1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 */ 27 28 #include <linux/res_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/mm.h> 32 #include <linux/hugetlb.h> 33 #include <linux/pagemap.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/sort.h> 49 #include <linux/fs.h> 50 #include <linux/seq_file.h> 51 #include <linux/vmalloc.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/page_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include "internal.h" 59 #include <net/sock.h> 60 #include <net/ip.h> 61 #include <net/tcp_memcontrol.h> 62 63 #include <asm/uaccess.h> 64 65 #include <trace/events/vmscan.h> 66 67 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 68 EXPORT_SYMBOL(mem_cgroup_subsys); 69 70 #define MEM_CGROUP_RECLAIM_RETRIES 5 71 static struct mem_cgroup *root_mem_cgroup __read_mostly; 72 73 #ifdef CONFIG_MEMCG_SWAP 74 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 75 int do_swap_account __read_mostly; 76 77 /* for remember boot option*/ 78 #ifdef CONFIG_MEMCG_SWAP_ENABLED 79 static int really_do_swap_account __initdata = 1; 80 #else 81 static int really_do_swap_account __initdata = 0; 82 #endif 83 84 #else 85 #define do_swap_account 0 86 #endif 87 88 89 static const char * const mem_cgroup_stat_names[] = { 90 "cache", 91 "rss", 92 "rss_huge", 93 "mapped_file", 94 "writeback", 95 "swap", 96 }; 97 98 enum mem_cgroup_events_index { 99 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 100 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 101 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 102 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 103 MEM_CGROUP_EVENTS_NSTATS, 104 }; 105 106 static const char * const mem_cgroup_events_names[] = { 107 "pgpgin", 108 "pgpgout", 109 "pgfault", 110 "pgmajfault", 111 }; 112 113 static const char * const mem_cgroup_lru_names[] = { 114 "inactive_anon", 115 "active_anon", 116 "inactive_file", 117 "active_file", 118 "unevictable", 119 }; 120 121 /* 122 * Per memcg event counter is incremented at every pagein/pageout. With THP, 123 * it will be incremated by the number of pages. This counter is used for 124 * for trigger some periodic events. This is straightforward and better 125 * than using jiffies etc. to handle periodic memcg event. 126 */ 127 enum mem_cgroup_events_target { 128 MEM_CGROUP_TARGET_THRESH, 129 MEM_CGROUP_TARGET_SOFTLIMIT, 130 MEM_CGROUP_TARGET_NUMAINFO, 131 MEM_CGROUP_NTARGETS, 132 }; 133 #define THRESHOLDS_EVENTS_TARGET 128 134 #define SOFTLIMIT_EVENTS_TARGET 1024 135 #define NUMAINFO_EVENTS_TARGET 1024 136 137 struct mem_cgroup_stat_cpu { 138 long count[MEM_CGROUP_STAT_NSTATS]; 139 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 140 unsigned long nr_page_events; 141 unsigned long targets[MEM_CGROUP_NTARGETS]; 142 }; 143 144 struct mem_cgroup_reclaim_iter { 145 /* 146 * last scanned hierarchy member. Valid only if last_dead_count 147 * matches memcg->dead_count of the hierarchy root group. 148 */ 149 struct mem_cgroup *last_visited; 150 unsigned long last_dead_count; 151 152 /* scan generation, increased every round-trip */ 153 unsigned int generation; 154 }; 155 156 /* 157 * per-zone information in memory controller. 158 */ 159 struct mem_cgroup_per_zone { 160 struct lruvec lruvec; 161 unsigned long lru_size[NR_LRU_LISTS]; 162 163 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 164 165 struct rb_node tree_node; /* RB tree node */ 166 unsigned long long usage_in_excess;/* Set to the value by which */ 167 /* the soft limit is exceeded*/ 168 bool on_tree; 169 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 170 /* use container_of */ 171 }; 172 173 struct mem_cgroup_per_node { 174 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 175 }; 176 177 /* 178 * Cgroups above their limits are maintained in a RB-Tree, independent of 179 * their hierarchy representation 180 */ 181 182 struct mem_cgroup_tree_per_zone { 183 struct rb_root rb_root; 184 spinlock_t lock; 185 }; 186 187 struct mem_cgroup_tree_per_node { 188 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 189 }; 190 191 struct mem_cgroup_tree { 192 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 193 }; 194 195 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 196 197 struct mem_cgroup_threshold { 198 struct eventfd_ctx *eventfd; 199 u64 threshold; 200 }; 201 202 /* For threshold */ 203 struct mem_cgroup_threshold_ary { 204 /* An array index points to threshold just below or equal to usage. */ 205 int current_threshold; 206 /* Size of entries[] */ 207 unsigned int size; 208 /* Array of thresholds */ 209 struct mem_cgroup_threshold entries[0]; 210 }; 211 212 struct mem_cgroup_thresholds { 213 /* Primary thresholds array */ 214 struct mem_cgroup_threshold_ary *primary; 215 /* 216 * Spare threshold array. 217 * This is needed to make mem_cgroup_unregister_event() "never fail". 218 * It must be able to store at least primary->size - 1 entries. 219 */ 220 struct mem_cgroup_threshold_ary *spare; 221 }; 222 223 /* for OOM */ 224 struct mem_cgroup_eventfd_list { 225 struct list_head list; 226 struct eventfd_ctx *eventfd; 227 }; 228 229 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 230 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 231 232 /* 233 * The memory controller data structure. The memory controller controls both 234 * page cache and RSS per cgroup. We would eventually like to provide 235 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 236 * to help the administrator determine what knobs to tune. 237 * 238 * TODO: Add a water mark for the memory controller. Reclaim will begin when 239 * we hit the water mark. May be even add a low water mark, such that 240 * no reclaim occurs from a cgroup at it's low water mark, this is 241 * a feature that will be implemented much later in the future. 242 */ 243 struct mem_cgroup { 244 struct cgroup_subsys_state css; 245 /* 246 * the counter to account for memory usage 247 */ 248 struct res_counter res; 249 250 /* vmpressure notifications */ 251 struct vmpressure vmpressure; 252 253 /* 254 * the counter to account for mem+swap usage. 255 */ 256 struct res_counter memsw; 257 258 /* 259 * the counter to account for kernel memory usage. 260 */ 261 struct res_counter kmem; 262 /* 263 * Should the accounting and control be hierarchical, per subtree? 264 */ 265 bool use_hierarchy; 266 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ 267 268 bool oom_lock; 269 atomic_t under_oom; 270 atomic_t oom_wakeups; 271 272 int swappiness; 273 /* OOM-Killer disable */ 274 int oom_kill_disable; 275 276 /* set when res.limit == memsw.limit */ 277 bool memsw_is_minimum; 278 279 /* protect arrays of thresholds */ 280 struct mutex thresholds_lock; 281 282 /* thresholds for memory usage. RCU-protected */ 283 struct mem_cgroup_thresholds thresholds; 284 285 /* thresholds for mem+swap usage. RCU-protected */ 286 struct mem_cgroup_thresholds memsw_thresholds; 287 288 /* For oom notifier event fd */ 289 struct list_head oom_notify; 290 291 /* 292 * Should we move charges of a task when a task is moved into this 293 * mem_cgroup ? And what type of charges should we move ? 294 */ 295 unsigned long move_charge_at_immigrate; 296 /* 297 * set > 0 if pages under this cgroup are moving to other cgroup. 298 */ 299 atomic_t moving_account; 300 /* taken only while moving_account > 0 */ 301 spinlock_t move_lock; 302 /* 303 * percpu counter. 304 */ 305 struct mem_cgroup_stat_cpu __percpu *stat; 306 /* 307 * used when a cpu is offlined or other synchronizations 308 * See mem_cgroup_read_stat(). 309 */ 310 struct mem_cgroup_stat_cpu nocpu_base; 311 spinlock_t pcp_counter_lock; 312 313 atomic_t dead_count; 314 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 315 struct tcp_memcontrol tcp_mem; 316 #endif 317 #if defined(CONFIG_MEMCG_KMEM) 318 /* analogous to slab_common's slab_caches list. per-memcg */ 319 struct list_head memcg_slab_caches; 320 /* Not a spinlock, we can take a lot of time walking the list */ 321 struct mutex slab_caches_mutex; 322 /* Index in the kmem_cache->memcg_params->memcg_caches array */ 323 int kmemcg_id; 324 #endif 325 326 int last_scanned_node; 327 #if MAX_NUMNODES > 1 328 nodemask_t scan_nodes; 329 atomic_t numainfo_events; 330 atomic_t numainfo_updating; 331 #endif 332 333 struct mem_cgroup_per_node *nodeinfo[0]; 334 /* WARNING: nodeinfo must be the last member here */ 335 }; 336 337 static size_t memcg_size(void) 338 { 339 return sizeof(struct mem_cgroup) + 340 nr_node_ids * sizeof(struct mem_cgroup_per_node); 341 } 342 343 /* internal only representation about the status of kmem accounting. */ 344 enum { 345 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */ 346 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */ 347 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ 348 }; 349 350 /* We account when limit is on, but only after call sites are patched */ 351 #define KMEM_ACCOUNTED_MASK \ 352 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED)) 353 354 #ifdef CONFIG_MEMCG_KMEM 355 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) 356 { 357 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 358 } 359 360 static bool memcg_kmem_is_active(struct mem_cgroup *memcg) 361 { 362 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 363 } 364 365 static void memcg_kmem_set_activated(struct mem_cgroup *memcg) 366 { 367 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 368 } 369 370 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg) 371 { 372 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 373 } 374 375 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) 376 { 377 /* 378 * Our caller must use css_get() first, because memcg_uncharge_kmem() 379 * will call css_put() if it sees the memcg is dead. 380 */ 381 smp_wmb(); 382 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) 383 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); 384 } 385 386 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) 387 { 388 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, 389 &memcg->kmem_account_flags); 390 } 391 #endif 392 393 /* Stuffs for move charges at task migration. */ 394 /* 395 * Types of charges to be moved. "move_charge_at_immitgrate" and 396 * "immigrate_flags" are treated as a left-shifted bitmap of these types. 397 */ 398 enum move_type { 399 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 400 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 401 NR_MOVE_TYPE, 402 }; 403 404 /* "mc" and its members are protected by cgroup_mutex */ 405 static struct move_charge_struct { 406 spinlock_t lock; /* for from, to */ 407 struct mem_cgroup *from; 408 struct mem_cgroup *to; 409 unsigned long immigrate_flags; 410 unsigned long precharge; 411 unsigned long moved_charge; 412 unsigned long moved_swap; 413 struct task_struct *moving_task; /* a task moving charges */ 414 wait_queue_head_t waitq; /* a waitq for other context */ 415 } mc = { 416 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 417 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 418 }; 419 420 static bool move_anon(void) 421 { 422 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); 423 } 424 425 static bool move_file(void) 426 { 427 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); 428 } 429 430 /* 431 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 432 * limit reclaim to prevent infinite loops, if they ever occur. 433 */ 434 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 435 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 436 437 enum charge_type { 438 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 439 MEM_CGROUP_CHARGE_TYPE_ANON, 440 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 441 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 442 NR_CHARGE_TYPE, 443 }; 444 445 /* for encoding cft->private value on file */ 446 enum res_type { 447 _MEM, 448 _MEMSWAP, 449 _OOM_TYPE, 450 _KMEM, 451 }; 452 453 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 454 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 455 #define MEMFILE_ATTR(val) ((val) & 0xffff) 456 /* Used for OOM nofiier */ 457 #define OOM_CONTROL (0) 458 459 /* 460 * Reclaim flags for mem_cgroup_hierarchical_reclaim 461 */ 462 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 463 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 464 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 465 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 466 467 /* 468 * The memcg_create_mutex will be held whenever a new cgroup is created. 469 * As a consequence, any change that needs to protect against new child cgroups 470 * appearing has to hold it as well. 471 */ 472 static DEFINE_MUTEX(memcg_create_mutex); 473 474 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 475 { 476 return s ? container_of(s, struct mem_cgroup, css) : NULL; 477 } 478 479 /* Some nice accessors for the vmpressure. */ 480 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 481 { 482 if (!memcg) 483 memcg = root_mem_cgroup; 484 return &memcg->vmpressure; 485 } 486 487 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 488 { 489 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 490 } 491 492 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css) 493 { 494 return &mem_cgroup_from_css(css)->vmpressure; 495 } 496 497 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 498 { 499 return (memcg == root_mem_cgroup); 500 } 501 502 /* Writing them here to avoid exposing memcg's inner layout */ 503 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 504 505 void sock_update_memcg(struct sock *sk) 506 { 507 if (mem_cgroup_sockets_enabled) { 508 struct mem_cgroup *memcg; 509 struct cg_proto *cg_proto; 510 511 BUG_ON(!sk->sk_prot->proto_cgroup); 512 513 /* Socket cloning can throw us here with sk_cgrp already 514 * filled. It won't however, necessarily happen from 515 * process context. So the test for root memcg given 516 * the current task's memcg won't help us in this case. 517 * 518 * Respecting the original socket's memcg is a better 519 * decision in this case. 520 */ 521 if (sk->sk_cgrp) { 522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 523 css_get(&sk->sk_cgrp->memcg->css); 524 return; 525 } 526 527 rcu_read_lock(); 528 memcg = mem_cgroup_from_task(current); 529 cg_proto = sk->sk_prot->proto_cgroup(memcg); 530 if (!mem_cgroup_is_root(memcg) && 531 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) { 532 sk->sk_cgrp = cg_proto; 533 } 534 rcu_read_unlock(); 535 } 536 } 537 EXPORT_SYMBOL(sock_update_memcg); 538 539 void sock_release_memcg(struct sock *sk) 540 { 541 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 542 struct mem_cgroup *memcg; 543 WARN_ON(!sk->sk_cgrp->memcg); 544 memcg = sk->sk_cgrp->memcg; 545 css_put(&sk->sk_cgrp->memcg->css); 546 } 547 } 548 549 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 550 { 551 if (!memcg || mem_cgroup_is_root(memcg)) 552 return NULL; 553 554 return &memcg->tcp_mem.cg_proto; 555 } 556 EXPORT_SYMBOL(tcp_proto_cgroup); 557 558 static void disarm_sock_keys(struct mem_cgroup *memcg) 559 { 560 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) 561 return; 562 static_key_slow_dec(&memcg_socket_limit_enabled); 563 } 564 #else 565 static void disarm_sock_keys(struct mem_cgroup *memcg) 566 { 567 } 568 #endif 569 570 #ifdef CONFIG_MEMCG_KMEM 571 /* 572 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. 573 * There are two main reasons for not using the css_id for this: 574 * 1) this works better in sparse environments, where we have a lot of memcgs, 575 * but only a few kmem-limited. Or also, if we have, for instance, 200 576 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 577 * 200 entry array for that. 578 * 579 * 2) In order not to violate the cgroup API, we would like to do all memory 580 * allocation in ->create(). At that point, we haven't yet allocated the 581 * css_id. Having a separate index prevents us from messing with the cgroup 582 * core for this 583 * 584 * The current size of the caches array is stored in 585 * memcg_limited_groups_array_size. It will double each time we have to 586 * increase it. 587 */ 588 static DEFINE_IDA(kmem_limited_groups); 589 int memcg_limited_groups_array_size; 590 591 /* 592 * MIN_SIZE is different than 1, because we would like to avoid going through 593 * the alloc/free process all the time. In a small machine, 4 kmem-limited 594 * cgroups is a reasonable guess. In the future, it could be a parameter or 595 * tunable, but that is strictly not necessary. 596 * 597 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get 598 * this constant directly from cgroup, but it is understandable that this is 599 * better kept as an internal representation in cgroup.c. In any case, the 600 * css_id space is not getting any smaller, and we don't have to necessarily 601 * increase ours as well if it increases. 602 */ 603 #define MEMCG_CACHES_MIN_SIZE 4 604 #define MEMCG_CACHES_MAX_SIZE 65535 605 606 /* 607 * A lot of the calls to the cache allocation functions are expected to be 608 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 609 * conditional to this static branch, we'll have to allow modules that does 610 * kmem_cache_alloc and the such to see this symbol as well 611 */ 612 struct static_key memcg_kmem_enabled_key; 613 EXPORT_SYMBOL(memcg_kmem_enabled_key); 614 615 static void disarm_kmem_keys(struct mem_cgroup *memcg) 616 { 617 if (memcg_kmem_is_active(memcg)) { 618 static_key_slow_dec(&memcg_kmem_enabled_key); 619 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); 620 } 621 /* 622 * This check can't live in kmem destruction function, 623 * since the charges will outlive the cgroup 624 */ 625 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); 626 } 627 #else 628 static void disarm_kmem_keys(struct mem_cgroup *memcg) 629 { 630 } 631 #endif /* CONFIG_MEMCG_KMEM */ 632 633 static void disarm_static_keys(struct mem_cgroup *memcg) 634 { 635 disarm_sock_keys(memcg); 636 disarm_kmem_keys(memcg); 637 } 638 639 static void drain_all_stock_async(struct mem_cgroup *memcg); 640 641 static struct mem_cgroup_per_zone * 642 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 643 { 644 VM_BUG_ON((unsigned)nid >= nr_node_ids); 645 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 646 } 647 648 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 649 { 650 return &memcg->css; 651 } 652 653 static struct mem_cgroup_per_zone * 654 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 655 { 656 int nid = page_to_nid(page); 657 int zid = page_zonenum(page); 658 659 return mem_cgroup_zoneinfo(memcg, nid, zid); 660 } 661 662 static struct mem_cgroup_tree_per_zone * 663 soft_limit_tree_node_zone(int nid, int zid) 664 { 665 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 666 } 667 668 static struct mem_cgroup_tree_per_zone * 669 soft_limit_tree_from_page(struct page *page) 670 { 671 int nid = page_to_nid(page); 672 int zid = page_zonenum(page); 673 674 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 675 } 676 677 static void 678 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 679 struct mem_cgroup_per_zone *mz, 680 struct mem_cgroup_tree_per_zone *mctz, 681 unsigned long long new_usage_in_excess) 682 { 683 struct rb_node **p = &mctz->rb_root.rb_node; 684 struct rb_node *parent = NULL; 685 struct mem_cgroup_per_zone *mz_node; 686 687 if (mz->on_tree) 688 return; 689 690 mz->usage_in_excess = new_usage_in_excess; 691 if (!mz->usage_in_excess) 692 return; 693 while (*p) { 694 parent = *p; 695 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 696 tree_node); 697 if (mz->usage_in_excess < mz_node->usage_in_excess) 698 p = &(*p)->rb_left; 699 /* 700 * We can't avoid mem cgroups that are over their soft 701 * limit by the same amount 702 */ 703 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 704 p = &(*p)->rb_right; 705 } 706 rb_link_node(&mz->tree_node, parent, p); 707 rb_insert_color(&mz->tree_node, &mctz->rb_root); 708 mz->on_tree = true; 709 } 710 711 static void 712 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 713 struct mem_cgroup_per_zone *mz, 714 struct mem_cgroup_tree_per_zone *mctz) 715 { 716 if (!mz->on_tree) 717 return; 718 rb_erase(&mz->tree_node, &mctz->rb_root); 719 mz->on_tree = false; 720 } 721 722 static void 723 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 724 struct mem_cgroup_per_zone *mz, 725 struct mem_cgroup_tree_per_zone *mctz) 726 { 727 spin_lock(&mctz->lock); 728 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 729 spin_unlock(&mctz->lock); 730 } 731 732 733 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 734 { 735 unsigned long long excess; 736 struct mem_cgroup_per_zone *mz; 737 struct mem_cgroup_tree_per_zone *mctz; 738 int nid = page_to_nid(page); 739 int zid = page_zonenum(page); 740 mctz = soft_limit_tree_from_page(page); 741 742 /* 743 * Necessary to update all ancestors when hierarchy is used. 744 * because their event counter is not touched. 745 */ 746 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 747 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 748 excess = res_counter_soft_limit_excess(&memcg->res); 749 /* 750 * We have to update the tree if mz is on RB-tree or 751 * mem is over its softlimit. 752 */ 753 if (excess || mz->on_tree) { 754 spin_lock(&mctz->lock); 755 /* if on-tree, remove it */ 756 if (mz->on_tree) 757 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 758 /* 759 * Insert again. mz->usage_in_excess will be updated. 760 * If excess is 0, no tree ops. 761 */ 762 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 763 spin_unlock(&mctz->lock); 764 } 765 } 766 } 767 768 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 769 { 770 int node, zone; 771 struct mem_cgroup_per_zone *mz; 772 struct mem_cgroup_tree_per_zone *mctz; 773 774 for_each_node(node) { 775 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 776 mz = mem_cgroup_zoneinfo(memcg, node, zone); 777 mctz = soft_limit_tree_node_zone(node, zone); 778 mem_cgroup_remove_exceeded(memcg, mz, mctz); 779 } 780 } 781 } 782 783 static struct mem_cgroup_per_zone * 784 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 785 { 786 struct rb_node *rightmost = NULL; 787 struct mem_cgroup_per_zone *mz; 788 789 retry: 790 mz = NULL; 791 rightmost = rb_last(&mctz->rb_root); 792 if (!rightmost) 793 goto done; /* Nothing to reclaim from */ 794 795 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 796 /* 797 * Remove the node now but someone else can add it back, 798 * we will to add it back at the end of reclaim to its correct 799 * position in the tree. 800 */ 801 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 802 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 803 !css_tryget(&mz->memcg->css)) 804 goto retry; 805 done: 806 return mz; 807 } 808 809 static struct mem_cgroup_per_zone * 810 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 811 { 812 struct mem_cgroup_per_zone *mz; 813 814 spin_lock(&mctz->lock); 815 mz = __mem_cgroup_largest_soft_limit_node(mctz); 816 spin_unlock(&mctz->lock); 817 return mz; 818 } 819 820 /* 821 * Implementation Note: reading percpu statistics for memcg. 822 * 823 * Both of vmstat[] and percpu_counter has threshold and do periodic 824 * synchronization to implement "quick" read. There are trade-off between 825 * reading cost and precision of value. Then, we may have a chance to implement 826 * a periodic synchronizion of counter in memcg's counter. 827 * 828 * But this _read() function is used for user interface now. The user accounts 829 * memory usage by memory cgroup and he _always_ requires exact value because 830 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 831 * have to visit all online cpus and make sum. So, for now, unnecessary 832 * synchronization is not implemented. (just implemented for cpu hotplug) 833 * 834 * If there are kernel internal actions which can make use of some not-exact 835 * value, and reading all cpu value can be performance bottleneck in some 836 * common workload, threashold and synchonization as vmstat[] should be 837 * implemented. 838 */ 839 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 840 enum mem_cgroup_stat_index idx) 841 { 842 long val = 0; 843 int cpu; 844 845 get_online_cpus(); 846 for_each_online_cpu(cpu) 847 val += per_cpu(memcg->stat->count[idx], cpu); 848 #ifdef CONFIG_HOTPLUG_CPU 849 spin_lock(&memcg->pcp_counter_lock); 850 val += memcg->nocpu_base.count[idx]; 851 spin_unlock(&memcg->pcp_counter_lock); 852 #endif 853 put_online_cpus(); 854 return val; 855 } 856 857 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 858 bool charge) 859 { 860 int val = (charge) ? 1 : -1; 861 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 862 } 863 864 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 865 enum mem_cgroup_events_index idx) 866 { 867 unsigned long val = 0; 868 int cpu; 869 870 get_online_cpus(); 871 for_each_online_cpu(cpu) 872 val += per_cpu(memcg->stat->events[idx], cpu); 873 #ifdef CONFIG_HOTPLUG_CPU 874 spin_lock(&memcg->pcp_counter_lock); 875 val += memcg->nocpu_base.events[idx]; 876 spin_unlock(&memcg->pcp_counter_lock); 877 #endif 878 put_online_cpus(); 879 return val; 880 } 881 882 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 883 struct page *page, 884 bool anon, int nr_pages) 885 { 886 preempt_disable(); 887 888 /* 889 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 890 * counted as CACHE even if it's on ANON LRU. 891 */ 892 if (anon) 893 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 894 nr_pages); 895 else 896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 897 nr_pages); 898 899 if (PageTransHuge(page)) 900 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 901 nr_pages); 902 903 /* pagein of a big page is an event. So, ignore page size */ 904 if (nr_pages > 0) 905 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 906 else { 907 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 908 nr_pages = -nr_pages; /* for event */ 909 } 910 911 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 912 913 preempt_enable(); 914 } 915 916 unsigned long 917 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 918 { 919 struct mem_cgroup_per_zone *mz; 920 921 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 922 return mz->lru_size[lru]; 923 } 924 925 static unsigned long 926 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 927 unsigned int lru_mask) 928 { 929 struct mem_cgroup_per_zone *mz; 930 enum lru_list lru; 931 unsigned long ret = 0; 932 933 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 934 935 for_each_lru(lru) { 936 if (BIT(lru) & lru_mask) 937 ret += mz->lru_size[lru]; 938 } 939 return ret; 940 } 941 942 static unsigned long 943 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 944 int nid, unsigned int lru_mask) 945 { 946 u64 total = 0; 947 int zid; 948 949 for (zid = 0; zid < MAX_NR_ZONES; zid++) 950 total += mem_cgroup_zone_nr_lru_pages(memcg, 951 nid, zid, lru_mask); 952 953 return total; 954 } 955 956 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 957 unsigned int lru_mask) 958 { 959 int nid; 960 u64 total = 0; 961 962 for_each_node_state(nid, N_MEMORY) 963 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 964 return total; 965 } 966 967 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 968 enum mem_cgroup_events_target target) 969 { 970 unsigned long val, next; 971 972 val = __this_cpu_read(memcg->stat->nr_page_events); 973 next = __this_cpu_read(memcg->stat->targets[target]); 974 /* from time_after() in jiffies.h */ 975 if ((long)next - (long)val < 0) { 976 switch (target) { 977 case MEM_CGROUP_TARGET_THRESH: 978 next = val + THRESHOLDS_EVENTS_TARGET; 979 break; 980 case MEM_CGROUP_TARGET_SOFTLIMIT: 981 next = val + SOFTLIMIT_EVENTS_TARGET; 982 break; 983 case MEM_CGROUP_TARGET_NUMAINFO: 984 next = val + NUMAINFO_EVENTS_TARGET; 985 break; 986 default: 987 break; 988 } 989 __this_cpu_write(memcg->stat->targets[target], next); 990 return true; 991 } 992 return false; 993 } 994 995 /* 996 * Check events in order. 997 * 998 */ 999 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 1000 { 1001 preempt_disable(); 1002 /* threshold event is triggered in finer grain than soft limit */ 1003 if (unlikely(mem_cgroup_event_ratelimit(memcg, 1004 MEM_CGROUP_TARGET_THRESH))) { 1005 bool do_softlimit; 1006 bool do_numainfo __maybe_unused; 1007 1008 do_softlimit = mem_cgroup_event_ratelimit(memcg, 1009 MEM_CGROUP_TARGET_SOFTLIMIT); 1010 #if MAX_NUMNODES > 1 1011 do_numainfo = mem_cgroup_event_ratelimit(memcg, 1012 MEM_CGROUP_TARGET_NUMAINFO); 1013 #endif 1014 preempt_enable(); 1015 1016 mem_cgroup_threshold(memcg); 1017 if (unlikely(do_softlimit)) 1018 mem_cgroup_update_tree(memcg, page); 1019 #if MAX_NUMNODES > 1 1020 if (unlikely(do_numainfo)) 1021 atomic_inc(&memcg->numainfo_events); 1022 #endif 1023 } else 1024 preempt_enable(); 1025 } 1026 1027 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1028 { 1029 /* 1030 * mm_update_next_owner() may clear mm->owner to NULL 1031 * if it races with swapoff, page migration, etc. 1032 * So this can be called with p == NULL. 1033 */ 1034 if (unlikely(!p)) 1035 return NULL; 1036 1037 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id)); 1038 } 1039 1040 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 1041 { 1042 struct mem_cgroup *memcg = NULL; 1043 1044 if (!mm) 1045 return NULL; 1046 /* 1047 * Because we have no locks, mm->owner's may be being moved to other 1048 * cgroup. We use css_tryget() here even if this looks 1049 * pessimistic (rather than adding locks here). 1050 */ 1051 rcu_read_lock(); 1052 do { 1053 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1054 if (unlikely(!memcg)) 1055 break; 1056 } while (!css_tryget(&memcg->css)); 1057 rcu_read_unlock(); 1058 return memcg; 1059 } 1060 1061 /* 1062 * Returns a next (in a pre-order walk) alive memcg (with elevated css 1063 * ref. count) or NULL if the whole root's subtree has been visited. 1064 * 1065 * helper function to be used by mem_cgroup_iter 1066 */ 1067 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, 1068 struct mem_cgroup *last_visited) 1069 { 1070 struct cgroup_subsys_state *prev_css, *next_css; 1071 1072 prev_css = last_visited ? &last_visited->css : NULL; 1073 skip_node: 1074 next_css = css_next_descendant_pre(prev_css, &root->css); 1075 1076 /* 1077 * Even if we found a group we have to make sure it is 1078 * alive. css && !memcg means that the groups should be 1079 * skipped and we should continue the tree walk. 1080 * last_visited css is safe to use because it is 1081 * protected by css_get and the tree walk is rcu safe. 1082 */ 1083 if (next_css) { 1084 struct mem_cgroup *mem = mem_cgroup_from_css(next_css); 1085 1086 if (css_tryget(&mem->css)) 1087 return mem; 1088 else { 1089 prev_css = next_css; 1090 goto skip_node; 1091 } 1092 } 1093 1094 return NULL; 1095 } 1096 1097 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root) 1098 { 1099 /* 1100 * When a group in the hierarchy below root is destroyed, the 1101 * hierarchy iterator can no longer be trusted since it might 1102 * have pointed to the destroyed group. Invalidate it. 1103 */ 1104 atomic_inc(&root->dead_count); 1105 } 1106 1107 static struct mem_cgroup * 1108 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter, 1109 struct mem_cgroup *root, 1110 int *sequence) 1111 { 1112 struct mem_cgroup *position = NULL; 1113 /* 1114 * A cgroup destruction happens in two stages: offlining and 1115 * release. They are separated by a RCU grace period. 1116 * 1117 * If the iterator is valid, we may still race with an 1118 * offlining. The RCU lock ensures the object won't be 1119 * released, tryget will fail if we lost the race. 1120 */ 1121 *sequence = atomic_read(&root->dead_count); 1122 if (iter->last_dead_count == *sequence) { 1123 smp_rmb(); 1124 position = iter->last_visited; 1125 if (position && !css_tryget(&position->css)) 1126 position = NULL; 1127 } 1128 return position; 1129 } 1130 1131 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter, 1132 struct mem_cgroup *last_visited, 1133 struct mem_cgroup *new_position, 1134 int sequence) 1135 { 1136 if (last_visited) 1137 css_put(&last_visited->css); 1138 /* 1139 * We store the sequence count from the time @last_visited was 1140 * loaded successfully instead of rereading it here so that we 1141 * don't lose destruction events in between. We could have 1142 * raced with the destruction of @new_position after all. 1143 */ 1144 iter->last_visited = new_position; 1145 smp_wmb(); 1146 iter->last_dead_count = sequence; 1147 } 1148 1149 /** 1150 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1151 * @root: hierarchy root 1152 * @prev: previously returned memcg, NULL on first invocation 1153 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1154 * 1155 * Returns references to children of the hierarchy below @root, or 1156 * @root itself, or %NULL after a full round-trip. 1157 * 1158 * Caller must pass the return value in @prev on subsequent 1159 * invocations for reference counting, or use mem_cgroup_iter_break() 1160 * to cancel a hierarchy walk before the round-trip is complete. 1161 * 1162 * Reclaimers can specify a zone and a priority level in @reclaim to 1163 * divide up the memcgs in the hierarchy among all concurrent 1164 * reclaimers operating on the same zone and priority. 1165 */ 1166 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1167 struct mem_cgroup *prev, 1168 struct mem_cgroup_reclaim_cookie *reclaim) 1169 { 1170 struct mem_cgroup *memcg = NULL; 1171 struct mem_cgroup *last_visited = NULL; 1172 1173 if (mem_cgroup_disabled()) 1174 return NULL; 1175 1176 if (!root) 1177 root = root_mem_cgroup; 1178 1179 if (prev && !reclaim) 1180 last_visited = prev; 1181 1182 if (!root->use_hierarchy && root != root_mem_cgroup) { 1183 if (prev) 1184 goto out_css_put; 1185 return root; 1186 } 1187 1188 rcu_read_lock(); 1189 while (!memcg) { 1190 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1191 int uninitialized_var(seq); 1192 1193 if (reclaim) { 1194 int nid = zone_to_nid(reclaim->zone); 1195 int zid = zone_idx(reclaim->zone); 1196 struct mem_cgroup_per_zone *mz; 1197 1198 mz = mem_cgroup_zoneinfo(root, nid, zid); 1199 iter = &mz->reclaim_iter[reclaim->priority]; 1200 if (prev && reclaim->generation != iter->generation) { 1201 iter->last_visited = NULL; 1202 goto out_unlock; 1203 } 1204 1205 last_visited = mem_cgroup_iter_load(iter, root, &seq); 1206 } 1207 1208 memcg = __mem_cgroup_iter_next(root, last_visited); 1209 1210 if (reclaim) { 1211 mem_cgroup_iter_update(iter, last_visited, memcg, seq); 1212 1213 if (!memcg) 1214 iter->generation++; 1215 else if (!prev && memcg) 1216 reclaim->generation = iter->generation; 1217 } 1218 1219 if (prev && !memcg) 1220 goto out_unlock; 1221 } 1222 out_unlock: 1223 rcu_read_unlock(); 1224 out_css_put: 1225 if (prev && prev != root) 1226 css_put(&prev->css); 1227 1228 return memcg; 1229 } 1230 1231 /** 1232 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1233 * @root: hierarchy root 1234 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1235 */ 1236 void mem_cgroup_iter_break(struct mem_cgroup *root, 1237 struct mem_cgroup *prev) 1238 { 1239 if (!root) 1240 root = root_mem_cgroup; 1241 if (prev && prev != root) 1242 css_put(&prev->css); 1243 } 1244 1245 /* 1246 * Iteration constructs for visiting all cgroups (under a tree). If 1247 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1248 * be used for reference counting. 1249 */ 1250 #define for_each_mem_cgroup_tree(iter, root) \ 1251 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1252 iter != NULL; \ 1253 iter = mem_cgroup_iter(root, iter, NULL)) 1254 1255 #define for_each_mem_cgroup(iter) \ 1256 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1257 iter != NULL; \ 1258 iter = mem_cgroup_iter(NULL, iter, NULL)) 1259 1260 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1261 { 1262 struct mem_cgroup *memcg; 1263 1264 rcu_read_lock(); 1265 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1266 if (unlikely(!memcg)) 1267 goto out; 1268 1269 switch (idx) { 1270 case PGFAULT: 1271 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1272 break; 1273 case PGMAJFAULT: 1274 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1275 break; 1276 default: 1277 BUG(); 1278 } 1279 out: 1280 rcu_read_unlock(); 1281 } 1282 EXPORT_SYMBOL(__mem_cgroup_count_vm_event); 1283 1284 /** 1285 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1286 * @zone: zone of the wanted lruvec 1287 * @memcg: memcg of the wanted lruvec 1288 * 1289 * Returns the lru list vector holding pages for the given @zone and 1290 * @mem. This can be the global zone lruvec, if the memory controller 1291 * is disabled. 1292 */ 1293 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1294 struct mem_cgroup *memcg) 1295 { 1296 struct mem_cgroup_per_zone *mz; 1297 struct lruvec *lruvec; 1298 1299 if (mem_cgroup_disabled()) { 1300 lruvec = &zone->lruvec; 1301 goto out; 1302 } 1303 1304 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1305 lruvec = &mz->lruvec; 1306 out: 1307 /* 1308 * Since a node can be onlined after the mem_cgroup was created, 1309 * we have to be prepared to initialize lruvec->zone here; 1310 * and if offlined then reonlined, we need to reinitialize it. 1311 */ 1312 if (unlikely(lruvec->zone != zone)) 1313 lruvec->zone = zone; 1314 return lruvec; 1315 } 1316 1317 /* 1318 * Following LRU functions are allowed to be used without PCG_LOCK. 1319 * Operations are called by routine of global LRU independently from memcg. 1320 * What we have to take care of here is validness of pc->mem_cgroup. 1321 * 1322 * Changes to pc->mem_cgroup happens when 1323 * 1. charge 1324 * 2. moving account 1325 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1326 * It is added to LRU before charge. 1327 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1328 * When moving account, the page is not on LRU. It's isolated. 1329 */ 1330 1331 /** 1332 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1333 * @page: the page 1334 * @zone: zone of the page 1335 */ 1336 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1337 { 1338 struct mem_cgroup_per_zone *mz; 1339 struct mem_cgroup *memcg; 1340 struct page_cgroup *pc; 1341 struct lruvec *lruvec; 1342 1343 if (mem_cgroup_disabled()) { 1344 lruvec = &zone->lruvec; 1345 goto out; 1346 } 1347 1348 pc = lookup_page_cgroup(page); 1349 memcg = pc->mem_cgroup; 1350 1351 /* 1352 * Surreptitiously switch any uncharged offlist page to root: 1353 * an uncharged page off lru does nothing to secure 1354 * its former mem_cgroup from sudden removal. 1355 * 1356 * Our caller holds lru_lock, and PageCgroupUsed is updated 1357 * under page_cgroup lock: between them, they make all uses 1358 * of pc->mem_cgroup safe. 1359 */ 1360 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1361 pc->mem_cgroup = memcg = root_mem_cgroup; 1362 1363 mz = page_cgroup_zoneinfo(memcg, page); 1364 lruvec = &mz->lruvec; 1365 out: 1366 /* 1367 * Since a node can be onlined after the mem_cgroup was created, 1368 * we have to be prepared to initialize lruvec->zone here; 1369 * and if offlined then reonlined, we need to reinitialize it. 1370 */ 1371 if (unlikely(lruvec->zone != zone)) 1372 lruvec->zone = zone; 1373 return lruvec; 1374 } 1375 1376 /** 1377 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1378 * @lruvec: mem_cgroup per zone lru vector 1379 * @lru: index of lru list the page is sitting on 1380 * @nr_pages: positive when adding or negative when removing 1381 * 1382 * This function must be called when a page is added to or removed from an 1383 * lru list. 1384 */ 1385 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1386 int nr_pages) 1387 { 1388 struct mem_cgroup_per_zone *mz; 1389 unsigned long *lru_size; 1390 1391 if (mem_cgroup_disabled()) 1392 return; 1393 1394 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1395 lru_size = mz->lru_size + lru; 1396 *lru_size += nr_pages; 1397 VM_BUG_ON((long)(*lru_size) < 0); 1398 } 1399 1400 /* 1401 * Checks whether given mem is same or in the root_mem_cgroup's 1402 * hierarchy subtree 1403 */ 1404 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1405 struct mem_cgroup *memcg) 1406 { 1407 if (root_memcg == memcg) 1408 return true; 1409 if (!root_memcg->use_hierarchy || !memcg) 1410 return false; 1411 return css_is_ancestor(&memcg->css, &root_memcg->css); 1412 } 1413 1414 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1415 struct mem_cgroup *memcg) 1416 { 1417 bool ret; 1418 1419 rcu_read_lock(); 1420 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1421 rcu_read_unlock(); 1422 return ret; 1423 } 1424 1425 bool task_in_mem_cgroup(struct task_struct *task, 1426 const struct mem_cgroup *memcg) 1427 { 1428 struct mem_cgroup *curr = NULL; 1429 struct task_struct *p; 1430 bool ret; 1431 1432 p = find_lock_task_mm(task); 1433 if (p) { 1434 curr = try_get_mem_cgroup_from_mm(p->mm); 1435 task_unlock(p); 1436 } else { 1437 /* 1438 * All threads may have already detached their mm's, but the oom 1439 * killer still needs to detect if they have already been oom 1440 * killed to prevent needlessly killing additional tasks. 1441 */ 1442 rcu_read_lock(); 1443 curr = mem_cgroup_from_task(task); 1444 if (curr) 1445 css_get(&curr->css); 1446 rcu_read_unlock(); 1447 } 1448 if (!curr) 1449 return false; 1450 /* 1451 * We should check use_hierarchy of "memcg" not "curr". Because checking 1452 * use_hierarchy of "curr" here make this function true if hierarchy is 1453 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1454 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1455 */ 1456 ret = mem_cgroup_same_or_subtree(memcg, curr); 1457 css_put(&curr->css); 1458 return ret; 1459 } 1460 1461 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1462 { 1463 unsigned long inactive_ratio; 1464 unsigned long inactive; 1465 unsigned long active; 1466 unsigned long gb; 1467 1468 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1469 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1470 1471 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1472 if (gb) 1473 inactive_ratio = int_sqrt(10 * gb); 1474 else 1475 inactive_ratio = 1; 1476 1477 return inactive * inactive_ratio < active; 1478 } 1479 1480 #define mem_cgroup_from_res_counter(counter, member) \ 1481 container_of(counter, struct mem_cgroup, member) 1482 1483 /** 1484 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1485 * @memcg: the memory cgroup 1486 * 1487 * Returns the maximum amount of memory @mem can be charged with, in 1488 * pages. 1489 */ 1490 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1491 { 1492 unsigned long long margin; 1493 1494 margin = res_counter_margin(&memcg->res); 1495 if (do_swap_account) 1496 margin = min(margin, res_counter_margin(&memcg->memsw)); 1497 return margin >> PAGE_SHIFT; 1498 } 1499 1500 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1501 { 1502 /* root ? */ 1503 if (!css_parent(&memcg->css)) 1504 return vm_swappiness; 1505 1506 return memcg->swappiness; 1507 } 1508 1509 /* 1510 * memcg->moving_account is used for checking possibility that some thread is 1511 * calling move_account(). When a thread on CPU-A starts moving pages under 1512 * a memcg, other threads should check memcg->moving_account under 1513 * rcu_read_lock(), like this: 1514 * 1515 * CPU-A CPU-B 1516 * rcu_read_lock() 1517 * memcg->moving_account+1 if (memcg->mocing_account) 1518 * take heavy locks. 1519 * synchronize_rcu() update something. 1520 * rcu_read_unlock() 1521 * start move here. 1522 */ 1523 1524 /* for quick checking without looking up memcg */ 1525 atomic_t memcg_moving __read_mostly; 1526 1527 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1528 { 1529 atomic_inc(&memcg_moving); 1530 atomic_inc(&memcg->moving_account); 1531 synchronize_rcu(); 1532 } 1533 1534 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1535 { 1536 /* 1537 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1538 * We check NULL in callee rather than caller. 1539 */ 1540 if (memcg) { 1541 atomic_dec(&memcg_moving); 1542 atomic_dec(&memcg->moving_account); 1543 } 1544 } 1545 1546 /* 1547 * 2 routines for checking "mem" is under move_account() or not. 1548 * 1549 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1550 * is used for avoiding races in accounting. If true, 1551 * pc->mem_cgroup may be overwritten. 1552 * 1553 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1554 * under hierarchy of moving cgroups. This is for 1555 * waiting at hith-memory prressure caused by "move". 1556 */ 1557 1558 static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1559 { 1560 VM_BUG_ON(!rcu_read_lock_held()); 1561 return atomic_read(&memcg->moving_account) > 0; 1562 } 1563 1564 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1565 { 1566 struct mem_cgroup *from; 1567 struct mem_cgroup *to; 1568 bool ret = false; 1569 /* 1570 * Unlike task_move routines, we access mc.to, mc.from not under 1571 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1572 */ 1573 spin_lock(&mc.lock); 1574 from = mc.from; 1575 to = mc.to; 1576 if (!from) 1577 goto unlock; 1578 1579 ret = mem_cgroup_same_or_subtree(memcg, from) 1580 || mem_cgroup_same_or_subtree(memcg, to); 1581 unlock: 1582 spin_unlock(&mc.lock); 1583 return ret; 1584 } 1585 1586 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1587 { 1588 if (mc.moving_task && current != mc.moving_task) { 1589 if (mem_cgroup_under_move(memcg)) { 1590 DEFINE_WAIT(wait); 1591 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1592 /* moving charge context might have finished. */ 1593 if (mc.moving_task) 1594 schedule(); 1595 finish_wait(&mc.waitq, &wait); 1596 return true; 1597 } 1598 } 1599 return false; 1600 } 1601 1602 /* 1603 * Take this lock when 1604 * - a code tries to modify page's memcg while it's USED. 1605 * - a code tries to modify page state accounting in a memcg. 1606 * see mem_cgroup_stolen(), too. 1607 */ 1608 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1609 unsigned long *flags) 1610 { 1611 spin_lock_irqsave(&memcg->move_lock, *flags); 1612 } 1613 1614 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1615 unsigned long *flags) 1616 { 1617 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1618 } 1619 1620 #define K(x) ((x) << (PAGE_SHIFT-10)) 1621 /** 1622 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1623 * @memcg: The memory cgroup that went over limit 1624 * @p: Task that is going to be killed 1625 * 1626 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1627 * enabled 1628 */ 1629 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1630 { 1631 struct cgroup *task_cgrp; 1632 struct cgroup *mem_cgrp; 1633 /* 1634 * Need a buffer in BSS, can't rely on allocations. The code relies 1635 * on the assumption that OOM is serialized for memory controller. 1636 * If this assumption is broken, revisit this code. 1637 */ 1638 static char memcg_name[PATH_MAX]; 1639 int ret; 1640 struct mem_cgroup *iter; 1641 unsigned int i; 1642 1643 if (!p) 1644 return; 1645 1646 rcu_read_lock(); 1647 1648 mem_cgrp = memcg->css.cgroup; 1649 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1650 1651 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1652 if (ret < 0) { 1653 /* 1654 * Unfortunately, we are unable to convert to a useful name 1655 * But we'll still print out the usage information 1656 */ 1657 rcu_read_unlock(); 1658 goto done; 1659 } 1660 rcu_read_unlock(); 1661 1662 pr_info("Task in %s killed", memcg_name); 1663 1664 rcu_read_lock(); 1665 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1666 if (ret < 0) { 1667 rcu_read_unlock(); 1668 goto done; 1669 } 1670 rcu_read_unlock(); 1671 1672 /* 1673 * Continues from above, so we don't need an KERN_ level 1674 */ 1675 pr_cont(" as a result of limit of %s\n", memcg_name); 1676 done: 1677 1678 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", 1679 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1680 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1681 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1682 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", 1683 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1684 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1685 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1686 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", 1687 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, 1688 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, 1689 res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); 1690 1691 for_each_mem_cgroup_tree(iter, memcg) { 1692 pr_info("Memory cgroup stats"); 1693 1694 rcu_read_lock(); 1695 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX); 1696 if (!ret) 1697 pr_cont(" for %s", memcg_name); 1698 rcu_read_unlock(); 1699 pr_cont(":"); 1700 1701 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1702 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1703 continue; 1704 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], 1705 K(mem_cgroup_read_stat(iter, i))); 1706 } 1707 1708 for (i = 0; i < NR_LRU_LISTS; i++) 1709 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1710 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1711 1712 pr_cont("\n"); 1713 } 1714 } 1715 1716 /* 1717 * This function returns the number of memcg under hierarchy tree. Returns 1718 * 1(self count) if no children. 1719 */ 1720 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1721 { 1722 int num = 0; 1723 struct mem_cgroup *iter; 1724 1725 for_each_mem_cgroup_tree(iter, memcg) 1726 num++; 1727 return num; 1728 } 1729 1730 /* 1731 * Return the memory (and swap, if configured) limit for a memcg. 1732 */ 1733 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1734 { 1735 u64 limit; 1736 1737 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1738 1739 /* 1740 * Do not consider swap space if we cannot swap due to swappiness 1741 */ 1742 if (mem_cgroup_swappiness(memcg)) { 1743 u64 memsw; 1744 1745 limit += total_swap_pages << PAGE_SHIFT; 1746 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1747 1748 /* 1749 * If memsw is finite and limits the amount of swap space 1750 * available to this memcg, return that limit. 1751 */ 1752 limit = min(limit, memsw); 1753 } 1754 1755 return limit; 1756 } 1757 1758 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1759 int order) 1760 { 1761 struct mem_cgroup *iter; 1762 unsigned long chosen_points = 0; 1763 unsigned long totalpages; 1764 unsigned int points = 0; 1765 struct task_struct *chosen = NULL; 1766 1767 /* 1768 * If current has a pending SIGKILL or is exiting, then automatically 1769 * select it. The goal is to allow it to allocate so that it may 1770 * quickly exit and free its memory. 1771 */ 1772 if (fatal_signal_pending(current) || current->flags & PF_EXITING) { 1773 set_thread_flag(TIF_MEMDIE); 1774 return; 1775 } 1776 1777 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1778 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1779 for_each_mem_cgroup_tree(iter, memcg) { 1780 struct css_task_iter it; 1781 struct task_struct *task; 1782 1783 css_task_iter_start(&iter->css, &it); 1784 while ((task = css_task_iter_next(&it))) { 1785 switch (oom_scan_process_thread(task, totalpages, NULL, 1786 false)) { 1787 case OOM_SCAN_SELECT: 1788 if (chosen) 1789 put_task_struct(chosen); 1790 chosen = task; 1791 chosen_points = ULONG_MAX; 1792 get_task_struct(chosen); 1793 /* fall through */ 1794 case OOM_SCAN_CONTINUE: 1795 continue; 1796 case OOM_SCAN_ABORT: 1797 css_task_iter_end(&it); 1798 mem_cgroup_iter_break(memcg, iter); 1799 if (chosen) 1800 put_task_struct(chosen); 1801 return; 1802 case OOM_SCAN_OK: 1803 break; 1804 }; 1805 points = oom_badness(task, memcg, NULL, totalpages); 1806 if (points > chosen_points) { 1807 if (chosen) 1808 put_task_struct(chosen); 1809 chosen = task; 1810 chosen_points = points; 1811 get_task_struct(chosen); 1812 } 1813 } 1814 css_task_iter_end(&it); 1815 } 1816 1817 if (!chosen) 1818 return; 1819 points = chosen_points * 1000 / totalpages; 1820 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1821 NULL, "Memory cgroup out of memory"); 1822 } 1823 1824 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1825 gfp_t gfp_mask, 1826 unsigned long flags) 1827 { 1828 unsigned long total = 0; 1829 bool noswap = false; 1830 int loop; 1831 1832 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1833 noswap = true; 1834 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1835 noswap = true; 1836 1837 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1838 if (loop) 1839 drain_all_stock_async(memcg); 1840 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1841 /* 1842 * Allow limit shrinkers, which are triggered directly 1843 * by userspace, to catch signals and stop reclaim 1844 * after minimal progress, regardless of the margin. 1845 */ 1846 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1847 break; 1848 if (mem_cgroup_margin(memcg)) 1849 break; 1850 /* 1851 * If nothing was reclaimed after two attempts, there 1852 * may be no reclaimable pages in this hierarchy. 1853 */ 1854 if (loop && !total) 1855 break; 1856 } 1857 return total; 1858 } 1859 1860 /** 1861 * test_mem_cgroup_node_reclaimable 1862 * @memcg: the target memcg 1863 * @nid: the node ID to be checked. 1864 * @noswap : specify true here if the user wants flle only information. 1865 * 1866 * This function returns whether the specified memcg contains any 1867 * reclaimable pages on a node. Returns true if there are any reclaimable 1868 * pages in the node. 1869 */ 1870 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1871 int nid, bool noswap) 1872 { 1873 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1874 return true; 1875 if (noswap || !total_swap_pages) 1876 return false; 1877 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1878 return true; 1879 return false; 1880 1881 } 1882 #if MAX_NUMNODES > 1 1883 1884 /* 1885 * Always updating the nodemask is not very good - even if we have an empty 1886 * list or the wrong list here, we can start from some node and traverse all 1887 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1888 * 1889 */ 1890 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1891 { 1892 int nid; 1893 /* 1894 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1895 * pagein/pageout changes since the last update. 1896 */ 1897 if (!atomic_read(&memcg->numainfo_events)) 1898 return; 1899 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1900 return; 1901 1902 /* make a nodemask where this memcg uses memory from */ 1903 memcg->scan_nodes = node_states[N_MEMORY]; 1904 1905 for_each_node_mask(nid, node_states[N_MEMORY]) { 1906 1907 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1908 node_clear(nid, memcg->scan_nodes); 1909 } 1910 1911 atomic_set(&memcg->numainfo_events, 0); 1912 atomic_set(&memcg->numainfo_updating, 0); 1913 } 1914 1915 /* 1916 * Selecting a node where we start reclaim from. Because what we need is just 1917 * reducing usage counter, start from anywhere is O,K. Considering 1918 * memory reclaim from current node, there are pros. and cons. 1919 * 1920 * Freeing memory from current node means freeing memory from a node which 1921 * we'll use or we've used. So, it may make LRU bad. And if several threads 1922 * hit limits, it will see a contention on a node. But freeing from remote 1923 * node means more costs for memory reclaim because of memory latency. 1924 * 1925 * Now, we use round-robin. Better algorithm is welcomed. 1926 */ 1927 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1928 { 1929 int node; 1930 1931 mem_cgroup_may_update_nodemask(memcg); 1932 node = memcg->last_scanned_node; 1933 1934 node = next_node(node, memcg->scan_nodes); 1935 if (node == MAX_NUMNODES) 1936 node = first_node(memcg->scan_nodes); 1937 /* 1938 * We call this when we hit limit, not when pages are added to LRU. 1939 * No LRU may hold pages because all pages are UNEVICTABLE or 1940 * memcg is too small and all pages are not on LRU. In that case, 1941 * we use curret node. 1942 */ 1943 if (unlikely(node == MAX_NUMNODES)) 1944 node = numa_node_id(); 1945 1946 memcg->last_scanned_node = node; 1947 return node; 1948 } 1949 1950 /* 1951 * Check all nodes whether it contains reclaimable pages or not. 1952 * For quick scan, we make use of scan_nodes. This will allow us to skip 1953 * unused nodes. But scan_nodes is lazily updated and may not cotain 1954 * enough new information. We need to do double check. 1955 */ 1956 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1957 { 1958 int nid; 1959 1960 /* 1961 * quick check...making use of scan_node. 1962 * We can skip unused nodes. 1963 */ 1964 if (!nodes_empty(memcg->scan_nodes)) { 1965 for (nid = first_node(memcg->scan_nodes); 1966 nid < MAX_NUMNODES; 1967 nid = next_node(nid, memcg->scan_nodes)) { 1968 1969 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1970 return true; 1971 } 1972 } 1973 /* 1974 * Check rest of nodes. 1975 */ 1976 for_each_node_state(nid, N_MEMORY) { 1977 if (node_isset(nid, memcg->scan_nodes)) 1978 continue; 1979 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1980 return true; 1981 } 1982 return false; 1983 } 1984 1985 #else 1986 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1987 { 1988 return 0; 1989 } 1990 1991 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1992 { 1993 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 1994 } 1995 #endif 1996 1997 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1998 struct zone *zone, 1999 gfp_t gfp_mask, 2000 unsigned long *total_scanned) 2001 { 2002 struct mem_cgroup *victim = NULL; 2003 int total = 0; 2004 int loop = 0; 2005 unsigned long excess; 2006 unsigned long nr_scanned; 2007 struct mem_cgroup_reclaim_cookie reclaim = { 2008 .zone = zone, 2009 .priority = 0, 2010 }; 2011 2012 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 2013 2014 while (1) { 2015 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 2016 if (!victim) { 2017 loop++; 2018 if (loop >= 2) { 2019 /* 2020 * If we have not been able to reclaim 2021 * anything, it might because there are 2022 * no reclaimable pages under this hierarchy 2023 */ 2024 if (!total) 2025 break; 2026 /* 2027 * We want to do more targeted reclaim. 2028 * excess >> 2 is not to excessive so as to 2029 * reclaim too much, nor too less that we keep 2030 * coming back to reclaim from this cgroup 2031 */ 2032 if (total >= (excess >> 2) || 2033 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 2034 break; 2035 } 2036 continue; 2037 } 2038 if (!mem_cgroup_reclaimable(victim, false)) 2039 continue; 2040 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 2041 zone, &nr_scanned); 2042 *total_scanned += nr_scanned; 2043 if (!res_counter_soft_limit_excess(&root_memcg->res)) 2044 break; 2045 } 2046 mem_cgroup_iter_break(root_memcg, victim); 2047 return total; 2048 } 2049 2050 #ifdef CONFIG_LOCKDEP 2051 static struct lockdep_map memcg_oom_lock_dep_map = { 2052 .name = "memcg_oom_lock", 2053 }; 2054 #endif 2055 2056 static DEFINE_SPINLOCK(memcg_oom_lock); 2057 2058 /* 2059 * Check OOM-Killer is already running under our hierarchy. 2060 * If someone is running, return false. 2061 */ 2062 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 2063 { 2064 struct mem_cgroup *iter, *failed = NULL; 2065 2066 spin_lock(&memcg_oom_lock); 2067 2068 for_each_mem_cgroup_tree(iter, memcg) { 2069 if (iter->oom_lock) { 2070 /* 2071 * this subtree of our hierarchy is already locked 2072 * so we cannot give a lock. 2073 */ 2074 failed = iter; 2075 mem_cgroup_iter_break(memcg, iter); 2076 break; 2077 } else 2078 iter->oom_lock = true; 2079 } 2080 2081 if (failed) { 2082 /* 2083 * OK, we failed to lock the whole subtree so we have 2084 * to clean up what we set up to the failing subtree 2085 */ 2086 for_each_mem_cgroup_tree(iter, memcg) { 2087 if (iter == failed) { 2088 mem_cgroup_iter_break(memcg, iter); 2089 break; 2090 } 2091 iter->oom_lock = false; 2092 } 2093 } else 2094 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 2095 2096 spin_unlock(&memcg_oom_lock); 2097 2098 return !failed; 2099 } 2100 2101 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 2102 { 2103 struct mem_cgroup *iter; 2104 2105 spin_lock(&memcg_oom_lock); 2106 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 2107 for_each_mem_cgroup_tree(iter, memcg) 2108 iter->oom_lock = false; 2109 spin_unlock(&memcg_oom_lock); 2110 } 2111 2112 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 2113 { 2114 struct mem_cgroup *iter; 2115 2116 for_each_mem_cgroup_tree(iter, memcg) 2117 atomic_inc(&iter->under_oom); 2118 } 2119 2120 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 2121 { 2122 struct mem_cgroup *iter; 2123 2124 /* 2125 * When a new child is created while the hierarchy is under oom, 2126 * mem_cgroup_oom_lock() may not be called. We have to use 2127 * atomic_add_unless() here. 2128 */ 2129 for_each_mem_cgroup_tree(iter, memcg) 2130 atomic_add_unless(&iter->under_oom, -1, 0); 2131 } 2132 2133 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 2134 2135 struct oom_wait_info { 2136 struct mem_cgroup *memcg; 2137 wait_queue_t wait; 2138 }; 2139 2140 static int memcg_oom_wake_function(wait_queue_t *wait, 2141 unsigned mode, int sync, void *arg) 2142 { 2143 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 2144 struct mem_cgroup *oom_wait_memcg; 2145 struct oom_wait_info *oom_wait_info; 2146 2147 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 2148 oom_wait_memcg = oom_wait_info->memcg; 2149 2150 /* 2151 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 2152 * Then we can use css_is_ancestor without taking care of RCU. 2153 */ 2154 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 2155 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 2156 return 0; 2157 return autoremove_wake_function(wait, mode, sync, arg); 2158 } 2159 2160 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 2161 { 2162 atomic_inc(&memcg->oom_wakeups); 2163 /* for filtering, pass "memcg" as argument. */ 2164 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2165 } 2166 2167 static void memcg_oom_recover(struct mem_cgroup *memcg) 2168 { 2169 if (memcg && atomic_read(&memcg->under_oom)) 2170 memcg_wakeup_oom(memcg); 2171 } 2172 2173 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 2174 { 2175 if (!current->memcg_oom.may_oom) 2176 return; 2177 /* 2178 * We are in the middle of the charge context here, so we 2179 * don't want to block when potentially sitting on a callstack 2180 * that holds all kinds of filesystem and mm locks. 2181 * 2182 * Also, the caller may handle a failed allocation gracefully 2183 * (like optional page cache readahead) and so an OOM killer 2184 * invocation might not even be necessary. 2185 * 2186 * That's why we don't do anything here except remember the 2187 * OOM context and then deal with it at the end of the page 2188 * fault when the stack is unwound, the locks are released, 2189 * and when we know whether the fault was overall successful. 2190 */ 2191 css_get(&memcg->css); 2192 current->memcg_oom.memcg = memcg; 2193 current->memcg_oom.gfp_mask = mask; 2194 current->memcg_oom.order = order; 2195 } 2196 2197 /** 2198 * mem_cgroup_oom_synchronize - complete memcg OOM handling 2199 * @handle: actually kill/wait or just clean up the OOM state 2200 * 2201 * This has to be called at the end of a page fault if the memcg OOM 2202 * handler was enabled. 2203 * 2204 * Memcg supports userspace OOM handling where failed allocations must 2205 * sleep on a waitqueue until the userspace task resolves the 2206 * situation. Sleeping directly in the charge context with all kinds 2207 * of locks held is not a good idea, instead we remember an OOM state 2208 * in the task and mem_cgroup_oom_synchronize() has to be called at 2209 * the end of the page fault to complete the OOM handling. 2210 * 2211 * Returns %true if an ongoing memcg OOM situation was detected and 2212 * completed, %false otherwise. 2213 */ 2214 bool mem_cgroup_oom_synchronize(bool handle) 2215 { 2216 struct mem_cgroup *memcg = current->memcg_oom.memcg; 2217 struct oom_wait_info owait; 2218 bool locked; 2219 2220 /* OOM is global, do not handle */ 2221 if (!memcg) 2222 return false; 2223 2224 if (!handle) 2225 goto cleanup; 2226 2227 owait.memcg = memcg; 2228 owait.wait.flags = 0; 2229 owait.wait.func = memcg_oom_wake_function; 2230 owait.wait.private = current; 2231 INIT_LIST_HEAD(&owait.wait.task_list); 2232 2233 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2234 mem_cgroup_mark_under_oom(memcg); 2235 2236 locked = mem_cgroup_oom_trylock(memcg); 2237 2238 if (locked) 2239 mem_cgroup_oom_notify(memcg); 2240 2241 if (locked && !memcg->oom_kill_disable) { 2242 mem_cgroup_unmark_under_oom(memcg); 2243 finish_wait(&memcg_oom_waitq, &owait.wait); 2244 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask, 2245 current->memcg_oom.order); 2246 } else { 2247 schedule(); 2248 mem_cgroup_unmark_under_oom(memcg); 2249 finish_wait(&memcg_oom_waitq, &owait.wait); 2250 } 2251 2252 if (locked) { 2253 mem_cgroup_oom_unlock(memcg); 2254 /* 2255 * There is no guarantee that an OOM-lock contender 2256 * sees the wakeups triggered by the OOM kill 2257 * uncharges. Wake any sleepers explicitely. 2258 */ 2259 memcg_oom_recover(memcg); 2260 } 2261 cleanup: 2262 current->memcg_oom.memcg = NULL; 2263 css_put(&memcg->css); 2264 return true; 2265 } 2266 2267 /* 2268 * Currently used to update mapped file statistics, but the routine can be 2269 * generalized to update other statistics as well. 2270 * 2271 * Notes: Race condition 2272 * 2273 * We usually use page_cgroup_lock() for accessing page_cgroup member but 2274 * it tends to be costly. But considering some conditions, we doesn't need 2275 * to do so _always_. 2276 * 2277 * Considering "charge", lock_page_cgroup() is not required because all 2278 * file-stat operations happen after a page is attached to radix-tree. There 2279 * are no race with "charge". 2280 * 2281 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 2282 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 2283 * if there are race with "uncharge". Statistics itself is properly handled 2284 * by flags. 2285 * 2286 * Considering "move", this is an only case we see a race. To make the race 2287 * small, we check mm->moving_account and detect there are possibility of race 2288 * If there is, we take a lock. 2289 */ 2290 2291 void __mem_cgroup_begin_update_page_stat(struct page *page, 2292 bool *locked, unsigned long *flags) 2293 { 2294 struct mem_cgroup *memcg; 2295 struct page_cgroup *pc; 2296 2297 pc = lookup_page_cgroup(page); 2298 again: 2299 memcg = pc->mem_cgroup; 2300 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2301 return; 2302 /* 2303 * If this memory cgroup is not under account moving, we don't 2304 * need to take move_lock_mem_cgroup(). Because we already hold 2305 * rcu_read_lock(), any calls to move_account will be delayed until 2306 * rcu_read_unlock() if mem_cgroup_stolen() == true. 2307 */ 2308 if (!mem_cgroup_stolen(memcg)) 2309 return; 2310 2311 move_lock_mem_cgroup(memcg, flags); 2312 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 2313 move_unlock_mem_cgroup(memcg, flags); 2314 goto again; 2315 } 2316 *locked = true; 2317 } 2318 2319 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 2320 { 2321 struct page_cgroup *pc = lookup_page_cgroup(page); 2322 2323 /* 2324 * It's guaranteed that pc->mem_cgroup never changes while 2325 * lock is held because a routine modifies pc->mem_cgroup 2326 * should take move_lock_mem_cgroup(). 2327 */ 2328 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 2329 } 2330 2331 void mem_cgroup_update_page_stat(struct page *page, 2332 enum mem_cgroup_stat_index idx, int val) 2333 { 2334 struct mem_cgroup *memcg; 2335 struct page_cgroup *pc = lookup_page_cgroup(page); 2336 unsigned long uninitialized_var(flags); 2337 2338 if (mem_cgroup_disabled()) 2339 return; 2340 2341 VM_BUG_ON(!rcu_read_lock_held()); 2342 memcg = pc->mem_cgroup; 2343 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2344 return; 2345 2346 this_cpu_add(memcg->stat->count[idx], val); 2347 } 2348 2349 /* 2350 * size of first charge trial. "32" comes from vmscan.c's magic value. 2351 * TODO: maybe necessary to use big numbers in big irons. 2352 */ 2353 #define CHARGE_BATCH 32U 2354 struct memcg_stock_pcp { 2355 struct mem_cgroup *cached; /* this never be root cgroup */ 2356 unsigned int nr_pages; 2357 struct work_struct work; 2358 unsigned long flags; 2359 #define FLUSHING_CACHED_CHARGE 0 2360 }; 2361 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2362 static DEFINE_MUTEX(percpu_charge_mutex); 2363 2364 /** 2365 * consume_stock: Try to consume stocked charge on this cpu. 2366 * @memcg: memcg to consume from. 2367 * @nr_pages: how many pages to charge. 2368 * 2369 * The charges will only happen if @memcg matches the current cpu's memcg 2370 * stock, and at least @nr_pages are available in that stock. Failure to 2371 * service an allocation will refill the stock. 2372 * 2373 * returns true if successful, false otherwise. 2374 */ 2375 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2376 { 2377 struct memcg_stock_pcp *stock; 2378 bool ret = true; 2379 2380 if (nr_pages > CHARGE_BATCH) 2381 return false; 2382 2383 stock = &get_cpu_var(memcg_stock); 2384 if (memcg == stock->cached && stock->nr_pages >= nr_pages) 2385 stock->nr_pages -= nr_pages; 2386 else /* need to call res_counter_charge */ 2387 ret = false; 2388 put_cpu_var(memcg_stock); 2389 return ret; 2390 } 2391 2392 /* 2393 * Returns stocks cached in percpu to res_counter and reset cached information. 2394 */ 2395 static void drain_stock(struct memcg_stock_pcp *stock) 2396 { 2397 struct mem_cgroup *old = stock->cached; 2398 2399 if (stock->nr_pages) { 2400 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2401 2402 res_counter_uncharge(&old->res, bytes); 2403 if (do_swap_account) 2404 res_counter_uncharge(&old->memsw, bytes); 2405 stock->nr_pages = 0; 2406 } 2407 stock->cached = NULL; 2408 } 2409 2410 /* 2411 * This must be called under preempt disabled or must be called by 2412 * a thread which is pinned to local cpu. 2413 */ 2414 static void drain_local_stock(struct work_struct *dummy) 2415 { 2416 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2417 drain_stock(stock); 2418 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2419 } 2420 2421 static void __init memcg_stock_init(void) 2422 { 2423 int cpu; 2424 2425 for_each_possible_cpu(cpu) { 2426 struct memcg_stock_pcp *stock = 2427 &per_cpu(memcg_stock, cpu); 2428 INIT_WORK(&stock->work, drain_local_stock); 2429 } 2430 } 2431 2432 /* 2433 * Cache charges(val) which is from res_counter, to local per_cpu area. 2434 * This will be consumed by consume_stock() function, later. 2435 */ 2436 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2437 { 2438 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2439 2440 if (stock->cached != memcg) { /* reset if necessary */ 2441 drain_stock(stock); 2442 stock->cached = memcg; 2443 } 2444 stock->nr_pages += nr_pages; 2445 put_cpu_var(memcg_stock); 2446 } 2447 2448 /* 2449 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2450 * of the hierarchy under it. sync flag says whether we should block 2451 * until the work is done. 2452 */ 2453 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2454 { 2455 int cpu, curcpu; 2456 2457 /* Notify other cpus that system-wide "drain" is running */ 2458 get_online_cpus(); 2459 curcpu = get_cpu(); 2460 for_each_online_cpu(cpu) { 2461 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2462 struct mem_cgroup *memcg; 2463 2464 memcg = stock->cached; 2465 if (!memcg || !stock->nr_pages) 2466 continue; 2467 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2468 continue; 2469 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2470 if (cpu == curcpu) 2471 drain_local_stock(&stock->work); 2472 else 2473 schedule_work_on(cpu, &stock->work); 2474 } 2475 } 2476 put_cpu(); 2477 2478 if (!sync) 2479 goto out; 2480 2481 for_each_online_cpu(cpu) { 2482 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2483 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2484 flush_work(&stock->work); 2485 } 2486 out: 2487 put_online_cpus(); 2488 } 2489 2490 /* 2491 * Tries to drain stocked charges in other cpus. This function is asynchronous 2492 * and just put a work per cpu for draining localy on each cpu. Caller can 2493 * expects some charges will be back to res_counter later but cannot wait for 2494 * it. 2495 */ 2496 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2497 { 2498 /* 2499 * If someone calls draining, avoid adding more kworker runs. 2500 */ 2501 if (!mutex_trylock(&percpu_charge_mutex)) 2502 return; 2503 drain_all_stock(root_memcg, false); 2504 mutex_unlock(&percpu_charge_mutex); 2505 } 2506 2507 /* This is a synchronous drain interface. */ 2508 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2509 { 2510 /* called when force_empty is called */ 2511 mutex_lock(&percpu_charge_mutex); 2512 drain_all_stock(root_memcg, true); 2513 mutex_unlock(&percpu_charge_mutex); 2514 } 2515 2516 /* 2517 * This function drains percpu counter value from DEAD cpu and 2518 * move it to local cpu. Note that this function can be preempted. 2519 */ 2520 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2521 { 2522 int i; 2523 2524 spin_lock(&memcg->pcp_counter_lock); 2525 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2526 long x = per_cpu(memcg->stat->count[i], cpu); 2527 2528 per_cpu(memcg->stat->count[i], cpu) = 0; 2529 memcg->nocpu_base.count[i] += x; 2530 } 2531 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2532 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2533 2534 per_cpu(memcg->stat->events[i], cpu) = 0; 2535 memcg->nocpu_base.events[i] += x; 2536 } 2537 spin_unlock(&memcg->pcp_counter_lock); 2538 } 2539 2540 static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 2541 unsigned long action, 2542 void *hcpu) 2543 { 2544 int cpu = (unsigned long)hcpu; 2545 struct memcg_stock_pcp *stock; 2546 struct mem_cgroup *iter; 2547 2548 if (action == CPU_ONLINE) 2549 return NOTIFY_OK; 2550 2551 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2552 return NOTIFY_OK; 2553 2554 for_each_mem_cgroup(iter) 2555 mem_cgroup_drain_pcp_counter(iter, cpu); 2556 2557 stock = &per_cpu(memcg_stock, cpu); 2558 drain_stock(stock); 2559 return NOTIFY_OK; 2560 } 2561 2562 2563 /* See __mem_cgroup_try_charge() for details */ 2564 enum { 2565 CHARGE_OK, /* success */ 2566 CHARGE_RETRY, /* need to retry but retry is not bad */ 2567 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2568 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2569 }; 2570 2571 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2572 unsigned int nr_pages, unsigned int min_pages, 2573 bool invoke_oom) 2574 { 2575 unsigned long csize = nr_pages * PAGE_SIZE; 2576 struct mem_cgroup *mem_over_limit; 2577 struct res_counter *fail_res; 2578 unsigned long flags = 0; 2579 int ret; 2580 2581 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2582 2583 if (likely(!ret)) { 2584 if (!do_swap_account) 2585 return CHARGE_OK; 2586 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2587 if (likely(!ret)) 2588 return CHARGE_OK; 2589 2590 res_counter_uncharge(&memcg->res, csize); 2591 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2592 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2593 } else 2594 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2595 /* 2596 * Never reclaim on behalf of optional batching, retry with a 2597 * single page instead. 2598 */ 2599 if (nr_pages > min_pages) 2600 return CHARGE_RETRY; 2601 2602 if (!(gfp_mask & __GFP_WAIT)) 2603 return CHARGE_WOULDBLOCK; 2604 2605 if (gfp_mask & __GFP_NORETRY) 2606 return CHARGE_NOMEM; 2607 2608 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2609 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2610 return CHARGE_RETRY; 2611 /* 2612 * Even though the limit is exceeded at this point, reclaim 2613 * may have been able to free some pages. Retry the charge 2614 * before killing the task. 2615 * 2616 * Only for regular pages, though: huge pages are rather 2617 * unlikely to succeed so close to the limit, and we fall back 2618 * to regular pages anyway in case of failure. 2619 */ 2620 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) 2621 return CHARGE_RETRY; 2622 2623 /* 2624 * At task move, charge accounts can be doubly counted. So, it's 2625 * better to wait until the end of task_move if something is going on. 2626 */ 2627 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2628 return CHARGE_RETRY; 2629 2630 if (invoke_oom) 2631 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize)); 2632 2633 return CHARGE_NOMEM; 2634 } 2635 2636 /* 2637 * __mem_cgroup_try_charge() does 2638 * 1. detect memcg to be charged against from passed *mm and *ptr, 2639 * 2. update res_counter 2640 * 3. call memory reclaim if necessary. 2641 * 2642 * In some special case, if the task is fatal, fatal_signal_pending() or 2643 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2644 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2645 * as possible without any hazards. 2: all pages should have a valid 2646 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2647 * pointer, that is treated as a charge to root_mem_cgroup. 2648 * 2649 * So __mem_cgroup_try_charge() will return 2650 * 0 ... on success, filling *ptr with a valid memcg pointer. 2651 * -ENOMEM ... charge failure because of resource limits. 2652 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2653 * 2654 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2655 * the oom-killer can be invoked. 2656 */ 2657 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2658 gfp_t gfp_mask, 2659 unsigned int nr_pages, 2660 struct mem_cgroup **ptr, 2661 bool oom) 2662 { 2663 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2664 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2665 struct mem_cgroup *memcg = NULL; 2666 int ret; 2667 2668 /* 2669 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2670 * in system level. So, allow to go ahead dying process in addition to 2671 * MEMDIE process. 2672 */ 2673 if (unlikely(test_thread_flag(TIF_MEMDIE) 2674 || fatal_signal_pending(current))) 2675 goto bypass; 2676 2677 if (unlikely(task_in_memcg_oom(current))) 2678 goto bypass; 2679 2680 /* 2681 * We always charge the cgroup the mm_struct belongs to. 2682 * The mm_struct's mem_cgroup changes on task migration if the 2683 * thread group leader migrates. It's possible that mm is not 2684 * set, if so charge the root memcg (happens for pagecache usage). 2685 */ 2686 if (!*ptr && !mm) 2687 *ptr = root_mem_cgroup; 2688 again: 2689 if (*ptr) { /* css should be a valid one */ 2690 memcg = *ptr; 2691 if (mem_cgroup_is_root(memcg)) 2692 goto done; 2693 if (consume_stock(memcg, nr_pages)) 2694 goto done; 2695 css_get(&memcg->css); 2696 } else { 2697 struct task_struct *p; 2698 2699 rcu_read_lock(); 2700 p = rcu_dereference(mm->owner); 2701 /* 2702 * Because we don't have task_lock(), "p" can exit. 2703 * In that case, "memcg" can point to root or p can be NULL with 2704 * race with swapoff. Then, we have small risk of mis-accouning. 2705 * But such kind of mis-account by race always happens because 2706 * we don't have cgroup_mutex(). It's overkill and we allo that 2707 * small race, here. 2708 * (*) swapoff at el will charge against mm-struct not against 2709 * task-struct. So, mm->owner can be NULL. 2710 */ 2711 memcg = mem_cgroup_from_task(p); 2712 if (!memcg) 2713 memcg = root_mem_cgroup; 2714 if (mem_cgroup_is_root(memcg)) { 2715 rcu_read_unlock(); 2716 goto done; 2717 } 2718 if (consume_stock(memcg, nr_pages)) { 2719 /* 2720 * It seems dagerous to access memcg without css_get(). 2721 * But considering how consume_stok works, it's not 2722 * necessary. If consume_stock success, some charges 2723 * from this memcg are cached on this cpu. So, we 2724 * don't need to call css_get()/css_tryget() before 2725 * calling consume_stock(). 2726 */ 2727 rcu_read_unlock(); 2728 goto done; 2729 } 2730 /* after here, we may be blocked. we need to get refcnt */ 2731 if (!css_tryget(&memcg->css)) { 2732 rcu_read_unlock(); 2733 goto again; 2734 } 2735 rcu_read_unlock(); 2736 } 2737 2738 do { 2739 bool invoke_oom = oom && !nr_oom_retries; 2740 2741 /* If killed, bypass charge */ 2742 if (fatal_signal_pending(current)) { 2743 css_put(&memcg->css); 2744 goto bypass; 2745 } 2746 2747 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, 2748 nr_pages, invoke_oom); 2749 switch (ret) { 2750 case CHARGE_OK: 2751 break; 2752 case CHARGE_RETRY: /* not in OOM situation but retry */ 2753 batch = nr_pages; 2754 css_put(&memcg->css); 2755 memcg = NULL; 2756 goto again; 2757 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2758 css_put(&memcg->css); 2759 goto nomem; 2760 case CHARGE_NOMEM: /* OOM routine works */ 2761 if (!oom || invoke_oom) { 2762 css_put(&memcg->css); 2763 goto nomem; 2764 } 2765 nr_oom_retries--; 2766 break; 2767 } 2768 } while (ret != CHARGE_OK); 2769 2770 if (batch > nr_pages) 2771 refill_stock(memcg, batch - nr_pages); 2772 css_put(&memcg->css); 2773 done: 2774 *ptr = memcg; 2775 return 0; 2776 nomem: 2777 if (!(gfp_mask & __GFP_NOFAIL)) { 2778 *ptr = NULL; 2779 return -ENOMEM; 2780 } 2781 bypass: 2782 *ptr = root_mem_cgroup; 2783 return -EINTR; 2784 } 2785 2786 /* 2787 * Somemtimes we have to undo a charge we got by try_charge(). 2788 * This function is for that and do uncharge, put css's refcnt. 2789 * gotten by try_charge(). 2790 */ 2791 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2792 unsigned int nr_pages) 2793 { 2794 if (!mem_cgroup_is_root(memcg)) { 2795 unsigned long bytes = nr_pages * PAGE_SIZE; 2796 2797 res_counter_uncharge(&memcg->res, bytes); 2798 if (do_swap_account) 2799 res_counter_uncharge(&memcg->memsw, bytes); 2800 } 2801 } 2802 2803 /* 2804 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2805 * This is useful when moving usage to parent cgroup. 2806 */ 2807 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2808 unsigned int nr_pages) 2809 { 2810 unsigned long bytes = nr_pages * PAGE_SIZE; 2811 2812 if (mem_cgroup_is_root(memcg)) 2813 return; 2814 2815 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2816 if (do_swap_account) 2817 res_counter_uncharge_until(&memcg->memsw, 2818 memcg->memsw.parent, bytes); 2819 } 2820 2821 /* 2822 * A helper function to get mem_cgroup from ID. must be called under 2823 * rcu_read_lock(). The caller is responsible for calling css_tryget if 2824 * the mem_cgroup is used for charging. (dropping refcnt from swap can be 2825 * called against removed memcg.) 2826 */ 2827 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2828 { 2829 struct cgroup_subsys_state *css; 2830 2831 /* ID 0 is unused ID */ 2832 if (!id) 2833 return NULL; 2834 css = css_lookup(&mem_cgroup_subsys, id); 2835 if (!css) 2836 return NULL; 2837 return mem_cgroup_from_css(css); 2838 } 2839 2840 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2841 { 2842 struct mem_cgroup *memcg = NULL; 2843 struct page_cgroup *pc; 2844 unsigned short id; 2845 swp_entry_t ent; 2846 2847 VM_BUG_ON(!PageLocked(page)); 2848 2849 pc = lookup_page_cgroup(page); 2850 lock_page_cgroup(pc); 2851 if (PageCgroupUsed(pc)) { 2852 memcg = pc->mem_cgroup; 2853 if (memcg && !css_tryget(&memcg->css)) 2854 memcg = NULL; 2855 } else if (PageSwapCache(page)) { 2856 ent.val = page_private(page); 2857 id = lookup_swap_cgroup_id(ent); 2858 rcu_read_lock(); 2859 memcg = mem_cgroup_lookup(id); 2860 if (memcg && !css_tryget(&memcg->css)) 2861 memcg = NULL; 2862 rcu_read_unlock(); 2863 } 2864 unlock_page_cgroup(pc); 2865 return memcg; 2866 } 2867 2868 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2869 struct page *page, 2870 unsigned int nr_pages, 2871 enum charge_type ctype, 2872 bool lrucare) 2873 { 2874 struct page_cgroup *pc = lookup_page_cgroup(page); 2875 struct zone *uninitialized_var(zone); 2876 struct lruvec *lruvec; 2877 bool was_on_lru = false; 2878 bool anon; 2879 2880 lock_page_cgroup(pc); 2881 VM_BUG_ON(PageCgroupUsed(pc)); 2882 /* 2883 * we don't need page_cgroup_lock about tail pages, becase they are not 2884 * accessed by any other context at this point. 2885 */ 2886 2887 /* 2888 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2889 * may already be on some other mem_cgroup's LRU. Take care of it. 2890 */ 2891 if (lrucare) { 2892 zone = page_zone(page); 2893 spin_lock_irq(&zone->lru_lock); 2894 if (PageLRU(page)) { 2895 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2896 ClearPageLRU(page); 2897 del_page_from_lru_list(page, lruvec, page_lru(page)); 2898 was_on_lru = true; 2899 } 2900 } 2901 2902 pc->mem_cgroup = memcg; 2903 /* 2904 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2905 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2906 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2907 * before USED bit, we need memory barrier here. 2908 * See mem_cgroup_add_lru_list(), etc. 2909 */ 2910 smp_wmb(); 2911 SetPageCgroupUsed(pc); 2912 2913 if (lrucare) { 2914 if (was_on_lru) { 2915 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2916 VM_BUG_ON(PageLRU(page)); 2917 SetPageLRU(page); 2918 add_page_to_lru_list(page, lruvec, page_lru(page)); 2919 } 2920 spin_unlock_irq(&zone->lru_lock); 2921 } 2922 2923 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2924 anon = true; 2925 else 2926 anon = false; 2927 2928 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages); 2929 unlock_page_cgroup(pc); 2930 2931 /* 2932 * "charge_statistics" updated event counter. Then, check it. 2933 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2934 * if they exceeds softlimit. 2935 */ 2936 memcg_check_events(memcg, page); 2937 } 2938 2939 static DEFINE_MUTEX(set_limit_mutex); 2940 2941 #ifdef CONFIG_MEMCG_KMEM 2942 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) 2943 { 2944 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && 2945 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK); 2946 } 2947 2948 /* 2949 * This is a bit cumbersome, but it is rarely used and avoids a backpointer 2950 * in the memcg_cache_params struct. 2951 */ 2952 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) 2953 { 2954 struct kmem_cache *cachep; 2955 2956 VM_BUG_ON(p->is_root_cache); 2957 cachep = p->root_cache; 2958 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)]; 2959 } 2960 2961 #ifdef CONFIG_SLABINFO 2962 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css, 2963 struct cftype *cft, struct seq_file *m) 2964 { 2965 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2966 struct memcg_cache_params *params; 2967 2968 if (!memcg_can_account_kmem(memcg)) 2969 return -EIO; 2970 2971 print_slabinfo_header(m); 2972 2973 mutex_lock(&memcg->slab_caches_mutex); 2974 list_for_each_entry(params, &memcg->memcg_slab_caches, list) 2975 cache_show(memcg_params_to_cache(params), m); 2976 mutex_unlock(&memcg->slab_caches_mutex); 2977 2978 return 0; 2979 } 2980 #endif 2981 2982 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) 2983 { 2984 struct res_counter *fail_res; 2985 struct mem_cgroup *_memcg; 2986 int ret = 0; 2987 bool may_oom; 2988 2989 ret = res_counter_charge(&memcg->kmem, size, &fail_res); 2990 if (ret) 2991 return ret; 2992 2993 /* 2994 * Conditions under which we can wait for the oom_killer. Those are 2995 * the same conditions tested by the core page allocator 2996 */ 2997 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY); 2998 2999 _memcg = memcg; 3000 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT, 3001 &_memcg, may_oom); 3002 3003 if (ret == -EINTR) { 3004 /* 3005 * __mem_cgroup_try_charge() chosed to bypass to root due to 3006 * OOM kill or fatal signal. Since our only options are to 3007 * either fail the allocation or charge it to this cgroup, do 3008 * it as a temporary condition. But we can't fail. From a 3009 * kmem/slab perspective, the cache has already been selected, 3010 * by mem_cgroup_kmem_get_cache(), so it is too late to change 3011 * our minds. 3012 * 3013 * This condition will only trigger if the task entered 3014 * memcg_charge_kmem in a sane state, but was OOM-killed during 3015 * __mem_cgroup_try_charge() above. Tasks that were already 3016 * dying when the allocation triggers should have been already 3017 * directed to the root cgroup in memcontrol.h 3018 */ 3019 res_counter_charge_nofail(&memcg->res, size, &fail_res); 3020 if (do_swap_account) 3021 res_counter_charge_nofail(&memcg->memsw, size, 3022 &fail_res); 3023 ret = 0; 3024 } else if (ret) 3025 res_counter_uncharge(&memcg->kmem, size); 3026 3027 return ret; 3028 } 3029 3030 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) 3031 { 3032 res_counter_uncharge(&memcg->res, size); 3033 if (do_swap_account) 3034 res_counter_uncharge(&memcg->memsw, size); 3035 3036 /* Not down to 0 */ 3037 if (res_counter_uncharge(&memcg->kmem, size)) 3038 return; 3039 3040 /* 3041 * Releases a reference taken in kmem_cgroup_css_offline in case 3042 * this last uncharge is racing with the offlining code or it is 3043 * outliving the memcg existence. 3044 * 3045 * The memory barrier imposed by test&clear is paired with the 3046 * explicit one in memcg_kmem_mark_dead(). 3047 */ 3048 if (memcg_kmem_test_and_clear_dead(memcg)) 3049 css_put(&memcg->css); 3050 } 3051 3052 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep) 3053 { 3054 if (!memcg) 3055 return; 3056 3057 mutex_lock(&memcg->slab_caches_mutex); 3058 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); 3059 mutex_unlock(&memcg->slab_caches_mutex); 3060 } 3061 3062 /* 3063 * helper for acessing a memcg's index. It will be used as an index in the 3064 * child cache array in kmem_cache, and also to derive its name. This function 3065 * will return -1 when this is not a kmem-limited memcg. 3066 */ 3067 int memcg_cache_id(struct mem_cgroup *memcg) 3068 { 3069 return memcg ? memcg->kmemcg_id : -1; 3070 } 3071 3072 /* 3073 * This ends up being protected by the set_limit mutex, during normal 3074 * operation, because that is its main call site. 3075 * 3076 * But when we create a new cache, we can call this as well if its parent 3077 * is kmem-limited. That will have to hold set_limit_mutex as well. 3078 */ 3079 int memcg_update_cache_sizes(struct mem_cgroup *memcg) 3080 { 3081 int num, ret; 3082 3083 num = ida_simple_get(&kmem_limited_groups, 3084 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 3085 if (num < 0) 3086 return num; 3087 /* 3088 * After this point, kmem_accounted (that we test atomically in 3089 * the beginning of this conditional), is no longer 0. This 3090 * guarantees only one process will set the following boolean 3091 * to true. We don't need test_and_set because we're protected 3092 * by the set_limit_mutex anyway. 3093 */ 3094 memcg_kmem_set_activated(memcg); 3095 3096 ret = memcg_update_all_caches(num+1); 3097 if (ret) { 3098 ida_simple_remove(&kmem_limited_groups, num); 3099 memcg_kmem_clear_activated(memcg); 3100 return ret; 3101 } 3102 3103 memcg->kmemcg_id = num; 3104 INIT_LIST_HEAD(&memcg->memcg_slab_caches); 3105 mutex_init(&memcg->slab_caches_mutex); 3106 return 0; 3107 } 3108 3109 static size_t memcg_caches_array_size(int num_groups) 3110 { 3111 ssize_t size; 3112 if (num_groups <= 0) 3113 return 0; 3114 3115 size = 2 * num_groups; 3116 if (size < MEMCG_CACHES_MIN_SIZE) 3117 size = MEMCG_CACHES_MIN_SIZE; 3118 else if (size > MEMCG_CACHES_MAX_SIZE) 3119 size = MEMCG_CACHES_MAX_SIZE; 3120 3121 return size; 3122 } 3123 3124 /* 3125 * We should update the current array size iff all caches updates succeed. This 3126 * can only be done from the slab side. The slab mutex needs to be held when 3127 * calling this. 3128 */ 3129 void memcg_update_array_size(int num) 3130 { 3131 if (num > memcg_limited_groups_array_size) 3132 memcg_limited_groups_array_size = memcg_caches_array_size(num); 3133 } 3134 3135 static void kmem_cache_destroy_work_func(struct work_struct *w); 3136 3137 int memcg_update_cache_size(struct kmem_cache *s, int num_groups) 3138 { 3139 struct memcg_cache_params *cur_params = s->memcg_params; 3140 3141 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache); 3142 3143 if (num_groups > memcg_limited_groups_array_size) { 3144 int i; 3145 ssize_t size = memcg_caches_array_size(num_groups); 3146 3147 size *= sizeof(void *); 3148 size += offsetof(struct memcg_cache_params, memcg_caches); 3149 3150 s->memcg_params = kzalloc(size, GFP_KERNEL); 3151 if (!s->memcg_params) { 3152 s->memcg_params = cur_params; 3153 return -ENOMEM; 3154 } 3155 3156 s->memcg_params->is_root_cache = true; 3157 3158 /* 3159 * There is the chance it will be bigger than 3160 * memcg_limited_groups_array_size, if we failed an allocation 3161 * in a cache, in which case all caches updated before it, will 3162 * have a bigger array. 3163 * 3164 * But if that is the case, the data after 3165 * memcg_limited_groups_array_size is certainly unused 3166 */ 3167 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3168 if (!cur_params->memcg_caches[i]) 3169 continue; 3170 s->memcg_params->memcg_caches[i] = 3171 cur_params->memcg_caches[i]; 3172 } 3173 3174 /* 3175 * Ideally, we would wait until all caches succeed, and only 3176 * then free the old one. But this is not worth the extra 3177 * pointer per-cache we'd have to have for this. 3178 * 3179 * It is not a big deal if some caches are left with a size 3180 * bigger than the others. And all updates will reset this 3181 * anyway. 3182 */ 3183 kfree(cur_params); 3184 } 3185 return 0; 3186 } 3187 3188 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, 3189 struct kmem_cache *root_cache) 3190 { 3191 size_t size; 3192 3193 if (!memcg_kmem_enabled()) 3194 return 0; 3195 3196 if (!memcg) { 3197 size = offsetof(struct memcg_cache_params, memcg_caches); 3198 size += memcg_limited_groups_array_size * sizeof(void *); 3199 } else 3200 size = sizeof(struct memcg_cache_params); 3201 3202 s->memcg_params = kzalloc(size, GFP_KERNEL); 3203 if (!s->memcg_params) 3204 return -ENOMEM; 3205 3206 if (memcg) { 3207 s->memcg_params->memcg = memcg; 3208 s->memcg_params->root_cache = root_cache; 3209 INIT_WORK(&s->memcg_params->destroy, 3210 kmem_cache_destroy_work_func); 3211 } else 3212 s->memcg_params->is_root_cache = true; 3213 3214 return 0; 3215 } 3216 3217 void memcg_release_cache(struct kmem_cache *s) 3218 { 3219 struct kmem_cache *root; 3220 struct mem_cgroup *memcg; 3221 int id; 3222 3223 /* 3224 * This happens, for instance, when a root cache goes away before we 3225 * add any memcg. 3226 */ 3227 if (!s->memcg_params) 3228 return; 3229 3230 if (s->memcg_params->is_root_cache) 3231 goto out; 3232 3233 memcg = s->memcg_params->memcg; 3234 id = memcg_cache_id(memcg); 3235 3236 root = s->memcg_params->root_cache; 3237 root->memcg_params->memcg_caches[id] = NULL; 3238 3239 mutex_lock(&memcg->slab_caches_mutex); 3240 list_del(&s->memcg_params->list); 3241 mutex_unlock(&memcg->slab_caches_mutex); 3242 3243 css_put(&memcg->css); 3244 out: 3245 kfree(s->memcg_params); 3246 } 3247 3248 /* 3249 * During the creation a new cache, we need to disable our accounting mechanism 3250 * altogether. This is true even if we are not creating, but rather just 3251 * enqueing new caches to be created. 3252 * 3253 * This is because that process will trigger allocations; some visible, like 3254 * explicit kmallocs to auxiliary data structures, name strings and internal 3255 * cache structures; some well concealed, like INIT_WORK() that can allocate 3256 * objects during debug. 3257 * 3258 * If any allocation happens during memcg_kmem_get_cache, we will recurse back 3259 * to it. This may not be a bounded recursion: since the first cache creation 3260 * failed to complete (waiting on the allocation), we'll just try to create the 3261 * cache again, failing at the same point. 3262 * 3263 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of 3264 * memcg_kmem_skip_account. So we enclose anything that might allocate memory 3265 * inside the following two functions. 3266 */ 3267 static inline void memcg_stop_kmem_account(void) 3268 { 3269 VM_BUG_ON(!current->mm); 3270 current->memcg_kmem_skip_account++; 3271 } 3272 3273 static inline void memcg_resume_kmem_account(void) 3274 { 3275 VM_BUG_ON(!current->mm); 3276 current->memcg_kmem_skip_account--; 3277 } 3278 3279 static void kmem_cache_destroy_work_func(struct work_struct *w) 3280 { 3281 struct kmem_cache *cachep; 3282 struct memcg_cache_params *p; 3283 3284 p = container_of(w, struct memcg_cache_params, destroy); 3285 3286 cachep = memcg_params_to_cache(p); 3287 3288 /* 3289 * If we get down to 0 after shrink, we could delete right away. 3290 * However, memcg_release_pages() already puts us back in the workqueue 3291 * in that case. If we proceed deleting, we'll get a dangling 3292 * reference, and removing the object from the workqueue in that case 3293 * is unnecessary complication. We are not a fast path. 3294 * 3295 * Note that this case is fundamentally different from racing with 3296 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in 3297 * kmem_cache_shrink, not only we would be reinserting a dead cache 3298 * into the queue, but doing so from inside the worker racing to 3299 * destroy it. 3300 * 3301 * So if we aren't down to zero, we'll just schedule a worker and try 3302 * again 3303 */ 3304 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) { 3305 kmem_cache_shrink(cachep); 3306 if (atomic_read(&cachep->memcg_params->nr_pages) == 0) 3307 return; 3308 } else 3309 kmem_cache_destroy(cachep); 3310 } 3311 3312 void mem_cgroup_destroy_cache(struct kmem_cache *cachep) 3313 { 3314 if (!cachep->memcg_params->dead) 3315 return; 3316 3317 /* 3318 * There are many ways in which we can get here. 3319 * 3320 * We can get to a memory-pressure situation while the delayed work is 3321 * still pending to run. The vmscan shrinkers can then release all 3322 * cache memory and get us to destruction. If this is the case, we'll 3323 * be executed twice, which is a bug (the second time will execute over 3324 * bogus data). In this case, cancelling the work should be fine. 3325 * 3326 * But we can also get here from the worker itself, if 3327 * kmem_cache_shrink is enough to shake all the remaining objects and 3328 * get the page count to 0. In this case, we'll deadlock if we try to 3329 * cancel the work (the worker runs with an internal lock held, which 3330 * is the same lock we would hold for cancel_work_sync().) 3331 * 3332 * Since we can't possibly know who got us here, just refrain from 3333 * running if there is already work pending 3334 */ 3335 if (work_pending(&cachep->memcg_params->destroy)) 3336 return; 3337 /* 3338 * We have to defer the actual destroying to a workqueue, because 3339 * we might currently be in a context that cannot sleep. 3340 */ 3341 schedule_work(&cachep->memcg_params->destroy); 3342 } 3343 3344 /* 3345 * This lock protects updaters, not readers. We want readers to be as fast as 3346 * they can, and they will either see NULL or a valid cache value. Our model 3347 * allow them to see NULL, in which case the root memcg will be selected. 3348 * 3349 * We need this lock because multiple allocations to the same cache from a non 3350 * will span more than one worker. Only one of them can create the cache. 3351 */ 3352 static DEFINE_MUTEX(memcg_cache_mutex); 3353 3354 /* 3355 * Called with memcg_cache_mutex held 3356 */ 3357 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg, 3358 struct kmem_cache *s) 3359 { 3360 struct kmem_cache *new; 3361 static char *tmp_name = NULL; 3362 3363 lockdep_assert_held(&memcg_cache_mutex); 3364 3365 /* 3366 * kmem_cache_create_memcg duplicates the given name and 3367 * cgroup_name for this name requires RCU context. 3368 * This static temporary buffer is used to prevent from 3369 * pointless shortliving allocation. 3370 */ 3371 if (!tmp_name) { 3372 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL); 3373 if (!tmp_name) 3374 return NULL; 3375 } 3376 3377 rcu_read_lock(); 3378 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name, 3379 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup)); 3380 rcu_read_unlock(); 3381 3382 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align, 3383 (s->flags & ~SLAB_PANIC), s->ctor, s); 3384 3385 if (new) 3386 new->allocflags |= __GFP_KMEMCG; 3387 3388 return new; 3389 } 3390 3391 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, 3392 struct kmem_cache *cachep) 3393 { 3394 struct kmem_cache *new_cachep; 3395 int idx; 3396 3397 BUG_ON(!memcg_can_account_kmem(memcg)); 3398 3399 idx = memcg_cache_id(memcg); 3400 3401 mutex_lock(&memcg_cache_mutex); 3402 new_cachep = cachep->memcg_params->memcg_caches[idx]; 3403 if (new_cachep) { 3404 css_put(&memcg->css); 3405 goto out; 3406 } 3407 3408 new_cachep = kmem_cache_dup(memcg, cachep); 3409 if (new_cachep == NULL) { 3410 new_cachep = cachep; 3411 css_put(&memcg->css); 3412 goto out; 3413 } 3414 3415 atomic_set(&new_cachep->memcg_params->nr_pages , 0); 3416 3417 cachep->memcg_params->memcg_caches[idx] = new_cachep; 3418 /* 3419 * the readers won't lock, make sure everybody sees the updated value, 3420 * so they won't put stuff in the queue again for no reason 3421 */ 3422 wmb(); 3423 out: 3424 mutex_unlock(&memcg_cache_mutex); 3425 return new_cachep; 3426 } 3427 3428 void kmem_cache_destroy_memcg_children(struct kmem_cache *s) 3429 { 3430 struct kmem_cache *c; 3431 int i; 3432 3433 if (!s->memcg_params) 3434 return; 3435 if (!s->memcg_params->is_root_cache) 3436 return; 3437 3438 /* 3439 * If the cache is being destroyed, we trust that there is no one else 3440 * requesting objects from it. Even if there are, the sanity checks in 3441 * kmem_cache_destroy should caught this ill-case. 3442 * 3443 * Still, we don't want anyone else freeing memcg_caches under our 3444 * noses, which can happen if a new memcg comes to life. As usual, 3445 * we'll take the set_limit_mutex to protect ourselves against this. 3446 */ 3447 mutex_lock(&set_limit_mutex); 3448 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3449 c = s->memcg_params->memcg_caches[i]; 3450 if (!c) 3451 continue; 3452 3453 /* 3454 * We will now manually delete the caches, so to avoid races 3455 * we need to cancel all pending destruction workers and 3456 * proceed with destruction ourselves. 3457 * 3458 * kmem_cache_destroy() will call kmem_cache_shrink internally, 3459 * and that could spawn the workers again: it is likely that 3460 * the cache still have active pages until this very moment. 3461 * This would lead us back to mem_cgroup_destroy_cache. 3462 * 3463 * But that will not execute at all if the "dead" flag is not 3464 * set, so flip it down to guarantee we are in control. 3465 */ 3466 c->memcg_params->dead = false; 3467 cancel_work_sync(&c->memcg_params->destroy); 3468 kmem_cache_destroy(c); 3469 } 3470 mutex_unlock(&set_limit_mutex); 3471 } 3472 3473 struct create_work { 3474 struct mem_cgroup *memcg; 3475 struct kmem_cache *cachep; 3476 struct work_struct work; 3477 }; 3478 3479 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3480 { 3481 struct kmem_cache *cachep; 3482 struct memcg_cache_params *params; 3483 3484 if (!memcg_kmem_is_active(memcg)) 3485 return; 3486 3487 mutex_lock(&memcg->slab_caches_mutex); 3488 list_for_each_entry(params, &memcg->memcg_slab_caches, list) { 3489 cachep = memcg_params_to_cache(params); 3490 cachep->memcg_params->dead = true; 3491 schedule_work(&cachep->memcg_params->destroy); 3492 } 3493 mutex_unlock(&memcg->slab_caches_mutex); 3494 } 3495 3496 static void memcg_create_cache_work_func(struct work_struct *w) 3497 { 3498 struct create_work *cw; 3499 3500 cw = container_of(w, struct create_work, work); 3501 memcg_create_kmem_cache(cw->memcg, cw->cachep); 3502 kfree(cw); 3503 } 3504 3505 /* 3506 * Enqueue the creation of a per-memcg kmem_cache. 3507 */ 3508 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3509 struct kmem_cache *cachep) 3510 { 3511 struct create_work *cw; 3512 3513 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT); 3514 if (cw == NULL) { 3515 css_put(&memcg->css); 3516 return; 3517 } 3518 3519 cw->memcg = memcg; 3520 cw->cachep = cachep; 3521 3522 INIT_WORK(&cw->work, memcg_create_cache_work_func); 3523 schedule_work(&cw->work); 3524 } 3525 3526 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3527 struct kmem_cache *cachep) 3528 { 3529 /* 3530 * We need to stop accounting when we kmalloc, because if the 3531 * corresponding kmalloc cache is not yet created, the first allocation 3532 * in __memcg_create_cache_enqueue will recurse. 3533 * 3534 * However, it is better to enclose the whole function. Depending on 3535 * the debugging options enabled, INIT_WORK(), for instance, can 3536 * trigger an allocation. This too, will make us recurse. Because at 3537 * this point we can't allow ourselves back into memcg_kmem_get_cache, 3538 * the safest choice is to do it like this, wrapping the whole function. 3539 */ 3540 memcg_stop_kmem_account(); 3541 __memcg_create_cache_enqueue(memcg, cachep); 3542 memcg_resume_kmem_account(); 3543 } 3544 /* 3545 * Return the kmem_cache we're supposed to use for a slab allocation. 3546 * We try to use the current memcg's version of the cache. 3547 * 3548 * If the cache does not exist yet, if we are the first user of it, 3549 * we either create it immediately, if possible, or create it asynchronously 3550 * in a workqueue. 3551 * In the latter case, we will let the current allocation go through with 3552 * the original cache. 3553 * 3554 * Can't be called in interrupt context or from kernel threads. 3555 * This function needs to be called with rcu_read_lock() held. 3556 */ 3557 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, 3558 gfp_t gfp) 3559 { 3560 struct mem_cgroup *memcg; 3561 int idx; 3562 3563 VM_BUG_ON(!cachep->memcg_params); 3564 VM_BUG_ON(!cachep->memcg_params->is_root_cache); 3565 3566 if (!current->mm || current->memcg_kmem_skip_account) 3567 return cachep; 3568 3569 rcu_read_lock(); 3570 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); 3571 3572 if (!memcg_can_account_kmem(memcg)) 3573 goto out; 3574 3575 idx = memcg_cache_id(memcg); 3576 3577 /* 3578 * barrier to mare sure we're always seeing the up to date value. The 3579 * code updating memcg_caches will issue a write barrier to match this. 3580 */ 3581 read_barrier_depends(); 3582 if (likely(cachep->memcg_params->memcg_caches[idx])) { 3583 cachep = cachep->memcg_params->memcg_caches[idx]; 3584 goto out; 3585 } 3586 3587 /* The corresponding put will be done in the workqueue. */ 3588 if (!css_tryget(&memcg->css)) 3589 goto out; 3590 rcu_read_unlock(); 3591 3592 /* 3593 * If we are in a safe context (can wait, and not in interrupt 3594 * context), we could be be predictable and return right away. 3595 * This would guarantee that the allocation being performed 3596 * already belongs in the new cache. 3597 * 3598 * However, there are some clashes that can arrive from locking. 3599 * For instance, because we acquire the slab_mutex while doing 3600 * kmem_cache_dup, this means no further allocation could happen 3601 * with the slab_mutex held. 3602 * 3603 * Also, because cache creation issue get_online_cpus(), this 3604 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex, 3605 * that ends up reversed during cpu hotplug. (cpuset allocates 3606 * a bunch of GFP_KERNEL memory during cpuup). Due to all that, 3607 * better to defer everything. 3608 */ 3609 memcg_create_cache_enqueue(memcg, cachep); 3610 return cachep; 3611 out: 3612 rcu_read_unlock(); 3613 return cachep; 3614 } 3615 EXPORT_SYMBOL(__memcg_kmem_get_cache); 3616 3617 /* 3618 * We need to verify if the allocation against current->mm->owner's memcg is 3619 * possible for the given order. But the page is not allocated yet, so we'll 3620 * need a further commit step to do the final arrangements. 3621 * 3622 * It is possible for the task to switch cgroups in this mean time, so at 3623 * commit time, we can't rely on task conversion any longer. We'll then use 3624 * the handle argument to return to the caller which cgroup we should commit 3625 * against. We could also return the memcg directly and avoid the pointer 3626 * passing, but a boolean return value gives better semantics considering 3627 * the compiled-out case as well. 3628 * 3629 * Returning true means the allocation is possible. 3630 */ 3631 bool 3632 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) 3633 { 3634 struct mem_cgroup *memcg; 3635 int ret; 3636 3637 *_memcg = NULL; 3638 3639 /* 3640 * Disabling accounting is only relevant for some specific memcg 3641 * internal allocations. Therefore we would initially not have such 3642 * check here, since direct calls to the page allocator that are marked 3643 * with GFP_KMEMCG only happen outside memcg core. We are mostly 3644 * concerned with cache allocations, and by having this test at 3645 * memcg_kmem_get_cache, we are already able to relay the allocation to 3646 * the root cache and bypass the memcg cache altogether. 3647 * 3648 * There is one exception, though: the SLUB allocator does not create 3649 * large order caches, but rather service large kmallocs directly from 3650 * the page allocator. Therefore, the following sequence when backed by 3651 * the SLUB allocator: 3652 * 3653 * memcg_stop_kmem_account(); 3654 * kmalloc(<large_number>) 3655 * memcg_resume_kmem_account(); 3656 * 3657 * would effectively ignore the fact that we should skip accounting, 3658 * since it will drive us directly to this function without passing 3659 * through the cache selector memcg_kmem_get_cache. Such large 3660 * allocations are extremely rare but can happen, for instance, for the 3661 * cache arrays. We bring this test here. 3662 */ 3663 if (!current->mm || current->memcg_kmem_skip_account) 3664 return true; 3665 3666 memcg = try_get_mem_cgroup_from_mm(current->mm); 3667 3668 /* 3669 * very rare case described in mem_cgroup_from_task. Unfortunately there 3670 * isn't much we can do without complicating this too much, and it would 3671 * be gfp-dependent anyway. Just let it go 3672 */ 3673 if (unlikely(!memcg)) 3674 return true; 3675 3676 if (!memcg_can_account_kmem(memcg)) { 3677 css_put(&memcg->css); 3678 return true; 3679 } 3680 3681 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); 3682 if (!ret) 3683 *_memcg = memcg; 3684 3685 css_put(&memcg->css); 3686 return (ret == 0); 3687 } 3688 3689 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, 3690 int order) 3691 { 3692 struct page_cgroup *pc; 3693 3694 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3695 3696 /* The page allocation failed. Revert */ 3697 if (!page) { 3698 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3699 return; 3700 } 3701 3702 pc = lookup_page_cgroup(page); 3703 lock_page_cgroup(pc); 3704 pc->mem_cgroup = memcg; 3705 SetPageCgroupUsed(pc); 3706 unlock_page_cgroup(pc); 3707 } 3708 3709 void __memcg_kmem_uncharge_pages(struct page *page, int order) 3710 { 3711 struct mem_cgroup *memcg = NULL; 3712 struct page_cgroup *pc; 3713 3714 3715 pc = lookup_page_cgroup(page); 3716 /* 3717 * Fast unlocked return. Theoretically might have changed, have to 3718 * check again after locking. 3719 */ 3720 if (!PageCgroupUsed(pc)) 3721 return; 3722 3723 lock_page_cgroup(pc); 3724 if (PageCgroupUsed(pc)) { 3725 memcg = pc->mem_cgroup; 3726 ClearPageCgroupUsed(pc); 3727 } 3728 unlock_page_cgroup(pc); 3729 3730 /* 3731 * We trust that only if there is a memcg associated with the page, it 3732 * is a valid allocation 3733 */ 3734 if (!memcg) 3735 return; 3736 3737 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3738 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3739 } 3740 #else 3741 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3742 { 3743 } 3744 #endif /* CONFIG_MEMCG_KMEM */ 3745 3746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3747 3748 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 3749 /* 3750 * Because tail pages are not marked as "used", set it. We're under 3751 * zone->lru_lock, 'splitting on pmd' and compound_lock. 3752 * charge/uncharge will be never happen and move_account() is done under 3753 * compound_lock(), so we don't have to take care of races. 3754 */ 3755 void mem_cgroup_split_huge_fixup(struct page *head) 3756 { 3757 struct page_cgroup *head_pc = lookup_page_cgroup(head); 3758 struct page_cgroup *pc; 3759 struct mem_cgroup *memcg; 3760 int i; 3761 3762 if (mem_cgroup_disabled()) 3763 return; 3764 3765 memcg = head_pc->mem_cgroup; 3766 for (i = 1; i < HPAGE_PMD_NR; i++) { 3767 pc = head_pc + i; 3768 pc->mem_cgroup = memcg; 3769 smp_wmb();/* see __commit_charge() */ 3770 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 3771 } 3772 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 3773 HPAGE_PMD_NR); 3774 } 3775 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3776 3777 static inline 3778 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from, 3779 struct mem_cgroup *to, 3780 unsigned int nr_pages, 3781 enum mem_cgroup_stat_index idx) 3782 { 3783 /* Update stat data for mem_cgroup */ 3784 preempt_disable(); 3785 __this_cpu_sub(from->stat->count[idx], nr_pages); 3786 __this_cpu_add(to->stat->count[idx], nr_pages); 3787 preempt_enable(); 3788 } 3789 3790 /** 3791 * mem_cgroup_move_account - move account of the page 3792 * @page: the page 3793 * @nr_pages: number of regular pages (>1 for huge pages) 3794 * @pc: page_cgroup of the page. 3795 * @from: mem_cgroup which the page is moved from. 3796 * @to: mem_cgroup which the page is moved to. @from != @to. 3797 * 3798 * The caller must confirm following. 3799 * - page is not on LRU (isolate_page() is useful.) 3800 * - compound_lock is held when nr_pages > 1 3801 * 3802 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 3803 * from old cgroup. 3804 */ 3805 static int mem_cgroup_move_account(struct page *page, 3806 unsigned int nr_pages, 3807 struct page_cgroup *pc, 3808 struct mem_cgroup *from, 3809 struct mem_cgroup *to) 3810 { 3811 unsigned long flags; 3812 int ret; 3813 bool anon = PageAnon(page); 3814 3815 VM_BUG_ON(from == to); 3816 VM_BUG_ON(PageLRU(page)); 3817 /* 3818 * The page is isolated from LRU. So, collapse function 3819 * will not handle this page. But page splitting can happen. 3820 * Do this check under compound_page_lock(). The caller should 3821 * hold it. 3822 */ 3823 ret = -EBUSY; 3824 if (nr_pages > 1 && !PageTransHuge(page)) 3825 goto out; 3826 3827 lock_page_cgroup(pc); 3828 3829 ret = -EINVAL; 3830 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 3831 goto unlock; 3832 3833 move_lock_mem_cgroup(from, &flags); 3834 3835 if (!anon && page_mapped(page)) 3836 mem_cgroup_move_account_page_stat(from, to, nr_pages, 3837 MEM_CGROUP_STAT_FILE_MAPPED); 3838 3839 if (PageWriteback(page)) 3840 mem_cgroup_move_account_page_stat(from, to, nr_pages, 3841 MEM_CGROUP_STAT_WRITEBACK); 3842 3843 mem_cgroup_charge_statistics(from, page, anon, -nr_pages); 3844 3845 /* caller should have done css_get */ 3846 pc->mem_cgroup = to; 3847 mem_cgroup_charge_statistics(to, page, anon, nr_pages); 3848 move_unlock_mem_cgroup(from, &flags); 3849 ret = 0; 3850 unlock: 3851 unlock_page_cgroup(pc); 3852 /* 3853 * check events 3854 */ 3855 memcg_check_events(to, page); 3856 memcg_check_events(from, page); 3857 out: 3858 return ret; 3859 } 3860 3861 /** 3862 * mem_cgroup_move_parent - moves page to the parent group 3863 * @page: the page to move 3864 * @pc: page_cgroup of the page 3865 * @child: page's cgroup 3866 * 3867 * move charges to its parent or the root cgroup if the group has no 3868 * parent (aka use_hierarchy==0). 3869 * Although this might fail (get_page_unless_zero, isolate_lru_page or 3870 * mem_cgroup_move_account fails) the failure is always temporary and 3871 * it signals a race with a page removal/uncharge or migration. In the 3872 * first case the page is on the way out and it will vanish from the LRU 3873 * on the next attempt and the call should be retried later. 3874 * Isolation from the LRU fails only if page has been isolated from 3875 * the LRU since we looked at it and that usually means either global 3876 * reclaim or migration going on. The page will either get back to the 3877 * LRU or vanish. 3878 * Finaly mem_cgroup_move_account fails only if the page got uncharged 3879 * (!PageCgroupUsed) or moved to a different group. The page will 3880 * disappear in the next attempt. 3881 */ 3882 static int mem_cgroup_move_parent(struct page *page, 3883 struct page_cgroup *pc, 3884 struct mem_cgroup *child) 3885 { 3886 struct mem_cgroup *parent; 3887 unsigned int nr_pages; 3888 unsigned long uninitialized_var(flags); 3889 int ret; 3890 3891 VM_BUG_ON(mem_cgroup_is_root(child)); 3892 3893 ret = -EBUSY; 3894 if (!get_page_unless_zero(page)) 3895 goto out; 3896 if (isolate_lru_page(page)) 3897 goto put; 3898 3899 nr_pages = hpage_nr_pages(page); 3900 3901 parent = parent_mem_cgroup(child); 3902 /* 3903 * If no parent, move charges to root cgroup. 3904 */ 3905 if (!parent) 3906 parent = root_mem_cgroup; 3907 3908 if (nr_pages > 1) { 3909 VM_BUG_ON(!PageTransHuge(page)); 3910 flags = compound_lock_irqsave(page); 3911 } 3912 3913 ret = mem_cgroup_move_account(page, nr_pages, 3914 pc, child, parent); 3915 if (!ret) 3916 __mem_cgroup_cancel_local_charge(child, nr_pages); 3917 3918 if (nr_pages > 1) 3919 compound_unlock_irqrestore(page, flags); 3920 putback_lru_page(page); 3921 put: 3922 put_page(page); 3923 out: 3924 return ret; 3925 } 3926 3927 /* 3928 * Charge the memory controller for page usage. 3929 * Return 3930 * 0 if the charge was successful 3931 * < 0 if the cgroup is over its limit 3932 */ 3933 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 3934 gfp_t gfp_mask, enum charge_type ctype) 3935 { 3936 struct mem_cgroup *memcg = NULL; 3937 unsigned int nr_pages = 1; 3938 bool oom = true; 3939 int ret; 3940 3941 if (PageTransHuge(page)) { 3942 nr_pages <<= compound_order(page); 3943 VM_BUG_ON(!PageTransHuge(page)); 3944 /* 3945 * Never OOM-kill a process for a huge page. The 3946 * fault handler will fall back to regular pages. 3947 */ 3948 oom = false; 3949 } 3950 3951 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 3952 if (ret == -ENOMEM) 3953 return ret; 3954 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); 3955 return 0; 3956 } 3957 3958 int mem_cgroup_newpage_charge(struct page *page, 3959 struct mm_struct *mm, gfp_t gfp_mask) 3960 { 3961 if (mem_cgroup_disabled()) 3962 return 0; 3963 VM_BUG_ON(page_mapped(page)); 3964 VM_BUG_ON(page->mapping && !PageAnon(page)); 3965 VM_BUG_ON(!mm); 3966 return mem_cgroup_charge_common(page, mm, gfp_mask, 3967 MEM_CGROUP_CHARGE_TYPE_ANON); 3968 } 3969 3970 /* 3971 * While swap-in, try_charge -> commit or cancel, the page is locked. 3972 * And when try_charge() successfully returns, one refcnt to memcg without 3973 * struct page_cgroup is acquired. This refcnt will be consumed by 3974 * "commit()" or removed by "cancel()" 3975 */ 3976 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, 3977 struct page *page, 3978 gfp_t mask, 3979 struct mem_cgroup **memcgp) 3980 { 3981 struct mem_cgroup *memcg; 3982 struct page_cgroup *pc; 3983 int ret; 3984 3985 pc = lookup_page_cgroup(page); 3986 /* 3987 * Every swap fault against a single page tries to charge the 3988 * page, bail as early as possible. shmem_unuse() encounters 3989 * already charged pages, too. The USED bit is protected by 3990 * the page lock, which serializes swap cache removal, which 3991 * in turn serializes uncharging. 3992 */ 3993 if (PageCgroupUsed(pc)) 3994 return 0; 3995 if (!do_swap_account) 3996 goto charge_cur_mm; 3997 memcg = try_get_mem_cgroup_from_page(page); 3998 if (!memcg) 3999 goto charge_cur_mm; 4000 *memcgp = memcg; 4001 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 4002 css_put(&memcg->css); 4003 if (ret == -EINTR) 4004 ret = 0; 4005 return ret; 4006 charge_cur_mm: 4007 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 4008 if (ret == -EINTR) 4009 ret = 0; 4010 return ret; 4011 } 4012 4013 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, 4014 gfp_t gfp_mask, struct mem_cgroup **memcgp) 4015 { 4016 *memcgp = NULL; 4017 if (mem_cgroup_disabled()) 4018 return 0; 4019 /* 4020 * A racing thread's fault, or swapoff, may have already 4021 * updated the pte, and even removed page from swap cache: in 4022 * those cases unuse_pte()'s pte_same() test will fail; but 4023 * there's also a KSM case which does need to charge the page. 4024 */ 4025 if (!PageSwapCache(page)) { 4026 int ret; 4027 4028 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); 4029 if (ret == -EINTR) 4030 ret = 0; 4031 return ret; 4032 } 4033 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); 4034 } 4035 4036 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 4037 { 4038 if (mem_cgroup_disabled()) 4039 return; 4040 if (!memcg) 4041 return; 4042 __mem_cgroup_cancel_charge(memcg, 1); 4043 } 4044 4045 static void 4046 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 4047 enum charge_type ctype) 4048 { 4049 if (mem_cgroup_disabled()) 4050 return; 4051 if (!memcg) 4052 return; 4053 4054 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 4055 /* 4056 * Now swap is on-memory. This means this page may be 4057 * counted both as mem and swap....double count. 4058 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 4059 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 4060 * may call delete_from_swap_cache() before reach here. 4061 */ 4062 if (do_swap_account && PageSwapCache(page)) { 4063 swp_entry_t ent = {.val = page_private(page)}; 4064 mem_cgroup_uncharge_swap(ent); 4065 } 4066 } 4067 4068 void mem_cgroup_commit_charge_swapin(struct page *page, 4069 struct mem_cgroup *memcg) 4070 { 4071 __mem_cgroup_commit_charge_swapin(page, memcg, 4072 MEM_CGROUP_CHARGE_TYPE_ANON); 4073 } 4074 4075 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 4076 gfp_t gfp_mask) 4077 { 4078 struct mem_cgroup *memcg = NULL; 4079 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4080 int ret; 4081 4082 if (mem_cgroup_disabled()) 4083 return 0; 4084 if (PageCompound(page)) 4085 return 0; 4086 4087 if (!PageSwapCache(page)) 4088 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 4089 else { /* page is swapcache/shmem */ 4090 ret = __mem_cgroup_try_charge_swapin(mm, page, 4091 gfp_mask, &memcg); 4092 if (!ret) 4093 __mem_cgroup_commit_charge_swapin(page, memcg, type); 4094 } 4095 return ret; 4096 } 4097 4098 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 4099 unsigned int nr_pages, 4100 const enum charge_type ctype) 4101 { 4102 struct memcg_batch_info *batch = NULL; 4103 bool uncharge_memsw = true; 4104 4105 /* If swapout, usage of swap doesn't decrease */ 4106 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 4107 uncharge_memsw = false; 4108 4109 batch = ¤t->memcg_batch; 4110 /* 4111 * In usual, we do css_get() when we remember memcg pointer. 4112 * But in this case, we keep res->usage until end of a series of 4113 * uncharges. Then, it's ok to ignore memcg's refcnt. 4114 */ 4115 if (!batch->memcg) 4116 batch->memcg = memcg; 4117 /* 4118 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 4119 * In those cases, all pages freed continuously can be expected to be in 4120 * the same cgroup and we have chance to coalesce uncharges. 4121 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 4122 * because we want to do uncharge as soon as possible. 4123 */ 4124 4125 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 4126 goto direct_uncharge; 4127 4128 if (nr_pages > 1) 4129 goto direct_uncharge; 4130 4131 /* 4132 * In typical case, batch->memcg == mem. This means we can 4133 * merge a series of uncharges to an uncharge of res_counter. 4134 * If not, we uncharge res_counter ony by one. 4135 */ 4136 if (batch->memcg != memcg) 4137 goto direct_uncharge; 4138 /* remember freed charge and uncharge it later */ 4139 batch->nr_pages++; 4140 if (uncharge_memsw) 4141 batch->memsw_nr_pages++; 4142 return; 4143 direct_uncharge: 4144 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 4145 if (uncharge_memsw) 4146 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 4147 if (unlikely(batch->memcg != memcg)) 4148 memcg_oom_recover(memcg); 4149 } 4150 4151 /* 4152 * uncharge if !page_mapped(page) 4153 */ 4154 static struct mem_cgroup * 4155 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 4156 bool end_migration) 4157 { 4158 struct mem_cgroup *memcg = NULL; 4159 unsigned int nr_pages = 1; 4160 struct page_cgroup *pc; 4161 bool anon; 4162 4163 if (mem_cgroup_disabled()) 4164 return NULL; 4165 4166 if (PageTransHuge(page)) { 4167 nr_pages <<= compound_order(page); 4168 VM_BUG_ON(!PageTransHuge(page)); 4169 } 4170 /* 4171 * Check if our page_cgroup is valid 4172 */ 4173 pc = lookup_page_cgroup(page); 4174 if (unlikely(!PageCgroupUsed(pc))) 4175 return NULL; 4176 4177 lock_page_cgroup(pc); 4178 4179 memcg = pc->mem_cgroup; 4180 4181 if (!PageCgroupUsed(pc)) 4182 goto unlock_out; 4183 4184 anon = PageAnon(page); 4185 4186 switch (ctype) { 4187 case MEM_CGROUP_CHARGE_TYPE_ANON: 4188 /* 4189 * Generally PageAnon tells if it's the anon statistics to be 4190 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 4191 * used before page reached the stage of being marked PageAnon. 4192 */ 4193 anon = true; 4194 /* fallthrough */ 4195 case MEM_CGROUP_CHARGE_TYPE_DROP: 4196 /* See mem_cgroup_prepare_migration() */ 4197 if (page_mapped(page)) 4198 goto unlock_out; 4199 /* 4200 * Pages under migration may not be uncharged. But 4201 * end_migration() /must/ be the one uncharging the 4202 * unused post-migration page and so it has to call 4203 * here with the migration bit still set. See the 4204 * res_counter handling below. 4205 */ 4206 if (!end_migration && PageCgroupMigration(pc)) 4207 goto unlock_out; 4208 break; 4209 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 4210 if (!PageAnon(page)) { /* Shared memory */ 4211 if (page->mapping && !page_is_file_cache(page)) 4212 goto unlock_out; 4213 } else if (page_mapped(page)) /* Anon */ 4214 goto unlock_out; 4215 break; 4216 default: 4217 break; 4218 } 4219 4220 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages); 4221 4222 ClearPageCgroupUsed(pc); 4223 /* 4224 * pc->mem_cgroup is not cleared here. It will be accessed when it's 4225 * freed from LRU. This is safe because uncharged page is expected not 4226 * to be reused (freed soon). Exception is SwapCache, it's handled by 4227 * special functions. 4228 */ 4229 4230 unlock_page_cgroup(pc); 4231 /* 4232 * even after unlock, we have memcg->res.usage here and this memcg 4233 * will never be freed, so it's safe to call css_get(). 4234 */ 4235 memcg_check_events(memcg, page); 4236 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 4237 mem_cgroup_swap_statistics(memcg, true); 4238 css_get(&memcg->css); 4239 } 4240 /* 4241 * Migration does not charge the res_counter for the 4242 * replacement page, so leave it alone when phasing out the 4243 * page that is unused after the migration. 4244 */ 4245 if (!end_migration && !mem_cgroup_is_root(memcg)) 4246 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 4247 4248 return memcg; 4249 4250 unlock_out: 4251 unlock_page_cgroup(pc); 4252 return NULL; 4253 } 4254 4255 void mem_cgroup_uncharge_page(struct page *page) 4256 { 4257 /* early check. */ 4258 if (page_mapped(page)) 4259 return; 4260 VM_BUG_ON(page->mapping && !PageAnon(page)); 4261 /* 4262 * If the page is in swap cache, uncharge should be deferred 4263 * to the swap path, which also properly accounts swap usage 4264 * and handles memcg lifetime. 4265 * 4266 * Note that this check is not stable and reclaim may add the 4267 * page to swap cache at any time after this. However, if the 4268 * page is not in swap cache by the time page->mapcount hits 4269 * 0, there won't be any page table references to the swap 4270 * slot, and reclaim will free it and not actually write the 4271 * page to disk. 4272 */ 4273 if (PageSwapCache(page)) 4274 return; 4275 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 4276 } 4277 4278 void mem_cgroup_uncharge_cache_page(struct page *page) 4279 { 4280 VM_BUG_ON(page_mapped(page)); 4281 VM_BUG_ON(page->mapping); 4282 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 4283 } 4284 4285 /* 4286 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 4287 * In that cases, pages are freed continuously and we can expect pages 4288 * are in the same memcg. All these calls itself limits the number of 4289 * pages freed at once, then uncharge_start/end() is called properly. 4290 * This may be called prural(2) times in a context, 4291 */ 4292 4293 void mem_cgroup_uncharge_start(void) 4294 { 4295 current->memcg_batch.do_batch++; 4296 /* We can do nest. */ 4297 if (current->memcg_batch.do_batch == 1) { 4298 current->memcg_batch.memcg = NULL; 4299 current->memcg_batch.nr_pages = 0; 4300 current->memcg_batch.memsw_nr_pages = 0; 4301 } 4302 } 4303 4304 void mem_cgroup_uncharge_end(void) 4305 { 4306 struct memcg_batch_info *batch = ¤t->memcg_batch; 4307 4308 if (!batch->do_batch) 4309 return; 4310 4311 batch->do_batch--; 4312 if (batch->do_batch) /* If stacked, do nothing. */ 4313 return; 4314 4315 if (!batch->memcg) 4316 return; 4317 /* 4318 * This "batch->memcg" is valid without any css_get/put etc... 4319 * bacause we hide charges behind us. 4320 */ 4321 if (batch->nr_pages) 4322 res_counter_uncharge(&batch->memcg->res, 4323 batch->nr_pages * PAGE_SIZE); 4324 if (batch->memsw_nr_pages) 4325 res_counter_uncharge(&batch->memcg->memsw, 4326 batch->memsw_nr_pages * PAGE_SIZE); 4327 memcg_oom_recover(batch->memcg); 4328 /* forget this pointer (for sanity check) */ 4329 batch->memcg = NULL; 4330 } 4331 4332 #ifdef CONFIG_SWAP 4333 /* 4334 * called after __delete_from_swap_cache() and drop "page" account. 4335 * memcg information is recorded to swap_cgroup of "ent" 4336 */ 4337 void 4338 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 4339 { 4340 struct mem_cgroup *memcg; 4341 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 4342 4343 if (!swapout) /* this was a swap cache but the swap is unused ! */ 4344 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 4345 4346 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 4347 4348 /* 4349 * record memcg information, if swapout && memcg != NULL, 4350 * css_get() was called in uncharge(). 4351 */ 4352 if (do_swap_account && swapout && memcg) 4353 swap_cgroup_record(ent, css_id(&memcg->css)); 4354 } 4355 #endif 4356 4357 #ifdef CONFIG_MEMCG_SWAP 4358 /* 4359 * called from swap_entry_free(). remove record in swap_cgroup and 4360 * uncharge "memsw" account. 4361 */ 4362 void mem_cgroup_uncharge_swap(swp_entry_t ent) 4363 { 4364 struct mem_cgroup *memcg; 4365 unsigned short id; 4366 4367 if (!do_swap_account) 4368 return; 4369 4370 id = swap_cgroup_record(ent, 0); 4371 rcu_read_lock(); 4372 memcg = mem_cgroup_lookup(id); 4373 if (memcg) { 4374 /* 4375 * We uncharge this because swap is freed. 4376 * This memcg can be obsolete one. We avoid calling css_tryget 4377 */ 4378 if (!mem_cgroup_is_root(memcg)) 4379 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 4380 mem_cgroup_swap_statistics(memcg, false); 4381 css_put(&memcg->css); 4382 } 4383 rcu_read_unlock(); 4384 } 4385 4386 /** 4387 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 4388 * @entry: swap entry to be moved 4389 * @from: mem_cgroup which the entry is moved from 4390 * @to: mem_cgroup which the entry is moved to 4391 * 4392 * It succeeds only when the swap_cgroup's record for this entry is the same 4393 * as the mem_cgroup's id of @from. 4394 * 4395 * Returns 0 on success, -EINVAL on failure. 4396 * 4397 * The caller must have charged to @to, IOW, called res_counter_charge() about 4398 * both res and memsw, and called css_get(). 4399 */ 4400 static int mem_cgroup_move_swap_account(swp_entry_t entry, 4401 struct mem_cgroup *from, struct mem_cgroup *to) 4402 { 4403 unsigned short old_id, new_id; 4404 4405 old_id = css_id(&from->css); 4406 new_id = css_id(&to->css); 4407 4408 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 4409 mem_cgroup_swap_statistics(from, false); 4410 mem_cgroup_swap_statistics(to, true); 4411 /* 4412 * This function is only called from task migration context now. 4413 * It postpones res_counter and refcount handling till the end 4414 * of task migration(mem_cgroup_clear_mc()) for performance 4415 * improvement. But we cannot postpone css_get(to) because if 4416 * the process that has been moved to @to does swap-in, the 4417 * refcount of @to might be decreased to 0. 4418 * 4419 * We are in attach() phase, so the cgroup is guaranteed to be 4420 * alive, so we can just call css_get(). 4421 */ 4422 css_get(&to->css); 4423 return 0; 4424 } 4425 return -EINVAL; 4426 } 4427 #else 4428 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 4429 struct mem_cgroup *from, struct mem_cgroup *to) 4430 { 4431 return -EINVAL; 4432 } 4433 #endif 4434 4435 /* 4436 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 4437 * page belongs to. 4438 */ 4439 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 4440 struct mem_cgroup **memcgp) 4441 { 4442 struct mem_cgroup *memcg = NULL; 4443 unsigned int nr_pages = 1; 4444 struct page_cgroup *pc; 4445 enum charge_type ctype; 4446 4447 *memcgp = NULL; 4448 4449 if (mem_cgroup_disabled()) 4450 return; 4451 4452 if (PageTransHuge(page)) 4453 nr_pages <<= compound_order(page); 4454 4455 pc = lookup_page_cgroup(page); 4456 lock_page_cgroup(pc); 4457 if (PageCgroupUsed(pc)) { 4458 memcg = pc->mem_cgroup; 4459 css_get(&memcg->css); 4460 /* 4461 * At migrating an anonymous page, its mapcount goes down 4462 * to 0 and uncharge() will be called. But, even if it's fully 4463 * unmapped, migration may fail and this page has to be 4464 * charged again. We set MIGRATION flag here and delay uncharge 4465 * until end_migration() is called 4466 * 4467 * Corner Case Thinking 4468 * A) 4469 * When the old page was mapped as Anon and it's unmap-and-freed 4470 * while migration was ongoing. 4471 * If unmap finds the old page, uncharge() of it will be delayed 4472 * until end_migration(). If unmap finds a new page, it's 4473 * uncharged when it make mapcount to be 1->0. If unmap code 4474 * finds swap_migration_entry, the new page will not be mapped 4475 * and end_migration() will find it(mapcount==0). 4476 * 4477 * B) 4478 * When the old page was mapped but migraion fails, the kernel 4479 * remaps it. A charge for it is kept by MIGRATION flag even 4480 * if mapcount goes down to 0. We can do remap successfully 4481 * without charging it again. 4482 * 4483 * C) 4484 * The "old" page is under lock_page() until the end of 4485 * migration, so, the old page itself will not be swapped-out. 4486 * If the new page is swapped out before end_migraton, our 4487 * hook to usual swap-out path will catch the event. 4488 */ 4489 if (PageAnon(page)) 4490 SetPageCgroupMigration(pc); 4491 } 4492 unlock_page_cgroup(pc); 4493 /* 4494 * If the page is not charged at this point, 4495 * we return here. 4496 */ 4497 if (!memcg) 4498 return; 4499 4500 *memcgp = memcg; 4501 /* 4502 * We charge new page before it's used/mapped. So, even if unlock_page() 4503 * is called before end_migration, we can catch all events on this new 4504 * page. In the case new page is migrated but not remapped, new page's 4505 * mapcount will be finally 0 and we call uncharge in end_migration(). 4506 */ 4507 if (PageAnon(page)) 4508 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 4509 else 4510 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 4511 /* 4512 * The page is committed to the memcg, but it's not actually 4513 * charged to the res_counter since we plan on replacing the 4514 * old one and only one page is going to be left afterwards. 4515 */ 4516 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); 4517 } 4518 4519 /* remove redundant charge if migration failed*/ 4520 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 4521 struct page *oldpage, struct page *newpage, bool migration_ok) 4522 { 4523 struct page *used, *unused; 4524 struct page_cgroup *pc; 4525 bool anon; 4526 4527 if (!memcg) 4528 return; 4529 4530 if (!migration_ok) { 4531 used = oldpage; 4532 unused = newpage; 4533 } else { 4534 used = newpage; 4535 unused = oldpage; 4536 } 4537 anon = PageAnon(used); 4538 __mem_cgroup_uncharge_common(unused, 4539 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 4540 : MEM_CGROUP_CHARGE_TYPE_CACHE, 4541 true); 4542 css_put(&memcg->css); 4543 /* 4544 * We disallowed uncharge of pages under migration because mapcount 4545 * of the page goes down to zero, temporarly. 4546 * Clear the flag and check the page should be charged. 4547 */ 4548 pc = lookup_page_cgroup(oldpage); 4549 lock_page_cgroup(pc); 4550 ClearPageCgroupMigration(pc); 4551 unlock_page_cgroup(pc); 4552 4553 /* 4554 * If a page is a file cache, radix-tree replacement is very atomic 4555 * and we can skip this check. When it was an Anon page, its mapcount 4556 * goes down to 0. But because we added MIGRATION flage, it's not 4557 * uncharged yet. There are several case but page->mapcount check 4558 * and USED bit check in mem_cgroup_uncharge_page() will do enough 4559 * check. (see prepare_charge() also) 4560 */ 4561 if (anon) 4562 mem_cgroup_uncharge_page(used); 4563 } 4564 4565 /* 4566 * At replace page cache, newpage is not under any memcg but it's on 4567 * LRU. So, this function doesn't touch res_counter but handles LRU 4568 * in correct way. Both pages are locked so we cannot race with uncharge. 4569 */ 4570 void mem_cgroup_replace_page_cache(struct page *oldpage, 4571 struct page *newpage) 4572 { 4573 struct mem_cgroup *memcg = NULL; 4574 struct page_cgroup *pc; 4575 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4576 4577 if (mem_cgroup_disabled()) 4578 return; 4579 4580 pc = lookup_page_cgroup(oldpage); 4581 /* fix accounting on old pages */ 4582 lock_page_cgroup(pc); 4583 if (PageCgroupUsed(pc)) { 4584 memcg = pc->mem_cgroup; 4585 mem_cgroup_charge_statistics(memcg, oldpage, false, -1); 4586 ClearPageCgroupUsed(pc); 4587 } 4588 unlock_page_cgroup(pc); 4589 4590 /* 4591 * When called from shmem_replace_page(), in some cases the 4592 * oldpage has already been charged, and in some cases not. 4593 */ 4594 if (!memcg) 4595 return; 4596 /* 4597 * Even if newpage->mapping was NULL before starting replacement, 4598 * the newpage may be on LRU(or pagevec for LRU) already. We lock 4599 * LRU while we overwrite pc->mem_cgroup. 4600 */ 4601 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 4602 } 4603 4604 #ifdef CONFIG_DEBUG_VM 4605 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 4606 { 4607 struct page_cgroup *pc; 4608 4609 pc = lookup_page_cgroup(page); 4610 /* 4611 * Can be NULL while feeding pages into the page allocator for 4612 * the first time, i.e. during boot or memory hotplug; 4613 * or when mem_cgroup_disabled(). 4614 */ 4615 if (likely(pc) && PageCgroupUsed(pc)) 4616 return pc; 4617 return NULL; 4618 } 4619 4620 bool mem_cgroup_bad_page_check(struct page *page) 4621 { 4622 if (mem_cgroup_disabled()) 4623 return false; 4624 4625 return lookup_page_cgroup_used(page) != NULL; 4626 } 4627 4628 void mem_cgroup_print_bad_page(struct page *page) 4629 { 4630 struct page_cgroup *pc; 4631 4632 pc = lookup_page_cgroup_used(page); 4633 if (pc) { 4634 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 4635 pc, pc->flags, pc->mem_cgroup); 4636 } 4637 } 4638 #endif 4639 4640 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 4641 unsigned long long val) 4642 { 4643 int retry_count; 4644 u64 memswlimit, memlimit; 4645 int ret = 0; 4646 int children = mem_cgroup_count_children(memcg); 4647 u64 curusage, oldusage; 4648 int enlarge; 4649 4650 /* 4651 * For keeping hierarchical_reclaim simple, how long we should retry 4652 * is depends on callers. We set our retry-count to be function 4653 * of # of children which we should visit in this loop. 4654 */ 4655 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 4656 4657 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4658 4659 enlarge = 0; 4660 while (retry_count) { 4661 if (signal_pending(current)) { 4662 ret = -EINTR; 4663 break; 4664 } 4665 /* 4666 * Rather than hide all in some function, I do this in 4667 * open coded manner. You see what this really does. 4668 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4669 */ 4670 mutex_lock(&set_limit_mutex); 4671 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4672 if (memswlimit < val) { 4673 ret = -EINVAL; 4674 mutex_unlock(&set_limit_mutex); 4675 break; 4676 } 4677 4678 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4679 if (memlimit < val) 4680 enlarge = 1; 4681 4682 ret = res_counter_set_limit(&memcg->res, val); 4683 if (!ret) { 4684 if (memswlimit == val) 4685 memcg->memsw_is_minimum = true; 4686 else 4687 memcg->memsw_is_minimum = false; 4688 } 4689 mutex_unlock(&set_limit_mutex); 4690 4691 if (!ret) 4692 break; 4693 4694 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4695 MEM_CGROUP_RECLAIM_SHRINK); 4696 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4697 /* Usage is reduced ? */ 4698 if (curusage >= oldusage) 4699 retry_count--; 4700 else 4701 oldusage = curusage; 4702 } 4703 if (!ret && enlarge) 4704 memcg_oom_recover(memcg); 4705 4706 return ret; 4707 } 4708 4709 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 4710 unsigned long long val) 4711 { 4712 int retry_count; 4713 u64 memlimit, memswlimit, oldusage, curusage; 4714 int children = mem_cgroup_count_children(memcg); 4715 int ret = -EBUSY; 4716 int enlarge = 0; 4717 4718 /* see mem_cgroup_resize_res_limit */ 4719 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 4720 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4721 while (retry_count) { 4722 if (signal_pending(current)) { 4723 ret = -EINTR; 4724 break; 4725 } 4726 /* 4727 * Rather than hide all in some function, I do this in 4728 * open coded manner. You see what this really does. 4729 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4730 */ 4731 mutex_lock(&set_limit_mutex); 4732 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4733 if (memlimit > val) { 4734 ret = -EINVAL; 4735 mutex_unlock(&set_limit_mutex); 4736 break; 4737 } 4738 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4739 if (memswlimit < val) 4740 enlarge = 1; 4741 ret = res_counter_set_limit(&memcg->memsw, val); 4742 if (!ret) { 4743 if (memlimit == val) 4744 memcg->memsw_is_minimum = true; 4745 else 4746 memcg->memsw_is_minimum = false; 4747 } 4748 mutex_unlock(&set_limit_mutex); 4749 4750 if (!ret) 4751 break; 4752 4753 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4754 MEM_CGROUP_RECLAIM_NOSWAP | 4755 MEM_CGROUP_RECLAIM_SHRINK); 4756 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4757 /* Usage is reduced ? */ 4758 if (curusage >= oldusage) 4759 retry_count--; 4760 else 4761 oldusage = curusage; 4762 } 4763 if (!ret && enlarge) 4764 memcg_oom_recover(memcg); 4765 return ret; 4766 } 4767 4768 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 4769 gfp_t gfp_mask, 4770 unsigned long *total_scanned) 4771 { 4772 unsigned long nr_reclaimed = 0; 4773 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 4774 unsigned long reclaimed; 4775 int loop = 0; 4776 struct mem_cgroup_tree_per_zone *mctz; 4777 unsigned long long excess; 4778 unsigned long nr_scanned; 4779 4780 if (order > 0) 4781 return 0; 4782 4783 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 4784 /* 4785 * This loop can run a while, specially if mem_cgroup's continuously 4786 * keep exceeding their soft limit and putting the system under 4787 * pressure 4788 */ 4789 do { 4790 if (next_mz) 4791 mz = next_mz; 4792 else 4793 mz = mem_cgroup_largest_soft_limit_node(mctz); 4794 if (!mz) 4795 break; 4796 4797 nr_scanned = 0; 4798 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 4799 gfp_mask, &nr_scanned); 4800 nr_reclaimed += reclaimed; 4801 *total_scanned += nr_scanned; 4802 spin_lock(&mctz->lock); 4803 4804 /* 4805 * If we failed to reclaim anything from this memory cgroup 4806 * it is time to move on to the next cgroup 4807 */ 4808 next_mz = NULL; 4809 if (!reclaimed) { 4810 do { 4811 /* 4812 * Loop until we find yet another one. 4813 * 4814 * By the time we get the soft_limit lock 4815 * again, someone might have aded the 4816 * group back on the RB tree. Iterate to 4817 * make sure we get a different mem. 4818 * mem_cgroup_largest_soft_limit_node returns 4819 * NULL if no other cgroup is present on 4820 * the tree 4821 */ 4822 next_mz = 4823 __mem_cgroup_largest_soft_limit_node(mctz); 4824 if (next_mz == mz) 4825 css_put(&next_mz->memcg->css); 4826 else /* next_mz == NULL or other memcg */ 4827 break; 4828 } while (1); 4829 } 4830 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 4831 excess = res_counter_soft_limit_excess(&mz->memcg->res); 4832 /* 4833 * One school of thought says that we should not add 4834 * back the node to the tree if reclaim returns 0. 4835 * But our reclaim could return 0, simply because due 4836 * to priority we are exposing a smaller subset of 4837 * memory to reclaim from. Consider this as a longer 4838 * term TODO. 4839 */ 4840 /* If excess == 0, no tree ops */ 4841 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); 4842 spin_unlock(&mctz->lock); 4843 css_put(&mz->memcg->css); 4844 loop++; 4845 /* 4846 * Could not reclaim anything and there are no more 4847 * mem cgroups to try or we seem to be looping without 4848 * reclaiming anything. 4849 */ 4850 if (!nr_reclaimed && 4851 (next_mz == NULL || 4852 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 4853 break; 4854 } while (!nr_reclaimed); 4855 if (next_mz) 4856 css_put(&next_mz->memcg->css); 4857 return nr_reclaimed; 4858 } 4859 4860 /** 4861 * mem_cgroup_force_empty_list - clears LRU of a group 4862 * @memcg: group to clear 4863 * @node: NUMA node 4864 * @zid: zone id 4865 * @lru: lru to to clear 4866 * 4867 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 4868 * reclaim the pages page themselves - pages are moved to the parent (or root) 4869 * group. 4870 */ 4871 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 4872 int node, int zid, enum lru_list lru) 4873 { 4874 struct lruvec *lruvec; 4875 unsigned long flags; 4876 struct list_head *list; 4877 struct page *busy; 4878 struct zone *zone; 4879 4880 zone = &NODE_DATA(node)->node_zones[zid]; 4881 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 4882 list = &lruvec->lists[lru]; 4883 4884 busy = NULL; 4885 do { 4886 struct page_cgroup *pc; 4887 struct page *page; 4888 4889 spin_lock_irqsave(&zone->lru_lock, flags); 4890 if (list_empty(list)) { 4891 spin_unlock_irqrestore(&zone->lru_lock, flags); 4892 break; 4893 } 4894 page = list_entry(list->prev, struct page, lru); 4895 if (busy == page) { 4896 list_move(&page->lru, list); 4897 busy = NULL; 4898 spin_unlock_irqrestore(&zone->lru_lock, flags); 4899 continue; 4900 } 4901 spin_unlock_irqrestore(&zone->lru_lock, flags); 4902 4903 pc = lookup_page_cgroup(page); 4904 4905 if (mem_cgroup_move_parent(page, pc, memcg)) { 4906 /* found lock contention or "pc" is obsolete. */ 4907 busy = page; 4908 cond_resched(); 4909 } else 4910 busy = NULL; 4911 } while (!list_empty(list)); 4912 } 4913 4914 /* 4915 * make mem_cgroup's charge to be 0 if there is no task by moving 4916 * all the charges and pages to the parent. 4917 * This enables deleting this mem_cgroup. 4918 * 4919 * Caller is responsible for holding css reference on the memcg. 4920 */ 4921 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) 4922 { 4923 int node, zid; 4924 u64 usage; 4925 4926 do { 4927 /* This is for making all *used* pages to be on LRU. */ 4928 lru_add_drain_all(); 4929 drain_all_stock_sync(memcg); 4930 mem_cgroup_start_move(memcg); 4931 for_each_node_state(node, N_MEMORY) { 4932 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4933 enum lru_list lru; 4934 for_each_lru(lru) { 4935 mem_cgroup_force_empty_list(memcg, 4936 node, zid, lru); 4937 } 4938 } 4939 } 4940 mem_cgroup_end_move(memcg); 4941 memcg_oom_recover(memcg); 4942 cond_resched(); 4943 4944 /* 4945 * Kernel memory may not necessarily be trackable to a specific 4946 * process. So they are not migrated, and therefore we can't 4947 * expect their value to drop to 0 here. 4948 * Having res filled up with kmem only is enough. 4949 * 4950 * This is a safety check because mem_cgroup_force_empty_list 4951 * could have raced with mem_cgroup_replace_page_cache callers 4952 * so the lru seemed empty but the page could have been added 4953 * right after the check. RES_USAGE should be safe as we always 4954 * charge before adding to the LRU. 4955 */ 4956 usage = res_counter_read_u64(&memcg->res, RES_USAGE) - 4957 res_counter_read_u64(&memcg->kmem, RES_USAGE); 4958 } while (usage > 0); 4959 } 4960 4961 static inline bool memcg_has_children(struct mem_cgroup *memcg) 4962 { 4963 lockdep_assert_held(&memcg_create_mutex); 4964 /* 4965 * The lock does not prevent addition or deletion to the list 4966 * of children, but it prevents a new child from being 4967 * initialized based on this parent in css_online(), so it's 4968 * enough to decide whether hierarchically inherited 4969 * attributes can still be changed or not. 4970 */ 4971 return memcg->use_hierarchy && 4972 !list_empty(&memcg->css.cgroup->children); 4973 } 4974 4975 /* 4976 * Reclaims as many pages from the given memcg as possible and moves 4977 * the rest to the parent. 4978 * 4979 * Caller is responsible for holding css reference for memcg. 4980 */ 4981 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 4982 { 4983 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 4984 struct cgroup *cgrp = memcg->css.cgroup; 4985 4986 /* returns EBUSY if there is a task or if we come here twice. */ 4987 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 4988 return -EBUSY; 4989 4990 /* we call try-to-free pages for make this cgroup empty */ 4991 lru_add_drain_all(); 4992 /* try to free all pages in this cgroup */ 4993 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 4994 int progress; 4995 4996 if (signal_pending(current)) 4997 return -EINTR; 4998 4999 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 5000 false); 5001 if (!progress) { 5002 nr_retries--; 5003 /* maybe some writeback is necessary */ 5004 congestion_wait(BLK_RW_ASYNC, HZ/10); 5005 } 5006 5007 } 5008 lru_add_drain(); 5009 mem_cgroup_reparent_charges(memcg); 5010 5011 return 0; 5012 } 5013 5014 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css, 5015 unsigned int event) 5016 { 5017 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5018 5019 if (mem_cgroup_is_root(memcg)) 5020 return -EINVAL; 5021 return mem_cgroup_force_empty(memcg); 5022 } 5023 5024 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 5025 struct cftype *cft) 5026 { 5027 return mem_cgroup_from_css(css)->use_hierarchy; 5028 } 5029 5030 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 5031 struct cftype *cft, u64 val) 5032 { 5033 int retval = 0; 5034 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5035 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css)); 5036 5037 mutex_lock(&memcg_create_mutex); 5038 5039 if (memcg->use_hierarchy == val) 5040 goto out; 5041 5042 /* 5043 * If parent's use_hierarchy is set, we can't make any modifications 5044 * in the child subtrees. If it is unset, then the change can 5045 * occur, provided the current cgroup has no children. 5046 * 5047 * For the root cgroup, parent_mem is NULL, we allow value to be 5048 * set if there are no children. 5049 */ 5050 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 5051 (val == 1 || val == 0)) { 5052 if (list_empty(&memcg->css.cgroup->children)) 5053 memcg->use_hierarchy = val; 5054 else 5055 retval = -EBUSY; 5056 } else 5057 retval = -EINVAL; 5058 5059 out: 5060 mutex_unlock(&memcg_create_mutex); 5061 5062 return retval; 5063 } 5064 5065 5066 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 5067 enum mem_cgroup_stat_index idx) 5068 { 5069 struct mem_cgroup *iter; 5070 long val = 0; 5071 5072 /* Per-cpu values can be negative, use a signed accumulator */ 5073 for_each_mem_cgroup_tree(iter, memcg) 5074 val += mem_cgroup_read_stat(iter, idx); 5075 5076 if (val < 0) /* race ? */ 5077 val = 0; 5078 return val; 5079 } 5080 5081 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 5082 { 5083 u64 val; 5084 5085 if (!mem_cgroup_is_root(memcg)) { 5086 if (!swap) 5087 return res_counter_read_u64(&memcg->res, RES_USAGE); 5088 else 5089 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 5090 } 5091 5092 /* 5093 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS 5094 * as well as in MEM_CGROUP_STAT_RSS_HUGE. 5095 */ 5096 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 5097 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 5098 5099 if (swap) 5100 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 5101 5102 return val << PAGE_SHIFT; 5103 } 5104 5105 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css, 5106 struct cftype *cft, struct file *file, 5107 char __user *buf, size_t nbytes, loff_t *ppos) 5108 { 5109 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5110 char str[64]; 5111 u64 val; 5112 int name, len; 5113 enum res_type type; 5114 5115 type = MEMFILE_TYPE(cft->private); 5116 name = MEMFILE_ATTR(cft->private); 5117 5118 switch (type) { 5119 case _MEM: 5120 if (name == RES_USAGE) 5121 val = mem_cgroup_usage(memcg, false); 5122 else 5123 val = res_counter_read_u64(&memcg->res, name); 5124 break; 5125 case _MEMSWAP: 5126 if (name == RES_USAGE) 5127 val = mem_cgroup_usage(memcg, true); 5128 else 5129 val = res_counter_read_u64(&memcg->memsw, name); 5130 break; 5131 case _KMEM: 5132 val = res_counter_read_u64(&memcg->kmem, name); 5133 break; 5134 default: 5135 BUG(); 5136 } 5137 5138 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); 5139 return simple_read_from_buffer(buf, nbytes, ppos, str, len); 5140 } 5141 5142 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val) 5143 { 5144 int ret = -EINVAL; 5145 #ifdef CONFIG_MEMCG_KMEM 5146 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5147 /* 5148 * For simplicity, we won't allow this to be disabled. It also can't 5149 * be changed if the cgroup has children already, or if tasks had 5150 * already joined. 5151 * 5152 * If tasks join before we set the limit, a person looking at 5153 * kmem.usage_in_bytes will have no way to determine when it took 5154 * place, which makes the value quite meaningless. 5155 * 5156 * After it first became limited, changes in the value of the limit are 5157 * of course permitted. 5158 */ 5159 mutex_lock(&memcg_create_mutex); 5160 mutex_lock(&set_limit_mutex); 5161 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) { 5162 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) { 5163 ret = -EBUSY; 5164 goto out; 5165 } 5166 ret = res_counter_set_limit(&memcg->kmem, val); 5167 VM_BUG_ON(ret); 5168 5169 ret = memcg_update_cache_sizes(memcg); 5170 if (ret) { 5171 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX); 5172 goto out; 5173 } 5174 static_key_slow_inc(&memcg_kmem_enabled_key); 5175 /* 5176 * setting the active bit after the inc will guarantee no one 5177 * starts accounting before all call sites are patched 5178 */ 5179 memcg_kmem_set_active(memcg); 5180 } else 5181 ret = res_counter_set_limit(&memcg->kmem, val); 5182 out: 5183 mutex_unlock(&set_limit_mutex); 5184 mutex_unlock(&memcg_create_mutex); 5185 #endif 5186 return ret; 5187 } 5188 5189 #ifdef CONFIG_MEMCG_KMEM 5190 static int memcg_propagate_kmem(struct mem_cgroup *memcg) 5191 { 5192 int ret = 0; 5193 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5194 if (!parent) 5195 goto out; 5196 5197 memcg->kmem_account_flags = parent->kmem_account_flags; 5198 /* 5199 * When that happen, we need to disable the static branch only on those 5200 * memcgs that enabled it. To achieve this, we would be forced to 5201 * complicate the code by keeping track of which memcgs were the ones 5202 * that actually enabled limits, and which ones got it from its 5203 * parents. 5204 * 5205 * It is a lot simpler just to do static_key_slow_inc() on every child 5206 * that is accounted. 5207 */ 5208 if (!memcg_kmem_is_active(memcg)) 5209 goto out; 5210 5211 /* 5212 * __mem_cgroup_free() will issue static_key_slow_dec() because this 5213 * memcg is active already. If the later initialization fails then the 5214 * cgroup core triggers the cleanup so we do not have to do it here. 5215 */ 5216 static_key_slow_inc(&memcg_kmem_enabled_key); 5217 5218 mutex_lock(&set_limit_mutex); 5219 memcg_stop_kmem_account(); 5220 ret = memcg_update_cache_sizes(memcg); 5221 memcg_resume_kmem_account(); 5222 mutex_unlock(&set_limit_mutex); 5223 out: 5224 return ret; 5225 } 5226 #endif /* CONFIG_MEMCG_KMEM */ 5227 5228 /* 5229 * The user of this function is... 5230 * RES_LIMIT. 5231 */ 5232 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft, 5233 const char *buffer) 5234 { 5235 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5236 enum res_type type; 5237 int name; 5238 unsigned long long val; 5239 int ret; 5240 5241 type = MEMFILE_TYPE(cft->private); 5242 name = MEMFILE_ATTR(cft->private); 5243 5244 switch (name) { 5245 case RES_LIMIT: 5246 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 5247 ret = -EINVAL; 5248 break; 5249 } 5250 /* This function does all necessary parse...reuse it */ 5251 ret = res_counter_memparse_write_strategy(buffer, &val); 5252 if (ret) 5253 break; 5254 if (type == _MEM) 5255 ret = mem_cgroup_resize_limit(memcg, val); 5256 else if (type == _MEMSWAP) 5257 ret = mem_cgroup_resize_memsw_limit(memcg, val); 5258 else if (type == _KMEM) 5259 ret = memcg_update_kmem_limit(css, val); 5260 else 5261 return -EINVAL; 5262 break; 5263 case RES_SOFT_LIMIT: 5264 ret = res_counter_memparse_write_strategy(buffer, &val); 5265 if (ret) 5266 break; 5267 /* 5268 * For memsw, soft limits are hard to implement in terms 5269 * of semantics, for now, we support soft limits for 5270 * control without swap 5271 */ 5272 if (type == _MEM) 5273 ret = res_counter_set_soft_limit(&memcg->res, val); 5274 else 5275 ret = -EINVAL; 5276 break; 5277 default: 5278 ret = -EINVAL; /* should be BUG() ? */ 5279 break; 5280 } 5281 return ret; 5282 } 5283 5284 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 5285 unsigned long long *mem_limit, unsigned long long *memsw_limit) 5286 { 5287 unsigned long long min_limit, min_memsw_limit, tmp; 5288 5289 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 5290 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5291 if (!memcg->use_hierarchy) 5292 goto out; 5293 5294 while (css_parent(&memcg->css)) { 5295 memcg = mem_cgroup_from_css(css_parent(&memcg->css)); 5296 if (!memcg->use_hierarchy) 5297 break; 5298 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 5299 min_limit = min(min_limit, tmp); 5300 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5301 min_memsw_limit = min(min_memsw_limit, tmp); 5302 } 5303 out: 5304 *mem_limit = min_limit; 5305 *memsw_limit = min_memsw_limit; 5306 } 5307 5308 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event) 5309 { 5310 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5311 int name; 5312 enum res_type type; 5313 5314 type = MEMFILE_TYPE(event); 5315 name = MEMFILE_ATTR(event); 5316 5317 switch (name) { 5318 case RES_MAX_USAGE: 5319 if (type == _MEM) 5320 res_counter_reset_max(&memcg->res); 5321 else if (type == _MEMSWAP) 5322 res_counter_reset_max(&memcg->memsw); 5323 else if (type == _KMEM) 5324 res_counter_reset_max(&memcg->kmem); 5325 else 5326 return -EINVAL; 5327 break; 5328 case RES_FAILCNT: 5329 if (type == _MEM) 5330 res_counter_reset_failcnt(&memcg->res); 5331 else if (type == _MEMSWAP) 5332 res_counter_reset_failcnt(&memcg->memsw); 5333 else if (type == _KMEM) 5334 res_counter_reset_failcnt(&memcg->kmem); 5335 else 5336 return -EINVAL; 5337 break; 5338 } 5339 5340 return 0; 5341 } 5342 5343 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 5344 struct cftype *cft) 5345 { 5346 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 5347 } 5348 5349 #ifdef CONFIG_MMU 5350 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 5351 struct cftype *cft, u64 val) 5352 { 5353 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5354 5355 if (val >= (1 << NR_MOVE_TYPE)) 5356 return -EINVAL; 5357 5358 /* 5359 * No kind of locking is needed in here, because ->can_attach() will 5360 * check this value once in the beginning of the process, and then carry 5361 * on with stale data. This means that changes to this value will only 5362 * affect task migrations starting after the change. 5363 */ 5364 memcg->move_charge_at_immigrate = val; 5365 return 0; 5366 } 5367 #else 5368 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 5369 struct cftype *cft, u64 val) 5370 { 5371 return -ENOSYS; 5372 } 5373 #endif 5374 5375 #ifdef CONFIG_NUMA 5376 static int memcg_numa_stat_show(struct cgroup_subsys_state *css, 5377 struct cftype *cft, struct seq_file *m) 5378 { 5379 int nid; 5380 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 5381 unsigned long node_nr; 5382 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5383 5384 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); 5385 seq_printf(m, "total=%lu", total_nr); 5386 for_each_node_state(nid, N_MEMORY) { 5387 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); 5388 seq_printf(m, " N%d=%lu", nid, node_nr); 5389 } 5390 seq_putc(m, '\n'); 5391 5392 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); 5393 seq_printf(m, "file=%lu", file_nr); 5394 for_each_node_state(nid, N_MEMORY) { 5395 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5396 LRU_ALL_FILE); 5397 seq_printf(m, " N%d=%lu", nid, node_nr); 5398 } 5399 seq_putc(m, '\n'); 5400 5401 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); 5402 seq_printf(m, "anon=%lu", anon_nr); 5403 for_each_node_state(nid, N_MEMORY) { 5404 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5405 LRU_ALL_ANON); 5406 seq_printf(m, " N%d=%lu", nid, node_nr); 5407 } 5408 seq_putc(m, '\n'); 5409 5410 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 5411 seq_printf(m, "unevictable=%lu", unevictable_nr); 5412 for_each_node_state(nid, N_MEMORY) { 5413 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5414 BIT(LRU_UNEVICTABLE)); 5415 seq_printf(m, " N%d=%lu", nid, node_nr); 5416 } 5417 seq_putc(m, '\n'); 5418 return 0; 5419 } 5420 #endif /* CONFIG_NUMA */ 5421 5422 static inline void mem_cgroup_lru_names_not_uptodate(void) 5423 { 5424 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 5425 } 5426 5427 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft, 5428 struct seq_file *m) 5429 { 5430 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5431 struct mem_cgroup *mi; 5432 unsigned int i; 5433 5434 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5435 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5436 continue; 5437 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 5438 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 5439 } 5440 5441 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 5442 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 5443 mem_cgroup_read_events(memcg, i)); 5444 5445 for (i = 0; i < NR_LRU_LISTS; i++) 5446 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 5447 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 5448 5449 /* Hierarchical information */ 5450 { 5451 unsigned long long limit, memsw_limit; 5452 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 5453 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 5454 if (do_swap_account) 5455 seq_printf(m, "hierarchical_memsw_limit %llu\n", 5456 memsw_limit); 5457 } 5458 5459 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5460 long long val = 0; 5461 5462 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5463 continue; 5464 for_each_mem_cgroup_tree(mi, memcg) 5465 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 5466 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 5467 } 5468 5469 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 5470 unsigned long long val = 0; 5471 5472 for_each_mem_cgroup_tree(mi, memcg) 5473 val += mem_cgroup_read_events(mi, i); 5474 seq_printf(m, "total_%s %llu\n", 5475 mem_cgroup_events_names[i], val); 5476 } 5477 5478 for (i = 0; i < NR_LRU_LISTS; i++) { 5479 unsigned long long val = 0; 5480 5481 for_each_mem_cgroup_tree(mi, memcg) 5482 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 5483 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 5484 } 5485 5486 #ifdef CONFIG_DEBUG_VM 5487 { 5488 int nid, zid; 5489 struct mem_cgroup_per_zone *mz; 5490 struct zone_reclaim_stat *rstat; 5491 unsigned long recent_rotated[2] = {0, 0}; 5492 unsigned long recent_scanned[2] = {0, 0}; 5493 5494 for_each_online_node(nid) 5495 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 5496 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 5497 rstat = &mz->lruvec.reclaim_stat; 5498 5499 recent_rotated[0] += rstat->recent_rotated[0]; 5500 recent_rotated[1] += rstat->recent_rotated[1]; 5501 recent_scanned[0] += rstat->recent_scanned[0]; 5502 recent_scanned[1] += rstat->recent_scanned[1]; 5503 } 5504 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 5505 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 5506 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 5507 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 5508 } 5509 #endif 5510 5511 return 0; 5512 } 5513 5514 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 5515 struct cftype *cft) 5516 { 5517 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5518 5519 return mem_cgroup_swappiness(memcg); 5520 } 5521 5522 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 5523 struct cftype *cft, u64 val) 5524 { 5525 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5526 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); 5527 5528 if (val > 100 || !parent) 5529 return -EINVAL; 5530 5531 mutex_lock(&memcg_create_mutex); 5532 5533 /* If under hierarchy, only empty-root can set this value */ 5534 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5535 mutex_unlock(&memcg_create_mutex); 5536 return -EINVAL; 5537 } 5538 5539 memcg->swappiness = val; 5540 5541 mutex_unlock(&memcg_create_mutex); 5542 5543 return 0; 5544 } 5545 5546 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 5547 { 5548 struct mem_cgroup_threshold_ary *t; 5549 u64 usage; 5550 int i; 5551 5552 rcu_read_lock(); 5553 if (!swap) 5554 t = rcu_dereference(memcg->thresholds.primary); 5555 else 5556 t = rcu_dereference(memcg->memsw_thresholds.primary); 5557 5558 if (!t) 5559 goto unlock; 5560 5561 usage = mem_cgroup_usage(memcg, swap); 5562 5563 /* 5564 * current_threshold points to threshold just below or equal to usage. 5565 * If it's not true, a threshold was crossed after last 5566 * call of __mem_cgroup_threshold(). 5567 */ 5568 i = t->current_threshold; 5569 5570 /* 5571 * Iterate backward over array of thresholds starting from 5572 * current_threshold and check if a threshold is crossed. 5573 * If none of thresholds below usage is crossed, we read 5574 * only one element of the array here. 5575 */ 5576 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 5577 eventfd_signal(t->entries[i].eventfd, 1); 5578 5579 /* i = current_threshold + 1 */ 5580 i++; 5581 5582 /* 5583 * Iterate forward over array of thresholds starting from 5584 * current_threshold+1 and check if a threshold is crossed. 5585 * If none of thresholds above usage is crossed, we read 5586 * only one element of the array here. 5587 */ 5588 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 5589 eventfd_signal(t->entries[i].eventfd, 1); 5590 5591 /* Update current_threshold */ 5592 t->current_threshold = i - 1; 5593 unlock: 5594 rcu_read_unlock(); 5595 } 5596 5597 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 5598 { 5599 while (memcg) { 5600 __mem_cgroup_threshold(memcg, false); 5601 if (do_swap_account) 5602 __mem_cgroup_threshold(memcg, true); 5603 5604 memcg = parent_mem_cgroup(memcg); 5605 } 5606 } 5607 5608 static int compare_thresholds(const void *a, const void *b) 5609 { 5610 const struct mem_cgroup_threshold *_a = a; 5611 const struct mem_cgroup_threshold *_b = b; 5612 5613 if (_a->threshold > _b->threshold) 5614 return 1; 5615 5616 if (_a->threshold < _b->threshold) 5617 return -1; 5618 5619 return 0; 5620 } 5621 5622 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 5623 { 5624 struct mem_cgroup_eventfd_list *ev; 5625 5626 list_for_each_entry(ev, &memcg->oom_notify, list) 5627 eventfd_signal(ev->eventfd, 1); 5628 return 0; 5629 } 5630 5631 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 5632 { 5633 struct mem_cgroup *iter; 5634 5635 for_each_mem_cgroup_tree(iter, memcg) 5636 mem_cgroup_oom_notify_cb(iter); 5637 } 5638 5639 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css, 5640 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5641 { 5642 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5643 struct mem_cgroup_thresholds *thresholds; 5644 struct mem_cgroup_threshold_ary *new; 5645 enum res_type type = MEMFILE_TYPE(cft->private); 5646 u64 threshold, usage; 5647 int i, size, ret; 5648 5649 ret = res_counter_memparse_write_strategy(args, &threshold); 5650 if (ret) 5651 return ret; 5652 5653 mutex_lock(&memcg->thresholds_lock); 5654 5655 if (type == _MEM) 5656 thresholds = &memcg->thresholds; 5657 else if (type == _MEMSWAP) 5658 thresholds = &memcg->memsw_thresholds; 5659 else 5660 BUG(); 5661 5662 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5663 5664 /* Check if a threshold crossed before adding a new one */ 5665 if (thresholds->primary) 5666 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5667 5668 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 5669 5670 /* Allocate memory for new array of thresholds */ 5671 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 5672 GFP_KERNEL); 5673 if (!new) { 5674 ret = -ENOMEM; 5675 goto unlock; 5676 } 5677 new->size = size; 5678 5679 /* Copy thresholds (if any) to new array */ 5680 if (thresholds->primary) { 5681 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 5682 sizeof(struct mem_cgroup_threshold)); 5683 } 5684 5685 /* Add new threshold */ 5686 new->entries[size - 1].eventfd = eventfd; 5687 new->entries[size - 1].threshold = threshold; 5688 5689 /* Sort thresholds. Registering of new threshold isn't time-critical */ 5690 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 5691 compare_thresholds, NULL); 5692 5693 /* Find current threshold */ 5694 new->current_threshold = -1; 5695 for (i = 0; i < size; i++) { 5696 if (new->entries[i].threshold <= usage) { 5697 /* 5698 * new->current_threshold will not be used until 5699 * rcu_assign_pointer(), so it's safe to increment 5700 * it here. 5701 */ 5702 ++new->current_threshold; 5703 } else 5704 break; 5705 } 5706 5707 /* Free old spare buffer and save old primary buffer as spare */ 5708 kfree(thresholds->spare); 5709 thresholds->spare = thresholds->primary; 5710 5711 rcu_assign_pointer(thresholds->primary, new); 5712 5713 /* To be sure that nobody uses thresholds */ 5714 synchronize_rcu(); 5715 5716 unlock: 5717 mutex_unlock(&memcg->thresholds_lock); 5718 5719 return ret; 5720 } 5721 5722 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css, 5723 struct cftype *cft, struct eventfd_ctx *eventfd) 5724 { 5725 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5726 struct mem_cgroup_thresholds *thresholds; 5727 struct mem_cgroup_threshold_ary *new; 5728 enum res_type type = MEMFILE_TYPE(cft->private); 5729 u64 usage; 5730 int i, j, size; 5731 5732 mutex_lock(&memcg->thresholds_lock); 5733 if (type == _MEM) 5734 thresholds = &memcg->thresholds; 5735 else if (type == _MEMSWAP) 5736 thresholds = &memcg->memsw_thresholds; 5737 else 5738 BUG(); 5739 5740 if (!thresholds->primary) 5741 goto unlock; 5742 5743 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5744 5745 /* Check if a threshold crossed before removing */ 5746 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5747 5748 /* Calculate new number of threshold */ 5749 size = 0; 5750 for (i = 0; i < thresholds->primary->size; i++) { 5751 if (thresholds->primary->entries[i].eventfd != eventfd) 5752 size++; 5753 } 5754 5755 new = thresholds->spare; 5756 5757 /* Set thresholds array to NULL if we don't have thresholds */ 5758 if (!size) { 5759 kfree(new); 5760 new = NULL; 5761 goto swap_buffers; 5762 } 5763 5764 new->size = size; 5765 5766 /* Copy thresholds and find current threshold */ 5767 new->current_threshold = -1; 5768 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 5769 if (thresholds->primary->entries[i].eventfd == eventfd) 5770 continue; 5771 5772 new->entries[j] = thresholds->primary->entries[i]; 5773 if (new->entries[j].threshold <= usage) { 5774 /* 5775 * new->current_threshold will not be used 5776 * until rcu_assign_pointer(), so it's safe to increment 5777 * it here. 5778 */ 5779 ++new->current_threshold; 5780 } 5781 j++; 5782 } 5783 5784 swap_buffers: 5785 /* Swap primary and spare array */ 5786 thresholds->spare = thresholds->primary; 5787 /* If all events are unregistered, free the spare array */ 5788 if (!new) { 5789 kfree(thresholds->spare); 5790 thresholds->spare = NULL; 5791 } 5792 5793 rcu_assign_pointer(thresholds->primary, new); 5794 5795 /* To be sure that nobody uses thresholds */ 5796 synchronize_rcu(); 5797 unlock: 5798 mutex_unlock(&memcg->thresholds_lock); 5799 } 5800 5801 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css, 5802 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5803 { 5804 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5805 struct mem_cgroup_eventfd_list *event; 5806 enum res_type type = MEMFILE_TYPE(cft->private); 5807 5808 BUG_ON(type != _OOM_TYPE); 5809 event = kmalloc(sizeof(*event), GFP_KERNEL); 5810 if (!event) 5811 return -ENOMEM; 5812 5813 spin_lock(&memcg_oom_lock); 5814 5815 event->eventfd = eventfd; 5816 list_add(&event->list, &memcg->oom_notify); 5817 5818 /* already in OOM ? */ 5819 if (atomic_read(&memcg->under_oom)) 5820 eventfd_signal(eventfd, 1); 5821 spin_unlock(&memcg_oom_lock); 5822 5823 return 0; 5824 } 5825 5826 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css, 5827 struct cftype *cft, struct eventfd_ctx *eventfd) 5828 { 5829 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5830 struct mem_cgroup_eventfd_list *ev, *tmp; 5831 enum res_type type = MEMFILE_TYPE(cft->private); 5832 5833 BUG_ON(type != _OOM_TYPE); 5834 5835 spin_lock(&memcg_oom_lock); 5836 5837 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 5838 if (ev->eventfd == eventfd) { 5839 list_del(&ev->list); 5840 kfree(ev); 5841 } 5842 } 5843 5844 spin_unlock(&memcg_oom_lock); 5845 } 5846 5847 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css, 5848 struct cftype *cft, struct cgroup_map_cb *cb) 5849 { 5850 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5851 5852 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 5853 5854 if (atomic_read(&memcg->under_oom)) 5855 cb->fill(cb, "under_oom", 1); 5856 else 5857 cb->fill(cb, "under_oom", 0); 5858 return 0; 5859 } 5860 5861 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 5862 struct cftype *cft, u64 val) 5863 { 5864 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5865 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); 5866 5867 /* cannot set to root cgroup and only 0 and 1 are allowed */ 5868 if (!parent || !((val == 0) || (val == 1))) 5869 return -EINVAL; 5870 5871 mutex_lock(&memcg_create_mutex); 5872 /* oom-kill-disable is a flag for subhierarchy. */ 5873 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5874 mutex_unlock(&memcg_create_mutex); 5875 return -EINVAL; 5876 } 5877 memcg->oom_kill_disable = val; 5878 if (!val) 5879 memcg_oom_recover(memcg); 5880 mutex_unlock(&memcg_create_mutex); 5881 return 0; 5882 } 5883 5884 #ifdef CONFIG_MEMCG_KMEM 5885 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5886 { 5887 int ret; 5888 5889 memcg->kmemcg_id = -1; 5890 ret = memcg_propagate_kmem(memcg); 5891 if (ret) 5892 return ret; 5893 5894 return mem_cgroup_sockets_init(memcg, ss); 5895 } 5896 5897 static void memcg_destroy_kmem(struct mem_cgroup *memcg) 5898 { 5899 mem_cgroup_sockets_destroy(memcg); 5900 } 5901 5902 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 5903 { 5904 if (!memcg_kmem_is_active(memcg)) 5905 return; 5906 5907 /* 5908 * kmem charges can outlive the cgroup. In the case of slab 5909 * pages, for instance, a page contain objects from various 5910 * processes. As we prevent from taking a reference for every 5911 * such allocation we have to be careful when doing uncharge 5912 * (see memcg_uncharge_kmem) and here during offlining. 5913 * 5914 * The idea is that that only the _last_ uncharge which sees 5915 * the dead memcg will drop the last reference. An additional 5916 * reference is taken here before the group is marked dead 5917 * which is then paired with css_put during uncharge resp. here. 5918 * 5919 * Although this might sound strange as this path is called from 5920 * css_offline() when the referencemight have dropped down to 0 5921 * and shouldn't be incremented anymore (css_tryget would fail) 5922 * we do not have other options because of the kmem allocations 5923 * lifetime. 5924 */ 5925 css_get(&memcg->css); 5926 5927 memcg_kmem_mark_dead(memcg); 5928 5929 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) 5930 return; 5931 5932 if (memcg_kmem_test_and_clear_dead(memcg)) 5933 css_put(&memcg->css); 5934 } 5935 #else 5936 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5937 { 5938 return 0; 5939 } 5940 5941 static void memcg_destroy_kmem(struct mem_cgroup *memcg) 5942 { 5943 } 5944 5945 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 5946 { 5947 } 5948 #endif 5949 5950 static struct cftype mem_cgroup_files[] = { 5951 { 5952 .name = "usage_in_bytes", 5953 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5954 .read = mem_cgroup_read, 5955 .register_event = mem_cgroup_usage_register_event, 5956 .unregister_event = mem_cgroup_usage_unregister_event, 5957 }, 5958 { 5959 .name = "max_usage_in_bytes", 5960 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5961 .trigger = mem_cgroup_reset, 5962 .read = mem_cgroup_read, 5963 }, 5964 { 5965 .name = "limit_in_bytes", 5966 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5967 .write_string = mem_cgroup_write, 5968 .read = mem_cgroup_read, 5969 }, 5970 { 5971 .name = "soft_limit_in_bytes", 5972 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5973 .write_string = mem_cgroup_write, 5974 .read = mem_cgroup_read, 5975 }, 5976 { 5977 .name = "failcnt", 5978 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5979 .trigger = mem_cgroup_reset, 5980 .read = mem_cgroup_read, 5981 }, 5982 { 5983 .name = "stat", 5984 .read_seq_string = memcg_stat_show, 5985 }, 5986 { 5987 .name = "force_empty", 5988 .trigger = mem_cgroup_force_empty_write, 5989 }, 5990 { 5991 .name = "use_hierarchy", 5992 .flags = CFTYPE_INSANE, 5993 .write_u64 = mem_cgroup_hierarchy_write, 5994 .read_u64 = mem_cgroup_hierarchy_read, 5995 }, 5996 { 5997 .name = "swappiness", 5998 .read_u64 = mem_cgroup_swappiness_read, 5999 .write_u64 = mem_cgroup_swappiness_write, 6000 }, 6001 { 6002 .name = "move_charge_at_immigrate", 6003 .read_u64 = mem_cgroup_move_charge_read, 6004 .write_u64 = mem_cgroup_move_charge_write, 6005 }, 6006 { 6007 .name = "oom_control", 6008 .read_map = mem_cgroup_oom_control_read, 6009 .write_u64 = mem_cgroup_oom_control_write, 6010 .register_event = mem_cgroup_oom_register_event, 6011 .unregister_event = mem_cgroup_oom_unregister_event, 6012 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 6013 }, 6014 { 6015 .name = "pressure_level", 6016 .register_event = vmpressure_register_event, 6017 .unregister_event = vmpressure_unregister_event, 6018 }, 6019 #ifdef CONFIG_NUMA 6020 { 6021 .name = "numa_stat", 6022 .read_seq_string = memcg_numa_stat_show, 6023 }, 6024 #endif 6025 #ifdef CONFIG_MEMCG_KMEM 6026 { 6027 .name = "kmem.limit_in_bytes", 6028 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 6029 .write_string = mem_cgroup_write, 6030 .read = mem_cgroup_read, 6031 }, 6032 { 6033 .name = "kmem.usage_in_bytes", 6034 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 6035 .read = mem_cgroup_read, 6036 }, 6037 { 6038 .name = "kmem.failcnt", 6039 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 6040 .trigger = mem_cgroup_reset, 6041 .read = mem_cgroup_read, 6042 }, 6043 { 6044 .name = "kmem.max_usage_in_bytes", 6045 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 6046 .trigger = mem_cgroup_reset, 6047 .read = mem_cgroup_read, 6048 }, 6049 #ifdef CONFIG_SLABINFO 6050 { 6051 .name = "kmem.slabinfo", 6052 .read_seq_string = mem_cgroup_slabinfo_read, 6053 }, 6054 #endif 6055 #endif 6056 { }, /* terminate */ 6057 }; 6058 6059 #ifdef CONFIG_MEMCG_SWAP 6060 static struct cftype memsw_cgroup_files[] = { 6061 { 6062 .name = "memsw.usage_in_bytes", 6063 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6064 .read = mem_cgroup_read, 6065 .register_event = mem_cgroup_usage_register_event, 6066 .unregister_event = mem_cgroup_usage_unregister_event, 6067 }, 6068 { 6069 .name = "memsw.max_usage_in_bytes", 6070 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6071 .trigger = mem_cgroup_reset, 6072 .read = mem_cgroup_read, 6073 }, 6074 { 6075 .name = "memsw.limit_in_bytes", 6076 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6077 .write_string = mem_cgroup_write, 6078 .read = mem_cgroup_read, 6079 }, 6080 { 6081 .name = "memsw.failcnt", 6082 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6083 .trigger = mem_cgroup_reset, 6084 .read = mem_cgroup_read, 6085 }, 6086 { }, /* terminate */ 6087 }; 6088 #endif 6089 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6090 { 6091 struct mem_cgroup_per_node *pn; 6092 struct mem_cgroup_per_zone *mz; 6093 int zone, tmp = node; 6094 /* 6095 * This routine is called against possible nodes. 6096 * But it's BUG to call kmalloc() against offline node. 6097 * 6098 * TODO: this routine can waste much memory for nodes which will 6099 * never be onlined. It's better to use memory hotplug callback 6100 * function. 6101 */ 6102 if (!node_state(node, N_NORMAL_MEMORY)) 6103 tmp = -1; 6104 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 6105 if (!pn) 6106 return 1; 6107 6108 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6109 mz = &pn->zoneinfo[zone]; 6110 lruvec_init(&mz->lruvec); 6111 mz->usage_in_excess = 0; 6112 mz->on_tree = false; 6113 mz->memcg = memcg; 6114 } 6115 memcg->nodeinfo[node] = pn; 6116 return 0; 6117 } 6118 6119 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6120 { 6121 kfree(memcg->nodeinfo[node]); 6122 } 6123 6124 static struct mem_cgroup *mem_cgroup_alloc(void) 6125 { 6126 struct mem_cgroup *memcg; 6127 size_t size = memcg_size(); 6128 6129 /* Can be very big if nr_node_ids is very big */ 6130 if (size < PAGE_SIZE) 6131 memcg = kzalloc(size, GFP_KERNEL); 6132 else 6133 memcg = vzalloc(size); 6134 6135 if (!memcg) 6136 return NULL; 6137 6138 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 6139 if (!memcg->stat) 6140 goto out_free; 6141 spin_lock_init(&memcg->pcp_counter_lock); 6142 return memcg; 6143 6144 out_free: 6145 if (size < PAGE_SIZE) 6146 kfree(memcg); 6147 else 6148 vfree(memcg); 6149 return NULL; 6150 } 6151 6152 /* 6153 * At destroying mem_cgroup, references from swap_cgroup can remain. 6154 * (scanning all at force_empty is too costly...) 6155 * 6156 * Instead of clearing all references at force_empty, we remember 6157 * the number of reference from swap_cgroup and free mem_cgroup when 6158 * it goes down to 0. 6159 * 6160 * Removal of cgroup itself succeeds regardless of refs from swap. 6161 */ 6162 6163 static void __mem_cgroup_free(struct mem_cgroup *memcg) 6164 { 6165 int node; 6166 size_t size = memcg_size(); 6167 6168 mem_cgroup_remove_from_trees(memcg); 6169 free_css_id(&mem_cgroup_subsys, &memcg->css); 6170 6171 for_each_node(node) 6172 free_mem_cgroup_per_zone_info(memcg, node); 6173 6174 free_percpu(memcg->stat); 6175 6176 /* 6177 * We need to make sure that (at least for now), the jump label 6178 * destruction code runs outside of the cgroup lock. This is because 6179 * get_online_cpus(), which is called from the static_branch update, 6180 * can't be called inside the cgroup_lock. cpusets are the ones 6181 * enforcing this dependency, so if they ever change, we might as well. 6182 * 6183 * schedule_work() will guarantee this happens. Be careful if you need 6184 * to move this code around, and make sure it is outside 6185 * the cgroup_lock. 6186 */ 6187 disarm_static_keys(memcg); 6188 if (size < PAGE_SIZE) 6189 kfree(memcg); 6190 else 6191 vfree(memcg); 6192 } 6193 6194 /* 6195 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 6196 */ 6197 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 6198 { 6199 if (!memcg->res.parent) 6200 return NULL; 6201 return mem_cgroup_from_res_counter(memcg->res.parent, res); 6202 } 6203 EXPORT_SYMBOL(parent_mem_cgroup); 6204 6205 static void __init mem_cgroup_soft_limit_tree_init(void) 6206 { 6207 struct mem_cgroup_tree_per_node *rtpn; 6208 struct mem_cgroup_tree_per_zone *rtpz; 6209 int tmp, node, zone; 6210 6211 for_each_node(node) { 6212 tmp = node; 6213 if (!node_state(node, N_NORMAL_MEMORY)) 6214 tmp = -1; 6215 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 6216 BUG_ON(!rtpn); 6217 6218 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6219 6220 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6221 rtpz = &rtpn->rb_tree_per_zone[zone]; 6222 rtpz->rb_root = RB_ROOT; 6223 spin_lock_init(&rtpz->lock); 6224 } 6225 } 6226 } 6227 6228 static struct cgroup_subsys_state * __ref 6229 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6230 { 6231 struct mem_cgroup *memcg; 6232 long error = -ENOMEM; 6233 int node; 6234 6235 memcg = mem_cgroup_alloc(); 6236 if (!memcg) 6237 return ERR_PTR(error); 6238 6239 for_each_node(node) 6240 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 6241 goto free_out; 6242 6243 /* root ? */ 6244 if (parent_css == NULL) { 6245 root_mem_cgroup = memcg; 6246 res_counter_init(&memcg->res, NULL); 6247 res_counter_init(&memcg->memsw, NULL); 6248 res_counter_init(&memcg->kmem, NULL); 6249 } 6250 6251 memcg->last_scanned_node = MAX_NUMNODES; 6252 INIT_LIST_HEAD(&memcg->oom_notify); 6253 memcg->move_charge_at_immigrate = 0; 6254 mutex_init(&memcg->thresholds_lock); 6255 spin_lock_init(&memcg->move_lock); 6256 vmpressure_init(&memcg->vmpressure); 6257 6258 return &memcg->css; 6259 6260 free_out: 6261 __mem_cgroup_free(memcg); 6262 return ERR_PTR(error); 6263 } 6264 6265 static int 6266 mem_cgroup_css_online(struct cgroup_subsys_state *css) 6267 { 6268 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6269 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css)); 6270 int error = 0; 6271 6272 if (!parent) 6273 return 0; 6274 6275 mutex_lock(&memcg_create_mutex); 6276 6277 memcg->use_hierarchy = parent->use_hierarchy; 6278 memcg->oom_kill_disable = parent->oom_kill_disable; 6279 memcg->swappiness = mem_cgroup_swappiness(parent); 6280 6281 if (parent->use_hierarchy) { 6282 res_counter_init(&memcg->res, &parent->res); 6283 res_counter_init(&memcg->memsw, &parent->memsw); 6284 res_counter_init(&memcg->kmem, &parent->kmem); 6285 6286 /* 6287 * No need to take a reference to the parent because cgroup 6288 * core guarantees its existence. 6289 */ 6290 } else { 6291 res_counter_init(&memcg->res, NULL); 6292 res_counter_init(&memcg->memsw, NULL); 6293 res_counter_init(&memcg->kmem, NULL); 6294 /* 6295 * Deeper hierachy with use_hierarchy == false doesn't make 6296 * much sense so let cgroup subsystem know about this 6297 * unfortunate state in our controller. 6298 */ 6299 if (parent != root_mem_cgroup) 6300 mem_cgroup_subsys.broken_hierarchy = true; 6301 } 6302 6303 error = memcg_init_kmem(memcg, &mem_cgroup_subsys); 6304 mutex_unlock(&memcg_create_mutex); 6305 return error; 6306 } 6307 6308 /* 6309 * Announce all parents that a group from their hierarchy is gone. 6310 */ 6311 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg) 6312 { 6313 struct mem_cgroup *parent = memcg; 6314 6315 while ((parent = parent_mem_cgroup(parent))) 6316 mem_cgroup_iter_invalidate(parent); 6317 6318 /* 6319 * if the root memcg is not hierarchical we have to check it 6320 * explicitely. 6321 */ 6322 if (!root_mem_cgroup->use_hierarchy) 6323 mem_cgroup_iter_invalidate(root_mem_cgroup); 6324 } 6325 6326 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 6327 { 6328 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6329 6330 kmem_cgroup_css_offline(memcg); 6331 6332 mem_cgroup_invalidate_reclaim_iterators(memcg); 6333 mem_cgroup_reparent_charges(memcg); 6334 mem_cgroup_destroy_all_caches(memcg); 6335 vmpressure_cleanup(&memcg->vmpressure); 6336 } 6337 6338 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 6339 { 6340 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6341 6342 memcg_destroy_kmem(memcg); 6343 __mem_cgroup_free(memcg); 6344 } 6345 6346 #ifdef CONFIG_MMU 6347 /* Handlers for move charge at task migration. */ 6348 #define PRECHARGE_COUNT_AT_ONCE 256 6349 static int mem_cgroup_do_precharge(unsigned long count) 6350 { 6351 int ret = 0; 6352 int batch_count = PRECHARGE_COUNT_AT_ONCE; 6353 struct mem_cgroup *memcg = mc.to; 6354 6355 if (mem_cgroup_is_root(memcg)) { 6356 mc.precharge += count; 6357 /* we don't need css_get for root */ 6358 return ret; 6359 } 6360 /* try to charge at once */ 6361 if (count > 1) { 6362 struct res_counter *dummy; 6363 /* 6364 * "memcg" cannot be under rmdir() because we've already checked 6365 * by cgroup_lock_live_cgroup() that it is not removed and we 6366 * are still under the same cgroup_mutex. So we can postpone 6367 * css_get(). 6368 */ 6369 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 6370 goto one_by_one; 6371 if (do_swap_account && res_counter_charge(&memcg->memsw, 6372 PAGE_SIZE * count, &dummy)) { 6373 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 6374 goto one_by_one; 6375 } 6376 mc.precharge += count; 6377 return ret; 6378 } 6379 one_by_one: 6380 /* fall back to one by one charge */ 6381 while (count--) { 6382 if (signal_pending(current)) { 6383 ret = -EINTR; 6384 break; 6385 } 6386 if (!batch_count--) { 6387 batch_count = PRECHARGE_COUNT_AT_ONCE; 6388 cond_resched(); 6389 } 6390 ret = __mem_cgroup_try_charge(NULL, 6391 GFP_KERNEL, 1, &memcg, false); 6392 if (ret) 6393 /* mem_cgroup_clear_mc() will do uncharge later */ 6394 return ret; 6395 mc.precharge++; 6396 } 6397 return ret; 6398 } 6399 6400 /** 6401 * get_mctgt_type - get target type of moving charge 6402 * @vma: the vma the pte to be checked belongs 6403 * @addr: the address corresponding to the pte to be checked 6404 * @ptent: the pte to be checked 6405 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6406 * 6407 * Returns 6408 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 6409 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 6410 * move charge. if @target is not NULL, the page is stored in target->page 6411 * with extra refcnt got(Callers should handle it). 6412 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 6413 * target for charge migration. if @target is not NULL, the entry is stored 6414 * in target->ent. 6415 * 6416 * Called with pte lock held. 6417 */ 6418 union mc_target { 6419 struct page *page; 6420 swp_entry_t ent; 6421 }; 6422 6423 enum mc_target_type { 6424 MC_TARGET_NONE = 0, 6425 MC_TARGET_PAGE, 6426 MC_TARGET_SWAP, 6427 }; 6428 6429 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 6430 unsigned long addr, pte_t ptent) 6431 { 6432 struct page *page = vm_normal_page(vma, addr, ptent); 6433 6434 if (!page || !page_mapped(page)) 6435 return NULL; 6436 if (PageAnon(page)) { 6437 /* we don't move shared anon */ 6438 if (!move_anon()) 6439 return NULL; 6440 } else if (!move_file()) 6441 /* we ignore mapcount for file pages */ 6442 return NULL; 6443 if (!get_page_unless_zero(page)) 6444 return NULL; 6445 6446 return page; 6447 } 6448 6449 #ifdef CONFIG_SWAP 6450 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6451 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6452 { 6453 struct page *page = NULL; 6454 swp_entry_t ent = pte_to_swp_entry(ptent); 6455 6456 if (!move_anon() || non_swap_entry(ent)) 6457 return NULL; 6458 /* 6459 * Because lookup_swap_cache() updates some statistics counter, 6460 * we call find_get_page() with swapper_space directly. 6461 */ 6462 page = find_get_page(swap_address_space(ent), ent.val); 6463 if (do_swap_account) 6464 entry->val = ent.val; 6465 6466 return page; 6467 } 6468 #else 6469 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6470 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6471 { 6472 return NULL; 6473 } 6474 #endif 6475 6476 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 6477 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6478 { 6479 struct page *page = NULL; 6480 struct address_space *mapping; 6481 pgoff_t pgoff; 6482 6483 if (!vma->vm_file) /* anonymous vma */ 6484 return NULL; 6485 if (!move_file()) 6486 return NULL; 6487 6488 mapping = vma->vm_file->f_mapping; 6489 if (pte_none(ptent)) 6490 pgoff = linear_page_index(vma, addr); 6491 else /* pte_file(ptent) is true */ 6492 pgoff = pte_to_pgoff(ptent); 6493 6494 /* page is moved even if it's not RSS of this task(page-faulted). */ 6495 page = find_get_page(mapping, pgoff); 6496 6497 #ifdef CONFIG_SWAP 6498 /* shmem/tmpfs may report page out on swap: account for that too. */ 6499 if (radix_tree_exceptional_entry(page)) { 6500 swp_entry_t swap = radix_to_swp_entry(page); 6501 if (do_swap_account) 6502 *entry = swap; 6503 page = find_get_page(swap_address_space(swap), swap.val); 6504 } 6505 #endif 6506 return page; 6507 } 6508 6509 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6510 unsigned long addr, pte_t ptent, union mc_target *target) 6511 { 6512 struct page *page = NULL; 6513 struct page_cgroup *pc; 6514 enum mc_target_type ret = MC_TARGET_NONE; 6515 swp_entry_t ent = { .val = 0 }; 6516 6517 if (pte_present(ptent)) 6518 page = mc_handle_present_pte(vma, addr, ptent); 6519 else if (is_swap_pte(ptent)) 6520 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 6521 else if (pte_none(ptent) || pte_file(ptent)) 6522 page = mc_handle_file_pte(vma, addr, ptent, &ent); 6523 6524 if (!page && !ent.val) 6525 return ret; 6526 if (page) { 6527 pc = lookup_page_cgroup(page); 6528 /* 6529 * Do only loose check w/o page_cgroup lock. 6530 * mem_cgroup_move_account() checks the pc is valid or not under 6531 * the lock. 6532 */ 6533 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6534 ret = MC_TARGET_PAGE; 6535 if (target) 6536 target->page = page; 6537 } 6538 if (!ret || !target) 6539 put_page(page); 6540 } 6541 /* There is a swap entry and a page doesn't exist or isn't charged */ 6542 if (ent.val && !ret && 6543 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 6544 ret = MC_TARGET_SWAP; 6545 if (target) 6546 target->ent = ent; 6547 } 6548 return ret; 6549 } 6550 6551 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6552 /* 6553 * We don't consider swapping or file mapped pages because THP does not 6554 * support them for now. 6555 * Caller should make sure that pmd_trans_huge(pmd) is true. 6556 */ 6557 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6558 unsigned long addr, pmd_t pmd, union mc_target *target) 6559 { 6560 struct page *page = NULL; 6561 struct page_cgroup *pc; 6562 enum mc_target_type ret = MC_TARGET_NONE; 6563 6564 page = pmd_page(pmd); 6565 VM_BUG_ON(!page || !PageHead(page)); 6566 if (!move_anon()) 6567 return ret; 6568 pc = lookup_page_cgroup(page); 6569 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6570 ret = MC_TARGET_PAGE; 6571 if (target) { 6572 get_page(page); 6573 target->page = page; 6574 } 6575 } 6576 return ret; 6577 } 6578 #else 6579 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6580 unsigned long addr, pmd_t pmd, union mc_target *target) 6581 { 6582 return MC_TARGET_NONE; 6583 } 6584 #endif 6585 6586 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6587 unsigned long addr, unsigned long end, 6588 struct mm_walk *walk) 6589 { 6590 struct vm_area_struct *vma = walk->private; 6591 pte_t *pte; 6592 spinlock_t *ptl; 6593 6594 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6595 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6596 mc.precharge += HPAGE_PMD_NR; 6597 spin_unlock(&vma->vm_mm->page_table_lock); 6598 return 0; 6599 } 6600 6601 if (pmd_trans_unstable(pmd)) 6602 return 0; 6603 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6604 for (; addr != end; pte++, addr += PAGE_SIZE) 6605 if (get_mctgt_type(vma, addr, *pte, NULL)) 6606 mc.precharge++; /* increment precharge temporarily */ 6607 pte_unmap_unlock(pte - 1, ptl); 6608 cond_resched(); 6609 6610 return 0; 6611 } 6612 6613 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6614 { 6615 unsigned long precharge; 6616 struct vm_area_struct *vma; 6617 6618 down_read(&mm->mmap_sem); 6619 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6620 struct mm_walk mem_cgroup_count_precharge_walk = { 6621 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6622 .mm = mm, 6623 .private = vma, 6624 }; 6625 if (is_vm_hugetlb_page(vma)) 6626 continue; 6627 walk_page_range(vma->vm_start, vma->vm_end, 6628 &mem_cgroup_count_precharge_walk); 6629 } 6630 up_read(&mm->mmap_sem); 6631 6632 precharge = mc.precharge; 6633 mc.precharge = 0; 6634 6635 return precharge; 6636 } 6637 6638 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6639 { 6640 unsigned long precharge = mem_cgroup_count_precharge(mm); 6641 6642 VM_BUG_ON(mc.moving_task); 6643 mc.moving_task = current; 6644 return mem_cgroup_do_precharge(precharge); 6645 } 6646 6647 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6648 static void __mem_cgroup_clear_mc(void) 6649 { 6650 struct mem_cgroup *from = mc.from; 6651 struct mem_cgroup *to = mc.to; 6652 int i; 6653 6654 /* we must uncharge all the leftover precharges from mc.to */ 6655 if (mc.precharge) { 6656 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 6657 mc.precharge = 0; 6658 } 6659 /* 6660 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6661 * we must uncharge here. 6662 */ 6663 if (mc.moved_charge) { 6664 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6665 mc.moved_charge = 0; 6666 } 6667 /* we must fixup refcnts and charges */ 6668 if (mc.moved_swap) { 6669 /* uncharge swap account from the old cgroup */ 6670 if (!mem_cgroup_is_root(mc.from)) 6671 res_counter_uncharge(&mc.from->memsw, 6672 PAGE_SIZE * mc.moved_swap); 6673 6674 for (i = 0; i < mc.moved_swap; i++) 6675 css_put(&mc.from->css); 6676 6677 if (!mem_cgroup_is_root(mc.to)) { 6678 /* 6679 * we charged both to->res and to->memsw, so we should 6680 * uncharge to->res. 6681 */ 6682 res_counter_uncharge(&mc.to->res, 6683 PAGE_SIZE * mc.moved_swap); 6684 } 6685 /* we've already done css_get(mc.to) */ 6686 mc.moved_swap = 0; 6687 } 6688 memcg_oom_recover(from); 6689 memcg_oom_recover(to); 6690 wake_up_all(&mc.waitq); 6691 } 6692 6693 static void mem_cgroup_clear_mc(void) 6694 { 6695 struct mem_cgroup *from = mc.from; 6696 6697 /* 6698 * we must clear moving_task before waking up waiters at the end of 6699 * task migration. 6700 */ 6701 mc.moving_task = NULL; 6702 __mem_cgroup_clear_mc(); 6703 spin_lock(&mc.lock); 6704 mc.from = NULL; 6705 mc.to = NULL; 6706 spin_unlock(&mc.lock); 6707 mem_cgroup_end_move(from); 6708 } 6709 6710 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 6711 struct cgroup_taskset *tset) 6712 { 6713 struct task_struct *p = cgroup_taskset_first(tset); 6714 int ret = 0; 6715 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6716 unsigned long move_charge_at_immigrate; 6717 6718 /* 6719 * We are now commited to this value whatever it is. Changes in this 6720 * tunable will only affect upcoming migrations, not the current one. 6721 * So we need to save it, and keep it going. 6722 */ 6723 move_charge_at_immigrate = memcg->move_charge_at_immigrate; 6724 if (move_charge_at_immigrate) { 6725 struct mm_struct *mm; 6726 struct mem_cgroup *from = mem_cgroup_from_task(p); 6727 6728 VM_BUG_ON(from == memcg); 6729 6730 mm = get_task_mm(p); 6731 if (!mm) 6732 return 0; 6733 /* We move charges only when we move a owner of the mm */ 6734 if (mm->owner == p) { 6735 VM_BUG_ON(mc.from); 6736 VM_BUG_ON(mc.to); 6737 VM_BUG_ON(mc.precharge); 6738 VM_BUG_ON(mc.moved_charge); 6739 VM_BUG_ON(mc.moved_swap); 6740 mem_cgroup_start_move(from); 6741 spin_lock(&mc.lock); 6742 mc.from = from; 6743 mc.to = memcg; 6744 mc.immigrate_flags = move_charge_at_immigrate; 6745 spin_unlock(&mc.lock); 6746 /* We set mc.moving_task later */ 6747 6748 ret = mem_cgroup_precharge_mc(mm); 6749 if (ret) 6750 mem_cgroup_clear_mc(); 6751 } 6752 mmput(mm); 6753 } 6754 return ret; 6755 } 6756 6757 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 6758 struct cgroup_taskset *tset) 6759 { 6760 mem_cgroup_clear_mc(); 6761 } 6762 6763 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6764 unsigned long addr, unsigned long end, 6765 struct mm_walk *walk) 6766 { 6767 int ret = 0; 6768 struct vm_area_struct *vma = walk->private; 6769 pte_t *pte; 6770 spinlock_t *ptl; 6771 enum mc_target_type target_type; 6772 union mc_target target; 6773 struct page *page; 6774 struct page_cgroup *pc; 6775 6776 /* 6777 * We don't take compound_lock() here but no race with splitting thp 6778 * happens because: 6779 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 6780 * under splitting, which means there's no concurrent thp split, 6781 * - if another thread runs into split_huge_page() just after we 6782 * entered this if-block, the thread must wait for page table lock 6783 * to be unlocked in __split_huge_page_splitting(), where the main 6784 * part of thp split is not executed yet. 6785 */ 6786 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6787 if (mc.precharge < HPAGE_PMD_NR) { 6788 spin_unlock(&vma->vm_mm->page_table_lock); 6789 return 0; 6790 } 6791 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6792 if (target_type == MC_TARGET_PAGE) { 6793 page = target.page; 6794 if (!isolate_lru_page(page)) { 6795 pc = lookup_page_cgroup(page); 6796 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 6797 pc, mc.from, mc.to)) { 6798 mc.precharge -= HPAGE_PMD_NR; 6799 mc.moved_charge += HPAGE_PMD_NR; 6800 } 6801 putback_lru_page(page); 6802 } 6803 put_page(page); 6804 } 6805 spin_unlock(&vma->vm_mm->page_table_lock); 6806 return 0; 6807 } 6808 6809 if (pmd_trans_unstable(pmd)) 6810 return 0; 6811 retry: 6812 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6813 for (; addr != end; addr += PAGE_SIZE) { 6814 pte_t ptent = *(pte++); 6815 swp_entry_t ent; 6816 6817 if (!mc.precharge) 6818 break; 6819 6820 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6821 case MC_TARGET_PAGE: 6822 page = target.page; 6823 if (isolate_lru_page(page)) 6824 goto put; 6825 pc = lookup_page_cgroup(page); 6826 if (!mem_cgroup_move_account(page, 1, pc, 6827 mc.from, mc.to)) { 6828 mc.precharge--; 6829 /* we uncharge from mc.from later. */ 6830 mc.moved_charge++; 6831 } 6832 putback_lru_page(page); 6833 put: /* get_mctgt_type() gets the page */ 6834 put_page(page); 6835 break; 6836 case MC_TARGET_SWAP: 6837 ent = target.ent; 6838 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6839 mc.precharge--; 6840 /* we fixup refcnts and charges later. */ 6841 mc.moved_swap++; 6842 } 6843 break; 6844 default: 6845 break; 6846 } 6847 } 6848 pte_unmap_unlock(pte - 1, ptl); 6849 cond_resched(); 6850 6851 if (addr != end) { 6852 /* 6853 * We have consumed all precharges we got in can_attach(). 6854 * We try charge one by one, but don't do any additional 6855 * charges to mc.to if we have failed in charge once in attach() 6856 * phase. 6857 */ 6858 ret = mem_cgroup_do_precharge(1); 6859 if (!ret) 6860 goto retry; 6861 } 6862 6863 return ret; 6864 } 6865 6866 static void mem_cgroup_move_charge(struct mm_struct *mm) 6867 { 6868 struct vm_area_struct *vma; 6869 6870 lru_add_drain_all(); 6871 retry: 6872 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 6873 /* 6874 * Someone who are holding the mmap_sem might be waiting in 6875 * waitq. So we cancel all extra charges, wake up all waiters, 6876 * and retry. Because we cancel precharges, we might not be able 6877 * to move enough charges, but moving charge is a best-effort 6878 * feature anyway, so it wouldn't be a big problem. 6879 */ 6880 __mem_cgroup_clear_mc(); 6881 cond_resched(); 6882 goto retry; 6883 } 6884 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6885 int ret; 6886 struct mm_walk mem_cgroup_move_charge_walk = { 6887 .pmd_entry = mem_cgroup_move_charge_pte_range, 6888 .mm = mm, 6889 .private = vma, 6890 }; 6891 if (is_vm_hugetlb_page(vma)) 6892 continue; 6893 ret = walk_page_range(vma->vm_start, vma->vm_end, 6894 &mem_cgroup_move_charge_walk); 6895 if (ret) 6896 /* 6897 * means we have consumed all precharges and failed in 6898 * doing additional charge. Just abandon here. 6899 */ 6900 break; 6901 } 6902 up_read(&mm->mmap_sem); 6903 } 6904 6905 static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 6906 struct cgroup_taskset *tset) 6907 { 6908 struct task_struct *p = cgroup_taskset_first(tset); 6909 struct mm_struct *mm = get_task_mm(p); 6910 6911 if (mm) { 6912 if (mc.to) 6913 mem_cgroup_move_charge(mm); 6914 mmput(mm); 6915 } 6916 if (mc.to) 6917 mem_cgroup_clear_mc(); 6918 } 6919 #else /* !CONFIG_MMU */ 6920 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 6921 struct cgroup_taskset *tset) 6922 { 6923 return 0; 6924 } 6925 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 6926 struct cgroup_taskset *tset) 6927 { 6928 } 6929 static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 6930 struct cgroup_taskset *tset) 6931 { 6932 } 6933 #endif 6934 6935 /* 6936 * Cgroup retains root cgroups across [un]mount cycles making it necessary 6937 * to verify sane_behavior flag on each mount attempt. 6938 */ 6939 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 6940 { 6941 /* 6942 * use_hierarchy is forced with sane_behavior. cgroup core 6943 * guarantees that @root doesn't have any children, so turning it 6944 * on for the root memcg is enough. 6945 */ 6946 if (cgroup_sane_behavior(root_css->cgroup)) 6947 mem_cgroup_from_css(root_css)->use_hierarchy = true; 6948 } 6949 6950 struct cgroup_subsys mem_cgroup_subsys = { 6951 .name = "memory", 6952 .subsys_id = mem_cgroup_subsys_id, 6953 .css_alloc = mem_cgroup_css_alloc, 6954 .css_online = mem_cgroup_css_online, 6955 .css_offline = mem_cgroup_css_offline, 6956 .css_free = mem_cgroup_css_free, 6957 .can_attach = mem_cgroup_can_attach, 6958 .cancel_attach = mem_cgroup_cancel_attach, 6959 .attach = mem_cgroup_move_task, 6960 .bind = mem_cgroup_bind, 6961 .base_cftypes = mem_cgroup_files, 6962 .early_init = 0, 6963 .use_id = 1, 6964 }; 6965 6966 #ifdef CONFIG_MEMCG_SWAP 6967 static int __init enable_swap_account(char *s) 6968 { 6969 if (!strcmp(s, "1")) 6970 really_do_swap_account = 1; 6971 else if (!strcmp(s, "0")) 6972 really_do_swap_account = 0; 6973 return 1; 6974 } 6975 __setup("swapaccount=", enable_swap_account); 6976 6977 static void __init memsw_file_init(void) 6978 { 6979 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files)); 6980 } 6981 6982 static void __init enable_swap_cgroup(void) 6983 { 6984 if (!mem_cgroup_disabled() && really_do_swap_account) { 6985 do_swap_account = 1; 6986 memsw_file_init(); 6987 } 6988 } 6989 6990 #else 6991 static void __init enable_swap_cgroup(void) 6992 { 6993 } 6994 #endif 6995 6996 /* 6997 * subsys_initcall() for memory controller. 6998 * 6999 * Some parts like hotcpu_notifier() have to be initialized from this context 7000 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 7001 * everything that doesn't depend on a specific mem_cgroup structure should 7002 * be initialized from here. 7003 */ 7004 static int __init mem_cgroup_init(void) 7005 { 7006 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 7007 enable_swap_cgroup(); 7008 mem_cgroup_soft_limit_tree_init(); 7009 memcg_stock_init(); 7010 return 0; 7011 } 7012 subsys_initcall(mem_cgroup_init); 7013