xref: /openbmc/linux/mm/memcontrol.c (revision 163b0991)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69 
70 #include <linux/uaccess.h>
71 
72 #include <trace/events/vmscan.h>
73 
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76 
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78 
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 bool cgroup_memory_noswap __read_mostly;
91 #else
92 #define cgroup_memory_noswap		1
93 #endif
94 
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98 
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
103 }
104 
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107 
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112 
113 struct mem_cgroup_tree_per_node {
114 	struct rb_root rb_root;
115 	struct rb_node *rb_rightmost;
116 	spinlock_t lock;
117 };
118 
119 struct mem_cgroup_tree {
120 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122 
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124 
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 	struct list_head list;
128 	struct eventfd_ctx *eventfd;
129 };
130 
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135 	/*
136 	 * memcg which the event belongs to.
137 	 */
138 	struct mem_cgroup *memcg;
139 	/*
140 	 * eventfd to signal userspace about the event.
141 	 */
142 	struct eventfd_ctx *eventfd;
143 	/*
144 	 * Each of these stored in a list by the cgroup.
145 	 */
146 	struct list_head list;
147 	/*
148 	 * register_event() callback will be used to add new userspace
149 	 * waiter for changes related to this event.  Use eventfd_signal()
150 	 * on eventfd to send notification to userspace.
151 	 */
152 	int (*register_event)(struct mem_cgroup *memcg,
153 			      struct eventfd_ctx *eventfd, const char *args);
154 	/*
155 	 * unregister_event() callback will be called when userspace closes
156 	 * the eventfd or on cgroup removing.  This callback must be set,
157 	 * if you want provide notification functionality.
158 	 */
159 	void (*unregister_event)(struct mem_cgroup *memcg,
160 				 struct eventfd_ctx *eventfd);
161 	/*
162 	 * All fields below needed to unregister event when
163 	 * userspace closes eventfd.
164 	 */
165 	poll_table pt;
166 	wait_queue_head_t *wqh;
167 	wait_queue_entry_t wait;
168 	struct work_struct remove;
169 };
170 
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173 
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON	0x1U
179 #define MOVE_FILE	0x2U
180 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181 
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 	spinlock_t	  lock; /* for from, to */
185 	struct mm_struct  *mm;
186 	struct mem_cgroup *from;
187 	struct mem_cgroup *to;
188 	unsigned long flags;
189 	unsigned long precharge;
190 	unsigned long moved_charge;
191 	unsigned long moved_swap;
192 	struct task_struct *moving_task;	/* a task moving charges */
193 	wait_queue_head_t waitq;		/* a waitq for other context */
194 } mc = {
195 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198 
199 /*
200  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205 
206 /* for encoding cft->private value on file */
207 enum res_type {
208 	_MEM,
209 	_MEMSWAP,
210 	_OOM_TYPE,
211 	_KMEM,
212 	_TCP,
213 };
214 
215 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
216 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
217 #define MEMFILE_ATTR(val)	((val) & 0xffff)
218 /* Used for OOM nofiier */
219 #define OOM_CONTROL		(0)
220 
221 /*
222  * Iteration constructs for visiting all cgroups (under a tree).  If
223  * loops are exited prematurely (break), mem_cgroup_iter_break() must
224  * be used for reference counting.
225  */
226 #define for_each_mem_cgroup_tree(iter, root)		\
227 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
228 	     iter != NULL;				\
229 	     iter = mem_cgroup_iter(root, iter, NULL))
230 
231 #define for_each_mem_cgroup(iter)			\
232 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
233 	     iter != NULL;				\
234 	     iter = mem_cgroup_iter(NULL, iter, NULL))
235 
236 static inline bool should_force_charge(void)
237 {
238 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 		(current->flags & PF_EXITING);
240 }
241 
242 /* Some nice accessors for the vmpressure. */
243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244 {
245 	if (!memcg)
246 		memcg = root_mem_cgroup;
247 	return &memcg->vmpressure;
248 }
249 
250 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251 {
252 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253 }
254 
255 #ifdef CONFIG_MEMCG_KMEM
256 extern spinlock_t css_set_lock;
257 
258 static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
259 			       unsigned int nr_pages);
260 static void __memcg_kmem_uncharge(struct mem_cgroup *memcg,
261 				  unsigned int nr_pages);
262 
263 static void obj_cgroup_release(struct percpu_ref *ref)
264 {
265 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266 	struct mem_cgroup *memcg;
267 	unsigned int nr_bytes;
268 	unsigned int nr_pages;
269 	unsigned long flags;
270 
271 	/*
272 	 * At this point all allocated objects are freed, and
273 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
274 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
275 	 *
276 	 * The following sequence can lead to it:
277 	 * 1) CPU0: objcg == stock->cached_objcg
278 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
279 	 *          PAGE_SIZE bytes are charged
280 	 * 3) CPU1: a process from another memcg is allocating something,
281 	 *          the stock if flushed,
282 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
283 	 * 5) CPU0: we do release this object,
284 	 *          92 bytes are added to stock->nr_bytes
285 	 * 6) CPU0: stock is flushed,
286 	 *          92 bytes are added to objcg->nr_charged_bytes
287 	 *
288 	 * In the result, nr_charged_bytes == PAGE_SIZE.
289 	 * This page will be uncharged in obj_cgroup_release().
290 	 */
291 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
292 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
293 	nr_pages = nr_bytes >> PAGE_SHIFT;
294 
295 	spin_lock_irqsave(&css_set_lock, flags);
296 	memcg = obj_cgroup_memcg(objcg);
297 	if (nr_pages)
298 		__memcg_kmem_uncharge(memcg, nr_pages);
299 	list_del(&objcg->list);
300 	mem_cgroup_put(memcg);
301 	spin_unlock_irqrestore(&css_set_lock, flags);
302 
303 	percpu_ref_exit(ref);
304 	kfree_rcu(objcg, rcu);
305 }
306 
307 static struct obj_cgroup *obj_cgroup_alloc(void)
308 {
309 	struct obj_cgroup *objcg;
310 	int ret;
311 
312 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
313 	if (!objcg)
314 		return NULL;
315 
316 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
317 			      GFP_KERNEL);
318 	if (ret) {
319 		kfree(objcg);
320 		return NULL;
321 	}
322 	INIT_LIST_HEAD(&objcg->list);
323 	return objcg;
324 }
325 
326 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
327 				  struct mem_cgroup *parent)
328 {
329 	struct obj_cgroup *objcg, *iter;
330 
331 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
332 
333 	spin_lock_irq(&css_set_lock);
334 
335 	/* Move active objcg to the parent's list */
336 	xchg(&objcg->memcg, parent);
337 	css_get(&parent->css);
338 	list_add(&objcg->list, &parent->objcg_list);
339 
340 	/* Move already reparented objcgs to the parent's list */
341 	list_for_each_entry(iter, &memcg->objcg_list, list) {
342 		css_get(&parent->css);
343 		xchg(&iter->memcg, parent);
344 		css_put(&memcg->css);
345 	}
346 	list_splice(&memcg->objcg_list, &parent->objcg_list);
347 
348 	spin_unlock_irq(&css_set_lock);
349 
350 	percpu_ref_kill(&objcg->refcnt);
351 }
352 
353 /*
354  * This will be used as a shrinker list's index.
355  * The main reason for not using cgroup id for this:
356  *  this works better in sparse environments, where we have a lot of memcgs,
357  *  but only a few kmem-limited. Or also, if we have, for instance, 200
358  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
359  *  200 entry array for that.
360  *
361  * The current size of the caches array is stored in memcg_nr_cache_ids. It
362  * will double each time we have to increase it.
363  */
364 static DEFINE_IDA(memcg_cache_ida);
365 int memcg_nr_cache_ids;
366 
367 /* Protects memcg_nr_cache_ids */
368 static DECLARE_RWSEM(memcg_cache_ids_sem);
369 
370 void memcg_get_cache_ids(void)
371 {
372 	down_read(&memcg_cache_ids_sem);
373 }
374 
375 void memcg_put_cache_ids(void)
376 {
377 	up_read(&memcg_cache_ids_sem);
378 }
379 
380 /*
381  * MIN_SIZE is different than 1, because we would like to avoid going through
382  * the alloc/free process all the time. In a small machine, 4 kmem-limited
383  * cgroups is a reasonable guess. In the future, it could be a parameter or
384  * tunable, but that is strictly not necessary.
385  *
386  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
387  * this constant directly from cgroup, but it is understandable that this is
388  * better kept as an internal representation in cgroup.c. In any case, the
389  * cgrp_id space is not getting any smaller, and we don't have to necessarily
390  * increase ours as well if it increases.
391  */
392 #define MEMCG_CACHES_MIN_SIZE 4
393 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
394 
395 /*
396  * A lot of the calls to the cache allocation functions are expected to be
397  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
398  * conditional to this static branch, we'll have to allow modules that does
399  * kmem_cache_alloc and the such to see this symbol as well
400  */
401 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
402 EXPORT_SYMBOL(memcg_kmem_enabled_key);
403 #endif
404 
405 static int memcg_shrinker_map_size;
406 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
407 
408 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
409 {
410 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
411 }
412 
413 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
414 					 int size, int old_size)
415 {
416 	struct memcg_shrinker_map *new, *old;
417 	int nid;
418 
419 	lockdep_assert_held(&memcg_shrinker_map_mutex);
420 
421 	for_each_node(nid) {
422 		old = rcu_dereference_protected(
423 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
424 		/* Not yet online memcg */
425 		if (!old)
426 			return 0;
427 
428 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
429 		if (!new)
430 			return -ENOMEM;
431 
432 		/* Set all old bits, clear all new bits */
433 		memset(new->map, (int)0xff, old_size);
434 		memset((void *)new->map + old_size, 0, size - old_size);
435 
436 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
437 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
438 	}
439 
440 	return 0;
441 }
442 
443 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
444 {
445 	struct mem_cgroup_per_node *pn;
446 	struct memcg_shrinker_map *map;
447 	int nid;
448 
449 	if (mem_cgroup_is_root(memcg))
450 		return;
451 
452 	for_each_node(nid) {
453 		pn = mem_cgroup_nodeinfo(memcg, nid);
454 		map = rcu_dereference_protected(pn->shrinker_map, true);
455 		kvfree(map);
456 		rcu_assign_pointer(pn->shrinker_map, NULL);
457 	}
458 }
459 
460 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
461 {
462 	struct memcg_shrinker_map *map;
463 	int nid, size, ret = 0;
464 
465 	if (mem_cgroup_is_root(memcg))
466 		return 0;
467 
468 	mutex_lock(&memcg_shrinker_map_mutex);
469 	size = memcg_shrinker_map_size;
470 	for_each_node(nid) {
471 		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
472 		if (!map) {
473 			memcg_free_shrinker_maps(memcg);
474 			ret = -ENOMEM;
475 			break;
476 		}
477 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
478 	}
479 	mutex_unlock(&memcg_shrinker_map_mutex);
480 
481 	return ret;
482 }
483 
484 int memcg_expand_shrinker_maps(int new_id)
485 {
486 	int size, old_size, ret = 0;
487 	struct mem_cgroup *memcg;
488 
489 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
490 	old_size = memcg_shrinker_map_size;
491 	if (size <= old_size)
492 		return 0;
493 
494 	mutex_lock(&memcg_shrinker_map_mutex);
495 	if (!root_mem_cgroup)
496 		goto unlock;
497 
498 	for_each_mem_cgroup(memcg) {
499 		if (mem_cgroup_is_root(memcg))
500 			continue;
501 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
502 		if (ret) {
503 			mem_cgroup_iter_break(NULL, memcg);
504 			goto unlock;
505 		}
506 	}
507 unlock:
508 	if (!ret)
509 		memcg_shrinker_map_size = size;
510 	mutex_unlock(&memcg_shrinker_map_mutex);
511 	return ret;
512 }
513 
514 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
515 {
516 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
517 		struct memcg_shrinker_map *map;
518 
519 		rcu_read_lock();
520 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
521 		/* Pairs with smp mb in shrink_slab() */
522 		smp_mb__before_atomic();
523 		set_bit(shrinker_id, map->map);
524 		rcu_read_unlock();
525 	}
526 }
527 
528 /**
529  * mem_cgroup_css_from_page - css of the memcg associated with a page
530  * @page: page of interest
531  *
532  * If memcg is bound to the default hierarchy, css of the memcg associated
533  * with @page is returned.  The returned css remains associated with @page
534  * until it is released.
535  *
536  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
537  * is returned.
538  */
539 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
540 {
541 	struct mem_cgroup *memcg;
542 
543 	memcg = page_memcg(page);
544 
545 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
546 		memcg = root_mem_cgroup;
547 
548 	return &memcg->css;
549 }
550 
551 /**
552  * page_cgroup_ino - return inode number of the memcg a page is charged to
553  * @page: the page
554  *
555  * Look up the closest online ancestor of the memory cgroup @page is charged to
556  * and return its inode number or 0 if @page is not charged to any cgroup. It
557  * is safe to call this function without holding a reference to @page.
558  *
559  * Note, this function is inherently racy, because there is nothing to prevent
560  * the cgroup inode from getting torn down and potentially reallocated a moment
561  * after page_cgroup_ino() returns, so it only should be used by callers that
562  * do not care (such as procfs interfaces).
563  */
564 ino_t page_cgroup_ino(struct page *page)
565 {
566 	struct mem_cgroup *memcg;
567 	unsigned long ino = 0;
568 
569 	rcu_read_lock();
570 	memcg = page_memcg_check(page);
571 
572 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
573 		memcg = parent_mem_cgroup(memcg);
574 	if (memcg)
575 		ino = cgroup_ino(memcg->css.cgroup);
576 	rcu_read_unlock();
577 	return ino;
578 }
579 
580 static struct mem_cgroup_per_node *
581 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
582 {
583 	int nid = page_to_nid(page);
584 
585 	return memcg->nodeinfo[nid];
586 }
587 
588 static struct mem_cgroup_tree_per_node *
589 soft_limit_tree_node(int nid)
590 {
591 	return soft_limit_tree.rb_tree_per_node[nid];
592 }
593 
594 static struct mem_cgroup_tree_per_node *
595 soft_limit_tree_from_page(struct page *page)
596 {
597 	int nid = page_to_nid(page);
598 
599 	return soft_limit_tree.rb_tree_per_node[nid];
600 }
601 
602 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
603 					 struct mem_cgroup_tree_per_node *mctz,
604 					 unsigned long new_usage_in_excess)
605 {
606 	struct rb_node **p = &mctz->rb_root.rb_node;
607 	struct rb_node *parent = NULL;
608 	struct mem_cgroup_per_node *mz_node;
609 	bool rightmost = true;
610 
611 	if (mz->on_tree)
612 		return;
613 
614 	mz->usage_in_excess = new_usage_in_excess;
615 	if (!mz->usage_in_excess)
616 		return;
617 	while (*p) {
618 		parent = *p;
619 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
620 					tree_node);
621 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
622 			p = &(*p)->rb_left;
623 			rightmost = false;
624 		} else {
625 			p = &(*p)->rb_right;
626 		}
627 	}
628 
629 	if (rightmost)
630 		mctz->rb_rightmost = &mz->tree_node;
631 
632 	rb_link_node(&mz->tree_node, parent, p);
633 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
634 	mz->on_tree = true;
635 }
636 
637 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
638 					 struct mem_cgroup_tree_per_node *mctz)
639 {
640 	if (!mz->on_tree)
641 		return;
642 
643 	if (&mz->tree_node == mctz->rb_rightmost)
644 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
645 
646 	rb_erase(&mz->tree_node, &mctz->rb_root);
647 	mz->on_tree = false;
648 }
649 
650 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
651 				       struct mem_cgroup_tree_per_node *mctz)
652 {
653 	unsigned long flags;
654 
655 	spin_lock_irqsave(&mctz->lock, flags);
656 	__mem_cgroup_remove_exceeded(mz, mctz);
657 	spin_unlock_irqrestore(&mctz->lock, flags);
658 }
659 
660 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
661 {
662 	unsigned long nr_pages = page_counter_read(&memcg->memory);
663 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
664 	unsigned long excess = 0;
665 
666 	if (nr_pages > soft_limit)
667 		excess = nr_pages - soft_limit;
668 
669 	return excess;
670 }
671 
672 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
673 {
674 	unsigned long excess;
675 	struct mem_cgroup_per_node *mz;
676 	struct mem_cgroup_tree_per_node *mctz;
677 
678 	mctz = soft_limit_tree_from_page(page);
679 	if (!mctz)
680 		return;
681 	/*
682 	 * Necessary to update all ancestors when hierarchy is used.
683 	 * because their event counter is not touched.
684 	 */
685 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
686 		mz = mem_cgroup_page_nodeinfo(memcg, page);
687 		excess = soft_limit_excess(memcg);
688 		/*
689 		 * We have to update the tree if mz is on RB-tree or
690 		 * mem is over its softlimit.
691 		 */
692 		if (excess || mz->on_tree) {
693 			unsigned long flags;
694 
695 			spin_lock_irqsave(&mctz->lock, flags);
696 			/* if on-tree, remove it */
697 			if (mz->on_tree)
698 				__mem_cgroup_remove_exceeded(mz, mctz);
699 			/*
700 			 * Insert again. mz->usage_in_excess will be updated.
701 			 * If excess is 0, no tree ops.
702 			 */
703 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
704 			spin_unlock_irqrestore(&mctz->lock, flags);
705 		}
706 	}
707 }
708 
709 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
710 {
711 	struct mem_cgroup_tree_per_node *mctz;
712 	struct mem_cgroup_per_node *mz;
713 	int nid;
714 
715 	for_each_node(nid) {
716 		mz = mem_cgroup_nodeinfo(memcg, nid);
717 		mctz = soft_limit_tree_node(nid);
718 		if (mctz)
719 			mem_cgroup_remove_exceeded(mz, mctz);
720 	}
721 }
722 
723 static struct mem_cgroup_per_node *
724 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
725 {
726 	struct mem_cgroup_per_node *mz;
727 
728 retry:
729 	mz = NULL;
730 	if (!mctz->rb_rightmost)
731 		goto done;		/* Nothing to reclaim from */
732 
733 	mz = rb_entry(mctz->rb_rightmost,
734 		      struct mem_cgroup_per_node, tree_node);
735 	/*
736 	 * Remove the node now but someone else can add it back,
737 	 * we will to add it back at the end of reclaim to its correct
738 	 * position in the tree.
739 	 */
740 	__mem_cgroup_remove_exceeded(mz, mctz);
741 	if (!soft_limit_excess(mz->memcg) ||
742 	    !css_tryget(&mz->memcg->css))
743 		goto retry;
744 done:
745 	return mz;
746 }
747 
748 static struct mem_cgroup_per_node *
749 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
750 {
751 	struct mem_cgroup_per_node *mz;
752 
753 	spin_lock_irq(&mctz->lock);
754 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
755 	spin_unlock_irq(&mctz->lock);
756 	return mz;
757 }
758 
759 /**
760  * __mod_memcg_state - update cgroup memory statistics
761  * @memcg: the memory cgroup
762  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
763  * @val: delta to add to the counter, can be negative
764  */
765 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
766 {
767 	long x, threshold = MEMCG_CHARGE_BATCH;
768 
769 	if (mem_cgroup_disabled())
770 		return;
771 
772 	if (memcg_stat_item_in_bytes(idx))
773 		threshold <<= PAGE_SHIFT;
774 
775 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
776 	if (unlikely(abs(x) > threshold)) {
777 		struct mem_cgroup *mi;
778 
779 		/*
780 		 * Batch local counters to keep them in sync with
781 		 * the hierarchical ones.
782 		 */
783 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
784 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
785 			atomic_long_add(x, &mi->vmstats[idx]);
786 		x = 0;
787 	}
788 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
789 }
790 
791 static struct mem_cgroup_per_node *
792 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
793 {
794 	struct mem_cgroup *parent;
795 
796 	parent = parent_mem_cgroup(pn->memcg);
797 	if (!parent)
798 		return NULL;
799 	return mem_cgroup_nodeinfo(parent, nid);
800 }
801 
802 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
803 			      int val)
804 {
805 	struct mem_cgroup_per_node *pn;
806 	struct mem_cgroup *memcg;
807 	long x, threshold = MEMCG_CHARGE_BATCH;
808 
809 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
810 	memcg = pn->memcg;
811 
812 	/* Update memcg */
813 	__mod_memcg_state(memcg, idx, val);
814 
815 	/* Update lruvec */
816 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
817 
818 	if (vmstat_item_in_bytes(idx))
819 		threshold <<= PAGE_SHIFT;
820 
821 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
822 	if (unlikely(abs(x) > threshold)) {
823 		pg_data_t *pgdat = lruvec_pgdat(lruvec);
824 		struct mem_cgroup_per_node *pi;
825 
826 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
827 			atomic_long_add(x, &pi->lruvec_stat[idx]);
828 		x = 0;
829 	}
830 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
831 }
832 
833 /**
834  * __mod_lruvec_state - update lruvec memory statistics
835  * @lruvec: the lruvec
836  * @idx: the stat item
837  * @val: delta to add to the counter, can be negative
838  *
839  * The lruvec is the intersection of the NUMA node and a cgroup. This
840  * function updates the all three counters that are affected by a
841  * change of state at this level: per-node, per-cgroup, per-lruvec.
842  */
843 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
844 			int val)
845 {
846 	/* Update node */
847 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
848 
849 	/* Update memcg and lruvec */
850 	if (!mem_cgroup_disabled())
851 		__mod_memcg_lruvec_state(lruvec, idx, val);
852 }
853 
854 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
855 			     int val)
856 {
857 	struct page *head = compound_head(page); /* rmap on tail pages */
858 	struct mem_cgroup *memcg = page_memcg(head);
859 	pg_data_t *pgdat = page_pgdat(page);
860 	struct lruvec *lruvec;
861 
862 	/* Untracked pages have no memcg, no lruvec. Update only the node */
863 	if (!memcg) {
864 		__mod_node_page_state(pgdat, idx, val);
865 		return;
866 	}
867 
868 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
869 	__mod_lruvec_state(lruvec, idx, val);
870 }
871 EXPORT_SYMBOL(__mod_lruvec_page_state);
872 
873 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
874 {
875 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
876 	struct mem_cgroup *memcg;
877 	struct lruvec *lruvec;
878 
879 	rcu_read_lock();
880 	memcg = mem_cgroup_from_obj(p);
881 
882 	/*
883 	 * Untracked pages have no memcg, no lruvec. Update only the
884 	 * node. If we reparent the slab objects to the root memcg,
885 	 * when we free the slab object, we need to update the per-memcg
886 	 * vmstats to keep it correct for the root memcg.
887 	 */
888 	if (!memcg) {
889 		__mod_node_page_state(pgdat, idx, val);
890 	} else {
891 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
892 		__mod_lruvec_state(lruvec, idx, val);
893 	}
894 	rcu_read_unlock();
895 }
896 
897 /**
898  * __count_memcg_events - account VM events in a cgroup
899  * @memcg: the memory cgroup
900  * @idx: the event item
901  * @count: the number of events that occured
902  */
903 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
904 			  unsigned long count)
905 {
906 	unsigned long x;
907 
908 	if (mem_cgroup_disabled())
909 		return;
910 
911 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
912 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
913 		struct mem_cgroup *mi;
914 
915 		/*
916 		 * Batch local counters to keep them in sync with
917 		 * the hierarchical ones.
918 		 */
919 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
920 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
921 			atomic_long_add(x, &mi->vmevents[idx]);
922 		x = 0;
923 	}
924 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
925 }
926 
927 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
928 {
929 	return atomic_long_read(&memcg->vmevents[event]);
930 }
931 
932 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
933 {
934 	long x = 0;
935 	int cpu;
936 
937 	for_each_possible_cpu(cpu)
938 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
939 	return x;
940 }
941 
942 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
943 					 struct page *page,
944 					 int nr_pages)
945 {
946 	/* pagein of a big page is an event. So, ignore page size */
947 	if (nr_pages > 0)
948 		__count_memcg_events(memcg, PGPGIN, 1);
949 	else {
950 		__count_memcg_events(memcg, PGPGOUT, 1);
951 		nr_pages = -nr_pages; /* for event */
952 	}
953 
954 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
955 }
956 
957 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
958 				       enum mem_cgroup_events_target target)
959 {
960 	unsigned long val, next;
961 
962 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
963 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
964 	/* from time_after() in jiffies.h */
965 	if ((long)(next - val) < 0) {
966 		switch (target) {
967 		case MEM_CGROUP_TARGET_THRESH:
968 			next = val + THRESHOLDS_EVENTS_TARGET;
969 			break;
970 		case MEM_CGROUP_TARGET_SOFTLIMIT:
971 			next = val + SOFTLIMIT_EVENTS_TARGET;
972 			break;
973 		default:
974 			break;
975 		}
976 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
977 		return true;
978 	}
979 	return false;
980 }
981 
982 /*
983  * Check events in order.
984  *
985  */
986 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
987 {
988 	/* threshold event is triggered in finer grain than soft limit */
989 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
990 						MEM_CGROUP_TARGET_THRESH))) {
991 		bool do_softlimit;
992 
993 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
994 						MEM_CGROUP_TARGET_SOFTLIMIT);
995 		mem_cgroup_threshold(memcg);
996 		if (unlikely(do_softlimit))
997 			mem_cgroup_update_tree(memcg, page);
998 	}
999 }
1000 
1001 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1002 {
1003 	/*
1004 	 * mm_update_next_owner() may clear mm->owner to NULL
1005 	 * if it races with swapoff, page migration, etc.
1006 	 * So this can be called with p == NULL.
1007 	 */
1008 	if (unlikely(!p))
1009 		return NULL;
1010 
1011 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1012 }
1013 EXPORT_SYMBOL(mem_cgroup_from_task);
1014 
1015 /**
1016  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1017  * @mm: mm from which memcg should be extracted. It can be NULL.
1018  *
1019  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1020  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1021  * returned.
1022  */
1023 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1024 {
1025 	struct mem_cgroup *memcg;
1026 
1027 	if (mem_cgroup_disabled())
1028 		return NULL;
1029 
1030 	rcu_read_lock();
1031 	do {
1032 		/*
1033 		 * Page cache insertions can happen withou an
1034 		 * actual mm context, e.g. during disk probing
1035 		 * on boot, loopback IO, acct() writes etc.
1036 		 */
1037 		if (unlikely(!mm))
1038 			memcg = root_mem_cgroup;
1039 		else {
1040 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1041 			if (unlikely(!memcg))
1042 				memcg = root_mem_cgroup;
1043 		}
1044 	} while (!css_tryget(&memcg->css));
1045 	rcu_read_unlock();
1046 	return memcg;
1047 }
1048 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1049 
1050 static __always_inline struct mem_cgroup *active_memcg(void)
1051 {
1052 	if (in_interrupt())
1053 		return this_cpu_read(int_active_memcg);
1054 	else
1055 		return current->active_memcg;
1056 }
1057 
1058 static __always_inline struct mem_cgroup *get_active_memcg(void)
1059 {
1060 	struct mem_cgroup *memcg;
1061 
1062 	rcu_read_lock();
1063 	memcg = active_memcg();
1064 	/* remote memcg must hold a ref. */
1065 	if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
1066 		memcg = root_mem_cgroup;
1067 	rcu_read_unlock();
1068 
1069 	return memcg;
1070 }
1071 
1072 static __always_inline bool memcg_kmem_bypass(void)
1073 {
1074 	/* Allow remote memcg charging from any context. */
1075 	if (unlikely(active_memcg()))
1076 		return false;
1077 
1078 	/* Memcg to charge can't be determined. */
1079 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1080 		return true;
1081 
1082 	return false;
1083 }
1084 
1085 /**
1086  * If active memcg is set, do not fallback to current->mm->memcg.
1087  */
1088 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1089 {
1090 	if (memcg_kmem_bypass())
1091 		return NULL;
1092 
1093 	if (unlikely(active_memcg()))
1094 		return get_active_memcg();
1095 
1096 	return get_mem_cgroup_from_mm(current->mm);
1097 }
1098 
1099 /**
1100  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1101  * @root: hierarchy root
1102  * @prev: previously returned memcg, NULL on first invocation
1103  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1104  *
1105  * Returns references to children of the hierarchy below @root, or
1106  * @root itself, or %NULL after a full round-trip.
1107  *
1108  * Caller must pass the return value in @prev on subsequent
1109  * invocations for reference counting, or use mem_cgroup_iter_break()
1110  * to cancel a hierarchy walk before the round-trip is complete.
1111  *
1112  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1113  * in the hierarchy among all concurrent reclaimers operating on the
1114  * same node.
1115  */
1116 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1117 				   struct mem_cgroup *prev,
1118 				   struct mem_cgroup_reclaim_cookie *reclaim)
1119 {
1120 	struct mem_cgroup_reclaim_iter *iter;
1121 	struct cgroup_subsys_state *css = NULL;
1122 	struct mem_cgroup *memcg = NULL;
1123 	struct mem_cgroup *pos = NULL;
1124 
1125 	if (mem_cgroup_disabled())
1126 		return NULL;
1127 
1128 	if (!root)
1129 		root = root_mem_cgroup;
1130 
1131 	if (prev && !reclaim)
1132 		pos = prev;
1133 
1134 	rcu_read_lock();
1135 
1136 	if (reclaim) {
1137 		struct mem_cgroup_per_node *mz;
1138 
1139 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1140 		iter = &mz->iter;
1141 
1142 		if (prev && reclaim->generation != iter->generation)
1143 			goto out_unlock;
1144 
1145 		while (1) {
1146 			pos = READ_ONCE(iter->position);
1147 			if (!pos || css_tryget(&pos->css))
1148 				break;
1149 			/*
1150 			 * css reference reached zero, so iter->position will
1151 			 * be cleared by ->css_released. However, we should not
1152 			 * rely on this happening soon, because ->css_released
1153 			 * is called from a work queue, and by busy-waiting we
1154 			 * might block it. So we clear iter->position right
1155 			 * away.
1156 			 */
1157 			(void)cmpxchg(&iter->position, pos, NULL);
1158 		}
1159 	}
1160 
1161 	if (pos)
1162 		css = &pos->css;
1163 
1164 	for (;;) {
1165 		css = css_next_descendant_pre(css, &root->css);
1166 		if (!css) {
1167 			/*
1168 			 * Reclaimers share the hierarchy walk, and a
1169 			 * new one might jump in right at the end of
1170 			 * the hierarchy - make sure they see at least
1171 			 * one group and restart from the beginning.
1172 			 */
1173 			if (!prev)
1174 				continue;
1175 			break;
1176 		}
1177 
1178 		/*
1179 		 * Verify the css and acquire a reference.  The root
1180 		 * is provided by the caller, so we know it's alive
1181 		 * and kicking, and don't take an extra reference.
1182 		 */
1183 		memcg = mem_cgroup_from_css(css);
1184 
1185 		if (css == &root->css)
1186 			break;
1187 
1188 		if (css_tryget(css))
1189 			break;
1190 
1191 		memcg = NULL;
1192 	}
1193 
1194 	if (reclaim) {
1195 		/*
1196 		 * The position could have already been updated by a competing
1197 		 * thread, so check that the value hasn't changed since we read
1198 		 * it to avoid reclaiming from the same cgroup twice.
1199 		 */
1200 		(void)cmpxchg(&iter->position, pos, memcg);
1201 
1202 		if (pos)
1203 			css_put(&pos->css);
1204 
1205 		if (!memcg)
1206 			iter->generation++;
1207 		else if (!prev)
1208 			reclaim->generation = iter->generation;
1209 	}
1210 
1211 out_unlock:
1212 	rcu_read_unlock();
1213 	if (prev && prev != root)
1214 		css_put(&prev->css);
1215 
1216 	return memcg;
1217 }
1218 
1219 /**
1220  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1221  * @root: hierarchy root
1222  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1223  */
1224 void mem_cgroup_iter_break(struct mem_cgroup *root,
1225 			   struct mem_cgroup *prev)
1226 {
1227 	if (!root)
1228 		root = root_mem_cgroup;
1229 	if (prev && prev != root)
1230 		css_put(&prev->css);
1231 }
1232 
1233 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1234 					struct mem_cgroup *dead_memcg)
1235 {
1236 	struct mem_cgroup_reclaim_iter *iter;
1237 	struct mem_cgroup_per_node *mz;
1238 	int nid;
1239 
1240 	for_each_node(nid) {
1241 		mz = mem_cgroup_nodeinfo(from, nid);
1242 		iter = &mz->iter;
1243 		cmpxchg(&iter->position, dead_memcg, NULL);
1244 	}
1245 }
1246 
1247 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1248 {
1249 	struct mem_cgroup *memcg = dead_memcg;
1250 	struct mem_cgroup *last;
1251 
1252 	do {
1253 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1254 		last = memcg;
1255 	} while ((memcg = parent_mem_cgroup(memcg)));
1256 
1257 	/*
1258 	 * When cgruop1 non-hierarchy mode is used,
1259 	 * parent_mem_cgroup() does not walk all the way up to the
1260 	 * cgroup root (root_mem_cgroup). So we have to handle
1261 	 * dead_memcg from cgroup root separately.
1262 	 */
1263 	if (last != root_mem_cgroup)
1264 		__invalidate_reclaim_iterators(root_mem_cgroup,
1265 						dead_memcg);
1266 }
1267 
1268 /**
1269  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1270  * @memcg: hierarchy root
1271  * @fn: function to call for each task
1272  * @arg: argument passed to @fn
1273  *
1274  * This function iterates over tasks attached to @memcg or to any of its
1275  * descendants and calls @fn for each task. If @fn returns a non-zero
1276  * value, the function breaks the iteration loop and returns the value.
1277  * Otherwise, it will iterate over all tasks and return 0.
1278  *
1279  * This function must not be called for the root memory cgroup.
1280  */
1281 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1282 			  int (*fn)(struct task_struct *, void *), void *arg)
1283 {
1284 	struct mem_cgroup *iter;
1285 	int ret = 0;
1286 
1287 	BUG_ON(memcg == root_mem_cgroup);
1288 
1289 	for_each_mem_cgroup_tree(iter, memcg) {
1290 		struct css_task_iter it;
1291 		struct task_struct *task;
1292 
1293 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1294 		while (!ret && (task = css_task_iter_next(&it)))
1295 			ret = fn(task, arg);
1296 		css_task_iter_end(&it);
1297 		if (ret) {
1298 			mem_cgroup_iter_break(memcg, iter);
1299 			break;
1300 		}
1301 	}
1302 	return ret;
1303 }
1304 
1305 #ifdef CONFIG_DEBUG_VM
1306 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1307 {
1308 	struct mem_cgroup *memcg;
1309 
1310 	if (mem_cgroup_disabled())
1311 		return;
1312 
1313 	memcg = page_memcg(page);
1314 
1315 	if (!memcg)
1316 		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1317 	else
1318 		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1319 }
1320 #endif
1321 
1322 /**
1323  * lock_page_lruvec - lock and return lruvec for a given page.
1324  * @page: the page
1325  *
1326  * These functions are safe to use under any of the following conditions:
1327  * - page locked
1328  * - PageLRU cleared
1329  * - lock_page_memcg()
1330  * - page->_refcount is zero
1331  */
1332 struct lruvec *lock_page_lruvec(struct page *page)
1333 {
1334 	struct lruvec *lruvec;
1335 	struct pglist_data *pgdat = page_pgdat(page);
1336 
1337 	lruvec = mem_cgroup_page_lruvec(page, pgdat);
1338 	spin_lock(&lruvec->lru_lock);
1339 
1340 	lruvec_memcg_debug(lruvec, page);
1341 
1342 	return lruvec;
1343 }
1344 
1345 struct lruvec *lock_page_lruvec_irq(struct page *page)
1346 {
1347 	struct lruvec *lruvec;
1348 	struct pglist_data *pgdat = page_pgdat(page);
1349 
1350 	lruvec = mem_cgroup_page_lruvec(page, pgdat);
1351 	spin_lock_irq(&lruvec->lru_lock);
1352 
1353 	lruvec_memcg_debug(lruvec, page);
1354 
1355 	return lruvec;
1356 }
1357 
1358 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1359 {
1360 	struct lruvec *lruvec;
1361 	struct pglist_data *pgdat = page_pgdat(page);
1362 
1363 	lruvec = mem_cgroup_page_lruvec(page, pgdat);
1364 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1365 
1366 	lruvec_memcg_debug(lruvec, page);
1367 
1368 	return lruvec;
1369 }
1370 
1371 /**
1372  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1373  * @lruvec: mem_cgroup per zone lru vector
1374  * @lru: index of lru list the page is sitting on
1375  * @zid: zone id of the accounted pages
1376  * @nr_pages: positive when adding or negative when removing
1377  *
1378  * This function must be called under lru_lock, just before a page is added
1379  * to or just after a page is removed from an lru list (that ordering being
1380  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1381  */
1382 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1383 				int zid, int nr_pages)
1384 {
1385 	struct mem_cgroup_per_node *mz;
1386 	unsigned long *lru_size;
1387 	long size;
1388 
1389 	if (mem_cgroup_disabled())
1390 		return;
1391 
1392 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1393 	lru_size = &mz->lru_zone_size[zid][lru];
1394 
1395 	if (nr_pages < 0)
1396 		*lru_size += nr_pages;
1397 
1398 	size = *lru_size;
1399 	if (WARN_ONCE(size < 0,
1400 		"%s(%p, %d, %d): lru_size %ld\n",
1401 		__func__, lruvec, lru, nr_pages, size)) {
1402 		VM_BUG_ON(1);
1403 		*lru_size = 0;
1404 	}
1405 
1406 	if (nr_pages > 0)
1407 		*lru_size += nr_pages;
1408 }
1409 
1410 /**
1411  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1412  * @memcg: the memory cgroup
1413  *
1414  * Returns the maximum amount of memory @mem can be charged with, in
1415  * pages.
1416  */
1417 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1418 {
1419 	unsigned long margin = 0;
1420 	unsigned long count;
1421 	unsigned long limit;
1422 
1423 	count = page_counter_read(&memcg->memory);
1424 	limit = READ_ONCE(memcg->memory.max);
1425 	if (count < limit)
1426 		margin = limit - count;
1427 
1428 	if (do_memsw_account()) {
1429 		count = page_counter_read(&memcg->memsw);
1430 		limit = READ_ONCE(memcg->memsw.max);
1431 		if (count < limit)
1432 			margin = min(margin, limit - count);
1433 		else
1434 			margin = 0;
1435 	}
1436 
1437 	return margin;
1438 }
1439 
1440 /*
1441  * A routine for checking "mem" is under move_account() or not.
1442  *
1443  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1444  * moving cgroups. This is for waiting at high-memory pressure
1445  * caused by "move".
1446  */
1447 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1448 {
1449 	struct mem_cgroup *from;
1450 	struct mem_cgroup *to;
1451 	bool ret = false;
1452 	/*
1453 	 * Unlike task_move routines, we access mc.to, mc.from not under
1454 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1455 	 */
1456 	spin_lock(&mc.lock);
1457 	from = mc.from;
1458 	to = mc.to;
1459 	if (!from)
1460 		goto unlock;
1461 
1462 	ret = mem_cgroup_is_descendant(from, memcg) ||
1463 		mem_cgroup_is_descendant(to, memcg);
1464 unlock:
1465 	spin_unlock(&mc.lock);
1466 	return ret;
1467 }
1468 
1469 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1470 {
1471 	if (mc.moving_task && current != mc.moving_task) {
1472 		if (mem_cgroup_under_move(memcg)) {
1473 			DEFINE_WAIT(wait);
1474 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1475 			/* moving charge context might have finished. */
1476 			if (mc.moving_task)
1477 				schedule();
1478 			finish_wait(&mc.waitq, &wait);
1479 			return true;
1480 		}
1481 	}
1482 	return false;
1483 }
1484 
1485 struct memory_stat {
1486 	const char *name;
1487 	unsigned int idx;
1488 };
1489 
1490 static const struct memory_stat memory_stats[] = {
1491 	{ "anon",			NR_ANON_MAPPED			},
1492 	{ "file",			NR_FILE_PAGES			},
1493 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1494 	{ "pagetables",			NR_PAGETABLE			},
1495 	{ "percpu",			MEMCG_PERCPU_B			},
1496 	{ "sock",			MEMCG_SOCK			},
1497 	{ "shmem",			NR_SHMEM			},
1498 	{ "file_mapped",		NR_FILE_MAPPED			},
1499 	{ "file_dirty",			NR_FILE_DIRTY			},
1500 	{ "file_writeback",		NR_WRITEBACK			},
1501 #ifdef CONFIG_SWAP
1502 	{ "swapcached",			NR_SWAPCACHE			},
1503 #endif
1504 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1505 	{ "anon_thp",			NR_ANON_THPS			},
1506 	{ "file_thp",			NR_FILE_THPS			},
1507 	{ "shmem_thp",			NR_SHMEM_THPS			},
1508 #endif
1509 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1510 	{ "active_anon",		NR_ACTIVE_ANON			},
1511 	{ "inactive_file",		NR_INACTIVE_FILE		},
1512 	{ "active_file",		NR_ACTIVE_FILE			},
1513 	{ "unevictable",		NR_UNEVICTABLE			},
1514 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1515 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1516 
1517 	/* The memory events */
1518 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1519 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1520 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1521 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1522 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1523 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1524 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1525 };
1526 
1527 /* Translate stat items to the correct unit for memory.stat output */
1528 static int memcg_page_state_unit(int item)
1529 {
1530 	switch (item) {
1531 	case MEMCG_PERCPU_B:
1532 	case NR_SLAB_RECLAIMABLE_B:
1533 	case NR_SLAB_UNRECLAIMABLE_B:
1534 	case WORKINGSET_REFAULT_ANON:
1535 	case WORKINGSET_REFAULT_FILE:
1536 	case WORKINGSET_ACTIVATE_ANON:
1537 	case WORKINGSET_ACTIVATE_FILE:
1538 	case WORKINGSET_RESTORE_ANON:
1539 	case WORKINGSET_RESTORE_FILE:
1540 	case WORKINGSET_NODERECLAIM:
1541 		return 1;
1542 	case NR_KERNEL_STACK_KB:
1543 		return SZ_1K;
1544 	default:
1545 		return PAGE_SIZE;
1546 	}
1547 }
1548 
1549 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1550 						    int item)
1551 {
1552 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1553 }
1554 
1555 static char *memory_stat_format(struct mem_cgroup *memcg)
1556 {
1557 	struct seq_buf s;
1558 	int i;
1559 
1560 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1561 	if (!s.buffer)
1562 		return NULL;
1563 
1564 	/*
1565 	 * Provide statistics on the state of the memory subsystem as
1566 	 * well as cumulative event counters that show past behavior.
1567 	 *
1568 	 * This list is ordered following a combination of these gradients:
1569 	 * 1) generic big picture -> specifics and details
1570 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1571 	 *
1572 	 * Current memory state:
1573 	 */
1574 
1575 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1576 		u64 size;
1577 
1578 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1579 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1580 
1581 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1582 			size += memcg_page_state_output(memcg,
1583 							NR_SLAB_RECLAIMABLE_B);
1584 			seq_buf_printf(&s, "slab %llu\n", size);
1585 		}
1586 	}
1587 
1588 	/* Accumulated memory events */
1589 
1590 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1591 		       memcg_events(memcg, PGFAULT));
1592 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1593 		       memcg_events(memcg, PGMAJFAULT));
1594 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1595 		       memcg_events(memcg, PGREFILL));
1596 	seq_buf_printf(&s, "pgscan %lu\n",
1597 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1598 		       memcg_events(memcg, PGSCAN_DIRECT));
1599 	seq_buf_printf(&s, "pgsteal %lu\n",
1600 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1601 		       memcg_events(memcg, PGSTEAL_DIRECT));
1602 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1603 		       memcg_events(memcg, PGACTIVATE));
1604 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1605 		       memcg_events(memcg, PGDEACTIVATE));
1606 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1607 		       memcg_events(memcg, PGLAZYFREE));
1608 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1609 		       memcg_events(memcg, PGLAZYFREED));
1610 
1611 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1612 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1613 		       memcg_events(memcg, THP_FAULT_ALLOC));
1614 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1615 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1616 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1617 
1618 	/* The above should easily fit into one page */
1619 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1620 
1621 	return s.buffer;
1622 }
1623 
1624 #define K(x) ((x) << (PAGE_SHIFT-10))
1625 /**
1626  * mem_cgroup_print_oom_context: Print OOM information relevant to
1627  * memory controller.
1628  * @memcg: The memory cgroup that went over limit
1629  * @p: Task that is going to be killed
1630  *
1631  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1632  * enabled
1633  */
1634 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1635 {
1636 	rcu_read_lock();
1637 
1638 	if (memcg) {
1639 		pr_cont(",oom_memcg=");
1640 		pr_cont_cgroup_path(memcg->css.cgroup);
1641 	} else
1642 		pr_cont(",global_oom");
1643 	if (p) {
1644 		pr_cont(",task_memcg=");
1645 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1646 	}
1647 	rcu_read_unlock();
1648 }
1649 
1650 /**
1651  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1652  * memory controller.
1653  * @memcg: The memory cgroup that went over limit
1654  */
1655 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1656 {
1657 	char *buf;
1658 
1659 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1660 		K((u64)page_counter_read(&memcg->memory)),
1661 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1662 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1663 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1664 			K((u64)page_counter_read(&memcg->swap)),
1665 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1666 	else {
1667 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1668 			K((u64)page_counter_read(&memcg->memsw)),
1669 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1670 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1671 			K((u64)page_counter_read(&memcg->kmem)),
1672 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1673 	}
1674 
1675 	pr_info("Memory cgroup stats for ");
1676 	pr_cont_cgroup_path(memcg->css.cgroup);
1677 	pr_cont(":");
1678 	buf = memory_stat_format(memcg);
1679 	if (!buf)
1680 		return;
1681 	pr_info("%s", buf);
1682 	kfree(buf);
1683 }
1684 
1685 /*
1686  * Return the memory (and swap, if configured) limit for a memcg.
1687  */
1688 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1689 {
1690 	unsigned long max = READ_ONCE(memcg->memory.max);
1691 
1692 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1693 		if (mem_cgroup_swappiness(memcg))
1694 			max += min(READ_ONCE(memcg->swap.max),
1695 				   (unsigned long)total_swap_pages);
1696 	} else { /* v1 */
1697 		if (mem_cgroup_swappiness(memcg)) {
1698 			/* Calculate swap excess capacity from memsw limit */
1699 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1700 
1701 			max += min(swap, (unsigned long)total_swap_pages);
1702 		}
1703 	}
1704 	return max;
1705 }
1706 
1707 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1708 {
1709 	return page_counter_read(&memcg->memory);
1710 }
1711 
1712 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1713 				     int order)
1714 {
1715 	struct oom_control oc = {
1716 		.zonelist = NULL,
1717 		.nodemask = NULL,
1718 		.memcg = memcg,
1719 		.gfp_mask = gfp_mask,
1720 		.order = order,
1721 	};
1722 	bool ret = true;
1723 
1724 	if (mutex_lock_killable(&oom_lock))
1725 		return true;
1726 
1727 	if (mem_cgroup_margin(memcg) >= (1 << order))
1728 		goto unlock;
1729 
1730 	/*
1731 	 * A few threads which were not waiting at mutex_lock_killable() can
1732 	 * fail to bail out. Therefore, check again after holding oom_lock.
1733 	 */
1734 	ret = should_force_charge() || out_of_memory(&oc);
1735 
1736 unlock:
1737 	mutex_unlock(&oom_lock);
1738 	return ret;
1739 }
1740 
1741 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1742 				   pg_data_t *pgdat,
1743 				   gfp_t gfp_mask,
1744 				   unsigned long *total_scanned)
1745 {
1746 	struct mem_cgroup *victim = NULL;
1747 	int total = 0;
1748 	int loop = 0;
1749 	unsigned long excess;
1750 	unsigned long nr_scanned;
1751 	struct mem_cgroup_reclaim_cookie reclaim = {
1752 		.pgdat = pgdat,
1753 	};
1754 
1755 	excess = soft_limit_excess(root_memcg);
1756 
1757 	while (1) {
1758 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1759 		if (!victim) {
1760 			loop++;
1761 			if (loop >= 2) {
1762 				/*
1763 				 * If we have not been able to reclaim
1764 				 * anything, it might because there are
1765 				 * no reclaimable pages under this hierarchy
1766 				 */
1767 				if (!total)
1768 					break;
1769 				/*
1770 				 * We want to do more targeted reclaim.
1771 				 * excess >> 2 is not to excessive so as to
1772 				 * reclaim too much, nor too less that we keep
1773 				 * coming back to reclaim from this cgroup
1774 				 */
1775 				if (total >= (excess >> 2) ||
1776 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1777 					break;
1778 			}
1779 			continue;
1780 		}
1781 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1782 					pgdat, &nr_scanned);
1783 		*total_scanned += nr_scanned;
1784 		if (!soft_limit_excess(root_memcg))
1785 			break;
1786 	}
1787 	mem_cgroup_iter_break(root_memcg, victim);
1788 	return total;
1789 }
1790 
1791 #ifdef CONFIG_LOCKDEP
1792 static struct lockdep_map memcg_oom_lock_dep_map = {
1793 	.name = "memcg_oom_lock",
1794 };
1795 #endif
1796 
1797 static DEFINE_SPINLOCK(memcg_oom_lock);
1798 
1799 /*
1800  * Check OOM-Killer is already running under our hierarchy.
1801  * If someone is running, return false.
1802  */
1803 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1804 {
1805 	struct mem_cgroup *iter, *failed = NULL;
1806 
1807 	spin_lock(&memcg_oom_lock);
1808 
1809 	for_each_mem_cgroup_tree(iter, memcg) {
1810 		if (iter->oom_lock) {
1811 			/*
1812 			 * this subtree of our hierarchy is already locked
1813 			 * so we cannot give a lock.
1814 			 */
1815 			failed = iter;
1816 			mem_cgroup_iter_break(memcg, iter);
1817 			break;
1818 		} else
1819 			iter->oom_lock = true;
1820 	}
1821 
1822 	if (failed) {
1823 		/*
1824 		 * OK, we failed to lock the whole subtree so we have
1825 		 * to clean up what we set up to the failing subtree
1826 		 */
1827 		for_each_mem_cgroup_tree(iter, memcg) {
1828 			if (iter == failed) {
1829 				mem_cgroup_iter_break(memcg, iter);
1830 				break;
1831 			}
1832 			iter->oom_lock = false;
1833 		}
1834 	} else
1835 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1836 
1837 	spin_unlock(&memcg_oom_lock);
1838 
1839 	return !failed;
1840 }
1841 
1842 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1843 {
1844 	struct mem_cgroup *iter;
1845 
1846 	spin_lock(&memcg_oom_lock);
1847 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1848 	for_each_mem_cgroup_tree(iter, memcg)
1849 		iter->oom_lock = false;
1850 	spin_unlock(&memcg_oom_lock);
1851 }
1852 
1853 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1854 {
1855 	struct mem_cgroup *iter;
1856 
1857 	spin_lock(&memcg_oom_lock);
1858 	for_each_mem_cgroup_tree(iter, memcg)
1859 		iter->under_oom++;
1860 	spin_unlock(&memcg_oom_lock);
1861 }
1862 
1863 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1864 {
1865 	struct mem_cgroup *iter;
1866 
1867 	/*
1868 	 * Be careful about under_oom underflows becase a child memcg
1869 	 * could have been added after mem_cgroup_mark_under_oom.
1870 	 */
1871 	spin_lock(&memcg_oom_lock);
1872 	for_each_mem_cgroup_tree(iter, memcg)
1873 		if (iter->under_oom > 0)
1874 			iter->under_oom--;
1875 	spin_unlock(&memcg_oom_lock);
1876 }
1877 
1878 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1879 
1880 struct oom_wait_info {
1881 	struct mem_cgroup *memcg;
1882 	wait_queue_entry_t	wait;
1883 };
1884 
1885 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1886 	unsigned mode, int sync, void *arg)
1887 {
1888 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1889 	struct mem_cgroup *oom_wait_memcg;
1890 	struct oom_wait_info *oom_wait_info;
1891 
1892 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1893 	oom_wait_memcg = oom_wait_info->memcg;
1894 
1895 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1896 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1897 		return 0;
1898 	return autoremove_wake_function(wait, mode, sync, arg);
1899 }
1900 
1901 static void memcg_oom_recover(struct mem_cgroup *memcg)
1902 {
1903 	/*
1904 	 * For the following lockless ->under_oom test, the only required
1905 	 * guarantee is that it must see the state asserted by an OOM when
1906 	 * this function is called as a result of userland actions
1907 	 * triggered by the notification of the OOM.  This is trivially
1908 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1909 	 * triggering notification.
1910 	 */
1911 	if (memcg && memcg->under_oom)
1912 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1913 }
1914 
1915 enum oom_status {
1916 	OOM_SUCCESS,
1917 	OOM_FAILED,
1918 	OOM_ASYNC,
1919 	OOM_SKIPPED
1920 };
1921 
1922 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1923 {
1924 	enum oom_status ret;
1925 	bool locked;
1926 
1927 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1928 		return OOM_SKIPPED;
1929 
1930 	memcg_memory_event(memcg, MEMCG_OOM);
1931 
1932 	/*
1933 	 * We are in the middle of the charge context here, so we
1934 	 * don't want to block when potentially sitting on a callstack
1935 	 * that holds all kinds of filesystem and mm locks.
1936 	 *
1937 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1938 	 * handling until the charge can succeed; remember the context and put
1939 	 * the task to sleep at the end of the page fault when all locks are
1940 	 * released.
1941 	 *
1942 	 * On the other hand, in-kernel OOM killer allows for an async victim
1943 	 * memory reclaim (oom_reaper) and that means that we are not solely
1944 	 * relying on the oom victim to make a forward progress and we can
1945 	 * invoke the oom killer here.
1946 	 *
1947 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1948 	 * victim and then we have to bail out from the charge path.
1949 	 */
1950 	if (memcg->oom_kill_disable) {
1951 		if (!current->in_user_fault)
1952 			return OOM_SKIPPED;
1953 		css_get(&memcg->css);
1954 		current->memcg_in_oom = memcg;
1955 		current->memcg_oom_gfp_mask = mask;
1956 		current->memcg_oom_order = order;
1957 
1958 		return OOM_ASYNC;
1959 	}
1960 
1961 	mem_cgroup_mark_under_oom(memcg);
1962 
1963 	locked = mem_cgroup_oom_trylock(memcg);
1964 
1965 	if (locked)
1966 		mem_cgroup_oom_notify(memcg);
1967 
1968 	mem_cgroup_unmark_under_oom(memcg);
1969 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1970 		ret = OOM_SUCCESS;
1971 	else
1972 		ret = OOM_FAILED;
1973 
1974 	if (locked)
1975 		mem_cgroup_oom_unlock(memcg);
1976 
1977 	return ret;
1978 }
1979 
1980 /**
1981  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1982  * @handle: actually kill/wait or just clean up the OOM state
1983  *
1984  * This has to be called at the end of a page fault if the memcg OOM
1985  * handler was enabled.
1986  *
1987  * Memcg supports userspace OOM handling where failed allocations must
1988  * sleep on a waitqueue until the userspace task resolves the
1989  * situation.  Sleeping directly in the charge context with all kinds
1990  * of locks held is not a good idea, instead we remember an OOM state
1991  * in the task and mem_cgroup_oom_synchronize() has to be called at
1992  * the end of the page fault to complete the OOM handling.
1993  *
1994  * Returns %true if an ongoing memcg OOM situation was detected and
1995  * completed, %false otherwise.
1996  */
1997 bool mem_cgroup_oom_synchronize(bool handle)
1998 {
1999 	struct mem_cgroup *memcg = current->memcg_in_oom;
2000 	struct oom_wait_info owait;
2001 	bool locked;
2002 
2003 	/* OOM is global, do not handle */
2004 	if (!memcg)
2005 		return false;
2006 
2007 	if (!handle)
2008 		goto cleanup;
2009 
2010 	owait.memcg = memcg;
2011 	owait.wait.flags = 0;
2012 	owait.wait.func = memcg_oom_wake_function;
2013 	owait.wait.private = current;
2014 	INIT_LIST_HEAD(&owait.wait.entry);
2015 
2016 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2017 	mem_cgroup_mark_under_oom(memcg);
2018 
2019 	locked = mem_cgroup_oom_trylock(memcg);
2020 
2021 	if (locked)
2022 		mem_cgroup_oom_notify(memcg);
2023 
2024 	if (locked && !memcg->oom_kill_disable) {
2025 		mem_cgroup_unmark_under_oom(memcg);
2026 		finish_wait(&memcg_oom_waitq, &owait.wait);
2027 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2028 					 current->memcg_oom_order);
2029 	} else {
2030 		schedule();
2031 		mem_cgroup_unmark_under_oom(memcg);
2032 		finish_wait(&memcg_oom_waitq, &owait.wait);
2033 	}
2034 
2035 	if (locked) {
2036 		mem_cgroup_oom_unlock(memcg);
2037 		/*
2038 		 * There is no guarantee that an OOM-lock contender
2039 		 * sees the wakeups triggered by the OOM kill
2040 		 * uncharges.  Wake any sleepers explicitely.
2041 		 */
2042 		memcg_oom_recover(memcg);
2043 	}
2044 cleanup:
2045 	current->memcg_in_oom = NULL;
2046 	css_put(&memcg->css);
2047 	return true;
2048 }
2049 
2050 /**
2051  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2052  * @victim: task to be killed by the OOM killer
2053  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2054  *
2055  * Returns a pointer to a memory cgroup, which has to be cleaned up
2056  * by killing all belonging OOM-killable tasks.
2057  *
2058  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2059  */
2060 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2061 					    struct mem_cgroup *oom_domain)
2062 {
2063 	struct mem_cgroup *oom_group = NULL;
2064 	struct mem_cgroup *memcg;
2065 
2066 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2067 		return NULL;
2068 
2069 	if (!oom_domain)
2070 		oom_domain = root_mem_cgroup;
2071 
2072 	rcu_read_lock();
2073 
2074 	memcg = mem_cgroup_from_task(victim);
2075 	if (memcg == root_mem_cgroup)
2076 		goto out;
2077 
2078 	/*
2079 	 * If the victim task has been asynchronously moved to a different
2080 	 * memory cgroup, we might end up killing tasks outside oom_domain.
2081 	 * In this case it's better to ignore memory.group.oom.
2082 	 */
2083 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2084 		goto out;
2085 
2086 	/*
2087 	 * Traverse the memory cgroup hierarchy from the victim task's
2088 	 * cgroup up to the OOMing cgroup (or root) to find the
2089 	 * highest-level memory cgroup with oom.group set.
2090 	 */
2091 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2092 		if (memcg->oom_group)
2093 			oom_group = memcg;
2094 
2095 		if (memcg == oom_domain)
2096 			break;
2097 	}
2098 
2099 	if (oom_group)
2100 		css_get(&oom_group->css);
2101 out:
2102 	rcu_read_unlock();
2103 
2104 	return oom_group;
2105 }
2106 
2107 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2108 {
2109 	pr_info("Tasks in ");
2110 	pr_cont_cgroup_path(memcg->css.cgroup);
2111 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2112 }
2113 
2114 /**
2115  * lock_page_memcg - lock a page and memcg binding
2116  * @page: the page
2117  *
2118  * This function protects unlocked LRU pages from being moved to
2119  * another cgroup.
2120  *
2121  * It ensures lifetime of the returned memcg. Caller is responsible
2122  * for the lifetime of the page; __unlock_page_memcg() is available
2123  * when @page might get freed inside the locked section.
2124  */
2125 struct mem_cgroup *lock_page_memcg(struct page *page)
2126 {
2127 	struct page *head = compound_head(page); /* rmap on tail pages */
2128 	struct mem_cgroup *memcg;
2129 	unsigned long flags;
2130 
2131 	/*
2132 	 * The RCU lock is held throughout the transaction.  The fast
2133 	 * path can get away without acquiring the memcg->move_lock
2134 	 * because page moving starts with an RCU grace period.
2135 	 *
2136 	 * The RCU lock also protects the memcg from being freed when
2137 	 * the page state that is going to change is the only thing
2138 	 * preventing the page itself from being freed. E.g. writeback
2139 	 * doesn't hold a page reference and relies on PG_writeback to
2140 	 * keep off truncation, migration and so forth.
2141          */
2142 	rcu_read_lock();
2143 
2144 	if (mem_cgroup_disabled())
2145 		return NULL;
2146 again:
2147 	memcg = page_memcg(head);
2148 	if (unlikely(!memcg))
2149 		return NULL;
2150 
2151 #ifdef CONFIG_PROVE_LOCKING
2152 	local_irq_save(flags);
2153 	might_lock(&memcg->move_lock);
2154 	local_irq_restore(flags);
2155 #endif
2156 
2157 	if (atomic_read(&memcg->moving_account) <= 0)
2158 		return memcg;
2159 
2160 	spin_lock_irqsave(&memcg->move_lock, flags);
2161 	if (memcg != page_memcg(head)) {
2162 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2163 		goto again;
2164 	}
2165 
2166 	/*
2167 	 * When charge migration first begins, we can have locked and
2168 	 * unlocked page stat updates happening concurrently.  Track
2169 	 * the task who has the lock for unlock_page_memcg().
2170 	 */
2171 	memcg->move_lock_task = current;
2172 	memcg->move_lock_flags = flags;
2173 
2174 	return memcg;
2175 }
2176 EXPORT_SYMBOL(lock_page_memcg);
2177 
2178 /**
2179  * __unlock_page_memcg - unlock and unpin a memcg
2180  * @memcg: the memcg
2181  *
2182  * Unlock and unpin a memcg returned by lock_page_memcg().
2183  */
2184 void __unlock_page_memcg(struct mem_cgroup *memcg)
2185 {
2186 	if (memcg && memcg->move_lock_task == current) {
2187 		unsigned long flags = memcg->move_lock_flags;
2188 
2189 		memcg->move_lock_task = NULL;
2190 		memcg->move_lock_flags = 0;
2191 
2192 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2193 	}
2194 
2195 	rcu_read_unlock();
2196 }
2197 
2198 /**
2199  * unlock_page_memcg - unlock a page and memcg binding
2200  * @page: the page
2201  */
2202 void unlock_page_memcg(struct page *page)
2203 {
2204 	struct page *head = compound_head(page);
2205 
2206 	__unlock_page_memcg(page_memcg(head));
2207 }
2208 EXPORT_SYMBOL(unlock_page_memcg);
2209 
2210 struct memcg_stock_pcp {
2211 	struct mem_cgroup *cached; /* this never be root cgroup */
2212 	unsigned int nr_pages;
2213 
2214 #ifdef CONFIG_MEMCG_KMEM
2215 	struct obj_cgroup *cached_objcg;
2216 	unsigned int nr_bytes;
2217 #endif
2218 
2219 	struct work_struct work;
2220 	unsigned long flags;
2221 #define FLUSHING_CACHED_CHARGE	0
2222 };
2223 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2224 static DEFINE_MUTEX(percpu_charge_mutex);
2225 
2226 #ifdef CONFIG_MEMCG_KMEM
2227 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2228 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2229 				     struct mem_cgroup *root_memcg);
2230 
2231 #else
2232 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2233 {
2234 }
2235 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2236 				     struct mem_cgroup *root_memcg)
2237 {
2238 	return false;
2239 }
2240 #endif
2241 
2242 /**
2243  * consume_stock: Try to consume stocked charge on this cpu.
2244  * @memcg: memcg to consume from.
2245  * @nr_pages: how many pages to charge.
2246  *
2247  * The charges will only happen if @memcg matches the current cpu's memcg
2248  * stock, and at least @nr_pages are available in that stock.  Failure to
2249  * service an allocation will refill the stock.
2250  *
2251  * returns true if successful, false otherwise.
2252  */
2253 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2254 {
2255 	struct memcg_stock_pcp *stock;
2256 	unsigned long flags;
2257 	bool ret = false;
2258 
2259 	if (nr_pages > MEMCG_CHARGE_BATCH)
2260 		return ret;
2261 
2262 	local_irq_save(flags);
2263 
2264 	stock = this_cpu_ptr(&memcg_stock);
2265 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2266 		stock->nr_pages -= nr_pages;
2267 		ret = true;
2268 	}
2269 
2270 	local_irq_restore(flags);
2271 
2272 	return ret;
2273 }
2274 
2275 /*
2276  * Returns stocks cached in percpu and reset cached information.
2277  */
2278 static void drain_stock(struct memcg_stock_pcp *stock)
2279 {
2280 	struct mem_cgroup *old = stock->cached;
2281 
2282 	if (!old)
2283 		return;
2284 
2285 	if (stock->nr_pages) {
2286 		page_counter_uncharge(&old->memory, stock->nr_pages);
2287 		if (do_memsw_account())
2288 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2289 		stock->nr_pages = 0;
2290 	}
2291 
2292 	css_put(&old->css);
2293 	stock->cached = NULL;
2294 }
2295 
2296 static void drain_local_stock(struct work_struct *dummy)
2297 {
2298 	struct memcg_stock_pcp *stock;
2299 	unsigned long flags;
2300 
2301 	/*
2302 	 * The only protection from memory hotplug vs. drain_stock races is
2303 	 * that we always operate on local CPU stock here with IRQ disabled
2304 	 */
2305 	local_irq_save(flags);
2306 
2307 	stock = this_cpu_ptr(&memcg_stock);
2308 	drain_obj_stock(stock);
2309 	drain_stock(stock);
2310 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2311 
2312 	local_irq_restore(flags);
2313 }
2314 
2315 /*
2316  * Cache charges(val) to local per_cpu area.
2317  * This will be consumed by consume_stock() function, later.
2318  */
2319 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2320 {
2321 	struct memcg_stock_pcp *stock;
2322 	unsigned long flags;
2323 
2324 	local_irq_save(flags);
2325 
2326 	stock = this_cpu_ptr(&memcg_stock);
2327 	if (stock->cached != memcg) { /* reset if necessary */
2328 		drain_stock(stock);
2329 		css_get(&memcg->css);
2330 		stock->cached = memcg;
2331 	}
2332 	stock->nr_pages += nr_pages;
2333 
2334 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2335 		drain_stock(stock);
2336 
2337 	local_irq_restore(flags);
2338 }
2339 
2340 /*
2341  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2342  * of the hierarchy under it.
2343  */
2344 static void drain_all_stock(struct mem_cgroup *root_memcg)
2345 {
2346 	int cpu, curcpu;
2347 
2348 	/* If someone's already draining, avoid adding running more workers. */
2349 	if (!mutex_trylock(&percpu_charge_mutex))
2350 		return;
2351 	/*
2352 	 * Notify other cpus that system-wide "drain" is running
2353 	 * We do not care about races with the cpu hotplug because cpu down
2354 	 * as well as workers from this path always operate on the local
2355 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2356 	 */
2357 	curcpu = get_cpu();
2358 	for_each_online_cpu(cpu) {
2359 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2360 		struct mem_cgroup *memcg;
2361 		bool flush = false;
2362 
2363 		rcu_read_lock();
2364 		memcg = stock->cached;
2365 		if (memcg && stock->nr_pages &&
2366 		    mem_cgroup_is_descendant(memcg, root_memcg))
2367 			flush = true;
2368 		if (obj_stock_flush_required(stock, root_memcg))
2369 			flush = true;
2370 		rcu_read_unlock();
2371 
2372 		if (flush &&
2373 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2374 			if (cpu == curcpu)
2375 				drain_local_stock(&stock->work);
2376 			else
2377 				schedule_work_on(cpu, &stock->work);
2378 		}
2379 	}
2380 	put_cpu();
2381 	mutex_unlock(&percpu_charge_mutex);
2382 }
2383 
2384 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2385 {
2386 	struct memcg_stock_pcp *stock;
2387 	struct mem_cgroup *memcg, *mi;
2388 
2389 	stock = &per_cpu(memcg_stock, cpu);
2390 	drain_stock(stock);
2391 
2392 	for_each_mem_cgroup(memcg) {
2393 		int i;
2394 
2395 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2396 			int nid;
2397 			long x;
2398 
2399 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2400 			if (x)
2401 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2402 					atomic_long_add(x, &memcg->vmstats[i]);
2403 
2404 			if (i >= NR_VM_NODE_STAT_ITEMS)
2405 				continue;
2406 
2407 			for_each_node(nid) {
2408 				struct mem_cgroup_per_node *pn;
2409 
2410 				pn = mem_cgroup_nodeinfo(memcg, nid);
2411 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2412 				if (x)
2413 					do {
2414 						atomic_long_add(x, &pn->lruvec_stat[i]);
2415 					} while ((pn = parent_nodeinfo(pn, nid)));
2416 			}
2417 		}
2418 
2419 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2420 			long x;
2421 
2422 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2423 			if (x)
2424 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2425 					atomic_long_add(x, &memcg->vmevents[i]);
2426 		}
2427 	}
2428 
2429 	return 0;
2430 }
2431 
2432 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2433 				  unsigned int nr_pages,
2434 				  gfp_t gfp_mask)
2435 {
2436 	unsigned long nr_reclaimed = 0;
2437 
2438 	do {
2439 		unsigned long pflags;
2440 
2441 		if (page_counter_read(&memcg->memory) <=
2442 		    READ_ONCE(memcg->memory.high))
2443 			continue;
2444 
2445 		memcg_memory_event(memcg, MEMCG_HIGH);
2446 
2447 		psi_memstall_enter(&pflags);
2448 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2449 							     gfp_mask, true);
2450 		psi_memstall_leave(&pflags);
2451 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2452 		 !mem_cgroup_is_root(memcg));
2453 
2454 	return nr_reclaimed;
2455 }
2456 
2457 static void high_work_func(struct work_struct *work)
2458 {
2459 	struct mem_cgroup *memcg;
2460 
2461 	memcg = container_of(work, struct mem_cgroup, high_work);
2462 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2463 }
2464 
2465 /*
2466  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2467  * enough to still cause a significant slowdown in most cases, while still
2468  * allowing diagnostics and tracing to proceed without becoming stuck.
2469  */
2470 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2471 
2472 /*
2473  * When calculating the delay, we use these either side of the exponentiation to
2474  * maintain precision and scale to a reasonable number of jiffies (see the table
2475  * below.
2476  *
2477  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2478  *   overage ratio to a delay.
2479  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2480  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2481  *   to produce a reasonable delay curve.
2482  *
2483  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2484  * reasonable delay curve compared to precision-adjusted overage, not
2485  * penalising heavily at first, but still making sure that growth beyond the
2486  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2487  * example, with a high of 100 megabytes:
2488  *
2489  *  +-------+------------------------+
2490  *  | usage | time to allocate in ms |
2491  *  +-------+------------------------+
2492  *  | 100M  |                      0 |
2493  *  | 101M  |                      6 |
2494  *  | 102M  |                     25 |
2495  *  | 103M  |                     57 |
2496  *  | 104M  |                    102 |
2497  *  | 105M  |                    159 |
2498  *  | 106M  |                    230 |
2499  *  | 107M  |                    313 |
2500  *  | 108M  |                    409 |
2501  *  | 109M  |                    518 |
2502  *  | 110M  |                    639 |
2503  *  | 111M  |                    774 |
2504  *  | 112M  |                    921 |
2505  *  | 113M  |                   1081 |
2506  *  | 114M  |                   1254 |
2507  *  | 115M  |                   1439 |
2508  *  | 116M  |                   1638 |
2509  *  | 117M  |                   1849 |
2510  *  | 118M  |                   2000 |
2511  *  | 119M  |                   2000 |
2512  *  | 120M  |                   2000 |
2513  *  +-------+------------------------+
2514  */
2515  #define MEMCG_DELAY_PRECISION_SHIFT 20
2516  #define MEMCG_DELAY_SCALING_SHIFT 14
2517 
2518 static u64 calculate_overage(unsigned long usage, unsigned long high)
2519 {
2520 	u64 overage;
2521 
2522 	if (usage <= high)
2523 		return 0;
2524 
2525 	/*
2526 	 * Prevent division by 0 in overage calculation by acting as if
2527 	 * it was a threshold of 1 page
2528 	 */
2529 	high = max(high, 1UL);
2530 
2531 	overage = usage - high;
2532 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2533 	return div64_u64(overage, high);
2534 }
2535 
2536 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2537 {
2538 	u64 overage, max_overage = 0;
2539 
2540 	do {
2541 		overage = calculate_overage(page_counter_read(&memcg->memory),
2542 					    READ_ONCE(memcg->memory.high));
2543 		max_overage = max(overage, max_overage);
2544 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2545 		 !mem_cgroup_is_root(memcg));
2546 
2547 	return max_overage;
2548 }
2549 
2550 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2551 {
2552 	u64 overage, max_overage = 0;
2553 
2554 	do {
2555 		overage = calculate_overage(page_counter_read(&memcg->swap),
2556 					    READ_ONCE(memcg->swap.high));
2557 		if (overage)
2558 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2559 		max_overage = max(overage, max_overage);
2560 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2561 		 !mem_cgroup_is_root(memcg));
2562 
2563 	return max_overage;
2564 }
2565 
2566 /*
2567  * Get the number of jiffies that we should penalise a mischievous cgroup which
2568  * is exceeding its memory.high by checking both it and its ancestors.
2569  */
2570 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2571 					  unsigned int nr_pages,
2572 					  u64 max_overage)
2573 {
2574 	unsigned long penalty_jiffies;
2575 
2576 	if (!max_overage)
2577 		return 0;
2578 
2579 	/*
2580 	 * We use overage compared to memory.high to calculate the number of
2581 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2582 	 * fairly lenient on small overages, and increasingly harsh when the
2583 	 * memcg in question makes it clear that it has no intention of stopping
2584 	 * its crazy behaviour, so we exponentially increase the delay based on
2585 	 * overage amount.
2586 	 */
2587 	penalty_jiffies = max_overage * max_overage * HZ;
2588 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2589 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2590 
2591 	/*
2592 	 * Factor in the task's own contribution to the overage, such that four
2593 	 * N-sized allocations are throttled approximately the same as one
2594 	 * 4N-sized allocation.
2595 	 *
2596 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2597 	 * larger the current charge patch is than that.
2598 	 */
2599 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2600 }
2601 
2602 /*
2603  * Scheduled by try_charge() to be executed from the userland return path
2604  * and reclaims memory over the high limit.
2605  */
2606 void mem_cgroup_handle_over_high(void)
2607 {
2608 	unsigned long penalty_jiffies;
2609 	unsigned long pflags;
2610 	unsigned long nr_reclaimed;
2611 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2612 	int nr_retries = MAX_RECLAIM_RETRIES;
2613 	struct mem_cgroup *memcg;
2614 	bool in_retry = false;
2615 
2616 	if (likely(!nr_pages))
2617 		return;
2618 
2619 	memcg = get_mem_cgroup_from_mm(current->mm);
2620 	current->memcg_nr_pages_over_high = 0;
2621 
2622 retry_reclaim:
2623 	/*
2624 	 * The allocating task should reclaim at least the batch size, but for
2625 	 * subsequent retries we only want to do what's necessary to prevent oom
2626 	 * or breaching resource isolation.
2627 	 *
2628 	 * This is distinct from memory.max or page allocator behaviour because
2629 	 * memory.high is currently batched, whereas memory.max and the page
2630 	 * allocator run every time an allocation is made.
2631 	 */
2632 	nr_reclaimed = reclaim_high(memcg,
2633 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2634 				    GFP_KERNEL);
2635 
2636 	/*
2637 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2638 	 * allocators proactively to slow down excessive growth.
2639 	 */
2640 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2641 					       mem_find_max_overage(memcg));
2642 
2643 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2644 						swap_find_max_overage(memcg));
2645 
2646 	/*
2647 	 * Clamp the max delay per usermode return so as to still keep the
2648 	 * application moving forwards and also permit diagnostics, albeit
2649 	 * extremely slowly.
2650 	 */
2651 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2652 
2653 	/*
2654 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2655 	 * that it's not even worth doing, in an attempt to be nice to those who
2656 	 * go only a small amount over their memory.high value and maybe haven't
2657 	 * been aggressively reclaimed enough yet.
2658 	 */
2659 	if (penalty_jiffies <= HZ / 100)
2660 		goto out;
2661 
2662 	/*
2663 	 * If reclaim is making forward progress but we're still over
2664 	 * memory.high, we want to encourage that rather than doing allocator
2665 	 * throttling.
2666 	 */
2667 	if (nr_reclaimed || nr_retries--) {
2668 		in_retry = true;
2669 		goto retry_reclaim;
2670 	}
2671 
2672 	/*
2673 	 * If we exit early, we're guaranteed to die (since
2674 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2675 	 * need to account for any ill-begotten jiffies to pay them off later.
2676 	 */
2677 	psi_memstall_enter(&pflags);
2678 	schedule_timeout_killable(penalty_jiffies);
2679 	psi_memstall_leave(&pflags);
2680 
2681 out:
2682 	css_put(&memcg->css);
2683 }
2684 
2685 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2686 		      unsigned int nr_pages)
2687 {
2688 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2689 	int nr_retries = MAX_RECLAIM_RETRIES;
2690 	struct mem_cgroup *mem_over_limit;
2691 	struct page_counter *counter;
2692 	enum oom_status oom_status;
2693 	unsigned long nr_reclaimed;
2694 	bool may_swap = true;
2695 	bool drained = false;
2696 	unsigned long pflags;
2697 
2698 	if (mem_cgroup_is_root(memcg))
2699 		return 0;
2700 retry:
2701 	if (consume_stock(memcg, nr_pages))
2702 		return 0;
2703 
2704 	if (!do_memsw_account() ||
2705 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2706 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2707 			goto done_restock;
2708 		if (do_memsw_account())
2709 			page_counter_uncharge(&memcg->memsw, batch);
2710 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2711 	} else {
2712 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2713 		may_swap = false;
2714 	}
2715 
2716 	if (batch > nr_pages) {
2717 		batch = nr_pages;
2718 		goto retry;
2719 	}
2720 
2721 	/*
2722 	 * Memcg doesn't have a dedicated reserve for atomic
2723 	 * allocations. But like the global atomic pool, we need to
2724 	 * put the burden of reclaim on regular allocation requests
2725 	 * and let these go through as privileged allocations.
2726 	 */
2727 	if (gfp_mask & __GFP_ATOMIC)
2728 		goto force;
2729 
2730 	/*
2731 	 * Unlike in global OOM situations, memcg is not in a physical
2732 	 * memory shortage.  Allow dying and OOM-killed tasks to
2733 	 * bypass the last charges so that they can exit quickly and
2734 	 * free their memory.
2735 	 */
2736 	if (unlikely(should_force_charge()))
2737 		goto force;
2738 
2739 	/*
2740 	 * Prevent unbounded recursion when reclaim operations need to
2741 	 * allocate memory. This might exceed the limits temporarily,
2742 	 * but we prefer facilitating memory reclaim and getting back
2743 	 * under the limit over triggering OOM kills in these cases.
2744 	 */
2745 	if (unlikely(current->flags & PF_MEMALLOC))
2746 		goto force;
2747 
2748 	if (unlikely(task_in_memcg_oom(current)))
2749 		goto nomem;
2750 
2751 	if (!gfpflags_allow_blocking(gfp_mask))
2752 		goto nomem;
2753 
2754 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2755 
2756 	psi_memstall_enter(&pflags);
2757 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2758 						    gfp_mask, may_swap);
2759 	psi_memstall_leave(&pflags);
2760 
2761 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2762 		goto retry;
2763 
2764 	if (!drained) {
2765 		drain_all_stock(mem_over_limit);
2766 		drained = true;
2767 		goto retry;
2768 	}
2769 
2770 	if (gfp_mask & __GFP_NORETRY)
2771 		goto nomem;
2772 	/*
2773 	 * Even though the limit is exceeded at this point, reclaim
2774 	 * may have been able to free some pages.  Retry the charge
2775 	 * before killing the task.
2776 	 *
2777 	 * Only for regular pages, though: huge pages are rather
2778 	 * unlikely to succeed so close to the limit, and we fall back
2779 	 * to regular pages anyway in case of failure.
2780 	 */
2781 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2782 		goto retry;
2783 	/*
2784 	 * At task move, charge accounts can be doubly counted. So, it's
2785 	 * better to wait until the end of task_move if something is going on.
2786 	 */
2787 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2788 		goto retry;
2789 
2790 	if (nr_retries--)
2791 		goto retry;
2792 
2793 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2794 		goto nomem;
2795 
2796 	if (gfp_mask & __GFP_NOFAIL)
2797 		goto force;
2798 
2799 	if (fatal_signal_pending(current))
2800 		goto force;
2801 
2802 	/*
2803 	 * keep retrying as long as the memcg oom killer is able to make
2804 	 * a forward progress or bypass the charge if the oom killer
2805 	 * couldn't make any progress.
2806 	 */
2807 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2808 		       get_order(nr_pages * PAGE_SIZE));
2809 	switch (oom_status) {
2810 	case OOM_SUCCESS:
2811 		nr_retries = MAX_RECLAIM_RETRIES;
2812 		goto retry;
2813 	case OOM_FAILED:
2814 		goto force;
2815 	default:
2816 		goto nomem;
2817 	}
2818 nomem:
2819 	if (!(gfp_mask & __GFP_NOFAIL))
2820 		return -ENOMEM;
2821 force:
2822 	/*
2823 	 * The allocation either can't fail or will lead to more memory
2824 	 * being freed very soon.  Allow memory usage go over the limit
2825 	 * temporarily by force charging it.
2826 	 */
2827 	page_counter_charge(&memcg->memory, nr_pages);
2828 	if (do_memsw_account())
2829 		page_counter_charge(&memcg->memsw, nr_pages);
2830 
2831 	return 0;
2832 
2833 done_restock:
2834 	if (batch > nr_pages)
2835 		refill_stock(memcg, batch - nr_pages);
2836 
2837 	/*
2838 	 * If the hierarchy is above the normal consumption range, schedule
2839 	 * reclaim on returning to userland.  We can perform reclaim here
2840 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2841 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2842 	 * not recorded as it most likely matches current's and won't
2843 	 * change in the meantime.  As high limit is checked again before
2844 	 * reclaim, the cost of mismatch is negligible.
2845 	 */
2846 	do {
2847 		bool mem_high, swap_high;
2848 
2849 		mem_high = page_counter_read(&memcg->memory) >
2850 			READ_ONCE(memcg->memory.high);
2851 		swap_high = page_counter_read(&memcg->swap) >
2852 			READ_ONCE(memcg->swap.high);
2853 
2854 		/* Don't bother a random interrupted task */
2855 		if (in_interrupt()) {
2856 			if (mem_high) {
2857 				schedule_work(&memcg->high_work);
2858 				break;
2859 			}
2860 			continue;
2861 		}
2862 
2863 		if (mem_high || swap_high) {
2864 			/*
2865 			 * The allocating tasks in this cgroup will need to do
2866 			 * reclaim or be throttled to prevent further growth
2867 			 * of the memory or swap footprints.
2868 			 *
2869 			 * Target some best-effort fairness between the tasks,
2870 			 * and distribute reclaim work and delay penalties
2871 			 * based on how much each task is actually allocating.
2872 			 */
2873 			current->memcg_nr_pages_over_high += batch;
2874 			set_notify_resume(current);
2875 			break;
2876 		}
2877 	} while ((memcg = parent_mem_cgroup(memcg)));
2878 
2879 	return 0;
2880 }
2881 
2882 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2883 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2884 {
2885 	if (mem_cgroup_is_root(memcg))
2886 		return;
2887 
2888 	page_counter_uncharge(&memcg->memory, nr_pages);
2889 	if (do_memsw_account())
2890 		page_counter_uncharge(&memcg->memsw, nr_pages);
2891 }
2892 #endif
2893 
2894 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2895 {
2896 	VM_BUG_ON_PAGE(page_memcg(page), page);
2897 	/*
2898 	 * Any of the following ensures page's memcg stability:
2899 	 *
2900 	 * - the page lock
2901 	 * - LRU isolation
2902 	 * - lock_page_memcg()
2903 	 * - exclusive reference
2904 	 */
2905 	page->memcg_data = (unsigned long)memcg;
2906 }
2907 
2908 #ifdef CONFIG_MEMCG_KMEM
2909 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2910 				 gfp_t gfp, bool new_page)
2911 {
2912 	unsigned int objects = objs_per_slab_page(s, page);
2913 	unsigned long memcg_data;
2914 	void *vec;
2915 
2916 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2917 			   page_to_nid(page));
2918 	if (!vec)
2919 		return -ENOMEM;
2920 
2921 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2922 	if (new_page) {
2923 		/*
2924 		 * If the slab page is brand new and nobody can yet access
2925 		 * it's memcg_data, no synchronization is required and
2926 		 * memcg_data can be simply assigned.
2927 		 */
2928 		page->memcg_data = memcg_data;
2929 	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2930 		/*
2931 		 * If the slab page is already in use, somebody can allocate
2932 		 * and assign obj_cgroups in parallel. In this case the existing
2933 		 * objcg vector should be reused.
2934 		 */
2935 		kfree(vec);
2936 		return 0;
2937 	}
2938 
2939 	kmemleak_not_leak(vec);
2940 	return 0;
2941 }
2942 
2943 /*
2944  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2945  *
2946  * A passed kernel object can be a slab object or a generic kernel page, so
2947  * different mechanisms for getting the memory cgroup pointer should be used.
2948  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2949  * can not know for sure how the kernel object is implemented.
2950  * mem_cgroup_from_obj() can be safely used in such cases.
2951  *
2952  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2953  * cgroup_mutex, etc.
2954  */
2955 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2956 {
2957 	struct page *page;
2958 
2959 	if (mem_cgroup_disabled())
2960 		return NULL;
2961 
2962 	page = virt_to_head_page(p);
2963 
2964 	/*
2965 	 * Slab objects are accounted individually, not per-page.
2966 	 * Memcg membership data for each individual object is saved in
2967 	 * the page->obj_cgroups.
2968 	 */
2969 	if (page_objcgs_check(page)) {
2970 		struct obj_cgroup *objcg;
2971 		unsigned int off;
2972 
2973 		off = obj_to_index(page->slab_cache, page, p);
2974 		objcg = page_objcgs(page)[off];
2975 		if (objcg)
2976 			return obj_cgroup_memcg(objcg);
2977 
2978 		return NULL;
2979 	}
2980 
2981 	/*
2982 	 * page_memcg_check() is used here, because page_has_obj_cgroups()
2983 	 * check above could fail because the object cgroups vector wasn't set
2984 	 * at that moment, but it can be set concurrently.
2985 	 * page_memcg_check(page) will guarantee that a proper memory
2986 	 * cgroup pointer or NULL will be returned.
2987 	 */
2988 	return page_memcg_check(page);
2989 }
2990 
2991 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2992 {
2993 	struct obj_cgroup *objcg = NULL;
2994 	struct mem_cgroup *memcg;
2995 
2996 	if (memcg_kmem_bypass())
2997 		return NULL;
2998 
2999 	rcu_read_lock();
3000 	if (unlikely(active_memcg()))
3001 		memcg = active_memcg();
3002 	else
3003 		memcg = mem_cgroup_from_task(current);
3004 
3005 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3006 		objcg = rcu_dereference(memcg->objcg);
3007 		if (objcg && obj_cgroup_tryget(objcg))
3008 			break;
3009 		objcg = NULL;
3010 	}
3011 	rcu_read_unlock();
3012 
3013 	return objcg;
3014 }
3015 
3016 static int memcg_alloc_cache_id(void)
3017 {
3018 	int id, size;
3019 	int err;
3020 
3021 	id = ida_simple_get(&memcg_cache_ida,
3022 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3023 	if (id < 0)
3024 		return id;
3025 
3026 	if (id < memcg_nr_cache_ids)
3027 		return id;
3028 
3029 	/*
3030 	 * There's no space for the new id in memcg_caches arrays,
3031 	 * so we have to grow them.
3032 	 */
3033 	down_write(&memcg_cache_ids_sem);
3034 
3035 	size = 2 * (id + 1);
3036 	if (size < MEMCG_CACHES_MIN_SIZE)
3037 		size = MEMCG_CACHES_MIN_SIZE;
3038 	else if (size > MEMCG_CACHES_MAX_SIZE)
3039 		size = MEMCG_CACHES_MAX_SIZE;
3040 
3041 	err = memcg_update_all_list_lrus(size);
3042 	if (!err)
3043 		memcg_nr_cache_ids = size;
3044 
3045 	up_write(&memcg_cache_ids_sem);
3046 
3047 	if (err) {
3048 		ida_simple_remove(&memcg_cache_ida, id);
3049 		return err;
3050 	}
3051 	return id;
3052 }
3053 
3054 static void memcg_free_cache_id(int id)
3055 {
3056 	ida_simple_remove(&memcg_cache_ida, id);
3057 }
3058 
3059 /**
3060  * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3061  * @memcg: memory cgroup to charge
3062  * @gfp: reclaim mode
3063  * @nr_pages: number of pages to charge
3064  *
3065  * Returns 0 on success, an error code on failure.
3066  */
3067 static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3068 			       unsigned int nr_pages)
3069 {
3070 	struct page_counter *counter;
3071 	int ret;
3072 
3073 	ret = try_charge(memcg, gfp, nr_pages);
3074 	if (ret)
3075 		return ret;
3076 
3077 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3078 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3079 
3080 		/*
3081 		 * Enforce __GFP_NOFAIL allocation because callers are not
3082 		 * prepared to see failures and likely do not have any failure
3083 		 * handling code.
3084 		 */
3085 		if (gfp & __GFP_NOFAIL) {
3086 			page_counter_charge(&memcg->kmem, nr_pages);
3087 			return 0;
3088 		}
3089 		cancel_charge(memcg, nr_pages);
3090 		return -ENOMEM;
3091 	}
3092 	return 0;
3093 }
3094 
3095 /**
3096  * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3097  * @memcg: memcg to uncharge
3098  * @nr_pages: number of pages to uncharge
3099  */
3100 static void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3101 {
3102 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3103 		page_counter_uncharge(&memcg->kmem, nr_pages);
3104 
3105 	refill_stock(memcg, nr_pages);
3106 }
3107 
3108 /**
3109  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3110  * @page: page to charge
3111  * @gfp: reclaim mode
3112  * @order: allocation order
3113  *
3114  * Returns 0 on success, an error code on failure.
3115  */
3116 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3117 {
3118 	struct mem_cgroup *memcg;
3119 	int ret = 0;
3120 
3121 	memcg = get_mem_cgroup_from_current();
3122 	if (memcg && !mem_cgroup_is_root(memcg)) {
3123 		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3124 		if (!ret) {
3125 			page->memcg_data = (unsigned long)memcg |
3126 				MEMCG_DATA_KMEM;
3127 			return 0;
3128 		}
3129 		css_put(&memcg->css);
3130 	}
3131 	return ret;
3132 }
3133 
3134 /**
3135  * __memcg_kmem_uncharge_page: uncharge a kmem page
3136  * @page: page to uncharge
3137  * @order: allocation order
3138  */
3139 void __memcg_kmem_uncharge_page(struct page *page, int order)
3140 {
3141 	struct mem_cgroup *memcg = page_memcg(page);
3142 	unsigned int nr_pages = 1 << order;
3143 
3144 	if (!memcg)
3145 		return;
3146 
3147 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3148 	__memcg_kmem_uncharge(memcg, nr_pages);
3149 	page->memcg_data = 0;
3150 	css_put(&memcg->css);
3151 }
3152 
3153 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3154 {
3155 	struct memcg_stock_pcp *stock;
3156 	unsigned long flags;
3157 	bool ret = false;
3158 
3159 	local_irq_save(flags);
3160 
3161 	stock = this_cpu_ptr(&memcg_stock);
3162 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3163 		stock->nr_bytes -= nr_bytes;
3164 		ret = true;
3165 	}
3166 
3167 	local_irq_restore(flags);
3168 
3169 	return ret;
3170 }
3171 
3172 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3173 {
3174 	struct obj_cgroup *old = stock->cached_objcg;
3175 
3176 	if (!old)
3177 		return;
3178 
3179 	if (stock->nr_bytes) {
3180 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3181 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3182 
3183 		if (nr_pages) {
3184 			rcu_read_lock();
3185 			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3186 			rcu_read_unlock();
3187 		}
3188 
3189 		/*
3190 		 * The leftover is flushed to the centralized per-memcg value.
3191 		 * On the next attempt to refill obj stock it will be moved
3192 		 * to a per-cpu stock (probably, on an other CPU), see
3193 		 * refill_obj_stock().
3194 		 *
3195 		 * How often it's flushed is a trade-off between the memory
3196 		 * limit enforcement accuracy and potential CPU contention,
3197 		 * so it might be changed in the future.
3198 		 */
3199 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3200 		stock->nr_bytes = 0;
3201 	}
3202 
3203 	obj_cgroup_put(old);
3204 	stock->cached_objcg = NULL;
3205 }
3206 
3207 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3208 				     struct mem_cgroup *root_memcg)
3209 {
3210 	struct mem_cgroup *memcg;
3211 
3212 	if (stock->cached_objcg) {
3213 		memcg = obj_cgroup_memcg(stock->cached_objcg);
3214 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3215 			return true;
3216 	}
3217 
3218 	return false;
3219 }
3220 
3221 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3222 {
3223 	struct memcg_stock_pcp *stock;
3224 	unsigned long flags;
3225 
3226 	local_irq_save(flags);
3227 
3228 	stock = this_cpu_ptr(&memcg_stock);
3229 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3230 		drain_obj_stock(stock);
3231 		obj_cgroup_get(objcg);
3232 		stock->cached_objcg = objcg;
3233 		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3234 	}
3235 	stock->nr_bytes += nr_bytes;
3236 
3237 	if (stock->nr_bytes > PAGE_SIZE)
3238 		drain_obj_stock(stock);
3239 
3240 	local_irq_restore(flags);
3241 }
3242 
3243 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3244 {
3245 	struct mem_cgroup *memcg;
3246 	unsigned int nr_pages, nr_bytes;
3247 	int ret;
3248 
3249 	if (consume_obj_stock(objcg, size))
3250 		return 0;
3251 
3252 	/*
3253 	 * In theory, memcg->nr_charged_bytes can have enough
3254 	 * pre-charged bytes to satisfy the allocation. However,
3255 	 * flushing memcg->nr_charged_bytes requires two atomic
3256 	 * operations, and memcg->nr_charged_bytes can't be big,
3257 	 * so it's better to ignore it and try grab some new pages.
3258 	 * memcg->nr_charged_bytes will be flushed in
3259 	 * refill_obj_stock(), called from this function or
3260 	 * independently later.
3261 	 */
3262 	rcu_read_lock();
3263 retry:
3264 	memcg = obj_cgroup_memcg(objcg);
3265 	if (unlikely(!css_tryget(&memcg->css)))
3266 		goto retry;
3267 	rcu_read_unlock();
3268 
3269 	nr_pages = size >> PAGE_SHIFT;
3270 	nr_bytes = size & (PAGE_SIZE - 1);
3271 
3272 	if (nr_bytes)
3273 		nr_pages += 1;
3274 
3275 	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3276 	if (!ret && nr_bytes)
3277 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3278 
3279 	css_put(&memcg->css);
3280 	return ret;
3281 }
3282 
3283 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3284 {
3285 	refill_obj_stock(objcg, size);
3286 }
3287 
3288 #endif /* CONFIG_MEMCG_KMEM */
3289 
3290 /*
3291  * Because page_memcg(head) is not set on tails, set it now.
3292  */
3293 void split_page_memcg(struct page *head, unsigned int nr)
3294 {
3295 	struct mem_cgroup *memcg = page_memcg(head);
3296 	int i;
3297 
3298 	if (mem_cgroup_disabled() || !memcg)
3299 		return;
3300 
3301 	for (i = 1; i < nr; i++)
3302 		head[i].memcg_data = head->memcg_data;
3303 	css_get_many(&memcg->css, nr - 1);
3304 }
3305 
3306 #ifdef CONFIG_MEMCG_SWAP
3307 /**
3308  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3309  * @entry: swap entry to be moved
3310  * @from:  mem_cgroup which the entry is moved from
3311  * @to:  mem_cgroup which the entry is moved to
3312  *
3313  * It succeeds only when the swap_cgroup's record for this entry is the same
3314  * as the mem_cgroup's id of @from.
3315  *
3316  * Returns 0 on success, -EINVAL on failure.
3317  *
3318  * The caller must have charged to @to, IOW, called page_counter_charge() about
3319  * both res and memsw, and called css_get().
3320  */
3321 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3322 				struct mem_cgroup *from, struct mem_cgroup *to)
3323 {
3324 	unsigned short old_id, new_id;
3325 
3326 	old_id = mem_cgroup_id(from);
3327 	new_id = mem_cgroup_id(to);
3328 
3329 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3330 		mod_memcg_state(from, MEMCG_SWAP, -1);
3331 		mod_memcg_state(to, MEMCG_SWAP, 1);
3332 		return 0;
3333 	}
3334 	return -EINVAL;
3335 }
3336 #else
3337 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3338 				struct mem_cgroup *from, struct mem_cgroup *to)
3339 {
3340 	return -EINVAL;
3341 }
3342 #endif
3343 
3344 static DEFINE_MUTEX(memcg_max_mutex);
3345 
3346 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3347 				 unsigned long max, bool memsw)
3348 {
3349 	bool enlarge = false;
3350 	bool drained = false;
3351 	int ret;
3352 	bool limits_invariant;
3353 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3354 
3355 	do {
3356 		if (signal_pending(current)) {
3357 			ret = -EINTR;
3358 			break;
3359 		}
3360 
3361 		mutex_lock(&memcg_max_mutex);
3362 		/*
3363 		 * Make sure that the new limit (memsw or memory limit) doesn't
3364 		 * break our basic invariant rule memory.max <= memsw.max.
3365 		 */
3366 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3367 					   max <= memcg->memsw.max;
3368 		if (!limits_invariant) {
3369 			mutex_unlock(&memcg_max_mutex);
3370 			ret = -EINVAL;
3371 			break;
3372 		}
3373 		if (max > counter->max)
3374 			enlarge = true;
3375 		ret = page_counter_set_max(counter, max);
3376 		mutex_unlock(&memcg_max_mutex);
3377 
3378 		if (!ret)
3379 			break;
3380 
3381 		if (!drained) {
3382 			drain_all_stock(memcg);
3383 			drained = true;
3384 			continue;
3385 		}
3386 
3387 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3388 					GFP_KERNEL, !memsw)) {
3389 			ret = -EBUSY;
3390 			break;
3391 		}
3392 	} while (true);
3393 
3394 	if (!ret && enlarge)
3395 		memcg_oom_recover(memcg);
3396 
3397 	return ret;
3398 }
3399 
3400 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3401 					    gfp_t gfp_mask,
3402 					    unsigned long *total_scanned)
3403 {
3404 	unsigned long nr_reclaimed = 0;
3405 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3406 	unsigned long reclaimed;
3407 	int loop = 0;
3408 	struct mem_cgroup_tree_per_node *mctz;
3409 	unsigned long excess;
3410 	unsigned long nr_scanned;
3411 
3412 	if (order > 0)
3413 		return 0;
3414 
3415 	mctz = soft_limit_tree_node(pgdat->node_id);
3416 
3417 	/*
3418 	 * Do not even bother to check the largest node if the root
3419 	 * is empty. Do it lockless to prevent lock bouncing. Races
3420 	 * are acceptable as soft limit is best effort anyway.
3421 	 */
3422 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3423 		return 0;
3424 
3425 	/*
3426 	 * This loop can run a while, specially if mem_cgroup's continuously
3427 	 * keep exceeding their soft limit and putting the system under
3428 	 * pressure
3429 	 */
3430 	do {
3431 		if (next_mz)
3432 			mz = next_mz;
3433 		else
3434 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3435 		if (!mz)
3436 			break;
3437 
3438 		nr_scanned = 0;
3439 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3440 						    gfp_mask, &nr_scanned);
3441 		nr_reclaimed += reclaimed;
3442 		*total_scanned += nr_scanned;
3443 		spin_lock_irq(&mctz->lock);
3444 		__mem_cgroup_remove_exceeded(mz, mctz);
3445 
3446 		/*
3447 		 * If we failed to reclaim anything from this memory cgroup
3448 		 * it is time to move on to the next cgroup
3449 		 */
3450 		next_mz = NULL;
3451 		if (!reclaimed)
3452 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3453 
3454 		excess = soft_limit_excess(mz->memcg);
3455 		/*
3456 		 * One school of thought says that we should not add
3457 		 * back the node to the tree if reclaim returns 0.
3458 		 * But our reclaim could return 0, simply because due
3459 		 * to priority we are exposing a smaller subset of
3460 		 * memory to reclaim from. Consider this as a longer
3461 		 * term TODO.
3462 		 */
3463 		/* If excess == 0, no tree ops */
3464 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3465 		spin_unlock_irq(&mctz->lock);
3466 		css_put(&mz->memcg->css);
3467 		loop++;
3468 		/*
3469 		 * Could not reclaim anything and there are no more
3470 		 * mem cgroups to try or we seem to be looping without
3471 		 * reclaiming anything.
3472 		 */
3473 		if (!nr_reclaimed &&
3474 			(next_mz == NULL ||
3475 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3476 			break;
3477 	} while (!nr_reclaimed);
3478 	if (next_mz)
3479 		css_put(&next_mz->memcg->css);
3480 	return nr_reclaimed;
3481 }
3482 
3483 /*
3484  * Reclaims as many pages from the given memcg as possible.
3485  *
3486  * Caller is responsible for holding css reference for memcg.
3487  */
3488 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3489 {
3490 	int nr_retries = MAX_RECLAIM_RETRIES;
3491 
3492 	/* we call try-to-free pages for make this cgroup empty */
3493 	lru_add_drain_all();
3494 
3495 	drain_all_stock(memcg);
3496 
3497 	/* try to free all pages in this cgroup */
3498 	while (nr_retries && page_counter_read(&memcg->memory)) {
3499 		int progress;
3500 
3501 		if (signal_pending(current))
3502 			return -EINTR;
3503 
3504 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3505 							GFP_KERNEL, true);
3506 		if (!progress) {
3507 			nr_retries--;
3508 			/* maybe some writeback is necessary */
3509 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3510 		}
3511 
3512 	}
3513 
3514 	return 0;
3515 }
3516 
3517 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3518 					    char *buf, size_t nbytes,
3519 					    loff_t off)
3520 {
3521 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3522 
3523 	if (mem_cgroup_is_root(memcg))
3524 		return -EINVAL;
3525 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3526 }
3527 
3528 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3529 				     struct cftype *cft)
3530 {
3531 	return 1;
3532 }
3533 
3534 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3535 				      struct cftype *cft, u64 val)
3536 {
3537 	if (val == 1)
3538 		return 0;
3539 
3540 	pr_warn_once("Non-hierarchical mode is deprecated. "
3541 		     "Please report your usecase to linux-mm@kvack.org if you "
3542 		     "depend on this functionality.\n");
3543 
3544 	return -EINVAL;
3545 }
3546 
3547 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3548 {
3549 	unsigned long val;
3550 
3551 	if (mem_cgroup_is_root(memcg)) {
3552 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3553 			memcg_page_state(memcg, NR_ANON_MAPPED);
3554 		if (swap)
3555 			val += memcg_page_state(memcg, MEMCG_SWAP);
3556 	} else {
3557 		if (!swap)
3558 			val = page_counter_read(&memcg->memory);
3559 		else
3560 			val = page_counter_read(&memcg->memsw);
3561 	}
3562 	return val;
3563 }
3564 
3565 enum {
3566 	RES_USAGE,
3567 	RES_LIMIT,
3568 	RES_MAX_USAGE,
3569 	RES_FAILCNT,
3570 	RES_SOFT_LIMIT,
3571 };
3572 
3573 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3574 			       struct cftype *cft)
3575 {
3576 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3577 	struct page_counter *counter;
3578 
3579 	switch (MEMFILE_TYPE(cft->private)) {
3580 	case _MEM:
3581 		counter = &memcg->memory;
3582 		break;
3583 	case _MEMSWAP:
3584 		counter = &memcg->memsw;
3585 		break;
3586 	case _KMEM:
3587 		counter = &memcg->kmem;
3588 		break;
3589 	case _TCP:
3590 		counter = &memcg->tcpmem;
3591 		break;
3592 	default:
3593 		BUG();
3594 	}
3595 
3596 	switch (MEMFILE_ATTR(cft->private)) {
3597 	case RES_USAGE:
3598 		if (counter == &memcg->memory)
3599 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3600 		if (counter == &memcg->memsw)
3601 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3602 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3603 	case RES_LIMIT:
3604 		return (u64)counter->max * PAGE_SIZE;
3605 	case RES_MAX_USAGE:
3606 		return (u64)counter->watermark * PAGE_SIZE;
3607 	case RES_FAILCNT:
3608 		return counter->failcnt;
3609 	case RES_SOFT_LIMIT:
3610 		return (u64)memcg->soft_limit * PAGE_SIZE;
3611 	default:
3612 		BUG();
3613 	}
3614 }
3615 
3616 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3617 {
3618 	unsigned long stat[MEMCG_NR_STAT] = {0};
3619 	struct mem_cgroup *mi;
3620 	int node, cpu, i;
3621 
3622 	for_each_online_cpu(cpu)
3623 		for (i = 0; i < MEMCG_NR_STAT; i++)
3624 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3625 
3626 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3627 		for (i = 0; i < MEMCG_NR_STAT; i++)
3628 			atomic_long_add(stat[i], &mi->vmstats[i]);
3629 
3630 	for_each_node(node) {
3631 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3632 		struct mem_cgroup_per_node *pi;
3633 
3634 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3635 			stat[i] = 0;
3636 
3637 		for_each_online_cpu(cpu)
3638 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3639 				stat[i] += per_cpu(
3640 					pn->lruvec_stat_cpu->count[i], cpu);
3641 
3642 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3643 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3644 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3645 	}
3646 }
3647 
3648 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3649 {
3650 	unsigned long events[NR_VM_EVENT_ITEMS];
3651 	struct mem_cgroup *mi;
3652 	int cpu, i;
3653 
3654 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3655 		events[i] = 0;
3656 
3657 	for_each_online_cpu(cpu)
3658 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3659 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3660 					     cpu);
3661 
3662 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3663 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3664 			atomic_long_add(events[i], &mi->vmevents[i]);
3665 }
3666 
3667 #ifdef CONFIG_MEMCG_KMEM
3668 static int memcg_online_kmem(struct mem_cgroup *memcg)
3669 {
3670 	struct obj_cgroup *objcg;
3671 	int memcg_id;
3672 
3673 	if (cgroup_memory_nokmem)
3674 		return 0;
3675 
3676 	BUG_ON(memcg->kmemcg_id >= 0);
3677 	BUG_ON(memcg->kmem_state);
3678 
3679 	memcg_id = memcg_alloc_cache_id();
3680 	if (memcg_id < 0)
3681 		return memcg_id;
3682 
3683 	objcg = obj_cgroup_alloc();
3684 	if (!objcg) {
3685 		memcg_free_cache_id(memcg_id);
3686 		return -ENOMEM;
3687 	}
3688 	objcg->memcg = memcg;
3689 	rcu_assign_pointer(memcg->objcg, objcg);
3690 
3691 	static_branch_enable(&memcg_kmem_enabled_key);
3692 
3693 	memcg->kmemcg_id = memcg_id;
3694 	memcg->kmem_state = KMEM_ONLINE;
3695 
3696 	return 0;
3697 }
3698 
3699 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3700 {
3701 	struct cgroup_subsys_state *css;
3702 	struct mem_cgroup *parent, *child;
3703 	int kmemcg_id;
3704 
3705 	if (memcg->kmem_state != KMEM_ONLINE)
3706 		return;
3707 
3708 	memcg->kmem_state = KMEM_ALLOCATED;
3709 
3710 	parent = parent_mem_cgroup(memcg);
3711 	if (!parent)
3712 		parent = root_mem_cgroup;
3713 
3714 	memcg_reparent_objcgs(memcg, parent);
3715 
3716 	kmemcg_id = memcg->kmemcg_id;
3717 	BUG_ON(kmemcg_id < 0);
3718 
3719 	/*
3720 	 * Change kmemcg_id of this cgroup and all its descendants to the
3721 	 * parent's id, and then move all entries from this cgroup's list_lrus
3722 	 * to ones of the parent. After we have finished, all list_lrus
3723 	 * corresponding to this cgroup are guaranteed to remain empty. The
3724 	 * ordering is imposed by list_lru_node->lock taken by
3725 	 * memcg_drain_all_list_lrus().
3726 	 */
3727 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3728 	css_for_each_descendant_pre(css, &memcg->css) {
3729 		child = mem_cgroup_from_css(css);
3730 		BUG_ON(child->kmemcg_id != kmemcg_id);
3731 		child->kmemcg_id = parent->kmemcg_id;
3732 	}
3733 	rcu_read_unlock();
3734 
3735 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3736 
3737 	memcg_free_cache_id(kmemcg_id);
3738 }
3739 
3740 static void memcg_free_kmem(struct mem_cgroup *memcg)
3741 {
3742 	/* css_alloc() failed, offlining didn't happen */
3743 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3744 		memcg_offline_kmem(memcg);
3745 }
3746 #else
3747 static int memcg_online_kmem(struct mem_cgroup *memcg)
3748 {
3749 	return 0;
3750 }
3751 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3752 {
3753 }
3754 static void memcg_free_kmem(struct mem_cgroup *memcg)
3755 {
3756 }
3757 #endif /* CONFIG_MEMCG_KMEM */
3758 
3759 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3760 				 unsigned long max)
3761 {
3762 	int ret;
3763 
3764 	mutex_lock(&memcg_max_mutex);
3765 	ret = page_counter_set_max(&memcg->kmem, max);
3766 	mutex_unlock(&memcg_max_mutex);
3767 	return ret;
3768 }
3769 
3770 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3771 {
3772 	int ret;
3773 
3774 	mutex_lock(&memcg_max_mutex);
3775 
3776 	ret = page_counter_set_max(&memcg->tcpmem, max);
3777 	if (ret)
3778 		goto out;
3779 
3780 	if (!memcg->tcpmem_active) {
3781 		/*
3782 		 * The active flag needs to be written after the static_key
3783 		 * update. This is what guarantees that the socket activation
3784 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3785 		 * for details, and note that we don't mark any socket as
3786 		 * belonging to this memcg until that flag is up.
3787 		 *
3788 		 * We need to do this, because static_keys will span multiple
3789 		 * sites, but we can't control their order. If we mark a socket
3790 		 * as accounted, but the accounting functions are not patched in
3791 		 * yet, we'll lose accounting.
3792 		 *
3793 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3794 		 * because when this value change, the code to process it is not
3795 		 * patched in yet.
3796 		 */
3797 		static_branch_inc(&memcg_sockets_enabled_key);
3798 		memcg->tcpmem_active = true;
3799 	}
3800 out:
3801 	mutex_unlock(&memcg_max_mutex);
3802 	return ret;
3803 }
3804 
3805 /*
3806  * The user of this function is...
3807  * RES_LIMIT.
3808  */
3809 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3810 				char *buf, size_t nbytes, loff_t off)
3811 {
3812 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3813 	unsigned long nr_pages;
3814 	int ret;
3815 
3816 	buf = strstrip(buf);
3817 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3818 	if (ret)
3819 		return ret;
3820 
3821 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3822 	case RES_LIMIT:
3823 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3824 			ret = -EINVAL;
3825 			break;
3826 		}
3827 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3828 		case _MEM:
3829 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3830 			break;
3831 		case _MEMSWAP:
3832 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3833 			break;
3834 		case _KMEM:
3835 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3836 				     "Please report your usecase to linux-mm@kvack.org if you "
3837 				     "depend on this functionality.\n");
3838 			ret = memcg_update_kmem_max(memcg, nr_pages);
3839 			break;
3840 		case _TCP:
3841 			ret = memcg_update_tcp_max(memcg, nr_pages);
3842 			break;
3843 		}
3844 		break;
3845 	case RES_SOFT_LIMIT:
3846 		memcg->soft_limit = nr_pages;
3847 		ret = 0;
3848 		break;
3849 	}
3850 	return ret ?: nbytes;
3851 }
3852 
3853 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3854 				size_t nbytes, loff_t off)
3855 {
3856 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3857 	struct page_counter *counter;
3858 
3859 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3860 	case _MEM:
3861 		counter = &memcg->memory;
3862 		break;
3863 	case _MEMSWAP:
3864 		counter = &memcg->memsw;
3865 		break;
3866 	case _KMEM:
3867 		counter = &memcg->kmem;
3868 		break;
3869 	case _TCP:
3870 		counter = &memcg->tcpmem;
3871 		break;
3872 	default:
3873 		BUG();
3874 	}
3875 
3876 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3877 	case RES_MAX_USAGE:
3878 		page_counter_reset_watermark(counter);
3879 		break;
3880 	case RES_FAILCNT:
3881 		counter->failcnt = 0;
3882 		break;
3883 	default:
3884 		BUG();
3885 	}
3886 
3887 	return nbytes;
3888 }
3889 
3890 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3891 					struct cftype *cft)
3892 {
3893 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3894 }
3895 
3896 #ifdef CONFIG_MMU
3897 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3898 					struct cftype *cft, u64 val)
3899 {
3900 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3901 
3902 	if (val & ~MOVE_MASK)
3903 		return -EINVAL;
3904 
3905 	/*
3906 	 * No kind of locking is needed in here, because ->can_attach() will
3907 	 * check this value once in the beginning of the process, and then carry
3908 	 * on with stale data. This means that changes to this value will only
3909 	 * affect task migrations starting after the change.
3910 	 */
3911 	memcg->move_charge_at_immigrate = val;
3912 	return 0;
3913 }
3914 #else
3915 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3916 					struct cftype *cft, u64 val)
3917 {
3918 	return -ENOSYS;
3919 }
3920 #endif
3921 
3922 #ifdef CONFIG_NUMA
3923 
3924 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3925 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3926 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3927 
3928 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3929 				int nid, unsigned int lru_mask, bool tree)
3930 {
3931 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3932 	unsigned long nr = 0;
3933 	enum lru_list lru;
3934 
3935 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3936 
3937 	for_each_lru(lru) {
3938 		if (!(BIT(lru) & lru_mask))
3939 			continue;
3940 		if (tree)
3941 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3942 		else
3943 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3944 	}
3945 	return nr;
3946 }
3947 
3948 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3949 					     unsigned int lru_mask,
3950 					     bool tree)
3951 {
3952 	unsigned long nr = 0;
3953 	enum lru_list lru;
3954 
3955 	for_each_lru(lru) {
3956 		if (!(BIT(lru) & lru_mask))
3957 			continue;
3958 		if (tree)
3959 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3960 		else
3961 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3962 	}
3963 	return nr;
3964 }
3965 
3966 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3967 {
3968 	struct numa_stat {
3969 		const char *name;
3970 		unsigned int lru_mask;
3971 	};
3972 
3973 	static const struct numa_stat stats[] = {
3974 		{ "total", LRU_ALL },
3975 		{ "file", LRU_ALL_FILE },
3976 		{ "anon", LRU_ALL_ANON },
3977 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3978 	};
3979 	const struct numa_stat *stat;
3980 	int nid;
3981 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3982 
3983 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3984 		seq_printf(m, "%s=%lu", stat->name,
3985 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3986 						   false));
3987 		for_each_node_state(nid, N_MEMORY)
3988 			seq_printf(m, " N%d=%lu", nid,
3989 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3990 							stat->lru_mask, false));
3991 		seq_putc(m, '\n');
3992 	}
3993 
3994 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3995 
3996 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3997 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3998 						   true));
3999 		for_each_node_state(nid, N_MEMORY)
4000 			seq_printf(m, " N%d=%lu", nid,
4001 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4002 							stat->lru_mask, true));
4003 		seq_putc(m, '\n');
4004 	}
4005 
4006 	return 0;
4007 }
4008 #endif /* CONFIG_NUMA */
4009 
4010 static const unsigned int memcg1_stats[] = {
4011 	NR_FILE_PAGES,
4012 	NR_ANON_MAPPED,
4013 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4014 	NR_ANON_THPS,
4015 #endif
4016 	NR_SHMEM,
4017 	NR_FILE_MAPPED,
4018 	NR_FILE_DIRTY,
4019 	NR_WRITEBACK,
4020 	MEMCG_SWAP,
4021 };
4022 
4023 static const char *const memcg1_stat_names[] = {
4024 	"cache",
4025 	"rss",
4026 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4027 	"rss_huge",
4028 #endif
4029 	"shmem",
4030 	"mapped_file",
4031 	"dirty",
4032 	"writeback",
4033 	"swap",
4034 };
4035 
4036 /* Universal VM events cgroup1 shows, original sort order */
4037 static const unsigned int memcg1_events[] = {
4038 	PGPGIN,
4039 	PGPGOUT,
4040 	PGFAULT,
4041 	PGMAJFAULT,
4042 };
4043 
4044 static int memcg_stat_show(struct seq_file *m, void *v)
4045 {
4046 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4047 	unsigned long memory, memsw;
4048 	struct mem_cgroup *mi;
4049 	unsigned int i;
4050 
4051 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4052 
4053 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4054 		unsigned long nr;
4055 
4056 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4057 			continue;
4058 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4059 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4060 	}
4061 
4062 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4063 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4064 			   memcg_events_local(memcg, memcg1_events[i]));
4065 
4066 	for (i = 0; i < NR_LRU_LISTS; i++)
4067 		seq_printf(m, "%s %lu\n", lru_list_name(i),
4068 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4069 			   PAGE_SIZE);
4070 
4071 	/* Hierarchical information */
4072 	memory = memsw = PAGE_COUNTER_MAX;
4073 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4074 		memory = min(memory, READ_ONCE(mi->memory.max));
4075 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4076 	}
4077 	seq_printf(m, "hierarchical_memory_limit %llu\n",
4078 		   (u64)memory * PAGE_SIZE);
4079 	if (do_memsw_account())
4080 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4081 			   (u64)memsw * PAGE_SIZE);
4082 
4083 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4084 		unsigned long nr;
4085 
4086 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4087 			continue;
4088 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4089 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4090 						(u64)nr * PAGE_SIZE);
4091 	}
4092 
4093 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4094 		seq_printf(m, "total_%s %llu\n",
4095 			   vm_event_name(memcg1_events[i]),
4096 			   (u64)memcg_events(memcg, memcg1_events[i]));
4097 
4098 	for (i = 0; i < NR_LRU_LISTS; i++)
4099 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4100 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4101 			   PAGE_SIZE);
4102 
4103 #ifdef CONFIG_DEBUG_VM
4104 	{
4105 		pg_data_t *pgdat;
4106 		struct mem_cgroup_per_node *mz;
4107 		unsigned long anon_cost = 0;
4108 		unsigned long file_cost = 0;
4109 
4110 		for_each_online_pgdat(pgdat) {
4111 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4112 
4113 			anon_cost += mz->lruvec.anon_cost;
4114 			file_cost += mz->lruvec.file_cost;
4115 		}
4116 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4117 		seq_printf(m, "file_cost %lu\n", file_cost);
4118 	}
4119 #endif
4120 
4121 	return 0;
4122 }
4123 
4124 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4125 				      struct cftype *cft)
4126 {
4127 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4128 
4129 	return mem_cgroup_swappiness(memcg);
4130 }
4131 
4132 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4133 				       struct cftype *cft, u64 val)
4134 {
4135 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4136 
4137 	if (val > 100)
4138 		return -EINVAL;
4139 
4140 	if (css->parent)
4141 		memcg->swappiness = val;
4142 	else
4143 		vm_swappiness = val;
4144 
4145 	return 0;
4146 }
4147 
4148 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4149 {
4150 	struct mem_cgroup_threshold_ary *t;
4151 	unsigned long usage;
4152 	int i;
4153 
4154 	rcu_read_lock();
4155 	if (!swap)
4156 		t = rcu_dereference(memcg->thresholds.primary);
4157 	else
4158 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4159 
4160 	if (!t)
4161 		goto unlock;
4162 
4163 	usage = mem_cgroup_usage(memcg, swap);
4164 
4165 	/*
4166 	 * current_threshold points to threshold just below or equal to usage.
4167 	 * If it's not true, a threshold was crossed after last
4168 	 * call of __mem_cgroup_threshold().
4169 	 */
4170 	i = t->current_threshold;
4171 
4172 	/*
4173 	 * Iterate backward over array of thresholds starting from
4174 	 * current_threshold and check if a threshold is crossed.
4175 	 * If none of thresholds below usage is crossed, we read
4176 	 * only one element of the array here.
4177 	 */
4178 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4179 		eventfd_signal(t->entries[i].eventfd, 1);
4180 
4181 	/* i = current_threshold + 1 */
4182 	i++;
4183 
4184 	/*
4185 	 * Iterate forward over array of thresholds starting from
4186 	 * current_threshold+1 and check if a threshold is crossed.
4187 	 * If none of thresholds above usage is crossed, we read
4188 	 * only one element of the array here.
4189 	 */
4190 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4191 		eventfd_signal(t->entries[i].eventfd, 1);
4192 
4193 	/* Update current_threshold */
4194 	t->current_threshold = i - 1;
4195 unlock:
4196 	rcu_read_unlock();
4197 }
4198 
4199 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4200 {
4201 	while (memcg) {
4202 		__mem_cgroup_threshold(memcg, false);
4203 		if (do_memsw_account())
4204 			__mem_cgroup_threshold(memcg, true);
4205 
4206 		memcg = parent_mem_cgroup(memcg);
4207 	}
4208 }
4209 
4210 static int compare_thresholds(const void *a, const void *b)
4211 {
4212 	const struct mem_cgroup_threshold *_a = a;
4213 	const struct mem_cgroup_threshold *_b = b;
4214 
4215 	if (_a->threshold > _b->threshold)
4216 		return 1;
4217 
4218 	if (_a->threshold < _b->threshold)
4219 		return -1;
4220 
4221 	return 0;
4222 }
4223 
4224 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4225 {
4226 	struct mem_cgroup_eventfd_list *ev;
4227 
4228 	spin_lock(&memcg_oom_lock);
4229 
4230 	list_for_each_entry(ev, &memcg->oom_notify, list)
4231 		eventfd_signal(ev->eventfd, 1);
4232 
4233 	spin_unlock(&memcg_oom_lock);
4234 	return 0;
4235 }
4236 
4237 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4238 {
4239 	struct mem_cgroup *iter;
4240 
4241 	for_each_mem_cgroup_tree(iter, memcg)
4242 		mem_cgroup_oom_notify_cb(iter);
4243 }
4244 
4245 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4246 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4247 {
4248 	struct mem_cgroup_thresholds *thresholds;
4249 	struct mem_cgroup_threshold_ary *new;
4250 	unsigned long threshold;
4251 	unsigned long usage;
4252 	int i, size, ret;
4253 
4254 	ret = page_counter_memparse(args, "-1", &threshold);
4255 	if (ret)
4256 		return ret;
4257 
4258 	mutex_lock(&memcg->thresholds_lock);
4259 
4260 	if (type == _MEM) {
4261 		thresholds = &memcg->thresholds;
4262 		usage = mem_cgroup_usage(memcg, false);
4263 	} else if (type == _MEMSWAP) {
4264 		thresholds = &memcg->memsw_thresholds;
4265 		usage = mem_cgroup_usage(memcg, true);
4266 	} else
4267 		BUG();
4268 
4269 	/* Check if a threshold crossed before adding a new one */
4270 	if (thresholds->primary)
4271 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4272 
4273 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4274 
4275 	/* Allocate memory for new array of thresholds */
4276 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4277 	if (!new) {
4278 		ret = -ENOMEM;
4279 		goto unlock;
4280 	}
4281 	new->size = size;
4282 
4283 	/* Copy thresholds (if any) to new array */
4284 	if (thresholds->primary)
4285 		memcpy(new->entries, thresholds->primary->entries,
4286 		       flex_array_size(new, entries, size - 1));
4287 
4288 	/* Add new threshold */
4289 	new->entries[size - 1].eventfd = eventfd;
4290 	new->entries[size - 1].threshold = threshold;
4291 
4292 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4293 	sort(new->entries, size, sizeof(*new->entries),
4294 			compare_thresholds, NULL);
4295 
4296 	/* Find current threshold */
4297 	new->current_threshold = -1;
4298 	for (i = 0; i < size; i++) {
4299 		if (new->entries[i].threshold <= usage) {
4300 			/*
4301 			 * new->current_threshold will not be used until
4302 			 * rcu_assign_pointer(), so it's safe to increment
4303 			 * it here.
4304 			 */
4305 			++new->current_threshold;
4306 		} else
4307 			break;
4308 	}
4309 
4310 	/* Free old spare buffer and save old primary buffer as spare */
4311 	kfree(thresholds->spare);
4312 	thresholds->spare = thresholds->primary;
4313 
4314 	rcu_assign_pointer(thresholds->primary, new);
4315 
4316 	/* To be sure that nobody uses thresholds */
4317 	synchronize_rcu();
4318 
4319 unlock:
4320 	mutex_unlock(&memcg->thresholds_lock);
4321 
4322 	return ret;
4323 }
4324 
4325 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4326 	struct eventfd_ctx *eventfd, const char *args)
4327 {
4328 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4329 }
4330 
4331 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4332 	struct eventfd_ctx *eventfd, const char *args)
4333 {
4334 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4335 }
4336 
4337 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4338 	struct eventfd_ctx *eventfd, enum res_type type)
4339 {
4340 	struct mem_cgroup_thresholds *thresholds;
4341 	struct mem_cgroup_threshold_ary *new;
4342 	unsigned long usage;
4343 	int i, j, size, entries;
4344 
4345 	mutex_lock(&memcg->thresholds_lock);
4346 
4347 	if (type == _MEM) {
4348 		thresholds = &memcg->thresholds;
4349 		usage = mem_cgroup_usage(memcg, false);
4350 	} else if (type == _MEMSWAP) {
4351 		thresholds = &memcg->memsw_thresholds;
4352 		usage = mem_cgroup_usage(memcg, true);
4353 	} else
4354 		BUG();
4355 
4356 	if (!thresholds->primary)
4357 		goto unlock;
4358 
4359 	/* Check if a threshold crossed before removing */
4360 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4361 
4362 	/* Calculate new number of threshold */
4363 	size = entries = 0;
4364 	for (i = 0; i < thresholds->primary->size; i++) {
4365 		if (thresholds->primary->entries[i].eventfd != eventfd)
4366 			size++;
4367 		else
4368 			entries++;
4369 	}
4370 
4371 	new = thresholds->spare;
4372 
4373 	/* If no items related to eventfd have been cleared, nothing to do */
4374 	if (!entries)
4375 		goto unlock;
4376 
4377 	/* Set thresholds array to NULL if we don't have thresholds */
4378 	if (!size) {
4379 		kfree(new);
4380 		new = NULL;
4381 		goto swap_buffers;
4382 	}
4383 
4384 	new->size = size;
4385 
4386 	/* Copy thresholds and find current threshold */
4387 	new->current_threshold = -1;
4388 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4389 		if (thresholds->primary->entries[i].eventfd == eventfd)
4390 			continue;
4391 
4392 		new->entries[j] = thresholds->primary->entries[i];
4393 		if (new->entries[j].threshold <= usage) {
4394 			/*
4395 			 * new->current_threshold will not be used
4396 			 * until rcu_assign_pointer(), so it's safe to increment
4397 			 * it here.
4398 			 */
4399 			++new->current_threshold;
4400 		}
4401 		j++;
4402 	}
4403 
4404 swap_buffers:
4405 	/* Swap primary and spare array */
4406 	thresholds->spare = thresholds->primary;
4407 
4408 	rcu_assign_pointer(thresholds->primary, new);
4409 
4410 	/* To be sure that nobody uses thresholds */
4411 	synchronize_rcu();
4412 
4413 	/* If all events are unregistered, free the spare array */
4414 	if (!new) {
4415 		kfree(thresholds->spare);
4416 		thresholds->spare = NULL;
4417 	}
4418 unlock:
4419 	mutex_unlock(&memcg->thresholds_lock);
4420 }
4421 
4422 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4423 	struct eventfd_ctx *eventfd)
4424 {
4425 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4426 }
4427 
4428 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4429 	struct eventfd_ctx *eventfd)
4430 {
4431 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4432 }
4433 
4434 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4435 	struct eventfd_ctx *eventfd, const char *args)
4436 {
4437 	struct mem_cgroup_eventfd_list *event;
4438 
4439 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4440 	if (!event)
4441 		return -ENOMEM;
4442 
4443 	spin_lock(&memcg_oom_lock);
4444 
4445 	event->eventfd = eventfd;
4446 	list_add(&event->list, &memcg->oom_notify);
4447 
4448 	/* already in OOM ? */
4449 	if (memcg->under_oom)
4450 		eventfd_signal(eventfd, 1);
4451 	spin_unlock(&memcg_oom_lock);
4452 
4453 	return 0;
4454 }
4455 
4456 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4457 	struct eventfd_ctx *eventfd)
4458 {
4459 	struct mem_cgroup_eventfd_list *ev, *tmp;
4460 
4461 	spin_lock(&memcg_oom_lock);
4462 
4463 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4464 		if (ev->eventfd == eventfd) {
4465 			list_del(&ev->list);
4466 			kfree(ev);
4467 		}
4468 	}
4469 
4470 	spin_unlock(&memcg_oom_lock);
4471 }
4472 
4473 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4474 {
4475 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4476 
4477 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4478 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4479 	seq_printf(sf, "oom_kill %lu\n",
4480 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4481 	return 0;
4482 }
4483 
4484 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4485 	struct cftype *cft, u64 val)
4486 {
4487 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4488 
4489 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4490 	if (!css->parent || !((val == 0) || (val == 1)))
4491 		return -EINVAL;
4492 
4493 	memcg->oom_kill_disable = val;
4494 	if (!val)
4495 		memcg_oom_recover(memcg);
4496 
4497 	return 0;
4498 }
4499 
4500 #ifdef CONFIG_CGROUP_WRITEBACK
4501 
4502 #include <trace/events/writeback.h>
4503 
4504 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4505 {
4506 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4507 }
4508 
4509 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4510 {
4511 	wb_domain_exit(&memcg->cgwb_domain);
4512 }
4513 
4514 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4515 {
4516 	wb_domain_size_changed(&memcg->cgwb_domain);
4517 }
4518 
4519 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4520 {
4521 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4522 
4523 	if (!memcg->css.parent)
4524 		return NULL;
4525 
4526 	return &memcg->cgwb_domain;
4527 }
4528 
4529 /*
4530  * idx can be of type enum memcg_stat_item or node_stat_item.
4531  * Keep in sync with memcg_exact_page().
4532  */
4533 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4534 {
4535 	long x = atomic_long_read(&memcg->vmstats[idx]);
4536 	int cpu;
4537 
4538 	for_each_online_cpu(cpu)
4539 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4540 	if (x < 0)
4541 		x = 0;
4542 	return x;
4543 }
4544 
4545 /**
4546  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4547  * @wb: bdi_writeback in question
4548  * @pfilepages: out parameter for number of file pages
4549  * @pheadroom: out parameter for number of allocatable pages according to memcg
4550  * @pdirty: out parameter for number of dirty pages
4551  * @pwriteback: out parameter for number of pages under writeback
4552  *
4553  * Determine the numbers of file, headroom, dirty, and writeback pages in
4554  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4555  * is a bit more involved.
4556  *
4557  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4558  * headroom is calculated as the lowest headroom of itself and the
4559  * ancestors.  Note that this doesn't consider the actual amount of
4560  * available memory in the system.  The caller should further cap
4561  * *@pheadroom accordingly.
4562  */
4563 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4564 			 unsigned long *pheadroom, unsigned long *pdirty,
4565 			 unsigned long *pwriteback)
4566 {
4567 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4568 	struct mem_cgroup *parent;
4569 
4570 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4571 
4572 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4573 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4574 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4575 	*pheadroom = PAGE_COUNTER_MAX;
4576 
4577 	while ((parent = parent_mem_cgroup(memcg))) {
4578 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4579 					    READ_ONCE(memcg->memory.high));
4580 		unsigned long used = page_counter_read(&memcg->memory);
4581 
4582 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4583 		memcg = parent;
4584 	}
4585 }
4586 
4587 /*
4588  * Foreign dirty flushing
4589  *
4590  * There's an inherent mismatch between memcg and writeback.  The former
4591  * trackes ownership per-page while the latter per-inode.  This was a
4592  * deliberate design decision because honoring per-page ownership in the
4593  * writeback path is complicated, may lead to higher CPU and IO overheads
4594  * and deemed unnecessary given that write-sharing an inode across
4595  * different cgroups isn't a common use-case.
4596  *
4597  * Combined with inode majority-writer ownership switching, this works well
4598  * enough in most cases but there are some pathological cases.  For
4599  * example, let's say there are two cgroups A and B which keep writing to
4600  * different but confined parts of the same inode.  B owns the inode and
4601  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4602  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4603  * triggering background writeback.  A will be slowed down without a way to
4604  * make writeback of the dirty pages happen.
4605  *
4606  * Conditions like the above can lead to a cgroup getting repatedly and
4607  * severely throttled after making some progress after each
4608  * dirty_expire_interval while the underyling IO device is almost
4609  * completely idle.
4610  *
4611  * Solving this problem completely requires matching the ownership tracking
4612  * granularities between memcg and writeback in either direction.  However,
4613  * the more egregious behaviors can be avoided by simply remembering the
4614  * most recent foreign dirtying events and initiating remote flushes on
4615  * them when local writeback isn't enough to keep the memory clean enough.
4616  *
4617  * The following two functions implement such mechanism.  When a foreign
4618  * page - a page whose memcg and writeback ownerships don't match - is
4619  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4620  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4621  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4622  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4623  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4624  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4625  * limited to MEMCG_CGWB_FRN_CNT.
4626  *
4627  * The mechanism only remembers IDs and doesn't hold any object references.
4628  * As being wrong occasionally doesn't matter, updates and accesses to the
4629  * records are lockless and racy.
4630  */
4631 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4632 					     struct bdi_writeback *wb)
4633 {
4634 	struct mem_cgroup *memcg = page_memcg(page);
4635 	struct memcg_cgwb_frn *frn;
4636 	u64 now = get_jiffies_64();
4637 	u64 oldest_at = now;
4638 	int oldest = -1;
4639 	int i;
4640 
4641 	trace_track_foreign_dirty(page, wb);
4642 
4643 	/*
4644 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4645 	 * using it.  If not replace the oldest one which isn't being
4646 	 * written out.
4647 	 */
4648 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4649 		frn = &memcg->cgwb_frn[i];
4650 		if (frn->bdi_id == wb->bdi->id &&
4651 		    frn->memcg_id == wb->memcg_css->id)
4652 			break;
4653 		if (time_before64(frn->at, oldest_at) &&
4654 		    atomic_read(&frn->done.cnt) == 1) {
4655 			oldest = i;
4656 			oldest_at = frn->at;
4657 		}
4658 	}
4659 
4660 	if (i < MEMCG_CGWB_FRN_CNT) {
4661 		/*
4662 		 * Re-using an existing one.  Update timestamp lazily to
4663 		 * avoid making the cacheline hot.  We want them to be
4664 		 * reasonably up-to-date and significantly shorter than
4665 		 * dirty_expire_interval as that's what expires the record.
4666 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4667 		 */
4668 		unsigned long update_intv =
4669 			min_t(unsigned long, HZ,
4670 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4671 
4672 		if (time_before64(frn->at, now - update_intv))
4673 			frn->at = now;
4674 	} else if (oldest >= 0) {
4675 		/* replace the oldest free one */
4676 		frn = &memcg->cgwb_frn[oldest];
4677 		frn->bdi_id = wb->bdi->id;
4678 		frn->memcg_id = wb->memcg_css->id;
4679 		frn->at = now;
4680 	}
4681 }
4682 
4683 /* issue foreign writeback flushes for recorded foreign dirtying events */
4684 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4685 {
4686 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4687 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4688 	u64 now = jiffies_64;
4689 	int i;
4690 
4691 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4692 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4693 
4694 		/*
4695 		 * If the record is older than dirty_expire_interval,
4696 		 * writeback on it has already started.  No need to kick it
4697 		 * off again.  Also, don't start a new one if there's
4698 		 * already one in flight.
4699 		 */
4700 		if (time_after64(frn->at, now - intv) &&
4701 		    atomic_read(&frn->done.cnt) == 1) {
4702 			frn->at = 0;
4703 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4704 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4705 					       WB_REASON_FOREIGN_FLUSH,
4706 					       &frn->done);
4707 		}
4708 	}
4709 }
4710 
4711 #else	/* CONFIG_CGROUP_WRITEBACK */
4712 
4713 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4714 {
4715 	return 0;
4716 }
4717 
4718 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4719 {
4720 }
4721 
4722 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4723 {
4724 }
4725 
4726 #endif	/* CONFIG_CGROUP_WRITEBACK */
4727 
4728 /*
4729  * DO NOT USE IN NEW FILES.
4730  *
4731  * "cgroup.event_control" implementation.
4732  *
4733  * This is way over-engineered.  It tries to support fully configurable
4734  * events for each user.  Such level of flexibility is completely
4735  * unnecessary especially in the light of the planned unified hierarchy.
4736  *
4737  * Please deprecate this and replace with something simpler if at all
4738  * possible.
4739  */
4740 
4741 /*
4742  * Unregister event and free resources.
4743  *
4744  * Gets called from workqueue.
4745  */
4746 static void memcg_event_remove(struct work_struct *work)
4747 {
4748 	struct mem_cgroup_event *event =
4749 		container_of(work, struct mem_cgroup_event, remove);
4750 	struct mem_cgroup *memcg = event->memcg;
4751 
4752 	remove_wait_queue(event->wqh, &event->wait);
4753 
4754 	event->unregister_event(memcg, event->eventfd);
4755 
4756 	/* Notify userspace the event is going away. */
4757 	eventfd_signal(event->eventfd, 1);
4758 
4759 	eventfd_ctx_put(event->eventfd);
4760 	kfree(event);
4761 	css_put(&memcg->css);
4762 }
4763 
4764 /*
4765  * Gets called on EPOLLHUP on eventfd when user closes it.
4766  *
4767  * Called with wqh->lock held and interrupts disabled.
4768  */
4769 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4770 			    int sync, void *key)
4771 {
4772 	struct mem_cgroup_event *event =
4773 		container_of(wait, struct mem_cgroup_event, wait);
4774 	struct mem_cgroup *memcg = event->memcg;
4775 	__poll_t flags = key_to_poll(key);
4776 
4777 	if (flags & EPOLLHUP) {
4778 		/*
4779 		 * If the event has been detached at cgroup removal, we
4780 		 * can simply return knowing the other side will cleanup
4781 		 * for us.
4782 		 *
4783 		 * We can't race against event freeing since the other
4784 		 * side will require wqh->lock via remove_wait_queue(),
4785 		 * which we hold.
4786 		 */
4787 		spin_lock(&memcg->event_list_lock);
4788 		if (!list_empty(&event->list)) {
4789 			list_del_init(&event->list);
4790 			/*
4791 			 * We are in atomic context, but cgroup_event_remove()
4792 			 * may sleep, so we have to call it in workqueue.
4793 			 */
4794 			schedule_work(&event->remove);
4795 		}
4796 		spin_unlock(&memcg->event_list_lock);
4797 	}
4798 
4799 	return 0;
4800 }
4801 
4802 static void memcg_event_ptable_queue_proc(struct file *file,
4803 		wait_queue_head_t *wqh, poll_table *pt)
4804 {
4805 	struct mem_cgroup_event *event =
4806 		container_of(pt, struct mem_cgroup_event, pt);
4807 
4808 	event->wqh = wqh;
4809 	add_wait_queue(wqh, &event->wait);
4810 }
4811 
4812 /*
4813  * DO NOT USE IN NEW FILES.
4814  *
4815  * Parse input and register new cgroup event handler.
4816  *
4817  * Input must be in format '<event_fd> <control_fd> <args>'.
4818  * Interpretation of args is defined by control file implementation.
4819  */
4820 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4821 					 char *buf, size_t nbytes, loff_t off)
4822 {
4823 	struct cgroup_subsys_state *css = of_css(of);
4824 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4825 	struct mem_cgroup_event *event;
4826 	struct cgroup_subsys_state *cfile_css;
4827 	unsigned int efd, cfd;
4828 	struct fd efile;
4829 	struct fd cfile;
4830 	const char *name;
4831 	char *endp;
4832 	int ret;
4833 
4834 	buf = strstrip(buf);
4835 
4836 	efd = simple_strtoul(buf, &endp, 10);
4837 	if (*endp != ' ')
4838 		return -EINVAL;
4839 	buf = endp + 1;
4840 
4841 	cfd = simple_strtoul(buf, &endp, 10);
4842 	if ((*endp != ' ') && (*endp != '\0'))
4843 		return -EINVAL;
4844 	buf = endp + 1;
4845 
4846 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4847 	if (!event)
4848 		return -ENOMEM;
4849 
4850 	event->memcg = memcg;
4851 	INIT_LIST_HEAD(&event->list);
4852 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4853 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4854 	INIT_WORK(&event->remove, memcg_event_remove);
4855 
4856 	efile = fdget(efd);
4857 	if (!efile.file) {
4858 		ret = -EBADF;
4859 		goto out_kfree;
4860 	}
4861 
4862 	event->eventfd = eventfd_ctx_fileget(efile.file);
4863 	if (IS_ERR(event->eventfd)) {
4864 		ret = PTR_ERR(event->eventfd);
4865 		goto out_put_efile;
4866 	}
4867 
4868 	cfile = fdget(cfd);
4869 	if (!cfile.file) {
4870 		ret = -EBADF;
4871 		goto out_put_eventfd;
4872 	}
4873 
4874 	/* the process need read permission on control file */
4875 	/* AV: shouldn't we check that it's been opened for read instead? */
4876 	ret = file_permission(cfile.file, MAY_READ);
4877 	if (ret < 0)
4878 		goto out_put_cfile;
4879 
4880 	/*
4881 	 * Determine the event callbacks and set them in @event.  This used
4882 	 * to be done via struct cftype but cgroup core no longer knows
4883 	 * about these events.  The following is crude but the whole thing
4884 	 * is for compatibility anyway.
4885 	 *
4886 	 * DO NOT ADD NEW FILES.
4887 	 */
4888 	name = cfile.file->f_path.dentry->d_name.name;
4889 
4890 	if (!strcmp(name, "memory.usage_in_bytes")) {
4891 		event->register_event = mem_cgroup_usage_register_event;
4892 		event->unregister_event = mem_cgroup_usage_unregister_event;
4893 	} else if (!strcmp(name, "memory.oom_control")) {
4894 		event->register_event = mem_cgroup_oom_register_event;
4895 		event->unregister_event = mem_cgroup_oom_unregister_event;
4896 	} else if (!strcmp(name, "memory.pressure_level")) {
4897 		event->register_event = vmpressure_register_event;
4898 		event->unregister_event = vmpressure_unregister_event;
4899 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4900 		event->register_event = memsw_cgroup_usage_register_event;
4901 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4902 	} else {
4903 		ret = -EINVAL;
4904 		goto out_put_cfile;
4905 	}
4906 
4907 	/*
4908 	 * Verify @cfile should belong to @css.  Also, remaining events are
4909 	 * automatically removed on cgroup destruction but the removal is
4910 	 * asynchronous, so take an extra ref on @css.
4911 	 */
4912 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4913 					       &memory_cgrp_subsys);
4914 	ret = -EINVAL;
4915 	if (IS_ERR(cfile_css))
4916 		goto out_put_cfile;
4917 	if (cfile_css != css) {
4918 		css_put(cfile_css);
4919 		goto out_put_cfile;
4920 	}
4921 
4922 	ret = event->register_event(memcg, event->eventfd, buf);
4923 	if (ret)
4924 		goto out_put_css;
4925 
4926 	vfs_poll(efile.file, &event->pt);
4927 
4928 	spin_lock(&memcg->event_list_lock);
4929 	list_add(&event->list, &memcg->event_list);
4930 	spin_unlock(&memcg->event_list_lock);
4931 
4932 	fdput(cfile);
4933 	fdput(efile);
4934 
4935 	return nbytes;
4936 
4937 out_put_css:
4938 	css_put(css);
4939 out_put_cfile:
4940 	fdput(cfile);
4941 out_put_eventfd:
4942 	eventfd_ctx_put(event->eventfd);
4943 out_put_efile:
4944 	fdput(efile);
4945 out_kfree:
4946 	kfree(event);
4947 
4948 	return ret;
4949 }
4950 
4951 static struct cftype mem_cgroup_legacy_files[] = {
4952 	{
4953 		.name = "usage_in_bytes",
4954 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4955 		.read_u64 = mem_cgroup_read_u64,
4956 	},
4957 	{
4958 		.name = "max_usage_in_bytes",
4959 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4960 		.write = mem_cgroup_reset,
4961 		.read_u64 = mem_cgroup_read_u64,
4962 	},
4963 	{
4964 		.name = "limit_in_bytes",
4965 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4966 		.write = mem_cgroup_write,
4967 		.read_u64 = mem_cgroup_read_u64,
4968 	},
4969 	{
4970 		.name = "soft_limit_in_bytes",
4971 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4972 		.write = mem_cgroup_write,
4973 		.read_u64 = mem_cgroup_read_u64,
4974 	},
4975 	{
4976 		.name = "failcnt",
4977 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4978 		.write = mem_cgroup_reset,
4979 		.read_u64 = mem_cgroup_read_u64,
4980 	},
4981 	{
4982 		.name = "stat",
4983 		.seq_show = memcg_stat_show,
4984 	},
4985 	{
4986 		.name = "force_empty",
4987 		.write = mem_cgroup_force_empty_write,
4988 	},
4989 	{
4990 		.name = "use_hierarchy",
4991 		.write_u64 = mem_cgroup_hierarchy_write,
4992 		.read_u64 = mem_cgroup_hierarchy_read,
4993 	},
4994 	{
4995 		.name = "cgroup.event_control",		/* XXX: for compat */
4996 		.write = memcg_write_event_control,
4997 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4998 	},
4999 	{
5000 		.name = "swappiness",
5001 		.read_u64 = mem_cgroup_swappiness_read,
5002 		.write_u64 = mem_cgroup_swappiness_write,
5003 	},
5004 	{
5005 		.name = "move_charge_at_immigrate",
5006 		.read_u64 = mem_cgroup_move_charge_read,
5007 		.write_u64 = mem_cgroup_move_charge_write,
5008 	},
5009 	{
5010 		.name = "oom_control",
5011 		.seq_show = mem_cgroup_oom_control_read,
5012 		.write_u64 = mem_cgroup_oom_control_write,
5013 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5014 	},
5015 	{
5016 		.name = "pressure_level",
5017 	},
5018 #ifdef CONFIG_NUMA
5019 	{
5020 		.name = "numa_stat",
5021 		.seq_show = memcg_numa_stat_show,
5022 	},
5023 #endif
5024 	{
5025 		.name = "kmem.limit_in_bytes",
5026 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5027 		.write = mem_cgroup_write,
5028 		.read_u64 = mem_cgroup_read_u64,
5029 	},
5030 	{
5031 		.name = "kmem.usage_in_bytes",
5032 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5033 		.read_u64 = mem_cgroup_read_u64,
5034 	},
5035 	{
5036 		.name = "kmem.failcnt",
5037 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5038 		.write = mem_cgroup_reset,
5039 		.read_u64 = mem_cgroup_read_u64,
5040 	},
5041 	{
5042 		.name = "kmem.max_usage_in_bytes",
5043 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5044 		.write = mem_cgroup_reset,
5045 		.read_u64 = mem_cgroup_read_u64,
5046 	},
5047 #if defined(CONFIG_MEMCG_KMEM) && \
5048 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5049 	{
5050 		.name = "kmem.slabinfo",
5051 		.seq_show = memcg_slab_show,
5052 	},
5053 #endif
5054 	{
5055 		.name = "kmem.tcp.limit_in_bytes",
5056 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5057 		.write = mem_cgroup_write,
5058 		.read_u64 = mem_cgroup_read_u64,
5059 	},
5060 	{
5061 		.name = "kmem.tcp.usage_in_bytes",
5062 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5063 		.read_u64 = mem_cgroup_read_u64,
5064 	},
5065 	{
5066 		.name = "kmem.tcp.failcnt",
5067 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5068 		.write = mem_cgroup_reset,
5069 		.read_u64 = mem_cgroup_read_u64,
5070 	},
5071 	{
5072 		.name = "kmem.tcp.max_usage_in_bytes",
5073 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5074 		.write = mem_cgroup_reset,
5075 		.read_u64 = mem_cgroup_read_u64,
5076 	},
5077 	{ },	/* terminate */
5078 };
5079 
5080 /*
5081  * Private memory cgroup IDR
5082  *
5083  * Swap-out records and page cache shadow entries need to store memcg
5084  * references in constrained space, so we maintain an ID space that is
5085  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5086  * memory-controlled cgroups to 64k.
5087  *
5088  * However, there usually are many references to the offline CSS after
5089  * the cgroup has been destroyed, such as page cache or reclaimable
5090  * slab objects, that don't need to hang on to the ID. We want to keep
5091  * those dead CSS from occupying IDs, or we might quickly exhaust the
5092  * relatively small ID space and prevent the creation of new cgroups
5093  * even when there are much fewer than 64k cgroups - possibly none.
5094  *
5095  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5096  * be freed and recycled when it's no longer needed, which is usually
5097  * when the CSS is offlined.
5098  *
5099  * The only exception to that are records of swapped out tmpfs/shmem
5100  * pages that need to be attributed to live ancestors on swapin. But
5101  * those references are manageable from userspace.
5102  */
5103 
5104 static DEFINE_IDR(mem_cgroup_idr);
5105 
5106 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5107 {
5108 	if (memcg->id.id > 0) {
5109 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5110 		memcg->id.id = 0;
5111 	}
5112 }
5113 
5114 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5115 						  unsigned int n)
5116 {
5117 	refcount_add(n, &memcg->id.ref);
5118 }
5119 
5120 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5121 {
5122 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5123 		mem_cgroup_id_remove(memcg);
5124 
5125 		/* Memcg ID pins CSS */
5126 		css_put(&memcg->css);
5127 	}
5128 }
5129 
5130 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5131 {
5132 	mem_cgroup_id_put_many(memcg, 1);
5133 }
5134 
5135 /**
5136  * mem_cgroup_from_id - look up a memcg from a memcg id
5137  * @id: the memcg id to look up
5138  *
5139  * Caller must hold rcu_read_lock().
5140  */
5141 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5142 {
5143 	WARN_ON_ONCE(!rcu_read_lock_held());
5144 	return idr_find(&mem_cgroup_idr, id);
5145 }
5146 
5147 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5148 {
5149 	struct mem_cgroup_per_node *pn;
5150 	int tmp = node;
5151 	/*
5152 	 * This routine is called against possible nodes.
5153 	 * But it's BUG to call kmalloc() against offline node.
5154 	 *
5155 	 * TODO: this routine can waste much memory for nodes which will
5156 	 *       never be onlined. It's better to use memory hotplug callback
5157 	 *       function.
5158 	 */
5159 	if (!node_state(node, N_NORMAL_MEMORY))
5160 		tmp = -1;
5161 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5162 	if (!pn)
5163 		return 1;
5164 
5165 	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5166 						 GFP_KERNEL_ACCOUNT);
5167 	if (!pn->lruvec_stat_local) {
5168 		kfree(pn);
5169 		return 1;
5170 	}
5171 
5172 	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5173 					       GFP_KERNEL_ACCOUNT);
5174 	if (!pn->lruvec_stat_cpu) {
5175 		free_percpu(pn->lruvec_stat_local);
5176 		kfree(pn);
5177 		return 1;
5178 	}
5179 
5180 	lruvec_init(&pn->lruvec);
5181 	pn->usage_in_excess = 0;
5182 	pn->on_tree = false;
5183 	pn->memcg = memcg;
5184 
5185 	memcg->nodeinfo[node] = pn;
5186 	return 0;
5187 }
5188 
5189 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5190 {
5191 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5192 
5193 	if (!pn)
5194 		return;
5195 
5196 	free_percpu(pn->lruvec_stat_cpu);
5197 	free_percpu(pn->lruvec_stat_local);
5198 	kfree(pn);
5199 }
5200 
5201 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5202 {
5203 	int node;
5204 
5205 	for_each_node(node)
5206 		free_mem_cgroup_per_node_info(memcg, node);
5207 	free_percpu(memcg->vmstats_percpu);
5208 	free_percpu(memcg->vmstats_local);
5209 	kfree(memcg);
5210 }
5211 
5212 static void mem_cgroup_free(struct mem_cgroup *memcg)
5213 {
5214 	memcg_wb_domain_exit(memcg);
5215 	/*
5216 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
5217 	 * on parent's and all ancestor levels.
5218 	 */
5219 	memcg_flush_percpu_vmstats(memcg);
5220 	memcg_flush_percpu_vmevents(memcg);
5221 	__mem_cgroup_free(memcg);
5222 }
5223 
5224 static struct mem_cgroup *mem_cgroup_alloc(void)
5225 {
5226 	struct mem_cgroup *memcg;
5227 	unsigned int size;
5228 	int node;
5229 	int __maybe_unused i;
5230 	long error = -ENOMEM;
5231 
5232 	size = sizeof(struct mem_cgroup);
5233 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5234 
5235 	memcg = kzalloc(size, GFP_KERNEL);
5236 	if (!memcg)
5237 		return ERR_PTR(error);
5238 
5239 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5240 				 1, MEM_CGROUP_ID_MAX,
5241 				 GFP_KERNEL);
5242 	if (memcg->id.id < 0) {
5243 		error = memcg->id.id;
5244 		goto fail;
5245 	}
5246 
5247 	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5248 						GFP_KERNEL_ACCOUNT);
5249 	if (!memcg->vmstats_local)
5250 		goto fail;
5251 
5252 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5253 						 GFP_KERNEL_ACCOUNT);
5254 	if (!memcg->vmstats_percpu)
5255 		goto fail;
5256 
5257 	for_each_node(node)
5258 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5259 			goto fail;
5260 
5261 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5262 		goto fail;
5263 
5264 	INIT_WORK(&memcg->high_work, high_work_func);
5265 	INIT_LIST_HEAD(&memcg->oom_notify);
5266 	mutex_init(&memcg->thresholds_lock);
5267 	spin_lock_init(&memcg->move_lock);
5268 	vmpressure_init(&memcg->vmpressure);
5269 	INIT_LIST_HEAD(&memcg->event_list);
5270 	spin_lock_init(&memcg->event_list_lock);
5271 	memcg->socket_pressure = jiffies;
5272 #ifdef CONFIG_MEMCG_KMEM
5273 	memcg->kmemcg_id = -1;
5274 	INIT_LIST_HEAD(&memcg->objcg_list);
5275 #endif
5276 #ifdef CONFIG_CGROUP_WRITEBACK
5277 	INIT_LIST_HEAD(&memcg->cgwb_list);
5278 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5279 		memcg->cgwb_frn[i].done =
5280 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5281 #endif
5282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5283 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5284 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5285 	memcg->deferred_split_queue.split_queue_len = 0;
5286 #endif
5287 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5288 	return memcg;
5289 fail:
5290 	mem_cgroup_id_remove(memcg);
5291 	__mem_cgroup_free(memcg);
5292 	return ERR_PTR(error);
5293 }
5294 
5295 static struct cgroup_subsys_state * __ref
5296 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5297 {
5298 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5299 	struct mem_cgroup *memcg, *old_memcg;
5300 	long error = -ENOMEM;
5301 
5302 	old_memcg = set_active_memcg(parent);
5303 	memcg = mem_cgroup_alloc();
5304 	set_active_memcg(old_memcg);
5305 	if (IS_ERR(memcg))
5306 		return ERR_CAST(memcg);
5307 
5308 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5309 	memcg->soft_limit = PAGE_COUNTER_MAX;
5310 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5311 	if (parent) {
5312 		memcg->swappiness = mem_cgroup_swappiness(parent);
5313 		memcg->oom_kill_disable = parent->oom_kill_disable;
5314 
5315 		page_counter_init(&memcg->memory, &parent->memory);
5316 		page_counter_init(&memcg->swap, &parent->swap);
5317 		page_counter_init(&memcg->kmem, &parent->kmem);
5318 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5319 	} else {
5320 		page_counter_init(&memcg->memory, NULL);
5321 		page_counter_init(&memcg->swap, NULL);
5322 		page_counter_init(&memcg->kmem, NULL);
5323 		page_counter_init(&memcg->tcpmem, NULL);
5324 
5325 		root_mem_cgroup = memcg;
5326 		return &memcg->css;
5327 	}
5328 
5329 	/* The following stuff does not apply to the root */
5330 	error = memcg_online_kmem(memcg);
5331 	if (error)
5332 		goto fail;
5333 
5334 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5335 		static_branch_inc(&memcg_sockets_enabled_key);
5336 
5337 	return &memcg->css;
5338 fail:
5339 	mem_cgroup_id_remove(memcg);
5340 	mem_cgroup_free(memcg);
5341 	return ERR_PTR(error);
5342 }
5343 
5344 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5345 {
5346 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5347 
5348 	/*
5349 	 * A memcg must be visible for memcg_expand_shrinker_maps()
5350 	 * by the time the maps are allocated. So, we allocate maps
5351 	 * here, when for_each_mem_cgroup() can't skip it.
5352 	 */
5353 	if (memcg_alloc_shrinker_maps(memcg)) {
5354 		mem_cgroup_id_remove(memcg);
5355 		return -ENOMEM;
5356 	}
5357 
5358 	/* Online state pins memcg ID, memcg ID pins CSS */
5359 	refcount_set(&memcg->id.ref, 1);
5360 	css_get(css);
5361 	return 0;
5362 }
5363 
5364 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5365 {
5366 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5367 	struct mem_cgroup_event *event, *tmp;
5368 
5369 	/*
5370 	 * Unregister events and notify userspace.
5371 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5372 	 * directory to avoid race between userspace and kernelspace.
5373 	 */
5374 	spin_lock(&memcg->event_list_lock);
5375 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5376 		list_del_init(&event->list);
5377 		schedule_work(&event->remove);
5378 	}
5379 	spin_unlock(&memcg->event_list_lock);
5380 
5381 	page_counter_set_min(&memcg->memory, 0);
5382 	page_counter_set_low(&memcg->memory, 0);
5383 
5384 	memcg_offline_kmem(memcg);
5385 	wb_memcg_offline(memcg);
5386 
5387 	drain_all_stock(memcg);
5388 
5389 	mem_cgroup_id_put(memcg);
5390 }
5391 
5392 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5393 {
5394 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5395 
5396 	invalidate_reclaim_iterators(memcg);
5397 }
5398 
5399 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5400 {
5401 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402 	int __maybe_unused i;
5403 
5404 #ifdef CONFIG_CGROUP_WRITEBACK
5405 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5406 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5407 #endif
5408 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5409 		static_branch_dec(&memcg_sockets_enabled_key);
5410 
5411 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5412 		static_branch_dec(&memcg_sockets_enabled_key);
5413 
5414 	vmpressure_cleanup(&memcg->vmpressure);
5415 	cancel_work_sync(&memcg->high_work);
5416 	mem_cgroup_remove_from_trees(memcg);
5417 	memcg_free_shrinker_maps(memcg);
5418 	memcg_free_kmem(memcg);
5419 	mem_cgroup_free(memcg);
5420 }
5421 
5422 /**
5423  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5424  * @css: the target css
5425  *
5426  * Reset the states of the mem_cgroup associated with @css.  This is
5427  * invoked when the userland requests disabling on the default hierarchy
5428  * but the memcg is pinned through dependency.  The memcg should stop
5429  * applying policies and should revert to the vanilla state as it may be
5430  * made visible again.
5431  *
5432  * The current implementation only resets the essential configurations.
5433  * This needs to be expanded to cover all the visible parts.
5434  */
5435 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5436 {
5437 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5438 
5439 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5440 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5441 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5442 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5443 	page_counter_set_min(&memcg->memory, 0);
5444 	page_counter_set_low(&memcg->memory, 0);
5445 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5446 	memcg->soft_limit = PAGE_COUNTER_MAX;
5447 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5448 	memcg_wb_domain_size_changed(memcg);
5449 }
5450 
5451 #ifdef CONFIG_MMU
5452 /* Handlers for move charge at task migration. */
5453 static int mem_cgroup_do_precharge(unsigned long count)
5454 {
5455 	int ret;
5456 
5457 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5458 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5459 	if (!ret) {
5460 		mc.precharge += count;
5461 		return ret;
5462 	}
5463 
5464 	/* Try charges one by one with reclaim, but do not retry */
5465 	while (count--) {
5466 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5467 		if (ret)
5468 			return ret;
5469 		mc.precharge++;
5470 		cond_resched();
5471 	}
5472 	return 0;
5473 }
5474 
5475 union mc_target {
5476 	struct page	*page;
5477 	swp_entry_t	ent;
5478 };
5479 
5480 enum mc_target_type {
5481 	MC_TARGET_NONE = 0,
5482 	MC_TARGET_PAGE,
5483 	MC_TARGET_SWAP,
5484 	MC_TARGET_DEVICE,
5485 };
5486 
5487 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5488 						unsigned long addr, pte_t ptent)
5489 {
5490 	struct page *page = vm_normal_page(vma, addr, ptent);
5491 
5492 	if (!page || !page_mapped(page))
5493 		return NULL;
5494 	if (PageAnon(page)) {
5495 		if (!(mc.flags & MOVE_ANON))
5496 			return NULL;
5497 	} else {
5498 		if (!(mc.flags & MOVE_FILE))
5499 			return NULL;
5500 	}
5501 	if (!get_page_unless_zero(page))
5502 		return NULL;
5503 
5504 	return page;
5505 }
5506 
5507 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5508 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5509 			pte_t ptent, swp_entry_t *entry)
5510 {
5511 	struct page *page = NULL;
5512 	swp_entry_t ent = pte_to_swp_entry(ptent);
5513 
5514 	if (!(mc.flags & MOVE_ANON))
5515 		return NULL;
5516 
5517 	/*
5518 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5519 	 * a device and because they are not accessible by CPU they are store
5520 	 * as special swap entry in the CPU page table.
5521 	 */
5522 	if (is_device_private_entry(ent)) {
5523 		page = device_private_entry_to_page(ent);
5524 		/*
5525 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5526 		 * a refcount of 1 when free (unlike normal page)
5527 		 */
5528 		if (!page_ref_add_unless(page, 1, 1))
5529 			return NULL;
5530 		return page;
5531 	}
5532 
5533 	if (non_swap_entry(ent))
5534 		return NULL;
5535 
5536 	/*
5537 	 * Because lookup_swap_cache() updates some statistics counter,
5538 	 * we call find_get_page() with swapper_space directly.
5539 	 */
5540 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5541 	entry->val = ent.val;
5542 
5543 	return page;
5544 }
5545 #else
5546 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5547 			pte_t ptent, swp_entry_t *entry)
5548 {
5549 	return NULL;
5550 }
5551 #endif
5552 
5553 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5554 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5555 {
5556 	if (!vma->vm_file) /* anonymous vma */
5557 		return NULL;
5558 	if (!(mc.flags & MOVE_FILE))
5559 		return NULL;
5560 
5561 	/* page is moved even if it's not RSS of this task(page-faulted). */
5562 	/* shmem/tmpfs may report page out on swap: account for that too. */
5563 	return find_get_incore_page(vma->vm_file->f_mapping,
5564 			linear_page_index(vma, addr));
5565 }
5566 
5567 /**
5568  * mem_cgroup_move_account - move account of the page
5569  * @page: the page
5570  * @compound: charge the page as compound or small page
5571  * @from: mem_cgroup which the page is moved from.
5572  * @to:	mem_cgroup which the page is moved to. @from != @to.
5573  *
5574  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5575  *
5576  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5577  * from old cgroup.
5578  */
5579 static int mem_cgroup_move_account(struct page *page,
5580 				   bool compound,
5581 				   struct mem_cgroup *from,
5582 				   struct mem_cgroup *to)
5583 {
5584 	struct lruvec *from_vec, *to_vec;
5585 	struct pglist_data *pgdat;
5586 	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5587 	int ret;
5588 
5589 	VM_BUG_ON(from == to);
5590 	VM_BUG_ON_PAGE(PageLRU(page), page);
5591 	VM_BUG_ON(compound && !PageTransHuge(page));
5592 
5593 	/*
5594 	 * Prevent mem_cgroup_migrate() from looking at
5595 	 * page's memory cgroup of its source page while we change it.
5596 	 */
5597 	ret = -EBUSY;
5598 	if (!trylock_page(page))
5599 		goto out;
5600 
5601 	ret = -EINVAL;
5602 	if (page_memcg(page) != from)
5603 		goto out_unlock;
5604 
5605 	pgdat = page_pgdat(page);
5606 	from_vec = mem_cgroup_lruvec(from, pgdat);
5607 	to_vec = mem_cgroup_lruvec(to, pgdat);
5608 
5609 	lock_page_memcg(page);
5610 
5611 	if (PageAnon(page)) {
5612 		if (page_mapped(page)) {
5613 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5614 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5615 			if (PageTransHuge(page)) {
5616 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5617 						   -nr_pages);
5618 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5619 						   nr_pages);
5620 			}
5621 		}
5622 	} else {
5623 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5624 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5625 
5626 		if (PageSwapBacked(page)) {
5627 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5628 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5629 		}
5630 
5631 		if (page_mapped(page)) {
5632 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5633 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5634 		}
5635 
5636 		if (PageDirty(page)) {
5637 			struct address_space *mapping = page_mapping(page);
5638 
5639 			if (mapping_can_writeback(mapping)) {
5640 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5641 						   -nr_pages);
5642 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5643 						   nr_pages);
5644 			}
5645 		}
5646 	}
5647 
5648 	if (PageWriteback(page)) {
5649 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5650 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5651 	}
5652 
5653 	/*
5654 	 * All state has been migrated, let's switch to the new memcg.
5655 	 *
5656 	 * It is safe to change page's memcg here because the page
5657 	 * is referenced, charged, isolated, and locked: we can't race
5658 	 * with (un)charging, migration, LRU putback, or anything else
5659 	 * that would rely on a stable page's memory cgroup.
5660 	 *
5661 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5662 	 * to save space. As soon as we switch page's memory cgroup to a
5663 	 * new memcg that isn't locked, the above state can change
5664 	 * concurrently again. Make sure we're truly done with it.
5665 	 */
5666 	smp_mb();
5667 
5668 	css_get(&to->css);
5669 	css_put(&from->css);
5670 
5671 	page->memcg_data = (unsigned long)to;
5672 
5673 	__unlock_page_memcg(from);
5674 
5675 	ret = 0;
5676 
5677 	local_irq_disable();
5678 	mem_cgroup_charge_statistics(to, page, nr_pages);
5679 	memcg_check_events(to, page);
5680 	mem_cgroup_charge_statistics(from, page, -nr_pages);
5681 	memcg_check_events(from, page);
5682 	local_irq_enable();
5683 out_unlock:
5684 	unlock_page(page);
5685 out:
5686 	return ret;
5687 }
5688 
5689 /**
5690  * get_mctgt_type - get target type of moving charge
5691  * @vma: the vma the pte to be checked belongs
5692  * @addr: the address corresponding to the pte to be checked
5693  * @ptent: the pte to be checked
5694  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5695  *
5696  * Returns
5697  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5698  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5699  *     move charge. if @target is not NULL, the page is stored in target->page
5700  *     with extra refcnt got(Callers should handle it).
5701  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5702  *     target for charge migration. if @target is not NULL, the entry is stored
5703  *     in target->ent.
5704  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5705  *     (so ZONE_DEVICE page and thus not on the lru).
5706  *     For now we such page is charge like a regular page would be as for all
5707  *     intent and purposes it is just special memory taking the place of a
5708  *     regular page.
5709  *
5710  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5711  *
5712  * Called with pte lock held.
5713  */
5714 
5715 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5716 		unsigned long addr, pte_t ptent, union mc_target *target)
5717 {
5718 	struct page *page = NULL;
5719 	enum mc_target_type ret = MC_TARGET_NONE;
5720 	swp_entry_t ent = { .val = 0 };
5721 
5722 	if (pte_present(ptent))
5723 		page = mc_handle_present_pte(vma, addr, ptent);
5724 	else if (is_swap_pte(ptent))
5725 		page = mc_handle_swap_pte(vma, ptent, &ent);
5726 	else if (pte_none(ptent))
5727 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5728 
5729 	if (!page && !ent.val)
5730 		return ret;
5731 	if (page) {
5732 		/*
5733 		 * Do only loose check w/o serialization.
5734 		 * mem_cgroup_move_account() checks the page is valid or
5735 		 * not under LRU exclusion.
5736 		 */
5737 		if (page_memcg(page) == mc.from) {
5738 			ret = MC_TARGET_PAGE;
5739 			if (is_device_private_page(page))
5740 				ret = MC_TARGET_DEVICE;
5741 			if (target)
5742 				target->page = page;
5743 		}
5744 		if (!ret || !target)
5745 			put_page(page);
5746 	}
5747 	/*
5748 	 * There is a swap entry and a page doesn't exist or isn't charged.
5749 	 * But we cannot move a tail-page in a THP.
5750 	 */
5751 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5752 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5753 		ret = MC_TARGET_SWAP;
5754 		if (target)
5755 			target->ent = ent;
5756 	}
5757 	return ret;
5758 }
5759 
5760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5761 /*
5762  * We don't consider PMD mapped swapping or file mapped pages because THP does
5763  * not support them for now.
5764  * Caller should make sure that pmd_trans_huge(pmd) is true.
5765  */
5766 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5767 		unsigned long addr, pmd_t pmd, union mc_target *target)
5768 {
5769 	struct page *page = NULL;
5770 	enum mc_target_type ret = MC_TARGET_NONE;
5771 
5772 	if (unlikely(is_swap_pmd(pmd))) {
5773 		VM_BUG_ON(thp_migration_supported() &&
5774 				  !is_pmd_migration_entry(pmd));
5775 		return ret;
5776 	}
5777 	page = pmd_page(pmd);
5778 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5779 	if (!(mc.flags & MOVE_ANON))
5780 		return ret;
5781 	if (page_memcg(page) == mc.from) {
5782 		ret = MC_TARGET_PAGE;
5783 		if (target) {
5784 			get_page(page);
5785 			target->page = page;
5786 		}
5787 	}
5788 	return ret;
5789 }
5790 #else
5791 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5792 		unsigned long addr, pmd_t pmd, union mc_target *target)
5793 {
5794 	return MC_TARGET_NONE;
5795 }
5796 #endif
5797 
5798 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5799 					unsigned long addr, unsigned long end,
5800 					struct mm_walk *walk)
5801 {
5802 	struct vm_area_struct *vma = walk->vma;
5803 	pte_t *pte;
5804 	spinlock_t *ptl;
5805 
5806 	ptl = pmd_trans_huge_lock(pmd, vma);
5807 	if (ptl) {
5808 		/*
5809 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5810 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5811 		 * this might change.
5812 		 */
5813 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5814 			mc.precharge += HPAGE_PMD_NR;
5815 		spin_unlock(ptl);
5816 		return 0;
5817 	}
5818 
5819 	if (pmd_trans_unstable(pmd))
5820 		return 0;
5821 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5822 	for (; addr != end; pte++, addr += PAGE_SIZE)
5823 		if (get_mctgt_type(vma, addr, *pte, NULL))
5824 			mc.precharge++;	/* increment precharge temporarily */
5825 	pte_unmap_unlock(pte - 1, ptl);
5826 	cond_resched();
5827 
5828 	return 0;
5829 }
5830 
5831 static const struct mm_walk_ops precharge_walk_ops = {
5832 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5833 };
5834 
5835 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5836 {
5837 	unsigned long precharge;
5838 
5839 	mmap_read_lock(mm);
5840 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5841 	mmap_read_unlock(mm);
5842 
5843 	precharge = mc.precharge;
5844 	mc.precharge = 0;
5845 
5846 	return precharge;
5847 }
5848 
5849 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5850 {
5851 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5852 
5853 	VM_BUG_ON(mc.moving_task);
5854 	mc.moving_task = current;
5855 	return mem_cgroup_do_precharge(precharge);
5856 }
5857 
5858 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5859 static void __mem_cgroup_clear_mc(void)
5860 {
5861 	struct mem_cgroup *from = mc.from;
5862 	struct mem_cgroup *to = mc.to;
5863 
5864 	/* we must uncharge all the leftover precharges from mc.to */
5865 	if (mc.precharge) {
5866 		cancel_charge(mc.to, mc.precharge);
5867 		mc.precharge = 0;
5868 	}
5869 	/*
5870 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5871 	 * we must uncharge here.
5872 	 */
5873 	if (mc.moved_charge) {
5874 		cancel_charge(mc.from, mc.moved_charge);
5875 		mc.moved_charge = 0;
5876 	}
5877 	/* we must fixup refcnts and charges */
5878 	if (mc.moved_swap) {
5879 		/* uncharge swap account from the old cgroup */
5880 		if (!mem_cgroup_is_root(mc.from))
5881 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5882 
5883 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5884 
5885 		/*
5886 		 * we charged both to->memory and to->memsw, so we
5887 		 * should uncharge to->memory.
5888 		 */
5889 		if (!mem_cgroup_is_root(mc.to))
5890 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5891 
5892 		mc.moved_swap = 0;
5893 	}
5894 	memcg_oom_recover(from);
5895 	memcg_oom_recover(to);
5896 	wake_up_all(&mc.waitq);
5897 }
5898 
5899 static void mem_cgroup_clear_mc(void)
5900 {
5901 	struct mm_struct *mm = mc.mm;
5902 
5903 	/*
5904 	 * we must clear moving_task before waking up waiters at the end of
5905 	 * task migration.
5906 	 */
5907 	mc.moving_task = NULL;
5908 	__mem_cgroup_clear_mc();
5909 	spin_lock(&mc.lock);
5910 	mc.from = NULL;
5911 	mc.to = NULL;
5912 	mc.mm = NULL;
5913 	spin_unlock(&mc.lock);
5914 
5915 	mmput(mm);
5916 }
5917 
5918 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5919 {
5920 	struct cgroup_subsys_state *css;
5921 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5922 	struct mem_cgroup *from;
5923 	struct task_struct *leader, *p;
5924 	struct mm_struct *mm;
5925 	unsigned long move_flags;
5926 	int ret = 0;
5927 
5928 	/* charge immigration isn't supported on the default hierarchy */
5929 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5930 		return 0;
5931 
5932 	/*
5933 	 * Multi-process migrations only happen on the default hierarchy
5934 	 * where charge immigration is not used.  Perform charge
5935 	 * immigration if @tset contains a leader and whine if there are
5936 	 * multiple.
5937 	 */
5938 	p = NULL;
5939 	cgroup_taskset_for_each_leader(leader, css, tset) {
5940 		WARN_ON_ONCE(p);
5941 		p = leader;
5942 		memcg = mem_cgroup_from_css(css);
5943 	}
5944 	if (!p)
5945 		return 0;
5946 
5947 	/*
5948 	 * We are now commited to this value whatever it is. Changes in this
5949 	 * tunable will only affect upcoming migrations, not the current one.
5950 	 * So we need to save it, and keep it going.
5951 	 */
5952 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5953 	if (!move_flags)
5954 		return 0;
5955 
5956 	from = mem_cgroup_from_task(p);
5957 
5958 	VM_BUG_ON(from == memcg);
5959 
5960 	mm = get_task_mm(p);
5961 	if (!mm)
5962 		return 0;
5963 	/* We move charges only when we move a owner of the mm */
5964 	if (mm->owner == p) {
5965 		VM_BUG_ON(mc.from);
5966 		VM_BUG_ON(mc.to);
5967 		VM_BUG_ON(mc.precharge);
5968 		VM_BUG_ON(mc.moved_charge);
5969 		VM_BUG_ON(mc.moved_swap);
5970 
5971 		spin_lock(&mc.lock);
5972 		mc.mm = mm;
5973 		mc.from = from;
5974 		mc.to = memcg;
5975 		mc.flags = move_flags;
5976 		spin_unlock(&mc.lock);
5977 		/* We set mc.moving_task later */
5978 
5979 		ret = mem_cgroup_precharge_mc(mm);
5980 		if (ret)
5981 			mem_cgroup_clear_mc();
5982 	} else {
5983 		mmput(mm);
5984 	}
5985 	return ret;
5986 }
5987 
5988 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5989 {
5990 	if (mc.to)
5991 		mem_cgroup_clear_mc();
5992 }
5993 
5994 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5995 				unsigned long addr, unsigned long end,
5996 				struct mm_walk *walk)
5997 {
5998 	int ret = 0;
5999 	struct vm_area_struct *vma = walk->vma;
6000 	pte_t *pte;
6001 	spinlock_t *ptl;
6002 	enum mc_target_type target_type;
6003 	union mc_target target;
6004 	struct page *page;
6005 
6006 	ptl = pmd_trans_huge_lock(pmd, vma);
6007 	if (ptl) {
6008 		if (mc.precharge < HPAGE_PMD_NR) {
6009 			spin_unlock(ptl);
6010 			return 0;
6011 		}
6012 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6013 		if (target_type == MC_TARGET_PAGE) {
6014 			page = target.page;
6015 			if (!isolate_lru_page(page)) {
6016 				if (!mem_cgroup_move_account(page, true,
6017 							     mc.from, mc.to)) {
6018 					mc.precharge -= HPAGE_PMD_NR;
6019 					mc.moved_charge += HPAGE_PMD_NR;
6020 				}
6021 				putback_lru_page(page);
6022 			}
6023 			put_page(page);
6024 		} else if (target_type == MC_TARGET_DEVICE) {
6025 			page = target.page;
6026 			if (!mem_cgroup_move_account(page, true,
6027 						     mc.from, mc.to)) {
6028 				mc.precharge -= HPAGE_PMD_NR;
6029 				mc.moved_charge += HPAGE_PMD_NR;
6030 			}
6031 			put_page(page);
6032 		}
6033 		spin_unlock(ptl);
6034 		return 0;
6035 	}
6036 
6037 	if (pmd_trans_unstable(pmd))
6038 		return 0;
6039 retry:
6040 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6041 	for (; addr != end; addr += PAGE_SIZE) {
6042 		pte_t ptent = *(pte++);
6043 		bool device = false;
6044 		swp_entry_t ent;
6045 
6046 		if (!mc.precharge)
6047 			break;
6048 
6049 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6050 		case MC_TARGET_DEVICE:
6051 			device = true;
6052 			fallthrough;
6053 		case MC_TARGET_PAGE:
6054 			page = target.page;
6055 			/*
6056 			 * We can have a part of the split pmd here. Moving it
6057 			 * can be done but it would be too convoluted so simply
6058 			 * ignore such a partial THP and keep it in original
6059 			 * memcg. There should be somebody mapping the head.
6060 			 */
6061 			if (PageTransCompound(page))
6062 				goto put;
6063 			if (!device && isolate_lru_page(page))
6064 				goto put;
6065 			if (!mem_cgroup_move_account(page, false,
6066 						mc.from, mc.to)) {
6067 				mc.precharge--;
6068 				/* we uncharge from mc.from later. */
6069 				mc.moved_charge++;
6070 			}
6071 			if (!device)
6072 				putback_lru_page(page);
6073 put:			/* get_mctgt_type() gets the page */
6074 			put_page(page);
6075 			break;
6076 		case MC_TARGET_SWAP:
6077 			ent = target.ent;
6078 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6079 				mc.precharge--;
6080 				mem_cgroup_id_get_many(mc.to, 1);
6081 				/* we fixup other refcnts and charges later. */
6082 				mc.moved_swap++;
6083 			}
6084 			break;
6085 		default:
6086 			break;
6087 		}
6088 	}
6089 	pte_unmap_unlock(pte - 1, ptl);
6090 	cond_resched();
6091 
6092 	if (addr != end) {
6093 		/*
6094 		 * We have consumed all precharges we got in can_attach().
6095 		 * We try charge one by one, but don't do any additional
6096 		 * charges to mc.to if we have failed in charge once in attach()
6097 		 * phase.
6098 		 */
6099 		ret = mem_cgroup_do_precharge(1);
6100 		if (!ret)
6101 			goto retry;
6102 	}
6103 
6104 	return ret;
6105 }
6106 
6107 static const struct mm_walk_ops charge_walk_ops = {
6108 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6109 };
6110 
6111 static void mem_cgroup_move_charge(void)
6112 {
6113 	lru_add_drain_all();
6114 	/*
6115 	 * Signal lock_page_memcg() to take the memcg's move_lock
6116 	 * while we're moving its pages to another memcg. Then wait
6117 	 * for already started RCU-only updates to finish.
6118 	 */
6119 	atomic_inc(&mc.from->moving_account);
6120 	synchronize_rcu();
6121 retry:
6122 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6123 		/*
6124 		 * Someone who are holding the mmap_lock might be waiting in
6125 		 * waitq. So we cancel all extra charges, wake up all waiters,
6126 		 * and retry. Because we cancel precharges, we might not be able
6127 		 * to move enough charges, but moving charge is a best-effort
6128 		 * feature anyway, so it wouldn't be a big problem.
6129 		 */
6130 		__mem_cgroup_clear_mc();
6131 		cond_resched();
6132 		goto retry;
6133 	}
6134 	/*
6135 	 * When we have consumed all precharges and failed in doing
6136 	 * additional charge, the page walk just aborts.
6137 	 */
6138 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6139 			NULL);
6140 
6141 	mmap_read_unlock(mc.mm);
6142 	atomic_dec(&mc.from->moving_account);
6143 }
6144 
6145 static void mem_cgroup_move_task(void)
6146 {
6147 	if (mc.to) {
6148 		mem_cgroup_move_charge();
6149 		mem_cgroup_clear_mc();
6150 	}
6151 }
6152 #else	/* !CONFIG_MMU */
6153 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6154 {
6155 	return 0;
6156 }
6157 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6158 {
6159 }
6160 static void mem_cgroup_move_task(void)
6161 {
6162 }
6163 #endif
6164 
6165 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6166 {
6167 	if (value == PAGE_COUNTER_MAX)
6168 		seq_puts(m, "max\n");
6169 	else
6170 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6171 
6172 	return 0;
6173 }
6174 
6175 static u64 memory_current_read(struct cgroup_subsys_state *css,
6176 			       struct cftype *cft)
6177 {
6178 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6179 
6180 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6181 }
6182 
6183 static int memory_min_show(struct seq_file *m, void *v)
6184 {
6185 	return seq_puts_memcg_tunable(m,
6186 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6187 }
6188 
6189 static ssize_t memory_min_write(struct kernfs_open_file *of,
6190 				char *buf, size_t nbytes, loff_t off)
6191 {
6192 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6193 	unsigned long min;
6194 	int err;
6195 
6196 	buf = strstrip(buf);
6197 	err = page_counter_memparse(buf, "max", &min);
6198 	if (err)
6199 		return err;
6200 
6201 	page_counter_set_min(&memcg->memory, min);
6202 
6203 	return nbytes;
6204 }
6205 
6206 static int memory_low_show(struct seq_file *m, void *v)
6207 {
6208 	return seq_puts_memcg_tunable(m,
6209 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6210 }
6211 
6212 static ssize_t memory_low_write(struct kernfs_open_file *of,
6213 				char *buf, size_t nbytes, loff_t off)
6214 {
6215 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6216 	unsigned long low;
6217 	int err;
6218 
6219 	buf = strstrip(buf);
6220 	err = page_counter_memparse(buf, "max", &low);
6221 	if (err)
6222 		return err;
6223 
6224 	page_counter_set_low(&memcg->memory, low);
6225 
6226 	return nbytes;
6227 }
6228 
6229 static int memory_high_show(struct seq_file *m, void *v)
6230 {
6231 	return seq_puts_memcg_tunable(m,
6232 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6233 }
6234 
6235 static ssize_t memory_high_write(struct kernfs_open_file *of,
6236 				 char *buf, size_t nbytes, loff_t off)
6237 {
6238 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6239 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6240 	bool drained = false;
6241 	unsigned long high;
6242 	int err;
6243 
6244 	buf = strstrip(buf);
6245 	err = page_counter_memparse(buf, "max", &high);
6246 	if (err)
6247 		return err;
6248 
6249 	page_counter_set_high(&memcg->memory, high);
6250 
6251 	for (;;) {
6252 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6253 		unsigned long reclaimed;
6254 
6255 		if (nr_pages <= high)
6256 			break;
6257 
6258 		if (signal_pending(current))
6259 			break;
6260 
6261 		if (!drained) {
6262 			drain_all_stock(memcg);
6263 			drained = true;
6264 			continue;
6265 		}
6266 
6267 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6268 							 GFP_KERNEL, true);
6269 
6270 		if (!reclaimed && !nr_retries--)
6271 			break;
6272 	}
6273 
6274 	memcg_wb_domain_size_changed(memcg);
6275 	return nbytes;
6276 }
6277 
6278 static int memory_max_show(struct seq_file *m, void *v)
6279 {
6280 	return seq_puts_memcg_tunable(m,
6281 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6282 }
6283 
6284 static ssize_t memory_max_write(struct kernfs_open_file *of,
6285 				char *buf, size_t nbytes, loff_t off)
6286 {
6287 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6288 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6289 	bool drained = false;
6290 	unsigned long max;
6291 	int err;
6292 
6293 	buf = strstrip(buf);
6294 	err = page_counter_memparse(buf, "max", &max);
6295 	if (err)
6296 		return err;
6297 
6298 	xchg(&memcg->memory.max, max);
6299 
6300 	for (;;) {
6301 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6302 
6303 		if (nr_pages <= max)
6304 			break;
6305 
6306 		if (signal_pending(current))
6307 			break;
6308 
6309 		if (!drained) {
6310 			drain_all_stock(memcg);
6311 			drained = true;
6312 			continue;
6313 		}
6314 
6315 		if (nr_reclaims) {
6316 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6317 							  GFP_KERNEL, true))
6318 				nr_reclaims--;
6319 			continue;
6320 		}
6321 
6322 		memcg_memory_event(memcg, MEMCG_OOM);
6323 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6324 			break;
6325 	}
6326 
6327 	memcg_wb_domain_size_changed(memcg);
6328 	return nbytes;
6329 }
6330 
6331 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6332 {
6333 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6334 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6335 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6336 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6337 	seq_printf(m, "oom_kill %lu\n",
6338 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6339 }
6340 
6341 static int memory_events_show(struct seq_file *m, void *v)
6342 {
6343 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6344 
6345 	__memory_events_show(m, memcg->memory_events);
6346 	return 0;
6347 }
6348 
6349 static int memory_events_local_show(struct seq_file *m, void *v)
6350 {
6351 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6352 
6353 	__memory_events_show(m, memcg->memory_events_local);
6354 	return 0;
6355 }
6356 
6357 static int memory_stat_show(struct seq_file *m, void *v)
6358 {
6359 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6360 	char *buf;
6361 
6362 	buf = memory_stat_format(memcg);
6363 	if (!buf)
6364 		return -ENOMEM;
6365 	seq_puts(m, buf);
6366 	kfree(buf);
6367 	return 0;
6368 }
6369 
6370 #ifdef CONFIG_NUMA
6371 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6372 						     int item)
6373 {
6374 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6375 }
6376 
6377 static int memory_numa_stat_show(struct seq_file *m, void *v)
6378 {
6379 	int i;
6380 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6381 
6382 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6383 		int nid;
6384 
6385 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6386 			continue;
6387 
6388 		seq_printf(m, "%s", memory_stats[i].name);
6389 		for_each_node_state(nid, N_MEMORY) {
6390 			u64 size;
6391 			struct lruvec *lruvec;
6392 
6393 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6394 			size = lruvec_page_state_output(lruvec,
6395 							memory_stats[i].idx);
6396 			seq_printf(m, " N%d=%llu", nid, size);
6397 		}
6398 		seq_putc(m, '\n');
6399 	}
6400 
6401 	return 0;
6402 }
6403 #endif
6404 
6405 static int memory_oom_group_show(struct seq_file *m, void *v)
6406 {
6407 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6408 
6409 	seq_printf(m, "%d\n", memcg->oom_group);
6410 
6411 	return 0;
6412 }
6413 
6414 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6415 				      char *buf, size_t nbytes, loff_t off)
6416 {
6417 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6418 	int ret, oom_group;
6419 
6420 	buf = strstrip(buf);
6421 	if (!buf)
6422 		return -EINVAL;
6423 
6424 	ret = kstrtoint(buf, 0, &oom_group);
6425 	if (ret)
6426 		return ret;
6427 
6428 	if (oom_group != 0 && oom_group != 1)
6429 		return -EINVAL;
6430 
6431 	memcg->oom_group = oom_group;
6432 
6433 	return nbytes;
6434 }
6435 
6436 static struct cftype memory_files[] = {
6437 	{
6438 		.name = "current",
6439 		.flags = CFTYPE_NOT_ON_ROOT,
6440 		.read_u64 = memory_current_read,
6441 	},
6442 	{
6443 		.name = "min",
6444 		.flags = CFTYPE_NOT_ON_ROOT,
6445 		.seq_show = memory_min_show,
6446 		.write = memory_min_write,
6447 	},
6448 	{
6449 		.name = "low",
6450 		.flags = CFTYPE_NOT_ON_ROOT,
6451 		.seq_show = memory_low_show,
6452 		.write = memory_low_write,
6453 	},
6454 	{
6455 		.name = "high",
6456 		.flags = CFTYPE_NOT_ON_ROOT,
6457 		.seq_show = memory_high_show,
6458 		.write = memory_high_write,
6459 	},
6460 	{
6461 		.name = "max",
6462 		.flags = CFTYPE_NOT_ON_ROOT,
6463 		.seq_show = memory_max_show,
6464 		.write = memory_max_write,
6465 	},
6466 	{
6467 		.name = "events",
6468 		.flags = CFTYPE_NOT_ON_ROOT,
6469 		.file_offset = offsetof(struct mem_cgroup, events_file),
6470 		.seq_show = memory_events_show,
6471 	},
6472 	{
6473 		.name = "events.local",
6474 		.flags = CFTYPE_NOT_ON_ROOT,
6475 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6476 		.seq_show = memory_events_local_show,
6477 	},
6478 	{
6479 		.name = "stat",
6480 		.seq_show = memory_stat_show,
6481 	},
6482 #ifdef CONFIG_NUMA
6483 	{
6484 		.name = "numa_stat",
6485 		.seq_show = memory_numa_stat_show,
6486 	},
6487 #endif
6488 	{
6489 		.name = "oom.group",
6490 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6491 		.seq_show = memory_oom_group_show,
6492 		.write = memory_oom_group_write,
6493 	},
6494 	{ }	/* terminate */
6495 };
6496 
6497 struct cgroup_subsys memory_cgrp_subsys = {
6498 	.css_alloc = mem_cgroup_css_alloc,
6499 	.css_online = mem_cgroup_css_online,
6500 	.css_offline = mem_cgroup_css_offline,
6501 	.css_released = mem_cgroup_css_released,
6502 	.css_free = mem_cgroup_css_free,
6503 	.css_reset = mem_cgroup_css_reset,
6504 	.can_attach = mem_cgroup_can_attach,
6505 	.cancel_attach = mem_cgroup_cancel_attach,
6506 	.post_attach = mem_cgroup_move_task,
6507 	.dfl_cftypes = memory_files,
6508 	.legacy_cftypes = mem_cgroup_legacy_files,
6509 	.early_init = 0,
6510 };
6511 
6512 /*
6513  * This function calculates an individual cgroup's effective
6514  * protection which is derived from its own memory.min/low, its
6515  * parent's and siblings' settings, as well as the actual memory
6516  * distribution in the tree.
6517  *
6518  * The following rules apply to the effective protection values:
6519  *
6520  * 1. At the first level of reclaim, effective protection is equal to
6521  *    the declared protection in memory.min and memory.low.
6522  *
6523  * 2. To enable safe delegation of the protection configuration, at
6524  *    subsequent levels the effective protection is capped to the
6525  *    parent's effective protection.
6526  *
6527  * 3. To make complex and dynamic subtrees easier to configure, the
6528  *    user is allowed to overcommit the declared protection at a given
6529  *    level. If that is the case, the parent's effective protection is
6530  *    distributed to the children in proportion to how much protection
6531  *    they have declared and how much of it they are utilizing.
6532  *
6533  *    This makes distribution proportional, but also work-conserving:
6534  *    if one cgroup claims much more protection than it uses memory,
6535  *    the unused remainder is available to its siblings.
6536  *
6537  * 4. Conversely, when the declared protection is undercommitted at a
6538  *    given level, the distribution of the larger parental protection
6539  *    budget is NOT proportional. A cgroup's protection from a sibling
6540  *    is capped to its own memory.min/low setting.
6541  *
6542  * 5. However, to allow protecting recursive subtrees from each other
6543  *    without having to declare each individual cgroup's fixed share
6544  *    of the ancestor's claim to protection, any unutilized -
6545  *    "floating" - protection from up the tree is distributed in
6546  *    proportion to each cgroup's *usage*. This makes the protection
6547  *    neutral wrt sibling cgroups and lets them compete freely over
6548  *    the shared parental protection budget, but it protects the
6549  *    subtree as a whole from neighboring subtrees.
6550  *
6551  * Note that 4. and 5. are not in conflict: 4. is about protecting
6552  * against immediate siblings whereas 5. is about protecting against
6553  * neighboring subtrees.
6554  */
6555 static unsigned long effective_protection(unsigned long usage,
6556 					  unsigned long parent_usage,
6557 					  unsigned long setting,
6558 					  unsigned long parent_effective,
6559 					  unsigned long siblings_protected)
6560 {
6561 	unsigned long protected;
6562 	unsigned long ep;
6563 
6564 	protected = min(usage, setting);
6565 	/*
6566 	 * If all cgroups at this level combined claim and use more
6567 	 * protection then what the parent affords them, distribute
6568 	 * shares in proportion to utilization.
6569 	 *
6570 	 * We are using actual utilization rather than the statically
6571 	 * claimed protection in order to be work-conserving: claimed
6572 	 * but unused protection is available to siblings that would
6573 	 * otherwise get a smaller chunk than what they claimed.
6574 	 */
6575 	if (siblings_protected > parent_effective)
6576 		return protected * parent_effective / siblings_protected;
6577 
6578 	/*
6579 	 * Ok, utilized protection of all children is within what the
6580 	 * parent affords them, so we know whatever this child claims
6581 	 * and utilizes is effectively protected.
6582 	 *
6583 	 * If there is unprotected usage beyond this value, reclaim
6584 	 * will apply pressure in proportion to that amount.
6585 	 *
6586 	 * If there is unutilized protection, the cgroup will be fully
6587 	 * shielded from reclaim, but we do return a smaller value for
6588 	 * protection than what the group could enjoy in theory. This
6589 	 * is okay. With the overcommit distribution above, effective
6590 	 * protection is always dependent on how memory is actually
6591 	 * consumed among the siblings anyway.
6592 	 */
6593 	ep = protected;
6594 
6595 	/*
6596 	 * If the children aren't claiming (all of) the protection
6597 	 * afforded to them by the parent, distribute the remainder in
6598 	 * proportion to the (unprotected) memory of each cgroup. That
6599 	 * way, cgroups that aren't explicitly prioritized wrt each
6600 	 * other compete freely over the allowance, but they are
6601 	 * collectively protected from neighboring trees.
6602 	 *
6603 	 * We're using unprotected memory for the weight so that if
6604 	 * some cgroups DO claim explicit protection, we don't protect
6605 	 * the same bytes twice.
6606 	 *
6607 	 * Check both usage and parent_usage against the respective
6608 	 * protected values. One should imply the other, but they
6609 	 * aren't read atomically - make sure the division is sane.
6610 	 */
6611 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6612 		return ep;
6613 	if (parent_effective > siblings_protected &&
6614 	    parent_usage > siblings_protected &&
6615 	    usage > protected) {
6616 		unsigned long unclaimed;
6617 
6618 		unclaimed = parent_effective - siblings_protected;
6619 		unclaimed *= usage - protected;
6620 		unclaimed /= parent_usage - siblings_protected;
6621 
6622 		ep += unclaimed;
6623 	}
6624 
6625 	return ep;
6626 }
6627 
6628 /**
6629  * mem_cgroup_protected - check if memory consumption is in the normal range
6630  * @root: the top ancestor of the sub-tree being checked
6631  * @memcg: the memory cgroup to check
6632  *
6633  * WARNING: This function is not stateless! It can only be used as part
6634  *          of a top-down tree iteration, not for isolated queries.
6635  */
6636 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6637 				     struct mem_cgroup *memcg)
6638 {
6639 	unsigned long usage, parent_usage;
6640 	struct mem_cgroup *parent;
6641 
6642 	if (mem_cgroup_disabled())
6643 		return;
6644 
6645 	if (!root)
6646 		root = root_mem_cgroup;
6647 
6648 	/*
6649 	 * Effective values of the reclaim targets are ignored so they
6650 	 * can be stale. Have a look at mem_cgroup_protection for more
6651 	 * details.
6652 	 * TODO: calculation should be more robust so that we do not need
6653 	 * that special casing.
6654 	 */
6655 	if (memcg == root)
6656 		return;
6657 
6658 	usage = page_counter_read(&memcg->memory);
6659 	if (!usage)
6660 		return;
6661 
6662 	parent = parent_mem_cgroup(memcg);
6663 	/* No parent means a non-hierarchical mode on v1 memcg */
6664 	if (!parent)
6665 		return;
6666 
6667 	if (parent == root) {
6668 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6669 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6670 		return;
6671 	}
6672 
6673 	parent_usage = page_counter_read(&parent->memory);
6674 
6675 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6676 			READ_ONCE(memcg->memory.min),
6677 			READ_ONCE(parent->memory.emin),
6678 			atomic_long_read(&parent->memory.children_min_usage)));
6679 
6680 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6681 			READ_ONCE(memcg->memory.low),
6682 			READ_ONCE(parent->memory.elow),
6683 			atomic_long_read(&parent->memory.children_low_usage)));
6684 }
6685 
6686 /**
6687  * mem_cgroup_charge - charge a newly allocated page to a cgroup
6688  * @page: page to charge
6689  * @mm: mm context of the victim
6690  * @gfp_mask: reclaim mode
6691  *
6692  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6693  * pages according to @gfp_mask if necessary.
6694  *
6695  * Returns 0 on success. Otherwise, an error code is returned.
6696  */
6697 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6698 {
6699 	unsigned int nr_pages = thp_nr_pages(page);
6700 	struct mem_cgroup *memcg = NULL;
6701 	int ret = 0;
6702 
6703 	if (mem_cgroup_disabled())
6704 		goto out;
6705 
6706 	if (PageSwapCache(page)) {
6707 		swp_entry_t ent = { .val = page_private(page), };
6708 		unsigned short id;
6709 
6710 		/*
6711 		 * Every swap fault against a single page tries to charge the
6712 		 * page, bail as early as possible.  shmem_unuse() encounters
6713 		 * already charged pages, too.  page and memcg binding is
6714 		 * protected by the page lock, which serializes swap cache
6715 		 * removal, which in turn serializes uncharging.
6716 		 */
6717 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6718 		if (page_memcg(compound_head(page)))
6719 			goto out;
6720 
6721 		id = lookup_swap_cgroup_id(ent);
6722 		rcu_read_lock();
6723 		memcg = mem_cgroup_from_id(id);
6724 		if (memcg && !css_tryget_online(&memcg->css))
6725 			memcg = NULL;
6726 		rcu_read_unlock();
6727 	}
6728 
6729 	if (!memcg)
6730 		memcg = get_mem_cgroup_from_mm(mm);
6731 
6732 	ret = try_charge(memcg, gfp_mask, nr_pages);
6733 	if (ret)
6734 		goto out_put;
6735 
6736 	css_get(&memcg->css);
6737 	commit_charge(page, memcg);
6738 
6739 	local_irq_disable();
6740 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6741 	memcg_check_events(memcg, page);
6742 	local_irq_enable();
6743 
6744 	/*
6745 	 * Cgroup1's unified memory+swap counter has been charged with the
6746 	 * new swapcache page, finish the transfer by uncharging the swap
6747 	 * slot. The swap slot would also get uncharged when it dies, but
6748 	 * it can stick around indefinitely and we'd count the page twice
6749 	 * the entire time.
6750 	 *
6751 	 * Cgroup2 has separate resource counters for memory and swap,
6752 	 * so this is a non-issue here. Memory and swap charge lifetimes
6753 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6754 	 * page to memory here, and uncharge swap when the slot is freed.
6755 	 */
6756 	if (do_memsw_account() && PageSwapCache(page)) {
6757 		swp_entry_t entry = { .val = page_private(page) };
6758 		/*
6759 		 * The swap entry might not get freed for a long time,
6760 		 * let's not wait for it.  The page already received a
6761 		 * memory+swap charge, drop the swap entry duplicate.
6762 		 */
6763 		mem_cgroup_uncharge_swap(entry, nr_pages);
6764 	}
6765 
6766 out_put:
6767 	css_put(&memcg->css);
6768 out:
6769 	return ret;
6770 }
6771 
6772 struct uncharge_gather {
6773 	struct mem_cgroup *memcg;
6774 	unsigned long nr_pages;
6775 	unsigned long pgpgout;
6776 	unsigned long nr_kmem;
6777 	struct page *dummy_page;
6778 };
6779 
6780 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6781 {
6782 	memset(ug, 0, sizeof(*ug));
6783 }
6784 
6785 static void uncharge_batch(const struct uncharge_gather *ug)
6786 {
6787 	unsigned long flags;
6788 
6789 	if (!mem_cgroup_is_root(ug->memcg)) {
6790 		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6791 		if (do_memsw_account())
6792 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6793 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6794 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6795 		memcg_oom_recover(ug->memcg);
6796 	}
6797 
6798 	local_irq_save(flags);
6799 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6800 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6801 	memcg_check_events(ug->memcg, ug->dummy_page);
6802 	local_irq_restore(flags);
6803 
6804 	/* drop reference from uncharge_page */
6805 	css_put(&ug->memcg->css);
6806 }
6807 
6808 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6809 {
6810 	unsigned long nr_pages;
6811 
6812 	VM_BUG_ON_PAGE(PageLRU(page), page);
6813 
6814 	if (!page_memcg(page))
6815 		return;
6816 
6817 	/*
6818 	 * Nobody should be changing or seriously looking at
6819 	 * page_memcg(page) at this point, we have fully
6820 	 * exclusive access to the page.
6821 	 */
6822 
6823 	if (ug->memcg != page_memcg(page)) {
6824 		if (ug->memcg) {
6825 			uncharge_batch(ug);
6826 			uncharge_gather_clear(ug);
6827 		}
6828 		ug->memcg = page_memcg(page);
6829 
6830 		/* pairs with css_put in uncharge_batch */
6831 		css_get(&ug->memcg->css);
6832 	}
6833 
6834 	nr_pages = compound_nr(page);
6835 	ug->nr_pages += nr_pages;
6836 
6837 	if (PageMemcgKmem(page))
6838 		ug->nr_kmem += nr_pages;
6839 	else
6840 		ug->pgpgout++;
6841 
6842 	ug->dummy_page = page;
6843 	page->memcg_data = 0;
6844 	css_put(&ug->memcg->css);
6845 }
6846 
6847 /**
6848  * mem_cgroup_uncharge - uncharge a page
6849  * @page: page to uncharge
6850  *
6851  * Uncharge a page previously charged with mem_cgroup_charge().
6852  */
6853 void mem_cgroup_uncharge(struct page *page)
6854 {
6855 	struct uncharge_gather ug;
6856 
6857 	if (mem_cgroup_disabled())
6858 		return;
6859 
6860 	/* Don't touch page->lru of any random page, pre-check: */
6861 	if (!page_memcg(page))
6862 		return;
6863 
6864 	uncharge_gather_clear(&ug);
6865 	uncharge_page(page, &ug);
6866 	uncharge_batch(&ug);
6867 }
6868 
6869 /**
6870  * mem_cgroup_uncharge_list - uncharge a list of page
6871  * @page_list: list of pages to uncharge
6872  *
6873  * Uncharge a list of pages previously charged with
6874  * mem_cgroup_charge().
6875  */
6876 void mem_cgroup_uncharge_list(struct list_head *page_list)
6877 {
6878 	struct uncharge_gather ug;
6879 	struct page *page;
6880 
6881 	if (mem_cgroup_disabled())
6882 		return;
6883 
6884 	uncharge_gather_clear(&ug);
6885 	list_for_each_entry(page, page_list, lru)
6886 		uncharge_page(page, &ug);
6887 	if (ug.memcg)
6888 		uncharge_batch(&ug);
6889 }
6890 
6891 /**
6892  * mem_cgroup_migrate - charge a page's replacement
6893  * @oldpage: currently circulating page
6894  * @newpage: replacement page
6895  *
6896  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6897  * be uncharged upon free.
6898  *
6899  * Both pages must be locked, @newpage->mapping must be set up.
6900  */
6901 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6902 {
6903 	struct mem_cgroup *memcg;
6904 	unsigned int nr_pages;
6905 	unsigned long flags;
6906 
6907 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6908 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6909 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6910 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6911 		       newpage);
6912 
6913 	if (mem_cgroup_disabled())
6914 		return;
6915 
6916 	/* Page cache replacement: new page already charged? */
6917 	if (page_memcg(newpage))
6918 		return;
6919 
6920 	memcg = page_memcg(oldpage);
6921 	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6922 	if (!memcg)
6923 		return;
6924 
6925 	/* Force-charge the new page. The old one will be freed soon */
6926 	nr_pages = thp_nr_pages(newpage);
6927 
6928 	page_counter_charge(&memcg->memory, nr_pages);
6929 	if (do_memsw_account())
6930 		page_counter_charge(&memcg->memsw, nr_pages);
6931 
6932 	css_get(&memcg->css);
6933 	commit_charge(newpage, memcg);
6934 
6935 	local_irq_save(flags);
6936 	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6937 	memcg_check_events(memcg, newpage);
6938 	local_irq_restore(flags);
6939 }
6940 
6941 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6942 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6943 
6944 void mem_cgroup_sk_alloc(struct sock *sk)
6945 {
6946 	struct mem_cgroup *memcg;
6947 
6948 	if (!mem_cgroup_sockets_enabled)
6949 		return;
6950 
6951 	/* Do not associate the sock with unrelated interrupted task's memcg. */
6952 	if (in_interrupt())
6953 		return;
6954 
6955 	rcu_read_lock();
6956 	memcg = mem_cgroup_from_task(current);
6957 	if (memcg == root_mem_cgroup)
6958 		goto out;
6959 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6960 		goto out;
6961 	if (css_tryget(&memcg->css))
6962 		sk->sk_memcg = memcg;
6963 out:
6964 	rcu_read_unlock();
6965 }
6966 
6967 void mem_cgroup_sk_free(struct sock *sk)
6968 {
6969 	if (sk->sk_memcg)
6970 		css_put(&sk->sk_memcg->css);
6971 }
6972 
6973 /**
6974  * mem_cgroup_charge_skmem - charge socket memory
6975  * @memcg: memcg to charge
6976  * @nr_pages: number of pages to charge
6977  *
6978  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6979  * @memcg's configured limit, %false if the charge had to be forced.
6980  */
6981 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6982 {
6983 	gfp_t gfp_mask = GFP_KERNEL;
6984 
6985 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6986 		struct page_counter *fail;
6987 
6988 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6989 			memcg->tcpmem_pressure = 0;
6990 			return true;
6991 		}
6992 		page_counter_charge(&memcg->tcpmem, nr_pages);
6993 		memcg->tcpmem_pressure = 1;
6994 		return false;
6995 	}
6996 
6997 	/* Don't block in the packet receive path */
6998 	if (in_softirq())
6999 		gfp_mask = GFP_NOWAIT;
7000 
7001 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7002 
7003 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7004 		return true;
7005 
7006 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7007 	return false;
7008 }
7009 
7010 /**
7011  * mem_cgroup_uncharge_skmem - uncharge socket memory
7012  * @memcg: memcg to uncharge
7013  * @nr_pages: number of pages to uncharge
7014  */
7015 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7016 {
7017 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7018 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7019 		return;
7020 	}
7021 
7022 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7023 
7024 	refill_stock(memcg, nr_pages);
7025 }
7026 
7027 static int __init cgroup_memory(char *s)
7028 {
7029 	char *token;
7030 
7031 	while ((token = strsep(&s, ",")) != NULL) {
7032 		if (!*token)
7033 			continue;
7034 		if (!strcmp(token, "nosocket"))
7035 			cgroup_memory_nosocket = true;
7036 		if (!strcmp(token, "nokmem"))
7037 			cgroup_memory_nokmem = true;
7038 	}
7039 	return 0;
7040 }
7041 __setup("cgroup.memory=", cgroup_memory);
7042 
7043 /*
7044  * subsys_initcall() for memory controller.
7045  *
7046  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7047  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7048  * basically everything that doesn't depend on a specific mem_cgroup structure
7049  * should be initialized from here.
7050  */
7051 static int __init mem_cgroup_init(void)
7052 {
7053 	int cpu, node;
7054 
7055 	/*
7056 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7057 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7058 	 * to work fine, we should make sure that the overfill threshold can't
7059 	 * exceed S32_MAX / PAGE_SIZE.
7060 	 */
7061 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7062 
7063 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7064 				  memcg_hotplug_cpu_dead);
7065 
7066 	for_each_possible_cpu(cpu)
7067 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7068 			  drain_local_stock);
7069 
7070 	for_each_node(node) {
7071 		struct mem_cgroup_tree_per_node *rtpn;
7072 
7073 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7074 				    node_online(node) ? node : NUMA_NO_NODE);
7075 
7076 		rtpn->rb_root = RB_ROOT;
7077 		rtpn->rb_rightmost = NULL;
7078 		spin_lock_init(&rtpn->lock);
7079 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7080 	}
7081 
7082 	return 0;
7083 }
7084 subsys_initcall(mem_cgroup_init);
7085 
7086 #ifdef CONFIG_MEMCG_SWAP
7087 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7088 {
7089 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7090 		/*
7091 		 * The root cgroup cannot be destroyed, so it's refcount must
7092 		 * always be >= 1.
7093 		 */
7094 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7095 			VM_BUG_ON(1);
7096 			break;
7097 		}
7098 		memcg = parent_mem_cgroup(memcg);
7099 		if (!memcg)
7100 			memcg = root_mem_cgroup;
7101 	}
7102 	return memcg;
7103 }
7104 
7105 /**
7106  * mem_cgroup_swapout - transfer a memsw charge to swap
7107  * @page: page whose memsw charge to transfer
7108  * @entry: swap entry to move the charge to
7109  *
7110  * Transfer the memsw charge of @page to @entry.
7111  */
7112 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7113 {
7114 	struct mem_cgroup *memcg, *swap_memcg;
7115 	unsigned int nr_entries;
7116 	unsigned short oldid;
7117 
7118 	VM_BUG_ON_PAGE(PageLRU(page), page);
7119 	VM_BUG_ON_PAGE(page_count(page), page);
7120 
7121 	if (mem_cgroup_disabled())
7122 		return;
7123 
7124 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7125 		return;
7126 
7127 	memcg = page_memcg(page);
7128 
7129 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7130 	if (!memcg)
7131 		return;
7132 
7133 	/*
7134 	 * In case the memcg owning these pages has been offlined and doesn't
7135 	 * have an ID allocated to it anymore, charge the closest online
7136 	 * ancestor for the swap instead and transfer the memory+swap charge.
7137 	 */
7138 	swap_memcg = mem_cgroup_id_get_online(memcg);
7139 	nr_entries = thp_nr_pages(page);
7140 	/* Get references for the tail pages, too */
7141 	if (nr_entries > 1)
7142 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7143 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7144 				   nr_entries);
7145 	VM_BUG_ON_PAGE(oldid, page);
7146 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7147 
7148 	page->memcg_data = 0;
7149 
7150 	if (!mem_cgroup_is_root(memcg))
7151 		page_counter_uncharge(&memcg->memory, nr_entries);
7152 
7153 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7154 		if (!mem_cgroup_is_root(swap_memcg))
7155 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7156 		page_counter_uncharge(&memcg->memsw, nr_entries);
7157 	}
7158 
7159 	/*
7160 	 * Interrupts should be disabled here because the caller holds the
7161 	 * i_pages lock which is taken with interrupts-off. It is
7162 	 * important here to have the interrupts disabled because it is the
7163 	 * only synchronisation we have for updating the per-CPU variables.
7164 	 */
7165 	VM_BUG_ON(!irqs_disabled());
7166 	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7167 	memcg_check_events(memcg, page);
7168 
7169 	css_put(&memcg->css);
7170 }
7171 
7172 /**
7173  * mem_cgroup_try_charge_swap - try charging swap space for a page
7174  * @page: page being added to swap
7175  * @entry: swap entry to charge
7176  *
7177  * Try to charge @page's memcg for the swap space at @entry.
7178  *
7179  * Returns 0 on success, -ENOMEM on failure.
7180  */
7181 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7182 {
7183 	unsigned int nr_pages = thp_nr_pages(page);
7184 	struct page_counter *counter;
7185 	struct mem_cgroup *memcg;
7186 	unsigned short oldid;
7187 
7188 	if (mem_cgroup_disabled())
7189 		return 0;
7190 
7191 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7192 		return 0;
7193 
7194 	memcg = page_memcg(page);
7195 
7196 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7197 	if (!memcg)
7198 		return 0;
7199 
7200 	if (!entry.val) {
7201 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7202 		return 0;
7203 	}
7204 
7205 	memcg = mem_cgroup_id_get_online(memcg);
7206 
7207 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7208 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7209 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7210 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7211 		mem_cgroup_id_put(memcg);
7212 		return -ENOMEM;
7213 	}
7214 
7215 	/* Get references for the tail pages, too */
7216 	if (nr_pages > 1)
7217 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7218 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7219 	VM_BUG_ON_PAGE(oldid, page);
7220 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7221 
7222 	return 0;
7223 }
7224 
7225 /**
7226  * mem_cgroup_uncharge_swap - uncharge swap space
7227  * @entry: swap entry to uncharge
7228  * @nr_pages: the amount of swap space to uncharge
7229  */
7230 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7231 {
7232 	struct mem_cgroup *memcg;
7233 	unsigned short id;
7234 
7235 	id = swap_cgroup_record(entry, 0, nr_pages);
7236 	rcu_read_lock();
7237 	memcg = mem_cgroup_from_id(id);
7238 	if (memcg) {
7239 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7240 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7241 				page_counter_uncharge(&memcg->swap, nr_pages);
7242 			else
7243 				page_counter_uncharge(&memcg->memsw, nr_pages);
7244 		}
7245 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7246 		mem_cgroup_id_put_many(memcg, nr_pages);
7247 	}
7248 	rcu_read_unlock();
7249 }
7250 
7251 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7252 {
7253 	long nr_swap_pages = get_nr_swap_pages();
7254 
7255 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7256 		return nr_swap_pages;
7257 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7258 		nr_swap_pages = min_t(long, nr_swap_pages,
7259 				      READ_ONCE(memcg->swap.max) -
7260 				      page_counter_read(&memcg->swap));
7261 	return nr_swap_pages;
7262 }
7263 
7264 bool mem_cgroup_swap_full(struct page *page)
7265 {
7266 	struct mem_cgroup *memcg;
7267 
7268 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7269 
7270 	if (vm_swap_full())
7271 		return true;
7272 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7273 		return false;
7274 
7275 	memcg = page_memcg(page);
7276 	if (!memcg)
7277 		return false;
7278 
7279 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7280 		unsigned long usage = page_counter_read(&memcg->swap);
7281 
7282 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7283 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7284 			return true;
7285 	}
7286 
7287 	return false;
7288 }
7289 
7290 static int __init setup_swap_account(char *s)
7291 {
7292 	if (!strcmp(s, "1"))
7293 		cgroup_memory_noswap = false;
7294 	else if (!strcmp(s, "0"))
7295 		cgroup_memory_noswap = true;
7296 	return 1;
7297 }
7298 __setup("swapaccount=", setup_swap_account);
7299 
7300 static u64 swap_current_read(struct cgroup_subsys_state *css,
7301 			     struct cftype *cft)
7302 {
7303 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7304 
7305 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7306 }
7307 
7308 static int swap_high_show(struct seq_file *m, void *v)
7309 {
7310 	return seq_puts_memcg_tunable(m,
7311 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7312 }
7313 
7314 static ssize_t swap_high_write(struct kernfs_open_file *of,
7315 			       char *buf, size_t nbytes, loff_t off)
7316 {
7317 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7318 	unsigned long high;
7319 	int err;
7320 
7321 	buf = strstrip(buf);
7322 	err = page_counter_memparse(buf, "max", &high);
7323 	if (err)
7324 		return err;
7325 
7326 	page_counter_set_high(&memcg->swap, high);
7327 
7328 	return nbytes;
7329 }
7330 
7331 static int swap_max_show(struct seq_file *m, void *v)
7332 {
7333 	return seq_puts_memcg_tunable(m,
7334 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7335 }
7336 
7337 static ssize_t swap_max_write(struct kernfs_open_file *of,
7338 			      char *buf, size_t nbytes, loff_t off)
7339 {
7340 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7341 	unsigned long max;
7342 	int err;
7343 
7344 	buf = strstrip(buf);
7345 	err = page_counter_memparse(buf, "max", &max);
7346 	if (err)
7347 		return err;
7348 
7349 	xchg(&memcg->swap.max, max);
7350 
7351 	return nbytes;
7352 }
7353 
7354 static int swap_events_show(struct seq_file *m, void *v)
7355 {
7356 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7357 
7358 	seq_printf(m, "high %lu\n",
7359 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7360 	seq_printf(m, "max %lu\n",
7361 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7362 	seq_printf(m, "fail %lu\n",
7363 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7364 
7365 	return 0;
7366 }
7367 
7368 static struct cftype swap_files[] = {
7369 	{
7370 		.name = "swap.current",
7371 		.flags = CFTYPE_NOT_ON_ROOT,
7372 		.read_u64 = swap_current_read,
7373 	},
7374 	{
7375 		.name = "swap.high",
7376 		.flags = CFTYPE_NOT_ON_ROOT,
7377 		.seq_show = swap_high_show,
7378 		.write = swap_high_write,
7379 	},
7380 	{
7381 		.name = "swap.max",
7382 		.flags = CFTYPE_NOT_ON_ROOT,
7383 		.seq_show = swap_max_show,
7384 		.write = swap_max_write,
7385 	},
7386 	{
7387 		.name = "swap.events",
7388 		.flags = CFTYPE_NOT_ON_ROOT,
7389 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7390 		.seq_show = swap_events_show,
7391 	},
7392 	{ }	/* terminate */
7393 };
7394 
7395 static struct cftype memsw_files[] = {
7396 	{
7397 		.name = "memsw.usage_in_bytes",
7398 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7399 		.read_u64 = mem_cgroup_read_u64,
7400 	},
7401 	{
7402 		.name = "memsw.max_usage_in_bytes",
7403 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7404 		.write = mem_cgroup_reset,
7405 		.read_u64 = mem_cgroup_read_u64,
7406 	},
7407 	{
7408 		.name = "memsw.limit_in_bytes",
7409 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7410 		.write = mem_cgroup_write,
7411 		.read_u64 = mem_cgroup_read_u64,
7412 	},
7413 	{
7414 		.name = "memsw.failcnt",
7415 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7416 		.write = mem_cgroup_reset,
7417 		.read_u64 = mem_cgroup_read_u64,
7418 	},
7419 	{ },	/* terminate */
7420 };
7421 
7422 /*
7423  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7424  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7425  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7426  * boot parameter. This may result in premature OOPS inside
7427  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7428  */
7429 static int __init mem_cgroup_swap_init(void)
7430 {
7431 	/* No memory control -> no swap control */
7432 	if (mem_cgroup_disabled())
7433 		cgroup_memory_noswap = true;
7434 
7435 	if (cgroup_memory_noswap)
7436 		return 0;
7437 
7438 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7439 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7440 
7441 	return 0;
7442 }
7443 core_initcall(mem_cgroup_swap_init);
7444 
7445 #endif /* CONFIG_MEMCG_SWAP */
7446