {
1464 	struct oom_control oc = {
1465 		.zonelist = NULL,
1466 		.nodemask = NULL,
1467 		.memcg = memcg,
1468 		.gfp_mask = gfp_mask,
1469 		.order = order,
1470 	};
1471 	bool ret;
1472 
1473 	if (mutex_lock_killable(&oom_lock))
1474 		return true;
1475 	/*
1476 	 * A few threads which were not waiting at mutex_lock_killable() can
1477 	 * fail to bail out. Therefore, check again after holding oom_lock.
1478 	 */
1479 	ret = should_force_charge() || out_of_memory(&oc);
1480 	mutex_unlock(&oom_lock);
1481 	return ret;
1482 }
1483 
1484 #if MAX_NUMNODES > 1
1485 
1486 /**
1487  * test_mem_cgroup_node_reclaimable
1488  * @memcg: the target memcg
1489  * @nid: the node ID to be checked.
1490  * @noswap : specify true here if the user wants flle only information.
1491  *
1492  * This function returns whether the specified memcg contains any
1493  * reclaimable pages on a node. Returns true if there are any reclaimable
1494  * pages in the node.
1495  */
1496 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1497 		int nid, bool noswap)
1498 {
1499 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1500 
1501 	if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1502 	    lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1503 		return true;
1504 	if (noswap || !total_swap_pages)
1505 		return false;
1506 	if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1507 	    lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1508 		return true;
1509 	return false;
1510 
1511 }
1512 
1513 /*
1514  * Always updating the nodemask is not very good - even if we have an empty
1515  * list or the wrong list here, we can start from some node and traverse all
1516  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1517  *
1518  */
1519 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1520 {
1521 	int nid;
1522 	/*
1523 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1524 	 * pagein/pageout changes since the last update.
1525 	 */
1526 	if (!atomic_read(&memcg->numainfo_events))
1527 		return;
1528 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1529 		return;
1530 
1531 	/* make a nodemask where this memcg uses memory from */
1532 	memcg->scan_nodes = node_states[N_MEMORY];
1533 
1534 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1535 
1536 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1537 			node_clear(nid, memcg->scan_nodes);
1538 	}
1539 
1540 	atomic_set(&memcg->numainfo_events, 0);
1541 	atomic_set(&memcg->numainfo_updating, 0);
1542 }
1543 
1544 /*
1545  * Selecting a node where we start reclaim from. Because what we need is just
1546  * reducing usage counter, start from anywhere is O,K. Considering
1547  * memory reclaim from current node, there are pros. and cons.
1548  *
1549  * Freeing memory from current node means freeing memory from a node which
1550  * we'll use or we've used. So, it may make LRU bad. And if several threads
1551  * hit limits, it will see a contention on a node. But freeing from remote
1552  * node means more costs for memory reclaim because of memory latency.
1553  *
1554  * Now, we use round-robin. Better algorithm is welcomed.
1555  */
1556 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1557 {
1558 	int node;
1559 
1560 	mem_cgroup_may_update_nodemask(memcg);
1561 	node = memcg->last_scanned_node;
1562 
1563 	node = next_node_in(node, memcg->scan_nodes);
1564 	/*
1565 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1566 	 * last time it really checked all the LRUs due to rate limiting.
1567 	 * Fallback to the current node in that case for simplicity.
1568 	 */
1569 	if (unlikely(node == MAX_NUMNODES))
1570 		node = numa_node_id();
1571 
1572 	memcg->last_scanned_node = node;
1573 	return node;
1574 }
1575 #else
1576 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1577 {
1578 	return 0;
1579 }
1580 #endif
1581 
1582 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1583 				   pg_data_t *pgdat,
1584 				   gfp_t gfp_mask,
1585 				   unsigned long *total_scanned)
1586 {
1587 	struct mem_cgroup *victim = NULL;
1588 	int total = 0;
1589 	int loop = 0;
1590 	unsigned long excess;
1591 	unsigned long nr_scanned;
1592 	struct mem_cgroup_reclaim_cookie reclaim = {
1593 		.pgdat = pgdat,
1594 		.priority = 0,
1595 	};
1596 
1597 	excess = soft_limit_excess(root_memcg);
1598 
1599 	while (1) {
1600 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1601 		if (!victim) {
1602 			loop++;
1603 			if (loop >= 2) {
1604 				/*
1605 				 * If we have not been able to reclaim
1606 				 * anything, it might because there are
1607 				 * no reclaimable pages under this hierarchy
1608 				 */
1609 				if (!total)
1610 					break;
1611 				/*
1612 				 * We want to do more targeted reclaim.
1613 				 * excess >> 2 is not to excessive so as to
1614 				 * reclaim too much, nor too less that we keep
1615 				 * coming back to reclaim from this cgroup
1616 				 */
1617 				if (total >= (excess >> 2) ||
1618 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1619 					break;
1620 			}
1621 			continue;
1622 		}
1623 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1624 					pgdat, &nr_scanned);
1625 		*total_scanned += nr_scanned;
1626 		if (!soft_limit_excess(root_memcg))
1627 			break;
1628 	}
1629 	mem_cgroup_iter_break(root_memcg, victim);
1630 	return total;
1631 }
1632 
1633 #ifdef CONFIG_LOCKDEP
1634 static struct lockdep_map memcg_oom_lock_dep_map = {
1635 	.name = "memcg_oom_lock",
1636 };
1637 #endif
1638 
1639 static DEFINE_SPINLOCK(memcg_oom_lock);
1640 
1641 /*
1642  * Check OOM-Killer is already running under our hierarchy.
1643  * If someone is running, return false.
1644  */
1645 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1646 {
1647 	struct mem_cgroup *iter, *failed = NULL;
1648 
1649 	spin_lock(&memcg_oom_lock);
1650 
1651 	for_each_mem_cgroup_tree(iter, memcg) {
1652 		if (iter->oom_lock) {
1653 			/*
1654 			 * this subtree of our hierarchy is already locked
1655 			 * so we cannot give a lock.
1656 			 */
1657 			failed = iter;
1658 			mem_cgroup_iter_break(memcg, iter);
1659 			break;
1660 		} else
1661 			iter->oom_lock = true;
1662 	}
1663 
1664 	if (failed) {
1665 		/*
1666 		 * OK, we failed to lock the whole subtree so we have
1667 		 * to clean up what we set up to the failing subtree
1668 		 */
1669 		for_each_mem_cgroup_tree(iter, memcg) {
1670 			if (iter == failed) {
1671 				mem_cgroup_iter_break(memcg, iter);
1672 				break;
1673 			}
1674 			iter->oom_lock = false;
1675 		}
1676 	} else
1677 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1678 
1679 	spin_unlock(&memcg_oom_lock);
1680 
1681 	return !failed;
1682 }
1683 
1684 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1685 {
1686 	struct mem_cgroup *iter;
1687 
1688 	spin_lock(&memcg_oom_lock);
1689 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1690 	for_each_mem_cgroup_tree(iter, memcg)
1691 		iter->oom_lock = false;
1692 	spin_unlock(&memcg_oom_lock);
1693 }
1694 
1695 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1696 {
1697 	struct mem_cgroup *iter;
1698 
1699 	spin_lock(&memcg_oom_lock);
1700 	for_each_mem_cgroup_tree(iter, memcg)
1701 		iter->under_oom++;
1702 	spin_unlock(&memcg_oom_lock);
1703 }
1704 
1705 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1706 {
1707 	struct mem_cgroup *iter;
1708 
1709 	/*
1710 	 * When a new child is created while the hierarchy is under oom,
1711 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1712 	 */
1713 	spin_lock(&memcg_oom_lock);
1714 	for_each_mem_cgroup_tree(iter, memcg)
1715 		if (iter->under_oom > 0)
1716 			iter->under_oom--;
1717 	spin_unlock(&memcg_oom_lock);
1718 }
1719 
1720 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1721 
1722 struct oom_wait_info {
1723 	struct mem_cgroup *memcg;
1724 	wait_queue_entry_t	wait;
1725 };
1726 
1727 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1728 	unsigned mode, int sync, void *arg)
1729 {
1730 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1731 	struct mem_cgroup *oom_wait_memcg;
1732 	struct oom_wait_info *oom_wait_info;
1733 
1734 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1735 	oom_wait_memcg = oom_wait_info->memcg;
1736 
1737 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1738 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1739 		return 0;
1740 	return autoremove_wake_function(wait, mode, sync, arg);
1741 }
1742 
1743 static void memcg_oom_recover(struct mem_cgroup *memcg)
1744 {
1745 	/*
1746 	 * For the following lockless ->under_oom test, the only required
1747 	 * guarantee is that it must see the state asserted by an OOM when
1748 	 * this function is called as a result of userland actions
1749 	 * triggered by the notification of the OOM.  This is trivially
1750 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1751 	 * triggering notification.
1752 	 */
1753 	if (memcg && memcg->under_oom)
1754 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1755 }
1756 
1757 enum oom_status {
1758 	OOM_SUCCESS,
1759 	OOM_FAILED,
1760 	OOM_ASYNC,
1761 	OOM_SKIPPED
1762 };
1763 
1764 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1765 {
1766 	enum oom_status ret;
1767 	bool locked;
1768 
1769 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1770 		return OOM_SKIPPED;
1771 
1772 	memcg_memory_event(memcg, MEMCG_OOM);
1773 
1774 	/*
1775 	 * We are in the middle of the charge context here, so we
1776 	 * don't want to block when potentially sitting on a callstack
1777 	 * that holds all kinds of filesystem and mm locks.
1778 	 *
1779 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1780 	 * handling until the charge can succeed; remember the context and put
1781 	 * the task to sleep at the end of the page fault when all locks are
1782 	 * released.
1783 	 *
1784 	 * On the other hand, in-kernel OOM killer allows for an async victim
1785 	 * memory reclaim (oom_reaper) and that means that we are not solely
1786 	 * relying on the oom victim to make a forward progress and we can
1787 	 * invoke the oom killer here.
1788 	 *
1789 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1790 	 * victim and then we have to bail out from the charge path.
1791 	 */
1792 	if (memcg->oom_kill_disable) {
1793 		if (!current->in_user_fault)
1794 			return OOM_SKIPPED;
1795 		css_get(&memcg->css);
1796 		current->memcg_in_oom = memcg;
1797 		current->memcg_oom_gfp_mask = mask;
1798 		current->memcg_oom_order = order;
1799 
1800 		return OOM_ASYNC;
1801 	}
1802 
1803 	mem_cgroup_mark_under_oom(memcg);
1804 
1805 	locked = mem_cgroup_oom_trylock(memcg);
1806 
1807 	if (locked)
1808 		mem_cgroup_oom_notify(memcg);
1809 
1810 	mem_cgroup_unmark_under_oom(memcg);
1811 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1812 		ret = OOM_SUCCESS;
1813 	else
1814 		ret = OOM_FAILED;
1815 
1816 	if (locked)
1817 		mem_cgroup_oom_unlock(memcg);
1818 
1819 	return ret;
1820 }
1821 
1822 /**
1823  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1824  * @handle: actually kill/wait or just clean up the OOM state
1825  *
1826  * This has to be called at the end of a page fault if the memcg OOM
1827  * handler was enabled.
1828  *
1829  * Memcg supports userspace OOM handling where failed allocations must
1830  * sleep on a waitqueue until the userspace task resolves the
1831  * situation.  Sleeping directly in the charge context with all kinds
1832  * of locks held is not a good idea, instead we remember an OOM state
1833  * in the task and mem_cgroup_oom_synchronize() has to be called at
1834  * the end of the page fault to complete the OOM handling.
1835  *
1836  * Returns %true if an ongoing memcg OOM situation was detected and
1837  * completed, %false otherwise.
1838  */
1839 bool mem_cgroup_oom_synchronize(bool handle)
1840 {
1841 	struct mem_cgroup *memcg = current->memcg_in_oom;
1842 	struct oom_wait_info owait;
1843 	bool locked;
1844 
1845 	/* OOM is global, do not handle */
1846 	if (!memcg)
1847 		return false;
1848 
1849 	if (!handle)
1850 		goto cleanup;
1851 
1852 	owait.memcg = memcg;
1853 	owait.wait.flags = 0;
1854 	owait.wait.func = memcg_oom_wake_function;
1855 	owait.wait.private = current;
1856 	INIT_LIST_HEAD(&owait.wait.entry);
1857 
1858 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1859 	mem_cgroup_mark_under_oom(memcg);
1860 
1861 	locked = mem_cgroup_oom_trylock(memcg);
1862 
1863 	if (locked)
1864 		mem_cgroup_oom_notify(memcg);
1865 
1866 	if (locked && !memcg->oom_kill_disable) {
1867 		mem_cgroup_unmark_under_oom(memcg);
1868 		finish_wait(&memcg_oom_waitq, &owait.wait);
1869 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1870 					 current->memcg_oom_order);
1871 	} else {
1872 		schedule();
1873 		mem_cgroup_unmark_under_oom(memcg);
1874 		finish_wait(&memcg_oom_waitq, &owait.wait);
1875 	}
1876 
1877 	if (locked) {
1878 		mem_cgroup_oom_unlock(memcg);
1879 		/*
1880 		 * There is no guarantee that an OOM-lock contender
1881 		 * sees the wakeups triggered by the OOM kill
1882 		 * uncharges.  Wake any sleepers explicitely.
1883 		 */
1884 		memcg_oom_recover(memcg);
1885 	}
1886 cleanup:
1887 	current->memcg_in_oom = NULL;
1888 	css_put(&memcg->css);
1889 	return true;
1890 }
1891 
1892 /**
1893  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1894  * @victim: task to be killed by the OOM killer
1895  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1896  *
1897  * Returns a pointer to a memory cgroup, which has to be cleaned up
1898  * by killing all belonging OOM-killable tasks.
1899  *
1900  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1901  */
1902 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1903 					    struct mem_cgroup *oom_domain)
1904 {
1905 	struct mem_cgroup *oom_group = NULL;
1906 	struct mem_cgroup *memcg;
1907 
1908 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1909 		return NULL;
1910 
1911 	if (!oom_domain)
1912 		oom_domain = root_mem_cgroup;
1913 
1914 	rcu_read_lock();
1915 
1916 	memcg = mem_cgroup_from_task(victim);
1917 	if (memcg == root_mem_cgroup)
1918 		goto out;
1919 
1920 	/*
1921 	 * Traverse the memory cgroup hierarchy from the victim task's
1922 	 * cgroup up to the OOMing cgroup (or root) to find the
1923 	 * highest-level memory cgroup with oom.group set.
1924 	 */
1925 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1926 		if (memcg->oom_group)
1927 			oom_group = memcg;
1928 
1929 		if (memcg == oom_domain)
1930 			break;
1931 	}
1932 
1933 	if (oom_group)
1934 		css_get(&oom_group->css);
1935 out:
1936 	rcu_read_unlock();
1937 
1938 	return oom_group;
1939 }
1940 
1941 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1942 {
1943 	pr_info("Tasks in ");
1944 	pr_cont_cgroup_path(memcg->css.cgroup);
1945 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1946 }
1947 
1948 /**
1949  * lock_page_memcg - lock a page->mem_cgroup binding
1950  * @page: the page
1951  *
1952  * This function protects unlocked LRU pages from being moved to
1953  * another cgroup.
1954  *
1955  * It ensures lifetime of the returned memcg. Caller is responsible
1956  * for the lifetime of the page; __unlock_page_memcg() is available
1957  * when @page might get freed inside the locked section.
1958  */
1959 struct mem_cgroup *lock_page_memcg(struct page *page)
1960 {
1961 	struct mem_cgroup *memcg;
1962 	unsigned long flags;
1963 
1964 	/*
1965 	 * The RCU lock is held throughout the transaction.  The fast
1966 	 * path can get away without acquiring the memcg->move_lock
1967 	 * because page moving starts with an RCU grace period.
1968 	 *
1969 	 * The RCU lock also protects the memcg from being freed when
1970 	 * the page state that is going to change is the only thing
1971 	 * preventing the page itself from being freed. E.g. writeback
1972 	 * doesn't hold a page reference and relies on PG_writeback to
1973 	 * keep off truncation, migration and so forth.
1974          */
1975 	rcu_read_lock();
1976 
1977 	if (mem_cgroup_disabled())
1978 		return NULL;
1979 again:
1980 	memcg = page->mem_cgroup;
1981 	if (unlikely(!memcg))
1982 		return NULL;
1983 
1984 	if (atomic_read(&memcg->moving_account) <= 0)
1985 		return memcg;
1986 
1987 	spin_lock_irqsave(&memcg->move_lock, flags);
1988 	if (memcg != page->mem_cgroup) {
1989 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1990 		goto again;
1991 	}
1992 
1993 	/*
1994 	 * When charge migration first begins, we can have locked and
1995 	 * unlocked page stat updates happening concurrently.  Track
1996 	 * the task who has the lock for unlock_page_memcg().
1997 	 */
1998 	memcg->move_lock_task = current;
1999 	memcg->move_lock_flags = flags;
2000 
2001 	return memcg;
2002 }
2003 EXPORT_SYMBOL(lock_page_memcg);
2004 
2005 /**
2006  * __unlock_page_memcg - unlock and unpin a memcg
2007  * @memcg: the memcg
2008  *
2009  * Unlock and unpin a memcg returned by lock_page_memcg().
2010  */
2011 void __unlock_page_memcg(struct mem_cgroup *memcg)
2012 {
2013 	if (memcg && memcg->move_lock_task == current) {
2014 		unsigned long flags = memcg->move_lock_flags;
2015 
2016 		memcg->move_lock_task = NULL;
2017 		memcg->move_lock_flags = 0;
2018 
2019 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2020 	}
2021 
2022 	rcu_read_unlock();
2023 }
2024 
2025 /**
2026  * unlock_page_memcg - unlock a page->mem_cgroup binding
2027  * @page: the page
2028  */
2029 void unlock_page_memcg(struct page *page)
2030 {
2031 	__unlock_page_memcg(page->mem_cgroup);
2032 }
2033 EXPORT_SYMBOL(unlock_page_memcg);
2034 
2035 struct memcg_stock_pcp {
2036 	struct mem_cgroup *cached; /* this never be root cgroup */
2037 	unsigned int nr_pages;
2038 	struct work_struct work;
2039 	unsigned long flags;
2040 #define FLUSHING_CACHED_CHARGE	0
2041 };
2042 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2043 static DEFINE_MUTEX(percpu_charge_mutex);
2044 
2045 /**
2046  * consume_stock: Try to consume stocked charge on this cpu.
2047  * @memcg: memcg to consume from.
2048  * @nr_pages: how many pages to charge.
2049  *
2050  * The charges will only happen if @memcg matches the current cpu's memcg
2051  * stock, and at least @nr_pages are available in that stock.  Failure to
2052  * service an allocation will refill the stock.
2053  *
2054  * returns true if successful, false otherwise.
2055  */
2056 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2057 {
2058 	struct memcg_stock_pcp *stock;
2059 	unsigned long flags;
2060 	bool ret = false;
2061 
2062 	if (nr_pages > MEMCG_CHARGE_BATCH)
2063 		return ret;
2064 
2065 	local_irq_save(flags);
2066 
2067 	stock = this_cpu_ptr(&memcg_stock);
2068 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2069 		stock->nr_pages -= nr_pages;
2070 		ret = true;
2071 	}
2072 
2073 	local_irq_restore(flags);
2074 
2075 	return ret;
2076 }
2077 
2078 /*
2079  * Returns stocks cached in percpu and reset cached information.
2080  */
2081 static void drain_stock(struct memcg_stock_pcp *stock)
2082 {
2083 	struct mem_cgroup *old = stock->cached;
2084 
2085 	if (stock->nr_pages) {
2086 		page_counter_uncharge(&old->memory, stock->nr_pages);
2087 		if (do_memsw_account())
2088 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2089 		css_put_many(&old->css, stock->nr_pages);
2090 		stock->nr_pages = 0;
2091 	}
2092 	stock->cached = NULL;
2093 }
2094 
2095 static void drain_local_stock(struct work_struct *dummy)
2096 {
2097 	struct memcg_stock_pcp *stock;
2098 	unsigned long flags;
2099 
2100 	/*
2101 	 * The only protection from memory hotplug vs. drain_stock races is
2102 	 * that we always operate on local CPU stock here with IRQ disabled
2103 	 */
2104 	local_irq_save(flags);
2105 
2106 	stock = this_cpu_ptr(&memcg_stock);
2107 	drain_stock(stock);
2108 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2109 
2110 	local_irq_restore(flags);
2111 }
2112 
2113 /*
2114  * Cache charges(val) to local per_cpu area.
2115  * This will be consumed by consume_stock() function, later.
2116  */
2117 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2118 {
2119 	struct memcg_stock_pcp *stock;
2120 	unsigned long flags;
2121 
2122 	local_irq_save(flags);
2123 
2124 	stock = this_cpu_ptr(&memcg_stock);
2125 	if (stock->cached != memcg) { /* reset if necessary */
2126 		drain_stock(stock);
2127 		stock->cached = memcg;
2128 	}
2129 	stock->nr_pages += nr_pages;
2130 
2131 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2132 		drain_stock(stock);
2133 
2134 	local_irq_restore(flags);
2135 }
2136 
2137 /*
2138  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2139  * of the hierarchy under it.
2140  */
2141 static void drain_all_stock(struct mem_cgroup *root_memcg)
2142 {
2143 	int cpu, curcpu;
2144 
2145 	/* If someone's already draining, avoid adding running more workers. */
2146 	if (!mutex_trylock(&percpu_charge_mutex))
2147 		return;
2148 	/*
2149 	 * Notify other cpus that system-wide "drain" is running
2150 	 * We do not care about races with the cpu hotplug because cpu down
2151 	 * as well as workers from this path always operate on the local
2152 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2153 	 */
2154 	curcpu = get_cpu();
2155 	for_each_online_cpu(cpu) {
2156 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2157 		struct mem_cgroup *memcg;
2158 
2159 		memcg = stock->cached;
2160 		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2161 			continue;
2162 		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2163 			css_put(&memcg->css);
2164 			continue;
2165 		}
2166 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2167 			if (cpu == curcpu)
2168 				drain_local_stock(&stock->work);
2169 			else
2170 				schedule_work_on(cpu, &stock->work);
2171 		}
2172 		css_put(&memcg->css);
2173 	}
2174 	put_cpu();
2175 	mutex_unlock(&percpu_charge_mutex);
2176 }
2177 
2178 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2179 {
2180 	struct memcg_stock_pcp *stock;
2181 	struct mem_cgroup *memcg, *mi;
2182 
2183 	stock = &per_cpu(memcg_stock, cpu);
2184 	drain_stock(stock);
2185 
2186 	for_each_mem_cgroup(memcg) {
2187 		int i;
2188 
2189 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2190 			int nid;
2191 			long x;
2192 
2193 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2194 			if (x) {
2195 				atomic_long_add(x, &memcg->vmstats_local[i]);
2196 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2197 					atomic_long_add(x, &memcg->vmstats[i]);
2198 			}
2199 
2200 			if (i >= NR_VM_NODE_STAT_ITEMS)
2201 				continue;
2202 
2203 			for_each_node(nid) {
2204 				struct mem_cgroup_per_node *pn;
2205 
2206 				pn = mem_cgroup_nodeinfo(memcg, nid);
2207 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2208 				if (x) {
2209 					atomic_long_add(x, &pn->lruvec_stat_local[i]);
2210 					do {
2211 						atomic_long_add(x, &pn->lruvec_stat[i]);
2212 					} while ((pn = parent_nodeinfo(pn, nid)));
2213 				}
2214 			}
2215 		}
2216 
2217 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2218 			long x;
2219 
2220 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2221 			if (x) {
2222 				atomic_long_add(x, &memcg->vmevents_local[i]);
2223 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2224 					atomic_long_add(x, &memcg->vmevents[i]);
2225 			}
2226 		}
2227 	}
2228 
2229 	return 0;
2230 }
2231 
2232 static void reclaim_high(struct mem_cgroup *memcg,
2233 			 unsigned int nr_pages,
2234 			 gfp_t gfp_mask)
2235 {
2236 	do {
2237 		if (page_counter_read(&memcg->memory) <= memcg->high)
2238 			continue;
2239 		memcg_memory_event(memcg, MEMCG_HIGH);
2240 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2241 	} while ((memcg = parent_mem_cgroup(memcg)));
2242 }
2243 
2244 static void high_work_func(struct work_struct *work)
2245 {
2246 	struct mem_cgroup *memcg;
2247 
2248 	memcg = container_of(work, struct mem_cgroup, high_work);
2249 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2250 }
2251 
2252 /*
2253  * Scheduled by try_charge() to be executed from the userland return path
2254  * and reclaims memory over the high limit.
2255  */
2256 void mem_cgroup_handle_over_high(void)
2257 {
2258 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2259 	struct mem_cgroup *memcg;
2260 
2261 	if (likely(!nr_pages))
2262 		return;
2263 
2264 	memcg = get_mem_cgroup_from_mm(current->mm);
2265 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2266 	css_put(&memcg->css);
2267 	current->memcg_nr_pages_over_high = 0;
2268 }
2269 
2270 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2271 		      unsigned int nr_pages)
2272 {
2273 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2274 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2275 	struct mem_cgroup *mem_over_limit;
2276 	struct page_counter *counter;
2277 	unsigned long nr_reclaimed;
2278 	bool may_swap = true;
2279 	bool drained = false;
2280 	bool oomed = false;
2281 	enum oom_status oom_status;
2282 
2283 	if (mem_cgroup_is_root(memcg))
2284 		return 0;
2285 retry:
2286 	if (consume_stock(memcg, nr_pages))
2287 		return 0;
2288 
2289 	if (!do_memsw_account() ||
2290 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2291 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2292 			goto done_restock;
2293 		if (do_memsw_account())
2294 			page_counter_uncharge(&memcg->memsw, batch);
2295 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2296 	} else {
2297 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2298 		may_swap = false;
2299 	}
2300 
2301 	if (batch > nr_pages) {
2302 		batch = nr_pages;
2303 		goto retry;
2304 	}
2305 
2306 	/*
2307 	 * Unlike in global OOM situations, memcg is not in a physical
2308 	 * memory shortage.  Allow dying and OOM-killed tasks to
2309 	 * bypass the last charges so that they can exit quickly and
2310 	 * free their memory.
2311 	 */
2312 	if (unlikely(should_force_charge()))
2313 		goto force;
2314 
2315 	/*
2316 	 * Prevent unbounded recursion when reclaim operations need to
2317 	 * allocate memory. This might exceed the limits temporarily,
2318 	 * but we prefer facilitating memory reclaim and getting back
2319 	 * under the limit over triggering OOM kills in these cases.
2320 	 */
2321 	if (unlikely(current->flags & PF_MEMALLOC))
2322 		goto force;
2323 
2324 	if (unlikely(task_in_memcg_oom(current)))
2325 		goto nomem;
2326 
2327 	if (!gfpflags_allow_blocking(gfp_mask))
2328 		goto nomem;
2329 
2330 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2331 
2332 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2333 						    gfp_mask, may_swap);
2334 
2335 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2336 		goto retry;
2337 
2338 	if (!drained) {
2339 		drain_all_stock(mem_over_limit);
2340 		drained = true;
2341 		goto retry;
2342 	}
2343 
2344 	if (gfp_mask & __GFP_NORETRY)
2345 		goto nomem;
2346 	/*
2347 	 * Even though the limit is exceeded at this point, reclaim
2348 	 * may have been able to free some pages.  Retry the charge
2349 	 * before killing the task.
2350 	 *
2351 	 * Only for regular pages, though: huge pages are rather
2352 	 * unlikely to succeed so close to the limit, and we fall back
2353 	 * to regular pages anyway in case of failure.
2354 	 */
2355 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2356 		goto retry;
2357 	/*
2358 	 * At task move, charge accounts can be doubly counted. So, it's
2359 	 * better to wait until the end of task_move if something is going on.
2360 	 */
2361 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2362 		goto retry;
2363 
2364 	if (nr_retries--)
2365 		goto retry;
2366 
2367 	if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2368 		goto nomem;
2369 
2370 	if (gfp_mask & __GFP_NOFAIL)
2371 		goto force;
2372 
2373 	if (fatal_signal_pending(current))
2374 		goto force;
2375 
2376 	/*
2377 	 * keep retrying as long as the memcg oom killer is able to make
2378 	 * a forward progress or bypass the charge if the oom killer
2379 	 * couldn't make any progress.
2380 	 */
2381 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2382 		       get_order(nr_pages * PAGE_SIZE));
2383 	switch (oom_status) {
2384 	case OOM_SUCCESS:
2385 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2386 		oomed = true;
2387 		goto retry;
2388 	case OOM_FAILED:
2389 		goto force;
2390 	default:
2391 		goto nomem;
2392 	}
2393 nomem:
2394 	if (!(gfp_mask & __GFP_NOFAIL))
2395 		return -ENOMEM;
2396 force:
2397 	/*
2398 	 * The allocation either can't fail or will lead to more memory
2399 	 * being freed very soon.  Allow memory usage go over the limit
2400 	 * temporarily by force charging it.
2401 	 */
2402 	page_counter_charge(&memcg->memory, nr_pages);
2403 	if (do_memsw_account())
2404 		page_counter_charge(&memcg->memsw, nr_pages);
2405 	css_get_many(&memcg->css, nr_pages);
2406 
2407 	return 0;
2408 
2409 done_restock:
2410 	css_get_many(&memcg->css, batch);
2411 	if (batch > nr_pages)
2412 		refill_stock(memcg, batch - nr_pages);
2413 
2414 	/*
2415 	 * If the hierarchy is above the normal consumption range, schedule
2416 	 * reclaim on returning to userland.  We can perform reclaim here
2417 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2418 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2419 	 * not recorded as it most likely matches current's and won't
2420 	 * change in the meantime.  As high limit is checked again before
2421 	 * reclaim, the cost of mismatch is negligible.
2422 	 */
2423 	do {
2424 		if (page_counter_read(&memcg->memory) > memcg->high) {
2425 			/* Don't bother a random interrupted task */
2426 			if (in_interrupt()) {
2427 				schedule_work(&memcg->high_work);
2428 				break;
2429 			}
2430 			current->memcg_nr_pages_over_high += batch;
2431 			set_notify_resume(current);
2432 			break;
2433 		}
2434 	} while ((memcg = parent_mem_cgroup(memcg)));
2435 
2436 	return 0;
2437 }
2438 
2439 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2440 {
2441 	if (mem_cgroup_is_root(memcg))
2442 		return;
2443 
2444 	page_counter_uncharge(&memcg->memory, nr_pages);
2445 	if (do_memsw_account())
2446 		page_counter_uncharge(&memcg->memsw, nr_pages);
2447 
2448 	css_put_many(&memcg->css, nr_pages);
2449 }
2450 
2451 static void lock_page_lru(struct page *page, int *isolated)
2452 {
2453 	pg_data_t *pgdat = page_pgdat(page);
2454 
2455 	spin_lock_irq(&pgdat->lru_lock);
2456 	if (PageLRU(page)) {
2457 		struct lruvec *lruvec;
2458 
2459 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2460 		ClearPageLRU(page);
2461 		del_page_from_lru_list(page, lruvec, page_lru(page));
2462 		*isolated = 1;
2463 	} else
2464 		*isolated = 0;
2465 }
2466 
2467 static void unlock_page_lru(struct page *page, int isolated)
2468 {
2469 	pg_data_t *pgdat = page_pgdat(page);
2470 
2471 	if (isolated) {
2472 		struct lruvec *lruvec;
2473 
2474 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2475 		VM_BUG_ON_PAGE(PageLRU(page), page);
2476 		SetPageLRU(page);
2477 		add_page_to_lru_list(page, lruvec, page_lru(page));
2478 	}
2479 	spin_unlock_irq(&pgdat->lru_lock);
2480 }
2481 
2482 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2483 			  bool lrucare)
2484 {
2485 	int isolated;
2486 
2487 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2488 
2489 	/*
2490 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2491 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2492 	 */
2493 	if (lrucare)
2494 		lock_page_lru(page, &isolated);
2495 
2496 	/*
2497 	 * Nobody should be changing or seriously looking at
2498 	 * page->mem_cgroup at this point:
2499 	 *
2500 	 * - the page is uncharged
2501 	 *
2502 	 * - the page is off-LRU
2503 	 *
2504 	 * - an anonymous fault has exclusive page access, except for
2505 	 *   a locked page table
2506 	 *
2507 	 * - a page cache insertion, a swapin fault, or a migration
2508 	 *   have the page locked
2509 	 */
2510 	page->mem_cgroup = memcg;
2511 
2512 	if (lrucare)
2513 		unlock_page_lru(page, isolated);
2514 }
2515 
2516 #ifdef CONFIG_MEMCG_KMEM
2517 static int memcg_alloc_cache_id(void)
2518 {
2519 	int id, size;
2520 	int err;
2521 
2522 	id = ida_simple_get(&memcg_cache_ida,
2523 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2524 	if (id < 0)
2525 		return id;
2526 
2527 	if (id < memcg_nr_cache_ids)
2528 		return id;
2529 
2530 	/*
2531 	 * There's no space for the new id in memcg_caches arrays,
2532 	 * so we have to grow them.
2533 	 */
2534 	down_write(&memcg_cache_ids_sem);
2535 
2536 	size = 2 * (id + 1);
2537 	if (size < MEMCG_CACHES_MIN_SIZE)
2538 		size = MEMCG_CACHES_MIN_SIZE;
2539 	else if (size > MEMCG_CACHES_MAX_SIZE)
2540 		size = MEMCG_CACHES_MAX_SIZE;
2541 
2542 	err = memcg_update_all_caches(size);
2543 	if (!err)
2544 		err = memcg_update_all_list_lrus(size);
2545 	if (!err)
2546 		memcg_nr_cache_ids = size;
2547 
2548 	up_write(&memcg_cache_ids_sem);
2549 
2550 	if (err) {
2551 		ida_simple_remove(&memcg_cache_ida, id);
2552 		return err;
2553 	}
2554 	return id;
2555 }
2556 
2557 static void memcg_free_cache_id(int id)
2558 {
2559 	ida_simple_remove(&memcg_cache_ida, id);
2560 }
2561 
2562 struct memcg_kmem_cache_create_work {
2563 	struct mem_cgroup *memcg;
2564 	struct kmem_cache *cachep;
2565 	struct work_struct work;
2566 };
2567 
2568 static void memcg_kmem_cache_create_func(struct work_struct *w)
2569 {
2570 	struct memcg_kmem_cache_create_work *cw =
2571 		container_of(w, struct memcg_kmem_cache_create_work, work);
2572 	struct mem_cgroup *memcg = cw->memcg;
2573 	struct kmem_cache *cachep = cw->cachep;
2574 
2575 	memcg_create_kmem_cache(memcg, cachep);
2576 
2577 	css_put(&memcg->css);
2578 	kfree(cw);
2579 }
2580 
2581 /*
2582  * Enqueue the creation of a per-memcg kmem_cache.
2583  */
2584 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2585 					       struct kmem_cache *cachep)
2586 {
2587 	struct memcg_kmem_cache_create_work *cw;
2588 
2589 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2590 	if (!cw)
2591 		return;
2592 
2593 	css_get(&memcg->css);
2594 
2595 	cw->memcg = memcg;
2596 	cw->cachep = cachep;
2597 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2598 
2599 	queue_work(memcg_kmem_cache_wq, &cw->work);
2600 }
2601 
2602 static inline bool memcg_kmem_bypass(void)
2603 {
2604 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2605 		return true;
2606 	return false;
2607 }
2608 
2609 /**
2610  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2611  * @cachep: the original global kmem cache
2612  *
2613  * Return the kmem_cache we're supposed to use for a slab allocation.
2614  * We try to use the current memcg's version of the cache.
2615  *
2616  * If the cache does not exist yet, if we are the first user of it, we
2617  * create it asynchronously in a workqueue and let the current allocation
2618  * go through with the original cache.
2619  *
2620  * This function takes a reference to the cache it returns to assure it
2621  * won't get destroyed while we are working with it. Once the caller is
2622  * done with it, memcg_kmem_put_cache() must be called to release the
2623  * reference.
2624  */
2625 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2626 {
2627 	struct mem_cgroup *memcg;
2628 	struct kmem_cache *memcg_cachep;
2629 	int kmemcg_id;
2630 
2631 	VM_BUG_ON(!is_root_cache(cachep));
2632 
2633 	if (memcg_kmem_bypass())
2634 		return cachep;
2635 
2636 	memcg = get_mem_cgroup_from_current();
2637 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2638 	if (kmemcg_id < 0)
2639 		goto out;
2640 
2641 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2642 	if (likely(memcg_cachep))
2643 		return memcg_cachep;
2644 
2645 	/*
2646 	 * If we are in a safe context (can wait, and not in interrupt
2647 	 * context), we could be be predictable and return right away.
2648 	 * This would guarantee that the allocation being performed
2649 	 * already belongs in the new cache.
2650 	 *
2651 	 * However, there are some clashes that can arrive from locking.
2652 	 * For instance, because we acquire the slab_mutex while doing
2653 	 * memcg_create_kmem_cache, this means no further allocation
2654 	 * could happen with the slab_mutex held. So it's better to
2655 	 * defer everything.
2656 	 */
2657 	memcg_schedule_kmem_cache_create(memcg, cachep);
2658 out:
2659 	css_put(&memcg->css);
2660 	return cachep;
2661 }
2662 
2663 /**
2664  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2665  * @cachep: the cache returned by memcg_kmem_get_cache
2666  */
2667 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2668 {
2669 	if (!is_root_cache(cachep))
2670 		css_put(&cachep->memcg_params.memcg->css);
2671 }
2672 
2673 /**
2674  * __memcg_kmem_charge_memcg: charge a kmem page
2675  * @page: page to charge
2676  * @gfp: reclaim mode
2677  * @order: allocation order
2678  * @memcg: memory cgroup to charge
2679  *
2680  * Returns 0 on success, an error code on failure.
2681  */
2682 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2683 			    struct mem_cgroup *memcg)
2684 {
2685 	unsigned int nr_pages = 1 << order;
2686 	struct page_counter *counter;
2687 	int ret;
2688 
2689 	ret = try_charge(memcg, gfp, nr_pages);
2690 	if (ret)
2691 		return ret;
2692 
2693 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2694 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2695 		cancel_charge(memcg, nr_pages);
2696 		return -ENOMEM;
2697 	}
2698 
2699 	page->mem_cgroup = memcg;
2700 
2701 	return 0;
2702 }
2703 
2704 /**
2705  * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2706  * @page: page to charge
2707  * @gfp: reclaim mode
2708  * @order: allocation order
2709  *
2710  * Returns 0 on success, an error code on failure.
2711  */
2712 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2713 {
2714 	struct mem_cgroup *memcg;
2715 	int ret = 0;
2716 
2717 	if (memcg_kmem_bypass())
2718 		return 0;
2719 
2720 	memcg = get_mem_cgroup_from_current();
2721 	if (!mem_cgroup_is_root(memcg)) {
2722 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2723 		if (!ret)
2724 			__SetPageKmemcg(page);
2725 	}
2726 	css_put(&memcg->css);
2727 	return ret;
2728 }
2729 /**
2730  * __memcg_kmem_uncharge: uncharge a kmem page
2731  * @page: page to uncharge
2732  * @order: allocation order
2733  */
2734 void __memcg_kmem_uncharge(struct page *page, int order)
2735 {
2736 	struct mem_cgroup *memcg = page->mem_cgroup;
2737 	unsigned int nr_pages = 1 << order;
2738 
2739 	if (!memcg)
2740 		return;
2741 
2742 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2743 
2744 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2745 		page_counter_uncharge(&memcg->kmem, nr_pages);
2746 
2747 	page_counter_uncharge(&memcg->memory, nr_pages);
2748 	if (do_memsw_account())
2749 		page_counter_uncharge(&memcg->memsw, nr_pages);
2750 
2751 	page->mem_cgroup = NULL;
2752 
2753 	/* slab pages do not have PageKmemcg flag set */
2754 	if (PageKmemcg(page))
2755 		__ClearPageKmemcg(page);
2756 
2757 	css_put_many(&memcg->css, nr_pages);
2758 }
2759 #endif /* CONFIG_MEMCG_KMEM */
2760 
2761 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2762 
2763 /*
2764  * Because tail pages are not marked as "used", set it. We're under
2765  * pgdat->lru_lock and migration entries setup in all page mappings.
2766  */
2767 void mem_cgroup_split_huge_fixup(struct page *head)
2768 {
2769 	int i;
2770 
2771 	if (mem_cgroup_disabled())
2772 		return;
2773 
2774 	for (i = 1; i < HPAGE_PMD_NR; i++)
2775 		head[i].mem_cgroup = head->mem_cgroup;
2776 
2777 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2778 }
2779 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2780 
2781 #ifdef CONFIG_MEMCG_SWAP
2782 /**
2783  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2784  * @entry: swap entry to be moved
2785  * @from:  mem_cgroup which the entry is moved from
2786  * @to:  mem_cgroup which the entry is moved to
2787  *
2788  * It succeeds only when the swap_cgroup's record for this entry is the same
2789  * as the mem_cgroup's id of @from.
2790  *
2791  * Returns 0 on success, -EINVAL on failure.
2792  *
2793  * The caller must have charged to @to, IOW, called page_counter_charge() about
2794  * both res and memsw, and called css_get().
2795  */
2796 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2797 				struct mem_cgroup *from, struct mem_cgroup *to)
2798 {
2799 	unsigned short old_id, new_id;
2800 
2801 	old_id = mem_cgroup_id(from);
2802 	new_id = mem_cgroup_id(to);
2803 
2804 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2805 		mod_memcg_state(from, MEMCG_SWAP, -1);
2806 		mod_memcg_state(to, MEMCG_SWAP, 1);
2807 		return 0;
2808 	}
2809 	return -EINVAL;
2810 }
2811 #else
2812 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2813 				struct mem_cgroup *from, struct mem_cgroup *to)
2814 {
2815 	return -EINVAL;
2816 }
2817 #endif
2818 
2819 static DEFINE_MUTEX(memcg_max_mutex);
2820 
2821 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2822 				 unsigned long max, bool memsw)
2823 {
2824 	bool enlarge = false;
2825 	bool drained = false;
2826 	int ret;
2827 	bool limits_invariant;
2828 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2829 
2830 	do {
2831 		if (signal_pending(current)) {
2832 			ret = -EINTR;
2833 			break;
2834 		}
2835 
2836 		mutex_lock(&memcg_max_mutex);
2837 		/*
2838 		 * Make sure that the new limit (memsw or memory limit) doesn't
2839 		 * break our basic invariant rule memory.max <= memsw.max.
2840 		 */
2841 		limits_invariant = memsw ? max >= memcg->memory.max :
2842 					   max <= memcg->memsw.max;
2843 		if (!limits_invariant) {
2844 			mutex_unlock(&memcg_max_mutex);
2845 			ret = -EINVAL;
2846 			break;
2847 		}
2848 		if (max > counter->max)
2849 			enlarge = true;
2850 		ret = page_counter_set_max(counter, max);
2851 		mutex_unlock(&memcg_max_mutex);
2852 
2853 		if (!ret)
2854 			break;
2855 
2856 		if (!drained) {
2857 			drain_all_stock(memcg);
2858 			drained = true;
2859 			continue;
2860 		}
2861 
2862 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
2863 					GFP_KERNEL, !memsw)) {
2864 			ret = -EBUSY;
2865 			break;
2866 		}
2867 	} while (true);
2868 
2869 	if (!ret && enlarge)
2870 		memcg_oom_recover(memcg);
2871 
2872 	return ret;
2873 }
2874 
2875 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2876 					    gfp_t gfp_mask,
2877 					    unsigned long *total_scanned)
2878 {
2879 	unsigned long nr_reclaimed = 0;
2880 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2881 	unsigned long reclaimed;
2882 	int loop = 0;
2883 	struct mem_cgroup_tree_per_node *mctz;
2884 	unsigned long excess;
2885 	unsigned long nr_scanned;
2886 
2887 	if (order > 0)
2888 		return 0;
2889 
2890 	mctz = soft_limit_tree_node(pgdat->node_id);
2891 
2892 	/*
2893 	 * Do not even bother to check the largest node if the root
2894 	 * is empty. Do it lockless to prevent lock bouncing. Races
2895 	 * are acceptable as soft limit is best effort anyway.
2896 	 */
2897 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2898 		return 0;
2899 
2900 	/*
2901 	 * This loop can run a while, specially if mem_cgroup's continuously
2902 	 * keep exceeding their soft limit and putting the system under
2903 	 * pressure
2904 	 */
2905 	do {
2906 		if (next_mz)
2907 			mz = next_mz;
2908 		else
2909 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2910 		if (!mz)
2911 			break;
2912 
2913 		nr_scanned = 0;
2914 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2915 						    gfp_mask, &nr_scanned);
2916 		nr_reclaimed += reclaimed;
2917 		*total_scanned += nr_scanned;
2918 		spin_lock_irq(&mctz->lock);
2919 		__mem_cgroup_remove_exceeded(mz, mctz);
2920 
2921 		/*
2922 		 * If we failed to reclaim anything from this memory cgroup
2923 		 * it is time to move on to the next cgroup
2924 		 */
2925 		next_mz = NULL;
2926 		if (!reclaimed)
2927 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2928 
2929 		excess = soft_limit_excess(mz->memcg);
2930 		/*
2931 		 * One school of thought says that we should not add
2932 		 * back the node to the tree if reclaim returns 0.
2933 		 * But our reclaim could return 0, simply because due
2934 		 * to priority we are exposing a smaller subset of
2935 		 * memory to reclaim from. Consider this as a longer
2936 		 * term TODO.
2937 		 */
2938 		/* If excess == 0, no tree ops */
2939 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2940 		spin_unlock_irq(&mctz->lock);
2941 		css_put(&mz->memcg->css);
2942 		loop++;
2943 		/*
2944 		 * Could not reclaim anything and there are no more
2945 		 * mem cgroups to try or we seem to be looping without
2946 		 * reclaiming anything.
2947 		 */
2948 		if (!nr_reclaimed &&
2949 			(next_mz == NULL ||
2950 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2951 			break;
2952 	} while (!nr_reclaimed);
2953 	if (next_mz)
2954 		css_put(&next_mz->memcg->css);
2955 	return nr_reclaimed;
2956 }
2957 
2958 /*
2959  * Test whether @memcg has children, dead or alive.  Note that this
2960  * function doesn't care whether @memcg has use_hierarchy enabled and
2961  * returns %true if there are child csses according to the cgroup
2962  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2963  */
2964 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2965 {
2966 	bool ret;
2967 
2968 	rcu_read_lock();
2969 	ret = css_next_child(NULL, &memcg->css);
2970 	rcu_read_unlock();
2971 	return ret;
2972 }
2973 
2974 /*
2975  * Reclaims as many pages from the given memcg as possible.
2976  *
2977  * Caller is responsible for holding css reference for memcg.
2978  */
2979 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2980 {
2981 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2982 
2983 	/* we call try-to-free pages for make this cgroup empty */
2984 	lru_add_drain_all();
2985 
2986 	drain_all_stock(memcg);
2987 
2988 	/* try to free all pages in this cgroup */
2989 	while (nr_retries && page_counter_read(&memcg->memory)) {
2990 		int progress;
2991 
2992 		if (signal_pending(current))
2993 			return -EINTR;
2994 
2995 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2996 							GFP_KERNEL, true);
2997 		if (!progress) {
2998 			nr_retries--;
2999 			/* maybe some writeback is necessary */
3000 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3001 		}
3002 
3003 	}
3004 
3005 	return 0;
3006 }
3007 
3008 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3009 					    char *buf, size_t nbytes,
3010 					    loff_t off)
3011 {
3012 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3013 
3014 	if (mem_cgroup_is_root(memcg))
3015 		return -EINVAL;
3016 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3017 }
3018 
3019 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3020 				     struct cftype *cft)
3021 {
3022 	return mem_cgroup_from_css(css)->use_hierarchy;
3023 }
3024 
3025 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3026 				      struct cftype *cft, u64 val)
3027 {
3028 	int retval = 0;
3029 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3030 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3031 
3032 	if (memcg->use_hierarchy == val)
3033 		return 0;
3034 
3035 	/*
3036 	 * If parent's use_hierarchy is set, we can't make any modifications
3037 	 * in the child subtrees. If it is unset, then the change can
3038 	 * occur, provided the current cgroup has no children.
3039 	 *
3040 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3041 	 * set if there are no children.
3042 	 */
3043 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3044 				(val == 1 || val == 0)) {
3045 		if (!memcg_has_children(memcg))
3046 			memcg->use_hierarchy = val;
3047 		else
3048 			retval = -EBUSY;
3049 	} else
3050 		retval = -EINVAL;
3051 
3052 	return retval;
3053 }
3054 
3055 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3056 {
3057 	unsigned long val;
3058 
3059 	if (mem_cgroup_is_root(memcg)) {
3060 		val = memcg_page_state(memcg, MEMCG_CACHE) +
3061 			memcg_page_state(memcg, MEMCG_RSS);
3062 		if (swap)
3063 			val += memcg_page_state(memcg, MEMCG_SWAP);
3064 	} else {
3065 		if (!swap)
3066 			val = page_counter_read(&memcg->memory);
3067 		else
3068 			val = page_counter_read(&memcg->memsw);
3069 	}
3070 	return val;
3071 }
3072 
3073 enum {
3074 	RES_USAGE,
3075 	RES_LIMIT,
3076 	RES_MAX_USAGE,
3077 	RES_FAILCNT,
3078 	RES_SOFT_LIMIT,
3079 };
3080 
3081 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3082 			       struct cftype *cft)
3083 {
3084 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3085 	struct page_counter *counter;
3086 
3087 	switch (MEMFILE_TYPE(cft->private)) {
3088 	case _MEM:
3089 		counter = &memcg->memory;
3090 		break;
3091 	case _MEMSWAP:
3092 		counter = &memcg->memsw;
3093 		break;
3094 	case _KMEM:
3095 		counter = &memcg->kmem;
3096 		break;
3097 	case _TCP:
3098 		counter = &memcg->tcpmem;
3099 		break;
3100 	default:
3101 		BUG();
3102 	}
3103 
3104 	switch (MEMFILE_ATTR(cft->private)) {
3105 	case RES_USAGE:
3106 		if (counter == &memcg->memory)
3107 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3108 		if (counter == &memcg->memsw)
3109 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3110 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3111 	case RES_LIMIT:
3112 		return (u64)counter->max * PAGE_SIZE;
3113 	case RES_MAX_USAGE:
3114 		return (u64)counter->watermark * PAGE_SIZE;
3115 	case RES_FAILCNT:
3116 		return counter->failcnt;
3117 	case RES_SOFT_LIMIT:
3118 		return (u64)memcg->soft_limit * PAGE_SIZE;
3119 	default:
3120 		BUG();
3121 	}
3122 }
3123 
3124 #ifdef CONFIG_MEMCG_KMEM
3125 static int memcg_online_kmem(struct mem_cgroup *memcg)
3126 {
3127 	int memcg_id;
3128 
3129 	if (cgroup_memory_nokmem)
3130 		return 0;
3131 
3132 	BUG_ON(memcg->kmemcg_id >= 0);
3133 	BUG_ON(memcg->kmem_state);
3134 
3135 	memcg_id = memcg_alloc_cache_id();
3136 	if (memcg_id < 0)
3137 		return memcg_id;
3138 
3139 	static_branch_inc(&memcg_kmem_enabled_key);
3140 	/*
3141 	 * A memory cgroup is considered kmem-online as soon as it gets
3142 	 * kmemcg_id. Setting the id after enabling static branching will
3143 	 * guarantee no one starts accounting before all call sites are
3144 	 * patched.
3145 	 */
3146 	memcg->kmemcg_id = memcg_id;
3147 	memcg->kmem_state = KMEM_ONLINE;
3148 	INIT_LIST_HEAD(&memcg->kmem_caches);
3149 
3150 	return 0;
3151 }
3152 
3153 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3154 {
3155 	struct cgroup_subsys_state *css;
3156 	struct mem_cgroup *parent, *child;
3157 	int kmemcg_id;
3158 
3159 	if (memcg->kmem_state != KMEM_ONLINE)
3160 		return;
3161 	/*
3162 	 * Clear the online state before clearing memcg_caches array
3163 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3164 	 * guarantees that no cache will be created for this cgroup
3165 	 * after we are done (see memcg_create_kmem_cache()).
3166 	 */
3167 	memcg->kmem_state = KMEM_ALLOCATED;
3168 
3169 	memcg_deactivate_kmem_caches(memcg);
3170 
3171 	kmemcg_id = memcg->kmemcg_id;
3172 	BUG_ON(kmemcg_id < 0);
3173 
3174 	parent = parent_mem_cgroup(memcg);
3175 	if (!parent)
3176 		parent = root_mem_cgroup;
3177 
3178 	/*
3179 	 * Change kmemcg_id of this cgroup and all its descendants to the
3180 	 * parent's id, and then move all entries from this cgroup's list_lrus
3181 	 * to ones of the parent. After we have finished, all list_lrus
3182 	 * corresponding to this cgroup are guaranteed to remain empty. The
3183 	 * ordering is imposed by list_lru_node->lock taken by
3184 	 * memcg_drain_all_list_lrus().
3185 	 */
3186 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3187 	css_for_each_descendant_pre(css, &memcg->css) {
3188 		child = mem_cgroup_from_css(css);
3189 		BUG_ON(child->kmemcg_id != kmemcg_id);
3190 		child->kmemcg_id = parent->kmemcg_id;
3191 		if (!memcg->use_hierarchy)
3192 			break;
3193 	}
3194 	rcu_read_unlock();
3195 
3196 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3197 
3198 	memcg_free_cache_id(kmemcg_id);
3199 }
3200 
3201 static void memcg_free_kmem(struct mem_cgroup *memcg)
3202 {
3203 	/* css_alloc() failed, offlining didn't happen */
3204 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3205 		memcg_offline_kmem(memcg);
3206 
3207 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3208 		memcg_destroy_kmem_caches(memcg);
3209 		static_branch_dec(&memcg_kmem_enabled_key);
3210 		WARN_ON(page_counter_read(&memcg->kmem));
3211 	}
3212 }
3213 #else
3214 static int memcg_online_kmem(struct mem_cgroup *memcg)
3215 {
3216 	return 0;
3217 }
3218 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3219 {
3220 }
3221 static void memcg_free_kmem(struct mem_cgroup *memcg)
3222 {
3223 }
3224 #endif /* CONFIG_MEMCG_KMEM */
3225 
3226 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3227 				 unsigned long max)
3228 {
3229 	int ret;
3230 
3231 	mutex_lock(&memcg_max_mutex);
3232 	ret = page_counter_set_max(&memcg->kmem, max);
3233 	mutex_unlock(&memcg_max_mutex);
3234 	return ret;
3235 }
3236 
3237 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3238 {
3239 	int ret;
3240 
3241 	mutex_lock(&memcg_max_mutex);
3242 
3243 	ret = page_counter_set_max(&memcg->tcpmem, max);
3244 	if (ret)
3245 		goto out;
3246 
3247 	if (!memcg->tcpmem_active) {
3248 		/*
3249 		 * The active flag needs to be written after the static_key
3250 		 * update. This is what guarantees that the socket activation
3251 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3252 		 * for details, and note that we don't mark any socket as
3253 		 * belonging to this memcg until that flag is up.
3254 		 *
3255 		 * We need to do this, because static_keys will span multiple
3256 		 * sites, but we can't control their order. If we mark a socket
3257 		 * as accounted, but the accounting functions are not patched in
3258 		 * yet, we'll lose accounting.
3259 		 *
3260 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3261 		 * because when this value change, the code to process it is not
3262 		 * patched in yet.
3263 		 */
3264 		static_branch_inc(&memcg_sockets_enabled_key);
3265 		memcg->tcpmem_active = true;
3266 	}
3267 out:
3268 	mutex_unlock(&memcg_max_mutex);
3269 	return ret;
3270 }
3271 
3272 /*
3273  * The user of this function is...
3274  * RES_LIMIT.
3275  */
3276 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3277 				char *buf, size_t nbytes, loff_t off)
3278 {
3279 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3280 	unsigned long nr_pages;
3281 	int ret;
3282 
3283 	buf = strstrip(buf);
3284 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3285 	if (ret)
3286 		return ret;
3287 
3288 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3289 	case RES_LIMIT:
3290 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3291 			ret = -EINVAL;
3292 			break;
3293 		}
3294 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3295 		case _MEM:
3296 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3297 			break;
3298 		case _MEMSWAP:
3299 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3300 			break;
3301 		case _KMEM:
3302 			ret = memcg_update_kmem_max(memcg, nr_pages);
3303 			break;
3304 		case _TCP:
3305 			ret = memcg_update_tcp_max(memcg, nr_pages);
3306 			break;
3307 		}
3308 		break;
3309 	case RES_SOFT_LIMIT:
3310 		memcg->soft_limit = nr_pages;
3311 		ret = 0;
3312 		break;
3313 	}
3314 	return ret ?: nbytes;
3315 }
3316 
3317 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3318 				size_t nbytes, loff_t off)
3319 {
3320 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3321 	struct page_counter *counter;
3322 
3323 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3324 	case _MEM:
3325 		counter = &memcg->memory;
3326 		break;
3327 	case _MEMSWAP:
3328 		counter = &memcg->memsw;
3329 		break;
3330 	case _KMEM:
3331 		counter = &memcg->kmem;
3332 		break;
3333 	case _TCP:
3334 		counter = &memcg->tcpmem;
3335 		break;
3336 	default:
3337 		BUG();
3338 	}
3339 
3340 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3341 	case RES_MAX_USAGE:
3342 		page_counter_reset_watermark(counter);
3343 		break;
3344 	case RES_FAILCNT:
3345 		counter->failcnt = 0;
3346 		break;
3347 	default:
3348 		BUG();
3349 	}
3350 
3351 	return nbytes;
3352 }
3353 
3354 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3355 					struct cftype *cft)
3356 {
3357 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3358 }
3359 
3360 #ifdef CONFIG_MMU
3361 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3362 					struct cftype *cft, u64 val)
3363 {
3364 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3365 
3366 	if (val & ~MOVE_MASK)
3367 		return -EINVAL;
3368 
3369 	/*
3370 	 * No kind of locking is needed in here, because ->can_attach() will
3371 	 * check this value once in the beginning of the process, and then carry
3372 	 * on with stale data. This means that changes to this value will only
3373 	 * affect task migrations starting after the change.
3374 	 */
3375 	memcg->move_charge_at_immigrate = val;
3376 	return 0;
3377 }
3378 #else
3379 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3380 					struct cftype *cft, u64 val)
3381 {
3382 	return -ENOSYS;
3383 }
3384 #endif
3385 
3386 #ifdef CONFIG_NUMA
3387 
3388 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3389 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3390 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3391 
3392 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3393 					   int nid, unsigned int lru_mask)
3394 {
3395 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3396 	unsigned long nr = 0;
3397 	enum lru_list lru;
3398 
3399 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3400 
3401 	for_each_lru(lru) {
3402 		if (!(BIT(lru) & lru_mask))
3403 			continue;
3404 		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3405 	}
3406 	return nr;
3407 }
3408 
3409 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3410 					     unsigned int lru_mask)
3411 {
3412 	unsigned long nr = 0;
3413 	enum lru_list lru;
3414 
3415 	for_each_lru(lru) {
3416 		if (!(BIT(lru) & lru_mask))
3417 			continue;
3418 		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3419 	}
3420 	return nr;
3421 }
3422 
3423 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3424 {
3425 	struct numa_stat {
3426 		const char *name;
3427 		unsigned int lru_mask;
3428 	};
3429 
3430 	static const struct numa_stat stats[] = {
3431 		{ "total", LRU_ALL },
3432 		{ "file", LRU_ALL_FILE },
3433 		{ "anon", LRU_ALL_ANON },
3434 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3435 	};
3436 	const struct numa_stat *stat;
3437 	int nid;
3438 	unsigned long nr;
3439 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3440 
3441 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3442 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3443 		seq_printf(m, "%s=%lu", stat->name, nr);
3444 		for_each_node_state(nid, N_MEMORY) {
3445 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3446 							  stat->lru_mask);
3447 			seq_printf(m, " N%d=%lu", nid, nr);
3448 		}
3449 		seq_putc(m, '\n');
3450 	}
3451 
3452 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3453 		struct mem_cgroup *iter;
3454 
3455 		nr = 0;
3456 		for_each_mem_cgroup_tree(iter, memcg)
3457 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3458 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3459 		for_each_node_state(nid, N_MEMORY) {
3460 			nr = 0;
3461 			for_each_mem_cgroup_tree(iter, memcg)
3462 				nr += mem_cgroup_node_nr_lru_pages(
3463 					iter, nid, stat->lru_mask);
3464 			seq_printf(m, " N%d=%lu", nid, nr);
3465 		}
3466 		seq_putc(m, '\n');
3467 	}
3468 
3469 	return 0;
3470 }
3471 #endif /* CONFIG_NUMA */
3472 
3473 /* Universal VM events cgroup1 shows, original sort order */
3474 static const unsigned int memcg1_events[] = {
3475 	PGPGIN,
3476 	PGPGOUT,
3477 	PGFAULT,
3478 	PGMAJFAULT,
3479 };
3480 
3481 static const char *const memcg1_event_names[] = {
3482 	"pgpgin",
3483 	"pgpgout",
3484 	"pgfault",
3485 	"pgmajfault",
3486 };
3487 
3488 static int memcg_stat_show(struct seq_file *m, void *v)
3489 {
3490 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3491 	unsigned long memory, memsw;
3492 	struct mem_cgroup *mi;
3493 	unsigned int i;
3494 
3495 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3496 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3497 
3498 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3499 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3500 			continue;
3501 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3502 			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3503 			   PAGE_SIZE);
3504 	}
3505 
3506 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3507 		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3508 			   memcg_events_local(memcg, memcg1_events[i]));
3509 
3510 	for (i = 0; i < NR_LRU_LISTS; i++)
3511 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3512 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3513 			   PAGE_SIZE);
3514 
3515 	/* Hierarchical information */
3516 	memory = memsw = PAGE_COUNTER_MAX;
3517 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3518 		memory = min(memory, mi->memory.max);
3519 		memsw = min(memsw, mi->memsw.max);
3520 	}
3521 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3522 		   (u64)memory * PAGE_SIZE);
3523 	if (do_memsw_account())
3524 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3525 			   (u64)memsw * PAGE_SIZE);
3526 
3527 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3528 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3529 			continue;
3530 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3531 			   (u64)memcg_page_state(memcg, i) * PAGE_SIZE);
3532 	}
3533 
3534 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3535 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3536 			   (u64)memcg_events(memcg, i));
3537 
3538 	for (i = 0; i < NR_LRU_LISTS; i++)
3539 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3540 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3541 			   PAGE_SIZE);
3542 
3543 #ifdef CONFIG_DEBUG_VM
3544 	{
3545 		pg_data_t *pgdat;
3546 		struct mem_cgroup_per_node *mz;
3547 		struct zone_reclaim_stat *rstat;
3548 		unsigned long recent_rotated[2] = {0, 0};
3549 		unsigned long recent_scanned[2] = {0, 0};
3550 
3551 		for_each_online_pgdat(pgdat) {
3552 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3553 			rstat = &mz->lruvec.reclaim_stat;
3554 
3555 			recent_rotated[0] += rstat->recent_rotated[0];
3556 			recent_rotated[1] += rstat->recent_rotated[1];
3557 			recent_scanned[0] += rstat->recent_scanned[0];
3558 			recent_scanned[1] += rstat->recent_scanned[1];
3559 		}
3560 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3561 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3562 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3563 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3564 	}
3565 #endif
3566 
3567 	return 0;
3568 }
3569 
3570 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3571 				      struct cftype *cft)
3572 {
3573 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3574 
3575 	return mem_cgroup_swappiness(memcg);
3576 }
3577 
3578 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3579 				       struct cftype *cft, u64 val)
3580 {
3581 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3582 
3583 	if (val > 100)
3584 		return -EINVAL;
3585 
3586 	if (css->parent)
3587 		memcg->swappiness = val;
3588 	else
3589 		vm_swappiness = val;
3590 
3591 	return 0;
3592 }
3593 
3594 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3595 {
3596 	struct mem_cgroup_threshold_ary *t;
3597 	unsigned long usage;
3598 	int i;
3599 
3600 	rcu_read_lock();
3601 	if (!swap)
3602 		t = rcu_dereference(memcg->thresholds.primary);
3603 	else
3604 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3605 
3606 	if (!t)
3607 		goto unlock;
3608 
3609 	usage = mem_cgroup_usage(memcg, swap);
3610 
3611 	/*
3612 	 * current_threshold points to threshold just below or equal to usage.
3613 	 * If it's not true, a threshold was crossed after last
3614 	 * call of __mem_cgroup_threshold().
3615 	 */
3616 	i = t->current_threshold;
3617 
3618 	/*
3619 	 * Iterate backward over array of thresholds starting from
3620 	 * current_threshold and check if a threshold is crossed.
3621 	 * If none of thresholds below usage is crossed, we read
3622 	 * only one element of the array here.
3623 	 */
3624 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3625 		eventfd_signal(t->entries[i].eventfd, 1);
3626 
3627 	/* i = current_threshold + 1 */
3628 	i++;
3629 
3630 	/*
3631 	 * Iterate forward over array of thresholds starting from
3632 	 * current_threshold+1 and check if a threshold is crossed.
3633 	 * If none of thresholds above usage is crossed, we read
3634 	 * only one element of the array here.
3635 	 */
3636 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3637 		eventfd_signal(t->entries[i].eventfd, 1);
3638 
3639 	/* Update current_threshold */
3640 	t->current_threshold = i - 1;
3641 unlock:
3642 	rcu_read_unlock();
3643 }
3644 
3645 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3646 {
3647 	while (memcg) {
3648 		__mem_cgroup_threshold(memcg, false);
3649 		if (do_memsw_account())
3650 			__mem_cgroup_threshold(memcg, true);
3651 
3652 		memcg = parent_mem_cgroup(memcg);
3653 	}
3654 }
3655 
3656 static int compare_thresholds(const void *a, const void *b)
3657 {
3658 	const struct mem_cgroup_threshold *_a = a;
3659 	const struct mem_cgroup_threshold *_b = b;
3660 
3661 	if (_a->threshold > _b->threshold)
3662 		return 1;
3663 
3664 	if (_a->threshold < _b->threshold)
3665 		return -1;
3666 
3667 	return 0;
3668 }
3669 
3670 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3671 {
3672 	struct mem_cgroup_eventfd_list *ev;
3673 
3674 	spin_lock(&memcg_oom_lock);
3675 
3676 	list_for_each_entry(ev, &memcg->oom_notify, list)
3677 		eventfd_signal(ev->eventfd, 1);
3678 
3679 	spin_unlock(&memcg_oom_lock);
3680 	return 0;
3681 }
3682 
3683 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3684 {
3685 	struct mem_cgroup *iter;
3686 
3687 	for_each_mem_cgroup_tree(iter, memcg)
3688 		mem_cgroup_oom_notify_cb(iter);
3689 }
3690 
3691 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3692 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3693 {
3694 	struct mem_cgroup_thresholds *thresholds;
3695 	struct mem_cgroup_threshold_ary *new;
3696 	unsigned long threshold;
3697 	unsigned long usage;
3698 	int i, size, ret;
3699 
3700 	ret = page_counter_memparse(args, "-1", &threshold);
3701 	if (ret)
3702 		return ret;
3703 
3704 	mutex_lock(&memcg->thresholds_lock);
3705 
3706 	if (type == _MEM) {
3707 		thresholds = &memcg->thresholds;
3708 		usage = mem_cgroup_usage(memcg, false);
3709 	} else if (type == _MEMSWAP) {
3710 		thresholds = &memcg->memsw_thresholds;
3711 		usage = mem_cgroup_usage(memcg, true);
3712 	} else
3713 		BUG();
3714 
3715 	/* Check if a threshold crossed before adding a new one */
3716 	if (thresholds->primary)
3717 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3718 
3719 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3720 
3721 	/* Allocate memory for new array of thresholds */
3722 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3723 	if (!new) {
3724 		ret = -ENOMEM;
3725 		goto unlock;
3726 	}
3727 	new->size = size;
3728 
3729 	/* Copy thresholds (if any) to new array */
3730 	if (thresholds->primary) {
3731 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3732 				sizeof(struct mem_cgroup_threshold));
3733 	}
3734 
3735 	/* Add new threshold */
3736 	new->entries[size - 1].eventfd = eventfd;
3737 	new->entries[size - 1].threshold = threshold;
3738 
3739 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3740 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3741 			compare_thresholds, NULL);
3742 
3743 	/* Find current threshold */
3744 	new->current_threshold = -1;
3745 	for (i = 0; i < size; i++) {
3746 		if (new->entries[i].threshold <= usage) {
3747 			/*
3748 			 * new->current_threshold will not be used until
3749 			 * rcu_assign_pointer(), so it's safe to increment
3750 			 * it here.
3751 			 */
3752 			++new->current_threshold;
3753 		} else
3754 			break;
3755 	}
3756 
3757 	/* Free old spare buffer and save old primary buffer as spare */
3758 	kfree(thresholds->spare);
3759 	thresholds->spare = thresholds->primary;
3760 
3761 	rcu_assign_pointer(thresholds->primary, new);
3762 
3763 	/* To be sure that nobody uses thresholds */
3764 	synchronize_rcu();
3765 
3766 unlock:
3767 	mutex_unlock(&memcg->thresholds_lock);
3768 
3769 	return ret;
3770 }
3771 
3772 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3773 	struct eventfd_ctx *eventfd, const char *args)
3774 {
3775 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3776 }
3777 
3778 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3779 	struct eventfd_ctx *eventfd, const char *args)
3780 {
3781 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3782 }
3783 
3784 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3785 	struct eventfd_ctx *eventfd, enum res_type type)
3786 {
3787 	struct mem_cgroup_thresholds *thresholds;
3788 	struct mem_cgroup_threshold_ary *new;
3789 	unsigned long usage;
3790 	int i, j, size;
3791 
3792 	mutex_lock(&memcg->thresholds_lock);
3793 
3794 	if (type == _MEM) {
3795 		thresholds = &memcg->thresholds;
3796 		usage = mem_cgroup_usage(memcg, false);
3797 	} else if (type == _MEMSWAP) {
3798 		thresholds = &memcg->memsw_thresholds;
3799 		usage = mem_cgroup_usage(memcg, true);
3800 	} else
3801 		BUG();
3802 
3803 	if (!thresholds->primary)
3804 		goto unlock;
3805 
3806 	/* Check if a threshold crossed before removing */
3807 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3808 
3809 	/* Calculate new number of threshold */
3810 	size = 0;
3811 	for (i = 0; i < thresholds->primary->size; i++) {
3812 		if (thresholds->primary->entries[i].eventfd != eventfd)
3813 			size++;
3814 	}
3815 
3816 	new = thresholds->spare;
3817 
3818 	/* Set thresholds array to NULL if we don't have thresholds */
3819 	if (!size) {
3820 		kfree(new);
3821 		new = NULL;
3822 		goto swap_buffers;
3823 	}
3824 
3825 	new->size = size;
3826 
3827 	/* Copy thresholds and find current threshold */
3828 	new->current_threshold = -1;
3829 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3830 		if (thresholds->primary->entries[i].eventfd == eventfd)
3831 			continue;
3832 
3833 		new->entries[j] = thresholds->primary->entries[i];
3834 		if (new->entries[j].threshold <= usage) {
3835 			/*
3836 			 * new->current_threshold will not be used
3837 			 * until rcu_assign_pointer(), so it's safe to increment
3838 			 * it here.
3839 			 */
3840 			++new->current_threshold;
3841 		}
3842 		j++;
3843 	}
3844 
3845 swap_buffers:
3846 	/* Swap primary and spare array */
3847 	thresholds->spare = thresholds->primary;
3848 
3849 	rcu_assign_pointer(thresholds->primary, new);
3850 
3851 	/* To be sure that nobody uses thresholds */
3852 	synchronize_rcu();
3853 
3854 	/* If all events are unregistered, free the spare array */
3855 	if (!new) {
3856 		kfree(thresholds->spare);
3857 		thresholds->spare = NULL;
3858 	}
3859 unlock:
3860 	mutex_unlock(&memcg->thresholds_lock);
3861 }
3862 
3863 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3864 	struct eventfd_ctx *eventfd)
3865 {
3866 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3867 }
3868 
3869 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3870 	struct eventfd_ctx *eventfd)
3871 {
3872 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3873 }
3874 
3875 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3876 	struct eventfd_ctx *eventfd, const char *args)
3877 {
3878 	struct mem_cgroup_eventfd_list *event;
3879 
3880 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3881 	if (!event)
3882 		return -ENOMEM;
3883 
3884 	spin_lock(&memcg_oom_lock);
3885 
3886 	event->eventfd = eventfd;
3887 	list_add(&event->list, &memcg->oom_notify);
3888 
3889 	/* already in OOM ? */
3890 	if (memcg->under_oom)
3891 		eventfd_signal(eventfd, 1);
3892 	spin_unlock(&memcg_oom_lock);
3893 
3894 	return 0;
3895 }
3896 
3897 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3898 	struct eventfd_ctx *eventfd)
3899 {
3900 	struct mem_cgroup_eventfd_list *ev, *tmp;
3901 
3902 	spin_lock(&memcg_oom_lock);
3903 
3904 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3905 		if (ev->eventfd == eventfd) {
3906 			list_del(&ev->list);
3907 			kfree(ev);
3908 		}
3909 	}
3910 
3911 	spin_unlock(&memcg_oom_lock);
3912 }
3913 
3914 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3915 {
3916 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3917 
3918 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3919 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3920 	seq_printf(sf, "oom_kill %lu\n",
3921 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3922 	return 0;
3923 }
3924 
3925 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3926 	struct cftype *cft, u64 val)
3927 {
3928 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3929 
3930 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3931 	if (!css->parent || !((val == 0) || (val == 1)))
3932 		return -EINVAL;
3933 
3934 	memcg->oom_kill_disable = val;
3935 	if (!val)
3936 		memcg_oom_recover(memcg);
3937 
3938 	return 0;
3939 }
3940 
3941 #ifdef CONFIG_CGROUP_WRITEBACK
3942 
3943 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3944 {
3945 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3946 }
3947 
3948 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3949 {
3950 	wb_domain_exit(&memcg->cgwb_domain);
3951 }
3952 
3953 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3954 {
3955 	wb_domain_size_changed(&memcg->cgwb_domain);
3956 }
3957 
3958 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3959 {
3960 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3961 
3962 	if (!memcg->css.parent)
3963 		return NULL;
3964 
3965 	return &memcg->cgwb_domain;
3966 }
3967 
3968 /*
3969  * idx can be of type enum memcg_stat_item or node_stat_item.
3970  * Keep in sync with memcg_exact_page().
3971  */
3972 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
3973 {
3974 	long x = atomic_long_read(&memcg->vmstats[idx]);
3975 	int cpu;
3976 
3977 	for_each_online_cpu(cpu)
3978 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
3979 	if (x < 0)
3980 		x = 0;
3981 	return x;
3982 }
3983 
3984 /**
3985  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3986  * @wb: bdi_writeback in question
3987  * @pfilepages: out parameter for number of file pages
3988  * @pheadroom: out parameter for number of allocatable pages according to memcg
3989  * @pdirty: out parameter for number of dirty pages
3990  * @pwriteback: out parameter for number of pages under writeback
3991  *
3992  * Determine the numbers of file, headroom, dirty, and writeback pages in
3993  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3994  * is a bit more involved.
3995  *
3996  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3997  * headroom is calculated as the lowest headroom of itself and the
3998  * ancestors.  Note that this doesn't consider the actual amount of
3999  * available memory in the system.  The caller should further cap
4000  * *@pheadroom accordingly.
4001  */
4002 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4003 			 unsigned long *pheadroom, unsigned long *pdirty,
4004 			 unsigned long *pwriteback)
4005 {
4006 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4007 	struct mem_cgroup *parent;
4008 
4009 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4010 
4011 	/* this should eventually include NR_UNSTABLE_NFS */
4012 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4013 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4014 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4015 	*pheadroom = PAGE_COUNTER_MAX;
4016 
4017 	while ((parent = parent_mem_cgroup(memcg))) {
4018 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4019 		unsigned long used = page_counter_read(&memcg->memory);
4020 
4021 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4022 		memcg = parent;
4023 	}
4024 }
4025 
4026 #else	/* CONFIG_CGROUP_WRITEBACK */
4027 
4028 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4029 {
4030 	return 0;
4031 }
4032 
4033 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4034 {
4035 }
4036 
4037 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4038 {
4039 }
4040 
4041 #endif	/* CONFIG_CGROUP_WRITEBACK */
4042 
4043 /*
4044  * DO NOT USE IN NEW FILES.
4045  *
4046  * "cgroup.event_control" implementation.
4047  *
4048  * This is way over-engineered.  It tries to support fully configurable
4049  * events for each user.  Such level of flexibility is completely
4050  * unnecessary especially in the light of the planned unified hierarchy.
4051  *
4052  * Please deprecate this and replace with something simpler if at all
4053  * possible.
4054  */
4055 
4056 /*
4057  * Unregister event and free resources.
4058  *
4059  * Gets called from workqueue.
4060  */
4061 static void memcg_event_remove(struct work_struct *work)
4062 {
4063 	struct mem_cgroup_event *event =
4064 		container_of(work, struct mem_cgroup_event, remove);
4065 	struct mem_cgroup *memcg = event->memcg;
4066 
4067 	remove_wait_queue(event->wqh, &event->wait);
4068 
4069 	event->unregister_event(memcg, event->eventfd);
4070 
4071 	/* Notify userspace the event is going away. */
4072 	eventfd_signal(event->eventfd, 1);
4073 
4074 	eventfd_ctx_put(event->eventfd);
4075 	kfree(event);
4076 	css_put(&memcg->css);
4077 }
4078 
4079 /*
4080  * Gets called on EPOLLHUP on eventfd when user closes it.
4081  *
4082  * Called with wqh->lock held and interrupts disabled.
4083  */
4084 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4085 			    int sync, void *key)
4086 {
4087 	struct mem_cgroup_event *event =
4088 		container_of(wait, struct mem_cgroup_event, wait);
4089 	struct mem_cgroup *memcg = event->memcg;
4090 	__poll_t flags = key_to_poll(key);
4091 
4092 	if (flags & EPOLLHUP) {
4093 		/*
4094 		 * If the event has been detached at cgroup removal, we
4095 		 * can simply return knowing the other side will cleanup
4096 		 * for us.
4097 		 *
4098 		 * We can't race against event freeing since the other
4099 		 * side will require wqh->lock via remove_wait_queue(),
4100 		 * which we hold.
4101 		 */
4102 		spin_lock(&memcg->event_list_lock);
4103 		if (!list_empty(&event->list)) {
4104 			list_del_init(&event->list);
4105 			/*
4106 			 * We are in atomic context, but cgroup_event_remove()
4107 			 * may sleep, so we have to call it in workqueue.
4108 			 */
4109 			schedule_work(&event->remove);
4110 		}
4111 		spin_unlock(&memcg->event_list_lock);
4112 	}
4113 
4114 	return 0;
4115 }
4116 
4117 static void memcg_event_ptable_queue_proc(struct file *file,
4118 		wait_queue_head_t *wqh, poll_table *pt)
4119 {
4120 	struct mem_cgroup_event *event =
4121 		container_of(pt, struct mem_cgroup_event, pt);
4122 
4123 	event->wqh = wqh;
4124 	add_wait_queue(wqh, &event->wait);
4125 }
4126 
4127 /*
4128  * DO NOT USE IN NEW FILES.
4129  *
4130  * Parse input and register new cgroup event handler.
4131  *
4132  * Input must be in format '<event_fd> <control_fd> <args>'.
4133  * Interpretation of args is defined by control file implementation.
4134  */
4135 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4136 					 char *buf, size_t nbytes, loff_t off)
4137 {
4138 	struct cgroup_subsys_state *css = of_css(of);
4139 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4140 	struct mem_cgroup_event *event;
4141 	struct cgroup_subsys_state *cfile_css;
4142 	unsigned int efd, cfd;
4143 	struct fd efile;
4144 	struct fd cfile;
4145 	const char *name;
4146 	char *endp;
4147 	int ret;
4148 
4149 	buf = strstrip(buf);
4150 
4151 	efd = simple_strtoul(buf, &endp, 10);
4152 	if (*endp != ' ')
4153 		return -EINVAL;
4154 	buf = endp + 1;
4155 
4156 	cfd = simple_strtoul(buf, &endp, 10);
4157 	if ((*endp != ' ') && (*endp != '\0'))
4158 		return -EINVAL;
4159 	buf = endp + 1;
4160 
4161 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4162 	if (!event)
4163 		return -ENOMEM;
4164 
4165 	event->memcg = memcg;
4166 	INIT_LIST_HEAD(&event->list);
4167 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4168 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4169 	INIT_WORK(&event->remove, memcg_event_remove);
4170 
4171 	efile = fdget(efd);
4172 	if (!efile.file) {
4173 		ret = -EBADF;
4174 		goto out_kfree;
4175 	}
4176 
4177 	event->eventfd = eventfd_ctx_fileget(efile.file);
4178 	if (IS_ERR(event->eventfd)) {
4179 		ret = PTR_ERR(event->eventfd);
4180 		goto out_put_efile;
4181 	}
4182 
4183 	cfile = fdget(cfd);
4184 	if (!cfile.file) {
4185 		ret = -EBADF;
4186 		goto out_put_eventfd;
4187 	}
4188 
4189 	/* the process need read permission on control file */
4190 	/* AV: shouldn't we check that it's been opened for read instead? */
4191 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4192 	if (ret < 0)
4193 		goto out_put_cfile;
4194 
4195 	/*
4196 	 * Determine the event callbacks and set them in @event.  This used
4197 	 * to be done via struct cftype but cgroup core no longer knows
4198 	 * about these events.  The following is crude but the whole thing
4199 	 * is for compatibility anyway.
4200 	 *
4201 	 * DO NOT ADD NEW FILES.
4202 	 */
4203 	name = cfile.file->f_path.dentry->d_name.name;
4204 
4205 	if (!strcmp(name, "memory.usage_in_bytes")) {
4206 		event->register_event = mem_cgroup_usage_register_event;
4207 		event->unregister_event = mem_cgroup_usage_unregister_event;
4208 	} else if (!strcmp(name, "memory.oom_control")) {
4209 		event->register_event = mem_cgroup_oom_register_event;
4210 		event->unregister_event = mem_cgroup_oom_unregister_event;
4211 	} else if (!strcmp(name, "memory.pressure_level")) {
4212 		event->register_event = vmpressure_register_event;
4213 		event->unregister_event = vmpressure_unregister_event;
4214 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4215 		event->register_event = memsw_cgroup_usage_register_event;
4216 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4217 	} else {
4218 		ret = -EINVAL;
4219 		goto out_put_cfile;
4220 	}
4221 
4222 	/*
4223 	 * Verify @cfile should belong to @css.  Also, remaining events are
4224 	 * automatically removed on cgroup destruction but the removal is
4225 	 * asynchronous, so take an extra ref on @css.
4226 	 */
4227 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4228 					       &memory_cgrp_subsys);
4229 	ret = -EINVAL;
4230 	if (IS_ERR(cfile_css))
4231 		goto out_put_cfile;
4232 	if (cfile_css != css) {
4233 		css_put(cfile_css);
4234 		goto out_put_cfile;
4235 	}
4236 
4237 	ret = event->register_event(memcg, event->eventfd, buf);
4238 	if (ret)
4239 		goto out_put_css;
4240 
4241 	vfs_poll(efile.file, &event->pt);
4242 
4243 	spin_lock(&memcg->event_list_lock);
4244 	list_add(&event->list, &memcg->event_list);
4245 	spin_unlock(&memcg->event_list_lock);
4246 
4247 	fdput(cfile);
4248 	fdput(efile);
4249 
4250 	return nbytes;
4251 
4252 out_put_css:
4253 	css_put(css);
4254 out_put_cfile:
4255 	fdput(cfile);
4256 out_put_eventfd:
4257 	eventfd_ctx_put(event->eventfd);
4258 out_put_efile:
4259 	fdput(efile);
4260 out_kfree:
4261 	kfree(event);
4262 
4263 	return ret;
4264 }
4265 
4266 static struct cftype mem_cgroup_legacy_files[] = {
4267 	{
4268 		.name = "usage_in_bytes",
4269 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4270 		.read_u64 = mem_cgroup_read_u64,
4271 	},
4272 	{
4273 		.name = "max_usage_in_bytes",
4274 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4275 		.write = mem_cgroup_reset,
4276 		.read_u64 = mem_cgroup_read_u64,
4277 	},
4278 	{
4279 		.name = "limit_in_bytes",
4280 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4281 		.write = mem_cgroup_write,
4282 		.read_u64 = mem_cgroup_read_u64,
4283 	},
4284 	{
4285 		.name = "soft_limit_in_bytes",
4286 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4287 		.write = mem_cgroup_write,
4288 		.read_u64 = mem_cgroup_read_u64,
4289 	},
4290 	{
4291 		.name = "failcnt",
4292 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4293 		.write = mem_cgroup_reset,
4294 		.read_u64 = mem_cgroup_read_u64,
4295 	},
4296 	{
4297 		.name = "stat",
4298 		.seq_show = memcg_stat_show,
4299 	},
4300 	{
4301 		.name = "force_empty",
4302 		.write = mem_cgroup_force_empty_write,
4303 	},
4304 	{
4305 		.name = "use_hierarchy",
4306 		.write_u64 = mem_cgroup_hierarchy_write,
4307 		.read_u64 = mem_cgroup_hierarchy_read,
4308 	},
4309 	{
4310 		.name = "cgroup.event_control",		/* XXX: for compat */
4311 		.write = memcg_write_event_control,
4312 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4313 	},
4314 	{
4315 		.name = "swappiness",
4316 		.read_u64 = mem_cgroup_swappiness_read,
4317 		.write_u64 = mem_cgroup_swappiness_write,
4318 	},
4319 	{
4320 		.name = "move_charge_at_immigrate",
4321 		.read_u64 = mem_cgroup_move_charge_read,
4322 		.write_u64 = mem_cgroup_move_charge_write,
4323 	},
4324 	{
4325 		.name = "oom_control",
4326 		.seq_show = mem_cgroup_oom_control_read,
4327 		.write_u64 = mem_cgroup_oom_control_write,
4328 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4329 	},
4330 	{
4331 		.name = "pressure_level",
4332 	},
4333 #ifdef CONFIG_NUMA
4334 	{
4335 		.name = "numa_stat",
4336 		.seq_show = memcg_numa_stat_show,
4337 	},
4338 #endif
4339 	{
4340 		.name = "kmem.limit_in_bytes",
4341 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4342 		.write = mem_cgroup_write,
4343 		.read_u64 = mem_cgroup_read_u64,
4344 	},
4345 	{
4346 		.name = "kmem.usage_in_bytes",
4347 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4348 		.read_u64 = mem_cgroup_read_u64,
4349 	},
4350 	{
4351 		.name = "kmem.failcnt",
4352 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4353 		.write = mem_cgroup_reset,
4354 		.read_u64 = mem_cgroup_read_u64,
4355 	},
4356 	{
4357 		.name = "kmem.max_usage_in_bytes",
4358 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4359 		.write = mem_cgroup_reset,
4360 		.read_u64 = mem_cgroup_read_u64,
4361 	},
4362 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4363 	{
4364 		.name = "kmem.slabinfo",
4365 		.seq_start = memcg_slab_start,
4366 		.seq_next = memcg_slab_next,
4367 		.seq_stop = memcg_slab_stop,
4368 		.seq_show = memcg_slab_show,
4369 	},
4370 #endif
4371 	{
4372 		.name = "kmem.tcp.limit_in_bytes",
4373 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4374 		.write = mem_cgroup_write,
4375 		.read_u64 = mem_cgroup_read_u64,
4376 	},
4377 	{
4378 		.name = "kmem.tcp.usage_in_bytes",
4379 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4380 		.read_u64 = mem_cgroup_read_u64,
4381 	},
4382 	{
4383 		.name = "kmem.tcp.failcnt",
4384 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4385 		.write = mem_cgroup_reset,
4386 		.read_u64 = mem_cgroup_read_u64,
4387 	},
4388 	{
4389 		.name = "kmem.tcp.max_usage_in_bytes",
4390 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4391 		.write = mem_cgroup_reset,
4392 		.read_u64 = mem_cgroup_read_u64,
4393 	},
4394 	{ },	/* terminate */
4395 };
4396 
4397 /*
4398  * Private memory cgroup IDR
4399  *
4400  * Swap-out records and page cache shadow entries need to store memcg
4401  * references in constrained space, so we maintain an ID space that is
4402  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4403  * memory-controlled cgroups to 64k.
4404  *
4405  * However, there usually are many references to the oflline CSS after
4406  * the cgroup has been destroyed, such as page cache or reclaimable
4407  * slab objects, that don't need to hang on to the ID. We want to keep
4408  * those dead CSS from occupying IDs, or we might quickly exhaust the
4409  * relatively small ID space and prevent the creation of new cgroups
4410  * even when there are much fewer than 64k cgroups - possibly none.
4411  *
4412  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4413  * be freed and recycled when it's no longer needed, which is usually
4414  * when the CSS is offlined.
4415  *
4416  * The only exception to that are records of swapped out tmpfs/shmem
4417  * pages that need to be attributed to live ancestors on swapin. But
4418  * those references are manageable from userspace.
4419  */
4420 
4421 static DEFINE_IDR(mem_cgroup_idr);
4422 
4423 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4424 {
4425 	if (memcg->id.id > 0) {
4426 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4427 		memcg->id.id = 0;
4428 	}
4429 }
4430 
4431 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4432 {
4433 	refcount_add(n, &memcg->id.ref);
4434 }
4435 
4436 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4437 {
4438 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4439 		mem_cgroup_id_remove(memcg);
4440 
4441 		/* Memcg ID pins CSS */
4442 		css_put(&memcg->css);
4443 	}
4444 }
4445 
4446 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4447 {
4448 	mem_cgroup_id_get_many(memcg, 1);
4449 }
4450 
4451 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4452 {
4453 	mem_cgroup_id_put_many(memcg, 1);
4454 }
4455 
4456 /**
4457  * mem_cgroup_from_id - look up a memcg from a memcg id
4458  * @id: the memcg id to look up
4459  *
4460  * Caller must hold rcu_read_lock().
4461  */
4462 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4463 {
4464 	WARN_ON_ONCE(!rcu_read_lock_held());
4465 	return idr_find(&mem_cgroup_idr, id);
4466 }
4467 
4468 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4469 {
4470 	struct mem_cgroup_per_node *pn;
4471 	int tmp = node;
4472 	/*
4473 	 * This routine is called against possible nodes.
4474 	 * But it's BUG to call kmalloc() against offline node.
4475 	 *
4476 	 * TODO: this routine can waste much memory for nodes which will
4477 	 *       never be onlined. It's better to use memory hotplug callback
4478 	 *       function.
4479 	 */
4480 	if (!node_state(node, N_NORMAL_MEMORY))
4481 		tmp = -1;
4482 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4483 	if (!pn)
4484 		return 1;
4485 
4486 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4487 	if (!pn->lruvec_stat_cpu) {
4488 		kfree(pn);
4489 		return 1;
4490 	}
4491 
4492 	lruvec_init(&pn->lruvec);
4493 	pn->usage_in_excess = 0;
4494 	pn->on_tree = false;
4495 	pn->memcg = memcg;
4496 
4497 	memcg->nodeinfo[node] = pn;
4498 	return 0;
4499 }
4500 
4501 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4502 {
4503 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4504 
4505 	if (!pn)
4506 		return;
4507 
4508 	free_percpu(pn->lruvec_stat_cpu);
4509 	kfree(pn);
4510 }
4511 
4512 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4513 {
4514 	int node;
4515 
4516 	for_each_node(node)
4517 		free_mem_cgroup_per_node_info(memcg, node);
4518 	free_percpu(memcg->vmstats_percpu);
4519 	kfree(memcg);
4520 }
4521 
4522 static void mem_cgroup_free(struct mem_cgroup *memcg)
4523 {
4524 	memcg_wb_domain_exit(memcg);
4525 	__mem_cgroup_free(memcg);
4526 }
4527 
4528 static struct mem_cgroup *mem_cgroup_alloc(void)
4529 {
4530 	struct mem_cgroup *memcg;
4531 	unsigned int size;
4532 	int node;
4533 
4534 	size = sizeof(struct mem_cgroup);
4535 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4536 
4537 	memcg = kzalloc(size, GFP_KERNEL);
4538 	if (!memcg)
4539 		return NULL;
4540 
4541 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4542 				 1, MEM_CGROUP_ID_MAX,
4543 				 GFP_KERNEL);
4544 	if (memcg->id.id < 0)
4545 		goto fail;
4546 
4547 	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4548 	if (!memcg->vmstats_percpu)
4549 		goto fail;
4550 
4551 	for_each_node(node)
4552 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4553 			goto fail;
4554 
4555 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4556 		goto fail;
4557 
4558 	INIT_WORK(&memcg->high_work, high_work_func);
4559 	memcg->last_scanned_node = MAX_NUMNODES;
4560 	INIT_LIST_HEAD(&memcg->oom_notify);
4561 	mutex_init(&memcg->thresholds_lock);
4562 	spin_lock_init(&memcg->move_lock);
4563 	vmpressure_init(&memcg->vmpressure);
4564 	INIT_LIST_HEAD(&memcg->event_list);
4565 	spin_lock_init(&memcg->event_list_lock);
4566 	memcg->socket_pressure = jiffies;
4567 #ifdef CONFIG_MEMCG_KMEM
4568 	memcg->kmemcg_id = -1;
4569 #endif
4570 #ifdef CONFIG_CGROUP_WRITEBACK
4571 	INIT_LIST_HEAD(&memcg->cgwb_list);
4572 #endif
4573 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4574 	return memcg;
4575 fail:
4576 	mem_cgroup_id_remove(memcg);
4577 	__mem_cgroup_free(memcg);
4578 	return NULL;
4579 }
4580 
4581 static struct cgroup_subsys_state * __ref
4582 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4583 {
4584 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4585 	struct mem_cgroup *memcg;
4586 	long error = -ENOMEM;
4587 
4588 	memcg = mem_cgroup_alloc();
4589 	if (!memcg)
4590 		return ERR_PTR(error);
4591 
4592 	memcg->high = PAGE_COUNTER_MAX;
4593 	memcg->soft_limit = PAGE_COUNTER_MAX;
4594 	if (parent) {
4595 		memcg->swappiness = mem_cgroup_swappiness(parent);
4596 		memcg->oom_kill_disable = parent->oom_kill_disable;
4597 	}
4598 	if (parent && parent->use_hierarchy) {
4599 		memcg->use_hierarchy = true;
4600 		page_counter_init(&memcg->memory, &parent->memory);
4601 		page_counter_init(&memcg->swap, &parent->swap);
4602 		page_counter_init(&memcg->memsw, &parent->memsw);
4603 		page_counter_init(&memcg->kmem, &parent->kmem);
4604 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4605 	} else {
4606 		page_counter_init(&memcg->memory, NULL);
4607 		page_counter_init(&memcg->swap, NULL);
4608 		page_counter_init(&memcg->memsw, NULL);
4609 		page_counter_init(&memcg->kmem, NULL);
4610 		page_counter_init(&memcg->tcpmem, NULL);
4611 		/*
4612 		 * Deeper hierachy with use_hierarchy == false doesn't make
4613 		 * much sense so let cgroup subsystem know about this
4614 		 * unfortunate state in our controller.
4615 		 */
4616 		if (parent != root_mem_cgroup)
4617 			memory_cgrp_subsys.broken_hierarchy = true;
4618 	}
4619 
4620 	/* The following stuff does not apply to the root */
4621 	if (!parent) {
4622 		root_mem_cgroup = memcg;
4623 		return &memcg->css;
4624 	}
4625 
4626 	error = memcg_online_kmem(memcg);
4627 	if (error)
4628 		goto fail;
4629 
4630 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4631 		static_branch_inc(&memcg_sockets_enabled_key);
4632 
4633 	return &memcg->css;
4634 fail:
4635 	mem_cgroup_id_remove(memcg);
4636 	mem_cgroup_free(memcg);
4637 	return ERR_PTR(-ENOMEM);
4638 }
4639 
4640 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4641 {
4642 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4643 
4644 	/*
4645 	 * A memcg must be visible for memcg_expand_shrinker_maps()
4646 	 * by the time the maps are allocated. So, we allocate maps
4647 	 * here, when for_each_mem_cgroup() can't skip it.
4648 	 */
4649 	if (memcg_alloc_shrinker_maps(memcg)) {
4650 		mem_cgroup_id_remove(memcg);
4651 		return -ENOMEM;
4652 	}
4653 
4654 	/* Online state pins memcg ID, memcg ID pins CSS */
4655 	refcount_set(&memcg->id.ref, 1);
4656 	css_get(css);
4657 	return 0;
4658 }
4659 
4660 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4661 {
4662 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4663 	struct mem_cgroup_event *event, *tmp;
4664 
4665 	/*
4666 	 * Unregister events and notify userspace.
4667 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4668 	 * directory to avoid race between userspace and kernelspace.
4669 	 */
4670 	spin_lock(&memcg->event_list_lock);
4671 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4672 		list_del_init(&event->list);
4673 		schedule_work(&event->remove);
4674 	}
4675 	spin_unlock(&memcg->event_list_lock);
4676 
4677 	page_counter_set_min(&memcg->memory, 0);
4678 	page_counter_set_low(&memcg->memory, 0);
4679 
4680 	memcg_offline_kmem(memcg);
4681 	wb_memcg_offline(memcg);
4682 
4683 	drain_all_stock(memcg);
4684 
4685 	mem_cgroup_id_put(memcg);
4686 }
4687 
4688 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4689 {
4690 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4691 
4692 	invalidate_reclaim_iterators(memcg);
4693 }
4694 
4695 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4696 {
4697 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4698 
4699 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4700 		static_branch_dec(&memcg_sockets_enabled_key);
4701 
4702 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4703 		static_branch_dec(&memcg_sockets_enabled_key);
4704 
4705 	vmpressure_cleanup(&memcg->vmpressure);
4706 	cancel_work_sync(&memcg->high_work);
4707 	mem_cgroup_remove_from_trees(memcg);
4708 	memcg_free_shrinker_maps(memcg);
4709 	memcg_free_kmem(memcg);
4710 	mem_cgroup_free(memcg);
4711 }
4712 
4713 /**
4714  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4715  * @css: the target css
4716  *
4717  * Reset the states of the mem_cgroup associated with @css.  This is
4718  * invoked when the userland requests disabling on the default hierarchy
4719  * but the memcg is pinned through dependency.  The memcg should stop
4720  * applying policies and should revert to the vanilla state as it may be
4721  * made visible again.
4722  *
4723  * The current implementation only resets the essential configurations.
4724  * This needs to be expanded to cover all the visible parts.
4725  */
4726 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4727 {
4728 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4729 
4730 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4731 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4732 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4733 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4734 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4735 	page_counter_set_min(&memcg->memory, 0);
4736 	page_counter_set_low(&memcg->memory, 0);
4737 	memcg->high = PAGE_COUNTER_MAX;
4738 	memcg->soft_limit = PAGE_COUNTER_MAX;
4739 	memcg_wb_domain_size_changed(memcg);
4740 }
4741 
4742 #ifdef CONFIG_MMU
4743 /* Handlers for move charge at task migration. */
4744 static int mem_cgroup_do_precharge(unsigned long count)
4745 {
4746 	int ret;
4747 
4748 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4749 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4750 	if (!ret) {
4751 		mc.precharge += count;
4752 		return ret;
4753 	}
4754 
4755 	/* Try charges one by one with reclaim, but do not retry */
4756 	while (count--) {
4757 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4758 		if (ret)
4759 			return ret;
4760 		mc.precharge++;
4761 		cond_resched();
4762 	}
4763 	return 0;
4764 }
4765 
4766 union mc_target {
4767 	struct page	*page;
4768 	swp_entry_t	ent;
4769 };
4770 
4771 enum mc_target_type {
4772 	MC_TARGET_NONE = 0,
4773 	MC_TARGET_PAGE,
4774 	MC_TARGET_SWAP,
4775 	MC_TARGET_DEVICE,
4776 };
4777 
4778 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4779 						unsigned long addr, pte_t ptent)
4780 {
4781 	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4782 
4783 	if (!page || !page_mapped(page))
4784 		return NULL;
4785 	if (PageAnon(page)) {
4786 		if (!(mc.flags & MOVE_ANON))
4787 			return NULL;
4788 	} else {
4789 		if (!(mc.flags & MOVE_FILE))
4790 			return NULL;
4791 	}
4792 	if (!get_page_unless_zero(page))
4793 		return NULL;
4794 
4795 	return page;
4796 }
4797 
4798 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4799 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4800 			pte_t ptent, swp_entry_t *entry)
4801 {
4802 	struct page *page = NULL;
4803 	swp_entry_t ent = pte_to_swp_entry(ptent);
4804 
4805 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4806 		return NULL;
4807 
4808 	/*
4809 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4810 	 * a device and because they are not accessible by CPU they are store
4811 	 * as special swap entry in the CPU page table.
4812 	 */
4813 	if (is_device_private_entry(ent)) {
4814 		page = device_private_entry_to_page(ent);
4815 		/*
4816 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4817 		 * a refcount of 1 when free (unlike normal page)
4818 		 */
4819 		if (!page_ref_add_unless(page, 1, 1))
4820 			return NULL;
4821 		return page;
4822 	}
4823 
4824 	/*
4825 	 * Because lookup_swap_cache() updates some statistics counter,
4826 	 * we call find_get_page() with swapper_space directly.
4827 	 */
4828 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4829 	if (do_memsw_account())
4830 		entry->val = ent.val;
4831 
4832 	return page;
4833 }
4834 #else
4835 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4836 			pte_t ptent, swp_entry_t *entry)
4837 {
4838 	return NULL;
4839 }
4840 #endif
4841 
4842 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4843 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4844 {
4845 	struct page *page = NULL;
4846 	struct address_space *mapping;
4847 	pgoff_t pgoff;
4848 
4849 	if (!vma->vm_file) /* anonymous vma */
4850 		return NULL;
4851 	if (!(mc.flags & MOVE_FILE))
4852 		return NULL;
4853 
4854 	mapping = vma->vm_file->f_mapping;
4855 	pgoff = linear_page_index(vma, addr);
4856 
4857 	/* page is moved even if it's not RSS of this task(page-faulted). */
4858 #ifdef CONFIG_SWAP
4859 	/* shmem/tmpfs may report page out on swap: account for that too. */
4860 	if (shmem_mapping(mapping)) {
4861 		page = find_get_entry(mapping, pgoff);
4862 		if (xa_is_value(page)) {
4863 			swp_entry_t swp = radix_to_swp_entry(page);
4864 			if (do_memsw_account())
4865 				*entry = swp;
4866 			page = find_get_page(swap_address_space(swp),
4867 					     swp_offset(swp));
4868 		}
4869 	} else
4870 		page = find_get_page(mapping, pgoff);
4871 #else
4872 	page = find_get_page(mapping, pgoff);
4873 #endif
4874 	return page;
4875 }
4876 
4877 /**
4878  * mem_cgroup_move_account - move account of the page
4879  * @page: the page
4880  * @compound: charge the page as compound or small page
4881  * @from: mem_cgroup which the page is moved from.
4882  * @to:	mem_cgroup which the page is moved to. @from != @to.
4883  *
4884  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4885  *
4886  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4887  * from old cgroup.
4888  */
4889 static int mem_cgroup_move_account(struct page *page,
4890 				   bool compound,
4891 				   struct mem_cgroup *from,
4892 				   struct mem_cgroup *to)
4893 {
4894 	unsigned long flags;
4895 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4896 	int ret;
4897 	bool anon;
4898 
4899 	VM_BUG_ON(from == to);
4900 	VM_BUG_ON_PAGE(PageLRU(page), page);
4901 	VM_BUG_ON(compound && !PageTransHuge(page));
4902 
4903 	/*
4904 	 * Prevent mem_cgroup_migrate() from looking at
4905 	 * page->mem_cgroup of its source page while we change it.
4906 	 */
4907 	ret = -EBUSY;
4908 	if (!trylock_page(page))
4909 		goto out;
4910 
4911 	ret = -EINVAL;
4912 	if (page->mem_cgroup != from)
4913 		goto out_unlock;
4914 
4915 	anon = PageAnon(page);
4916 
4917 	spin_lock_irqsave(&from->move_lock, flags);
4918 
4919 	if (!anon && page_mapped(page)) {
4920 		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4921 		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4922 	}
4923 
4924 	/*
4925 	 * move_lock grabbed above and caller set from->moving_account, so
4926 	 * mod_memcg_page_state will serialize updates to PageDirty.
4927 	 * So mapping should be stable for dirty pages.
4928 	 */
4929 	if (!anon && PageDirty(page)) {
4930 		struct address_space *mapping = page_mapping(page);
4931 
4932 		if (mapping_cap_account_dirty(mapping)) {
4933 			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4934 			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4935 		}
4936 	}
4937 
4938 	if (PageWriteback(page)) {
4939 		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4940 		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4941 	}
4942 
4943 	/*
4944 	 * It is safe to change page->mem_cgroup here because the page
4945 	 * is referenced, charged, and isolated - we can't race with
4946 	 * uncharging, charging, migration, or LRU putback.
4947 	 */
4948 
4949 	/* caller should have done css_get */
4950 	page->mem_cgroup = to;
4951 	spin_unlock_irqrestore(&from->move_lock, flags);
4952 
4953 	ret = 0;
4954 
4955 	local_irq_disable();
4956 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4957 	memcg_check_events(to, page);
4958 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4959 	memcg_check_events(from, page);
4960 	local_irq_enable();
4961 out_unlock:
4962 	unlock_page(page);
4963 out:
4964 	return ret;
4965 }
4966 
4967 /**
4968  * get_mctgt_type - get target type of moving charge
4969  * @vma: the vma the pte to be checked belongs
4970  * @addr: the address corresponding to the pte to be checked
4971  * @ptent: the pte to be checked
4972  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4973  *
4974  * Returns
4975  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4976  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4977  *     move charge. if @target is not NULL, the page is stored in target->page
4978  *     with extra refcnt got(Callers should handle it).
4979  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4980  *     target for charge migration. if @target is not NULL, the entry is stored
4981  *     in target->ent.
4982  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
4983  *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4984  *     For now we such page is charge like a regular page would be as for all
4985  *     intent and purposes it is just special memory taking the place of a
4986  *     regular page.
4987  *
4988  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4989  *
4990  * Called with pte lock held.
4991  */
4992 
4993 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4994 		unsigned long addr, pte_t ptent, union mc_target *target)
4995 {
4996 	struct page *page = NULL;
4997 	enum mc_target_type ret = MC_TARGET_NONE;
4998 	swp_entry_t ent = { .val = 0 };
4999 
5000 	if (pte_present(ptent))
5001 		page = mc_handle_present_pte(vma, addr, ptent);
5002 	else if (is_swap_pte(ptent))
5003 		page = mc_handle_swap_pte(vma, ptent, &ent);
5004 	else if (pte_none(ptent))
5005 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5006 
5007 	if (!page && !ent.val)
5008 		return ret;
5009 	if (page) {
5010 		/*
5011 		 * Do only loose check w/o serialization.
5012 		 * mem_cgroup_move_account() checks the page is valid or
5013 		 * not under LRU exclusion.
5014 		 */
5015 		if (page->mem_cgroup == mc.from) {
5016 			ret = MC_TARGET_PAGE;
5017 			if (is_device_private_page(page) ||
5018 			    is_device_public_page(page))
5019 				ret = MC_TARGET_DEVICE;
5020 			if (target)
5021 				target->page = page;
5022 		}
5023 		if (!ret || !target)
5024 			put_page(page);
5025 	}
5026 	/*
5027 	 * There is a swap entry and a page doesn't exist or isn't charged.
5028 	 * But we cannot move a tail-page in a THP.
5029 	 */
5030 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5031 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5032 		ret = MC_TARGET_SWAP;
5033 		if (target)
5034 			target->ent = ent;
5035 	}
5036 	return ret;
5037 }
5038 
5039 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5040 /*
5041  * We don't consider PMD mapped swapping or file mapped pages because THP does
5042  * not support them for now.
5043  * Caller should make sure that pmd_trans_huge(pmd) is true.
5044  */
5045 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5046 		unsigned long addr, pmd_t pmd, union mc_target *target)
5047 {
5048 	struct page *page = NULL;
5049 	enum mc_target_type ret = MC_TARGET_NONE;
5050 
5051 	if (unlikely(is_swap_pmd(pmd))) {
5052 		VM_BUG_ON(thp_migration_supported() &&
5053 				  !is_pmd_migration_entry(pmd));
5054 		return ret;
5055 	}
5056 	page = pmd_page(pmd);
5057 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5058 	if (!(mc.flags & MOVE_ANON))
5059 		return ret;
5060 	if (page->mem_cgroup == mc.from) {
5061 		ret = MC_TARGET_PAGE;
5062 		if (target) {
5063 			get_page(page);
5064 			target->page = page;
5065 		}
5066 	}
5067 	return ret;
5068 }
5069 #else
5070 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5071 		unsigned long addr, pmd_t pmd, union mc_target *target)
5072 {
5073 	return MC_TARGET_NONE;
5074 }
5075 #endif
5076 
5077 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5078 					unsigned long addr, unsigned long end,
5079 					struct mm_walk *walk)
5080 {
5081 	struct vm_area_struct *vma = walk->vma;
5082 	pte_t *pte;
5083 	spinlock_t *ptl;
5084 
5085 	ptl = pmd_trans_huge_lock(pmd, vma);
5086 	if (ptl) {
5087 		/*
5088 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5089 		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
5090 		 * MEMORY_DEVICE_PRIVATE but this might change.
5091 		 */
5092 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5093 			mc.precharge += HPAGE_PMD_NR;
5094 		spin_unlock(ptl);
5095 		return 0;
5096 	}
5097 
5098 	if (pmd_trans_unstable(pmd))
5099 		return 0;
5100 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5101 	for (; addr != end; pte++, addr += PAGE_SIZE)
5102 		if (get_mctgt_type(vma, addr, *pte, NULL))
5103 			mc.precharge++;	/* increment precharge temporarily */
5104 	pte_unmap_unlock(pte - 1, ptl);
5105 	cond_resched();
5106 
5107 	return 0;
5108 }
5109 
5110 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5111 {
5112 	unsigned long precharge;
5113 
5114 	struct mm_walk mem_cgroup_count_precharge_walk = {
5115 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
5116 		.mm = mm,
5117 	};
5118 	down_read(&mm->mmap_sem);
5119 	walk_page_range(0, mm->highest_vm_end,
5120 			&mem_cgroup_count_precharge_walk);
5121 	up_read(&mm->mmap_sem);
5122 
5123 	precharge = mc.precharge;
5124 	mc.precharge = 0;
5125 
5126 	return precharge;
5127 }
5128 
5129 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5130 {
5131 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5132 
5133 	VM_BUG_ON(mc.moving_task);
5134 	mc.moving_task = current;
5135 	return mem_cgroup_do_precharge(precharge);
5136 }
5137 
5138 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5139 static void __mem_cgroup_clear_mc(void)
5140 {
5141 	struct mem_cgroup *from = mc.from;
5142 	struct mem_cgroup *to = mc.to;
5143 
5144 	/* we must uncharge all the leftover precharges from mc.to */
5145 	if (mc.precharge) {
5146 		cancel_charge(mc.to, mc.precharge);
5147 		mc.precharge = 0;
5148 	}
5149 	/*
5150 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5151 	 * we must uncharge here.
5152 	 */
5153 	if (mc.moved_charge) {
5154 		cancel_charge(mc.from, mc.moved_charge);
5155 		mc.moved_charge = 0;
5156 	}
5157 	/* we must fixup refcnts and charges */
5158 	if (mc.moved_swap) {
5159 		/* uncharge swap account from the old cgroup */
5160 		if (!mem_cgroup_is_root(mc.from))
5161 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5162 
5163 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5164 
5165 		/*
5166 		 * we charged both to->memory and to->memsw, so we
5167 		 * should uncharge to->memory.
5168 		 */
5169 		if (!mem_cgroup_is_root(mc.to))
5170 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5171 
5172 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5173 		css_put_many(&mc.to->css, mc.moved_swap);
5174 
5175 		mc.moved_swap = 0;
5176 	}
5177 	memcg_oom_recover(from);
5178 	memcg_oom_recover(to);
5179 	wake_up_all(&mc.waitq);
5180 }
5181 
5182 static void mem_cgroup_clear_mc(void)
5183 {
5184 	struct mm_struct *mm = mc.mm;
5185 
5186 	/*
5187 	 * we must clear moving_task before waking up waiters at the end of
5188 	 * task migration.
5189 	 */
5190 	mc.moving_task = NULL;
5191 	__mem_cgroup_clear_mc();
5192 	spin_lock(&mc.lock);
5193 	mc.from = NULL;
5194 	mc.to = NULL;
5195 	mc.mm = NULL;
5196 	spin_unlock(&mc.lock);
5197 
5198 	mmput(mm);
5199 }
5200 
5201 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5202 {
5203 	struct cgroup_subsys_state *css;
5204 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5205 	struct mem_cgroup *from;
5206 	struct task_struct *leader, *p;
5207 	struct mm_struct *mm;
5208 	unsigned long move_flags;
5209 	int ret = 0;
5210 
5211 	/* charge immigration isn't supported on the default hierarchy */
5212 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5213 		return 0;
5214 
5215 	/*
5216 	 * Multi-process migrations only happen on the default hierarchy
5217 	 * where charge immigration is not used.  Perform charge
5218 	 * immigration if @tset contains a leader and whine if there are
5219 	 * multiple.
5220 	 */
5221 	p = NULL;
5222 	cgroup_taskset_for_each_leader(leader, css, tset) {
5223 		WARN_ON_ONCE(p);
5224 		p = leader;
5225 		memcg = mem_cgroup_from_css(css);
5226 	}
5227 	if (!p)
5228 		return 0;
5229 
5230 	/*
5231 	 * We are now commited to this value whatever it is. Changes in this
5232 	 * tunable will only affect upcoming migrations, not the current one.
5233 	 * So we need to save it, and keep it going.
5234 	 */
5235 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5236 	if (!move_flags)
5237 		return 0;
5238 
5239 	from = mem_cgroup_from_task(p);
5240 
5241 	VM_BUG_ON(from == memcg);
5242 
5243 	mm = get_task_mm(p);
5244 	if (!mm)
5245 		return 0;
5246 	/* We move charges only when we move a owner of the mm */
5247 	if (mm->owner == p) {
5248 		VM_BUG_ON(mc.from);
5249 		VM_BUG_ON(mc.to);
5250 		VM_BUG_ON(mc.precharge);
5251 		VM_BUG_ON(mc.moved_charge);
5252 		VM_BUG_ON(mc.moved_swap);
5253 
5254 		spin_lock(&mc.lock);
5255 		mc.mm = mm;
5256 		mc.from = from;
5257 		mc.to = memcg;
5258 		mc.flags = move_flags;
5259 		spin_unlock(&mc.lock);
5260 		/* We set mc.moving_task later */
5261 
5262 		ret = mem_cgroup_precharge_mc(mm);
5263 		if (ret)
5264 			mem_cgroup_clear_mc();
5265 	} else {
5266 		mmput(mm);
5267 	}
5268 	return ret;
5269 }
5270 
5271 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5272 {
5273 	if (mc.to)
5274 		mem_cgroup_clear_mc();
5275 }
5276 
5277 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5278 				unsigned long addr, unsigned long end,
5279 				struct mm_walk *walk)
5280 {
5281 	int ret = 0;
5282 	struct vm_area_struct *vma = walk->vma;
5283 	pte_t *pte;
5284 	spinlock_t *ptl;
5285 	enum mc_target_type target_type;
5286 	union mc_target target;
5287 	struct page *page;
5288 
5289 	ptl = pmd_trans_huge_lock(pmd, vma);
5290 	if (ptl) {
5291 		if (mc.precharge < HPAGE_PMD_NR) {
5292 			spin_unlock(ptl);
5293 			return 0;
5294 		}
5295 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5296 		if (target_type == MC_TARGET_PAGE) {
5297 			page = target.page;
5298 			if (!isolate_lru_page(page)) {
5299 				if (!mem_cgroup_move_account(page, true,
5300 							     mc.from, mc.to)) {
5301 					mc.precharge -= HPAGE_PMD_NR;
5302 					mc.moved_charge += HPAGE_PMD_NR;
5303 				}
5304 				putback_lru_page(page);
5305 			}
5306 			put_page(page);
5307 		} else if (target_type == MC_TARGET_DEVICE) {
5308 			page = target.page;
5309 			if (!mem_cgroup_move_account(page, true,
5310 						     mc.from, mc.to)) {
5311 				mc.precharge -= HPAGE_PMD_NR;
5312 				mc.moved_charge += HPAGE_PMD_NR;
5313 			}
5314 			put_page(page);
5315 		}
5316 		spin_unlock(ptl);
5317 		return 0;
5318 	}
5319 
5320 	if (pmd_trans_unstable(pmd))
5321 		return 0;
5322 retry:
5323 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5324 	for (; addr != end; addr += PAGE_SIZE) {
5325 		pte_t ptent = *(pte++);
5326 		bool device = false;
5327 		swp_entry_t ent;
5328 
5329 		if (!mc.precharge)
5330 			break;
5331 
5332 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5333 		case MC_TARGET_DEVICE:
5334 			device = true;
5335 			/* fall through */
5336 		case MC_TARGET_PAGE:
5337 			page = target.page;
5338 			/*
5339 			 * We can have a part of the split pmd here. Moving it
5340 			 * can be done but it would be too convoluted so simply
5341 			 * ignore such a partial THP and keep it in original
5342 			 * memcg. There should be somebody mapping the head.
5343 			 */
5344 			if (PageTransCompound(page))
5345 				goto put;
5346 			if (!device && isolate_lru_page(page))
5347 				goto put;
5348 			if (!mem_cgroup_move_account(page, false,
5349 						mc.from, mc.to)) {
5350 				mc.precharge--;
5351 				/* we uncharge from mc.from later. */
5352 				mc.moved_charge++;
5353 			}
5354 			if (!device)
5355 				putback_lru_page(page);
5356 put:			/* get_mctgt_type() gets the page */
5357 			put_page(page);
5358 			break;
5359 		case MC_TARGET_SWAP:
5360 			ent = target.ent;
5361 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5362 				mc.precharge--;
5363 				/* we fixup refcnts and charges later. */
5364 				mc.moved_swap++;
5365 			}
5366 			break;
5367 		default:
5368 			break;
5369 		}
5370 	}
5371 	pte_unmap_unlock(pte - 1, ptl);
5372 	cond_resched();
5373 
5374 	if (addr != end) {
5375 		/*
5376 		 * We have consumed all precharges we got in can_attach().
5377 		 * We try charge one by one, but don't do any additional
5378 		 * charges to mc.to if we have failed in charge once in attach()
5379 		 * phase.
5380 		 */
5381 		ret = mem_cgroup_do_precharge(1);
5382 		if (!ret)
5383 			goto retry;
5384 	}
5385 
5386 	return ret;
5387 }
5388 
5389 static void mem_cgroup_move_charge(void)
5390 {
5391 	struct mm_walk mem_cgroup_move_charge_walk = {
5392 		.pmd_entry = mem_cgroup_move_charge_pte_range,
5393 		.mm = mc.mm,
5394 	};
5395 
5396 	lru_add_drain_all();
5397 	/*
5398 	 * Signal lock_page_memcg() to take the memcg's move_lock
5399 	 * while we're moving its pages to another memcg. Then wait
5400 	 * for already started RCU-only updates to finish.
5401 	 */
5402 	atomic_inc(&mc.from->moving_account);
5403 	synchronize_rcu();
5404 retry:
5405 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5406 		/*
5407 		 * Someone who are holding the mmap_sem might be waiting in
5408 		 * waitq. So we cancel all extra charges, wake up all waiters,
5409 		 * and retry. Because we cancel precharges, we might not be able
5410 		 * to move enough charges, but moving charge is a best-effort
5411 		 * feature anyway, so it wouldn't be a big problem.
5412 		 */
5413 		__mem_cgroup_clear_mc();
5414 		cond_resched();
5415 		goto retry;
5416 	}
5417 	/*
5418 	 * When we have consumed all precharges and failed in doing
5419 	 * additional charge, the page walk just aborts.
5420 	 */
5421 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5422 
5423 	up_read(&mc.mm->mmap_sem);
5424 	atomic_dec(&mc.from->moving_account);
5425 }
5426 
5427 static void mem_cgroup_move_task(void)
5428 {
5429 	if (mc.to) {
5430 		mem_cgroup_move_charge();
5431 		mem_cgroup_clear_mc();
5432 	}
5433 }
5434 #else	/* !CONFIG_MMU */
5435 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5436 {
5437 	return 0;
5438 }
5439 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5440 {
5441 }
5442 static void mem_cgroup_move_task(void)
5443 {
5444 }
5445 #endif
5446 
5447 /*
5448  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5449  * to verify whether we're attached to the default hierarchy on each mount
5450  * attempt.
5451  */
5452 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5453 {
5454 	/*
5455 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5456 	 * guarantees that @root doesn't have any children, so turning it
5457 	 * on for the root memcg is enough.
5458 	 */
5459 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5460 		root_mem_cgroup->use_hierarchy = true;
5461 	else
5462 		root_mem_cgroup->use_hierarchy = false;
5463 }
5464 
5465 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5466 {
5467 	if (value == PAGE_COUNTER_MAX)
5468 		seq_puts(m, "max\n");
5469 	else
5470 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5471 
5472 	return 0;
5473 }
5474 
5475 static u64 memory_current_read(struct cgroup_subsys_state *css,
5476 			       struct cftype *cft)
5477 {
5478 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5479 
5480 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5481 }
5482 
5483 static int memory_min_show(struct seq_file *m, void *v)
5484 {
5485 	return seq_puts_memcg_tunable(m,
5486 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5487 }
5488 
5489 static ssize_t memory_min_write(struct kernfs_open_file *of,
5490 				char *buf, size_t nbytes, loff_t off)
5491 {
5492 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5493 	unsigned long min;
5494 	int err;
5495 
5496 	buf = strstrip(buf);
5497 	err = page_counter_memparse(buf, "max", &min);
5498 	if (err)
5499 		return err;
5500 
5501 	page_counter_set_min(&memcg->memory, min);
5502 
5503 	return nbytes;
5504 }
5505 
5506 static int memory_low_show(struct seq_file *m, void *v)
5507 {
5508 	return seq_puts_memcg_tunable(m,
5509 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5510 }
5511 
5512 static ssize_t memory_low_write(struct kernfs_open_file *of,
5513 				char *buf, size_t nbytes, loff_t off)
5514 {
5515 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5516 	unsigned long low;
5517 	int err;
5518 
5519 	buf = strstrip(buf);
5520 	err = page_counter_memparse(buf, "max", &low);
5521 	if (err)
5522 		return err;
5523 
5524 	page_counter_set_low(&memcg->memory, low);
5525 
5526 	return nbytes;
5527 }
5528 
5529 static int memory_high_show(struct seq_file *m, void *v)
5530 {
5531 	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5532 }
5533 
5534 static ssize_t memory_high_write(struct kernfs_open_file *of,
5535 				 char *buf, size_t nbytes, loff_t off)
5536 {
5537 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5538 	unsigned long nr_pages;
5539 	unsigned long high;
5540 	int err;
5541 
5542 	buf = strstrip(buf);
5543 	err = page_counter_memparse(buf, "max", &high);
5544 	if (err)
5545 		return err;
5546 
5547 	memcg->high = high;
5548 
5549 	nr_pages = page_counter_read(&memcg->memory);
5550 	if (nr_pages > high)
5551 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5552 					     GFP_KERNEL, true);
5553 
5554 	memcg_wb_domain_size_changed(memcg);
5555 	return nbytes;
5556 }
5557 
5558 static int memory_max_show(struct seq_file *m, void *v)
5559 {
5560 	return seq_puts_memcg_tunable(m,
5561 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5562 }
5563 
5564 static ssize_t memory_max_write(struct kernfs_open_file *of,
5565 				char *buf, size_t nbytes, loff_t off)
5566 {
5567 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5568 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5569 	bool drained = false;
5570 	unsigned long max;
5571 	int err;
5572 
5573 	buf = strstrip(buf);
5574 	err = page_counter_memparse(buf, "max", &max);
5575 	if (err)
5576 		return err;
5577 
5578 	xchg(&memcg->memory.max, max);
5579 
5580 	for (;;) {
5581 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5582 
5583 		if (nr_pages <= max)
5584 			break;
5585 
5586 		if (signal_pending(current)) {
5587 			err = -EINTR;
5588 			break;
5589 		}
5590 
5591 		if (!drained) {
5592 			drain_all_stock(memcg);
5593 			drained = true;
5594 			continue;
5595 		}
5596 
5597 		if (nr_reclaims) {
5598 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5599 							  GFP_KERNEL, true))
5600 				nr_reclaims--;
5601 			continue;
5602 		}
5603 
5604 		memcg_memory_event(memcg, MEMCG_OOM);
5605 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5606 			break;
5607 	}
5608 
5609 	memcg_wb_domain_size_changed(memcg);
5610 	return nbytes;
5611 }
5612 
5613 static int memory_events_show(struct seq_file *m, void *v)
5614 {
5615 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5616 
5617 	seq_printf(m, "low %lu\n",
5618 		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5619 	seq_printf(m, "high %lu\n",
5620 		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5621 	seq_printf(m, "max %lu\n",
5622 		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5623 	seq_printf(m, "oom %lu\n",
5624 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5625 	seq_printf(m, "oom_kill %lu\n",
5626 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5627 
5628 	return 0;
5629 }
5630 
5631 static int memory_stat_show(struct seq_file *m, void *v)
5632 {
5633 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5634 	int i;
5635 
5636 	/*
5637 	 * Provide statistics on the state of the memory subsystem as
5638 	 * well as cumulative event counters that show past behavior.
5639 	 *
5640 	 * This list is ordered following a combination of these gradients:
5641 	 * 1) generic big picture -> specifics and details
5642 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5643 	 *
5644 	 * Current memory state:
5645 	 */
5646 
5647 	seq_printf(m, "anon %llu\n",
5648 		   (u64)memcg_page_state(memcg, MEMCG_RSS) * PAGE_SIZE);
5649 	seq_printf(m, "file %llu\n",
5650 		   (u64)memcg_page_state(memcg, MEMCG_CACHE) * PAGE_SIZE);
5651 	seq_printf(m, "kernel_stack %llu\n",
5652 		   (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1024);
5653 	seq_printf(m, "slab %llu\n",
5654 		   (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
5655 			 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
5656 		   PAGE_SIZE);
5657 	seq_printf(m, "sock %llu\n",
5658 		   (u64)memcg_page_state(memcg, MEMCG_SOCK) * PAGE_SIZE);
5659 
5660 	seq_printf(m, "shmem %llu\n",
5661 		   (u64)memcg_page_state(memcg, NR_SHMEM) * PAGE_SIZE);
5662 	seq_printf(m, "file_mapped %llu\n",
5663 		   (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * PAGE_SIZE);
5664 	seq_printf(m, "file_dirty %llu\n",
5665 		   (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * PAGE_SIZE);
5666 	seq_printf(m, "file_writeback %llu\n",
5667 		   (u64)memcg_page_state(memcg, NR_WRITEBACK) * PAGE_SIZE);
5668 
5669 	/*
5670 	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
5671 	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
5672 	 * arse because it requires migrating the work out of rmap to a place
5673 	 * where the page->mem_cgroup is set up and stable.
5674 	 */
5675 	seq_printf(m, "anon_thp %llu\n",
5676 		   (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * PAGE_SIZE);
5677 
5678 	for (i = 0; i < NR_LRU_LISTS; i++)
5679 		seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5680 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
5681 			   PAGE_SIZE);
5682 
5683 	seq_printf(m, "slab_reclaimable %llu\n",
5684 		   (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
5685 		   PAGE_SIZE);
5686 	seq_printf(m, "slab_unreclaimable %llu\n",
5687 		   (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
5688 		   PAGE_SIZE);
5689 
5690 	/* Accumulated memory events */
5691 
5692 	seq_printf(m, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
5693 	seq_printf(m, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
5694 
5695 	seq_printf(m, "workingset_refault %lu\n",
5696 		   memcg_page_state(memcg, WORKINGSET_REFAULT));
5697 	seq_printf(m, "workingset_activate %lu\n",
5698 		   memcg_page_state(memcg, WORKINGSET_ACTIVATE));
5699 	seq_printf(m, "workingset_nodereclaim %lu\n",
5700 		   memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
5701 
5702 	seq_printf(m, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
5703 	seq_printf(m, "pgscan %lu\n", memcg_events(memcg, PGSCAN_KSWAPD) +
5704 		   memcg_events(memcg, PGSCAN_DIRECT));
5705 	seq_printf(m, "pgsteal %lu\n", memcg_events(memcg, PGSTEAL_KSWAPD) +
5706 		   memcg_events(memcg, PGSTEAL_DIRECT));
5707 	seq_printf(m, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
5708 	seq_printf(m, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
5709 	seq_printf(m, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
5710 	seq_printf(m, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
5711 
5712 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5713 	seq_printf(m, "thp_fault_alloc %lu\n",
5714 		   memcg_events(memcg, THP_FAULT_ALLOC));
5715 	seq_printf(m, "thp_collapse_alloc %lu\n",
5716 		   memcg_events(memcg, THP_COLLAPSE_ALLOC));
5717 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5718 
5719 	return 0;
5720 }
5721 
5722 static int memory_oom_group_show(struct seq_file *m, void *v)
5723 {
5724 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5725 
5726 	seq_printf(m, "%d\n", memcg->oom_group);
5727 
5728 	return 0;
5729 }
5730 
5731 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5732 				      char *buf, size_t nbytes, loff_t off)
5733 {
5734 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5735 	int ret, oom_group;
5736 
5737 	buf = strstrip(buf);
5738 	if (!buf)
5739 		return -EINVAL;
5740 
5741 	ret = kstrtoint(buf, 0, &oom_group);
5742 	if (ret)
5743 		return ret;
5744 
5745 	if (oom_group != 0 && oom_group != 1)
5746 		return -EINVAL;
5747 
5748 	memcg->oom_group = oom_group;
5749 
5750 	return nbytes;
5751 }
5752 
5753 static struct cftype memory_files[] = {
5754 	{
5755 		.name = "current",
5756 		.flags = CFTYPE_NOT_ON_ROOT,
5757 		.read_u64 = memory_current_read,
5758 	},
5759 	{
5760 		.name = "min",
5761 		.flags = CFTYPE_NOT_ON_ROOT,
5762 		.seq_show = memory_min_show,
5763 		.write = memory_min_write,
5764 	},
5765 	{
5766 		.name = "low",
5767 		.flags = CFTYPE_NOT_ON_ROOT,
5768 		.seq_show = memory_low_show,
5769 		.write = memory_low_write,
5770 	},
5771 	{
5772 		.name = "high",
5773 		.flags = CFTYPE_NOT_ON_ROOT,
5774 		.seq_show = memory_high_show,
5775 		.write = memory_high_write,
5776 	},
5777 	{
5778 		.name = "max",
5779 		.flags = CFTYPE_NOT_ON_ROOT,
5780 		.seq_show = memory_max_show,
5781 		.write = memory_max_write,
5782 	},
5783 	{
5784 		.name = "events",
5785 		.flags = CFTYPE_NOT_ON_ROOT,
5786 		.file_offset = offsetof(struct mem_cgroup, events_file),
5787 		.seq_show = memory_events_show,
5788 	},
5789 	{
5790 		.name = "stat",
5791 		.flags = CFTYPE_NOT_ON_ROOT,
5792 		.seq_show = memory_stat_show,
5793 	},
5794 	{
5795 		.name = "oom.group",
5796 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5797 		.seq_show = memory_oom_group_show,
5798 		.write = memory_oom_group_write,
5799 	},
5800 	{ }	/* terminate */
5801 };
5802 
5803 struct cgroup_subsys memory_cgrp_subsys = {
5804 	.css_alloc = mem_cgroup_css_alloc,
5805 	.css_online = mem_cgroup_css_online,
5806 	.css_offline = mem_cgroup_css_offline,
5807 	.css_released = mem_cgroup_css_released,
5808 	.css_free = mem_cgroup_css_free,
5809 	.css_reset = mem_cgroup_css_reset,
5810 	.can_attach = mem_cgroup_can_attach,
5811 	.cancel_attach = mem_cgroup_cancel_attach,
5812 	.post_attach = mem_cgroup_move_task,
5813 	.bind = mem_cgroup_bind,
5814 	.dfl_cftypes = memory_files,
5815 	.legacy_cftypes = mem_cgroup_legacy_files,
5816 	.early_init = 0,
5817 };
5818 
5819 /**
5820  * mem_cgroup_protected - check if memory consumption is in the normal range
5821  * @root: the top ancestor of the sub-tree being checked
5822  * @memcg: the memory cgroup to check
5823  *
5824  * WARNING: This function is not stateless! It can only be used as part
5825  *          of a top-down tree iteration, not for isolated queries.
5826  *
5827  * Returns one of the following:
5828  *   MEMCG_PROT_NONE: cgroup memory is not protected
5829  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
5830  *     an unprotected supply of reclaimable memory from other cgroups.
5831  *   MEMCG_PROT_MIN: cgroup memory is protected
5832  *
5833  * @root is exclusive; it is never protected when looked at directly
5834  *
5835  * To provide a proper hierarchical behavior, effective memory.min/low values
5836  * are used. Below is the description of how effective memory.low is calculated.
5837  * Effective memory.min values is calculated in the same way.
5838  *
5839  * Effective memory.low is always equal or less than the original memory.low.
5840  * If there is no memory.low overcommittment (which is always true for
5841  * top-level memory cgroups), these two values are equal.
5842  * Otherwise, it's a part of parent's effective memory.low,
5843  * calculated as a cgroup's memory.low usage divided by sum of sibling's
5844  * memory.low usages, where memory.low usage is the size of actually
5845  * protected memory.
5846  *
5847  *                                             low_usage
5848  * elow = min( memory.low, parent->elow * ------------------ ),
5849  *                                        siblings_low_usage
5850  *
5851  *             | memory.current, if memory.current < memory.low
5852  * low_usage = |
5853  *	       | 0, otherwise.
5854  *
5855  *
5856  * Such definition of the effective memory.low provides the expected
5857  * hierarchical behavior: parent's memory.low value is limiting
5858  * children, unprotected memory is reclaimed first and cgroups,
5859  * which are not using their guarantee do not affect actual memory
5860  * distribution.
5861  *
5862  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5863  *
5864  *     A      A/memory.low = 2G, A/memory.current = 6G
5865  *    //\\
5866  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
5867  *            C/memory.low = 1G  C/memory.current = 2G
5868  *            D/memory.low = 0   D/memory.current = 2G
5869  *            E/memory.low = 10G E/memory.current = 0
5870  *
5871  * and the memory pressure is applied, the following memory distribution
5872  * is expected (approximately):
5873  *
5874  *     A/memory.current = 2G
5875  *
5876  *     B/memory.current = 1.3G
5877  *     C/memory.current = 0.6G
5878  *     D/memory.current = 0
5879  *     E/memory.current = 0
5880  *
5881  * These calculations require constant tracking of the actual low usages
5882  * (see propagate_protected_usage()), as well as recursive calculation of
5883  * effective memory.low values. But as we do call mem_cgroup_protected()
5884  * path for each memory cgroup top-down from the reclaim,
5885  * it's possible to optimize this part, and save calculated elow
5886  * for next usage. This part is intentionally racy, but it's ok,
5887  * as memory.low is a best-effort mechanism.
5888  */
5889 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5890 						struct mem_cgroup *memcg)
5891 {
5892 	struct mem_cgroup *parent;
5893 	unsigned long emin, parent_emin;
5894 	unsigned long elow, parent_elow;
5895 	unsigned long usage;
5896 
5897 	if (mem_cgroup_disabled())
5898 		return MEMCG_PROT_NONE;
5899 
5900 	if (!root)
5901 		root = root_mem_cgroup;
5902 	if (memcg == root)
5903 		return MEMCG_PROT_NONE;
5904 
5905 	usage = page_counter_read(&memcg->memory);
5906 	if (!usage)
5907 		return MEMCG_PROT_NONE;
5908 
5909 	emin = memcg->memory.min;
5910 	elow = memcg->memory.low;
5911 
5912 	parent = parent_mem_cgroup(memcg);
5913 	/* No parent means a non-hierarchical mode on v1 memcg */
5914 	if (!parent)
5915 		return MEMCG_PROT_NONE;
5916 
5917 	if (parent == root)
5918 		goto exit;
5919 
5920 	parent_emin = READ_ONCE(parent->memory.emin);
5921 	emin = min(emin, parent_emin);
5922 	if (emin && parent_emin) {
5923 		unsigned long min_usage, siblings_min_usage;
5924 
5925 		min_usage = min(usage, memcg->memory.min);
5926 		siblings_min_usage = atomic_long_read(
5927 			&parent->memory.children_min_usage);
5928 
5929 		if (min_usage && siblings_min_usage)
5930 			emin = min(emin, parent_emin * min_usage /
5931 				   siblings_min_usage);
5932 	}
5933 
5934 	parent_elow = READ_ONCE(parent->memory.elow);
5935 	elow = min(elow, parent_elow);
5936 	if (elow && parent_elow) {
5937 		unsigned long low_usage, siblings_low_usage;
5938 
5939 		low_usage = min(usage, memcg->memory.low);
5940 		siblings_low_usage = atomic_long_read(
5941 			&parent->memory.children_low_usage);
5942 
5943 		if (low_usage && siblings_low_usage)
5944 			elow = min(elow, parent_elow * low_usage /
5945 				   siblings_low_usage);
5946 	}
5947 
5948 exit:
5949 	memcg->memory.emin = emin;
5950 	memcg->memory.elow = elow;
5951 
5952 	if (usage <= emin)
5953 		return MEMCG_PROT_MIN;
5954 	else if (usage <= elow)
5955 		return MEMCG_PROT_LOW;
5956 	else
5957 		return MEMCG_PROT_NONE;
5958 }
5959 
5960 /**
5961  * mem_cgroup_try_charge - try charging a page
5962  * @page: page to charge
5963  * @mm: mm context of the victim
5964  * @gfp_mask: reclaim mode
5965  * @memcgp: charged memcg return
5966  * @compound: charge the page as compound or small page
5967  *
5968  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5969  * pages according to @gfp_mask if necessary.
5970  *
5971  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5972  * Otherwise, an error code is returned.
5973  *
5974  * After page->mapping has been set up, the caller must finalize the
5975  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5976  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5977  */
5978 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5979 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5980 			  bool compound)
5981 {
5982 	struct mem_cgroup *memcg = NULL;
5983 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5984 	int ret = 0;
5985 
5986 	if (mem_cgroup_disabled())
5987 		goto out;
5988 
5989 	if (PageSwapCache(page)) {
5990 		/*
5991 		 * Every swap fault against a single page tries to charge the
5992 		 * page, bail as early as possible.  shmem_unuse() encounters
5993 		 * already charged pages, too.  The USED bit is protected by
5994 		 * the page lock, which serializes swap cache removal, which
5995 		 * in turn serializes uncharging.
5996 		 */
5997 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5998 		if (compound_head(page)->mem_cgroup)
5999 			goto out;
6000 
6001 		if (do_swap_account) {
6002 			swp_entry_t ent = { .val = page_private(page), };
6003 			unsigned short id = lookup_swap_cgroup_id(ent);
6004 
6005 			rcu_read_lock();
6006 			memcg = mem_cgroup_from_id(id);
6007 			if (memcg && !css_tryget_online(&memcg->css))
6008 				memcg = NULL;
6009 			rcu_read_unlock();
6010 		}
6011 	}
6012 
6013 	if (!memcg)
6014 		memcg = get_mem_cgroup_from_mm(mm);
6015 
6016 	ret = try_charge(memcg, gfp_mask, nr_pages);
6017 
6018 	css_put(&memcg->css);
6019 out:
6020 	*memcgp = memcg;
6021 	return ret;
6022 }
6023 
6024 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6025 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6026 			  bool compound)
6027 {
6028 	struct mem_cgroup *memcg;
6029 	int ret;
6030 
6031 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6032 	memcg = *memcgp;
6033 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6034 	return ret;
6035 }
6036 
6037 /**
6038  * mem_cgroup_commit_charge - commit a page charge
6039  * @page: page to charge
6040  * @memcg: memcg to charge the page to
6041  * @lrucare: page might be on LRU already
6042  * @compound: charge the page as compound or small page
6043  *
6044  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6045  * after page->mapping has been set up.  This must happen atomically
6046  * as part of the page instantiation, i.e. under the page table lock
6047  * for anonymous pages, under the page lock for page and swap cache.
6048  *
6049  * In addition, the page must not be on the LRU during the commit, to
6050  * prevent racing with task migration.  If it might be, use @lrucare.
6051  *
6052  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6053  */
6054 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6055 			      bool lrucare, bool compound)
6056 {
6057 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6058 
6059 	VM_BUG_ON_PAGE(!page->mapping, page);
6060 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6061 
6062 	if (mem_cgroup_disabled())
6063 		return;
6064 	/*
6065 	 * Swap faults will attempt to charge the same page multiple
6066 	 * times.  But reuse_swap_page() might have removed the page
6067 	 * from swapcache already, so we can't check PageSwapCache().
6068 	 */
6069 	if (!memcg)
6070 		return;
6071 
6072 	commit_charge(page, memcg, lrucare);
6073 
6074 	local_irq_disable();
6075 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6076 	memcg_check_events(memcg, page);
6077 	local_irq_enable();
6078 
6079 	if (do_memsw_account() && PageSwapCache(page)) {
6080 		swp_entry_t entry = { .val = page_private(page) };
6081 		/*
6082 		 * The swap entry might not get freed for a long time,
6083 		 * let's not wait for it.  The page already received a
6084 		 * memory+swap charge, drop the swap entry duplicate.
6085 		 */
6086 		mem_cgroup_uncharge_swap(entry, nr_pages);
6087 	}
6088 }
6089 
6090 /**
6091  * mem_cgroup_cancel_charge - cancel a page charge
6092  * @page: page to charge
6093  * @memcg: memcg to charge the page to
6094  * @compound: charge the page as compound or small page
6095  *
6096  * Cancel a charge transaction started by mem_cgroup_try_charge().
6097  */
6098 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6099 		bool compound)
6100 {
6101 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6102 
6103 	if (mem_cgroup_disabled())
6104 		return;
6105 	/*
6106 	 * Swap faults will attempt to charge the same page multiple
6107 	 * times.  But reuse_swap_page() might have removed the page
6108 	 * from swapcache already, so we can't check PageSwapCache().
6109 	 */
6110 	if (!memcg)
6111 		return;
6112 
6113 	cancel_charge(memcg, nr_pages);
6114 }
6115 
6116 struct uncharge_gather {
6117 	struct mem_cgroup *memcg;
6118 	unsigned long pgpgout;
6119 	unsigned long nr_anon;
6120 	unsigned long nr_file;
6121 	unsigned long nr_kmem;
6122 	unsigned long nr_huge;
6123 	unsigned long nr_shmem;
6124 	struct page *dummy_page;
6125 };
6126 
6127 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6128 {
6129 	memset(ug, 0, sizeof(*ug));
6130 }
6131 
6132 static void uncharge_batch(const struct uncharge_gather *ug)
6133 {
6134 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6135 	unsigned long flags;
6136 
6137 	if (!mem_cgroup_is_root(ug->memcg)) {
6138 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6139 		if (do_memsw_account())
6140 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6141 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6142 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6143 		memcg_oom_recover(ug->memcg);
6144 	}
6145 
6146 	local_irq_save(flags);
6147 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6148 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6149 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6150 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6151 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6152 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6153 	memcg_check_events(ug->memcg, ug->dummy_page);
6154 	local_irq_restore(flags);
6155 
6156 	if (!mem_cgroup_is_root(ug->memcg))
6157 		css_put_many(&ug->memcg->css, nr_pages);
6158 }
6159 
6160 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6161 {
6162 	VM_BUG_ON_PAGE(PageLRU(page), page);
6163 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6164 			!PageHWPoison(page) , page);
6165 
6166 	if (!page->mem_cgroup)
6167 		return;
6168 
6169 	/*
6170 	 * Nobody should be changing or seriously looking at
6171 	 * page->mem_cgroup at this point, we have fully
6172 	 * exclusive access to the page.
6173 	 */
6174 
6175 	if (ug->memcg != page->mem_cgroup) {
6176 		if (ug->memcg) {
6177 			uncharge_batch(ug);
6178 			uncharge_gather_clear(ug);
6179 		}
6180 		ug->memcg = page->mem_cgroup;
6181 	}
6182 
6183 	if (!PageKmemcg(page)) {
6184 		unsigned int nr_pages = 1;
6185 
6186 		if (PageTransHuge(page)) {
6187 			nr_pages <<= compound_order(page);
6188 			ug->nr_huge += nr_pages;
6189 		}
6190 		if (PageAnon(page))
6191 			ug->nr_anon += nr_pages;
6192 		else {
6193 			ug->nr_file += nr_pages;
6194 			if (PageSwapBacked(page))
6195 				ug->nr_shmem += nr_pages;
6196 		}
6197 		ug->pgpgout++;
6198 	} else {
6199 		ug->nr_kmem += 1 << compound_order(page);
6200 		__ClearPageKmemcg(page);
6201 	}
6202 
6203 	ug->dummy_page = page;
6204 	page->mem_cgroup = NULL;
6205 }
6206 
6207 static void uncharge_list(struct list_head *page_list)
6208 {
6209 	struct uncharge_gather ug;
6210 	struct list_head *next;
6211 
6212 	uncharge_gather_clear(&ug);
6213 
6214 	/*
6215 	 * Note that the list can be a single page->lru; hence the
6216 	 * do-while loop instead of a simple list_for_each_entry().
6217 	 */
6218 	next = page_list->next;
6219 	do {
6220 		struct page *page;
6221 
6222 		page = list_entry(next, struct page, lru);
6223 		next = page->lru.next;
6224 
6225 		uncharge_page(page, &ug);
6226 	} while (next != page_list);
6227 
6228 	if (ug.memcg)
6229 		uncharge_batch(&ug);
6230 }
6231 
6232 /**
6233  * mem_cgroup_uncharge - uncharge a page
6234  * @page: page to uncharge
6235  *
6236  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6237  * mem_cgroup_commit_charge().
6238  */
6239 void mem_cgroup_uncharge(struct page *page)
6240 {
6241 	struct uncharge_gather ug;
6242 
6243 	if (mem_cgroup_disabled())
6244 		return;
6245 
6246 	/* Don't touch page->lru of any random page, pre-check: */
6247 	if (!page->mem_cgroup)
6248 		return;
6249 
6250 	uncharge_gather_clear(&ug);
6251 	uncharge_page(page, &ug);
6252 	uncharge_batch(&ug);
6253 }
6254 
6255 /**
6256  * mem_cgroup_uncharge_list - uncharge a list of page
6257  * @page_list: list of pages to uncharge
6258  *
6259  * Uncharge a list of pages previously charged with
6260  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6261  */
6262 void mem_cgroup_uncharge_list(struct list_head *page_list)
6263 {
6264 	if (mem_cgroup_disabled())
6265 		return;
6266 
6267 	if (!list_empty(page_list))
6268 		uncharge_list(page_list);
6269 }
6270 
6271 /**
6272  * mem_cgroup_migrate - charge a page's replacement
6273  * @oldpage: currently circulating page
6274  * @newpage: replacement page
6275  *
6276  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6277  * be uncharged upon free.
6278  *
6279  * Both pages must be locked, @newpage->mapping must be set up.
6280  */
6281 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6282 {
6283 	struct mem_cgroup *memcg;
6284 	unsigned int nr_pages;
6285 	bool compound;
6286 	unsigned long flags;
6287 
6288 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6289 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6290 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6291 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6292 		       newpage);
6293 
6294 	if (mem_cgroup_disabled())
6295 		return;
6296 
6297 	/* Page cache replacement: new page already charged? */
6298 	if (newpage->mem_cgroup)
6299 		return;
6300 
6301 	/* Swapcache readahead pages can get replaced before being charged */
6302 	memcg = oldpage->mem_cgroup;
6303 	if (!memcg)
6304 		return;
6305 
6306 	/* Force-charge the new page. The old one will be freed soon */
6307 	compound = PageTransHuge(newpage);
6308 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6309 
6310 	page_counter_charge(&memcg->memory, nr_pages);
6311 	if (do_memsw_account())
6312 		page_counter_charge(&memcg->memsw, nr_pages);
6313 	css_get_many(&memcg->css, nr_pages);
6314 
6315 	commit_charge(newpage, memcg, false);
6316 
6317 	local_irq_save(flags);
6318 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6319 	memcg_check_events(memcg, newpage);
6320 	local_irq_restore(flags);
6321 }
6322 
6323 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6324 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6325 
6326 void mem_cgroup_sk_alloc(struct sock *sk)
6327 {
6328 	struct mem_cgroup *memcg;
6329 
6330 	if (!mem_cgroup_sockets_enabled)
6331 		return;
6332 
6333 	/*
6334 	 * Socket cloning can throw us here with sk_memcg already
6335 	 * filled. It won't however, necessarily happen from
6336 	 * process context. So the test for root memcg given
6337 	 * the current task's memcg won't help us in this case.
6338 	 *
6339 	 * Respecting the original socket's memcg is a better
6340 	 * decision in this case.
6341 	 */
6342 	if (sk->sk_memcg) {
6343 		css_get(&sk->sk_memcg->css);
6344 		return;
6345 	}
6346 
6347 	rcu_read_lock();
6348 	memcg = mem_cgroup_from_task(current);
6349 	if (memcg == root_mem_cgroup)
6350 		goto out;
6351 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6352 		goto out;
6353 	if (css_tryget_online(&memcg->css))
6354 		sk->sk_memcg = memcg;
6355 out:
6356 	rcu_read_unlock();
6357 }
6358 
6359 void mem_cgroup_sk_free(struct sock *sk)
6360 {
6361 	if (sk->sk_memcg)
6362 		css_put(&sk->sk_memcg->css);
6363 }
6364 
6365 /**
6366  * mem_cgroup_charge_skmem - charge socket memory
6367  * @memcg: memcg to charge
6368  * @nr_pages: number of pages to charge
6369  *
6370  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6371  * @memcg's configured limit, %false if the charge had to be forced.
6372  */
6373 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6374 {
6375 	gfp_t gfp_mask = GFP_KERNEL;
6376 
6377 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6378 		struct page_counter *fail;
6379 
6380 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6381 			memcg->tcpmem_pressure = 0;
6382 			return true;
6383 		}
6384 		page_counter_charge(&memcg->tcpmem, nr_pages);
6385 		memcg->tcpmem_pressure = 1;
6386 		return false;
6387 	}
6388 
6389 	/* Don't block in the packet receive path */
6390 	if (in_softirq())
6391 		gfp_mask = GFP_NOWAIT;
6392 
6393 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6394 
6395 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6396 		return true;
6397 
6398 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6399 	return false;
6400 }
6401 
6402 /**
6403  * mem_cgroup_uncharge_skmem - uncharge socket memory
6404  * @memcg: memcg to uncharge
6405  * @nr_pages: number of pages to uncharge
6406  */
6407 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6408 {
6409 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6410 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6411 		return;
6412 	}
6413 
6414 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6415 
6416 	refill_stock(memcg, nr_pages);
6417 }
6418 
6419 static int __init cgroup_memory(char *s)
6420 {
6421 	char *token;
6422 
6423 	while ((token = strsep(&s, ",")) != NULL) {
6424 		if (!*token)
6425 			continue;
6426 		if (!strcmp(token, "nosocket"))
6427 			cgroup_memory_nosocket = true;
6428 		if (!strcmp(token, "nokmem"))
6429 			cgroup_memory_nokmem = true;
6430 	}
6431 	return 0;
6432 }
6433 __setup("cgroup.memory=", cgroup_memory);
6434 
6435 /*
6436  * subsys_initcall() for memory controller.
6437  *
6438  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6439  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6440  * basically everything that doesn't depend on a specific mem_cgroup structure
6441  * should be initialized from here.
6442  */
6443 static int __init mem_cgroup_init(void)
6444 {
6445 	int cpu, node;
6446 
6447 #ifdef CONFIG_MEMCG_KMEM
6448 	/*
6449 	 * Kmem cache creation is mostly done with the slab_mutex held,
6450 	 * so use a workqueue with limited concurrency to avoid stalling
6451 	 * all worker threads in case lots of cgroups are created and
6452 	 * destroyed simultaneously.
6453 	 */
6454 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6455 	BUG_ON(!memcg_kmem_cache_wq);
6456 #endif
6457 
6458 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6459 				  memcg_hotplug_cpu_dead);
6460 
6461 	for_each_possible_cpu(cpu)
6462 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6463 			  drain_local_stock);
6464 
6465 	for_each_node(node) {
6466 		struct mem_cgroup_tree_per_node *rtpn;
6467 
6468 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6469 				    node_online(node) ? node : NUMA_NO_NODE);
6470 
6471 		rtpn->rb_root = RB_ROOT;
6472 		rtpn->rb_rightmost = NULL;
6473 		spin_lock_init(&rtpn->lock);
6474 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6475 	}
6476 
6477 	return 0;
6478 }
6479 subsys_initcall(mem_cgroup_init);
6480 
6481 #ifdef CONFIG_MEMCG_SWAP
6482 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6483 {
6484 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6485 		/*
6486 		 * The root cgroup cannot be destroyed, so it's refcount must
6487 		 * always be >= 1.
6488 		 */
6489 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6490 			VM_BUG_ON(1);
6491 			break;
6492 		}
6493 		memcg = parent_mem_cgroup(memcg);
6494 		if (!memcg)
6495 			memcg = root_mem_cgroup;
6496 	}
6497 	return memcg;
6498 }
6499 
6500 /**
6501  * mem_cgroup_swapout - transfer a memsw charge to swap
6502  * @page: page whose memsw charge to transfer
6503  * @entry: swap entry to move the charge to
6504  *
6505  * Transfer the memsw charge of @page to @entry.
6506  */
6507 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6508 {
6509 	struct mem_cgroup *memcg, *swap_memcg;
6510 	unsigned int nr_entries;
6511 	unsigned short oldid;
6512 
6513 	VM_BUG_ON_PAGE(PageLRU(page), page);
6514 	VM_BUG_ON_PAGE(page_count(page), page);
6515 
6516 	if (!do_memsw_account())
6517 		return;
6518 
6519 	memcg = page->mem_cgroup;
6520 
6521 	/* Readahead page, never charged */
6522 	if (!memcg)
6523 		return;
6524 
6525 	/*
6526 	 * In case the memcg owning these pages has been offlined and doesn't
6527 	 * have an ID allocated to it anymore, charge the closest online
6528 	 * ancestor for the swap instead and transfer the memory+swap charge.
6529 	 */
6530 	swap_memcg = mem_cgroup_id_get_online(memcg);
6531 	nr_entries = hpage_nr_pages(page);
6532 	/* Get references for the tail pages, too */
6533 	if (nr_entries > 1)
6534 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6535 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6536 				   nr_entries);
6537 	VM_BUG_ON_PAGE(oldid, page);
6538 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6539 
6540 	page->mem_cgroup = NULL;
6541 
6542 	if (!mem_cgroup_is_root(memcg))
6543 		page_counter_uncharge(&memcg->memory, nr_entries);
6544 
6545 	if (memcg != swap_memcg) {
6546 		if (!mem_cgroup_is_root(swap_memcg))
6547 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6548 		page_counter_uncharge(&memcg->memsw, nr_entries);
6549 	}
6550 
6551 	/*
6552 	 * Interrupts should be disabled here because the caller holds the
6553 	 * i_pages lock which is taken with interrupts-off. It is
6554 	 * important here to have the interrupts disabled because it is the
6555 	 * only synchronisation we have for updating the per-CPU variables.
6556 	 */
6557 	VM_BUG_ON(!irqs_disabled());
6558 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6559 				     -nr_entries);
6560 	memcg_check_events(memcg, page);
6561 
6562 	if (!mem_cgroup_is_root(memcg))
6563 		css_put_many(&memcg->css, nr_entries);
6564 }
6565 
6566 /**
6567  * mem_cgroup_try_charge_swap - try charging swap space for a page
6568  * @page: page being added to swap
6569  * @entry: swap entry to charge
6570  *
6571  * Try to charge @page's memcg for the swap space at @entry.
6572  *
6573  * Returns 0 on success, -ENOMEM on failure.
6574  */
6575 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6576 {
6577 	unsigned int nr_pages = hpage_nr_pages(page);
6578 	struct page_counter *counter;
6579 	struct mem_cgroup *memcg;
6580 	unsigned short oldid;
6581 
6582 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6583 		return 0;
6584 
6585 	memcg = page->mem_cgroup;
6586 
6587 	/* Readahead page, never charged */
6588 	if (!memcg)
6589 		return 0;
6590 
6591 	if (!entry.val) {
6592 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6593 		return 0;
6594 	}
6595 
6596 	memcg = mem_cgroup_id_get_online(memcg);
6597 
6598 	if (!mem_cgroup_is_root(memcg) &&
6599 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6600 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6601 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6602 		mem_cgroup_id_put(memcg);
6603 		return -ENOMEM;
6604 	}
6605 
6606 	/* Get references for the tail pages, too */
6607 	if (nr_pages > 1)
6608 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6609 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6610 	VM_BUG_ON_PAGE(oldid, page);
6611 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6612 
6613 	return 0;
6614 }
6615 
6616 /**
6617  * mem_cgroup_uncharge_swap - uncharge swap space
6618  * @entry: swap entry to uncharge
6619  * @nr_pages: the amount of swap space to uncharge
6620  */
6621 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6622 {
6623 	struct mem_cgroup *memcg;
6624 	unsigned short id;
6625 
6626 	if (!do_swap_account)
6627 		return;
6628 
6629 	id = swap_cgroup_record(entry, 0, nr_pages);
6630 	rcu_read_lock();
6631 	memcg = mem_cgroup_from_id(id);
6632 	if (memcg) {
6633 		if (!mem_cgroup_is_root(memcg)) {
6634 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6635 				page_counter_uncharge(&memcg->swap, nr_pages);
6636 			else
6637 				page_counter_uncharge(&memcg->memsw, nr_pages);
6638 		}
6639 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6640 		mem_cgroup_id_put_many(memcg, nr_pages);
6641 	}
6642 	rcu_read_unlock();
6643 }
6644 
6645 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6646 {
6647 	long nr_swap_pages = get_nr_swap_pages();
6648 
6649 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6650 		return nr_swap_pages;
6651 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6652 		nr_swap_pages = min_t(long, nr_swap_pages,
6653 				      READ_ONCE(memcg->swap.max) -
6654 				      page_counter_read(&memcg->swap));
6655 	return nr_swap_pages;
6656 }
6657 
6658 bool mem_cgroup_swap_full(struct page *page)
6659 {
6660 	struct mem_cgroup *memcg;
6661 
6662 	VM_BUG_ON_PAGE(!PageLocked(page), page);
6663 
6664 	if (vm_swap_full())
6665 		return true;
6666 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6667 		return false;
6668 
6669 	memcg = page->mem_cgroup;
6670 	if (!memcg)
6671 		return false;
6672 
6673 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6674 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6675 			return true;
6676 
6677 	return false;
6678 }
6679 
6680 /* for remember boot option*/
6681 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6682 static int really_do_swap_account __initdata = 1;
6683 #else
6684 static int really_do_swap_account __initdata;
6685 #endif
6686 
6687 static int __init enable_swap_account(char *s)
6688 {
6689 	if (!strcmp(s, "1"))
6690 		really_do_swap_account = 1;
6691 	else if (!strcmp(s, "0"))
6692 		really_do_swap_account = 0;
6693 	return 1;
6694 }
6695 __setup("swapaccount=", enable_swap_account);
6696 
6697 static u64 swap_current_read(struct cgroup_subsys_state *css,
6698 			     struct cftype *cft)
6699 {
6700 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6701 
6702 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6703 }
6704 
6705 static int swap_max_show(struct seq_file *m, void *v)
6706 {
6707 	return seq_puts_memcg_tunable(m,
6708 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6709 }
6710 
6711 static ssize_t swap_max_write(struct kernfs_open_file *of,
6712 			      char *buf, size_t nbytes, loff_t off)
6713 {
6714 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6715 	unsigned long max;
6716 	int err;
6717 
6718 	buf = strstrip(buf);
6719 	err = page_counter_memparse(buf, "max", &max);
6720 	if (err)
6721 		return err;
6722 
6723 	xchg(&memcg->swap.max, max);
6724 
6725 	return nbytes;
6726 }
6727 
6728 static int swap_events_show(struct seq_file *m, void *v)
6729 {
6730 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6731 
6732 	seq_printf(m, "max %lu\n",
6733 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6734 	seq_printf(m, "fail %lu\n",
6735 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6736 
6737 	return 0;
6738 }
6739 
6740 static struct cftype swap_files[] = {
6741 	{
6742 		.name = "swap.current",
6743 		.flags = CFTYPE_NOT_ON_ROOT,
6744 		.read_u64 = swap_current_read,
6745 	},
6746 	{
6747 		.name = "swap.max",
6748 		.flags = CFTYPE_NOT_ON_ROOT,
6749 		.seq_show = swap_max_show,
6750 		.write = swap_max_write,
6751 	},
6752 	{
6753 		.name = "swap.events",
6754 		.flags = CFTYPE_NOT_ON_ROOT,
6755 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
6756 		.seq_show = swap_events_show,
6757 	},
6758 	{ }	/* terminate */
6759 };
6760 
6761 static struct cftype memsw_cgroup_files[] = {
6762 	{
6763 		.name = "memsw.usage_in_bytes",
6764 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6765 		.read_u64 = mem_cgroup_read_u64,
6766 	},
6767 	{
6768 		.name = "memsw.max_usage_in_bytes",
6769 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770 		.write = mem_cgroup_reset,
6771 		.read_u64 = mem_cgroup_read_u64,
6772 	},
6773 	{
6774 		.name = "memsw.limit_in_bytes",
6775 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6776 		.write = mem_cgroup_write,
6777 		.read_u64 = mem_cgroup_read_u64,
6778 	},
6779 	{
6780 		.name = "memsw.failcnt",
6781 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6782 		.write = mem_cgroup_reset,
6783 		.read_u64 = mem_cgroup_read_u64,
6784 	},
6785 	{ },	/* terminate */
6786 };
6787 
6788 static int __init mem_cgroup_swap_init(void)
6789 {
6790 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6791 		do_swap_account = 1;
6792 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6793 					       swap_files));
6794 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6795 						  memsw_cgroup_files));
6796 	}
6797 	return 0;
6798 }
6799 subsys_initcall(mem_cgroup_swap_init);
6800 
6801 #endif /* CONFIG_MEMCG_SWAP */
6802