xref: /openbmc/linux/mm/memcontrol.c (revision 161f4089)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include "internal.h"
59 #include <net/sock.h>
60 #include <net/ip.h>
61 #include <net/tcp_memcontrol.h>
62 
63 #include <asm/uaccess.h>
64 
65 #include <trace/events/vmscan.h>
66 
67 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68 EXPORT_SYMBOL(mem_cgroup_subsys);
69 
70 #define MEM_CGROUP_RECLAIM_RETRIES	5
71 static struct mem_cgroup *root_mem_cgroup __read_mostly;
72 
73 #ifdef CONFIG_MEMCG_SWAP
74 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
75 int do_swap_account __read_mostly;
76 
77 /* for remember boot option*/
78 #ifdef CONFIG_MEMCG_SWAP_ENABLED
79 static int really_do_swap_account __initdata = 1;
80 #else
81 static int really_do_swap_account __initdata = 0;
82 #endif
83 
84 #else
85 #define do_swap_account		0
86 #endif
87 
88 
89 static const char * const mem_cgroup_stat_names[] = {
90 	"cache",
91 	"rss",
92 	"rss_huge",
93 	"mapped_file",
94 	"writeback",
95 	"swap",
96 };
97 
98 enum mem_cgroup_events_index {
99 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
100 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
101 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
102 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
103 	MEM_CGROUP_EVENTS_NSTATS,
104 };
105 
106 static const char * const mem_cgroup_events_names[] = {
107 	"pgpgin",
108 	"pgpgout",
109 	"pgfault",
110 	"pgmajfault",
111 };
112 
113 static const char * const mem_cgroup_lru_names[] = {
114 	"inactive_anon",
115 	"active_anon",
116 	"inactive_file",
117 	"active_file",
118 	"unevictable",
119 };
120 
121 /*
122  * Per memcg event counter is incremented at every pagein/pageout. With THP,
123  * it will be incremated by the number of pages. This counter is used for
124  * for trigger some periodic events. This is straightforward and better
125  * than using jiffies etc. to handle periodic memcg event.
126  */
127 enum mem_cgroup_events_target {
128 	MEM_CGROUP_TARGET_THRESH,
129 	MEM_CGROUP_TARGET_SOFTLIMIT,
130 	MEM_CGROUP_TARGET_NUMAINFO,
131 	MEM_CGROUP_NTARGETS,
132 };
133 #define THRESHOLDS_EVENTS_TARGET 128
134 #define SOFTLIMIT_EVENTS_TARGET 1024
135 #define NUMAINFO_EVENTS_TARGET	1024
136 
137 struct mem_cgroup_stat_cpu {
138 	long count[MEM_CGROUP_STAT_NSTATS];
139 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
140 	unsigned long nr_page_events;
141 	unsigned long targets[MEM_CGROUP_NTARGETS];
142 };
143 
144 struct mem_cgroup_reclaim_iter {
145 	/*
146 	 * last scanned hierarchy member. Valid only if last_dead_count
147 	 * matches memcg->dead_count of the hierarchy root group.
148 	 */
149 	struct mem_cgroup *last_visited;
150 	unsigned long last_dead_count;
151 
152 	/* scan generation, increased every round-trip */
153 	unsigned int generation;
154 };
155 
156 /*
157  * per-zone information in memory controller.
158  */
159 struct mem_cgroup_per_zone {
160 	struct lruvec		lruvec;
161 	unsigned long		lru_size[NR_LRU_LISTS];
162 
163 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
164 
165 	struct rb_node		tree_node;	/* RB tree node */
166 	unsigned long long	usage_in_excess;/* Set to the value by which */
167 						/* the soft limit is exceeded*/
168 	bool			on_tree;
169 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
170 						/* use container_of	   */
171 };
172 
173 struct mem_cgroup_per_node {
174 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
175 };
176 
177 /*
178  * Cgroups above their limits are maintained in a RB-Tree, independent of
179  * their hierarchy representation
180  */
181 
182 struct mem_cgroup_tree_per_zone {
183 	struct rb_root rb_root;
184 	spinlock_t lock;
185 };
186 
187 struct mem_cgroup_tree_per_node {
188 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
189 };
190 
191 struct mem_cgroup_tree {
192 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
193 };
194 
195 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
196 
197 struct mem_cgroup_threshold {
198 	struct eventfd_ctx *eventfd;
199 	u64 threshold;
200 };
201 
202 /* For threshold */
203 struct mem_cgroup_threshold_ary {
204 	/* An array index points to threshold just below or equal to usage. */
205 	int current_threshold;
206 	/* Size of entries[] */
207 	unsigned int size;
208 	/* Array of thresholds */
209 	struct mem_cgroup_threshold entries[0];
210 };
211 
212 struct mem_cgroup_thresholds {
213 	/* Primary thresholds array */
214 	struct mem_cgroup_threshold_ary *primary;
215 	/*
216 	 * Spare threshold array.
217 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
218 	 * It must be able to store at least primary->size - 1 entries.
219 	 */
220 	struct mem_cgroup_threshold_ary *spare;
221 };
222 
223 /* for OOM */
224 struct mem_cgroup_eventfd_list {
225 	struct list_head list;
226 	struct eventfd_ctx *eventfd;
227 };
228 
229 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
230 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
231 
232 /*
233  * The memory controller data structure. The memory controller controls both
234  * page cache and RSS per cgroup. We would eventually like to provide
235  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
236  * to help the administrator determine what knobs to tune.
237  *
238  * TODO: Add a water mark for the memory controller. Reclaim will begin when
239  * we hit the water mark. May be even add a low water mark, such that
240  * no reclaim occurs from a cgroup at it's low water mark, this is
241  * a feature that will be implemented much later in the future.
242  */
243 struct mem_cgroup {
244 	struct cgroup_subsys_state css;
245 	/*
246 	 * the counter to account for memory usage
247 	 */
248 	struct res_counter res;
249 
250 	/* vmpressure notifications */
251 	struct vmpressure vmpressure;
252 
253 	/*
254 	 * the counter to account for mem+swap usage.
255 	 */
256 	struct res_counter memsw;
257 
258 	/*
259 	 * the counter to account for kernel memory usage.
260 	 */
261 	struct res_counter kmem;
262 	/*
263 	 * Should the accounting and control be hierarchical, per subtree?
264 	 */
265 	bool use_hierarchy;
266 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
267 
268 	bool		oom_lock;
269 	atomic_t	under_oom;
270 	atomic_t	oom_wakeups;
271 
272 	int	swappiness;
273 	/* OOM-Killer disable */
274 	int		oom_kill_disable;
275 
276 	/* set when res.limit == memsw.limit */
277 	bool		memsw_is_minimum;
278 
279 	/* protect arrays of thresholds */
280 	struct mutex thresholds_lock;
281 
282 	/* thresholds for memory usage. RCU-protected */
283 	struct mem_cgroup_thresholds thresholds;
284 
285 	/* thresholds for mem+swap usage. RCU-protected */
286 	struct mem_cgroup_thresholds memsw_thresholds;
287 
288 	/* For oom notifier event fd */
289 	struct list_head oom_notify;
290 
291 	/*
292 	 * Should we move charges of a task when a task is moved into this
293 	 * mem_cgroup ? And what type of charges should we move ?
294 	 */
295 	unsigned long move_charge_at_immigrate;
296 	/*
297 	 * set > 0 if pages under this cgroup are moving to other cgroup.
298 	 */
299 	atomic_t	moving_account;
300 	/* taken only while moving_account > 0 */
301 	spinlock_t	move_lock;
302 	/*
303 	 * percpu counter.
304 	 */
305 	struct mem_cgroup_stat_cpu __percpu *stat;
306 	/*
307 	 * used when a cpu is offlined or other synchronizations
308 	 * See mem_cgroup_read_stat().
309 	 */
310 	struct mem_cgroup_stat_cpu nocpu_base;
311 	spinlock_t pcp_counter_lock;
312 
313 	atomic_t	dead_count;
314 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
315 	struct tcp_memcontrol tcp_mem;
316 #endif
317 #if defined(CONFIG_MEMCG_KMEM)
318 	/* analogous to slab_common's slab_caches list. per-memcg */
319 	struct list_head memcg_slab_caches;
320 	/* Not a spinlock, we can take a lot of time walking the list */
321 	struct mutex slab_caches_mutex;
322         /* Index in the kmem_cache->memcg_params->memcg_caches array */
323 	int kmemcg_id;
324 #endif
325 
326 	int last_scanned_node;
327 #if MAX_NUMNODES > 1
328 	nodemask_t	scan_nodes;
329 	atomic_t	numainfo_events;
330 	atomic_t	numainfo_updating;
331 #endif
332 
333 	struct mem_cgroup_per_node *nodeinfo[0];
334 	/* WARNING: nodeinfo must be the last member here */
335 };
336 
337 static size_t memcg_size(void)
338 {
339 	return sizeof(struct mem_cgroup) +
340 		nr_node_ids * sizeof(struct mem_cgroup_per_node);
341 }
342 
343 /* internal only representation about the status of kmem accounting. */
344 enum {
345 	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
346 	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
347 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
348 };
349 
350 /* We account when limit is on, but only after call sites are patched */
351 #define KMEM_ACCOUNTED_MASK \
352 		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
353 
354 #ifdef CONFIG_MEMCG_KMEM
355 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
356 {
357 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
358 }
359 
360 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
361 {
362 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
363 }
364 
365 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
366 {
367 	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
368 }
369 
370 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
371 {
372 	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
373 }
374 
375 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
376 {
377 	/*
378 	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
379 	 * will call css_put() if it sees the memcg is dead.
380 	 */
381 	smp_wmb();
382 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
383 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
384 }
385 
386 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
387 {
388 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
389 				  &memcg->kmem_account_flags);
390 }
391 #endif
392 
393 /* Stuffs for move charges at task migration. */
394 /*
395  * Types of charges to be moved. "move_charge_at_immitgrate" and
396  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
397  */
398 enum move_type {
399 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
400 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
401 	NR_MOVE_TYPE,
402 };
403 
404 /* "mc" and its members are protected by cgroup_mutex */
405 static struct move_charge_struct {
406 	spinlock_t	  lock; /* for from, to */
407 	struct mem_cgroup *from;
408 	struct mem_cgroup *to;
409 	unsigned long immigrate_flags;
410 	unsigned long precharge;
411 	unsigned long moved_charge;
412 	unsigned long moved_swap;
413 	struct task_struct *moving_task;	/* a task moving charges */
414 	wait_queue_head_t waitq;		/* a waitq for other context */
415 } mc = {
416 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
417 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
418 };
419 
420 static bool move_anon(void)
421 {
422 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
423 }
424 
425 static bool move_file(void)
426 {
427 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
428 }
429 
430 /*
431  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
432  * limit reclaim to prevent infinite loops, if they ever occur.
433  */
434 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
435 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
436 
437 enum charge_type {
438 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
439 	MEM_CGROUP_CHARGE_TYPE_ANON,
440 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
441 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
442 	NR_CHARGE_TYPE,
443 };
444 
445 /* for encoding cft->private value on file */
446 enum res_type {
447 	_MEM,
448 	_MEMSWAP,
449 	_OOM_TYPE,
450 	_KMEM,
451 };
452 
453 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
454 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
455 #define MEMFILE_ATTR(val)	((val) & 0xffff)
456 /* Used for OOM nofiier */
457 #define OOM_CONTROL		(0)
458 
459 /*
460  * Reclaim flags for mem_cgroup_hierarchical_reclaim
461  */
462 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
463 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
464 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
465 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
466 
467 /*
468  * The memcg_create_mutex will be held whenever a new cgroup is created.
469  * As a consequence, any change that needs to protect against new child cgroups
470  * appearing has to hold it as well.
471  */
472 static DEFINE_MUTEX(memcg_create_mutex);
473 
474 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
475 {
476 	return s ? container_of(s, struct mem_cgroup, css) : NULL;
477 }
478 
479 /* Some nice accessors for the vmpressure. */
480 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
481 {
482 	if (!memcg)
483 		memcg = root_mem_cgroup;
484 	return &memcg->vmpressure;
485 }
486 
487 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
488 {
489 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
490 }
491 
492 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
493 {
494 	return &mem_cgroup_from_css(css)->vmpressure;
495 }
496 
497 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
498 {
499 	return (memcg == root_mem_cgroup);
500 }
501 
502 /* Writing them here to avoid exposing memcg's inner layout */
503 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
504 
505 void sock_update_memcg(struct sock *sk)
506 {
507 	if (mem_cgroup_sockets_enabled) {
508 		struct mem_cgroup *memcg;
509 		struct cg_proto *cg_proto;
510 
511 		BUG_ON(!sk->sk_prot->proto_cgroup);
512 
513 		/* Socket cloning can throw us here with sk_cgrp already
514 		 * filled. It won't however, necessarily happen from
515 		 * process context. So the test for root memcg given
516 		 * the current task's memcg won't help us in this case.
517 		 *
518 		 * Respecting the original socket's memcg is a better
519 		 * decision in this case.
520 		 */
521 		if (sk->sk_cgrp) {
522 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
523 			css_get(&sk->sk_cgrp->memcg->css);
524 			return;
525 		}
526 
527 		rcu_read_lock();
528 		memcg = mem_cgroup_from_task(current);
529 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
530 		if (!mem_cgroup_is_root(memcg) &&
531 		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
532 			sk->sk_cgrp = cg_proto;
533 		}
534 		rcu_read_unlock();
535 	}
536 }
537 EXPORT_SYMBOL(sock_update_memcg);
538 
539 void sock_release_memcg(struct sock *sk)
540 {
541 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
542 		struct mem_cgroup *memcg;
543 		WARN_ON(!sk->sk_cgrp->memcg);
544 		memcg = sk->sk_cgrp->memcg;
545 		css_put(&sk->sk_cgrp->memcg->css);
546 	}
547 }
548 
549 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
550 {
551 	if (!memcg || mem_cgroup_is_root(memcg))
552 		return NULL;
553 
554 	return &memcg->tcp_mem.cg_proto;
555 }
556 EXPORT_SYMBOL(tcp_proto_cgroup);
557 
558 static void disarm_sock_keys(struct mem_cgroup *memcg)
559 {
560 	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
561 		return;
562 	static_key_slow_dec(&memcg_socket_limit_enabled);
563 }
564 #else
565 static void disarm_sock_keys(struct mem_cgroup *memcg)
566 {
567 }
568 #endif
569 
570 #ifdef CONFIG_MEMCG_KMEM
571 /*
572  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
573  * There are two main reasons for not using the css_id for this:
574  *  1) this works better in sparse environments, where we have a lot of memcgs,
575  *     but only a few kmem-limited. Or also, if we have, for instance, 200
576  *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
577  *     200 entry array for that.
578  *
579  *  2) In order not to violate the cgroup API, we would like to do all memory
580  *     allocation in ->create(). At that point, we haven't yet allocated the
581  *     css_id. Having a separate index prevents us from messing with the cgroup
582  *     core for this
583  *
584  * The current size of the caches array is stored in
585  * memcg_limited_groups_array_size.  It will double each time we have to
586  * increase it.
587  */
588 static DEFINE_IDA(kmem_limited_groups);
589 int memcg_limited_groups_array_size;
590 
591 /*
592  * MIN_SIZE is different than 1, because we would like to avoid going through
593  * the alloc/free process all the time. In a small machine, 4 kmem-limited
594  * cgroups is a reasonable guess. In the future, it could be a parameter or
595  * tunable, but that is strictly not necessary.
596  *
597  * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
598  * this constant directly from cgroup, but it is understandable that this is
599  * better kept as an internal representation in cgroup.c. In any case, the
600  * css_id space is not getting any smaller, and we don't have to necessarily
601  * increase ours as well if it increases.
602  */
603 #define MEMCG_CACHES_MIN_SIZE 4
604 #define MEMCG_CACHES_MAX_SIZE 65535
605 
606 /*
607  * A lot of the calls to the cache allocation functions are expected to be
608  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
609  * conditional to this static branch, we'll have to allow modules that does
610  * kmem_cache_alloc and the such to see this symbol as well
611  */
612 struct static_key memcg_kmem_enabled_key;
613 EXPORT_SYMBOL(memcg_kmem_enabled_key);
614 
615 static void disarm_kmem_keys(struct mem_cgroup *memcg)
616 {
617 	if (memcg_kmem_is_active(memcg)) {
618 		static_key_slow_dec(&memcg_kmem_enabled_key);
619 		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
620 	}
621 	/*
622 	 * This check can't live in kmem destruction function,
623 	 * since the charges will outlive the cgroup
624 	 */
625 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
626 }
627 #else
628 static void disarm_kmem_keys(struct mem_cgroup *memcg)
629 {
630 }
631 #endif /* CONFIG_MEMCG_KMEM */
632 
633 static void disarm_static_keys(struct mem_cgroup *memcg)
634 {
635 	disarm_sock_keys(memcg);
636 	disarm_kmem_keys(memcg);
637 }
638 
639 static void drain_all_stock_async(struct mem_cgroup *memcg);
640 
641 static struct mem_cgroup_per_zone *
642 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
643 {
644 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
645 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
646 }
647 
648 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
649 {
650 	return &memcg->css;
651 }
652 
653 static struct mem_cgroup_per_zone *
654 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
655 {
656 	int nid = page_to_nid(page);
657 	int zid = page_zonenum(page);
658 
659 	return mem_cgroup_zoneinfo(memcg, nid, zid);
660 }
661 
662 static struct mem_cgroup_tree_per_zone *
663 soft_limit_tree_node_zone(int nid, int zid)
664 {
665 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
666 }
667 
668 static struct mem_cgroup_tree_per_zone *
669 soft_limit_tree_from_page(struct page *page)
670 {
671 	int nid = page_to_nid(page);
672 	int zid = page_zonenum(page);
673 
674 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
675 }
676 
677 static void
678 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
679 				struct mem_cgroup_per_zone *mz,
680 				struct mem_cgroup_tree_per_zone *mctz,
681 				unsigned long long new_usage_in_excess)
682 {
683 	struct rb_node **p = &mctz->rb_root.rb_node;
684 	struct rb_node *parent = NULL;
685 	struct mem_cgroup_per_zone *mz_node;
686 
687 	if (mz->on_tree)
688 		return;
689 
690 	mz->usage_in_excess = new_usage_in_excess;
691 	if (!mz->usage_in_excess)
692 		return;
693 	while (*p) {
694 		parent = *p;
695 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
696 					tree_node);
697 		if (mz->usage_in_excess < mz_node->usage_in_excess)
698 			p = &(*p)->rb_left;
699 		/*
700 		 * We can't avoid mem cgroups that are over their soft
701 		 * limit by the same amount
702 		 */
703 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
704 			p = &(*p)->rb_right;
705 	}
706 	rb_link_node(&mz->tree_node, parent, p);
707 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
708 	mz->on_tree = true;
709 }
710 
711 static void
712 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
713 				struct mem_cgroup_per_zone *mz,
714 				struct mem_cgroup_tree_per_zone *mctz)
715 {
716 	if (!mz->on_tree)
717 		return;
718 	rb_erase(&mz->tree_node, &mctz->rb_root);
719 	mz->on_tree = false;
720 }
721 
722 static void
723 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
724 				struct mem_cgroup_per_zone *mz,
725 				struct mem_cgroup_tree_per_zone *mctz)
726 {
727 	spin_lock(&mctz->lock);
728 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
729 	spin_unlock(&mctz->lock);
730 }
731 
732 
733 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
734 {
735 	unsigned long long excess;
736 	struct mem_cgroup_per_zone *mz;
737 	struct mem_cgroup_tree_per_zone *mctz;
738 	int nid = page_to_nid(page);
739 	int zid = page_zonenum(page);
740 	mctz = soft_limit_tree_from_page(page);
741 
742 	/*
743 	 * Necessary to update all ancestors when hierarchy is used.
744 	 * because their event counter is not touched.
745 	 */
746 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
747 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
748 		excess = res_counter_soft_limit_excess(&memcg->res);
749 		/*
750 		 * We have to update the tree if mz is on RB-tree or
751 		 * mem is over its softlimit.
752 		 */
753 		if (excess || mz->on_tree) {
754 			spin_lock(&mctz->lock);
755 			/* if on-tree, remove it */
756 			if (mz->on_tree)
757 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
758 			/*
759 			 * Insert again. mz->usage_in_excess will be updated.
760 			 * If excess is 0, no tree ops.
761 			 */
762 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
763 			spin_unlock(&mctz->lock);
764 		}
765 	}
766 }
767 
768 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
769 {
770 	int node, zone;
771 	struct mem_cgroup_per_zone *mz;
772 	struct mem_cgroup_tree_per_zone *mctz;
773 
774 	for_each_node(node) {
775 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
776 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
777 			mctz = soft_limit_tree_node_zone(node, zone);
778 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
779 		}
780 	}
781 }
782 
783 static struct mem_cgroup_per_zone *
784 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
785 {
786 	struct rb_node *rightmost = NULL;
787 	struct mem_cgroup_per_zone *mz;
788 
789 retry:
790 	mz = NULL;
791 	rightmost = rb_last(&mctz->rb_root);
792 	if (!rightmost)
793 		goto done;		/* Nothing to reclaim from */
794 
795 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
796 	/*
797 	 * Remove the node now but someone else can add it back,
798 	 * we will to add it back at the end of reclaim to its correct
799 	 * position in the tree.
800 	 */
801 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
802 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
803 		!css_tryget(&mz->memcg->css))
804 		goto retry;
805 done:
806 	return mz;
807 }
808 
809 static struct mem_cgroup_per_zone *
810 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
811 {
812 	struct mem_cgroup_per_zone *mz;
813 
814 	spin_lock(&mctz->lock);
815 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
816 	spin_unlock(&mctz->lock);
817 	return mz;
818 }
819 
820 /*
821  * Implementation Note: reading percpu statistics for memcg.
822  *
823  * Both of vmstat[] and percpu_counter has threshold and do periodic
824  * synchronization to implement "quick" read. There are trade-off between
825  * reading cost and precision of value. Then, we may have a chance to implement
826  * a periodic synchronizion of counter in memcg's counter.
827  *
828  * But this _read() function is used for user interface now. The user accounts
829  * memory usage by memory cgroup and he _always_ requires exact value because
830  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
831  * have to visit all online cpus and make sum. So, for now, unnecessary
832  * synchronization is not implemented. (just implemented for cpu hotplug)
833  *
834  * If there are kernel internal actions which can make use of some not-exact
835  * value, and reading all cpu value can be performance bottleneck in some
836  * common workload, threashold and synchonization as vmstat[] should be
837  * implemented.
838  */
839 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
840 				 enum mem_cgroup_stat_index idx)
841 {
842 	long val = 0;
843 	int cpu;
844 
845 	get_online_cpus();
846 	for_each_online_cpu(cpu)
847 		val += per_cpu(memcg->stat->count[idx], cpu);
848 #ifdef CONFIG_HOTPLUG_CPU
849 	spin_lock(&memcg->pcp_counter_lock);
850 	val += memcg->nocpu_base.count[idx];
851 	spin_unlock(&memcg->pcp_counter_lock);
852 #endif
853 	put_online_cpus();
854 	return val;
855 }
856 
857 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
858 					 bool charge)
859 {
860 	int val = (charge) ? 1 : -1;
861 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
862 }
863 
864 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
865 					    enum mem_cgroup_events_index idx)
866 {
867 	unsigned long val = 0;
868 	int cpu;
869 
870 	get_online_cpus();
871 	for_each_online_cpu(cpu)
872 		val += per_cpu(memcg->stat->events[idx], cpu);
873 #ifdef CONFIG_HOTPLUG_CPU
874 	spin_lock(&memcg->pcp_counter_lock);
875 	val += memcg->nocpu_base.events[idx];
876 	spin_unlock(&memcg->pcp_counter_lock);
877 #endif
878 	put_online_cpus();
879 	return val;
880 }
881 
882 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
883 					 struct page *page,
884 					 bool anon, int nr_pages)
885 {
886 	preempt_disable();
887 
888 	/*
889 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
890 	 * counted as CACHE even if it's on ANON LRU.
891 	 */
892 	if (anon)
893 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
894 				nr_pages);
895 	else
896 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
897 				nr_pages);
898 
899 	if (PageTransHuge(page))
900 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
901 				nr_pages);
902 
903 	/* pagein of a big page is an event. So, ignore page size */
904 	if (nr_pages > 0)
905 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
906 	else {
907 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
908 		nr_pages = -nr_pages; /* for event */
909 	}
910 
911 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
912 
913 	preempt_enable();
914 }
915 
916 unsigned long
917 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
918 {
919 	struct mem_cgroup_per_zone *mz;
920 
921 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
922 	return mz->lru_size[lru];
923 }
924 
925 static unsigned long
926 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
927 			unsigned int lru_mask)
928 {
929 	struct mem_cgroup_per_zone *mz;
930 	enum lru_list lru;
931 	unsigned long ret = 0;
932 
933 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
934 
935 	for_each_lru(lru) {
936 		if (BIT(lru) & lru_mask)
937 			ret += mz->lru_size[lru];
938 	}
939 	return ret;
940 }
941 
942 static unsigned long
943 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
944 			int nid, unsigned int lru_mask)
945 {
946 	u64 total = 0;
947 	int zid;
948 
949 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
950 		total += mem_cgroup_zone_nr_lru_pages(memcg,
951 						nid, zid, lru_mask);
952 
953 	return total;
954 }
955 
956 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
957 			unsigned int lru_mask)
958 {
959 	int nid;
960 	u64 total = 0;
961 
962 	for_each_node_state(nid, N_MEMORY)
963 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
964 	return total;
965 }
966 
967 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
968 				       enum mem_cgroup_events_target target)
969 {
970 	unsigned long val, next;
971 
972 	val = __this_cpu_read(memcg->stat->nr_page_events);
973 	next = __this_cpu_read(memcg->stat->targets[target]);
974 	/* from time_after() in jiffies.h */
975 	if ((long)next - (long)val < 0) {
976 		switch (target) {
977 		case MEM_CGROUP_TARGET_THRESH:
978 			next = val + THRESHOLDS_EVENTS_TARGET;
979 			break;
980 		case MEM_CGROUP_TARGET_SOFTLIMIT:
981 			next = val + SOFTLIMIT_EVENTS_TARGET;
982 			break;
983 		case MEM_CGROUP_TARGET_NUMAINFO:
984 			next = val + NUMAINFO_EVENTS_TARGET;
985 			break;
986 		default:
987 			break;
988 		}
989 		__this_cpu_write(memcg->stat->targets[target], next);
990 		return true;
991 	}
992 	return false;
993 }
994 
995 /*
996  * Check events in order.
997  *
998  */
999 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1000 {
1001 	preempt_disable();
1002 	/* threshold event is triggered in finer grain than soft limit */
1003 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1004 						MEM_CGROUP_TARGET_THRESH))) {
1005 		bool do_softlimit;
1006 		bool do_numainfo __maybe_unused;
1007 
1008 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1009 						MEM_CGROUP_TARGET_SOFTLIMIT);
1010 #if MAX_NUMNODES > 1
1011 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
1012 						MEM_CGROUP_TARGET_NUMAINFO);
1013 #endif
1014 		preempt_enable();
1015 
1016 		mem_cgroup_threshold(memcg);
1017 		if (unlikely(do_softlimit))
1018 			mem_cgroup_update_tree(memcg, page);
1019 #if MAX_NUMNODES > 1
1020 		if (unlikely(do_numainfo))
1021 			atomic_inc(&memcg->numainfo_events);
1022 #endif
1023 	} else
1024 		preempt_enable();
1025 }
1026 
1027 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1028 {
1029 	/*
1030 	 * mm_update_next_owner() may clear mm->owner to NULL
1031 	 * if it races with swapoff, page migration, etc.
1032 	 * So this can be called with p == NULL.
1033 	 */
1034 	if (unlikely(!p))
1035 		return NULL;
1036 
1037 	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1038 }
1039 
1040 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1041 {
1042 	struct mem_cgroup *memcg = NULL;
1043 
1044 	if (!mm)
1045 		return NULL;
1046 	/*
1047 	 * Because we have no locks, mm->owner's may be being moved to other
1048 	 * cgroup. We use css_tryget() here even if this looks
1049 	 * pessimistic (rather than adding locks here).
1050 	 */
1051 	rcu_read_lock();
1052 	do {
1053 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1054 		if (unlikely(!memcg))
1055 			break;
1056 	} while (!css_tryget(&memcg->css));
1057 	rcu_read_unlock();
1058 	return memcg;
1059 }
1060 
1061 /*
1062  * Returns a next (in a pre-order walk) alive memcg (with elevated css
1063  * ref. count) or NULL if the whole root's subtree has been visited.
1064  *
1065  * helper function to be used by mem_cgroup_iter
1066  */
1067 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1068 		struct mem_cgroup *last_visited)
1069 {
1070 	struct cgroup_subsys_state *prev_css, *next_css;
1071 
1072 	prev_css = last_visited ? &last_visited->css : NULL;
1073 skip_node:
1074 	next_css = css_next_descendant_pre(prev_css, &root->css);
1075 
1076 	/*
1077 	 * Even if we found a group we have to make sure it is
1078 	 * alive. css && !memcg means that the groups should be
1079 	 * skipped and we should continue the tree walk.
1080 	 * last_visited css is safe to use because it is
1081 	 * protected by css_get and the tree walk is rcu safe.
1082 	 */
1083 	if (next_css) {
1084 		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1085 
1086 		if (css_tryget(&mem->css))
1087 			return mem;
1088 		else {
1089 			prev_css = next_css;
1090 			goto skip_node;
1091 		}
1092 	}
1093 
1094 	return NULL;
1095 }
1096 
1097 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1098 {
1099 	/*
1100 	 * When a group in the hierarchy below root is destroyed, the
1101 	 * hierarchy iterator can no longer be trusted since it might
1102 	 * have pointed to the destroyed group.  Invalidate it.
1103 	 */
1104 	atomic_inc(&root->dead_count);
1105 }
1106 
1107 static struct mem_cgroup *
1108 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1109 		     struct mem_cgroup *root,
1110 		     int *sequence)
1111 {
1112 	struct mem_cgroup *position = NULL;
1113 	/*
1114 	 * A cgroup destruction happens in two stages: offlining and
1115 	 * release.  They are separated by a RCU grace period.
1116 	 *
1117 	 * If the iterator is valid, we may still race with an
1118 	 * offlining.  The RCU lock ensures the object won't be
1119 	 * released, tryget will fail if we lost the race.
1120 	 */
1121 	*sequence = atomic_read(&root->dead_count);
1122 	if (iter->last_dead_count == *sequence) {
1123 		smp_rmb();
1124 		position = iter->last_visited;
1125 		if (position && !css_tryget(&position->css))
1126 			position = NULL;
1127 	}
1128 	return position;
1129 }
1130 
1131 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1132 				   struct mem_cgroup *last_visited,
1133 				   struct mem_cgroup *new_position,
1134 				   int sequence)
1135 {
1136 	if (last_visited)
1137 		css_put(&last_visited->css);
1138 	/*
1139 	 * We store the sequence count from the time @last_visited was
1140 	 * loaded successfully instead of rereading it here so that we
1141 	 * don't lose destruction events in between.  We could have
1142 	 * raced with the destruction of @new_position after all.
1143 	 */
1144 	iter->last_visited = new_position;
1145 	smp_wmb();
1146 	iter->last_dead_count = sequence;
1147 }
1148 
1149 /**
1150  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1151  * @root: hierarchy root
1152  * @prev: previously returned memcg, NULL on first invocation
1153  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1154  *
1155  * Returns references to children of the hierarchy below @root, or
1156  * @root itself, or %NULL after a full round-trip.
1157  *
1158  * Caller must pass the return value in @prev on subsequent
1159  * invocations for reference counting, or use mem_cgroup_iter_break()
1160  * to cancel a hierarchy walk before the round-trip is complete.
1161  *
1162  * Reclaimers can specify a zone and a priority level in @reclaim to
1163  * divide up the memcgs in the hierarchy among all concurrent
1164  * reclaimers operating on the same zone and priority.
1165  */
1166 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1167 				   struct mem_cgroup *prev,
1168 				   struct mem_cgroup_reclaim_cookie *reclaim)
1169 {
1170 	struct mem_cgroup *memcg = NULL;
1171 	struct mem_cgroup *last_visited = NULL;
1172 
1173 	if (mem_cgroup_disabled())
1174 		return NULL;
1175 
1176 	if (!root)
1177 		root = root_mem_cgroup;
1178 
1179 	if (prev && !reclaim)
1180 		last_visited = prev;
1181 
1182 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1183 		if (prev)
1184 			goto out_css_put;
1185 		return root;
1186 	}
1187 
1188 	rcu_read_lock();
1189 	while (!memcg) {
1190 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1191 		int uninitialized_var(seq);
1192 
1193 		if (reclaim) {
1194 			int nid = zone_to_nid(reclaim->zone);
1195 			int zid = zone_idx(reclaim->zone);
1196 			struct mem_cgroup_per_zone *mz;
1197 
1198 			mz = mem_cgroup_zoneinfo(root, nid, zid);
1199 			iter = &mz->reclaim_iter[reclaim->priority];
1200 			if (prev && reclaim->generation != iter->generation) {
1201 				iter->last_visited = NULL;
1202 				goto out_unlock;
1203 			}
1204 
1205 			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1206 		}
1207 
1208 		memcg = __mem_cgroup_iter_next(root, last_visited);
1209 
1210 		if (reclaim) {
1211 			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1212 
1213 			if (!memcg)
1214 				iter->generation++;
1215 			else if (!prev && memcg)
1216 				reclaim->generation = iter->generation;
1217 		}
1218 
1219 		if (prev && !memcg)
1220 			goto out_unlock;
1221 	}
1222 out_unlock:
1223 	rcu_read_unlock();
1224 out_css_put:
1225 	if (prev && prev != root)
1226 		css_put(&prev->css);
1227 
1228 	return memcg;
1229 }
1230 
1231 /**
1232  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1233  * @root: hierarchy root
1234  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1235  */
1236 void mem_cgroup_iter_break(struct mem_cgroup *root,
1237 			   struct mem_cgroup *prev)
1238 {
1239 	if (!root)
1240 		root = root_mem_cgroup;
1241 	if (prev && prev != root)
1242 		css_put(&prev->css);
1243 }
1244 
1245 /*
1246  * Iteration constructs for visiting all cgroups (under a tree).  If
1247  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1248  * be used for reference counting.
1249  */
1250 #define for_each_mem_cgroup_tree(iter, root)		\
1251 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1252 	     iter != NULL;				\
1253 	     iter = mem_cgroup_iter(root, iter, NULL))
1254 
1255 #define for_each_mem_cgroup(iter)			\
1256 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1257 	     iter != NULL;				\
1258 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1259 
1260 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1261 {
1262 	struct mem_cgroup *memcg;
1263 
1264 	rcu_read_lock();
1265 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1266 	if (unlikely(!memcg))
1267 		goto out;
1268 
1269 	switch (idx) {
1270 	case PGFAULT:
1271 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1272 		break;
1273 	case PGMAJFAULT:
1274 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1275 		break;
1276 	default:
1277 		BUG();
1278 	}
1279 out:
1280 	rcu_read_unlock();
1281 }
1282 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1283 
1284 /**
1285  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1286  * @zone: zone of the wanted lruvec
1287  * @memcg: memcg of the wanted lruvec
1288  *
1289  * Returns the lru list vector holding pages for the given @zone and
1290  * @mem.  This can be the global zone lruvec, if the memory controller
1291  * is disabled.
1292  */
1293 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1294 				      struct mem_cgroup *memcg)
1295 {
1296 	struct mem_cgroup_per_zone *mz;
1297 	struct lruvec *lruvec;
1298 
1299 	if (mem_cgroup_disabled()) {
1300 		lruvec = &zone->lruvec;
1301 		goto out;
1302 	}
1303 
1304 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1305 	lruvec = &mz->lruvec;
1306 out:
1307 	/*
1308 	 * Since a node can be onlined after the mem_cgroup was created,
1309 	 * we have to be prepared to initialize lruvec->zone here;
1310 	 * and if offlined then reonlined, we need to reinitialize it.
1311 	 */
1312 	if (unlikely(lruvec->zone != zone))
1313 		lruvec->zone = zone;
1314 	return lruvec;
1315 }
1316 
1317 /*
1318  * Following LRU functions are allowed to be used without PCG_LOCK.
1319  * Operations are called by routine of global LRU independently from memcg.
1320  * What we have to take care of here is validness of pc->mem_cgroup.
1321  *
1322  * Changes to pc->mem_cgroup happens when
1323  * 1. charge
1324  * 2. moving account
1325  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1326  * It is added to LRU before charge.
1327  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1328  * When moving account, the page is not on LRU. It's isolated.
1329  */
1330 
1331 /**
1332  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1333  * @page: the page
1334  * @zone: zone of the page
1335  */
1336 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1337 {
1338 	struct mem_cgroup_per_zone *mz;
1339 	struct mem_cgroup *memcg;
1340 	struct page_cgroup *pc;
1341 	struct lruvec *lruvec;
1342 
1343 	if (mem_cgroup_disabled()) {
1344 		lruvec = &zone->lruvec;
1345 		goto out;
1346 	}
1347 
1348 	pc = lookup_page_cgroup(page);
1349 	memcg = pc->mem_cgroup;
1350 
1351 	/*
1352 	 * Surreptitiously switch any uncharged offlist page to root:
1353 	 * an uncharged page off lru does nothing to secure
1354 	 * its former mem_cgroup from sudden removal.
1355 	 *
1356 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1357 	 * under page_cgroup lock: between them, they make all uses
1358 	 * of pc->mem_cgroup safe.
1359 	 */
1360 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1361 		pc->mem_cgroup = memcg = root_mem_cgroup;
1362 
1363 	mz = page_cgroup_zoneinfo(memcg, page);
1364 	lruvec = &mz->lruvec;
1365 out:
1366 	/*
1367 	 * Since a node can be onlined after the mem_cgroup was created,
1368 	 * we have to be prepared to initialize lruvec->zone here;
1369 	 * and if offlined then reonlined, we need to reinitialize it.
1370 	 */
1371 	if (unlikely(lruvec->zone != zone))
1372 		lruvec->zone = zone;
1373 	return lruvec;
1374 }
1375 
1376 /**
1377  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1378  * @lruvec: mem_cgroup per zone lru vector
1379  * @lru: index of lru list the page is sitting on
1380  * @nr_pages: positive when adding or negative when removing
1381  *
1382  * This function must be called when a page is added to or removed from an
1383  * lru list.
1384  */
1385 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1386 				int nr_pages)
1387 {
1388 	struct mem_cgroup_per_zone *mz;
1389 	unsigned long *lru_size;
1390 
1391 	if (mem_cgroup_disabled())
1392 		return;
1393 
1394 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1395 	lru_size = mz->lru_size + lru;
1396 	*lru_size += nr_pages;
1397 	VM_BUG_ON((long)(*lru_size) < 0);
1398 }
1399 
1400 /*
1401  * Checks whether given mem is same or in the root_mem_cgroup's
1402  * hierarchy subtree
1403  */
1404 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1405 				  struct mem_cgroup *memcg)
1406 {
1407 	if (root_memcg == memcg)
1408 		return true;
1409 	if (!root_memcg->use_hierarchy || !memcg)
1410 		return false;
1411 	return css_is_ancestor(&memcg->css, &root_memcg->css);
1412 }
1413 
1414 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1415 				       struct mem_cgroup *memcg)
1416 {
1417 	bool ret;
1418 
1419 	rcu_read_lock();
1420 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1421 	rcu_read_unlock();
1422 	return ret;
1423 }
1424 
1425 bool task_in_mem_cgroup(struct task_struct *task,
1426 			const struct mem_cgroup *memcg)
1427 {
1428 	struct mem_cgroup *curr = NULL;
1429 	struct task_struct *p;
1430 	bool ret;
1431 
1432 	p = find_lock_task_mm(task);
1433 	if (p) {
1434 		curr = try_get_mem_cgroup_from_mm(p->mm);
1435 		task_unlock(p);
1436 	} else {
1437 		/*
1438 		 * All threads may have already detached their mm's, but the oom
1439 		 * killer still needs to detect if they have already been oom
1440 		 * killed to prevent needlessly killing additional tasks.
1441 		 */
1442 		rcu_read_lock();
1443 		curr = mem_cgroup_from_task(task);
1444 		if (curr)
1445 			css_get(&curr->css);
1446 		rcu_read_unlock();
1447 	}
1448 	if (!curr)
1449 		return false;
1450 	/*
1451 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1452 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1453 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1454 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1455 	 */
1456 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1457 	css_put(&curr->css);
1458 	return ret;
1459 }
1460 
1461 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1462 {
1463 	unsigned long inactive_ratio;
1464 	unsigned long inactive;
1465 	unsigned long active;
1466 	unsigned long gb;
1467 
1468 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1469 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1470 
1471 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1472 	if (gb)
1473 		inactive_ratio = int_sqrt(10 * gb);
1474 	else
1475 		inactive_ratio = 1;
1476 
1477 	return inactive * inactive_ratio < active;
1478 }
1479 
1480 #define mem_cgroup_from_res_counter(counter, member)	\
1481 	container_of(counter, struct mem_cgroup, member)
1482 
1483 /**
1484  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1485  * @memcg: the memory cgroup
1486  *
1487  * Returns the maximum amount of memory @mem can be charged with, in
1488  * pages.
1489  */
1490 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1491 {
1492 	unsigned long long margin;
1493 
1494 	margin = res_counter_margin(&memcg->res);
1495 	if (do_swap_account)
1496 		margin = min(margin, res_counter_margin(&memcg->memsw));
1497 	return margin >> PAGE_SHIFT;
1498 }
1499 
1500 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1501 {
1502 	/* root ? */
1503 	if (!css_parent(&memcg->css))
1504 		return vm_swappiness;
1505 
1506 	return memcg->swappiness;
1507 }
1508 
1509 /*
1510  * memcg->moving_account is used for checking possibility that some thread is
1511  * calling move_account(). When a thread on CPU-A starts moving pages under
1512  * a memcg, other threads should check memcg->moving_account under
1513  * rcu_read_lock(), like this:
1514  *
1515  *         CPU-A                                    CPU-B
1516  *                                              rcu_read_lock()
1517  *         memcg->moving_account+1              if (memcg->mocing_account)
1518  *                                                   take heavy locks.
1519  *         synchronize_rcu()                    update something.
1520  *                                              rcu_read_unlock()
1521  *         start move here.
1522  */
1523 
1524 /* for quick checking without looking up memcg */
1525 atomic_t memcg_moving __read_mostly;
1526 
1527 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1528 {
1529 	atomic_inc(&memcg_moving);
1530 	atomic_inc(&memcg->moving_account);
1531 	synchronize_rcu();
1532 }
1533 
1534 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1535 {
1536 	/*
1537 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1538 	 * We check NULL in callee rather than caller.
1539 	 */
1540 	if (memcg) {
1541 		atomic_dec(&memcg_moving);
1542 		atomic_dec(&memcg->moving_account);
1543 	}
1544 }
1545 
1546 /*
1547  * 2 routines for checking "mem" is under move_account() or not.
1548  *
1549  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1550  *			  is used for avoiding races in accounting.  If true,
1551  *			  pc->mem_cgroup may be overwritten.
1552  *
1553  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1554  *			  under hierarchy of moving cgroups. This is for
1555  *			  waiting at hith-memory prressure caused by "move".
1556  */
1557 
1558 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1559 {
1560 	VM_BUG_ON(!rcu_read_lock_held());
1561 	return atomic_read(&memcg->moving_account) > 0;
1562 }
1563 
1564 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1565 {
1566 	struct mem_cgroup *from;
1567 	struct mem_cgroup *to;
1568 	bool ret = false;
1569 	/*
1570 	 * Unlike task_move routines, we access mc.to, mc.from not under
1571 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1572 	 */
1573 	spin_lock(&mc.lock);
1574 	from = mc.from;
1575 	to = mc.to;
1576 	if (!from)
1577 		goto unlock;
1578 
1579 	ret = mem_cgroup_same_or_subtree(memcg, from)
1580 		|| mem_cgroup_same_or_subtree(memcg, to);
1581 unlock:
1582 	spin_unlock(&mc.lock);
1583 	return ret;
1584 }
1585 
1586 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1587 {
1588 	if (mc.moving_task && current != mc.moving_task) {
1589 		if (mem_cgroup_under_move(memcg)) {
1590 			DEFINE_WAIT(wait);
1591 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1592 			/* moving charge context might have finished. */
1593 			if (mc.moving_task)
1594 				schedule();
1595 			finish_wait(&mc.waitq, &wait);
1596 			return true;
1597 		}
1598 	}
1599 	return false;
1600 }
1601 
1602 /*
1603  * Take this lock when
1604  * - a code tries to modify page's memcg while it's USED.
1605  * - a code tries to modify page state accounting in a memcg.
1606  * see mem_cgroup_stolen(), too.
1607  */
1608 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1609 				  unsigned long *flags)
1610 {
1611 	spin_lock_irqsave(&memcg->move_lock, *flags);
1612 }
1613 
1614 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1615 				unsigned long *flags)
1616 {
1617 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1618 }
1619 
1620 #define K(x) ((x) << (PAGE_SHIFT-10))
1621 /**
1622  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1623  * @memcg: The memory cgroup that went over limit
1624  * @p: Task that is going to be killed
1625  *
1626  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1627  * enabled
1628  */
1629 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1630 {
1631 	struct cgroup *task_cgrp;
1632 	struct cgroup *mem_cgrp;
1633 	/*
1634 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1635 	 * on the assumption that OOM is serialized for memory controller.
1636 	 * If this assumption is broken, revisit this code.
1637 	 */
1638 	static char memcg_name[PATH_MAX];
1639 	int ret;
1640 	struct mem_cgroup *iter;
1641 	unsigned int i;
1642 
1643 	if (!p)
1644 		return;
1645 
1646 	rcu_read_lock();
1647 
1648 	mem_cgrp = memcg->css.cgroup;
1649 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1650 
1651 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1652 	if (ret < 0) {
1653 		/*
1654 		 * Unfortunately, we are unable to convert to a useful name
1655 		 * But we'll still print out the usage information
1656 		 */
1657 		rcu_read_unlock();
1658 		goto done;
1659 	}
1660 	rcu_read_unlock();
1661 
1662 	pr_info("Task in %s killed", memcg_name);
1663 
1664 	rcu_read_lock();
1665 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1666 	if (ret < 0) {
1667 		rcu_read_unlock();
1668 		goto done;
1669 	}
1670 	rcu_read_unlock();
1671 
1672 	/*
1673 	 * Continues from above, so we don't need an KERN_ level
1674 	 */
1675 	pr_cont(" as a result of limit of %s\n", memcg_name);
1676 done:
1677 
1678 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1679 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1680 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1681 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1682 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1683 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1684 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1685 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1686 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1687 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1688 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1689 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1690 
1691 	for_each_mem_cgroup_tree(iter, memcg) {
1692 		pr_info("Memory cgroup stats");
1693 
1694 		rcu_read_lock();
1695 		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1696 		if (!ret)
1697 			pr_cont(" for %s", memcg_name);
1698 		rcu_read_unlock();
1699 		pr_cont(":");
1700 
1701 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1702 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1703 				continue;
1704 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1705 				K(mem_cgroup_read_stat(iter, i)));
1706 		}
1707 
1708 		for (i = 0; i < NR_LRU_LISTS; i++)
1709 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1710 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1711 
1712 		pr_cont("\n");
1713 	}
1714 }
1715 
1716 /*
1717  * This function returns the number of memcg under hierarchy tree. Returns
1718  * 1(self count) if no children.
1719  */
1720 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1721 {
1722 	int num = 0;
1723 	struct mem_cgroup *iter;
1724 
1725 	for_each_mem_cgroup_tree(iter, memcg)
1726 		num++;
1727 	return num;
1728 }
1729 
1730 /*
1731  * Return the memory (and swap, if configured) limit for a memcg.
1732  */
1733 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1734 {
1735 	u64 limit;
1736 
1737 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1738 
1739 	/*
1740 	 * Do not consider swap space if we cannot swap due to swappiness
1741 	 */
1742 	if (mem_cgroup_swappiness(memcg)) {
1743 		u64 memsw;
1744 
1745 		limit += total_swap_pages << PAGE_SHIFT;
1746 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1747 
1748 		/*
1749 		 * If memsw is finite and limits the amount of swap space
1750 		 * available to this memcg, return that limit.
1751 		 */
1752 		limit = min(limit, memsw);
1753 	}
1754 
1755 	return limit;
1756 }
1757 
1758 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1759 				     int order)
1760 {
1761 	struct mem_cgroup *iter;
1762 	unsigned long chosen_points = 0;
1763 	unsigned long totalpages;
1764 	unsigned int points = 0;
1765 	struct task_struct *chosen = NULL;
1766 
1767 	/*
1768 	 * If current has a pending SIGKILL or is exiting, then automatically
1769 	 * select it.  The goal is to allow it to allocate so that it may
1770 	 * quickly exit and free its memory.
1771 	 */
1772 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1773 		set_thread_flag(TIF_MEMDIE);
1774 		return;
1775 	}
1776 
1777 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1778 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1779 	for_each_mem_cgroup_tree(iter, memcg) {
1780 		struct css_task_iter it;
1781 		struct task_struct *task;
1782 
1783 		css_task_iter_start(&iter->css, &it);
1784 		while ((task = css_task_iter_next(&it))) {
1785 			switch (oom_scan_process_thread(task, totalpages, NULL,
1786 							false)) {
1787 			case OOM_SCAN_SELECT:
1788 				if (chosen)
1789 					put_task_struct(chosen);
1790 				chosen = task;
1791 				chosen_points = ULONG_MAX;
1792 				get_task_struct(chosen);
1793 				/* fall through */
1794 			case OOM_SCAN_CONTINUE:
1795 				continue;
1796 			case OOM_SCAN_ABORT:
1797 				css_task_iter_end(&it);
1798 				mem_cgroup_iter_break(memcg, iter);
1799 				if (chosen)
1800 					put_task_struct(chosen);
1801 				return;
1802 			case OOM_SCAN_OK:
1803 				break;
1804 			};
1805 			points = oom_badness(task, memcg, NULL, totalpages);
1806 			if (points > chosen_points) {
1807 				if (chosen)
1808 					put_task_struct(chosen);
1809 				chosen = task;
1810 				chosen_points = points;
1811 				get_task_struct(chosen);
1812 			}
1813 		}
1814 		css_task_iter_end(&it);
1815 	}
1816 
1817 	if (!chosen)
1818 		return;
1819 	points = chosen_points * 1000 / totalpages;
1820 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1821 			 NULL, "Memory cgroup out of memory");
1822 }
1823 
1824 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1825 					gfp_t gfp_mask,
1826 					unsigned long flags)
1827 {
1828 	unsigned long total = 0;
1829 	bool noswap = false;
1830 	int loop;
1831 
1832 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1833 		noswap = true;
1834 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1835 		noswap = true;
1836 
1837 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1838 		if (loop)
1839 			drain_all_stock_async(memcg);
1840 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1841 		/*
1842 		 * Allow limit shrinkers, which are triggered directly
1843 		 * by userspace, to catch signals and stop reclaim
1844 		 * after minimal progress, regardless of the margin.
1845 		 */
1846 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1847 			break;
1848 		if (mem_cgroup_margin(memcg))
1849 			break;
1850 		/*
1851 		 * If nothing was reclaimed after two attempts, there
1852 		 * may be no reclaimable pages in this hierarchy.
1853 		 */
1854 		if (loop && !total)
1855 			break;
1856 	}
1857 	return total;
1858 }
1859 
1860 /**
1861  * test_mem_cgroup_node_reclaimable
1862  * @memcg: the target memcg
1863  * @nid: the node ID to be checked.
1864  * @noswap : specify true here if the user wants flle only information.
1865  *
1866  * This function returns whether the specified memcg contains any
1867  * reclaimable pages on a node. Returns true if there are any reclaimable
1868  * pages in the node.
1869  */
1870 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1871 		int nid, bool noswap)
1872 {
1873 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1874 		return true;
1875 	if (noswap || !total_swap_pages)
1876 		return false;
1877 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1878 		return true;
1879 	return false;
1880 
1881 }
1882 #if MAX_NUMNODES > 1
1883 
1884 /*
1885  * Always updating the nodemask is not very good - even if we have an empty
1886  * list or the wrong list here, we can start from some node and traverse all
1887  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1888  *
1889  */
1890 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1891 {
1892 	int nid;
1893 	/*
1894 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1895 	 * pagein/pageout changes since the last update.
1896 	 */
1897 	if (!atomic_read(&memcg->numainfo_events))
1898 		return;
1899 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1900 		return;
1901 
1902 	/* make a nodemask where this memcg uses memory from */
1903 	memcg->scan_nodes = node_states[N_MEMORY];
1904 
1905 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1906 
1907 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1908 			node_clear(nid, memcg->scan_nodes);
1909 	}
1910 
1911 	atomic_set(&memcg->numainfo_events, 0);
1912 	atomic_set(&memcg->numainfo_updating, 0);
1913 }
1914 
1915 /*
1916  * Selecting a node where we start reclaim from. Because what we need is just
1917  * reducing usage counter, start from anywhere is O,K. Considering
1918  * memory reclaim from current node, there are pros. and cons.
1919  *
1920  * Freeing memory from current node means freeing memory from a node which
1921  * we'll use or we've used. So, it may make LRU bad. And if several threads
1922  * hit limits, it will see a contention on a node. But freeing from remote
1923  * node means more costs for memory reclaim because of memory latency.
1924  *
1925  * Now, we use round-robin. Better algorithm is welcomed.
1926  */
1927 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1928 {
1929 	int node;
1930 
1931 	mem_cgroup_may_update_nodemask(memcg);
1932 	node = memcg->last_scanned_node;
1933 
1934 	node = next_node(node, memcg->scan_nodes);
1935 	if (node == MAX_NUMNODES)
1936 		node = first_node(memcg->scan_nodes);
1937 	/*
1938 	 * We call this when we hit limit, not when pages are added to LRU.
1939 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1940 	 * memcg is too small and all pages are not on LRU. In that case,
1941 	 * we use curret node.
1942 	 */
1943 	if (unlikely(node == MAX_NUMNODES))
1944 		node = numa_node_id();
1945 
1946 	memcg->last_scanned_node = node;
1947 	return node;
1948 }
1949 
1950 /*
1951  * Check all nodes whether it contains reclaimable pages or not.
1952  * For quick scan, we make use of scan_nodes. This will allow us to skip
1953  * unused nodes. But scan_nodes is lazily updated and may not cotain
1954  * enough new information. We need to do double check.
1955  */
1956 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1957 {
1958 	int nid;
1959 
1960 	/*
1961 	 * quick check...making use of scan_node.
1962 	 * We can skip unused nodes.
1963 	 */
1964 	if (!nodes_empty(memcg->scan_nodes)) {
1965 		for (nid = first_node(memcg->scan_nodes);
1966 		     nid < MAX_NUMNODES;
1967 		     nid = next_node(nid, memcg->scan_nodes)) {
1968 
1969 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1970 				return true;
1971 		}
1972 	}
1973 	/*
1974 	 * Check rest of nodes.
1975 	 */
1976 	for_each_node_state(nid, N_MEMORY) {
1977 		if (node_isset(nid, memcg->scan_nodes))
1978 			continue;
1979 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1980 			return true;
1981 	}
1982 	return false;
1983 }
1984 
1985 #else
1986 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1987 {
1988 	return 0;
1989 }
1990 
1991 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1992 {
1993 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1994 }
1995 #endif
1996 
1997 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1998 				   struct zone *zone,
1999 				   gfp_t gfp_mask,
2000 				   unsigned long *total_scanned)
2001 {
2002 	struct mem_cgroup *victim = NULL;
2003 	int total = 0;
2004 	int loop = 0;
2005 	unsigned long excess;
2006 	unsigned long nr_scanned;
2007 	struct mem_cgroup_reclaim_cookie reclaim = {
2008 		.zone = zone,
2009 		.priority = 0,
2010 	};
2011 
2012 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2013 
2014 	while (1) {
2015 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2016 		if (!victim) {
2017 			loop++;
2018 			if (loop >= 2) {
2019 				/*
2020 				 * If we have not been able to reclaim
2021 				 * anything, it might because there are
2022 				 * no reclaimable pages under this hierarchy
2023 				 */
2024 				if (!total)
2025 					break;
2026 				/*
2027 				 * We want to do more targeted reclaim.
2028 				 * excess >> 2 is not to excessive so as to
2029 				 * reclaim too much, nor too less that we keep
2030 				 * coming back to reclaim from this cgroup
2031 				 */
2032 				if (total >= (excess >> 2) ||
2033 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2034 					break;
2035 			}
2036 			continue;
2037 		}
2038 		if (!mem_cgroup_reclaimable(victim, false))
2039 			continue;
2040 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2041 						     zone, &nr_scanned);
2042 		*total_scanned += nr_scanned;
2043 		if (!res_counter_soft_limit_excess(&root_memcg->res))
2044 			break;
2045 	}
2046 	mem_cgroup_iter_break(root_memcg, victim);
2047 	return total;
2048 }
2049 
2050 #ifdef CONFIG_LOCKDEP
2051 static struct lockdep_map memcg_oom_lock_dep_map = {
2052 	.name = "memcg_oom_lock",
2053 };
2054 #endif
2055 
2056 static DEFINE_SPINLOCK(memcg_oom_lock);
2057 
2058 /*
2059  * Check OOM-Killer is already running under our hierarchy.
2060  * If someone is running, return false.
2061  */
2062 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2063 {
2064 	struct mem_cgroup *iter, *failed = NULL;
2065 
2066 	spin_lock(&memcg_oom_lock);
2067 
2068 	for_each_mem_cgroup_tree(iter, memcg) {
2069 		if (iter->oom_lock) {
2070 			/*
2071 			 * this subtree of our hierarchy is already locked
2072 			 * so we cannot give a lock.
2073 			 */
2074 			failed = iter;
2075 			mem_cgroup_iter_break(memcg, iter);
2076 			break;
2077 		} else
2078 			iter->oom_lock = true;
2079 	}
2080 
2081 	if (failed) {
2082 		/*
2083 		 * OK, we failed to lock the whole subtree so we have
2084 		 * to clean up what we set up to the failing subtree
2085 		 */
2086 		for_each_mem_cgroup_tree(iter, memcg) {
2087 			if (iter == failed) {
2088 				mem_cgroup_iter_break(memcg, iter);
2089 				break;
2090 			}
2091 			iter->oom_lock = false;
2092 		}
2093 	} else
2094 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2095 
2096 	spin_unlock(&memcg_oom_lock);
2097 
2098 	return !failed;
2099 }
2100 
2101 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2102 {
2103 	struct mem_cgroup *iter;
2104 
2105 	spin_lock(&memcg_oom_lock);
2106 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2107 	for_each_mem_cgroup_tree(iter, memcg)
2108 		iter->oom_lock = false;
2109 	spin_unlock(&memcg_oom_lock);
2110 }
2111 
2112 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2113 {
2114 	struct mem_cgroup *iter;
2115 
2116 	for_each_mem_cgroup_tree(iter, memcg)
2117 		atomic_inc(&iter->under_oom);
2118 }
2119 
2120 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2121 {
2122 	struct mem_cgroup *iter;
2123 
2124 	/*
2125 	 * When a new child is created while the hierarchy is under oom,
2126 	 * mem_cgroup_oom_lock() may not be called. We have to use
2127 	 * atomic_add_unless() here.
2128 	 */
2129 	for_each_mem_cgroup_tree(iter, memcg)
2130 		atomic_add_unless(&iter->under_oom, -1, 0);
2131 }
2132 
2133 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2134 
2135 struct oom_wait_info {
2136 	struct mem_cgroup *memcg;
2137 	wait_queue_t	wait;
2138 };
2139 
2140 static int memcg_oom_wake_function(wait_queue_t *wait,
2141 	unsigned mode, int sync, void *arg)
2142 {
2143 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2144 	struct mem_cgroup *oom_wait_memcg;
2145 	struct oom_wait_info *oom_wait_info;
2146 
2147 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2148 	oom_wait_memcg = oom_wait_info->memcg;
2149 
2150 	/*
2151 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2152 	 * Then we can use css_is_ancestor without taking care of RCU.
2153 	 */
2154 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2155 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2156 		return 0;
2157 	return autoremove_wake_function(wait, mode, sync, arg);
2158 }
2159 
2160 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2161 {
2162 	atomic_inc(&memcg->oom_wakeups);
2163 	/* for filtering, pass "memcg" as argument. */
2164 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2165 }
2166 
2167 static void memcg_oom_recover(struct mem_cgroup *memcg)
2168 {
2169 	if (memcg && atomic_read(&memcg->under_oom))
2170 		memcg_wakeup_oom(memcg);
2171 }
2172 
2173 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2174 {
2175 	if (!current->memcg_oom.may_oom)
2176 		return;
2177 	/*
2178 	 * We are in the middle of the charge context here, so we
2179 	 * don't want to block when potentially sitting on a callstack
2180 	 * that holds all kinds of filesystem and mm locks.
2181 	 *
2182 	 * Also, the caller may handle a failed allocation gracefully
2183 	 * (like optional page cache readahead) and so an OOM killer
2184 	 * invocation might not even be necessary.
2185 	 *
2186 	 * That's why we don't do anything here except remember the
2187 	 * OOM context and then deal with it at the end of the page
2188 	 * fault when the stack is unwound, the locks are released,
2189 	 * and when we know whether the fault was overall successful.
2190 	 */
2191 	css_get(&memcg->css);
2192 	current->memcg_oom.memcg = memcg;
2193 	current->memcg_oom.gfp_mask = mask;
2194 	current->memcg_oom.order = order;
2195 }
2196 
2197 /**
2198  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2199  * @handle: actually kill/wait or just clean up the OOM state
2200  *
2201  * This has to be called at the end of a page fault if the memcg OOM
2202  * handler was enabled.
2203  *
2204  * Memcg supports userspace OOM handling where failed allocations must
2205  * sleep on a waitqueue until the userspace task resolves the
2206  * situation.  Sleeping directly in the charge context with all kinds
2207  * of locks held is not a good idea, instead we remember an OOM state
2208  * in the task and mem_cgroup_oom_synchronize() has to be called at
2209  * the end of the page fault to complete the OOM handling.
2210  *
2211  * Returns %true if an ongoing memcg OOM situation was detected and
2212  * completed, %false otherwise.
2213  */
2214 bool mem_cgroup_oom_synchronize(bool handle)
2215 {
2216 	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2217 	struct oom_wait_info owait;
2218 	bool locked;
2219 
2220 	/* OOM is global, do not handle */
2221 	if (!memcg)
2222 		return false;
2223 
2224 	if (!handle)
2225 		goto cleanup;
2226 
2227 	owait.memcg = memcg;
2228 	owait.wait.flags = 0;
2229 	owait.wait.func = memcg_oom_wake_function;
2230 	owait.wait.private = current;
2231 	INIT_LIST_HEAD(&owait.wait.task_list);
2232 
2233 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2234 	mem_cgroup_mark_under_oom(memcg);
2235 
2236 	locked = mem_cgroup_oom_trylock(memcg);
2237 
2238 	if (locked)
2239 		mem_cgroup_oom_notify(memcg);
2240 
2241 	if (locked && !memcg->oom_kill_disable) {
2242 		mem_cgroup_unmark_under_oom(memcg);
2243 		finish_wait(&memcg_oom_waitq, &owait.wait);
2244 		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2245 					 current->memcg_oom.order);
2246 	} else {
2247 		schedule();
2248 		mem_cgroup_unmark_under_oom(memcg);
2249 		finish_wait(&memcg_oom_waitq, &owait.wait);
2250 	}
2251 
2252 	if (locked) {
2253 		mem_cgroup_oom_unlock(memcg);
2254 		/*
2255 		 * There is no guarantee that an OOM-lock contender
2256 		 * sees the wakeups triggered by the OOM kill
2257 		 * uncharges.  Wake any sleepers explicitely.
2258 		 */
2259 		memcg_oom_recover(memcg);
2260 	}
2261 cleanup:
2262 	current->memcg_oom.memcg = NULL;
2263 	css_put(&memcg->css);
2264 	return true;
2265 }
2266 
2267 /*
2268  * Currently used to update mapped file statistics, but the routine can be
2269  * generalized to update other statistics as well.
2270  *
2271  * Notes: Race condition
2272  *
2273  * We usually use page_cgroup_lock() for accessing page_cgroup member but
2274  * it tends to be costly. But considering some conditions, we doesn't need
2275  * to do so _always_.
2276  *
2277  * Considering "charge", lock_page_cgroup() is not required because all
2278  * file-stat operations happen after a page is attached to radix-tree. There
2279  * are no race with "charge".
2280  *
2281  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2282  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2283  * if there are race with "uncharge". Statistics itself is properly handled
2284  * by flags.
2285  *
2286  * Considering "move", this is an only case we see a race. To make the race
2287  * small, we check mm->moving_account and detect there are possibility of race
2288  * If there is, we take a lock.
2289  */
2290 
2291 void __mem_cgroup_begin_update_page_stat(struct page *page,
2292 				bool *locked, unsigned long *flags)
2293 {
2294 	struct mem_cgroup *memcg;
2295 	struct page_cgroup *pc;
2296 
2297 	pc = lookup_page_cgroup(page);
2298 again:
2299 	memcg = pc->mem_cgroup;
2300 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2301 		return;
2302 	/*
2303 	 * If this memory cgroup is not under account moving, we don't
2304 	 * need to take move_lock_mem_cgroup(). Because we already hold
2305 	 * rcu_read_lock(), any calls to move_account will be delayed until
2306 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2307 	 */
2308 	if (!mem_cgroup_stolen(memcg))
2309 		return;
2310 
2311 	move_lock_mem_cgroup(memcg, flags);
2312 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2313 		move_unlock_mem_cgroup(memcg, flags);
2314 		goto again;
2315 	}
2316 	*locked = true;
2317 }
2318 
2319 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2320 {
2321 	struct page_cgroup *pc = lookup_page_cgroup(page);
2322 
2323 	/*
2324 	 * It's guaranteed that pc->mem_cgroup never changes while
2325 	 * lock is held because a routine modifies pc->mem_cgroup
2326 	 * should take move_lock_mem_cgroup().
2327 	 */
2328 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2329 }
2330 
2331 void mem_cgroup_update_page_stat(struct page *page,
2332 				 enum mem_cgroup_stat_index idx, int val)
2333 {
2334 	struct mem_cgroup *memcg;
2335 	struct page_cgroup *pc = lookup_page_cgroup(page);
2336 	unsigned long uninitialized_var(flags);
2337 
2338 	if (mem_cgroup_disabled())
2339 		return;
2340 
2341 	VM_BUG_ON(!rcu_read_lock_held());
2342 	memcg = pc->mem_cgroup;
2343 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2344 		return;
2345 
2346 	this_cpu_add(memcg->stat->count[idx], val);
2347 }
2348 
2349 /*
2350  * size of first charge trial. "32" comes from vmscan.c's magic value.
2351  * TODO: maybe necessary to use big numbers in big irons.
2352  */
2353 #define CHARGE_BATCH	32U
2354 struct memcg_stock_pcp {
2355 	struct mem_cgroup *cached; /* this never be root cgroup */
2356 	unsigned int nr_pages;
2357 	struct work_struct work;
2358 	unsigned long flags;
2359 #define FLUSHING_CACHED_CHARGE	0
2360 };
2361 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2362 static DEFINE_MUTEX(percpu_charge_mutex);
2363 
2364 /**
2365  * consume_stock: Try to consume stocked charge on this cpu.
2366  * @memcg: memcg to consume from.
2367  * @nr_pages: how many pages to charge.
2368  *
2369  * The charges will only happen if @memcg matches the current cpu's memcg
2370  * stock, and at least @nr_pages are available in that stock.  Failure to
2371  * service an allocation will refill the stock.
2372  *
2373  * returns true if successful, false otherwise.
2374  */
2375 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2376 {
2377 	struct memcg_stock_pcp *stock;
2378 	bool ret = true;
2379 
2380 	if (nr_pages > CHARGE_BATCH)
2381 		return false;
2382 
2383 	stock = &get_cpu_var(memcg_stock);
2384 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2385 		stock->nr_pages -= nr_pages;
2386 	else /* need to call res_counter_charge */
2387 		ret = false;
2388 	put_cpu_var(memcg_stock);
2389 	return ret;
2390 }
2391 
2392 /*
2393  * Returns stocks cached in percpu to res_counter and reset cached information.
2394  */
2395 static void drain_stock(struct memcg_stock_pcp *stock)
2396 {
2397 	struct mem_cgroup *old = stock->cached;
2398 
2399 	if (stock->nr_pages) {
2400 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2401 
2402 		res_counter_uncharge(&old->res, bytes);
2403 		if (do_swap_account)
2404 			res_counter_uncharge(&old->memsw, bytes);
2405 		stock->nr_pages = 0;
2406 	}
2407 	stock->cached = NULL;
2408 }
2409 
2410 /*
2411  * This must be called under preempt disabled or must be called by
2412  * a thread which is pinned to local cpu.
2413  */
2414 static void drain_local_stock(struct work_struct *dummy)
2415 {
2416 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2417 	drain_stock(stock);
2418 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2419 }
2420 
2421 static void __init memcg_stock_init(void)
2422 {
2423 	int cpu;
2424 
2425 	for_each_possible_cpu(cpu) {
2426 		struct memcg_stock_pcp *stock =
2427 					&per_cpu(memcg_stock, cpu);
2428 		INIT_WORK(&stock->work, drain_local_stock);
2429 	}
2430 }
2431 
2432 /*
2433  * Cache charges(val) which is from res_counter, to local per_cpu area.
2434  * This will be consumed by consume_stock() function, later.
2435  */
2436 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2437 {
2438 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2439 
2440 	if (stock->cached != memcg) { /* reset if necessary */
2441 		drain_stock(stock);
2442 		stock->cached = memcg;
2443 	}
2444 	stock->nr_pages += nr_pages;
2445 	put_cpu_var(memcg_stock);
2446 }
2447 
2448 /*
2449  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2450  * of the hierarchy under it. sync flag says whether we should block
2451  * until the work is done.
2452  */
2453 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2454 {
2455 	int cpu, curcpu;
2456 
2457 	/* Notify other cpus that system-wide "drain" is running */
2458 	get_online_cpus();
2459 	curcpu = get_cpu();
2460 	for_each_online_cpu(cpu) {
2461 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2462 		struct mem_cgroup *memcg;
2463 
2464 		memcg = stock->cached;
2465 		if (!memcg || !stock->nr_pages)
2466 			continue;
2467 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2468 			continue;
2469 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2470 			if (cpu == curcpu)
2471 				drain_local_stock(&stock->work);
2472 			else
2473 				schedule_work_on(cpu, &stock->work);
2474 		}
2475 	}
2476 	put_cpu();
2477 
2478 	if (!sync)
2479 		goto out;
2480 
2481 	for_each_online_cpu(cpu) {
2482 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2483 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2484 			flush_work(&stock->work);
2485 	}
2486 out:
2487 	put_online_cpus();
2488 }
2489 
2490 /*
2491  * Tries to drain stocked charges in other cpus. This function is asynchronous
2492  * and just put a work per cpu for draining localy on each cpu. Caller can
2493  * expects some charges will be back to res_counter later but cannot wait for
2494  * it.
2495  */
2496 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2497 {
2498 	/*
2499 	 * If someone calls draining, avoid adding more kworker runs.
2500 	 */
2501 	if (!mutex_trylock(&percpu_charge_mutex))
2502 		return;
2503 	drain_all_stock(root_memcg, false);
2504 	mutex_unlock(&percpu_charge_mutex);
2505 }
2506 
2507 /* This is a synchronous drain interface. */
2508 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2509 {
2510 	/* called when force_empty is called */
2511 	mutex_lock(&percpu_charge_mutex);
2512 	drain_all_stock(root_memcg, true);
2513 	mutex_unlock(&percpu_charge_mutex);
2514 }
2515 
2516 /*
2517  * This function drains percpu counter value from DEAD cpu and
2518  * move it to local cpu. Note that this function can be preempted.
2519  */
2520 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2521 {
2522 	int i;
2523 
2524 	spin_lock(&memcg->pcp_counter_lock);
2525 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2526 		long x = per_cpu(memcg->stat->count[i], cpu);
2527 
2528 		per_cpu(memcg->stat->count[i], cpu) = 0;
2529 		memcg->nocpu_base.count[i] += x;
2530 	}
2531 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2532 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2533 
2534 		per_cpu(memcg->stat->events[i], cpu) = 0;
2535 		memcg->nocpu_base.events[i] += x;
2536 	}
2537 	spin_unlock(&memcg->pcp_counter_lock);
2538 }
2539 
2540 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2541 					unsigned long action,
2542 					void *hcpu)
2543 {
2544 	int cpu = (unsigned long)hcpu;
2545 	struct memcg_stock_pcp *stock;
2546 	struct mem_cgroup *iter;
2547 
2548 	if (action == CPU_ONLINE)
2549 		return NOTIFY_OK;
2550 
2551 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2552 		return NOTIFY_OK;
2553 
2554 	for_each_mem_cgroup(iter)
2555 		mem_cgroup_drain_pcp_counter(iter, cpu);
2556 
2557 	stock = &per_cpu(memcg_stock, cpu);
2558 	drain_stock(stock);
2559 	return NOTIFY_OK;
2560 }
2561 
2562 
2563 /* See __mem_cgroup_try_charge() for details */
2564 enum {
2565 	CHARGE_OK,		/* success */
2566 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2567 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2568 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2569 };
2570 
2571 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2572 				unsigned int nr_pages, unsigned int min_pages,
2573 				bool invoke_oom)
2574 {
2575 	unsigned long csize = nr_pages * PAGE_SIZE;
2576 	struct mem_cgroup *mem_over_limit;
2577 	struct res_counter *fail_res;
2578 	unsigned long flags = 0;
2579 	int ret;
2580 
2581 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2582 
2583 	if (likely(!ret)) {
2584 		if (!do_swap_account)
2585 			return CHARGE_OK;
2586 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2587 		if (likely(!ret))
2588 			return CHARGE_OK;
2589 
2590 		res_counter_uncharge(&memcg->res, csize);
2591 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2592 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2593 	} else
2594 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2595 	/*
2596 	 * Never reclaim on behalf of optional batching, retry with a
2597 	 * single page instead.
2598 	 */
2599 	if (nr_pages > min_pages)
2600 		return CHARGE_RETRY;
2601 
2602 	if (!(gfp_mask & __GFP_WAIT))
2603 		return CHARGE_WOULDBLOCK;
2604 
2605 	if (gfp_mask & __GFP_NORETRY)
2606 		return CHARGE_NOMEM;
2607 
2608 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2609 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2610 		return CHARGE_RETRY;
2611 	/*
2612 	 * Even though the limit is exceeded at this point, reclaim
2613 	 * may have been able to free some pages.  Retry the charge
2614 	 * before killing the task.
2615 	 *
2616 	 * Only for regular pages, though: huge pages are rather
2617 	 * unlikely to succeed so close to the limit, and we fall back
2618 	 * to regular pages anyway in case of failure.
2619 	 */
2620 	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2621 		return CHARGE_RETRY;
2622 
2623 	/*
2624 	 * At task move, charge accounts can be doubly counted. So, it's
2625 	 * better to wait until the end of task_move if something is going on.
2626 	 */
2627 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2628 		return CHARGE_RETRY;
2629 
2630 	if (invoke_oom)
2631 		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2632 
2633 	return CHARGE_NOMEM;
2634 }
2635 
2636 /*
2637  * __mem_cgroup_try_charge() does
2638  * 1. detect memcg to be charged against from passed *mm and *ptr,
2639  * 2. update res_counter
2640  * 3. call memory reclaim if necessary.
2641  *
2642  * In some special case, if the task is fatal, fatal_signal_pending() or
2643  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2644  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2645  * as possible without any hazards. 2: all pages should have a valid
2646  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2647  * pointer, that is treated as a charge to root_mem_cgroup.
2648  *
2649  * So __mem_cgroup_try_charge() will return
2650  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2651  *  -ENOMEM ...  charge failure because of resource limits.
2652  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2653  *
2654  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2655  * the oom-killer can be invoked.
2656  */
2657 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2658 				   gfp_t gfp_mask,
2659 				   unsigned int nr_pages,
2660 				   struct mem_cgroup **ptr,
2661 				   bool oom)
2662 {
2663 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2664 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2665 	struct mem_cgroup *memcg = NULL;
2666 	int ret;
2667 
2668 	/*
2669 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2670 	 * in system level. So, allow to go ahead dying process in addition to
2671 	 * MEMDIE process.
2672 	 */
2673 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2674 		     || fatal_signal_pending(current)))
2675 		goto bypass;
2676 
2677 	if (unlikely(task_in_memcg_oom(current)))
2678 		goto bypass;
2679 
2680 	/*
2681 	 * We always charge the cgroup the mm_struct belongs to.
2682 	 * The mm_struct's mem_cgroup changes on task migration if the
2683 	 * thread group leader migrates. It's possible that mm is not
2684 	 * set, if so charge the root memcg (happens for pagecache usage).
2685 	 */
2686 	if (!*ptr && !mm)
2687 		*ptr = root_mem_cgroup;
2688 again:
2689 	if (*ptr) { /* css should be a valid one */
2690 		memcg = *ptr;
2691 		if (mem_cgroup_is_root(memcg))
2692 			goto done;
2693 		if (consume_stock(memcg, nr_pages))
2694 			goto done;
2695 		css_get(&memcg->css);
2696 	} else {
2697 		struct task_struct *p;
2698 
2699 		rcu_read_lock();
2700 		p = rcu_dereference(mm->owner);
2701 		/*
2702 		 * Because we don't have task_lock(), "p" can exit.
2703 		 * In that case, "memcg" can point to root or p can be NULL with
2704 		 * race with swapoff. Then, we have small risk of mis-accouning.
2705 		 * But such kind of mis-account by race always happens because
2706 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2707 		 * small race, here.
2708 		 * (*) swapoff at el will charge against mm-struct not against
2709 		 * task-struct. So, mm->owner can be NULL.
2710 		 */
2711 		memcg = mem_cgroup_from_task(p);
2712 		if (!memcg)
2713 			memcg = root_mem_cgroup;
2714 		if (mem_cgroup_is_root(memcg)) {
2715 			rcu_read_unlock();
2716 			goto done;
2717 		}
2718 		if (consume_stock(memcg, nr_pages)) {
2719 			/*
2720 			 * It seems dagerous to access memcg without css_get().
2721 			 * But considering how consume_stok works, it's not
2722 			 * necessary. If consume_stock success, some charges
2723 			 * from this memcg are cached on this cpu. So, we
2724 			 * don't need to call css_get()/css_tryget() before
2725 			 * calling consume_stock().
2726 			 */
2727 			rcu_read_unlock();
2728 			goto done;
2729 		}
2730 		/* after here, we may be blocked. we need to get refcnt */
2731 		if (!css_tryget(&memcg->css)) {
2732 			rcu_read_unlock();
2733 			goto again;
2734 		}
2735 		rcu_read_unlock();
2736 	}
2737 
2738 	do {
2739 		bool invoke_oom = oom && !nr_oom_retries;
2740 
2741 		/* If killed, bypass charge */
2742 		if (fatal_signal_pending(current)) {
2743 			css_put(&memcg->css);
2744 			goto bypass;
2745 		}
2746 
2747 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2748 					   nr_pages, invoke_oom);
2749 		switch (ret) {
2750 		case CHARGE_OK:
2751 			break;
2752 		case CHARGE_RETRY: /* not in OOM situation but retry */
2753 			batch = nr_pages;
2754 			css_put(&memcg->css);
2755 			memcg = NULL;
2756 			goto again;
2757 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2758 			css_put(&memcg->css);
2759 			goto nomem;
2760 		case CHARGE_NOMEM: /* OOM routine works */
2761 			if (!oom || invoke_oom) {
2762 				css_put(&memcg->css);
2763 				goto nomem;
2764 			}
2765 			nr_oom_retries--;
2766 			break;
2767 		}
2768 	} while (ret != CHARGE_OK);
2769 
2770 	if (batch > nr_pages)
2771 		refill_stock(memcg, batch - nr_pages);
2772 	css_put(&memcg->css);
2773 done:
2774 	*ptr = memcg;
2775 	return 0;
2776 nomem:
2777 	if (!(gfp_mask & __GFP_NOFAIL)) {
2778 		*ptr = NULL;
2779 		return -ENOMEM;
2780 	}
2781 bypass:
2782 	*ptr = root_mem_cgroup;
2783 	return -EINTR;
2784 }
2785 
2786 /*
2787  * Somemtimes we have to undo a charge we got by try_charge().
2788  * This function is for that and do uncharge, put css's refcnt.
2789  * gotten by try_charge().
2790  */
2791 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2792 				       unsigned int nr_pages)
2793 {
2794 	if (!mem_cgroup_is_root(memcg)) {
2795 		unsigned long bytes = nr_pages * PAGE_SIZE;
2796 
2797 		res_counter_uncharge(&memcg->res, bytes);
2798 		if (do_swap_account)
2799 			res_counter_uncharge(&memcg->memsw, bytes);
2800 	}
2801 }
2802 
2803 /*
2804  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2805  * This is useful when moving usage to parent cgroup.
2806  */
2807 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2808 					unsigned int nr_pages)
2809 {
2810 	unsigned long bytes = nr_pages * PAGE_SIZE;
2811 
2812 	if (mem_cgroup_is_root(memcg))
2813 		return;
2814 
2815 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2816 	if (do_swap_account)
2817 		res_counter_uncharge_until(&memcg->memsw,
2818 						memcg->memsw.parent, bytes);
2819 }
2820 
2821 /*
2822  * A helper function to get mem_cgroup from ID. must be called under
2823  * rcu_read_lock().  The caller is responsible for calling css_tryget if
2824  * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2825  * called against removed memcg.)
2826  */
2827 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2828 {
2829 	struct cgroup_subsys_state *css;
2830 
2831 	/* ID 0 is unused ID */
2832 	if (!id)
2833 		return NULL;
2834 	css = css_lookup(&mem_cgroup_subsys, id);
2835 	if (!css)
2836 		return NULL;
2837 	return mem_cgroup_from_css(css);
2838 }
2839 
2840 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2841 {
2842 	struct mem_cgroup *memcg = NULL;
2843 	struct page_cgroup *pc;
2844 	unsigned short id;
2845 	swp_entry_t ent;
2846 
2847 	VM_BUG_ON(!PageLocked(page));
2848 
2849 	pc = lookup_page_cgroup(page);
2850 	lock_page_cgroup(pc);
2851 	if (PageCgroupUsed(pc)) {
2852 		memcg = pc->mem_cgroup;
2853 		if (memcg && !css_tryget(&memcg->css))
2854 			memcg = NULL;
2855 	} else if (PageSwapCache(page)) {
2856 		ent.val = page_private(page);
2857 		id = lookup_swap_cgroup_id(ent);
2858 		rcu_read_lock();
2859 		memcg = mem_cgroup_lookup(id);
2860 		if (memcg && !css_tryget(&memcg->css))
2861 			memcg = NULL;
2862 		rcu_read_unlock();
2863 	}
2864 	unlock_page_cgroup(pc);
2865 	return memcg;
2866 }
2867 
2868 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2869 				       struct page *page,
2870 				       unsigned int nr_pages,
2871 				       enum charge_type ctype,
2872 				       bool lrucare)
2873 {
2874 	struct page_cgroup *pc = lookup_page_cgroup(page);
2875 	struct zone *uninitialized_var(zone);
2876 	struct lruvec *lruvec;
2877 	bool was_on_lru = false;
2878 	bool anon;
2879 
2880 	lock_page_cgroup(pc);
2881 	VM_BUG_ON(PageCgroupUsed(pc));
2882 	/*
2883 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2884 	 * accessed by any other context at this point.
2885 	 */
2886 
2887 	/*
2888 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2889 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2890 	 */
2891 	if (lrucare) {
2892 		zone = page_zone(page);
2893 		spin_lock_irq(&zone->lru_lock);
2894 		if (PageLRU(page)) {
2895 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2896 			ClearPageLRU(page);
2897 			del_page_from_lru_list(page, lruvec, page_lru(page));
2898 			was_on_lru = true;
2899 		}
2900 	}
2901 
2902 	pc->mem_cgroup = memcg;
2903 	/*
2904 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2905 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2906 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2907 	 * before USED bit, we need memory barrier here.
2908 	 * See mem_cgroup_add_lru_list(), etc.
2909 	 */
2910 	smp_wmb();
2911 	SetPageCgroupUsed(pc);
2912 
2913 	if (lrucare) {
2914 		if (was_on_lru) {
2915 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2916 			VM_BUG_ON(PageLRU(page));
2917 			SetPageLRU(page);
2918 			add_page_to_lru_list(page, lruvec, page_lru(page));
2919 		}
2920 		spin_unlock_irq(&zone->lru_lock);
2921 	}
2922 
2923 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2924 		anon = true;
2925 	else
2926 		anon = false;
2927 
2928 	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2929 	unlock_page_cgroup(pc);
2930 
2931 	/*
2932 	 * "charge_statistics" updated event counter. Then, check it.
2933 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2934 	 * if they exceeds softlimit.
2935 	 */
2936 	memcg_check_events(memcg, page);
2937 }
2938 
2939 static DEFINE_MUTEX(set_limit_mutex);
2940 
2941 #ifdef CONFIG_MEMCG_KMEM
2942 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2943 {
2944 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2945 		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2946 }
2947 
2948 /*
2949  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2950  * in the memcg_cache_params struct.
2951  */
2952 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2953 {
2954 	struct kmem_cache *cachep;
2955 
2956 	VM_BUG_ON(p->is_root_cache);
2957 	cachep = p->root_cache;
2958 	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2959 }
2960 
2961 #ifdef CONFIG_SLABINFO
2962 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2963 				    struct cftype *cft, struct seq_file *m)
2964 {
2965 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2966 	struct memcg_cache_params *params;
2967 
2968 	if (!memcg_can_account_kmem(memcg))
2969 		return -EIO;
2970 
2971 	print_slabinfo_header(m);
2972 
2973 	mutex_lock(&memcg->slab_caches_mutex);
2974 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2975 		cache_show(memcg_params_to_cache(params), m);
2976 	mutex_unlock(&memcg->slab_caches_mutex);
2977 
2978 	return 0;
2979 }
2980 #endif
2981 
2982 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2983 {
2984 	struct res_counter *fail_res;
2985 	struct mem_cgroup *_memcg;
2986 	int ret = 0;
2987 	bool may_oom;
2988 
2989 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2990 	if (ret)
2991 		return ret;
2992 
2993 	/*
2994 	 * Conditions under which we can wait for the oom_killer. Those are
2995 	 * the same conditions tested by the core page allocator
2996 	 */
2997 	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2998 
2999 	_memcg = memcg;
3000 	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3001 				      &_memcg, may_oom);
3002 
3003 	if (ret == -EINTR)  {
3004 		/*
3005 		 * __mem_cgroup_try_charge() chosed to bypass to root due to
3006 		 * OOM kill or fatal signal.  Since our only options are to
3007 		 * either fail the allocation or charge it to this cgroup, do
3008 		 * it as a temporary condition. But we can't fail. From a
3009 		 * kmem/slab perspective, the cache has already been selected,
3010 		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3011 		 * our minds.
3012 		 *
3013 		 * This condition will only trigger if the task entered
3014 		 * memcg_charge_kmem in a sane state, but was OOM-killed during
3015 		 * __mem_cgroup_try_charge() above. Tasks that were already
3016 		 * dying when the allocation triggers should have been already
3017 		 * directed to the root cgroup in memcontrol.h
3018 		 */
3019 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
3020 		if (do_swap_account)
3021 			res_counter_charge_nofail(&memcg->memsw, size,
3022 						  &fail_res);
3023 		ret = 0;
3024 	} else if (ret)
3025 		res_counter_uncharge(&memcg->kmem, size);
3026 
3027 	return ret;
3028 }
3029 
3030 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3031 {
3032 	res_counter_uncharge(&memcg->res, size);
3033 	if (do_swap_account)
3034 		res_counter_uncharge(&memcg->memsw, size);
3035 
3036 	/* Not down to 0 */
3037 	if (res_counter_uncharge(&memcg->kmem, size))
3038 		return;
3039 
3040 	/*
3041 	 * Releases a reference taken in kmem_cgroup_css_offline in case
3042 	 * this last uncharge is racing with the offlining code or it is
3043 	 * outliving the memcg existence.
3044 	 *
3045 	 * The memory barrier imposed by test&clear is paired with the
3046 	 * explicit one in memcg_kmem_mark_dead().
3047 	 */
3048 	if (memcg_kmem_test_and_clear_dead(memcg))
3049 		css_put(&memcg->css);
3050 }
3051 
3052 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3053 {
3054 	if (!memcg)
3055 		return;
3056 
3057 	mutex_lock(&memcg->slab_caches_mutex);
3058 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3059 	mutex_unlock(&memcg->slab_caches_mutex);
3060 }
3061 
3062 /*
3063  * helper for acessing a memcg's index. It will be used as an index in the
3064  * child cache array in kmem_cache, and also to derive its name. This function
3065  * will return -1 when this is not a kmem-limited memcg.
3066  */
3067 int memcg_cache_id(struct mem_cgroup *memcg)
3068 {
3069 	return memcg ? memcg->kmemcg_id : -1;
3070 }
3071 
3072 /*
3073  * This ends up being protected by the set_limit mutex, during normal
3074  * operation, because that is its main call site.
3075  *
3076  * But when we create a new cache, we can call this as well if its parent
3077  * is kmem-limited. That will have to hold set_limit_mutex as well.
3078  */
3079 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3080 {
3081 	int num, ret;
3082 
3083 	num = ida_simple_get(&kmem_limited_groups,
3084 				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3085 	if (num < 0)
3086 		return num;
3087 	/*
3088 	 * After this point, kmem_accounted (that we test atomically in
3089 	 * the beginning of this conditional), is no longer 0. This
3090 	 * guarantees only one process will set the following boolean
3091 	 * to true. We don't need test_and_set because we're protected
3092 	 * by the set_limit_mutex anyway.
3093 	 */
3094 	memcg_kmem_set_activated(memcg);
3095 
3096 	ret = memcg_update_all_caches(num+1);
3097 	if (ret) {
3098 		ida_simple_remove(&kmem_limited_groups, num);
3099 		memcg_kmem_clear_activated(memcg);
3100 		return ret;
3101 	}
3102 
3103 	memcg->kmemcg_id = num;
3104 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3105 	mutex_init(&memcg->slab_caches_mutex);
3106 	return 0;
3107 }
3108 
3109 static size_t memcg_caches_array_size(int num_groups)
3110 {
3111 	ssize_t size;
3112 	if (num_groups <= 0)
3113 		return 0;
3114 
3115 	size = 2 * num_groups;
3116 	if (size < MEMCG_CACHES_MIN_SIZE)
3117 		size = MEMCG_CACHES_MIN_SIZE;
3118 	else if (size > MEMCG_CACHES_MAX_SIZE)
3119 		size = MEMCG_CACHES_MAX_SIZE;
3120 
3121 	return size;
3122 }
3123 
3124 /*
3125  * We should update the current array size iff all caches updates succeed. This
3126  * can only be done from the slab side. The slab mutex needs to be held when
3127  * calling this.
3128  */
3129 void memcg_update_array_size(int num)
3130 {
3131 	if (num > memcg_limited_groups_array_size)
3132 		memcg_limited_groups_array_size = memcg_caches_array_size(num);
3133 }
3134 
3135 static void kmem_cache_destroy_work_func(struct work_struct *w);
3136 
3137 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3138 {
3139 	struct memcg_cache_params *cur_params = s->memcg_params;
3140 
3141 	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3142 
3143 	if (num_groups > memcg_limited_groups_array_size) {
3144 		int i;
3145 		ssize_t size = memcg_caches_array_size(num_groups);
3146 
3147 		size *= sizeof(void *);
3148 		size += offsetof(struct memcg_cache_params, memcg_caches);
3149 
3150 		s->memcg_params = kzalloc(size, GFP_KERNEL);
3151 		if (!s->memcg_params) {
3152 			s->memcg_params = cur_params;
3153 			return -ENOMEM;
3154 		}
3155 
3156 		s->memcg_params->is_root_cache = true;
3157 
3158 		/*
3159 		 * There is the chance it will be bigger than
3160 		 * memcg_limited_groups_array_size, if we failed an allocation
3161 		 * in a cache, in which case all caches updated before it, will
3162 		 * have a bigger array.
3163 		 *
3164 		 * But if that is the case, the data after
3165 		 * memcg_limited_groups_array_size is certainly unused
3166 		 */
3167 		for (i = 0; i < memcg_limited_groups_array_size; i++) {
3168 			if (!cur_params->memcg_caches[i])
3169 				continue;
3170 			s->memcg_params->memcg_caches[i] =
3171 						cur_params->memcg_caches[i];
3172 		}
3173 
3174 		/*
3175 		 * Ideally, we would wait until all caches succeed, and only
3176 		 * then free the old one. But this is not worth the extra
3177 		 * pointer per-cache we'd have to have for this.
3178 		 *
3179 		 * It is not a big deal if some caches are left with a size
3180 		 * bigger than the others. And all updates will reset this
3181 		 * anyway.
3182 		 */
3183 		kfree(cur_params);
3184 	}
3185 	return 0;
3186 }
3187 
3188 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3189 			 struct kmem_cache *root_cache)
3190 {
3191 	size_t size;
3192 
3193 	if (!memcg_kmem_enabled())
3194 		return 0;
3195 
3196 	if (!memcg) {
3197 		size = offsetof(struct memcg_cache_params, memcg_caches);
3198 		size += memcg_limited_groups_array_size * sizeof(void *);
3199 	} else
3200 		size = sizeof(struct memcg_cache_params);
3201 
3202 	s->memcg_params = kzalloc(size, GFP_KERNEL);
3203 	if (!s->memcg_params)
3204 		return -ENOMEM;
3205 
3206 	if (memcg) {
3207 		s->memcg_params->memcg = memcg;
3208 		s->memcg_params->root_cache = root_cache;
3209 		INIT_WORK(&s->memcg_params->destroy,
3210 				kmem_cache_destroy_work_func);
3211 	} else
3212 		s->memcg_params->is_root_cache = true;
3213 
3214 	return 0;
3215 }
3216 
3217 void memcg_release_cache(struct kmem_cache *s)
3218 {
3219 	struct kmem_cache *root;
3220 	struct mem_cgroup *memcg;
3221 	int id;
3222 
3223 	/*
3224 	 * This happens, for instance, when a root cache goes away before we
3225 	 * add any memcg.
3226 	 */
3227 	if (!s->memcg_params)
3228 		return;
3229 
3230 	if (s->memcg_params->is_root_cache)
3231 		goto out;
3232 
3233 	memcg = s->memcg_params->memcg;
3234 	id  = memcg_cache_id(memcg);
3235 
3236 	root = s->memcg_params->root_cache;
3237 	root->memcg_params->memcg_caches[id] = NULL;
3238 
3239 	mutex_lock(&memcg->slab_caches_mutex);
3240 	list_del(&s->memcg_params->list);
3241 	mutex_unlock(&memcg->slab_caches_mutex);
3242 
3243 	css_put(&memcg->css);
3244 out:
3245 	kfree(s->memcg_params);
3246 }
3247 
3248 /*
3249  * During the creation a new cache, we need to disable our accounting mechanism
3250  * altogether. This is true even if we are not creating, but rather just
3251  * enqueing new caches to be created.
3252  *
3253  * This is because that process will trigger allocations; some visible, like
3254  * explicit kmallocs to auxiliary data structures, name strings and internal
3255  * cache structures; some well concealed, like INIT_WORK() that can allocate
3256  * objects during debug.
3257  *
3258  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3259  * to it. This may not be a bounded recursion: since the first cache creation
3260  * failed to complete (waiting on the allocation), we'll just try to create the
3261  * cache again, failing at the same point.
3262  *
3263  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3264  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3265  * inside the following two functions.
3266  */
3267 static inline void memcg_stop_kmem_account(void)
3268 {
3269 	VM_BUG_ON(!current->mm);
3270 	current->memcg_kmem_skip_account++;
3271 }
3272 
3273 static inline void memcg_resume_kmem_account(void)
3274 {
3275 	VM_BUG_ON(!current->mm);
3276 	current->memcg_kmem_skip_account--;
3277 }
3278 
3279 static void kmem_cache_destroy_work_func(struct work_struct *w)
3280 {
3281 	struct kmem_cache *cachep;
3282 	struct memcg_cache_params *p;
3283 
3284 	p = container_of(w, struct memcg_cache_params, destroy);
3285 
3286 	cachep = memcg_params_to_cache(p);
3287 
3288 	/*
3289 	 * If we get down to 0 after shrink, we could delete right away.
3290 	 * However, memcg_release_pages() already puts us back in the workqueue
3291 	 * in that case. If we proceed deleting, we'll get a dangling
3292 	 * reference, and removing the object from the workqueue in that case
3293 	 * is unnecessary complication. We are not a fast path.
3294 	 *
3295 	 * Note that this case is fundamentally different from racing with
3296 	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3297 	 * kmem_cache_shrink, not only we would be reinserting a dead cache
3298 	 * into the queue, but doing so from inside the worker racing to
3299 	 * destroy it.
3300 	 *
3301 	 * So if we aren't down to zero, we'll just schedule a worker and try
3302 	 * again
3303 	 */
3304 	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3305 		kmem_cache_shrink(cachep);
3306 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3307 			return;
3308 	} else
3309 		kmem_cache_destroy(cachep);
3310 }
3311 
3312 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3313 {
3314 	if (!cachep->memcg_params->dead)
3315 		return;
3316 
3317 	/*
3318 	 * There are many ways in which we can get here.
3319 	 *
3320 	 * We can get to a memory-pressure situation while the delayed work is
3321 	 * still pending to run. The vmscan shrinkers can then release all
3322 	 * cache memory and get us to destruction. If this is the case, we'll
3323 	 * be executed twice, which is a bug (the second time will execute over
3324 	 * bogus data). In this case, cancelling the work should be fine.
3325 	 *
3326 	 * But we can also get here from the worker itself, if
3327 	 * kmem_cache_shrink is enough to shake all the remaining objects and
3328 	 * get the page count to 0. In this case, we'll deadlock if we try to
3329 	 * cancel the work (the worker runs with an internal lock held, which
3330 	 * is the same lock we would hold for cancel_work_sync().)
3331 	 *
3332 	 * Since we can't possibly know who got us here, just refrain from
3333 	 * running if there is already work pending
3334 	 */
3335 	if (work_pending(&cachep->memcg_params->destroy))
3336 		return;
3337 	/*
3338 	 * We have to defer the actual destroying to a workqueue, because
3339 	 * we might currently be in a context that cannot sleep.
3340 	 */
3341 	schedule_work(&cachep->memcg_params->destroy);
3342 }
3343 
3344 /*
3345  * This lock protects updaters, not readers. We want readers to be as fast as
3346  * they can, and they will either see NULL or a valid cache value. Our model
3347  * allow them to see NULL, in which case the root memcg will be selected.
3348  *
3349  * We need this lock because multiple allocations to the same cache from a non
3350  * will span more than one worker. Only one of them can create the cache.
3351  */
3352 static DEFINE_MUTEX(memcg_cache_mutex);
3353 
3354 /*
3355  * Called with memcg_cache_mutex held
3356  */
3357 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3358 					 struct kmem_cache *s)
3359 {
3360 	struct kmem_cache *new;
3361 	static char *tmp_name = NULL;
3362 
3363 	lockdep_assert_held(&memcg_cache_mutex);
3364 
3365 	/*
3366 	 * kmem_cache_create_memcg duplicates the given name and
3367 	 * cgroup_name for this name requires RCU context.
3368 	 * This static temporary buffer is used to prevent from
3369 	 * pointless shortliving allocation.
3370 	 */
3371 	if (!tmp_name) {
3372 		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3373 		if (!tmp_name)
3374 			return NULL;
3375 	}
3376 
3377 	rcu_read_lock();
3378 	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3379 			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3380 	rcu_read_unlock();
3381 
3382 	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3383 				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3384 
3385 	if (new)
3386 		new->allocflags |= __GFP_KMEMCG;
3387 
3388 	return new;
3389 }
3390 
3391 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3392 						  struct kmem_cache *cachep)
3393 {
3394 	struct kmem_cache *new_cachep;
3395 	int idx;
3396 
3397 	BUG_ON(!memcg_can_account_kmem(memcg));
3398 
3399 	idx = memcg_cache_id(memcg);
3400 
3401 	mutex_lock(&memcg_cache_mutex);
3402 	new_cachep = cachep->memcg_params->memcg_caches[idx];
3403 	if (new_cachep) {
3404 		css_put(&memcg->css);
3405 		goto out;
3406 	}
3407 
3408 	new_cachep = kmem_cache_dup(memcg, cachep);
3409 	if (new_cachep == NULL) {
3410 		new_cachep = cachep;
3411 		css_put(&memcg->css);
3412 		goto out;
3413 	}
3414 
3415 	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3416 
3417 	cachep->memcg_params->memcg_caches[idx] = new_cachep;
3418 	/*
3419 	 * the readers won't lock, make sure everybody sees the updated value,
3420 	 * so they won't put stuff in the queue again for no reason
3421 	 */
3422 	wmb();
3423 out:
3424 	mutex_unlock(&memcg_cache_mutex);
3425 	return new_cachep;
3426 }
3427 
3428 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3429 {
3430 	struct kmem_cache *c;
3431 	int i;
3432 
3433 	if (!s->memcg_params)
3434 		return;
3435 	if (!s->memcg_params->is_root_cache)
3436 		return;
3437 
3438 	/*
3439 	 * If the cache is being destroyed, we trust that there is no one else
3440 	 * requesting objects from it. Even if there are, the sanity checks in
3441 	 * kmem_cache_destroy should caught this ill-case.
3442 	 *
3443 	 * Still, we don't want anyone else freeing memcg_caches under our
3444 	 * noses, which can happen if a new memcg comes to life. As usual,
3445 	 * we'll take the set_limit_mutex to protect ourselves against this.
3446 	 */
3447 	mutex_lock(&set_limit_mutex);
3448 	for (i = 0; i < memcg_limited_groups_array_size; i++) {
3449 		c = s->memcg_params->memcg_caches[i];
3450 		if (!c)
3451 			continue;
3452 
3453 		/*
3454 		 * We will now manually delete the caches, so to avoid races
3455 		 * we need to cancel all pending destruction workers and
3456 		 * proceed with destruction ourselves.
3457 		 *
3458 		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3459 		 * and that could spawn the workers again: it is likely that
3460 		 * the cache still have active pages until this very moment.
3461 		 * This would lead us back to mem_cgroup_destroy_cache.
3462 		 *
3463 		 * But that will not execute at all if the "dead" flag is not
3464 		 * set, so flip it down to guarantee we are in control.
3465 		 */
3466 		c->memcg_params->dead = false;
3467 		cancel_work_sync(&c->memcg_params->destroy);
3468 		kmem_cache_destroy(c);
3469 	}
3470 	mutex_unlock(&set_limit_mutex);
3471 }
3472 
3473 struct create_work {
3474 	struct mem_cgroup *memcg;
3475 	struct kmem_cache *cachep;
3476 	struct work_struct work;
3477 };
3478 
3479 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3480 {
3481 	struct kmem_cache *cachep;
3482 	struct memcg_cache_params *params;
3483 
3484 	if (!memcg_kmem_is_active(memcg))
3485 		return;
3486 
3487 	mutex_lock(&memcg->slab_caches_mutex);
3488 	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3489 		cachep = memcg_params_to_cache(params);
3490 		cachep->memcg_params->dead = true;
3491 		schedule_work(&cachep->memcg_params->destroy);
3492 	}
3493 	mutex_unlock(&memcg->slab_caches_mutex);
3494 }
3495 
3496 static void memcg_create_cache_work_func(struct work_struct *w)
3497 {
3498 	struct create_work *cw;
3499 
3500 	cw = container_of(w, struct create_work, work);
3501 	memcg_create_kmem_cache(cw->memcg, cw->cachep);
3502 	kfree(cw);
3503 }
3504 
3505 /*
3506  * Enqueue the creation of a per-memcg kmem_cache.
3507  */
3508 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3509 					 struct kmem_cache *cachep)
3510 {
3511 	struct create_work *cw;
3512 
3513 	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3514 	if (cw == NULL) {
3515 		css_put(&memcg->css);
3516 		return;
3517 	}
3518 
3519 	cw->memcg = memcg;
3520 	cw->cachep = cachep;
3521 
3522 	INIT_WORK(&cw->work, memcg_create_cache_work_func);
3523 	schedule_work(&cw->work);
3524 }
3525 
3526 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3527 				       struct kmem_cache *cachep)
3528 {
3529 	/*
3530 	 * We need to stop accounting when we kmalloc, because if the
3531 	 * corresponding kmalloc cache is not yet created, the first allocation
3532 	 * in __memcg_create_cache_enqueue will recurse.
3533 	 *
3534 	 * However, it is better to enclose the whole function. Depending on
3535 	 * the debugging options enabled, INIT_WORK(), for instance, can
3536 	 * trigger an allocation. This too, will make us recurse. Because at
3537 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3538 	 * the safest choice is to do it like this, wrapping the whole function.
3539 	 */
3540 	memcg_stop_kmem_account();
3541 	__memcg_create_cache_enqueue(memcg, cachep);
3542 	memcg_resume_kmem_account();
3543 }
3544 /*
3545  * Return the kmem_cache we're supposed to use for a slab allocation.
3546  * We try to use the current memcg's version of the cache.
3547  *
3548  * If the cache does not exist yet, if we are the first user of it,
3549  * we either create it immediately, if possible, or create it asynchronously
3550  * in a workqueue.
3551  * In the latter case, we will let the current allocation go through with
3552  * the original cache.
3553  *
3554  * Can't be called in interrupt context or from kernel threads.
3555  * This function needs to be called with rcu_read_lock() held.
3556  */
3557 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3558 					  gfp_t gfp)
3559 {
3560 	struct mem_cgroup *memcg;
3561 	int idx;
3562 
3563 	VM_BUG_ON(!cachep->memcg_params);
3564 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3565 
3566 	if (!current->mm || current->memcg_kmem_skip_account)
3567 		return cachep;
3568 
3569 	rcu_read_lock();
3570 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3571 
3572 	if (!memcg_can_account_kmem(memcg))
3573 		goto out;
3574 
3575 	idx = memcg_cache_id(memcg);
3576 
3577 	/*
3578 	 * barrier to mare sure we're always seeing the up to date value.  The
3579 	 * code updating memcg_caches will issue a write barrier to match this.
3580 	 */
3581 	read_barrier_depends();
3582 	if (likely(cachep->memcg_params->memcg_caches[idx])) {
3583 		cachep = cachep->memcg_params->memcg_caches[idx];
3584 		goto out;
3585 	}
3586 
3587 	/* The corresponding put will be done in the workqueue. */
3588 	if (!css_tryget(&memcg->css))
3589 		goto out;
3590 	rcu_read_unlock();
3591 
3592 	/*
3593 	 * If we are in a safe context (can wait, and not in interrupt
3594 	 * context), we could be be predictable and return right away.
3595 	 * This would guarantee that the allocation being performed
3596 	 * already belongs in the new cache.
3597 	 *
3598 	 * However, there are some clashes that can arrive from locking.
3599 	 * For instance, because we acquire the slab_mutex while doing
3600 	 * kmem_cache_dup, this means no further allocation could happen
3601 	 * with the slab_mutex held.
3602 	 *
3603 	 * Also, because cache creation issue get_online_cpus(), this
3604 	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3605 	 * that ends up reversed during cpu hotplug. (cpuset allocates
3606 	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3607 	 * better to defer everything.
3608 	 */
3609 	memcg_create_cache_enqueue(memcg, cachep);
3610 	return cachep;
3611 out:
3612 	rcu_read_unlock();
3613 	return cachep;
3614 }
3615 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3616 
3617 /*
3618  * We need to verify if the allocation against current->mm->owner's memcg is
3619  * possible for the given order. But the page is not allocated yet, so we'll
3620  * need a further commit step to do the final arrangements.
3621  *
3622  * It is possible for the task to switch cgroups in this mean time, so at
3623  * commit time, we can't rely on task conversion any longer.  We'll then use
3624  * the handle argument to return to the caller which cgroup we should commit
3625  * against. We could also return the memcg directly and avoid the pointer
3626  * passing, but a boolean return value gives better semantics considering
3627  * the compiled-out case as well.
3628  *
3629  * Returning true means the allocation is possible.
3630  */
3631 bool
3632 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3633 {
3634 	struct mem_cgroup *memcg;
3635 	int ret;
3636 
3637 	*_memcg = NULL;
3638 
3639 	/*
3640 	 * Disabling accounting is only relevant for some specific memcg
3641 	 * internal allocations. Therefore we would initially not have such
3642 	 * check here, since direct calls to the page allocator that are marked
3643 	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3644 	 * concerned with cache allocations, and by having this test at
3645 	 * memcg_kmem_get_cache, we are already able to relay the allocation to
3646 	 * the root cache and bypass the memcg cache altogether.
3647 	 *
3648 	 * There is one exception, though: the SLUB allocator does not create
3649 	 * large order caches, but rather service large kmallocs directly from
3650 	 * the page allocator. Therefore, the following sequence when backed by
3651 	 * the SLUB allocator:
3652 	 *
3653 	 *	memcg_stop_kmem_account();
3654 	 *	kmalloc(<large_number>)
3655 	 *	memcg_resume_kmem_account();
3656 	 *
3657 	 * would effectively ignore the fact that we should skip accounting,
3658 	 * since it will drive us directly to this function without passing
3659 	 * through the cache selector memcg_kmem_get_cache. Such large
3660 	 * allocations are extremely rare but can happen, for instance, for the
3661 	 * cache arrays. We bring this test here.
3662 	 */
3663 	if (!current->mm || current->memcg_kmem_skip_account)
3664 		return true;
3665 
3666 	memcg = try_get_mem_cgroup_from_mm(current->mm);
3667 
3668 	/*
3669 	 * very rare case described in mem_cgroup_from_task. Unfortunately there
3670 	 * isn't much we can do without complicating this too much, and it would
3671 	 * be gfp-dependent anyway. Just let it go
3672 	 */
3673 	if (unlikely(!memcg))
3674 		return true;
3675 
3676 	if (!memcg_can_account_kmem(memcg)) {
3677 		css_put(&memcg->css);
3678 		return true;
3679 	}
3680 
3681 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3682 	if (!ret)
3683 		*_memcg = memcg;
3684 
3685 	css_put(&memcg->css);
3686 	return (ret == 0);
3687 }
3688 
3689 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3690 			      int order)
3691 {
3692 	struct page_cgroup *pc;
3693 
3694 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3695 
3696 	/* The page allocation failed. Revert */
3697 	if (!page) {
3698 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3699 		return;
3700 	}
3701 
3702 	pc = lookup_page_cgroup(page);
3703 	lock_page_cgroup(pc);
3704 	pc->mem_cgroup = memcg;
3705 	SetPageCgroupUsed(pc);
3706 	unlock_page_cgroup(pc);
3707 }
3708 
3709 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3710 {
3711 	struct mem_cgroup *memcg = NULL;
3712 	struct page_cgroup *pc;
3713 
3714 
3715 	pc = lookup_page_cgroup(page);
3716 	/*
3717 	 * Fast unlocked return. Theoretically might have changed, have to
3718 	 * check again after locking.
3719 	 */
3720 	if (!PageCgroupUsed(pc))
3721 		return;
3722 
3723 	lock_page_cgroup(pc);
3724 	if (PageCgroupUsed(pc)) {
3725 		memcg = pc->mem_cgroup;
3726 		ClearPageCgroupUsed(pc);
3727 	}
3728 	unlock_page_cgroup(pc);
3729 
3730 	/*
3731 	 * We trust that only if there is a memcg associated with the page, it
3732 	 * is a valid allocation
3733 	 */
3734 	if (!memcg)
3735 		return;
3736 
3737 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3738 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3739 }
3740 #else
3741 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3742 {
3743 }
3744 #endif /* CONFIG_MEMCG_KMEM */
3745 
3746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3747 
3748 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3749 /*
3750  * Because tail pages are not marked as "used", set it. We're under
3751  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3752  * charge/uncharge will be never happen and move_account() is done under
3753  * compound_lock(), so we don't have to take care of races.
3754  */
3755 void mem_cgroup_split_huge_fixup(struct page *head)
3756 {
3757 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3758 	struct page_cgroup *pc;
3759 	struct mem_cgroup *memcg;
3760 	int i;
3761 
3762 	if (mem_cgroup_disabled())
3763 		return;
3764 
3765 	memcg = head_pc->mem_cgroup;
3766 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3767 		pc = head_pc + i;
3768 		pc->mem_cgroup = memcg;
3769 		smp_wmb();/* see __commit_charge() */
3770 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3771 	}
3772 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3773 		       HPAGE_PMD_NR);
3774 }
3775 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3776 
3777 static inline
3778 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3779 					struct mem_cgroup *to,
3780 					unsigned int nr_pages,
3781 					enum mem_cgroup_stat_index idx)
3782 {
3783 	/* Update stat data for mem_cgroup */
3784 	preempt_disable();
3785 	__this_cpu_sub(from->stat->count[idx], nr_pages);
3786 	__this_cpu_add(to->stat->count[idx], nr_pages);
3787 	preempt_enable();
3788 }
3789 
3790 /**
3791  * mem_cgroup_move_account - move account of the page
3792  * @page: the page
3793  * @nr_pages: number of regular pages (>1 for huge pages)
3794  * @pc:	page_cgroup of the page.
3795  * @from: mem_cgroup which the page is moved from.
3796  * @to:	mem_cgroup which the page is moved to. @from != @to.
3797  *
3798  * The caller must confirm following.
3799  * - page is not on LRU (isolate_page() is useful.)
3800  * - compound_lock is held when nr_pages > 1
3801  *
3802  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3803  * from old cgroup.
3804  */
3805 static int mem_cgroup_move_account(struct page *page,
3806 				   unsigned int nr_pages,
3807 				   struct page_cgroup *pc,
3808 				   struct mem_cgroup *from,
3809 				   struct mem_cgroup *to)
3810 {
3811 	unsigned long flags;
3812 	int ret;
3813 	bool anon = PageAnon(page);
3814 
3815 	VM_BUG_ON(from == to);
3816 	VM_BUG_ON(PageLRU(page));
3817 	/*
3818 	 * The page is isolated from LRU. So, collapse function
3819 	 * will not handle this page. But page splitting can happen.
3820 	 * Do this check under compound_page_lock(). The caller should
3821 	 * hold it.
3822 	 */
3823 	ret = -EBUSY;
3824 	if (nr_pages > 1 && !PageTransHuge(page))
3825 		goto out;
3826 
3827 	lock_page_cgroup(pc);
3828 
3829 	ret = -EINVAL;
3830 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3831 		goto unlock;
3832 
3833 	move_lock_mem_cgroup(from, &flags);
3834 
3835 	if (!anon && page_mapped(page))
3836 		mem_cgroup_move_account_page_stat(from, to, nr_pages,
3837 			MEM_CGROUP_STAT_FILE_MAPPED);
3838 
3839 	if (PageWriteback(page))
3840 		mem_cgroup_move_account_page_stat(from, to, nr_pages,
3841 			MEM_CGROUP_STAT_WRITEBACK);
3842 
3843 	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3844 
3845 	/* caller should have done css_get */
3846 	pc->mem_cgroup = to;
3847 	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3848 	move_unlock_mem_cgroup(from, &flags);
3849 	ret = 0;
3850 unlock:
3851 	unlock_page_cgroup(pc);
3852 	/*
3853 	 * check events
3854 	 */
3855 	memcg_check_events(to, page);
3856 	memcg_check_events(from, page);
3857 out:
3858 	return ret;
3859 }
3860 
3861 /**
3862  * mem_cgroup_move_parent - moves page to the parent group
3863  * @page: the page to move
3864  * @pc: page_cgroup of the page
3865  * @child: page's cgroup
3866  *
3867  * move charges to its parent or the root cgroup if the group has no
3868  * parent (aka use_hierarchy==0).
3869  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3870  * mem_cgroup_move_account fails) the failure is always temporary and
3871  * it signals a race with a page removal/uncharge or migration. In the
3872  * first case the page is on the way out and it will vanish from the LRU
3873  * on the next attempt and the call should be retried later.
3874  * Isolation from the LRU fails only if page has been isolated from
3875  * the LRU since we looked at it and that usually means either global
3876  * reclaim or migration going on. The page will either get back to the
3877  * LRU or vanish.
3878  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3879  * (!PageCgroupUsed) or moved to a different group. The page will
3880  * disappear in the next attempt.
3881  */
3882 static int mem_cgroup_move_parent(struct page *page,
3883 				  struct page_cgroup *pc,
3884 				  struct mem_cgroup *child)
3885 {
3886 	struct mem_cgroup *parent;
3887 	unsigned int nr_pages;
3888 	unsigned long uninitialized_var(flags);
3889 	int ret;
3890 
3891 	VM_BUG_ON(mem_cgroup_is_root(child));
3892 
3893 	ret = -EBUSY;
3894 	if (!get_page_unless_zero(page))
3895 		goto out;
3896 	if (isolate_lru_page(page))
3897 		goto put;
3898 
3899 	nr_pages = hpage_nr_pages(page);
3900 
3901 	parent = parent_mem_cgroup(child);
3902 	/*
3903 	 * If no parent, move charges to root cgroup.
3904 	 */
3905 	if (!parent)
3906 		parent = root_mem_cgroup;
3907 
3908 	if (nr_pages > 1) {
3909 		VM_BUG_ON(!PageTransHuge(page));
3910 		flags = compound_lock_irqsave(page);
3911 	}
3912 
3913 	ret = mem_cgroup_move_account(page, nr_pages,
3914 				pc, child, parent);
3915 	if (!ret)
3916 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3917 
3918 	if (nr_pages > 1)
3919 		compound_unlock_irqrestore(page, flags);
3920 	putback_lru_page(page);
3921 put:
3922 	put_page(page);
3923 out:
3924 	return ret;
3925 }
3926 
3927 /*
3928  * Charge the memory controller for page usage.
3929  * Return
3930  * 0 if the charge was successful
3931  * < 0 if the cgroup is over its limit
3932  */
3933 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3934 				gfp_t gfp_mask, enum charge_type ctype)
3935 {
3936 	struct mem_cgroup *memcg = NULL;
3937 	unsigned int nr_pages = 1;
3938 	bool oom = true;
3939 	int ret;
3940 
3941 	if (PageTransHuge(page)) {
3942 		nr_pages <<= compound_order(page);
3943 		VM_BUG_ON(!PageTransHuge(page));
3944 		/*
3945 		 * Never OOM-kill a process for a huge page.  The
3946 		 * fault handler will fall back to regular pages.
3947 		 */
3948 		oom = false;
3949 	}
3950 
3951 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3952 	if (ret == -ENOMEM)
3953 		return ret;
3954 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3955 	return 0;
3956 }
3957 
3958 int mem_cgroup_newpage_charge(struct page *page,
3959 			      struct mm_struct *mm, gfp_t gfp_mask)
3960 {
3961 	if (mem_cgroup_disabled())
3962 		return 0;
3963 	VM_BUG_ON(page_mapped(page));
3964 	VM_BUG_ON(page->mapping && !PageAnon(page));
3965 	VM_BUG_ON(!mm);
3966 	return mem_cgroup_charge_common(page, mm, gfp_mask,
3967 					MEM_CGROUP_CHARGE_TYPE_ANON);
3968 }
3969 
3970 /*
3971  * While swap-in, try_charge -> commit or cancel, the page is locked.
3972  * And when try_charge() successfully returns, one refcnt to memcg without
3973  * struct page_cgroup is acquired. This refcnt will be consumed by
3974  * "commit()" or removed by "cancel()"
3975  */
3976 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3977 					  struct page *page,
3978 					  gfp_t mask,
3979 					  struct mem_cgroup **memcgp)
3980 {
3981 	struct mem_cgroup *memcg;
3982 	struct page_cgroup *pc;
3983 	int ret;
3984 
3985 	pc = lookup_page_cgroup(page);
3986 	/*
3987 	 * Every swap fault against a single page tries to charge the
3988 	 * page, bail as early as possible.  shmem_unuse() encounters
3989 	 * already charged pages, too.  The USED bit is protected by
3990 	 * the page lock, which serializes swap cache removal, which
3991 	 * in turn serializes uncharging.
3992 	 */
3993 	if (PageCgroupUsed(pc))
3994 		return 0;
3995 	if (!do_swap_account)
3996 		goto charge_cur_mm;
3997 	memcg = try_get_mem_cgroup_from_page(page);
3998 	if (!memcg)
3999 		goto charge_cur_mm;
4000 	*memcgp = memcg;
4001 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4002 	css_put(&memcg->css);
4003 	if (ret == -EINTR)
4004 		ret = 0;
4005 	return ret;
4006 charge_cur_mm:
4007 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4008 	if (ret == -EINTR)
4009 		ret = 0;
4010 	return ret;
4011 }
4012 
4013 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4014 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4015 {
4016 	*memcgp = NULL;
4017 	if (mem_cgroup_disabled())
4018 		return 0;
4019 	/*
4020 	 * A racing thread's fault, or swapoff, may have already
4021 	 * updated the pte, and even removed page from swap cache: in
4022 	 * those cases unuse_pte()'s pte_same() test will fail; but
4023 	 * there's also a KSM case which does need to charge the page.
4024 	 */
4025 	if (!PageSwapCache(page)) {
4026 		int ret;
4027 
4028 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4029 		if (ret == -EINTR)
4030 			ret = 0;
4031 		return ret;
4032 	}
4033 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4034 }
4035 
4036 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4037 {
4038 	if (mem_cgroup_disabled())
4039 		return;
4040 	if (!memcg)
4041 		return;
4042 	__mem_cgroup_cancel_charge(memcg, 1);
4043 }
4044 
4045 static void
4046 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4047 					enum charge_type ctype)
4048 {
4049 	if (mem_cgroup_disabled())
4050 		return;
4051 	if (!memcg)
4052 		return;
4053 
4054 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4055 	/*
4056 	 * Now swap is on-memory. This means this page may be
4057 	 * counted both as mem and swap....double count.
4058 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4059 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4060 	 * may call delete_from_swap_cache() before reach here.
4061 	 */
4062 	if (do_swap_account && PageSwapCache(page)) {
4063 		swp_entry_t ent = {.val = page_private(page)};
4064 		mem_cgroup_uncharge_swap(ent);
4065 	}
4066 }
4067 
4068 void mem_cgroup_commit_charge_swapin(struct page *page,
4069 				     struct mem_cgroup *memcg)
4070 {
4071 	__mem_cgroup_commit_charge_swapin(page, memcg,
4072 					  MEM_CGROUP_CHARGE_TYPE_ANON);
4073 }
4074 
4075 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4076 				gfp_t gfp_mask)
4077 {
4078 	struct mem_cgroup *memcg = NULL;
4079 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4080 	int ret;
4081 
4082 	if (mem_cgroup_disabled())
4083 		return 0;
4084 	if (PageCompound(page))
4085 		return 0;
4086 
4087 	if (!PageSwapCache(page))
4088 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4089 	else { /* page is swapcache/shmem */
4090 		ret = __mem_cgroup_try_charge_swapin(mm, page,
4091 						     gfp_mask, &memcg);
4092 		if (!ret)
4093 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
4094 	}
4095 	return ret;
4096 }
4097 
4098 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4099 				   unsigned int nr_pages,
4100 				   const enum charge_type ctype)
4101 {
4102 	struct memcg_batch_info *batch = NULL;
4103 	bool uncharge_memsw = true;
4104 
4105 	/* If swapout, usage of swap doesn't decrease */
4106 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4107 		uncharge_memsw = false;
4108 
4109 	batch = &current->memcg_batch;
4110 	/*
4111 	 * In usual, we do css_get() when we remember memcg pointer.
4112 	 * But in this case, we keep res->usage until end of a series of
4113 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
4114 	 */
4115 	if (!batch->memcg)
4116 		batch->memcg = memcg;
4117 	/*
4118 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4119 	 * In those cases, all pages freed continuously can be expected to be in
4120 	 * the same cgroup and we have chance to coalesce uncharges.
4121 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4122 	 * because we want to do uncharge as soon as possible.
4123 	 */
4124 
4125 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4126 		goto direct_uncharge;
4127 
4128 	if (nr_pages > 1)
4129 		goto direct_uncharge;
4130 
4131 	/*
4132 	 * In typical case, batch->memcg == mem. This means we can
4133 	 * merge a series of uncharges to an uncharge of res_counter.
4134 	 * If not, we uncharge res_counter ony by one.
4135 	 */
4136 	if (batch->memcg != memcg)
4137 		goto direct_uncharge;
4138 	/* remember freed charge and uncharge it later */
4139 	batch->nr_pages++;
4140 	if (uncharge_memsw)
4141 		batch->memsw_nr_pages++;
4142 	return;
4143 direct_uncharge:
4144 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4145 	if (uncharge_memsw)
4146 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4147 	if (unlikely(batch->memcg != memcg))
4148 		memcg_oom_recover(memcg);
4149 }
4150 
4151 /*
4152  * uncharge if !page_mapped(page)
4153  */
4154 static struct mem_cgroup *
4155 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4156 			     bool end_migration)
4157 {
4158 	struct mem_cgroup *memcg = NULL;
4159 	unsigned int nr_pages = 1;
4160 	struct page_cgroup *pc;
4161 	bool anon;
4162 
4163 	if (mem_cgroup_disabled())
4164 		return NULL;
4165 
4166 	if (PageTransHuge(page)) {
4167 		nr_pages <<= compound_order(page);
4168 		VM_BUG_ON(!PageTransHuge(page));
4169 	}
4170 	/*
4171 	 * Check if our page_cgroup is valid
4172 	 */
4173 	pc = lookup_page_cgroup(page);
4174 	if (unlikely(!PageCgroupUsed(pc)))
4175 		return NULL;
4176 
4177 	lock_page_cgroup(pc);
4178 
4179 	memcg = pc->mem_cgroup;
4180 
4181 	if (!PageCgroupUsed(pc))
4182 		goto unlock_out;
4183 
4184 	anon = PageAnon(page);
4185 
4186 	switch (ctype) {
4187 	case MEM_CGROUP_CHARGE_TYPE_ANON:
4188 		/*
4189 		 * Generally PageAnon tells if it's the anon statistics to be
4190 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4191 		 * used before page reached the stage of being marked PageAnon.
4192 		 */
4193 		anon = true;
4194 		/* fallthrough */
4195 	case MEM_CGROUP_CHARGE_TYPE_DROP:
4196 		/* See mem_cgroup_prepare_migration() */
4197 		if (page_mapped(page))
4198 			goto unlock_out;
4199 		/*
4200 		 * Pages under migration may not be uncharged.  But
4201 		 * end_migration() /must/ be the one uncharging the
4202 		 * unused post-migration page and so it has to call
4203 		 * here with the migration bit still set.  See the
4204 		 * res_counter handling below.
4205 		 */
4206 		if (!end_migration && PageCgroupMigration(pc))
4207 			goto unlock_out;
4208 		break;
4209 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4210 		if (!PageAnon(page)) {	/* Shared memory */
4211 			if (page->mapping && !page_is_file_cache(page))
4212 				goto unlock_out;
4213 		} else if (page_mapped(page)) /* Anon */
4214 				goto unlock_out;
4215 		break;
4216 	default:
4217 		break;
4218 	}
4219 
4220 	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4221 
4222 	ClearPageCgroupUsed(pc);
4223 	/*
4224 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4225 	 * freed from LRU. This is safe because uncharged page is expected not
4226 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
4227 	 * special functions.
4228 	 */
4229 
4230 	unlock_page_cgroup(pc);
4231 	/*
4232 	 * even after unlock, we have memcg->res.usage here and this memcg
4233 	 * will never be freed, so it's safe to call css_get().
4234 	 */
4235 	memcg_check_events(memcg, page);
4236 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4237 		mem_cgroup_swap_statistics(memcg, true);
4238 		css_get(&memcg->css);
4239 	}
4240 	/*
4241 	 * Migration does not charge the res_counter for the
4242 	 * replacement page, so leave it alone when phasing out the
4243 	 * page that is unused after the migration.
4244 	 */
4245 	if (!end_migration && !mem_cgroup_is_root(memcg))
4246 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4247 
4248 	return memcg;
4249 
4250 unlock_out:
4251 	unlock_page_cgroup(pc);
4252 	return NULL;
4253 }
4254 
4255 void mem_cgroup_uncharge_page(struct page *page)
4256 {
4257 	/* early check. */
4258 	if (page_mapped(page))
4259 		return;
4260 	VM_BUG_ON(page->mapping && !PageAnon(page));
4261 	/*
4262 	 * If the page is in swap cache, uncharge should be deferred
4263 	 * to the swap path, which also properly accounts swap usage
4264 	 * and handles memcg lifetime.
4265 	 *
4266 	 * Note that this check is not stable and reclaim may add the
4267 	 * page to swap cache at any time after this.  However, if the
4268 	 * page is not in swap cache by the time page->mapcount hits
4269 	 * 0, there won't be any page table references to the swap
4270 	 * slot, and reclaim will free it and not actually write the
4271 	 * page to disk.
4272 	 */
4273 	if (PageSwapCache(page))
4274 		return;
4275 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4276 }
4277 
4278 void mem_cgroup_uncharge_cache_page(struct page *page)
4279 {
4280 	VM_BUG_ON(page_mapped(page));
4281 	VM_BUG_ON(page->mapping);
4282 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4283 }
4284 
4285 /*
4286  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4287  * In that cases, pages are freed continuously and we can expect pages
4288  * are in the same memcg. All these calls itself limits the number of
4289  * pages freed at once, then uncharge_start/end() is called properly.
4290  * This may be called prural(2) times in a context,
4291  */
4292 
4293 void mem_cgroup_uncharge_start(void)
4294 {
4295 	current->memcg_batch.do_batch++;
4296 	/* We can do nest. */
4297 	if (current->memcg_batch.do_batch == 1) {
4298 		current->memcg_batch.memcg = NULL;
4299 		current->memcg_batch.nr_pages = 0;
4300 		current->memcg_batch.memsw_nr_pages = 0;
4301 	}
4302 }
4303 
4304 void mem_cgroup_uncharge_end(void)
4305 {
4306 	struct memcg_batch_info *batch = &current->memcg_batch;
4307 
4308 	if (!batch->do_batch)
4309 		return;
4310 
4311 	batch->do_batch--;
4312 	if (batch->do_batch) /* If stacked, do nothing. */
4313 		return;
4314 
4315 	if (!batch->memcg)
4316 		return;
4317 	/*
4318 	 * This "batch->memcg" is valid without any css_get/put etc...
4319 	 * bacause we hide charges behind us.
4320 	 */
4321 	if (batch->nr_pages)
4322 		res_counter_uncharge(&batch->memcg->res,
4323 				     batch->nr_pages * PAGE_SIZE);
4324 	if (batch->memsw_nr_pages)
4325 		res_counter_uncharge(&batch->memcg->memsw,
4326 				     batch->memsw_nr_pages * PAGE_SIZE);
4327 	memcg_oom_recover(batch->memcg);
4328 	/* forget this pointer (for sanity check) */
4329 	batch->memcg = NULL;
4330 }
4331 
4332 #ifdef CONFIG_SWAP
4333 /*
4334  * called after __delete_from_swap_cache() and drop "page" account.
4335  * memcg information is recorded to swap_cgroup of "ent"
4336  */
4337 void
4338 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4339 {
4340 	struct mem_cgroup *memcg;
4341 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4342 
4343 	if (!swapout) /* this was a swap cache but the swap is unused ! */
4344 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4345 
4346 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4347 
4348 	/*
4349 	 * record memcg information,  if swapout && memcg != NULL,
4350 	 * css_get() was called in uncharge().
4351 	 */
4352 	if (do_swap_account && swapout && memcg)
4353 		swap_cgroup_record(ent, css_id(&memcg->css));
4354 }
4355 #endif
4356 
4357 #ifdef CONFIG_MEMCG_SWAP
4358 /*
4359  * called from swap_entry_free(). remove record in swap_cgroup and
4360  * uncharge "memsw" account.
4361  */
4362 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4363 {
4364 	struct mem_cgroup *memcg;
4365 	unsigned short id;
4366 
4367 	if (!do_swap_account)
4368 		return;
4369 
4370 	id = swap_cgroup_record(ent, 0);
4371 	rcu_read_lock();
4372 	memcg = mem_cgroup_lookup(id);
4373 	if (memcg) {
4374 		/*
4375 		 * We uncharge this because swap is freed.
4376 		 * This memcg can be obsolete one. We avoid calling css_tryget
4377 		 */
4378 		if (!mem_cgroup_is_root(memcg))
4379 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4380 		mem_cgroup_swap_statistics(memcg, false);
4381 		css_put(&memcg->css);
4382 	}
4383 	rcu_read_unlock();
4384 }
4385 
4386 /**
4387  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4388  * @entry: swap entry to be moved
4389  * @from:  mem_cgroup which the entry is moved from
4390  * @to:  mem_cgroup which the entry is moved to
4391  *
4392  * It succeeds only when the swap_cgroup's record for this entry is the same
4393  * as the mem_cgroup's id of @from.
4394  *
4395  * Returns 0 on success, -EINVAL on failure.
4396  *
4397  * The caller must have charged to @to, IOW, called res_counter_charge() about
4398  * both res and memsw, and called css_get().
4399  */
4400 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4401 				struct mem_cgroup *from, struct mem_cgroup *to)
4402 {
4403 	unsigned short old_id, new_id;
4404 
4405 	old_id = css_id(&from->css);
4406 	new_id = css_id(&to->css);
4407 
4408 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4409 		mem_cgroup_swap_statistics(from, false);
4410 		mem_cgroup_swap_statistics(to, true);
4411 		/*
4412 		 * This function is only called from task migration context now.
4413 		 * It postpones res_counter and refcount handling till the end
4414 		 * of task migration(mem_cgroup_clear_mc()) for performance
4415 		 * improvement. But we cannot postpone css_get(to)  because if
4416 		 * the process that has been moved to @to does swap-in, the
4417 		 * refcount of @to might be decreased to 0.
4418 		 *
4419 		 * We are in attach() phase, so the cgroup is guaranteed to be
4420 		 * alive, so we can just call css_get().
4421 		 */
4422 		css_get(&to->css);
4423 		return 0;
4424 	}
4425 	return -EINVAL;
4426 }
4427 #else
4428 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4429 				struct mem_cgroup *from, struct mem_cgroup *to)
4430 {
4431 	return -EINVAL;
4432 }
4433 #endif
4434 
4435 /*
4436  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4437  * page belongs to.
4438  */
4439 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4440 				  struct mem_cgroup **memcgp)
4441 {
4442 	struct mem_cgroup *memcg = NULL;
4443 	unsigned int nr_pages = 1;
4444 	struct page_cgroup *pc;
4445 	enum charge_type ctype;
4446 
4447 	*memcgp = NULL;
4448 
4449 	if (mem_cgroup_disabled())
4450 		return;
4451 
4452 	if (PageTransHuge(page))
4453 		nr_pages <<= compound_order(page);
4454 
4455 	pc = lookup_page_cgroup(page);
4456 	lock_page_cgroup(pc);
4457 	if (PageCgroupUsed(pc)) {
4458 		memcg = pc->mem_cgroup;
4459 		css_get(&memcg->css);
4460 		/*
4461 		 * At migrating an anonymous page, its mapcount goes down
4462 		 * to 0 and uncharge() will be called. But, even if it's fully
4463 		 * unmapped, migration may fail and this page has to be
4464 		 * charged again. We set MIGRATION flag here and delay uncharge
4465 		 * until end_migration() is called
4466 		 *
4467 		 * Corner Case Thinking
4468 		 * A)
4469 		 * When the old page was mapped as Anon and it's unmap-and-freed
4470 		 * while migration was ongoing.
4471 		 * If unmap finds the old page, uncharge() of it will be delayed
4472 		 * until end_migration(). If unmap finds a new page, it's
4473 		 * uncharged when it make mapcount to be 1->0. If unmap code
4474 		 * finds swap_migration_entry, the new page will not be mapped
4475 		 * and end_migration() will find it(mapcount==0).
4476 		 *
4477 		 * B)
4478 		 * When the old page was mapped but migraion fails, the kernel
4479 		 * remaps it. A charge for it is kept by MIGRATION flag even
4480 		 * if mapcount goes down to 0. We can do remap successfully
4481 		 * without charging it again.
4482 		 *
4483 		 * C)
4484 		 * The "old" page is under lock_page() until the end of
4485 		 * migration, so, the old page itself will not be swapped-out.
4486 		 * If the new page is swapped out before end_migraton, our
4487 		 * hook to usual swap-out path will catch the event.
4488 		 */
4489 		if (PageAnon(page))
4490 			SetPageCgroupMigration(pc);
4491 	}
4492 	unlock_page_cgroup(pc);
4493 	/*
4494 	 * If the page is not charged at this point,
4495 	 * we return here.
4496 	 */
4497 	if (!memcg)
4498 		return;
4499 
4500 	*memcgp = memcg;
4501 	/*
4502 	 * We charge new page before it's used/mapped. So, even if unlock_page()
4503 	 * is called before end_migration, we can catch all events on this new
4504 	 * page. In the case new page is migrated but not remapped, new page's
4505 	 * mapcount will be finally 0 and we call uncharge in end_migration().
4506 	 */
4507 	if (PageAnon(page))
4508 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4509 	else
4510 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4511 	/*
4512 	 * The page is committed to the memcg, but it's not actually
4513 	 * charged to the res_counter since we plan on replacing the
4514 	 * old one and only one page is going to be left afterwards.
4515 	 */
4516 	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4517 }
4518 
4519 /* remove redundant charge if migration failed*/
4520 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4521 	struct page *oldpage, struct page *newpage, bool migration_ok)
4522 {
4523 	struct page *used, *unused;
4524 	struct page_cgroup *pc;
4525 	bool anon;
4526 
4527 	if (!memcg)
4528 		return;
4529 
4530 	if (!migration_ok) {
4531 		used = oldpage;
4532 		unused = newpage;
4533 	} else {
4534 		used = newpage;
4535 		unused = oldpage;
4536 	}
4537 	anon = PageAnon(used);
4538 	__mem_cgroup_uncharge_common(unused,
4539 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4540 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
4541 				     true);
4542 	css_put(&memcg->css);
4543 	/*
4544 	 * We disallowed uncharge of pages under migration because mapcount
4545 	 * of the page goes down to zero, temporarly.
4546 	 * Clear the flag and check the page should be charged.
4547 	 */
4548 	pc = lookup_page_cgroup(oldpage);
4549 	lock_page_cgroup(pc);
4550 	ClearPageCgroupMigration(pc);
4551 	unlock_page_cgroup(pc);
4552 
4553 	/*
4554 	 * If a page is a file cache, radix-tree replacement is very atomic
4555 	 * and we can skip this check. When it was an Anon page, its mapcount
4556 	 * goes down to 0. But because we added MIGRATION flage, it's not
4557 	 * uncharged yet. There are several case but page->mapcount check
4558 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4559 	 * check. (see prepare_charge() also)
4560 	 */
4561 	if (anon)
4562 		mem_cgroup_uncharge_page(used);
4563 }
4564 
4565 /*
4566  * At replace page cache, newpage is not under any memcg but it's on
4567  * LRU. So, this function doesn't touch res_counter but handles LRU
4568  * in correct way. Both pages are locked so we cannot race with uncharge.
4569  */
4570 void mem_cgroup_replace_page_cache(struct page *oldpage,
4571 				  struct page *newpage)
4572 {
4573 	struct mem_cgroup *memcg = NULL;
4574 	struct page_cgroup *pc;
4575 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4576 
4577 	if (mem_cgroup_disabled())
4578 		return;
4579 
4580 	pc = lookup_page_cgroup(oldpage);
4581 	/* fix accounting on old pages */
4582 	lock_page_cgroup(pc);
4583 	if (PageCgroupUsed(pc)) {
4584 		memcg = pc->mem_cgroup;
4585 		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4586 		ClearPageCgroupUsed(pc);
4587 	}
4588 	unlock_page_cgroup(pc);
4589 
4590 	/*
4591 	 * When called from shmem_replace_page(), in some cases the
4592 	 * oldpage has already been charged, and in some cases not.
4593 	 */
4594 	if (!memcg)
4595 		return;
4596 	/*
4597 	 * Even if newpage->mapping was NULL before starting replacement,
4598 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4599 	 * LRU while we overwrite pc->mem_cgroup.
4600 	 */
4601 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4602 }
4603 
4604 #ifdef CONFIG_DEBUG_VM
4605 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4606 {
4607 	struct page_cgroup *pc;
4608 
4609 	pc = lookup_page_cgroup(page);
4610 	/*
4611 	 * Can be NULL while feeding pages into the page allocator for
4612 	 * the first time, i.e. during boot or memory hotplug;
4613 	 * or when mem_cgroup_disabled().
4614 	 */
4615 	if (likely(pc) && PageCgroupUsed(pc))
4616 		return pc;
4617 	return NULL;
4618 }
4619 
4620 bool mem_cgroup_bad_page_check(struct page *page)
4621 {
4622 	if (mem_cgroup_disabled())
4623 		return false;
4624 
4625 	return lookup_page_cgroup_used(page) != NULL;
4626 }
4627 
4628 void mem_cgroup_print_bad_page(struct page *page)
4629 {
4630 	struct page_cgroup *pc;
4631 
4632 	pc = lookup_page_cgroup_used(page);
4633 	if (pc) {
4634 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4635 			 pc, pc->flags, pc->mem_cgroup);
4636 	}
4637 }
4638 #endif
4639 
4640 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4641 				unsigned long long val)
4642 {
4643 	int retry_count;
4644 	u64 memswlimit, memlimit;
4645 	int ret = 0;
4646 	int children = mem_cgroup_count_children(memcg);
4647 	u64 curusage, oldusage;
4648 	int enlarge;
4649 
4650 	/*
4651 	 * For keeping hierarchical_reclaim simple, how long we should retry
4652 	 * is depends on callers. We set our retry-count to be function
4653 	 * of # of children which we should visit in this loop.
4654 	 */
4655 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4656 
4657 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4658 
4659 	enlarge = 0;
4660 	while (retry_count) {
4661 		if (signal_pending(current)) {
4662 			ret = -EINTR;
4663 			break;
4664 		}
4665 		/*
4666 		 * Rather than hide all in some function, I do this in
4667 		 * open coded manner. You see what this really does.
4668 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4669 		 */
4670 		mutex_lock(&set_limit_mutex);
4671 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4672 		if (memswlimit < val) {
4673 			ret = -EINVAL;
4674 			mutex_unlock(&set_limit_mutex);
4675 			break;
4676 		}
4677 
4678 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4679 		if (memlimit < val)
4680 			enlarge = 1;
4681 
4682 		ret = res_counter_set_limit(&memcg->res, val);
4683 		if (!ret) {
4684 			if (memswlimit == val)
4685 				memcg->memsw_is_minimum = true;
4686 			else
4687 				memcg->memsw_is_minimum = false;
4688 		}
4689 		mutex_unlock(&set_limit_mutex);
4690 
4691 		if (!ret)
4692 			break;
4693 
4694 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4695 				   MEM_CGROUP_RECLAIM_SHRINK);
4696 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4697 		/* Usage is reduced ? */
4698 		if (curusage >= oldusage)
4699 			retry_count--;
4700 		else
4701 			oldusage = curusage;
4702 	}
4703 	if (!ret && enlarge)
4704 		memcg_oom_recover(memcg);
4705 
4706 	return ret;
4707 }
4708 
4709 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4710 					unsigned long long val)
4711 {
4712 	int retry_count;
4713 	u64 memlimit, memswlimit, oldusage, curusage;
4714 	int children = mem_cgroup_count_children(memcg);
4715 	int ret = -EBUSY;
4716 	int enlarge = 0;
4717 
4718 	/* see mem_cgroup_resize_res_limit */
4719 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4720 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4721 	while (retry_count) {
4722 		if (signal_pending(current)) {
4723 			ret = -EINTR;
4724 			break;
4725 		}
4726 		/*
4727 		 * Rather than hide all in some function, I do this in
4728 		 * open coded manner. You see what this really does.
4729 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4730 		 */
4731 		mutex_lock(&set_limit_mutex);
4732 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4733 		if (memlimit > val) {
4734 			ret = -EINVAL;
4735 			mutex_unlock(&set_limit_mutex);
4736 			break;
4737 		}
4738 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4739 		if (memswlimit < val)
4740 			enlarge = 1;
4741 		ret = res_counter_set_limit(&memcg->memsw, val);
4742 		if (!ret) {
4743 			if (memlimit == val)
4744 				memcg->memsw_is_minimum = true;
4745 			else
4746 				memcg->memsw_is_minimum = false;
4747 		}
4748 		mutex_unlock(&set_limit_mutex);
4749 
4750 		if (!ret)
4751 			break;
4752 
4753 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4754 				   MEM_CGROUP_RECLAIM_NOSWAP |
4755 				   MEM_CGROUP_RECLAIM_SHRINK);
4756 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4757 		/* Usage is reduced ? */
4758 		if (curusage >= oldusage)
4759 			retry_count--;
4760 		else
4761 			oldusage = curusage;
4762 	}
4763 	if (!ret && enlarge)
4764 		memcg_oom_recover(memcg);
4765 	return ret;
4766 }
4767 
4768 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4769 					    gfp_t gfp_mask,
4770 					    unsigned long *total_scanned)
4771 {
4772 	unsigned long nr_reclaimed = 0;
4773 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4774 	unsigned long reclaimed;
4775 	int loop = 0;
4776 	struct mem_cgroup_tree_per_zone *mctz;
4777 	unsigned long long excess;
4778 	unsigned long nr_scanned;
4779 
4780 	if (order > 0)
4781 		return 0;
4782 
4783 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4784 	/*
4785 	 * This loop can run a while, specially if mem_cgroup's continuously
4786 	 * keep exceeding their soft limit and putting the system under
4787 	 * pressure
4788 	 */
4789 	do {
4790 		if (next_mz)
4791 			mz = next_mz;
4792 		else
4793 			mz = mem_cgroup_largest_soft_limit_node(mctz);
4794 		if (!mz)
4795 			break;
4796 
4797 		nr_scanned = 0;
4798 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4799 						    gfp_mask, &nr_scanned);
4800 		nr_reclaimed += reclaimed;
4801 		*total_scanned += nr_scanned;
4802 		spin_lock(&mctz->lock);
4803 
4804 		/*
4805 		 * If we failed to reclaim anything from this memory cgroup
4806 		 * it is time to move on to the next cgroup
4807 		 */
4808 		next_mz = NULL;
4809 		if (!reclaimed) {
4810 			do {
4811 				/*
4812 				 * Loop until we find yet another one.
4813 				 *
4814 				 * By the time we get the soft_limit lock
4815 				 * again, someone might have aded the
4816 				 * group back on the RB tree. Iterate to
4817 				 * make sure we get a different mem.
4818 				 * mem_cgroup_largest_soft_limit_node returns
4819 				 * NULL if no other cgroup is present on
4820 				 * the tree
4821 				 */
4822 				next_mz =
4823 				__mem_cgroup_largest_soft_limit_node(mctz);
4824 				if (next_mz == mz)
4825 					css_put(&next_mz->memcg->css);
4826 				else /* next_mz == NULL or other memcg */
4827 					break;
4828 			} while (1);
4829 		}
4830 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4831 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4832 		/*
4833 		 * One school of thought says that we should not add
4834 		 * back the node to the tree if reclaim returns 0.
4835 		 * But our reclaim could return 0, simply because due
4836 		 * to priority we are exposing a smaller subset of
4837 		 * memory to reclaim from. Consider this as a longer
4838 		 * term TODO.
4839 		 */
4840 		/* If excess == 0, no tree ops */
4841 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4842 		spin_unlock(&mctz->lock);
4843 		css_put(&mz->memcg->css);
4844 		loop++;
4845 		/*
4846 		 * Could not reclaim anything and there are no more
4847 		 * mem cgroups to try or we seem to be looping without
4848 		 * reclaiming anything.
4849 		 */
4850 		if (!nr_reclaimed &&
4851 			(next_mz == NULL ||
4852 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4853 			break;
4854 	} while (!nr_reclaimed);
4855 	if (next_mz)
4856 		css_put(&next_mz->memcg->css);
4857 	return nr_reclaimed;
4858 }
4859 
4860 /**
4861  * mem_cgroup_force_empty_list - clears LRU of a group
4862  * @memcg: group to clear
4863  * @node: NUMA node
4864  * @zid: zone id
4865  * @lru: lru to to clear
4866  *
4867  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4868  * reclaim the pages page themselves - pages are moved to the parent (or root)
4869  * group.
4870  */
4871 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4872 				int node, int zid, enum lru_list lru)
4873 {
4874 	struct lruvec *lruvec;
4875 	unsigned long flags;
4876 	struct list_head *list;
4877 	struct page *busy;
4878 	struct zone *zone;
4879 
4880 	zone = &NODE_DATA(node)->node_zones[zid];
4881 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4882 	list = &lruvec->lists[lru];
4883 
4884 	busy = NULL;
4885 	do {
4886 		struct page_cgroup *pc;
4887 		struct page *page;
4888 
4889 		spin_lock_irqsave(&zone->lru_lock, flags);
4890 		if (list_empty(list)) {
4891 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4892 			break;
4893 		}
4894 		page = list_entry(list->prev, struct page, lru);
4895 		if (busy == page) {
4896 			list_move(&page->lru, list);
4897 			busy = NULL;
4898 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4899 			continue;
4900 		}
4901 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4902 
4903 		pc = lookup_page_cgroup(page);
4904 
4905 		if (mem_cgroup_move_parent(page, pc, memcg)) {
4906 			/* found lock contention or "pc" is obsolete. */
4907 			busy = page;
4908 			cond_resched();
4909 		} else
4910 			busy = NULL;
4911 	} while (!list_empty(list));
4912 }
4913 
4914 /*
4915  * make mem_cgroup's charge to be 0 if there is no task by moving
4916  * all the charges and pages to the parent.
4917  * This enables deleting this mem_cgroup.
4918  *
4919  * Caller is responsible for holding css reference on the memcg.
4920  */
4921 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4922 {
4923 	int node, zid;
4924 	u64 usage;
4925 
4926 	do {
4927 		/* This is for making all *used* pages to be on LRU. */
4928 		lru_add_drain_all();
4929 		drain_all_stock_sync(memcg);
4930 		mem_cgroup_start_move(memcg);
4931 		for_each_node_state(node, N_MEMORY) {
4932 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4933 				enum lru_list lru;
4934 				for_each_lru(lru) {
4935 					mem_cgroup_force_empty_list(memcg,
4936 							node, zid, lru);
4937 				}
4938 			}
4939 		}
4940 		mem_cgroup_end_move(memcg);
4941 		memcg_oom_recover(memcg);
4942 		cond_resched();
4943 
4944 		/*
4945 		 * Kernel memory may not necessarily be trackable to a specific
4946 		 * process. So they are not migrated, and therefore we can't
4947 		 * expect their value to drop to 0 here.
4948 		 * Having res filled up with kmem only is enough.
4949 		 *
4950 		 * This is a safety check because mem_cgroup_force_empty_list
4951 		 * could have raced with mem_cgroup_replace_page_cache callers
4952 		 * so the lru seemed empty but the page could have been added
4953 		 * right after the check. RES_USAGE should be safe as we always
4954 		 * charge before adding to the LRU.
4955 		 */
4956 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4957 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
4958 	} while (usage > 0);
4959 }
4960 
4961 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4962 {
4963 	lockdep_assert_held(&memcg_create_mutex);
4964 	/*
4965 	 * The lock does not prevent addition or deletion to the list
4966 	 * of children, but it prevents a new child from being
4967 	 * initialized based on this parent in css_online(), so it's
4968 	 * enough to decide whether hierarchically inherited
4969 	 * attributes can still be changed or not.
4970 	 */
4971 	return memcg->use_hierarchy &&
4972 		!list_empty(&memcg->css.cgroup->children);
4973 }
4974 
4975 /*
4976  * Reclaims as many pages from the given memcg as possible and moves
4977  * the rest to the parent.
4978  *
4979  * Caller is responsible for holding css reference for memcg.
4980  */
4981 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4982 {
4983 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4984 	struct cgroup *cgrp = memcg->css.cgroup;
4985 
4986 	/* returns EBUSY if there is a task or if we come here twice. */
4987 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4988 		return -EBUSY;
4989 
4990 	/* we call try-to-free pages for make this cgroup empty */
4991 	lru_add_drain_all();
4992 	/* try to free all pages in this cgroup */
4993 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4994 		int progress;
4995 
4996 		if (signal_pending(current))
4997 			return -EINTR;
4998 
4999 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5000 						false);
5001 		if (!progress) {
5002 			nr_retries--;
5003 			/* maybe some writeback is necessary */
5004 			congestion_wait(BLK_RW_ASYNC, HZ/10);
5005 		}
5006 
5007 	}
5008 	lru_add_drain();
5009 	mem_cgroup_reparent_charges(memcg);
5010 
5011 	return 0;
5012 }
5013 
5014 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5015 					unsigned int event)
5016 {
5017 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5018 
5019 	if (mem_cgroup_is_root(memcg))
5020 		return -EINVAL;
5021 	return mem_cgroup_force_empty(memcg);
5022 }
5023 
5024 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5025 				     struct cftype *cft)
5026 {
5027 	return mem_cgroup_from_css(css)->use_hierarchy;
5028 }
5029 
5030 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5031 				      struct cftype *cft, u64 val)
5032 {
5033 	int retval = 0;
5034 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5035 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5036 
5037 	mutex_lock(&memcg_create_mutex);
5038 
5039 	if (memcg->use_hierarchy == val)
5040 		goto out;
5041 
5042 	/*
5043 	 * If parent's use_hierarchy is set, we can't make any modifications
5044 	 * in the child subtrees. If it is unset, then the change can
5045 	 * occur, provided the current cgroup has no children.
5046 	 *
5047 	 * For the root cgroup, parent_mem is NULL, we allow value to be
5048 	 * set if there are no children.
5049 	 */
5050 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5051 				(val == 1 || val == 0)) {
5052 		if (list_empty(&memcg->css.cgroup->children))
5053 			memcg->use_hierarchy = val;
5054 		else
5055 			retval = -EBUSY;
5056 	} else
5057 		retval = -EINVAL;
5058 
5059 out:
5060 	mutex_unlock(&memcg_create_mutex);
5061 
5062 	return retval;
5063 }
5064 
5065 
5066 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5067 					       enum mem_cgroup_stat_index idx)
5068 {
5069 	struct mem_cgroup *iter;
5070 	long val = 0;
5071 
5072 	/* Per-cpu values can be negative, use a signed accumulator */
5073 	for_each_mem_cgroup_tree(iter, memcg)
5074 		val += mem_cgroup_read_stat(iter, idx);
5075 
5076 	if (val < 0) /* race ? */
5077 		val = 0;
5078 	return val;
5079 }
5080 
5081 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5082 {
5083 	u64 val;
5084 
5085 	if (!mem_cgroup_is_root(memcg)) {
5086 		if (!swap)
5087 			return res_counter_read_u64(&memcg->res, RES_USAGE);
5088 		else
5089 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5090 	}
5091 
5092 	/*
5093 	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5094 	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5095 	 */
5096 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5097 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5098 
5099 	if (swap)
5100 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5101 
5102 	return val << PAGE_SHIFT;
5103 }
5104 
5105 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5106 			       struct cftype *cft, struct file *file,
5107 			       char __user *buf, size_t nbytes, loff_t *ppos)
5108 {
5109 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5110 	char str[64];
5111 	u64 val;
5112 	int name, len;
5113 	enum res_type type;
5114 
5115 	type = MEMFILE_TYPE(cft->private);
5116 	name = MEMFILE_ATTR(cft->private);
5117 
5118 	switch (type) {
5119 	case _MEM:
5120 		if (name == RES_USAGE)
5121 			val = mem_cgroup_usage(memcg, false);
5122 		else
5123 			val = res_counter_read_u64(&memcg->res, name);
5124 		break;
5125 	case _MEMSWAP:
5126 		if (name == RES_USAGE)
5127 			val = mem_cgroup_usage(memcg, true);
5128 		else
5129 			val = res_counter_read_u64(&memcg->memsw, name);
5130 		break;
5131 	case _KMEM:
5132 		val = res_counter_read_u64(&memcg->kmem, name);
5133 		break;
5134 	default:
5135 		BUG();
5136 	}
5137 
5138 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5139 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5140 }
5141 
5142 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5143 {
5144 	int ret = -EINVAL;
5145 #ifdef CONFIG_MEMCG_KMEM
5146 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5147 	/*
5148 	 * For simplicity, we won't allow this to be disabled.  It also can't
5149 	 * be changed if the cgroup has children already, or if tasks had
5150 	 * already joined.
5151 	 *
5152 	 * If tasks join before we set the limit, a person looking at
5153 	 * kmem.usage_in_bytes will have no way to determine when it took
5154 	 * place, which makes the value quite meaningless.
5155 	 *
5156 	 * After it first became limited, changes in the value of the limit are
5157 	 * of course permitted.
5158 	 */
5159 	mutex_lock(&memcg_create_mutex);
5160 	mutex_lock(&set_limit_mutex);
5161 	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5162 		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5163 			ret = -EBUSY;
5164 			goto out;
5165 		}
5166 		ret = res_counter_set_limit(&memcg->kmem, val);
5167 		VM_BUG_ON(ret);
5168 
5169 		ret = memcg_update_cache_sizes(memcg);
5170 		if (ret) {
5171 			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5172 			goto out;
5173 		}
5174 		static_key_slow_inc(&memcg_kmem_enabled_key);
5175 		/*
5176 		 * setting the active bit after the inc will guarantee no one
5177 		 * starts accounting before all call sites are patched
5178 		 */
5179 		memcg_kmem_set_active(memcg);
5180 	} else
5181 		ret = res_counter_set_limit(&memcg->kmem, val);
5182 out:
5183 	mutex_unlock(&set_limit_mutex);
5184 	mutex_unlock(&memcg_create_mutex);
5185 #endif
5186 	return ret;
5187 }
5188 
5189 #ifdef CONFIG_MEMCG_KMEM
5190 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5191 {
5192 	int ret = 0;
5193 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5194 	if (!parent)
5195 		goto out;
5196 
5197 	memcg->kmem_account_flags = parent->kmem_account_flags;
5198 	/*
5199 	 * When that happen, we need to disable the static branch only on those
5200 	 * memcgs that enabled it. To achieve this, we would be forced to
5201 	 * complicate the code by keeping track of which memcgs were the ones
5202 	 * that actually enabled limits, and which ones got it from its
5203 	 * parents.
5204 	 *
5205 	 * It is a lot simpler just to do static_key_slow_inc() on every child
5206 	 * that is accounted.
5207 	 */
5208 	if (!memcg_kmem_is_active(memcg))
5209 		goto out;
5210 
5211 	/*
5212 	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5213 	 * memcg is active already. If the later initialization fails then the
5214 	 * cgroup core triggers the cleanup so we do not have to do it here.
5215 	 */
5216 	static_key_slow_inc(&memcg_kmem_enabled_key);
5217 
5218 	mutex_lock(&set_limit_mutex);
5219 	memcg_stop_kmem_account();
5220 	ret = memcg_update_cache_sizes(memcg);
5221 	memcg_resume_kmem_account();
5222 	mutex_unlock(&set_limit_mutex);
5223 out:
5224 	return ret;
5225 }
5226 #endif /* CONFIG_MEMCG_KMEM */
5227 
5228 /*
5229  * The user of this function is...
5230  * RES_LIMIT.
5231  */
5232 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5233 			    const char *buffer)
5234 {
5235 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5236 	enum res_type type;
5237 	int name;
5238 	unsigned long long val;
5239 	int ret;
5240 
5241 	type = MEMFILE_TYPE(cft->private);
5242 	name = MEMFILE_ATTR(cft->private);
5243 
5244 	switch (name) {
5245 	case RES_LIMIT:
5246 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5247 			ret = -EINVAL;
5248 			break;
5249 		}
5250 		/* This function does all necessary parse...reuse it */
5251 		ret = res_counter_memparse_write_strategy(buffer, &val);
5252 		if (ret)
5253 			break;
5254 		if (type == _MEM)
5255 			ret = mem_cgroup_resize_limit(memcg, val);
5256 		else if (type == _MEMSWAP)
5257 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5258 		else if (type == _KMEM)
5259 			ret = memcg_update_kmem_limit(css, val);
5260 		else
5261 			return -EINVAL;
5262 		break;
5263 	case RES_SOFT_LIMIT:
5264 		ret = res_counter_memparse_write_strategy(buffer, &val);
5265 		if (ret)
5266 			break;
5267 		/*
5268 		 * For memsw, soft limits are hard to implement in terms
5269 		 * of semantics, for now, we support soft limits for
5270 		 * control without swap
5271 		 */
5272 		if (type == _MEM)
5273 			ret = res_counter_set_soft_limit(&memcg->res, val);
5274 		else
5275 			ret = -EINVAL;
5276 		break;
5277 	default:
5278 		ret = -EINVAL; /* should be BUG() ? */
5279 		break;
5280 	}
5281 	return ret;
5282 }
5283 
5284 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5285 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
5286 {
5287 	unsigned long long min_limit, min_memsw_limit, tmp;
5288 
5289 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5290 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5291 	if (!memcg->use_hierarchy)
5292 		goto out;
5293 
5294 	while (css_parent(&memcg->css)) {
5295 		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5296 		if (!memcg->use_hierarchy)
5297 			break;
5298 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5299 		min_limit = min(min_limit, tmp);
5300 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5301 		min_memsw_limit = min(min_memsw_limit, tmp);
5302 	}
5303 out:
5304 	*mem_limit = min_limit;
5305 	*memsw_limit = min_memsw_limit;
5306 }
5307 
5308 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5309 {
5310 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5311 	int name;
5312 	enum res_type type;
5313 
5314 	type = MEMFILE_TYPE(event);
5315 	name = MEMFILE_ATTR(event);
5316 
5317 	switch (name) {
5318 	case RES_MAX_USAGE:
5319 		if (type == _MEM)
5320 			res_counter_reset_max(&memcg->res);
5321 		else if (type == _MEMSWAP)
5322 			res_counter_reset_max(&memcg->memsw);
5323 		else if (type == _KMEM)
5324 			res_counter_reset_max(&memcg->kmem);
5325 		else
5326 			return -EINVAL;
5327 		break;
5328 	case RES_FAILCNT:
5329 		if (type == _MEM)
5330 			res_counter_reset_failcnt(&memcg->res);
5331 		else if (type == _MEMSWAP)
5332 			res_counter_reset_failcnt(&memcg->memsw);
5333 		else if (type == _KMEM)
5334 			res_counter_reset_failcnt(&memcg->kmem);
5335 		else
5336 			return -EINVAL;
5337 		break;
5338 	}
5339 
5340 	return 0;
5341 }
5342 
5343 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5344 					struct cftype *cft)
5345 {
5346 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5347 }
5348 
5349 #ifdef CONFIG_MMU
5350 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5351 					struct cftype *cft, u64 val)
5352 {
5353 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5354 
5355 	if (val >= (1 << NR_MOVE_TYPE))
5356 		return -EINVAL;
5357 
5358 	/*
5359 	 * No kind of locking is needed in here, because ->can_attach() will
5360 	 * check this value once in the beginning of the process, and then carry
5361 	 * on with stale data. This means that changes to this value will only
5362 	 * affect task migrations starting after the change.
5363 	 */
5364 	memcg->move_charge_at_immigrate = val;
5365 	return 0;
5366 }
5367 #else
5368 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5369 					struct cftype *cft, u64 val)
5370 {
5371 	return -ENOSYS;
5372 }
5373 #endif
5374 
5375 #ifdef CONFIG_NUMA
5376 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5377 				struct cftype *cft, struct seq_file *m)
5378 {
5379 	int nid;
5380 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5381 	unsigned long node_nr;
5382 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5383 
5384 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5385 	seq_printf(m, "total=%lu", total_nr);
5386 	for_each_node_state(nid, N_MEMORY) {
5387 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5388 		seq_printf(m, " N%d=%lu", nid, node_nr);
5389 	}
5390 	seq_putc(m, '\n');
5391 
5392 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5393 	seq_printf(m, "file=%lu", file_nr);
5394 	for_each_node_state(nid, N_MEMORY) {
5395 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5396 				LRU_ALL_FILE);
5397 		seq_printf(m, " N%d=%lu", nid, node_nr);
5398 	}
5399 	seq_putc(m, '\n');
5400 
5401 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5402 	seq_printf(m, "anon=%lu", anon_nr);
5403 	for_each_node_state(nid, N_MEMORY) {
5404 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5405 				LRU_ALL_ANON);
5406 		seq_printf(m, " N%d=%lu", nid, node_nr);
5407 	}
5408 	seq_putc(m, '\n');
5409 
5410 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5411 	seq_printf(m, "unevictable=%lu", unevictable_nr);
5412 	for_each_node_state(nid, N_MEMORY) {
5413 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5414 				BIT(LRU_UNEVICTABLE));
5415 		seq_printf(m, " N%d=%lu", nid, node_nr);
5416 	}
5417 	seq_putc(m, '\n');
5418 	return 0;
5419 }
5420 #endif /* CONFIG_NUMA */
5421 
5422 static inline void mem_cgroup_lru_names_not_uptodate(void)
5423 {
5424 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5425 }
5426 
5427 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5428 				 struct seq_file *m)
5429 {
5430 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5431 	struct mem_cgroup *mi;
5432 	unsigned int i;
5433 
5434 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5435 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5436 			continue;
5437 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5438 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5439 	}
5440 
5441 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5442 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5443 			   mem_cgroup_read_events(memcg, i));
5444 
5445 	for (i = 0; i < NR_LRU_LISTS; i++)
5446 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5447 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5448 
5449 	/* Hierarchical information */
5450 	{
5451 		unsigned long long limit, memsw_limit;
5452 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5453 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5454 		if (do_swap_account)
5455 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
5456 				   memsw_limit);
5457 	}
5458 
5459 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5460 		long long val = 0;
5461 
5462 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5463 			continue;
5464 		for_each_mem_cgroup_tree(mi, memcg)
5465 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5466 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5467 	}
5468 
5469 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5470 		unsigned long long val = 0;
5471 
5472 		for_each_mem_cgroup_tree(mi, memcg)
5473 			val += mem_cgroup_read_events(mi, i);
5474 		seq_printf(m, "total_%s %llu\n",
5475 			   mem_cgroup_events_names[i], val);
5476 	}
5477 
5478 	for (i = 0; i < NR_LRU_LISTS; i++) {
5479 		unsigned long long val = 0;
5480 
5481 		for_each_mem_cgroup_tree(mi, memcg)
5482 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5483 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5484 	}
5485 
5486 #ifdef CONFIG_DEBUG_VM
5487 	{
5488 		int nid, zid;
5489 		struct mem_cgroup_per_zone *mz;
5490 		struct zone_reclaim_stat *rstat;
5491 		unsigned long recent_rotated[2] = {0, 0};
5492 		unsigned long recent_scanned[2] = {0, 0};
5493 
5494 		for_each_online_node(nid)
5495 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5496 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5497 				rstat = &mz->lruvec.reclaim_stat;
5498 
5499 				recent_rotated[0] += rstat->recent_rotated[0];
5500 				recent_rotated[1] += rstat->recent_rotated[1];
5501 				recent_scanned[0] += rstat->recent_scanned[0];
5502 				recent_scanned[1] += rstat->recent_scanned[1];
5503 			}
5504 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5505 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5506 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5507 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5508 	}
5509 #endif
5510 
5511 	return 0;
5512 }
5513 
5514 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5515 				      struct cftype *cft)
5516 {
5517 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5518 
5519 	return mem_cgroup_swappiness(memcg);
5520 }
5521 
5522 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5523 				       struct cftype *cft, u64 val)
5524 {
5525 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5526 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5527 
5528 	if (val > 100 || !parent)
5529 		return -EINVAL;
5530 
5531 	mutex_lock(&memcg_create_mutex);
5532 
5533 	/* If under hierarchy, only empty-root can set this value */
5534 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5535 		mutex_unlock(&memcg_create_mutex);
5536 		return -EINVAL;
5537 	}
5538 
5539 	memcg->swappiness = val;
5540 
5541 	mutex_unlock(&memcg_create_mutex);
5542 
5543 	return 0;
5544 }
5545 
5546 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5547 {
5548 	struct mem_cgroup_threshold_ary *t;
5549 	u64 usage;
5550 	int i;
5551 
5552 	rcu_read_lock();
5553 	if (!swap)
5554 		t = rcu_dereference(memcg->thresholds.primary);
5555 	else
5556 		t = rcu_dereference(memcg->memsw_thresholds.primary);
5557 
5558 	if (!t)
5559 		goto unlock;
5560 
5561 	usage = mem_cgroup_usage(memcg, swap);
5562 
5563 	/*
5564 	 * current_threshold points to threshold just below or equal to usage.
5565 	 * If it's not true, a threshold was crossed after last
5566 	 * call of __mem_cgroup_threshold().
5567 	 */
5568 	i = t->current_threshold;
5569 
5570 	/*
5571 	 * Iterate backward over array of thresholds starting from
5572 	 * current_threshold and check if a threshold is crossed.
5573 	 * If none of thresholds below usage is crossed, we read
5574 	 * only one element of the array here.
5575 	 */
5576 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5577 		eventfd_signal(t->entries[i].eventfd, 1);
5578 
5579 	/* i = current_threshold + 1 */
5580 	i++;
5581 
5582 	/*
5583 	 * Iterate forward over array of thresholds starting from
5584 	 * current_threshold+1 and check if a threshold is crossed.
5585 	 * If none of thresholds above usage is crossed, we read
5586 	 * only one element of the array here.
5587 	 */
5588 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5589 		eventfd_signal(t->entries[i].eventfd, 1);
5590 
5591 	/* Update current_threshold */
5592 	t->current_threshold = i - 1;
5593 unlock:
5594 	rcu_read_unlock();
5595 }
5596 
5597 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5598 {
5599 	while (memcg) {
5600 		__mem_cgroup_threshold(memcg, false);
5601 		if (do_swap_account)
5602 			__mem_cgroup_threshold(memcg, true);
5603 
5604 		memcg = parent_mem_cgroup(memcg);
5605 	}
5606 }
5607 
5608 static int compare_thresholds(const void *a, const void *b)
5609 {
5610 	const struct mem_cgroup_threshold *_a = a;
5611 	const struct mem_cgroup_threshold *_b = b;
5612 
5613 	if (_a->threshold > _b->threshold)
5614 		return 1;
5615 
5616 	if (_a->threshold < _b->threshold)
5617 		return -1;
5618 
5619 	return 0;
5620 }
5621 
5622 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5623 {
5624 	struct mem_cgroup_eventfd_list *ev;
5625 
5626 	list_for_each_entry(ev, &memcg->oom_notify, list)
5627 		eventfd_signal(ev->eventfd, 1);
5628 	return 0;
5629 }
5630 
5631 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5632 {
5633 	struct mem_cgroup *iter;
5634 
5635 	for_each_mem_cgroup_tree(iter, memcg)
5636 		mem_cgroup_oom_notify_cb(iter);
5637 }
5638 
5639 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5640 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5641 {
5642 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5643 	struct mem_cgroup_thresholds *thresholds;
5644 	struct mem_cgroup_threshold_ary *new;
5645 	enum res_type type = MEMFILE_TYPE(cft->private);
5646 	u64 threshold, usage;
5647 	int i, size, ret;
5648 
5649 	ret = res_counter_memparse_write_strategy(args, &threshold);
5650 	if (ret)
5651 		return ret;
5652 
5653 	mutex_lock(&memcg->thresholds_lock);
5654 
5655 	if (type == _MEM)
5656 		thresholds = &memcg->thresholds;
5657 	else if (type == _MEMSWAP)
5658 		thresholds = &memcg->memsw_thresholds;
5659 	else
5660 		BUG();
5661 
5662 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5663 
5664 	/* Check if a threshold crossed before adding a new one */
5665 	if (thresholds->primary)
5666 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5667 
5668 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5669 
5670 	/* Allocate memory for new array of thresholds */
5671 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5672 			GFP_KERNEL);
5673 	if (!new) {
5674 		ret = -ENOMEM;
5675 		goto unlock;
5676 	}
5677 	new->size = size;
5678 
5679 	/* Copy thresholds (if any) to new array */
5680 	if (thresholds->primary) {
5681 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5682 				sizeof(struct mem_cgroup_threshold));
5683 	}
5684 
5685 	/* Add new threshold */
5686 	new->entries[size - 1].eventfd = eventfd;
5687 	new->entries[size - 1].threshold = threshold;
5688 
5689 	/* Sort thresholds. Registering of new threshold isn't time-critical */
5690 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5691 			compare_thresholds, NULL);
5692 
5693 	/* Find current threshold */
5694 	new->current_threshold = -1;
5695 	for (i = 0; i < size; i++) {
5696 		if (new->entries[i].threshold <= usage) {
5697 			/*
5698 			 * new->current_threshold will not be used until
5699 			 * rcu_assign_pointer(), so it's safe to increment
5700 			 * it here.
5701 			 */
5702 			++new->current_threshold;
5703 		} else
5704 			break;
5705 	}
5706 
5707 	/* Free old spare buffer and save old primary buffer as spare */
5708 	kfree(thresholds->spare);
5709 	thresholds->spare = thresholds->primary;
5710 
5711 	rcu_assign_pointer(thresholds->primary, new);
5712 
5713 	/* To be sure that nobody uses thresholds */
5714 	synchronize_rcu();
5715 
5716 unlock:
5717 	mutex_unlock(&memcg->thresholds_lock);
5718 
5719 	return ret;
5720 }
5721 
5722 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5723 	struct cftype *cft, struct eventfd_ctx *eventfd)
5724 {
5725 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5726 	struct mem_cgroup_thresholds *thresholds;
5727 	struct mem_cgroup_threshold_ary *new;
5728 	enum res_type type = MEMFILE_TYPE(cft->private);
5729 	u64 usage;
5730 	int i, j, size;
5731 
5732 	mutex_lock(&memcg->thresholds_lock);
5733 	if (type == _MEM)
5734 		thresholds = &memcg->thresholds;
5735 	else if (type == _MEMSWAP)
5736 		thresholds = &memcg->memsw_thresholds;
5737 	else
5738 		BUG();
5739 
5740 	if (!thresholds->primary)
5741 		goto unlock;
5742 
5743 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5744 
5745 	/* Check if a threshold crossed before removing */
5746 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5747 
5748 	/* Calculate new number of threshold */
5749 	size = 0;
5750 	for (i = 0; i < thresholds->primary->size; i++) {
5751 		if (thresholds->primary->entries[i].eventfd != eventfd)
5752 			size++;
5753 	}
5754 
5755 	new = thresholds->spare;
5756 
5757 	/* Set thresholds array to NULL if we don't have thresholds */
5758 	if (!size) {
5759 		kfree(new);
5760 		new = NULL;
5761 		goto swap_buffers;
5762 	}
5763 
5764 	new->size = size;
5765 
5766 	/* Copy thresholds and find current threshold */
5767 	new->current_threshold = -1;
5768 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5769 		if (thresholds->primary->entries[i].eventfd == eventfd)
5770 			continue;
5771 
5772 		new->entries[j] = thresholds->primary->entries[i];
5773 		if (new->entries[j].threshold <= usage) {
5774 			/*
5775 			 * new->current_threshold will not be used
5776 			 * until rcu_assign_pointer(), so it's safe to increment
5777 			 * it here.
5778 			 */
5779 			++new->current_threshold;
5780 		}
5781 		j++;
5782 	}
5783 
5784 swap_buffers:
5785 	/* Swap primary and spare array */
5786 	thresholds->spare = thresholds->primary;
5787 	/* If all events are unregistered, free the spare array */
5788 	if (!new) {
5789 		kfree(thresholds->spare);
5790 		thresholds->spare = NULL;
5791 	}
5792 
5793 	rcu_assign_pointer(thresholds->primary, new);
5794 
5795 	/* To be sure that nobody uses thresholds */
5796 	synchronize_rcu();
5797 unlock:
5798 	mutex_unlock(&memcg->thresholds_lock);
5799 }
5800 
5801 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5802 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5803 {
5804 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5805 	struct mem_cgroup_eventfd_list *event;
5806 	enum res_type type = MEMFILE_TYPE(cft->private);
5807 
5808 	BUG_ON(type != _OOM_TYPE);
5809 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
5810 	if (!event)
5811 		return -ENOMEM;
5812 
5813 	spin_lock(&memcg_oom_lock);
5814 
5815 	event->eventfd = eventfd;
5816 	list_add(&event->list, &memcg->oom_notify);
5817 
5818 	/* already in OOM ? */
5819 	if (atomic_read(&memcg->under_oom))
5820 		eventfd_signal(eventfd, 1);
5821 	spin_unlock(&memcg_oom_lock);
5822 
5823 	return 0;
5824 }
5825 
5826 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5827 	struct cftype *cft, struct eventfd_ctx *eventfd)
5828 {
5829 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5830 	struct mem_cgroup_eventfd_list *ev, *tmp;
5831 	enum res_type type = MEMFILE_TYPE(cft->private);
5832 
5833 	BUG_ON(type != _OOM_TYPE);
5834 
5835 	spin_lock(&memcg_oom_lock);
5836 
5837 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5838 		if (ev->eventfd == eventfd) {
5839 			list_del(&ev->list);
5840 			kfree(ev);
5841 		}
5842 	}
5843 
5844 	spin_unlock(&memcg_oom_lock);
5845 }
5846 
5847 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5848 	struct cftype *cft,  struct cgroup_map_cb *cb)
5849 {
5850 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5851 
5852 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5853 
5854 	if (atomic_read(&memcg->under_oom))
5855 		cb->fill(cb, "under_oom", 1);
5856 	else
5857 		cb->fill(cb, "under_oom", 0);
5858 	return 0;
5859 }
5860 
5861 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5862 	struct cftype *cft, u64 val)
5863 {
5864 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5865 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5866 
5867 	/* cannot set to root cgroup and only 0 and 1 are allowed */
5868 	if (!parent || !((val == 0) || (val == 1)))
5869 		return -EINVAL;
5870 
5871 	mutex_lock(&memcg_create_mutex);
5872 	/* oom-kill-disable is a flag for subhierarchy. */
5873 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5874 		mutex_unlock(&memcg_create_mutex);
5875 		return -EINVAL;
5876 	}
5877 	memcg->oom_kill_disable = val;
5878 	if (!val)
5879 		memcg_oom_recover(memcg);
5880 	mutex_unlock(&memcg_create_mutex);
5881 	return 0;
5882 }
5883 
5884 #ifdef CONFIG_MEMCG_KMEM
5885 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5886 {
5887 	int ret;
5888 
5889 	memcg->kmemcg_id = -1;
5890 	ret = memcg_propagate_kmem(memcg);
5891 	if (ret)
5892 		return ret;
5893 
5894 	return mem_cgroup_sockets_init(memcg, ss);
5895 }
5896 
5897 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5898 {
5899 	mem_cgroup_sockets_destroy(memcg);
5900 }
5901 
5902 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5903 {
5904 	if (!memcg_kmem_is_active(memcg))
5905 		return;
5906 
5907 	/*
5908 	 * kmem charges can outlive the cgroup. In the case of slab
5909 	 * pages, for instance, a page contain objects from various
5910 	 * processes. As we prevent from taking a reference for every
5911 	 * such allocation we have to be careful when doing uncharge
5912 	 * (see memcg_uncharge_kmem) and here during offlining.
5913 	 *
5914 	 * The idea is that that only the _last_ uncharge which sees
5915 	 * the dead memcg will drop the last reference. An additional
5916 	 * reference is taken here before the group is marked dead
5917 	 * which is then paired with css_put during uncharge resp. here.
5918 	 *
5919 	 * Although this might sound strange as this path is called from
5920 	 * css_offline() when the referencemight have dropped down to 0
5921 	 * and shouldn't be incremented anymore (css_tryget would fail)
5922 	 * we do not have other options because of the kmem allocations
5923 	 * lifetime.
5924 	 */
5925 	css_get(&memcg->css);
5926 
5927 	memcg_kmem_mark_dead(memcg);
5928 
5929 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5930 		return;
5931 
5932 	if (memcg_kmem_test_and_clear_dead(memcg))
5933 		css_put(&memcg->css);
5934 }
5935 #else
5936 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5937 {
5938 	return 0;
5939 }
5940 
5941 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5942 {
5943 }
5944 
5945 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5946 {
5947 }
5948 #endif
5949 
5950 static struct cftype mem_cgroup_files[] = {
5951 	{
5952 		.name = "usage_in_bytes",
5953 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5954 		.read = mem_cgroup_read,
5955 		.register_event = mem_cgroup_usage_register_event,
5956 		.unregister_event = mem_cgroup_usage_unregister_event,
5957 	},
5958 	{
5959 		.name = "max_usage_in_bytes",
5960 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5961 		.trigger = mem_cgroup_reset,
5962 		.read = mem_cgroup_read,
5963 	},
5964 	{
5965 		.name = "limit_in_bytes",
5966 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5967 		.write_string = mem_cgroup_write,
5968 		.read = mem_cgroup_read,
5969 	},
5970 	{
5971 		.name = "soft_limit_in_bytes",
5972 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5973 		.write_string = mem_cgroup_write,
5974 		.read = mem_cgroup_read,
5975 	},
5976 	{
5977 		.name = "failcnt",
5978 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5979 		.trigger = mem_cgroup_reset,
5980 		.read = mem_cgroup_read,
5981 	},
5982 	{
5983 		.name = "stat",
5984 		.read_seq_string = memcg_stat_show,
5985 	},
5986 	{
5987 		.name = "force_empty",
5988 		.trigger = mem_cgroup_force_empty_write,
5989 	},
5990 	{
5991 		.name = "use_hierarchy",
5992 		.flags = CFTYPE_INSANE,
5993 		.write_u64 = mem_cgroup_hierarchy_write,
5994 		.read_u64 = mem_cgroup_hierarchy_read,
5995 	},
5996 	{
5997 		.name = "swappiness",
5998 		.read_u64 = mem_cgroup_swappiness_read,
5999 		.write_u64 = mem_cgroup_swappiness_write,
6000 	},
6001 	{
6002 		.name = "move_charge_at_immigrate",
6003 		.read_u64 = mem_cgroup_move_charge_read,
6004 		.write_u64 = mem_cgroup_move_charge_write,
6005 	},
6006 	{
6007 		.name = "oom_control",
6008 		.read_map = mem_cgroup_oom_control_read,
6009 		.write_u64 = mem_cgroup_oom_control_write,
6010 		.register_event = mem_cgroup_oom_register_event,
6011 		.unregister_event = mem_cgroup_oom_unregister_event,
6012 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6013 	},
6014 	{
6015 		.name = "pressure_level",
6016 		.register_event = vmpressure_register_event,
6017 		.unregister_event = vmpressure_unregister_event,
6018 	},
6019 #ifdef CONFIG_NUMA
6020 	{
6021 		.name = "numa_stat",
6022 		.read_seq_string = memcg_numa_stat_show,
6023 	},
6024 #endif
6025 #ifdef CONFIG_MEMCG_KMEM
6026 	{
6027 		.name = "kmem.limit_in_bytes",
6028 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6029 		.write_string = mem_cgroup_write,
6030 		.read = mem_cgroup_read,
6031 	},
6032 	{
6033 		.name = "kmem.usage_in_bytes",
6034 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6035 		.read = mem_cgroup_read,
6036 	},
6037 	{
6038 		.name = "kmem.failcnt",
6039 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6040 		.trigger = mem_cgroup_reset,
6041 		.read = mem_cgroup_read,
6042 	},
6043 	{
6044 		.name = "kmem.max_usage_in_bytes",
6045 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6046 		.trigger = mem_cgroup_reset,
6047 		.read = mem_cgroup_read,
6048 	},
6049 #ifdef CONFIG_SLABINFO
6050 	{
6051 		.name = "kmem.slabinfo",
6052 		.read_seq_string = mem_cgroup_slabinfo_read,
6053 	},
6054 #endif
6055 #endif
6056 	{ },	/* terminate */
6057 };
6058 
6059 #ifdef CONFIG_MEMCG_SWAP
6060 static struct cftype memsw_cgroup_files[] = {
6061 	{
6062 		.name = "memsw.usage_in_bytes",
6063 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6064 		.read = mem_cgroup_read,
6065 		.register_event = mem_cgroup_usage_register_event,
6066 		.unregister_event = mem_cgroup_usage_unregister_event,
6067 	},
6068 	{
6069 		.name = "memsw.max_usage_in_bytes",
6070 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6071 		.trigger = mem_cgroup_reset,
6072 		.read = mem_cgroup_read,
6073 	},
6074 	{
6075 		.name = "memsw.limit_in_bytes",
6076 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6077 		.write_string = mem_cgroup_write,
6078 		.read = mem_cgroup_read,
6079 	},
6080 	{
6081 		.name = "memsw.failcnt",
6082 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6083 		.trigger = mem_cgroup_reset,
6084 		.read = mem_cgroup_read,
6085 	},
6086 	{ },	/* terminate */
6087 };
6088 #endif
6089 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6090 {
6091 	struct mem_cgroup_per_node *pn;
6092 	struct mem_cgroup_per_zone *mz;
6093 	int zone, tmp = node;
6094 	/*
6095 	 * This routine is called against possible nodes.
6096 	 * But it's BUG to call kmalloc() against offline node.
6097 	 *
6098 	 * TODO: this routine can waste much memory for nodes which will
6099 	 *       never be onlined. It's better to use memory hotplug callback
6100 	 *       function.
6101 	 */
6102 	if (!node_state(node, N_NORMAL_MEMORY))
6103 		tmp = -1;
6104 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6105 	if (!pn)
6106 		return 1;
6107 
6108 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6109 		mz = &pn->zoneinfo[zone];
6110 		lruvec_init(&mz->lruvec);
6111 		mz->usage_in_excess = 0;
6112 		mz->on_tree = false;
6113 		mz->memcg = memcg;
6114 	}
6115 	memcg->nodeinfo[node] = pn;
6116 	return 0;
6117 }
6118 
6119 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6120 {
6121 	kfree(memcg->nodeinfo[node]);
6122 }
6123 
6124 static struct mem_cgroup *mem_cgroup_alloc(void)
6125 {
6126 	struct mem_cgroup *memcg;
6127 	size_t size = memcg_size();
6128 
6129 	/* Can be very big if nr_node_ids is very big */
6130 	if (size < PAGE_SIZE)
6131 		memcg = kzalloc(size, GFP_KERNEL);
6132 	else
6133 		memcg = vzalloc(size);
6134 
6135 	if (!memcg)
6136 		return NULL;
6137 
6138 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6139 	if (!memcg->stat)
6140 		goto out_free;
6141 	spin_lock_init(&memcg->pcp_counter_lock);
6142 	return memcg;
6143 
6144 out_free:
6145 	if (size < PAGE_SIZE)
6146 		kfree(memcg);
6147 	else
6148 		vfree(memcg);
6149 	return NULL;
6150 }
6151 
6152 /*
6153  * At destroying mem_cgroup, references from swap_cgroup can remain.
6154  * (scanning all at force_empty is too costly...)
6155  *
6156  * Instead of clearing all references at force_empty, we remember
6157  * the number of reference from swap_cgroup and free mem_cgroup when
6158  * it goes down to 0.
6159  *
6160  * Removal of cgroup itself succeeds regardless of refs from swap.
6161  */
6162 
6163 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6164 {
6165 	int node;
6166 	size_t size = memcg_size();
6167 
6168 	mem_cgroup_remove_from_trees(memcg);
6169 	free_css_id(&mem_cgroup_subsys, &memcg->css);
6170 
6171 	for_each_node(node)
6172 		free_mem_cgroup_per_zone_info(memcg, node);
6173 
6174 	free_percpu(memcg->stat);
6175 
6176 	/*
6177 	 * We need to make sure that (at least for now), the jump label
6178 	 * destruction code runs outside of the cgroup lock. This is because
6179 	 * get_online_cpus(), which is called from the static_branch update,
6180 	 * can't be called inside the cgroup_lock. cpusets are the ones
6181 	 * enforcing this dependency, so if they ever change, we might as well.
6182 	 *
6183 	 * schedule_work() will guarantee this happens. Be careful if you need
6184 	 * to move this code around, and make sure it is outside
6185 	 * the cgroup_lock.
6186 	 */
6187 	disarm_static_keys(memcg);
6188 	if (size < PAGE_SIZE)
6189 		kfree(memcg);
6190 	else
6191 		vfree(memcg);
6192 }
6193 
6194 /*
6195  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6196  */
6197 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6198 {
6199 	if (!memcg->res.parent)
6200 		return NULL;
6201 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6202 }
6203 EXPORT_SYMBOL(parent_mem_cgroup);
6204 
6205 static void __init mem_cgroup_soft_limit_tree_init(void)
6206 {
6207 	struct mem_cgroup_tree_per_node *rtpn;
6208 	struct mem_cgroup_tree_per_zone *rtpz;
6209 	int tmp, node, zone;
6210 
6211 	for_each_node(node) {
6212 		tmp = node;
6213 		if (!node_state(node, N_NORMAL_MEMORY))
6214 			tmp = -1;
6215 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6216 		BUG_ON(!rtpn);
6217 
6218 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6219 
6220 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6221 			rtpz = &rtpn->rb_tree_per_zone[zone];
6222 			rtpz->rb_root = RB_ROOT;
6223 			spin_lock_init(&rtpz->lock);
6224 		}
6225 	}
6226 }
6227 
6228 static struct cgroup_subsys_state * __ref
6229 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6230 {
6231 	struct mem_cgroup *memcg;
6232 	long error = -ENOMEM;
6233 	int node;
6234 
6235 	memcg = mem_cgroup_alloc();
6236 	if (!memcg)
6237 		return ERR_PTR(error);
6238 
6239 	for_each_node(node)
6240 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6241 			goto free_out;
6242 
6243 	/* root ? */
6244 	if (parent_css == NULL) {
6245 		root_mem_cgroup = memcg;
6246 		res_counter_init(&memcg->res, NULL);
6247 		res_counter_init(&memcg->memsw, NULL);
6248 		res_counter_init(&memcg->kmem, NULL);
6249 	}
6250 
6251 	memcg->last_scanned_node = MAX_NUMNODES;
6252 	INIT_LIST_HEAD(&memcg->oom_notify);
6253 	memcg->move_charge_at_immigrate = 0;
6254 	mutex_init(&memcg->thresholds_lock);
6255 	spin_lock_init(&memcg->move_lock);
6256 	vmpressure_init(&memcg->vmpressure);
6257 
6258 	return &memcg->css;
6259 
6260 free_out:
6261 	__mem_cgroup_free(memcg);
6262 	return ERR_PTR(error);
6263 }
6264 
6265 static int
6266 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6267 {
6268 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6269 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6270 	int error = 0;
6271 
6272 	if (!parent)
6273 		return 0;
6274 
6275 	mutex_lock(&memcg_create_mutex);
6276 
6277 	memcg->use_hierarchy = parent->use_hierarchy;
6278 	memcg->oom_kill_disable = parent->oom_kill_disable;
6279 	memcg->swappiness = mem_cgroup_swappiness(parent);
6280 
6281 	if (parent->use_hierarchy) {
6282 		res_counter_init(&memcg->res, &parent->res);
6283 		res_counter_init(&memcg->memsw, &parent->memsw);
6284 		res_counter_init(&memcg->kmem, &parent->kmem);
6285 
6286 		/*
6287 		 * No need to take a reference to the parent because cgroup
6288 		 * core guarantees its existence.
6289 		 */
6290 	} else {
6291 		res_counter_init(&memcg->res, NULL);
6292 		res_counter_init(&memcg->memsw, NULL);
6293 		res_counter_init(&memcg->kmem, NULL);
6294 		/*
6295 		 * Deeper hierachy with use_hierarchy == false doesn't make
6296 		 * much sense so let cgroup subsystem know about this
6297 		 * unfortunate state in our controller.
6298 		 */
6299 		if (parent != root_mem_cgroup)
6300 			mem_cgroup_subsys.broken_hierarchy = true;
6301 	}
6302 
6303 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6304 	mutex_unlock(&memcg_create_mutex);
6305 	return error;
6306 }
6307 
6308 /*
6309  * Announce all parents that a group from their hierarchy is gone.
6310  */
6311 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6312 {
6313 	struct mem_cgroup *parent = memcg;
6314 
6315 	while ((parent = parent_mem_cgroup(parent)))
6316 		mem_cgroup_iter_invalidate(parent);
6317 
6318 	/*
6319 	 * if the root memcg is not hierarchical we have to check it
6320 	 * explicitely.
6321 	 */
6322 	if (!root_mem_cgroup->use_hierarchy)
6323 		mem_cgroup_iter_invalidate(root_mem_cgroup);
6324 }
6325 
6326 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6327 {
6328 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6329 
6330 	kmem_cgroup_css_offline(memcg);
6331 
6332 	mem_cgroup_invalidate_reclaim_iterators(memcg);
6333 	mem_cgroup_reparent_charges(memcg);
6334 	mem_cgroup_destroy_all_caches(memcg);
6335 	vmpressure_cleanup(&memcg->vmpressure);
6336 }
6337 
6338 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6339 {
6340 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6341 
6342 	memcg_destroy_kmem(memcg);
6343 	__mem_cgroup_free(memcg);
6344 }
6345 
6346 #ifdef CONFIG_MMU
6347 /* Handlers for move charge at task migration. */
6348 #define PRECHARGE_COUNT_AT_ONCE	256
6349 static int mem_cgroup_do_precharge(unsigned long count)
6350 {
6351 	int ret = 0;
6352 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6353 	struct mem_cgroup *memcg = mc.to;
6354 
6355 	if (mem_cgroup_is_root(memcg)) {
6356 		mc.precharge += count;
6357 		/* we don't need css_get for root */
6358 		return ret;
6359 	}
6360 	/* try to charge at once */
6361 	if (count > 1) {
6362 		struct res_counter *dummy;
6363 		/*
6364 		 * "memcg" cannot be under rmdir() because we've already checked
6365 		 * by cgroup_lock_live_cgroup() that it is not removed and we
6366 		 * are still under the same cgroup_mutex. So we can postpone
6367 		 * css_get().
6368 		 */
6369 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6370 			goto one_by_one;
6371 		if (do_swap_account && res_counter_charge(&memcg->memsw,
6372 						PAGE_SIZE * count, &dummy)) {
6373 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6374 			goto one_by_one;
6375 		}
6376 		mc.precharge += count;
6377 		return ret;
6378 	}
6379 one_by_one:
6380 	/* fall back to one by one charge */
6381 	while (count--) {
6382 		if (signal_pending(current)) {
6383 			ret = -EINTR;
6384 			break;
6385 		}
6386 		if (!batch_count--) {
6387 			batch_count = PRECHARGE_COUNT_AT_ONCE;
6388 			cond_resched();
6389 		}
6390 		ret = __mem_cgroup_try_charge(NULL,
6391 					GFP_KERNEL, 1, &memcg, false);
6392 		if (ret)
6393 			/* mem_cgroup_clear_mc() will do uncharge later */
6394 			return ret;
6395 		mc.precharge++;
6396 	}
6397 	return ret;
6398 }
6399 
6400 /**
6401  * get_mctgt_type - get target type of moving charge
6402  * @vma: the vma the pte to be checked belongs
6403  * @addr: the address corresponding to the pte to be checked
6404  * @ptent: the pte to be checked
6405  * @target: the pointer the target page or swap ent will be stored(can be NULL)
6406  *
6407  * Returns
6408  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
6409  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6410  *     move charge. if @target is not NULL, the page is stored in target->page
6411  *     with extra refcnt got(Callers should handle it).
6412  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6413  *     target for charge migration. if @target is not NULL, the entry is stored
6414  *     in target->ent.
6415  *
6416  * Called with pte lock held.
6417  */
6418 union mc_target {
6419 	struct page	*page;
6420 	swp_entry_t	ent;
6421 };
6422 
6423 enum mc_target_type {
6424 	MC_TARGET_NONE = 0,
6425 	MC_TARGET_PAGE,
6426 	MC_TARGET_SWAP,
6427 };
6428 
6429 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6430 						unsigned long addr, pte_t ptent)
6431 {
6432 	struct page *page = vm_normal_page(vma, addr, ptent);
6433 
6434 	if (!page || !page_mapped(page))
6435 		return NULL;
6436 	if (PageAnon(page)) {
6437 		/* we don't move shared anon */
6438 		if (!move_anon())
6439 			return NULL;
6440 	} else if (!move_file())
6441 		/* we ignore mapcount for file pages */
6442 		return NULL;
6443 	if (!get_page_unless_zero(page))
6444 		return NULL;
6445 
6446 	return page;
6447 }
6448 
6449 #ifdef CONFIG_SWAP
6450 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6451 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6452 {
6453 	struct page *page = NULL;
6454 	swp_entry_t ent = pte_to_swp_entry(ptent);
6455 
6456 	if (!move_anon() || non_swap_entry(ent))
6457 		return NULL;
6458 	/*
6459 	 * Because lookup_swap_cache() updates some statistics counter,
6460 	 * we call find_get_page() with swapper_space directly.
6461 	 */
6462 	page = find_get_page(swap_address_space(ent), ent.val);
6463 	if (do_swap_account)
6464 		entry->val = ent.val;
6465 
6466 	return page;
6467 }
6468 #else
6469 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6470 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6471 {
6472 	return NULL;
6473 }
6474 #endif
6475 
6476 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6477 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6478 {
6479 	struct page *page = NULL;
6480 	struct address_space *mapping;
6481 	pgoff_t pgoff;
6482 
6483 	if (!vma->vm_file) /* anonymous vma */
6484 		return NULL;
6485 	if (!move_file())
6486 		return NULL;
6487 
6488 	mapping = vma->vm_file->f_mapping;
6489 	if (pte_none(ptent))
6490 		pgoff = linear_page_index(vma, addr);
6491 	else /* pte_file(ptent) is true */
6492 		pgoff = pte_to_pgoff(ptent);
6493 
6494 	/* page is moved even if it's not RSS of this task(page-faulted). */
6495 	page = find_get_page(mapping, pgoff);
6496 
6497 #ifdef CONFIG_SWAP
6498 	/* shmem/tmpfs may report page out on swap: account for that too. */
6499 	if (radix_tree_exceptional_entry(page)) {
6500 		swp_entry_t swap = radix_to_swp_entry(page);
6501 		if (do_swap_account)
6502 			*entry = swap;
6503 		page = find_get_page(swap_address_space(swap), swap.val);
6504 	}
6505 #endif
6506 	return page;
6507 }
6508 
6509 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6510 		unsigned long addr, pte_t ptent, union mc_target *target)
6511 {
6512 	struct page *page = NULL;
6513 	struct page_cgroup *pc;
6514 	enum mc_target_type ret = MC_TARGET_NONE;
6515 	swp_entry_t ent = { .val = 0 };
6516 
6517 	if (pte_present(ptent))
6518 		page = mc_handle_present_pte(vma, addr, ptent);
6519 	else if (is_swap_pte(ptent))
6520 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6521 	else if (pte_none(ptent) || pte_file(ptent))
6522 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
6523 
6524 	if (!page && !ent.val)
6525 		return ret;
6526 	if (page) {
6527 		pc = lookup_page_cgroup(page);
6528 		/*
6529 		 * Do only loose check w/o page_cgroup lock.
6530 		 * mem_cgroup_move_account() checks the pc is valid or not under
6531 		 * the lock.
6532 		 */
6533 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6534 			ret = MC_TARGET_PAGE;
6535 			if (target)
6536 				target->page = page;
6537 		}
6538 		if (!ret || !target)
6539 			put_page(page);
6540 	}
6541 	/* There is a swap entry and a page doesn't exist or isn't charged */
6542 	if (ent.val && !ret &&
6543 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6544 		ret = MC_TARGET_SWAP;
6545 		if (target)
6546 			target->ent = ent;
6547 	}
6548 	return ret;
6549 }
6550 
6551 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6552 /*
6553  * We don't consider swapping or file mapped pages because THP does not
6554  * support them for now.
6555  * Caller should make sure that pmd_trans_huge(pmd) is true.
6556  */
6557 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6558 		unsigned long addr, pmd_t pmd, union mc_target *target)
6559 {
6560 	struct page *page = NULL;
6561 	struct page_cgroup *pc;
6562 	enum mc_target_type ret = MC_TARGET_NONE;
6563 
6564 	page = pmd_page(pmd);
6565 	VM_BUG_ON(!page || !PageHead(page));
6566 	if (!move_anon())
6567 		return ret;
6568 	pc = lookup_page_cgroup(page);
6569 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6570 		ret = MC_TARGET_PAGE;
6571 		if (target) {
6572 			get_page(page);
6573 			target->page = page;
6574 		}
6575 	}
6576 	return ret;
6577 }
6578 #else
6579 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6580 		unsigned long addr, pmd_t pmd, union mc_target *target)
6581 {
6582 	return MC_TARGET_NONE;
6583 }
6584 #endif
6585 
6586 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6587 					unsigned long addr, unsigned long end,
6588 					struct mm_walk *walk)
6589 {
6590 	struct vm_area_struct *vma = walk->private;
6591 	pte_t *pte;
6592 	spinlock_t *ptl;
6593 
6594 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6595 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6596 			mc.precharge += HPAGE_PMD_NR;
6597 		spin_unlock(&vma->vm_mm->page_table_lock);
6598 		return 0;
6599 	}
6600 
6601 	if (pmd_trans_unstable(pmd))
6602 		return 0;
6603 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6604 	for (; addr != end; pte++, addr += PAGE_SIZE)
6605 		if (get_mctgt_type(vma, addr, *pte, NULL))
6606 			mc.precharge++;	/* increment precharge temporarily */
6607 	pte_unmap_unlock(pte - 1, ptl);
6608 	cond_resched();
6609 
6610 	return 0;
6611 }
6612 
6613 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6614 {
6615 	unsigned long precharge;
6616 	struct vm_area_struct *vma;
6617 
6618 	down_read(&mm->mmap_sem);
6619 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6620 		struct mm_walk mem_cgroup_count_precharge_walk = {
6621 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
6622 			.mm = mm,
6623 			.private = vma,
6624 		};
6625 		if (is_vm_hugetlb_page(vma))
6626 			continue;
6627 		walk_page_range(vma->vm_start, vma->vm_end,
6628 					&mem_cgroup_count_precharge_walk);
6629 	}
6630 	up_read(&mm->mmap_sem);
6631 
6632 	precharge = mc.precharge;
6633 	mc.precharge = 0;
6634 
6635 	return precharge;
6636 }
6637 
6638 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6639 {
6640 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6641 
6642 	VM_BUG_ON(mc.moving_task);
6643 	mc.moving_task = current;
6644 	return mem_cgroup_do_precharge(precharge);
6645 }
6646 
6647 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6648 static void __mem_cgroup_clear_mc(void)
6649 {
6650 	struct mem_cgroup *from = mc.from;
6651 	struct mem_cgroup *to = mc.to;
6652 	int i;
6653 
6654 	/* we must uncharge all the leftover precharges from mc.to */
6655 	if (mc.precharge) {
6656 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
6657 		mc.precharge = 0;
6658 	}
6659 	/*
6660 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6661 	 * we must uncharge here.
6662 	 */
6663 	if (mc.moved_charge) {
6664 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6665 		mc.moved_charge = 0;
6666 	}
6667 	/* we must fixup refcnts and charges */
6668 	if (mc.moved_swap) {
6669 		/* uncharge swap account from the old cgroup */
6670 		if (!mem_cgroup_is_root(mc.from))
6671 			res_counter_uncharge(&mc.from->memsw,
6672 						PAGE_SIZE * mc.moved_swap);
6673 
6674 		for (i = 0; i < mc.moved_swap; i++)
6675 			css_put(&mc.from->css);
6676 
6677 		if (!mem_cgroup_is_root(mc.to)) {
6678 			/*
6679 			 * we charged both to->res and to->memsw, so we should
6680 			 * uncharge to->res.
6681 			 */
6682 			res_counter_uncharge(&mc.to->res,
6683 						PAGE_SIZE * mc.moved_swap);
6684 		}
6685 		/* we've already done css_get(mc.to) */
6686 		mc.moved_swap = 0;
6687 	}
6688 	memcg_oom_recover(from);
6689 	memcg_oom_recover(to);
6690 	wake_up_all(&mc.waitq);
6691 }
6692 
6693 static void mem_cgroup_clear_mc(void)
6694 {
6695 	struct mem_cgroup *from = mc.from;
6696 
6697 	/*
6698 	 * we must clear moving_task before waking up waiters at the end of
6699 	 * task migration.
6700 	 */
6701 	mc.moving_task = NULL;
6702 	__mem_cgroup_clear_mc();
6703 	spin_lock(&mc.lock);
6704 	mc.from = NULL;
6705 	mc.to = NULL;
6706 	spin_unlock(&mc.lock);
6707 	mem_cgroup_end_move(from);
6708 }
6709 
6710 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6711 				 struct cgroup_taskset *tset)
6712 {
6713 	struct task_struct *p = cgroup_taskset_first(tset);
6714 	int ret = 0;
6715 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6716 	unsigned long move_charge_at_immigrate;
6717 
6718 	/*
6719 	 * We are now commited to this value whatever it is. Changes in this
6720 	 * tunable will only affect upcoming migrations, not the current one.
6721 	 * So we need to save it, and keep it going.
6722 	 */
6723 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
6724 	if (move_charge_at_immigrate) {
6725 		struct mm_struct *mm;
6726 		struct mem_cgroup *from = mem_cgroup_from_task(p);
6727 
6728 		VM_BUG_ON(from == memcg);
6729 
6730 		mm = get_task_mm(p);
6731 		if (!mm)
6732 			return 0;
6733 		/* We move charges only when we move a owner of the mm */
6734 		if (mm->owner == p) {
6735 			VM_BUG_ON(mc.from);
6736 			VM_BUG_ON(mc.to);
6737 			VM_BUG_ON(mc.precharge);
6738 			VM_BUG_ON(mc.moved_charge);
6739 			VM_BUG_ON(mc.moved_swap);
6740 			mem_cgroup_start_move(from);
6741 			spin_lock(&mc.lock);
6742 			mc.from = from;
6743 			mc.to = memcg;
6744 			mc.immigrate_flags = move_charge_at_immigrate;
6745 			spin_unlock(&mc.lock);
6746 			/* We set mc.moving_task later */
6747 
6748 			ret = mem_cgroup_precharge_mc(mm);
6749 			if (ret)
6750 				mem_cgroup_clear_mc();
6751 		}
6752 		mmput(mm);
6753 	}
6754 	return ret;
6755 }
6756 
6757 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6758 				     struct cgroup_taskset *tset)
6759 {
6760 	mem_cgroup_clear_mc();
6761 }
6762 
6763 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6764 				unsigned long addr, unsigned long end,
6765 				struct mm_walk *walk)
6766 {
6767 	int ret = 0;
6768 	struct vm_area_struct *vma = walk->private;
6769 	pte_t *pte;
6770 	spinlock_t *ptl;
6771 	enum mc_target_type target_type;
6772 	union mc_target target;
6773 	struct page *page;
6774 	struct page_cgroup *pc;
6775 
6776 	/*
6777 	 * We don't take compound_lock() here but no race with splitting thp
6778 	 * happens because:
6779 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6780 	 *    under splitting, which means there's no concurrent thp split,
6781 	 *  - if another thread runs into split_huge_page() just after we
6782 	 *    entered this if-block, the thread must wait for page table lock
6783 	 *    to be unlocked in __split_huge_page_splitting(), where the main
6784 	 *    part of thp split is not executed yet.
6785 	 */
6786 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6787 		if (mc.precharge < HPAGE_PMD_NR) {
6788 			spin_unlock(&vma->vm_mm->page_table_lock);
6789 			return 0;
6790 		}
6791 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6792 		if (target_type == MC_TARGET_PAGE) {
6793 			page = target.page;
6794 			if (!isolate_lru_page(page)) {
6795 				pc = lookup_page_cgroup(page);
6796 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6797 							pc, mc.from, mc.to)) {
6798 					mc.precharge -= HPAGE_PMD_NR;
6799 					mc.moved_charge += HPAGE_PMD_NR;
6800 				}
6801 				putback_lru_page(page);
6802 			}
6803 			put_page(page);
6804 		}
6805 		spin_unlock(&vma->vm_mm->page_table_lock);
6806 		return 0;
6807 	}
6808 
6809 	if (pmd_trans_unstable(pmd))
6810 		return 0;
6811 retry:
6812 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6813 	for (; addr != end; addr += PAGE_SIZE) {
6814 		pte_t ptent = *(pte++);
6815 		swp_entry_t ent;
6816 
6817 		if (!mc.precharge)
6818 			break;
6819 
6820 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6821 		case MC_TARGET_PAGE:
6822 			page = target.page;
6823 			if (isolate_lru_page(page))
6824 				goto put;
6825 			pc = lookup_page_cgroup(page);
6826 			if (!mem_cgroup_move_account(page, 1, pc,
6827 						     mc.from, mc.to)) {
6828 				mc.precharge--;
6829 				/* we uncharge from mc.from later. */
6830 				mc.moved_charge++;
6831 			}
6832 			putback_lru_page(page);
6833 put:			/* get_mctgt_type() gets the page */
6834 			put_page(page);
6835 			break;
6836 		case MC_TARGET_SWAP:
6837 			ent = target.ent;
6838 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6839 				mc.precharge--;
6840 				/* we fixup refcnts and charges later. */
6841 				mc.moved_swap++;
6842 			}
6843 			break;
6844 		default:
6845 			break;
6846 		}
6847 	}
6848 	pte_unmap_unlock(pte - 1, ptl);
6849 	cond_resched();
6850 
6851 	if (addr != end) {
6852 		/*
6853 		 * We have consumed all precharges we got in can_attach().
6854 		 * We try charge one by one, but don't do any additional
6855 		 * charges to mc.to if we have failed in charge once in attach()
6856 		 * phase.
6857 		 */
6858 		ret = mem_cgroup_do_precharge(1);
6859 		if (!ret)
6860 			goto retry;
6861 	}
6862 
6863 	return ret;
6864 }
6865 
6866 static void mem_cgroup_move_charge(struct mm_struct *mm)
6867 {
6868 	struct vm_area_struct *vma;
6869 
6870 	lru_add_drain_all();
6871 retry:
6872 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6873 		/*
6874 		 * Someone who are holding the mmap_sem might be waiting in
6875 		 * waitq. So we cancel all extra charges, wake up all waiters,
6876 		 * and retry. Because we cancel precharges, we might not be able
6877 		 * to move enough charges, but moving charge is a best-effort
6878 		 * feature anyway, so it wouldn't be a big problem.
6879 		 */
6880 		__mem_cgroup_clear_mc();
6881 		cond_resched();
6882 		goto retry;
6883 	}
6884 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6885 		int ret;
6886 		struct mm_walk mem_cgroup_move_charge_walk = {
6887 			.pmd_entry = mem_cgroup_move_charge_pte_range,
6888 			.mm = mm,
6889 			.private = vma,
6890 		};
6891 		if (is_vm_hugetlb_page(vma))
6892 			continue;
6893 		ret = walk_page_range(vma->vm_start, vma->vm_end,
6894 						&mem_cgroup_move_charge_walk);
6895 		if (ret)
6896 			/*
6897 			 * means we have consumed all precharges and failed in
6898 			 * doing additional charge. Just abandon here.
6899 			 */
6900 			break;
6901 	}
6902 	up_read(&mm->mmap_sem);
6903 }
6904 
6905 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6906 				 struct cgroup_taskset *tset)
6907 {
6908 	struct task_struct *p = cgroup_taskset_first(tset);
6909 	struct mm_struct *mm = get_task_mm(p);
6910 
6911 	if (mm) {
6912 		if (mc.to)
6913 			mem_cgroup_move_charge(mm);
6914 		mmput(mm);
6915 	}
6916 	if (mc.to)
6917 		mem_cgroup_clear_mc();
6918 }
6919 #else	/* !CONFIG_MMU */
6920 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6921 				 struct cgroup_taskset *tset)
6922 {
6923 	return 0;
6924 }
6925 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6926 				     struct cgroup_taskset *tset)
6927 {
6928 }
6929 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6930 				 struct cgroup_taskset *tset)
6931 {
6932 }
6933 #endif
6934 
6935 /*
6936  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6937  * to verify sane_behavior flag on each mount attempt.
6938  */
6939 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6940 {
6941 	/*
6942 	 * use_hierarchy is forced with sane_behavior.  cgroup core
6943 	 * guarantees that @root doesn't have any children, so turning it
6944 	 * on for the root memcg is enough.
6945 	 */
6946 	if (cgroup_sane_behavior(root_css->cgroup))
6947 		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6948 }
6949 
6950 struct cgroup_subsys mem_cgroup_subsys = {
6951 	.name = "memory",
6952 	.subsys_id = mem_cgroup_subsys_id,
6953 	.css_alloc = mem_cgroup_css_alloc,
6954 	.css_online = mem_cgroup_css_online,
6955 	.css_offline = mem_cgroup_css_offline,
6956 	.css_free = mem_cgroup_css_free,
6957 	.can_attach = mem_cgroup_can_attach,
6958 	.cancel_attach = mem_cgroup_cancel_attach,
6959 	.attach = mem_cgroup_move_task,
6960 	.bind = mem_cgroup_bind,
6961 	.base_cftypes = mem_cgroup_files,
6962 	.early_init = 0,
6963 	.use_id = 1,
6964 };
6965 
6966 #ifdef CONFIG_MEMCG_SWAP
6967 static int __init enable_swap_account(char *s)
6968 {
6969 	if (!strcmp(s, "1"))
6970 		really_do_swap_account = 1;
6971 	else if (!strcmp(s, "0"))
6972 		really_do_swap_account = 0;
6973 	return 1;
6974 }
6975 __setup("swapaccount=", enable_swap_account);
6976 
6977 static void __init memsw_file_init(void)
6978 {
6979 	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6980 }
6981 
6982 static void __init enable_swap_cgroup(void)
6983 {
6984 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6985 		do_swap_account = 1;
6986 		memsw_file_init();
6987 	}
6988 }
6989 
6990 #else
6991 static void __init enable_swap_cgroup(void)
6992 {
6993 }
6994 #endif
6995 
6996 /*
6997  * subsys_initcall() for memory controller.
6998  *
6999  * Some parts like hotcpu_notifier() have to be initialized from this context
7000  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7001  * everything that doesn't depend on a specific mem_cgroup structure should
7002  * be initialized from here.
7003  */
7004 static int __init mem_cgroup_init(void)
7005 {
7006 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7007 	enable_swap_cgroup();
7008 	mem_cgroup_soft_limit_tree_init();
7009 	memcg_stock_init();
7010 	return 0;
7011 }
7012 subsys_initcall(mem_cgroup_init);
7013