1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/pagewalk.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include <linux/psi.h> 61 #include <linux/seq_buf.h> 62 #include "internal.h" 63 #include <net/sock.h> 64 #include <net/ip.h> 65 #include "slab.h" 66 67 #include <linux/uaccess.h> 68 69 #include <trace/events/vmscan.h> 70 71 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 72 EXPORT_SYMBOL(memory_cgrp_subsys); 73 74 struct mem_cgroup *root_mem_cgroup __read_mostly; 75 76 #define MEM_CGROUP_RECLAIM_RETRIES 5 77 78 /* Socket memory accounting disabled? */ 79 static bool cgroup_memory_nosocket; 80 81 /* Kernel memory accounting disabled? */ 82 static bool cgroup_memory_nokmem; 83 84 /* Whether the swap controller is active */ 85 #ifdef CONFIG_MEMCG_SWAP 86 int do_swap_account __read_mostly; 87 #else 88 #define do_swap_account 0 89 #endif 90 91 #ifdef CONFIG_CGROUP_WRITEBACK 92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 #define THRESHOLDS_EVENTS_TARGET 128 102 #define SOFTLIMIT_EVENTS_TARGET 1024 103 104 /* 105 * Cgroups above their limits are maintained in a RB-Tree, independent of 106 * their hierarchy representation 107 */ 108 109 struct mem_cgroup_tree_per_node { 110 struct rb_root rb_root; 111 struct rb_node *rb_rightmost; 112 spinlock_t lock; 113 }; 114 115 struct mem_cgroup_tree { 116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 117 }; 118 119 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 120 121 /* for OOM */ 122 struct mem_cgroup_eventfd_list { 123 struct list_head list; 124 struct eventfd_ctx *eventfd; 125 }; 126 127 /* 128 * cgroup_event represents events which userspace want to receive. 129 */ 130 struct mem_cgroup_event { 131 /* 132 * memcg which the event belongs to. 133 */ 134 struct mem_cgroup *memcg; 135 /* 136 * eventfd to signal userspace about the event. 137 */ 138 struct eventfd_ctx *eventfd; 139 /* 140 * Each of these stored in a list by the cgroup. 141 */ 142 struct list_head list; 143 /* 144 * register_event() callback will be used to add new userspace 145 * waiter for changes related to this event. Use eventfd_signal() 146 * on eventfd to send notification to userspace. 147 */ 148 int (*register_event)(struct mem_cgroup *memcg, 149 struct eventfd_ctx *eventfd, const char *args); 150 /* 151 * unregister_event() callback will be called when userspace closes 152 * the eventfd or on cgroup removing. This callback must be set, 153 * if you want provide notification functionality. 154 */ 155 void (*unregister_event)(struct mem_cgroup *memcg, 156 struct eventfd_ctx *eventfd); 157 /* 158 * All fields below needed to unregister event when 159 * userspace closes eventfd. 160 */ 161 poll_table pt; 162 wait_queue_head_t *wqh; 163 wait_queue_entry_t wait; 164 struct work_struct remove; 165 }; 166 167 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 169 170 /* Stuffs for move charges at task migration. */ 171 /* 172 * Types of charges to be moved. 173 */ 174 #define MOVE_ANON 0x1U 175 #define MOVE_FILE 0x2U 176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 177 178 /* "mc" and its members are protected by cgroup_mutex */ 179 static struct move_charge_struct { 180 spinlock_t lock; /* for from, to */ 181 struct mm_struct *mm; 182 struct mem_cgroup *from; 183 struct mem_cgroup *to; 184 unsigned long flags; 185 unsigned long precharge; 186 unsigned long moved_charge; 187 unsigned long moved_swap; 188 struct task_struct *moving_task; /* a task moving charges */ 189 wait_queue_head_t waitq; /* a waitq for other context */ 190 } mc = { 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 193 }; 194 195 /* 196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 197 * limit reclaim to prevent infinite loops, if they ever occur. 198 */ 199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 201 202 enum charge_type { 203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 204 MEM_CGROUP_CHARGE_TYPE_ANON, 205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 207 NR_CHARGE_TYPE, 208 }; 209 210 /* for encoding cft->private value on file */ 211 enum res_type { 212 _MEM, 213 _MEMSWAP, 214 _OOM_TYPE, 215 _KMEM, 216 _TCP, 217 }; 218 219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 221 #define MEMFILE_ATTR(val) ((val) & 0xffff) 222 /* Used for OOM nofiier */ 223 #define OOM_CONTROL (0) 224 225 /* 226 * Iteration constructs for visiting all cgroups (under a tree). If 227 * loops are exited prematurely (break), mem_cgroup_iter_break() must 228 * be used for reference counting. 229 */ 230 #define for_each_mem_cgroup_tree(iter, root) \ 231 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 232 iter != NULL; \ 233 iter = mem_cgroup_iter(root, iter, NULL)) 234 235 #define for_each_mem_cgroup(iter) \ 236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 237 iter != NULL; \ 238 iter = mem_cgroup_iter(NULL, iter, NULL)) 239 240 static inline bool should_force_charge(void) 241 { 242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 243 (current->flags & PF_EXITING); 244 } 245 246 /* Some nice accessors for the vmpressure. */ 247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 248 { 249 if (!memcg) 250 memcg = root_mem_cgroup; 251 return &memcg->vmpressure; 252 } 253 254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 255 { 256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 257 } 258 259 #ifdef CONFIG_MEMCG_KMEM 260 /* 261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 262 * The main reason for not using cgroup id for this: 263 * this works better in sparse environments, where we have a lot of memcgs, 264 * but only a few kmem-limited. Or also, if we have, for instance, 200 265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 266 * 200 entry array for that. 267 * 268 * The current size of the caches array is stored in memcg_nr_cache_ids. It 269 * will double each time we have to increase it. 270 */ 271 static DEFINE_IDA(memcg_cache_ida); 272 int memcg_nr_cache_ids; 273 274 /* Protects memcg_nr_cache_ids */ 275 static DECLARE_RWSEM(memcg_cache_ids_sem); 276 277 void memcg_get_cache_ids(void) 278 { 279 down_read(&memcg_cache_ids_sem); 280 } 281 282 void memcg_put_cache_ids(void) 283 { 284 up_read(&memcg_cache_ids_sem); 285 } 286 287 /* 288 * MIN_SIZE is different than 1, because we would like to avoid going through 289 * the alloc/free process all the time. In a small machine, 4 kmem-limited 290 * cgroups is a reasonable guess. In the future, it could be a parameter or 291 * tunable, but that is strictly not necessary. 292 * 293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 294 * this constant directly from cgroup, but it is understandable that this is 295 * better kept as an internal representation in cgroup.c. In any case, the 296 * cgrp_id space is not getting any smaller, and we don't have to necessarily 297 * increase ours as well if it increases. 298 */ 299 #define MEMCG_CACHES_MIN_SIZE 4 300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 301 302 /* 303 * A lot of the calls to the cache allocation functions are expected to be 304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 305 * conditional to this static branch, we'll have to allow modules that does 306 * kmem_cache_alloc and the such to see this symbol as well 307 */ 308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 309 EXPORT_SYMBOL(memcg_kmem_enabled_key); 310 311 struct workqueue_struct *memcg_kmem_cache_wq; 312 #endif 313 314 static int memcg_shrinker_map_size; 315 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 316 317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 318 { 319 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 320 } 321 322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 323 int size, int old_size) 324 { 325 struct memcg_shrinker_map *new, *old; 326 int nid; 327 328 lockdep_assert_held(&memcg_shrinker_map_mutex); 329 330 for_each_node(nid) { 331 old = rcu_dereference_protected( 332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 333 /* Not yet online memcg */ 334 if (!old) 335 return 0; 336 337 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 338 if (!new) 339 return -ENOMEM; 340 341 /* Set all old bits, clear all new bits */ 342 memset(new->map, (int)0xff, old_size); 343 memset((void *)new->map + old_size, 0, size - old_size); 344 345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 347 } 348 349 return 0; 350 } 351 352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 353 { 354 struct mem_cgroup_per_node *pn; 355 struct memcg_shrinker_map *map; 356 int nid; 357 358 if (mem_cgroup_is_root(memcg)) 359 return; 360 361 for_each_node(nid) { 362 pn = mem_cgroup_nodeinfo(memcg, nid); 363 map = rcu_dereference_protected(pn->shrinker_map, true); 364 if (map) 365 kvfree(map); 366 rcu_assign_pointer(pn->shrinker_map, NULL); 367 } 368 } 369 370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 371 { 372 struct memcg_shrinker_map *map; 373 int nid, size, ret = 0; 374 375 if (mem_cgroup_is_root(memcg)) 376 return 0; 377 378 mutex_lock(&memcg_shrinker_map_mutex); 379 size = memcg_shrinker_map_size; 380 for_each_node(nid) { 381 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid); 382 if (!map) { 383 memcg_free_shrinker_maps(memcg); 384 ret = -ENOMEM; 385 break; 386 } 387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 388 } 389 mutex_unlock(&memcg_shrinker_map_mutex); 390 391 return ret; 392 } 393 394 int memcg_expand_shrinker_maps(int new_id) 395 { 396 int size, old_size, ret = 0; 397 struct mem_cgroup *memcg; 398 399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 400 old_size = memcg_shrinker_map_size; 401 if (size <= old_size) 402 return 0; 403 404 mutex_lock(&memcg_shrinker_map_mutex); 405 if (!root_mem_cgroup) 406 goto unlock; 407 408 for_each_mem_cgroup(memcg) { 409 if (mem_cgroup_is_root(memcg)) 410 continue; 411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 412 if (ret) { 413 mem_cgroup_iter_break(NULL, memcg); 414 goto unlock; 415 } 416 } 417 unlock: 418 if (!ret) 419 memcg_shrinker_map_size = size; 420 mutex_unlock(&memcg_shrinker_map_mutex); 421 return ret; 422 } 423 424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 425 { 426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 427 struct memcg_shrinker_map *map; 428 429 rcu_read_lock(); 430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 431 /* Pairs with smp mb in shrink_slab() */ 432 smp_mb__before_atomic(); 433 set_bit(shrinker_id, map->map); 434 rcu_read_unlock(); 435 } 436 } 437 438 /** 439 * mem_cgroup_css_from_page - css of the memcg associated with a page 440 * @page: page of interest 441 * 442 * If memcg is bound to the default hierarchy, css of the memcg associated 443 * with @page is returned. The returned css remains associated with @page 444 * until it is released. 445 * 446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 447 * is returned. 448 */ 449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 450 { 451 struct mem_cgroup *memcg; 452 453 memcg = page->mem_cgroup; 454 455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 456 memcg = root_mem_cgroup; 457 458 return &memcg->css; 459 } 460 461 /** 462 * page_cgroup_ino - return inode number of the memcg a page is charged to 463 * @page: the page 464 * 465 * Look up the closest online ancestor of the memory cgroup @page is charged to 466 * and return its inode number or 0 if @page is not charged to any cgroup. It 467 * is safe to call this function without holding a reference to @page. 468 * 469 * Note, this function is inherently racy, because there is nothing to prevent 470 * the cgroup inode from getting torn down and potentially reallocated a moment 471 * after page_cgroup_ino() returns, so it only should be used by callers that 472 * do not care (such as procfs interfaces). 473 */ 474 ino_t page_cgroup_ino(struct page *page) 475 { 476 struct mem_cgroup *memcg; 477 unsigned long ino = 0; 478 479 rcu_read_lock(); 480 if (PageSlab(page) && !PageTail(page)) 481 memcg = memcg_from_slab_page(page); 482 else 483 memcg = READ_ONCE(page->mem_cgroup); 484 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 485 memcg = parent_mem_cgroup(memcg); 486 if (memcg) 487 ino = cgroup_ino(memcg->css.cgroup); 488 rcu_read_unlock(); 489 return ino; 490 } 491 492 static struct mem_cgroup_per_node * 493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 494 { 495 int nid = page_to_nid(page); 496 497 return memcg->nodeinfo[nid]; 498 } 499 500 static struct mem_cgroup_tree_per_node * 501 soft_limit_tree_node(int nid) 502 { 503 return soft_limit_tree.rb_tree_per_node[nid]; 504 } 505 506 static struct mem_cgroup_tree_per_node * 507 soft_limit_tree_from_page(struct page *page) 508 { 509 int nid = page_to_nid(page); 510 511 return soft_limit_tree.rb_tree_per_node[nid]; 512 } 513 514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 515 struct mem_cgroup_tree_per_node *mctz, 516 unsigned long new_usage_in_excess) 517 { 518 struct rb_node **p = &mctz->rb_root.rb_node; 519 struct rb_node *parent = NULL; 520 struct mem_cgroup_per_node *mz_node; 521 bool rightmost = true; 522 523 if (mz->on_tree) 524 return; 525 526 mz->usage_in_excess = new_usage_in_excess; 527 if (!mz->usage_in_excess) 528 return; 529 while (*p) { 530 parent = *p; 531 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 532 tree_node); 533 if (mz->usage_in_excess < mz_node->usage_in_excess) { 534 p = &(*p)->rb_left; 535 rightmost = false; 536 } 537 538 /* 539 * We can't avoid mem cgroups that are over their soft 540 * limit by the same amount 541 */ 542 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 543 p = &(*p)->rb_right; 544 } 545 546 if (rightmost) 547 mctz->rb_rightmost = &mz->tree_node; 548 549 rb_link_node(&mz->tree_node, parent, p); 550 rb_insert_color(&mz->tree_node, &mctz->rb_root); 551 mz->on_tree = true; 552 } 553 554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 555 struct mem_cgroup_tree_per_node *mctz) 556 { 557 if (!mz->on_tree) 558 return; 559 560 if (&mz->tree_node == mctz->rb_rightmost) 561 mctz->rb_rightmost = rb_prev(&mz->tree_node); 562 563 rb_erase(&mz->tree_node, &mctz->rb_root); 564 mz->on_tree = false; 565 } 566 567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 568 struct mem_cgroup_tree_per_node *mctz) 569 { 570 unsigned long flags; 571 572 spin_lock_irqsave(&mctz->lock, flags); 573 __mem_cgroup_remove_exceeded(mz, mctz); 574 spin_unlock_irqrestore(&mctz->lock, flags); 575 } 576 577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 578 { 579 unsigned long nr_pages = page_counter_read(&memcg->memory); 580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 581 unsigned long excess = 0; 582 583 if (nr_pages > soft_limit) 584 excess = nr_pages - soft_limit; 585 586 return excess; 587 } 588 589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 590 { 591 unsigned long excess; 592 struct mem_cgroup_per_node *mz; 593 struct mem_cgroup_tree_per_node *mctz; 594 595 mctz = soft_limit_tree_from_page(page); 596 if (!mctz) 597 return; 598 /* 599 * Necessary to update all ancestors when hierarchy is used. 600 * because their event counter is not touched. 601 */ 602 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 603 mz = mem_cgroup_page_nodeinfo(memcg, page); 604 excess = soft_limit_excess(memcg); 605 /* 606 * We have to update the tree if mz is on RB-tree or 607 * mem is over its softlimit. 608 */ 609 if (excess || mz->on_tree) { 610 unsigned long flags; 611 612 spin_lock_irqsave(&mctz->lock, flags); 613 /* if on-tree, remove it */ 614 if (mz->on_tree) 615 __mem_cgroup_remove_exceeded(mz, mctz); 616 /* 617 * Insert again. mz->usage_in_excess will be updated. 618 * If excess is 0, no tree ops. 619 */ 620 __mem_cgroup_insert_exceeded(mz, mctz, excess); 621 spin_unlock_irqrestore(&mctz->lock, flags); 622 } 623 } 624 } 625 626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 627 { 628 struct mem_cgroup_tree_per_node *mctz; 629 struct mem_cgroup_per_node *mz; 630 int nid; 631 632 for_each_node(nid) { 633 mz = mem_cgroup_nodeinfo(memcg, nid); 634 mctz = soft_limit_tree_node(nid); 635 if (mctz) 636 mem_cgroup_remove_exceeded(mz, mctz); 637 } 638 } 639 640 static struct mem_cgroup_per_node * 641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 642 { 643 struct mem_cgroup_per_node *mz; 644 645 retry: 646 mz = NULL; 647 if (!mctz->rb_rightmost) 648 goto done; /* Nothing to reclaim from */ 649 650 mz = rb_entry(mctz->rb_rightmost, 651 struct mem_cgroup_per_node, tree_node); 652 /* 653 * Remove the node now but someone else can add it back, 654 * we will to add it back at the end of reclaim to its correct 655 * position in the tree. 656 */ 657 __mem_cgroup_remove_exceeded(mz, mctz); 658 if (!soft_limit_excess(mz->memcg) || 659 !css_tryget(&mz->memcg->css)) 660 goto retry; 661 done: 662 return mz; 663 } 664 665 static struct mem_cgroup_per_node * 666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 667 { 668 struct mem_cgroup_per_node *mz; 669 670 spin_lock_irq(&mctz->lock); 671 mz = __mem_cgroup_largest_soft_limit_node(mctz); 672 spin_unlock_irq(&mctz->lock); 673 return mz; 674 } 675 676 /** 677 * __mod_memcg_state - update cgroup memory statistics 678 * @memcg: the memory cgroup 679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 680 * @val: delta to add to the counter, can be negative 681 */ 682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 683 { 684 long x; 685 686 if (mem_cgroup_disabled()) 687 return; 688 689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 691 struct mem_cgroup *mi; 692 693 /* 694 * Batch local counters to keep them in sync with 695 * the hierarchical ones. 696 */ 697 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 699 atomic_long_add(x, &mi->vmstats[idx]); 700 x = 0; 701 } 702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 703 } 704 705 static struct mem_cgroup_per_node * 706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 707 { 708 struct mem_cgroup *parent; 709 710 parent = parent_mem_cgroup(pn->memcg); 711 if (!parent) 712 return NULL; 713 return mem_cgroup_nodeinfo(parent, nid); 714 } 715 716 /** 717 * __mod_lruvec_state - update lruvec memory statistics 718 * @lruvec: the lruvec 719 * @idx: the stat item 720 * @val: delta to add to the counter, can be negative 721 * 722 * The lruvec is the intersection of the NUMA node and a cgroup. This 723 * function updates the all three counters that are affected by a 724 * change of state at this level: per-node, per-cgroup, per-lruvec. 725 */ 726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 727 int val) 728 { 729 pg_data_t *pgdat = lruvec_pgdat(lruvec); 730 struct mem_cgroup_per_node *pn; 731 struct mem_cgroup *memcg; 732 long x; 733 734 /* Update node */ 735 __mod_node_page_state(pgdat, idx, val); 736 737 if (mem_cgroup_disabled()) 738 return; 739 740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 741 memcg = pn->memcg; 742 743 /* Update memcg */ 744 __mod_memcg_state(memcg, idx, val); 745 746 /* Update lruvec */ 747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 748 749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 751 struct mem_cgroup_per_node *pi; 752 753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 754 atomic_long_add(x, &pi->lruvec_stat[idx]); 755 x = 0; 756 } 757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 758 } 759 760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) 761 { 762 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 763 struct mem_cgroup *memcg; 764 struct lruvec *lruvec; 765 766 rcu_read_lock(); 767 memcg = mem_cgroup_from_obj(p); 768 769 /* Untracked pages have no memcg, no lruvec. Update only the node */ 770 if (!memcg || memcg == root_mem_cgroup) { 771 __mod_node_page_state(pgdat, idx, val); 772 } else { 773 lruvec = mem_cgroup_lruvec(memcg, pgdat); 774 __mod_lruvec_state(lruvec, idx, val); 775 } 776 rcu_read_unlock(); 777 } 778 779 void mod_memcg_obj_state(void *p, int idx, int val) 780 { 781 struct mem_cgroup *memcg; 782 783 rcu_read_lock(); 784 memcg = mem_cgroup_from_obj(p); 785 if (memcg) 786 mod_memcg_state(memcg, idx, val); 787 rcu_read_unlock(); 788 } 789 790 /** 791 * __count_memcg_events - account VM events in a cgroup 792 * @memcg: the memory cgroup 793 * @idx: the event item 794 * @count: the number of events that occured 795 */ 796 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 797 unsigned long count) 798 { 799 unsigned long x; 800 801 if (mem_cgroup_disabled()) 802 return; 803 804 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 805 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 806 struct mem_cgroup *mi; 807 808 /* 809 * Batch local counters to keep them in sync with 810 * the hierarchical ones. 811 */ 812 __this_cpu_add(memcg->vmstats_local->events[idx], x); 813 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 814 atomic_long_add(x, &mi->vmevents[idx]); 815 x = 0; 816 } 817 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 818 } 819 820 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 821 { 822 return atomic_long_read(&memcg->vmevents[event]); 823 } 824 825 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 826 { 827 long x = 0; 828 int cpu; 829 830 for_each_possible_cpu(cpu) 831 x += per_cpu(memcg->vmstats_local->events[event], cpu); 832 return x; 833 } 834 835 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 836 struct page *page, 837 bool compound, int nr_pages) 838 { 839 /* 840 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 841 * counted as CACHE even if it's on ANON LRU. 842 */ 843 if (PageAnon(page)) 844 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 845 else { 846 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 847 if (PageSwapBacked(page)) 848 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 849 } 850 851 if (compound) { 852 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 853 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 854 } 855 856 /* pagein of a big page is an event. So, ignore page size */ 857 if (nr_pages > 0) 858 __count_memcg_events(memcg, PGPGIN, 1); 859 else { 860 __count_memcg_events(memcg, PGPGOUT, 1); 861 nr_pages = -nr_pages; /* for event */ 862 } 863 864 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 865 } 866 867 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 868 enum mem_cgroup_events_target target) 869 { 870 unsigned long val, next; 871 872 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 873 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 874 /* from time_after() in jiffies.h */ 875 if ((long)(next - val) < 0) { 876 switch (target) { 877 case MEM_CGROUP_TARGET_THRESH: 878 next = val + THRESHOLDS_EVENTS_TARGET; 879 break; 880 case MEM_CGROUP_TARGET_SOFTLIMIT: 881 next = val + SOFTLIMIT_EVENTS_TARGET; 882 break; 883 default: 884 break; 885 } 886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 887 return true; 888 } 889 return false; 890 } 891 892 /* 893 * Check events in order. 894 * 895 */ 896 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 897 { 898 /* threshold event is triggered in finer grain than soft limit */ 899 if (unlikely(mem_cgroup_event_ratelimit(memcg, 900 MEM_CGROUP_TARGET_THRESH))) { 901 bool do_softlimit; 902 903 do_softlimit = mem_cgroup_event_ratelimit(memcg, 904 MEM_CGROUP_TARGET_SOFTLIMIT); 905 mem_cgroup_threshold(memcg); 906 if (unlikely(do_softlimit)) 907 mem_cgroup_update_tree(memcg, page); 908 } 909 } 910 911 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 912 { 913 /* 914 * mm_update_next_owner() may clear mm->owner to NULL 915 * if it races with swapoff, page migration, etc. 916 * So this can be called with p == NULL. 917 */ 918 if (unlikely(!p)) 919 return NULL; 920 921 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 922 } 923 EXPORT_SYMBOL(mem_cgroup_from_task); 924 925 /** 926 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 927 * @mm: mm from which memcg should be extracted. It can be NULL. 928 * 929 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 930 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 931 * returned. 932 */ 933 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 934 { 935 struct mem_cgroup *memcg; 936 937 if (mem_cgroup_disabled()) 938 return NULL; 939 940 rcu_read_lock(); 941 do { 942 /* 943 * Page cache insertions can happen withou an 944 * actual mm context, e.g. during disk probing 945 * on boot, loopback IO, acct() writes etc. 946 */ 947 if (unlikely(!mm)) 948 memcg = root_mem_cgroup; 949 else { 950 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 951 if (unlikely(!memcg)) 952 memcg = root_mem_cgroup; 953 } 954 } while (!css_tryget(&memcg->css)); 955 rcu_read_unlock(); 956 return memcg; 957 } 958 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 959 960 /** 961 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 962 * @page: page from which memcg should be extracted. 963 * 964 * Obtain a reference on page->memcg and returns it if successful. Otherwise 965 * root_mem_cgroup is returned. 966 */ 967 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 968 { 969 struct mem_cgroup *memcg = page->mem_cgroup; 970 971 if (mem_cgroup_disabled()) 972 return NULL; 973 974 rcu_read_lock(); 975 /* Page should not get uncharged and freed memcg under us. */ 976 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 977 memcg = root_mem_cgroup; 978 rcu_read_unlock(); 979 return memcg; 980 } 981 EXPORT_SYMBOL(get_mem_cgroup_from_page); 982 983 /** 984 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 985 */ 986 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 987 { 988 if (unlikely(current->active_memcg)) { 989 struct mem_cgroup *memcg; 990 991 rcu_read_lock(); 992 /* current->active_memcg must hold a ref. */ 993 if (WARN_ON_ONCE(!css_tryget(¤t->active_memcg->css))) 994 memcg = root_mem_cgroup; 995 else 996 memcg = current->active_memcg; 997 rcu_read_unlock(); 998 return memcg; 999 } 1000 return get_mem_cgroup_from_mm(current->mm); 1001 } 1002 1003 /** 1004 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1005 * @root: hierarchy root 1006 * @prev: previously returned memcg, NULL on first invocation 1007 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1008 * 1009 * Returns references to children of the hierarchy below @root, or 1010 * @root itself, or %NULL after a full round-trip. 1011 * 1012 * Caller must pass the return value in @prev on subsequent 1013 * invocations for reference counting, or use mem_cgroup_iter_break() 1014 * to cancel a hierarchy walk before the round-trip is complete. 1015 * 1016 * Reclaimers can specify a node and a priority level in @reclaim to 1017 * divide up the memcgs in the hierarchy among all concurrent 1018 * reclaimers operating on the same node and priority. 1019 */ 1020 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1021 struct mem_cgroup *prev, 1022 struct mem_cgroup_reclaim_cookie *reclaim) 1023 { 1024 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1025 struct cgroup_subsys_state *css = NULL; 1026 struct mem_cgroup *memcg = NULL; 1027 struct mem_cgroup *pos = NULL; 1028 1029 if (mem_cgroup_disabled()) 1030 return NULL; 1031 1032 if (!root) 1033 root = root_mem_cgroup; 1034 1035 if (prev && !reclaim) 1036 pos = prev; 1037 1038 if (!root->use_hierarchy && root != root_mem_cgroup) { 1039 if (prev) 1040 goto out; 1041 return root; 1042 } 1043 1044 rcu_read_lock(); 1045 1046 if (reclaim) { 1047 struct mem_cgroup_per_node *mz; 1048 1049 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1050 iter = &mz->iter; 1051 1052 if (prev && reclaim->generation != iter->generation) 1053 goto out_unlock; 1054 1055 while (1) { 1056 pos = READ_ONCE(iter->position); 1057 if (!pos || css_tryget(&pos->css)) 1058 break; 1059 /* 1060 * css reference reached zero, so iter->position will 1061 * be cleared by ->css_released. However, we should not 1062 * rely on this happening soon, because ->css_released 1063 * is called from a work queue, and by busy-waiting we 1064 * might block it. So we clear iter->position right 1065 * away. 1066 */ 1067 (void)cmpxchg(&iter->position, pos, NULL); 1068 } 1069 } 1070 1071 if (pos) 1072 css = &pos->css; 1073 1074 for (;;) { 1075 css = css_next_descendant_pre(css, &root->css); 1076 if (!css) { 1077 /* 1078 * Reclaimers share the hierarchy walk, and a 1079 * new one might jump in right at the end of 1080 * the hierarchy - make sure they see at least 1081 * one group and restart from the beginning. 1082 */ 1083 if (!prev) 1084 continue; 1085 break; 1086 } 1087 1088 /* 1089 * Verify the css and acquire a reference. The root 1090 * is provided by the caller, so we know it's alive 1091 * and kicking, and don't take an extra reference. 1092 */ 1093 memcg = mem_cgroup_from_css(css); 1094 1095 if (css == &root->css) 1096 break; 1097 1098 if (css_tryget(css)) 1099 break; 1100 1101 memcg = NULL; 1102 } 1103 1104 if (reclaim) { 1105 /* 1106 * The position could have already been updated by a competing 1107 * thread, so check that the value hasn't changed since we read 1108 * it to avoid reclaiming from the same cgroup twice. 1109 */ 1110 (void)cmpxchg(&iter->position, pos, memcg); 1111 1112 if (pos) 1113 css_put(&pos->css); 1114 1115 if (!memcg) 1116 iter->generation++; 1117 else if (!prev) 1118 reclaim->generation = iter->generation; 1119 } 1120 1121 out_unlock: 1122 rcu_read_unlock(); 1123 out: 1124 if (prev && prev != root) 1125 css_put(&prev->css); 1126 1127 return memcg; 1128 } 1129 1130 /** 1131 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1132 * @root: hierarchy root 1133 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1134 */ 1135 void mem_cgroup_iter_break(struct mem_cgroup *root, 1136 struct mem_cgroup *prev) 1137 { 1138 if (!root) 1139 root = root_mem_cgroup; 1140 if (prev && prev != root) 1141 css_put(&prev->css); 1142 } 1143 1144 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1145 struct mem_cgroup *dead_memcg) 1146 { 1147 struct mem_cgroup_reclaim_iter *iter; 1148 struct mem_cgroup_per_node *mz; 1149 int nid; 1150 1151 for_each_node(nid) { 1152 mz = mem_cgroup_nodeinfo(from, nid); 1153 iter = &mz->iter; 1154 cmpxchg(&iter->position, dead_memcg, NULL); 1155 } 1156 } 1157 1158 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1159 { 1160 struct mem_cgroup *memcg = dead_memcg; 1161 struct mem_cgroup *last; 1162 1163 do { 1164 __invalidate_reclaim_iterators(memcg, dead_memcg); 1165 last = memcg; 1166 } while ((memcg = parent_mem_cgroup(memcg))); 1167 1168 /* 1169 * When cgruop1 non-hierarchy mode is used, 1170 * parent_mem_cgroup() does not walk all the way up to the 1171 * cgroup root (root_mem_cgroup). So we have to handle 1172 * dead_memcg from cgroup root separately. 1173 */ 1174 if (last != root_mem_cgroup) 1175 __invalidate_reclaim_iterators(root_mem_cgroup, 1176 dead_memcg); 1177 } 1178 1179 /** 1180 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1181 * @memcg: hierarchy root 1182 * @fn: function to call for each task 1183 * @arg: argument passed to @fn 1184 * 1185 * This function iterates over tasks attached to @memcg or to any of its 1186 * descendants and calls @fn for each task. If @fn returns a non-zero 1187 * value, the function breaks the iteration loop and returns the value. 1188 * Otherwise, it will iterate over all tasks and return 0. 1189 * 1190 * This function must not be called for the root memory cgroup. 1191 */ 1192 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1193 int (*fn)(struct task_struct *, void *), void *arg) 1194 { 1195 struct mem_cgroup *iter; 1196 int ret = 0; 1197 1198 BUG_ON(memcg == root_mem_cgroup); 1199 1200 for_each_mem_cgroup_tree(iter, memcg) { 1201 struct css_task_iter it; 1202 struct task_struct *task; 1203 1204 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1205 while (!ret && (task = css_task_iter_next(&it))) 1206 ret = fn(task, arg); 1207 css_task_iter_end(&it); 1208 if (ret) { 1209 mem_cgroup_iter_break(memcg, iter); 1210 break; 1211 } 1212 } 1213 return ret; 1214 } 1215 1216 /** 1217 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1218 * @page: the page 1219 * @pgdat: pgdat of the page 1220 * 1221 * This function is only safe when following the LRU page isolation 1222 * and putback protocol: the LRU lock must be held, and the page must 1223 * either be PageLRU() or the caller must have isolated/allocated it. 1224 */ 1225 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1226 { 1227 struct mem_cgroup_per_node *mz; 1228 struct mem_cgroup *memcg; 1229 struct lruvec *lruvec; 1230 1231 if (mem_cgroup_disabled()) { 1232 lruvec = &pgdat->__lruvec; 1233 goto out; 1234 } 1235 1236 memcg = page->mem_cgroup; 1237 /* 1238 * Swapcache readahead pages are added to the LRU - and 1239 * possibly migrated - before they are charged. 1240 */ 1241 if (!memcg) 1242 memcg = root_mem_cgroup; 1243 1244 mz = mem_cgroup_page_nodeinfo(memcg, page); 1245 lruvec = &mz->lruvec; 1246 out: 1247 /* 1248 * Since a node can be onlined after the mem_cgroup was created, 1249 * we have to be prepared to initialize lruvec->zone here; 1250 * and if offlined then reonlined, we need to reinitialize it. 1251 */ 1252 if (unlikely(lruvec->pgdat != pgdat)) 1253 lruvec->pgdat = pgdat; 1254 return lruvec; 1255 } 1256 1257 /** 1258 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1259 * @lruvec: mem_cgroup per zone lru vector 1260 * @lru: index of lru list the page is sitting on 1261 * @zid: zone id of the accounted pages 1262 * @nr_pages: positive when adding or negative when removing 1263 * 1264 * This function must be called under lru_lock, just before a page is added 1265 * to or just after a page is removed from an lru list (that ordering being 1266 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1267 */ 1268 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1269 int zid, int nr_pages) 1270 { 1271 struct mem_cgroup_per_node *mz; 1272 unsigned long *lru_size; 1273 long size; 1274 1275 if (mem_cgroup_disabled()) 1276 return; 1277 1278 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1279 lru_size = &mz->lru_zone_size[zid][lru]; 1280 1281 if (nr_pages < 0) 1282 *lru_size += nr_pages; 1283 1284 size = *lru_size; 1285 if (WARN_ONCE(size < 0, 1286 "%s(%p, %d, %d): lru_size %ld\n", 1287 __func__, lruvec, lru, nr_pages, size)) { 1288 VM_BUG_ON(1); 1289 *lru_size = 0; 1290 } 1291 1292 if (nr_pages > 0) 1293 *lru_size += nr_pages; 1294 } 1295 1296 /** 1297 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1298 * @memcg: the memory cgroup 1299 * 1300 * Returns the maximum amount of memory @mem can be charged with, in 1301 * pages. 1302 */ 1303 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1304 { 1305 unsigned long margin = 0; 1306 unsigned long count; 1307 unsigned long limit; 1308 1309 count = page_counter_read(&memcg->memory); 1310 limit = READ_ONCE(memcg->memory.max); 1311 if (count < limit) 1312 margin = limit - count; 1313 1314 if (do_memsw_account()) { 1315 count = page_counter_read(&memcg->memsw); 1316 limit = READ_ONCE(memcg->memsw.max); 1317 if (count <= limit) 1318 margin = min(margin, limit - count); 1319 else 1320 margin = 0; 1321 } 1322 1323 return margin; 1324 } 1325 1326 /* 1327 * A routine for checking "mem" is under move_account() or not. 1328 * 1329 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1330 * moving cgroups. This is for waiting at high-memory pressure 1331 * caused by "move". 1332 */ 1333 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1334 { 1335 struct mem_cgroup *from; 1336 struct mem_cgroup *to; 1337 bool ret = false; 1338 /* 1339 * Unlike task_move routines, we access mc.to, mc.from not under 1340 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1341 */ 1342 spin_lock(&mc.lock); 1343 from = mc.from; 1344 to = mc.to; 1345 if (!from) 1346 goto unlock; 1347 1348 ret = mem_cgroup_is_descendant(from, memcg) || 1349 mem_cgroup_is_descendant(to, memcg); 1350 unlock: 1351 spin_unlock(&mc.lock); 1352 return ret; 1353 } 1354 1355 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1356 { 1357 if (mc.moving_task && current != mc.moving_task) { 1358 if (mem_cgroup_under_move(memcg)) { 1359 DEFINE_WAIT(wait); 1360 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1361 /* moving charge context might have finished. */ 1362 if (mc.moving_task) 1363 schedule(); 1364 finish_wait(&mc.waitq, &wait); 1365 return true; 1366 } 1367 } 1368 return false; 1369 } 1370 1371 static char *memory_stat_format(struct mem_cgroup *memcg) 1372 { 1373 struct seq_buf s; 1374 int i; 1375 1376 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1377 if (!s.buffer) 1378 return NULL; 1379 1380 /* 1381 * Provide statistics on the state of the memory subsystem as 1382 * well as cumulative event counters that show past behavior. 1383 * 1384 * This list is ordered following a combination of these gradients: 1385 * 1) generic big picture -> specifics and details 1386 * 2) reflecting userspace activity -> reflecting kernel heuristics 1387 * 1388 * Current memory state: 1389 */ 1390 1391 seq_buf_printf(&s, "anon %llu\n", 1392 (u64)memcg_page_state(memcg, MEMCG_RSS) * 1393 PAGE_SIZE); 1394 seq_buf_printf(&s, "file %llu\n", 1395 (u64)memcg_page_state(memcg, MEMCG_CACHE) * 1396 PAGE_SIZE); 1397 seq_buf_printf(&s, "kernel_stack %llu\n", 1398 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1399 1024); 1400 seq_buf_printf(&s, "slab %llu\n", 1401 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + 1402 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * 1403 PAGE_SIZE); 1404 seq_buf_printf(&s, "sock %llu\n", 1405 (u64)memcg_page_state(memcg, MEMCG_SOCK) * 1406 PAGE_SIZE); 1407 1408 seq_buf_printf(&s, "shmem %llu\n", 1409 (u64)memcg_page_state(memcg, NR_SHMEM) * 1410 PAGE_SIZE); 1411 seq_buf_printf(&s, "file_mapped %llu\n", 1412 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * 1413 PAGE_SIZE); 1414 seq_buf_printf(&s, "file_dirty %llu\n", 1415 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * 1416 PAGE_SIZE); 1417 seq_buf_printf(&s, "file_writeback %llu\n", 1418 (u64)memcg_page_state(memcg, NR_WRITEBACK) * 1419 PAGE_SIZE); 1420 1421 /* 1422 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter 1423 * with the NR_ANON_THP vm counter, but right now it's a pain in the 1424 * arse because it requires migrating the work out of rmap to a place 1425 * where the page->mem_cgroup is set up and stable. 1426 */ 1427 seq_buf_printf(&s, "anon_thp %llu\n", 1428 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * 1429 PAGE_SIZE); 1430 1431 for (i = 0; i < NR_LRU_LISTS; i++) 1432 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i), 1433 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 1434 PAGE_SIZE); 1435 1436 seq_buf_printf(&s, "slab_reclaimable %llu\n", 1437 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * 1438 PAGE_SIZE); 1439 seq_buf_printf(&s, "slab_unreclaimable %llu\n", 1440 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * 1441 PAGE_SIZE); 1442 1443 /* Accumulated memory events */ 1444 1445 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1446 memcg_events(memcg, PGFAULT)); 1447 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1448 memcg_events(memcg, PGMAJFAULT)); 1449 1450 seq_buf_printf(&s, "workingset_refault %lu\n", 1451 memcg_page_state(memcg, WORKINGSET_REFAULT)); 1452 seq_buf_printf(&s, "workingset_activate %lu\n", 1453 memcg_page_state(memcg, WORKINGSET_ACTIVATE)); 1454 seq_buf_printf(&s, "workingset_nodereclaim %lu\n", 1455 memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); 1456 1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1458 memcg_events(memcg, PGREFILL)); 1459 seq_buf_printf(&s, "pgscan %lu\n", 1460 memcg_events(memcg, PGSCAN_KSWAPD) + 1461 memcg_events(memcg, PGSCAN_DIRECT)); 1462 seq_buf_printf(&s, "pgsteal %lu\n", 1463 memcg_events(memcg, PGSTEAL_KSWAPD) + 1464 memcg_events(memcg, PGSTEAL_DIRECT)); 1465 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1466 memcg_events(memcg, PGACTIVATE)); 1467 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1468 memcg_events(memcg, PGDEACTIVATE)); 1469 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1470 memcg_events(memcg, PGLAZYFREE)); 1471 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1472 memcg_events(memcg, PGLAZYFREED)); 1473 1474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1475 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1476 memcg_events(memcg, THP_FAULT_ALLOC)); 1477 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1478 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1479 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1480 1481 /* The above should easily fit into one page */ 1482 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1483 1484 return s.buffer; 1485 } 1486 1487 #define K(x) ((x) << (PAGE_SHIFT-10)) 1488 /** 1489 * mem_cgroup_print_oom_context: Print OOM information relevant to 1490 * memory controller. 1491 * @memcg: The memory cgroup that went over limit 1492 * @p: Task that is going to be killed 1493 * 1494 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1495 * enabled 1496 */ 1497 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1498 { 1499 rcu_read_lock(); 1500 1501 if (memcg) { 1502 pr_cont(",oom_memcg="); 1503 pr_cont_cgroup_path(memcg->css.cgroup); 1504 } else 1505 pr_cont(",global_oom"); 1506 if (p) { 1507 pr_cont(",task_memcg="); 1508 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1509 } 1510 rcu_read_unlock(); 1511 } 1512 1513 /** 1514 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1515 * memory controller. 1516 * @memcg: The memory cgroup that went over limit 1517 */ 1518 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1519 { 1520 char *buf; 1521 1522 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1523 K((u64)page_counter_read(&memcg->memory)), 1524 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1525 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1526 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1527 K((u64)page_counter_read(&memcg->swap)), 1528 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1529 else { 1530 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1531 K((u64)page_counter_read(&memcg->memsw)), 1532 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1533 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1534 K((u64)page_counter_read(&memcg->kmem)), 1535 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1536 } 1537 1538 pr_info("Memory cgroup stats for "); 1539 pr_cont_cgroup_path(memcg->css.cgroup); 1540 pr_cont(":"); 1541 buf = memory_stat_format(memcg); 1542 if (!buf) 1543 return; 1544 pr_info("%s", buf); 1545 kfree(buf); 1546 } 1547 1548 /* 1549 * Return the memory (and swap, if configured) limit for a memcg. 1550 */ 1551 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1552 { 1553 unsigned long max; 1554 1555 max = READ_ONCE(memcg->memory.max); 1556 if (mem_cgroup_swappiness(memcg)) { 1557 unsigned long memsw_max; 1558 unsigned long swap_max; 1559 1560 memsw_max = memcg->memsw.max; 1561 swap_max = READ_ONCE(memcg->swap.max); 1562 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1563 max = min(max + swap_max, memsw_max); 1564 } 1565 return max; 1566 } 1567 1568 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1569 { 1570 return page_counter_read(&memcg->memory); 1571 } 1572 1573 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1574 int order) 1575 { 1576 struct oom_control oc = { 1577 .zonelist = NULL, 1578 .nodemask = NULL, 1579 .memcg = memcg, 1580 .gfp_mask = gfp_mask, 1581 .order = order, 1582 }; 1583 bool ret; 1584 1585 if (mutex_lock_killable(&oom_lock)) 1586 return true; 1587 /* 1588 * A few threads which were not waiting at mutex_lock_killable() can 1589 * fail to bail out. Therefore, check again after holding oom_lock. 1590 */ 1591 ret = should_force_charge() || out_of_memory(&oc); 1592 mutex_unlock(&oom_lock); 1593 return ret; 1594 } 1595 1596 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1597 pg_data_t *pgdat, 1598 gfp_t gfp_mask, 1599 unsigned long *total_scanned) 1600 { 1601 struct mem_cgroup *victim = NULL; 1602 int total = 0; 1603 int loop = 0; 1604 unsigned long excess; 1605 unsigned long nr_scanned; 1606 struct mem_cgroup_reclaim_cookie reclaim = { 1607 .pgdat = pgdat, 1608 }; 1609 1610 excess = soft_limit_excess(root_memcg); 1611 1612 while (1) { 1613 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1614 if (!victim) { 1615 loop++; 1616 if (loop >= 2) { 1617 /* 1618 * If we have not been able to reclaim 1619 * anything, it might because there are 1620 * no reclaimable pages under this hierarchy 1621 */ 1622 if (!total) 1623 break; 1624 /* 1625 * We want to do more targeted reclaim. 1626 * excess >> 2 is not to excessive so as to 1627 * reclaim too much, nor too less that we keep 1628 * coming back to reclaim from this cgroup 1629 */ 1630 if (total >= (excess >> 2) || 1631 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1632 break; 1633 } 1634 continue; 1635 } 1636 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1637 pgdat, &nr_scanned); 1638 *total_scanned += nr_scanned; 1639 if (!soft_limit_excess(root_memcg)) 1640 break; 1641 } 1642 mem_cgroup_iter_break(root_memcg, victim); 1643 return total; 1644 } 1645 1646 #ifdef CONFIG_LOCKDEP 1647 static struct lockdep_map memcg_oom_lock_dep_map = { 1648 .name = "memcg_oom_lock", 1649 }; 1650 #endif 1651 1652 static DEFINE_SPINLOCK(memcg_oom_lock); 1653 1654 /* 1655 * Check OOM-Killer is already running under our hierarchy. 1656 * If someone is running, return false. 1657 */ 1658 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1659 { 1660 struct mem_cgroup *iter, *failed = NULL; 1661 1662 spin_lock(&memcg_oom_lock); 1663 1664 for_each_mem_cgroup_tree(iter, memcg) { 1665 if (iter->oom_lock) { 1666 /* 1667 * this subtree of our hierarchy is already locked 1668 * so we cannot give a lock. 1669 */ 1670 failed = iter; 1671 mem_cgroup_iter_break(memcg, iter); 1672 break; 1673 } else 1674 iter->oom_lock = true; 1675 } 1676 1677 if (failed) { 1678 /* 1679 * OK, we failed to lock the whole subtree so we have 1680 * to clean up what we set up to the failing subtree 1681 */ 1682 for_each_mem_cgroup_tree(iter, memcg) { 1683 if (iter == failed) { 1684 mem_cgroup_iter_break(memcg, iter); 1685 break; 1686 } 1687 iter->oom_lock = false; 1688 } 1689 } else 1690 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1691 1692 spin_unlock(&memcg_oom_lock); 1693 1694 return !failed; 1695 } 1696 1697 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1698 { 1699 struct mem_cgroup *iter; 1700 1701 spin_lock(&memcg_oom_lock); 1702 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1703 for_each_mem_cgroup_tree(iter, memcg) 1704 iter->oom_lock = false; 1705 spin_unlock(&memcg_oom_lock); 1706 } 1707 1708 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1709 { 1710 struct mem_cgroup *iter; 1711 1712 spin_lock(&memcg_oom_lock); 1713 for_each_mem_cgroup_tree(iter, memcg) 1714 iter->under_oom++; 1715 spin_unlock(&memcg_oom_lock); 1716 } 1717 1718 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1719 { 1720 struct mem_cgroup *iter; 1721 1722 /* 1723 * When a new child is created while the hierarchy is under oom, 1724 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1725 */ 1726 spin_lock(&memcg_oom_lock); 1727 for_each_mem_cgroup_tree(iter, memcg) 1728 if (iter->under_oom > 0) 1729 iter->under_oom--; 1730 spin_unlock(&memcg_oom_lock); 1731 } 1732 1733 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1734 1735 struct oom_wait_info { 1736 struct mem_cgroup *memcg; 1737 wait_queue_entry_t wait; 1738 }; 1739 1740 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1741 unsigned mode, int sync, void *arg) 1742 { 1743 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1744 struct mem_cgroup *oom_wait_memcg; 1745 struct oom_wait_info *oom_wait_info; 1746 1747 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1748 oom_wait_memcg = oom_wait_info->memcg; 1749 1750 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1751 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1752 return 0; 1753 return autoremove_wake_function(wait, mode, sync, arg); 1754 } 1755 1756 static void memcg_oom_recover(struct mem_cgroup *memcg) 1757 { 1758 /* 1759 * For the following lockless ->under_oom test, the only required 1760 * guarantee is that it must see the state asserted by an OOM when 1761 * this function is called as a result of userland actions 1762 * triggered by the notification of the OOM. This is trivially 1763 * achieved by invoking mem_cgroup_mark_under_oom() before 1764 * triggering notification. 1765 */ 1766 if (memcg && memcg->under_oom) 1767 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1768 } 1769 1770 enum oom_status { 1771 OOM_SUCCESS, 1772 OOM_FAILED, 1773 OOM_ASYNC, 1774 OOM_SKIPPED 1775 }; 1776 1777 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1778 { 1779 enum oom_status ret; 1780 bool locked; 1781 1782 if (order > PAGE_ALLOC_COSTLY_ORDER) 1783 return OOM_SKIPPED; 1784 1785 memcg_memory_event(memcg, MEMCG_OOM); 1786 1787 /* 1788 * We are in the middle of the charge context here, so we 1789 * don't want to block when potentially sitting on a callstack 1790 * that holds all kinds of filesystem and mm locks. 1791 * 1792 * cgroup1 allows disabling the OOM killer and waiting for outside 1793 * handling until the charge can succeed; remember the context and put 1794 * the task to sleep at the end of the page fault when all locks are 1795 * released. 1796 * 1797 * On the other hand, in-kernel OOM killer allows for an async victim 1798 * memory reclaim (oom_reaper) and that means that we are not solely 1799 * relying on the oom victim to make a forward progress and we can 1800 * invoke the oom killer here. 1801 * 1802 * Please note that mem_cgroup_out_of_memory might fail to find a 1803 * victim and then we have to bail out from the charge path. 1804 */ 1805 if (memcg->oom_kill_disable) { 1806 if (!current->in_user_fault) 1807 return OOM_SKIPPED; 1808 css_get(&memcg->css); 1809 current->memcg_in_oom = memcg; 1810 current->memcg_oom_gfp_mask = mask; 1811 current->memcg_oom_order = order; 1812 1813 return OOM_ASYNC; 1814 } 1815 1816 mem_cgroup_mark_under_oom(memcg); 1817 1818 locked = mem_cgroup_oom_trylock(memcg); 1819 1820 if (locked) 1821 mem_cgroup_oom_notify(memcg); 1822 1823 mem_cgroup_unmark_under_oom(memcg); 1824 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1825 ret = OOM_SUCCESS; 1826 else 1827 ret = OOM_FAILED; 1828 1829 if (locked) 1830 mem_cgroup_oom_unlock(memcg); 1831 1832 return ret; 1833 } 1834 1835 /** 1836 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1837 * @handle: actually kill/wait or just clean up the OOM state 1838 * 1839 * This has to be called at the end of a page fault if the memcg OOM 1840 * handler was enabled. 1841 * 1842 * Memcg supports userspace OOM handling where failed allocations must 1843 * sleep on a waitqueue until the userspace task resolves the 1844 * situation. Sleeping directly in the charge context with all kinds 1845 * of locks held is not a good idea, instead we remember an OOM state 1846 * in the task and mem_cgroup_oom_synchronize() has to be called at 1847 * the end of the page fault to complete the OOM handling. 1848 * 1849 * Returns %true if an ongoing memcg OOM situation was detected and 1850 * completed, %false otherwise. 1851 */ 1852 bool mem_cgroup_oom_synchronize(bool handle) 1853 { 1854 struct mem_cgroup *memcg = current->memcg_in_oom; 1855 struct oom_wait_info owait; 1856 bool locked; 1857 1858 /* OOM is global, do not handle */ 1859 if (!memcg) 1860 return false; 1861 1862 if (!handle) 1863 goto cleanup; 1864 1865 owait.memcg = memcg; 1866 owait.wait.flags = 0; 1867 owait.wait.func = memcg_oom_wake_function; 1868 owait.wait.private = current; 1869 INIT_LIST_HEAD(&owait.wait.entry); 1870 1871 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1872 mem_cgroup_mark_under_oom(memcg); 1873 1874 locked = mem_cgroup_oom_trylock(memcg); 1875 1876 if (locked) 1877 mem_cgroup_oom_notify(memcg); 1878 1879 if (locked && !memcg->oom_kill_disable) { 1880 mem_cgroup_unmark_under_oom(memcg); 1881 finish_wait(&memcg_oom_waitq, &owait.wait); 1882 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1883 current->memcg_oom_order); 1884 } else { 1885 schedule(); 1886 mem_cgroup_unmark_under_oom(memcg); 1887 finish_wait(&memcg_oom_waitq, &owait.wait); 1888 } 1889 1890 if (locked) { 1891 mem_cgroup_oom_unlock(memcg); 1892 /* 1893 * There is no guarantee that an OOM-lock contender 1894 * sees the wakeups triggered by the OOM kill 1895 * uncharges. Wake any sleepers explicitely. 1896 */ 1897 memcg_oom_recover(memcg); 1898 } 1899 cleanup: 1900 current->memcg_in_oom = NULL; 1901 css_put(&memcg->css); 1902 return true; 1903 } 1904 1905 /** 1906 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1907 * @victim: task to be killed by the OOM killer 1908 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1909 * 1910 * Returns a pointer to a memory cgroup, which has to be cleaned up 1911 * by killing all belonging OOM-killable tasks. 1912 * 1913 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1914 */ 1915 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1916 struct mem_cgroup *oom_domain) 1917 { 1918 struct mem_cgroup *oom_group = NULL; 1919 struct mem_cgroup *memcg; 1920 1921 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1922 return NULL; 1923 1924 if (!oom_domain) 1925 oom_domain = root_mem_cgroup; 1926 1927 rcu_read_lock(); 1928 1929 memcg = mem_cgroup_from_task(victim); 1930 if (memcg == root_mem_cgroup) 1931 goto out; 1932 1933 /* 1934 * If the victim task has been asynchronously moved to a different 1935 * memory cgroup, we might end up killing tasks outside oom_domain. 1936 * In this case it's better to ignore memory.group.oom. 1937 */ 1938 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1939 goto out; 1940 1941 /* 1942 * Traverse the memory cgroup hierarchy from the victim task's 1943 * cgroup up to the OOMing cgroup (or root) to find the 1944 * highest-level memory cgroup with oom.group set. 1945 */ 1946 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1947 if (memcg->oom_group) 1948 oom_group = memcg; 1949 1950 if (memcg == oom_domain) 1951 break; 1952 } 1953 1954 if (oom_group) 1955 css_get(&oom_group->css); 1956 out: 1957 rcu_read_unlock(); 1958 1959 return oom_group; 1960 } 1961 1962 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1963 { 1964 pr_info("Tasks in "); 1965 pr_cont_cgroup_path(memcg->css.cgroup); 1966 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1967 } 1968 1969 /** 1970 * lock_page_memcg - lock a page->mem_cgroup binding 1971 * @page: the page 1972 * 1973 * This function protects unlocked LRU pages from being moved to 1974 * another cgroup. 1975 * 1976 * It ensures lifetime of the returned memcg. Caller is responsible 1977 * for the lifetime of the page; __unlock_page_memcg() is available 1978 * when @page might get freed inside the locked section. 1979 */ 1980 struct mem_cgroup *lock_page_memcg(struct page *page) 1981 { 1982 struct mem_cgroup *memcg; 1983 unsigned long flags; 1984 1985 /* 1986 * The RCU lock is held throughout the transaction. The fast 1987 * path can get away without acquiring the memcg->move_lock 1988 * because page moving starts with an RCU grace period. 1989 * 1990 * The RCU lock also protects the memcg from being freed when 1991 * the page state that is going to change is the only thing 1992 * preventing the page itself from being freed. E.g. writeback 1993 * doesn't hold a page reference and relies on PG_writeback to 1994 * keep off truncation, migration and so forth. 1995 */ 1996 rcu_read_lock(); 1997 1998 if (mem_cgroup_disabled()) 1999 return NULL; 2000 again: 2001 memcg = page->mem_cgroup; 2002 if (unlikely(!memcg)) 2003 return NULL; 2004 2005 if (atomic_read(&memcg->moving_account) <= 0) 2006 return memcg; 2007 2008 spin_lock_irqsave(&memcg->move_lock, flags); 2009 if (memcg != page->mem_cgroup) { 2010 spin_unlock_irqrestore(&memcg->move_lock, flags); 2011 goto again; 2012 } 2013 2014 /* 2015 * When charge migration first begins, we can have locked and 2016 * unlocked page stat updates happening concurrently. Track 2017 * the task who has the lock for unlock_page_memcg(). 2018 */ 2019 memcg->move_lock_task = current; 2020 memcg->move_lock_flags = flags; 2021 2022 return memcg; 2023 } 2024 EXPORT_SYMBOL(lock_page_memcg); 2025 2026 /** 2027 * __unlock_page_memcg - unlock and unpin a memcg 2028 * @memcg: the memcg 2029 * 2030 * Unlock and unpin a memcg returned by lock_page_memcg(). 2031 */ 2032 void __unlock_page_memcg(struct mem_cgroup *memcg) 2033 { 2034 if (memcg && memcg->move_lock_task == current) { 2035 unsigned long flags = memcg->move_lock_flags; 2036 2037 memcg->move_lock_task = NULL; 2038 memcg->move_lock_flags = 0; 2039 2040 spin_unlock_irqrestore(&memcg->move_lock, flags); 2041 } 2042 2043 rcu_read_unlock(); 2044 } 2045 2046 /** 2047 * unlock_page_memcg - unlock a page->mem_cgroup binding 2048 * @page: the page 2049 */ 2050 void unlock_page_memcg(struct page *page) 2051 { 2052 __unlock_page_memcg(page->mem_cgroup); 2053 } 2054 EXPORT_SYMBOL(unlock_page_memcg); 2055 2056 struct memcg_stock_pcp { 2057 struct mem_cgroup *cached; /* this never be root cgroup */ 2058 unsigned int nr_pages; 2059 struct work_struct work; 2060 unsigned long flags; 2061 #define FLUSHING_CACHED_CHARGE 0 2062 }; 2063 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2064 static DEFINE_MUTEX(percpu_charge_mutex); 2065 2066 /** 2067 * consume_stock: Try to consume stocked charge on this cpu. 2068 * @memcg: memcg to consume from. 2069 * @nr_pages: how many pages to charge. 2070 * 2071 * The charges will only happen if @memcg matches the current cpu's memcg 2072 * stock, and at least @nr_pages are available in that stock. Failure to 2073 * service an allocation will refill the stock. 2074 * 2075 * returns true if successful, false otherwise. 2076 */ 2077 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2078 { 2079 struct memcg_stock_pcp *stock; 2080 unsigned long flags; 2081 bool ret = false; 2082 2083 if (nr_pages > MEMCG_CHARGE_BATCH) 2084 return ret; 2085 2086 local_irq_save(flags); 2087 2088 stock = this_cpu_ptr(&memcg_stock); 2089 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2090 stock->nr_pages -= nr_pages; 2091 ret = true; 2092 } 2093 2094 local_irq_restore(flags); 2095 2096 return ret; 2097 } 2098 2099 /* 2100 * Returns stocks cached in percpu and reset cached information. 2101 */ 2102 static void drain_stock(struct memcg_stock_pcp *stock) 2103 { 2104 struct mem_cgroup *old = stock->cached; 2105 2106 if (stock->nr_pages) { 2107 page_counter_uncharge(&old->memory, stock->nr_pages); 2108 if (do_memsw_account()) 2109 page_counter_uncharge(&old->memsw, stock->nr_pages); 2110 css_put_many(&old->css, stock->nr_pages); 2111 stock->nr_pages = 0; 2112 } 2113 stock->cached = NULL; 2114 } 2115 2116 static void drain_local_stock(struct work_struct *dummy) 2117 { 2118 struct memcg_stock_pcp *stock; 2119 unsigned long flags; 2120 2121 /* 2122 * The only protection from memory hotplug vs. drain_stock races is 2123 * that we always operate on local CPU stock here with IRQ disabled 2124 */ 2125 local_irq_save(flags); 2126 2127 stock = this_cpu_ptr(&memcg_stock); 2128 drain_stock(stock); 2129 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2130 2131 local_irq_restore(flags); 2132 } 2133 2134 /* 2135 * Cache charges(val) to local per_cpu area. 2136 * This will be consumed by consume_stock() function, later. 2137 */ 2138 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2139 { 2140 struct memcg_stock_pcp *stock; 2141 unsigned long flags; 2142 2143 local_irq_save(flags); 2144 2145 stock = this_cpu_ptr(&memcg_stock); 2146 if (stock->cached != memcg) { /* reset if necessary */ 2147 drain_stock(stock); 2148 stock->cached = memcg; 2149 } 2150 stock->nr_pages += nr_pages; 2151 2152 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2153 drain_stock(stock); 2154 2155 local_irq_restore(flags); 2156 } 2157 2158 /* 2159 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2160 * of the hierarchy under it. 2161 */ 2162 static void drain_all_stock(struct mem_cgroup *root_memcg) 2163 { 2164 int cpu, curcpu; 2165 2166 /* If someone's already draining, avoid adding running more workers. */ 2167 if (!mutex_trylock(&percpu_charge_mutex)) 2168 return; 2169 /* 2170 * Notify other cpus that system-wide "drain" is running 2171 * We do not care about races with the cpu hotplug because cpu down 2172 * as well as workers from this path always operate on the local 2173 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2174 */ 2175 curcpu = get_cpu(); 2176 for_each_online_cpu(cpu) { 2177 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2178 struct mem_cgroup *memcg; 2179 bool flush = false; 2180 2181 rcu_read_lock(); 2182 memcg = stock->cached; 2183 if (memcg && stock->nr_pages && 2184 mem_cgroup_is_descendant(memcg, root_memcg)) 2185 flush = true; 2186 rcu_read_unlock(); 2187 2188 if (flush && 2189 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2190 if (cpu == curcpu) 2191 drain_local_stock(&stock->work); 2192 else 2193 schedule_work_on(cpu, &stock->work); 2194 } 2195 } 2196 put_cpu(); 2197 mutex_unlock(&percpu_charge_mutex); 2198 } 2199 2200 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2201 { 2202 struct memcg_stock_pcp *stock; 2203 struct mem_cgroup *memcg, *mi; 2204 2205 stock = &per_cpu(memcg_stock, cpu); 2206 drain_stock(stock); 2207 2208 for_each_mem_cgroup(memcg) { 2209 int i; 2210 2211 for (i = 0; i < MEMCG_NR_STAT; i++) { 2212 int nid; 2213 long x; 2214 2215 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2216 if (x) 2217 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2218 atomic_long_add(x, &memcg->vmstats[i]); 2219 2220 if (i >= NR_VM_NODE_STAT_ITEMS) 2221 continue; 2222 2223 for_each_node(nid) { 2224 struct mem_cgroup_per_node *pn; 2225 2226 pn = mem_cgroup_nodeinfo(memcg, nid); 2227 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2228 if (x) 2229 do { 2230 atomic_long_add(x, &pn->lruvec_stat[i]); 2231 } while ((pn = parent_nodeinfo(pn, nid))); 2232 } 2233 } 2234 2235 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2236 long x; 2237 2238 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2239 if (x) 2240 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2241 atomic_long_add(x, &memcg->vmevents[i]); 2242 } 2243 } 2244 2245 return 0; 2246 } 2247 2248 static void reclaim_high(struct mem_cgroup *memcg, 2249 unsigned int nr_pages, 2250 gfp_t gfp_mask) 2251 { 2252 do { 2253 if (page_counter_read(&memcg->memory) <= READ_ONCE(memcg->high)) 2254 continue; 2255 memcg_memory_event(memcg, MEMCG_HIGH); 2256 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2257 } while ((memcg = parent_mem_cgroup(memcg)) && 2258 !mem_cgroup_is_root(memcg)); 2259 } 2260 2261 static void high_work_func(struct work_struct *work) 2262 { 2263 struct mem_cgroup *memcg; 2264 2265 memcg = container_of(work, struct mem_cgroup, high_work); 2266 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2267 } 2268 2269 /* 2270 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2271 * enough to still cause a significant slowdown in most cases, while still 2272 * allowing diagnostics and tracing to proceed without becoming stuck. 2273 */ 2274 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2275 2276 /* 2277 * When calculating the delay, we use these either side of the exponentiation to 2278 * maintain precision and scale to a reasonable number of jiffies (see the table 2279 * below. 2280 * 2281 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2282 * overage ratio to a delay. 2283 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the 2284 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2285 * to produce a reasonable delay curve. 2286 * 2287 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2288 * reasonable delay curve compared to precision-adjusted overage, not 2289 * penalising heavily at first, but still making sure that growth beyond the 2290 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2291 * example, with a high of 100 megabytes: 2292 * 2293 * +-------+------------------------+ 2294 * | usage | time to allocate in ms | 2295 * +-------+------------------------+ 2296 * | 100M | 0 | 2297 * | 101M | 6 | 2298 * | 102M | 25 | 2299 * | 103M | 57 | 2300 * | 104M | 102 | 2301 * | 105M | 159 | 2302 * | 106M | 230 | 2303 * | 107M | 313 | 2304 * | 108M | 409 | 2305 * | 109M | 518 | 2306 * | 110M | 639 | 2307 * | 111M | 774 | 2308 * | 112M | 921 | 2309 * | 113M | 1081 | 2310 * | 114M | 1254 | 2311 * | 115M | 1439 | 2312 * | 116M | 1638 | 2313 * | 117M | 1849 | 2314 * | 118M | 2000 | 2315 * | 119M | 2000 | 2316 * | 120M | 2000 | 2317 * +-------+------------------------+ 2318 */ 2319 #define MEMCG_DELAY_PRECISION_SHIFT 20 2320 #define MEMCG_DELAY_SCALING_SHIFT 14 2321 2322 /* 2323 * Get the number of jiffies that we should penalise a mischievous cgroup which 2324 * is exceeding its memory.high by checking both it and its ancestors. 2325 */ 2326 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2327 unsigned int nr_pages) 2328 { 2329 unsigned long penalty_jiffies; 2330 u64 max_overage = 0; 2331 2332 do { 2333 unsigned long usage, high; 2334 u64 overage; 2335 2336 usage = page_counter_read(&memcg->memory); 2337 high = READ_ONCE(memcg->high); 2338 2339 if (usage <= high) 2340 continue; 2341 2342 /* 2343 * Prevent division by 0 in overage calculation by acting as if 2344 * it was a threshold of 1 page 2345 */ 2346 high = max(high, 1UL); 2347 2348 overage = usage - high; 2349 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2350 overage = div64_u64(overage, high); 2351 2352 if (overage > max_overage) 2353 max_overage = overage; 2354 } while ((memcg = parent_mem_cgroup(memcg)) && 2355 !mem_cgroup_is_root(memcg)); 2356 2357 if (!max_overage) 2358 return 0; 2359 2360 /* 2361 * We use overage compared to memory.high to calculate the number of 2362 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2363 * fairly lenient on small overages, and increasingly harsh when the 2364 * memcg in question makes it clear that it has no intention of stopping 2365 * its crazy behaviour, so we exponentially increase the delay based on 2366 * overage amount. 2367 */ 2368 penalty_jiffies = max_overage * max_overage * HZ; 2369 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2370 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2371 2372 /* 2373 * Factor in the task's own contribution to the overage, such that four 2374 * N-sized allocations are throttled approximately the same as one 2375 * 4N-sized allocation. 2376 * 2377 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2378 * larger the current charge patch is than that. 2379 */ 2380 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2381 2382 /* 2383 * Clamp the max delay per usermode return so as to still keep the 2384 * application moving forwards and also permit diagnostics, albeit 2385 * extremely slowly. 2386 */ 2387 return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2388 } 2389 2390 /* 2391 * Scheduled by try_charge() to be executed from the userland return path 2392 * and reclaims memory over the high limit. 2393 */ 2394 void mem_cgroup_handle_over_high(void) 2395 { 2396 unsigned long penalty_jiffies; 2397 unsigned long pflags; 2398 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2399 struct mem_cgroup *memcg; 2400 2401 if (likely(!nr_pages)) 2402 return; 2403 2404 memcg = get_mem_cgroup_from_mm(current->mm); 2405 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2406 current->memcg_nr_pages_over_high = 0; 2407 2408 /* 2409 * memory.high is breached and reclaim is unable to keep up. Throttle 2410 * allocators proactively to slow down excessive growth. 2411 */ 2412 penalty_jiffies = calculate_high_delay(memcg, nr_pages); 2413 2414 /* 2415 * Don't sleep if the amount of jiffies this memcg owes us is so low 2416 * that it's not even worth doing, in an attempt to be nice to those who 2417 * go only a small amount over their memory.high value and maybe haven't 2418 * been aggressively reclaimed enough yet. 2419 */ 2420 if (penalty_jiffies <= HZ / 100) 2421 goto out; 2422 2423 /* 2424 * If we exit early, we're guaranteed to die (since 2425 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2426 * need to account for any ill-begotten jiffies to pay them off later. 2427 */ 2428 psi_memstall_enter(&pflags); 2429 schedule_timeout_killable(penalty_jiffies); 2430 psi_memstall_leave(&pflags); 2431 2432 out: 2433 css_put(&memcg->css); 2434 } 2435 2436 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2437 unsigned int nr_pages) 2438 { 2439 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2440 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2441 struct mem_cgroup *mem_over_limit; 2442 struct page_counter *counter; 2443 unsigned long nr_reclaimed; 2444 bool may_swap = true; 2445 bool drained = false; 2446 enum oom_status oom_status; 2447 2448 if (mem_cgroup_is_root(memcg)) 2449 return 0; 2450 retry: 2451 if (consume_stock(memcg, nr_pages)) 2452 return 0; 2453 2454 if (!do_memsw_account() || 2455 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2456 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2457 goto done_restock; 2458 if (do_memsw_account()) 2459 page_counter_uncharge(&memcg->memsw, batch); 2460 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2461 } else { 2462 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2463 may_swap = false; 2464 } 2465 2466 if (batch > nr_pages) { 2467 batch = nr_pages; 2468 goto retry; 2469 } 2470 2471 /* 2472 * Memcg doesn't have a dedicated reserve for atomic 2473 * allocations. But like the global atomic pool, we need to 2474 * put the burden of reclaim on regular allocation requests 2475 * and let these go through as privileged allocations. 2476 */ 2477 if (gfp_mask & __GFP_ATOMIC) 2478 goto force; 2479 2480 /* 2481 * Unlike in global OOM situations, memcg is not in a physical 2482 * memory shortage. Allow dying and OOM-killed tasks to 2483 * bypass the last charges so that they can exit quickly and 2484 * free their memory. 2485 */ 2486 if (unlikely(should_force_charge())) 2487 goto force; 2488 2489 /* 2490 * Prevent unbounded recursion when reclaim operations need to 2491 * allocate memory. This might exceed the limits temporarily, 2492 * but we prefer facilitating memory reclaim and getting back 2493 * under the limit over triggering OOM kills in these cases. 2494 */ 2495 if (unlikely(current->flags & PF_MEMALLOC)) 2496 goto force; 2497 2498 if (unlikely(task_in_memcg_oom(current))) 2499 goto nomem; 2500 2501 if (!gfpflags_allow_blocking(gfp_mask)) 2502 goto nomem; 2503 2504 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2505 2506 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2507 gfp_mask, may_swap); 2508 2509 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2510 goto retry; 2511 2512 if (!drained) { 2513 drain_all_stock(mem_over_limit); 2514 drained = true; 2515 goto retry; 2516 } 2517 2518 if (gfp_mask & __GFP_NORETRY) 2519 goto nomem; 2520 /* 2521 * Even though the limit is exceeded at this point, reclaim 2522 * may have been able to free some pages. Retry the charge 2523 * before killing the task. 2524 * 2525 * Only for regular pages, though: huge pages are rather 2526 * unlikely to succeed so close to the limit, and we fall back 2527 * to regular pages anyway in case of failure. 2528 */ 2529 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2530 goto retry; 2531 /* 2532 * At task move, charge accounts can be doubly counted. So, it's 2533 * better to wait until the end of task_move if something is going on. 2534 */ 2535 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2536 goto retry; 2537 2538 if (nr_retries--) 2539 goto retry; 2540 2541 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2542 goto nomem; 2543 2544 if (gfp_mask & __GFP_NOFAIL) 2545 goto force; 2546 2547 if (fatal_signal_pending(current)) 2548 goto force; 2549 2550 /* 2551 * keep retrying as long as the memcg oom killer is able to make 2552 * a forward progress or bypass the charge if the oom killer 2553 * couldn't make any progress. 2554 */ 2555 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2556 get_order(nr_pages * PAGE_SIZE)); 2557 switch (oom_status) { 2558 case OOM_SUCCESS: 2559 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2560 goto retry; 2561 case OOM_FAILED: 2562 goto force; 2563 default: 2564 goto nomem; 2565 } 2566 nomem: 2567 if (!(gfp_mask & __GFP_NOFAIL)) 2568 return -ENOMEM; 2569 force: 2570 /* 2571 * The allocation either can't fail or will lead to more memory 2572 * being freed very soon. Allow memory usage go over the limit 2573 * temporarily by force charging it. 2574 */ 2575 page_counter_charge(&memcg->memory, nr_pages); 2576 if (do_memsw_account()) 2577 page_counter_charge(&memcg->memsw, nr_pages); 2578 css_get_many(&memcg->css, nr_pages); 2579 2580 return 0; 2581 2582 done_restock: 2583 css_get_many(&memcg->css, batch); 2584 if (batch > nr_pages) 2585 refill_stock(memcg, batch - nr_pages); 2586 2587 /* 2588 * If the hierarchy is above the normal consumption range, schedule 2589 * reclaim on returning to userland. We can perform reclaim here 2590 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2591 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2592 * not recorded as it most likely matches current's and won't 2593 * change in the meantime. As high limit is checked again before 2594 * reclaim, the cost of mismatch is negligible. 2595 */ 2596 do { 2597 if (page_counter_read(&memcg->memory) > READ_ONCE(memcg->high)) { 2598 /* Don't bother a random interrupted task */ 2599 if (in_interrupt()) { 2600 schedule_work(&memcg->high_work); 2601 break; 2602 } 2603 current->memcg_nr_pages_over_high += batch; 2604 set_notify_resume(current); 2605 break; 2606 } 2607 } while ((memcg = parent_mem_cgroup(memcg))); 2608 2609 return 0; 2610 } 2611 2612 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2613 { 2614 if (mem_cgroup_is_root(memcg)) 2615 return; 2616 2617 page_counter_uncharge(&memcg->memory, nr_pages); 2618 if (do_memsw_account()) 2619 page_counter_uncharge(&memcg->memsw, nr_pages); 2620 2621 css_put_many(&memcg->css, nr_pages); 2622 } 2623 2624 static void lock_page_lru(struct page *page, int *isolated) 2625 { 2626 pg_data_t *pgdat = page_pgdat(page); 2627 2628 spin_lock_irq(&pgdat->lru_lock); 2629 if (PageLRU(page)) { 2630 struct lruvec *lruvec; 2631 2632 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2633 ClearPageLRU(page); 2634 del_page_from_lru_list(page, lruvec, page_lru(page)); 2635 *isolated = 1; 2636 } else 2637 *isolated = 0; 2638 } 2639 2640 static void unlock_page_lru(struct page *page, int isolated) 2641 { 2642 pg_data_t *pgdat = page_pgdat(page); 2643 2644 if (isolated) { 2645 struct lruvec *lruvec; 2646 2647 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2648 VM_BUG_ON_PAGE(PageLRU(page), page); 2649 SetPageLRU(page); 2650 add_page_to_lru_list(page, lruvec, page_lru(page)); 2651 } 2652 spin_unlock_irq(&pgdat->lru_lock); 2653 } 2654 2655 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2656 bool lrucare) 2657 { 2658 int isolated; 2659 2660 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2661 2662 /* 2663 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2664 * may already be on some other mem_cgroup's LRU. Take care of it. 2665 */ 2666 if (lrucare) 2667 lock_page_lru(page, &isolated); 2668 2669 /* 2670 * Nobody should be changing or seriously looking at 2671 * page->mem_cgroup at this point: 2672 * 2673 * - the page is uncharged 2674 * 2675 * - the page is off-LRU 2676 * 2677 * - an anonymous fault has exclusive page access, except for 2678 * a locked page table 2679 * 2680 * - a page cache insertion, a swapin fault, or a migration 2681 * have the page locked 2682 */ 2683 page->mem_cgroup = memcg; 2684 2685 if (lrucare) 2686 unlock_page_lru(page, isolated); 2687 } 2688 2689 #ifdef CONFIG_MEMCG_KMEM 2690 /* 2691 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2692 * 2693 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2694 * cgroup_mutex, etc. 2695 */ 2696 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2697 { 2698 struct page *page; 2699 2700 if (mem_cgroup_disabled()) 2701 return NULL; 2702 2703 page = virt_to_head_page(p); 2704 2705 /* 2706 * Slab pages don't have page->mem_cgroup set because corresponding 2707 * kmem caches can be reparented during the lifetime. That's why 2708 * memcg_from_slab_page() should be used instead. 2709 */ 2710 if (PageSlab(page)) 2711 return memcg_from_slab_page(page); 2712 2713 /* All other pages use page->mem_cgroup */ 2714 return page->mem_cgroup; 2715 } 2716 2717 static int memcg_alloc_cache_id(void) 2718 { 2719 int id, size; 2720 int err; 2721 2722 id = ida_simple_get(&memcg_cache_ida, 2723 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2724 if (id < 0) 2725 return id; 2726 2727 if (id < memcg_nr_cache_ids) 2728 return id; 2729 2730 /* 2731 * There's no space for the new id in memcg_caches arrays, 2732 * so we have to grow them. 2733 */ 2734 down_write(&memcg_cache_ids_sem); 2735 2736 size = 2 * (id + 1); 2737 if (size < MEMCG_CACHES_MIN_SIZE) 2738 size = MEMCG_CACHES_MIN_SIZE; 2739 else if (size > MEMCG_CACHES_MAX_SIZE) 2740 size = MEMCG_CACHES_MAX_SIZE; 2741 2742 err = memcg_update_all_caches(size); 2743 if (!err) 2744 err = memcg_update_all_list_lrus(size); 2745 if (!err) 2746 memcg_nr_cache_ids = size; 2747 2748 up_write(&memcg_cache_ids_sem); 2749 2750 if (err) { 2751 ida_simple_remove(&memcg_cache_ida, id); 2752 return err; 2753 } 2754 return id; 2755 } 2756 2757 static void memcg_free_cache_id(int id) 2758 { 2759 ida_simple_remove(&memcg_cache_ida, id); 2760 } 2761 2762 struct memcg_kmem_cache_create_work { 2763 struct mem_cgroup *memcg; 2764 struct kmem_cache *cachep; 2765 struct work_struct work; 2766 }; 2767 2768 static void memcg_kmem_cache_create_func(struct work_struct *w) 2769 { 2770 struct memcg_kmem_cache_create_work *cw = 2771 container_of(w, struct memcg_kmem_cache_create_work, work); 2772 struct mem_cgroup *memcg = cw->memcg; 2773 struct kmem_cache *cachep = cw->cachep; 2774 2775 memcg_create_kmem_cache(memcg, cachep); 2776 2777 css_put(&memcg->css); 2778 kfree(cw); 2779 } 2780 2781 /* 2782 * Enqueue the creation of a per-memcg kmem_cache. 2783 */ 2784 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2785 struct kmem_cache *cachep) 2786 { 2787 struct memcg_kmem_cache_create_work *cw; 2788 2789 if (!css_tryget_online(&memcg->css)) 2790 return; 2791 2792 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2793 if (!cw) 2794 return; 2795 2796 cw->memcg = memcg; 2797 cw->cachep = cachep; 2798 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2799 2800 queue_work(memcg_kmem_cache_wq, &cw->work); 2801 } 2802 2803 static inline bool memcg_kmem_bypass(void) 2804 { 2805 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2806 return true; 2807 return false; 2808 } 2809 2810 /** 2811 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2812 * @cachep: the original global kmem cache 2813 * 2814 * Return the kmem_cache we're supposed to use for a slab allocation. 2815 * We try to use the current memcg's version of the cache. 2816 * 2817 * If the cache does not exist yet, if we are the first user of it, we 2818 * create it asynchronously in a workqueue and let the current allocation 2819 * go through with the original cache. 2820 * 2821 * This function takes a reference to the cache it returns to assure it 2822 * won't get destroyed while we are working with it. Once the caller is 2823 * done with it, memcg_kmem_put_cache() must be called to release the 2824 * reference. 2825 */ 2826 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2827 { 2828 struct mem_cgroup *memcg; 2829 struct kmem_cache *memcg_cachep; 2830 struct memcg_cache_array *arr; 2831 int kmemcg_id; 2832 2833 VM_BUG_ON(!is_root_cache(cachep)); 2834 2835 if (memcg_kmem_bypass()) 2836 return cachep; 2837 2838 rcu_read_lock(); 2839 2840 if (unlikely(current->active_memcg)) 2841 memcg = current->active_memcg; 2842 else 2843 memcg = mem_cgroup_from_task(current); 2844 2845 if (!memcg || memcg == root_mem_cgroup) 2846 goto out_unlock; 2847 2848 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2849 if (kmemcg_id < 0) 2850 goto out_unlock; 2851 2852 arr = rcu_dereference(cachep->memcg_params.memcg_caches); 2853 2854 /* 2855 * Make sure we will access the up-to-date value. The code updating 2856 * memcg_caches issues a write barrier to match the data dependency 2857 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()). 2858 */ 2859 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]); 2860 2861 /* 2862 * If we are in a safe context (can wait, and not in interrupt 2863 * context), we could be be predictable and return right away. 2864 * This would guarantee that the allocation being performed 2865 * already belongs in the new cache. 2866 * 2867 * However, there are some clashes that can arrive from locking. 2868 * For instance, because we acquire the slab_mutex while doing 2869 * memcg_create_kmem_cache, this means no further allocation 2870 * could happen with the slab_mutex held. So it's better to 2871 * defer everything. 2872 * 2873 * If the memcg is dying or memcg_cache is about to be released, 2874 * don't bother creating new kmem_caches. Because memcg_cachep 2875 * is ZEROed as the fist step of kmem offlining, we don't need 2876 * percpu_ref_tryget_live() here. css_tryget_online() check in 2877 * memcg_schedule_kmem_cache_create() will prevent us from 2878 * creation of a new kmem_cache. 2879 */ 2880 if (unlikely(!memcg_cachep)) 2881 memcg_schedule_kmem_cache_create(memcg, cachep); 2882 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt)) 2883 cachep = memcg_cachep; 2884 out_unlock: 2885 rcu_read_unlock(); 2886 return cachep; 2887 } 2888 2889 /** 2890 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2891 * @cachep: the cache returned by memcg_kmem_get_cache 2892 */ 2893 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2894 { 2895 if (!is_root_cache(cachep)) 2896 percpu_ref_put(&cachep->memcg_params.refcnt); 2897 } 2898 2899 /** 2900 * __memcg_kmem_charge: charge a number of kernel pages to a memcg 2901 * @memcg: memory cgroup to charge 2902 * @gfp: reclaim mode 2903 * @nr_pages: number of pages to charge 2904 * 2905 * Returns 0 on success, an error code on failure. 2906 */ 2907 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 2908 unsigned int nr_pages) 2909 { 2910 struct page_counter *counter; 2911 int ret; 2912 2913 ret = try_charge(memcg, gfp, nr_pages); 2914 if (ret) 2915 return ret; 2916 2917 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2918 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2919 2920 /* 2921 * Enforce __GFP_NOFAIL allocation because callers are not 2922 * prepared to see failures and likely do not have any failure 2923 * handling code. 2924 */ 2925 if (gfp & __GFP_NOFAIL) { 2926 page_counter_charge(&memcg->kmem, nr_pages); 2927 return 0; 2928 } 2929 cancel_charge(memcg, nr_pages); 2930 return -ENOMEM; 2931 } 2932 return 0; 2933 } 2934 2935 /** 2936 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg 2937 * @memcg: memcg to uncharge 2938 * @nr_pages: number of pages to uncharge 2939 */ 2940 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 2941 { 2942 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2943 page_counter_uncharge(&memcg->kmem, nr_pages); 2944 2945 page_counter_uncharge(&memcg->memory, nr_pages); 2946 if (do_memsw_account()) 2947 page_counter_uncharge(&memcg->memsw, nr_pages); 2948 } 2949 2950 /** 2951 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2952 * @page: page to charge 2953 * @gfp: reclaim mode 2954 * @order: allocation order 2955 * 2956 * Returns 0 on success, an error code on failure. 2957 */ 2958 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2959 { 2960 struct mem_cgroup *memcg; 2961 int ret = 0; 2962 2963 if (memcg_kmem_bypass()) 2964 return 0; 2965 2966 memcg = get_mem_cgroup_from_current(); 2967 if (!mem_cgroup_is_root(memcg)) { 2968 ret = __memcg_kmem_charge(memcg, gfp, 1 << order); 2969 if (!ret) { 2970 page->mem_cgroup = memcg; 2971 __SetPageKmemcg(page); 2972 } 2973 } 2974 css_put(&memcg->css); 2975 return ret; 2976 } 2977 2978 /** 2979 * __memcg_kmem_uncharge_page: uncharge a kmem page 2980 * @page: page to uncharge 2981 * @order: allocation order 2982 */ 2983 void __memcg_kmem_uncharge_page(struct page *page, int order) 2984 { 2985 struct mem_cgroup *memcg = page->mem_cgroup; 2986 unsigned int nr_pages = 1 << order; 2987 2988 if (!memcg) 2989 return; 2990 2991 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2992 __memcg_kmem_uncharge(memcg, nr_pages); 2993 page->mem_cgroup = NULL; 2994 2995 /* slab pages do not have PageKmemcg flag set */ 2996 if (PageKmemcg(page)) 2997 __ClearPageKmemcg(page); 2998 2999 css_put_many(&memcg->css, nr_pages); 3000 } 3001 #endif /* CONFIG_MEMCG_KMEM */ 3002 3003 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3004 3005 /* 3006 * Because tail pages are not marked as "used", set it. We're under 3007 * pgdat->lru_lock and migration entries setup in all page mappings. 3008 */ 3009 void mem_cgroup_split_huge_fixup(struct page *head) 3010 { 3011 int i; 3012 3013 if (mem_cgroup_disabled()) 3014 return; 3015 3016 for (i = 1; i < HPAGE_PMD_NR; i++) 3017 head[i].mem_cgroup = head->mem_cgroup; 3018 3019 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 3020 } 3021 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3022 3023 #ifdef CONFIG_MEMCG_SWAP 3024 /** 3025 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3026 * @entry: swap entry to be moved 3027 * @from: mem_cgroup which the entry is moved from 3028 * @to: mem_cgroup which the entry is moved to 3029 * 3030 * It succeeds only when the swap_cgroup's record for this entry is the same 3031 * as the mem_cgroup's id of @from. 3032 * 3033 * Returns 0 on success, -EINVAL on failure. 3034 * 3035 * The caller must have charged to @to, IOW, called page_counter_charge() about 3036 * both res and memsw, and called css_get(). 3037 */ 3038 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3039 struct mem_cgroup *from, struct mem_cgroup *to) 3040 { 3041 unsigned short old_id, new_id; 3042 3043 old_id = mem_cgroup_id(from); 3044 new_id = mem_cgroup_id(to); 3045 3046 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3047 mod_memcg_state(from, MEMCG_SWAP, -1); 3048 mod_memcg_state(to, MEMCG_SWAP, 1); 3049 return 0; 3050 } 3051 return -EINVAL; 3052 } 3053 #else 3054 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3055 struct mem_cgroup *from, struct mem_cgroup *to) 3056 { 3057 return -EINVAL; 3058 } 3059 #endif 3060 3061 static DEFINE_MUTEX(memcg_max_mutex); 3062 3063 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3064 unsigned long max, bool memsw) 3065 { 3066 bool enlarge = false; 3067 bool drained = false; 3068 int ret; 3069 bool limits_invariant; 3070 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3071 3072 do { 3073 if (signal_pending(current)) { 3074 ret = -EINTR; 3075 break; 3076 } 3077 3078 mutex_lock(&memcg_max_mutex); 3079 /* 3080 * Make sure that the new limit (memsw or memory limit) doesn't 3081 * break our basic invariant rule memory.max <= memsw.max. 3082 */ 3083 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3084 max <= memcg->memsw.max; 3085 if (!limits_invariant) { 3086 mutex_unlock(&memcg_max_mutex); 3087 ret = -EINVAL; 3088 break; 3089 } 3090 if (max > counter->max) 3091 enlarge = true; 3092 ret = page_counter_set_max(counter, max); 3093 mutex_unlock(&memcg_max_mutex); 3094 3095 if (!ret) 3096 break; 3097 3098 if (!drained) { 3099 drain_all_stock(memcg); 3100 drained = true; 3101 continue; 3102 } 3103 3104 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3105 GFP_KERNEL, !memsw)) { 3106 ret = -EBUSY; 3107 break; 3108 } 3109 } while (true); 3110 3111 if (!ret && enlarge) 3112 memcg_oom_recover(memcg); 3113 3114 return ret; 3115 } 3116 3117 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3118 gfp_t gfp_mask, 3119 unsigned long *total_scanned) 3120 { 3121 unsigned long nr_reclaimed = 0; 3122 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3123 unsigned long reclaimed; 3124 int loop = 0; 3125 struct mem_cgroup_tree_per_node *mctz; 3126 unsigned long excess; 3127 unsigned long nr_scanned; 3128 3129 if (order > 0) 3130 return 0; 3131 3132 mctz = soft_limit_tree_node(pgdat->node_id); 3133 3134 /* 3135 * Do not even bother to check the largest node if the root 3136 * is empty. Do it lockless to prevent lock bouncing. Races 3137 * are acceptable as soft limit is best effort anyway. 3138 */ 3139 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3140 return 0; 3141 3142 /* 3143 * This loop can run a while, specially if mem_cgroup's continuously 3144 * keep exceeding their soft limit and putting the system under 3145 * pressure 3146 */ 3147 do { 3148 if (next_mz) 3149 mz = next_mz; 3150 else 3151 mz = mem_cgroup_largest_soft_limit_node(mctz); 3152 if (!mz) 3153 break; 3154 3155 nr_scanned = 0; 3156 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3157 gfp_mask, &nr_scanned); 3158 nr_reclaimed += reclaimed; 3159 *total_scanned += nr_scanned; 3160 spin_lock_irq(&mctz->lock); 3161 __mem_cgroup_remove_exceeded(mz, mctz); 3162 3163 /* 3164 * If we failed to reclaim anything from this memory cgroup 3165 * it is time to move on to the next cgroup 3166 */ 3167 next_mz = NULL; 3168 if (!reclaimed) 3169 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3170 3171 excess = soft_limit_excess(mz->memcg); 3172 /* 3173 * One school of thought says that we should not add 3174 * back the node to the tree if reclaim returns 0. 3175 * But our reclaim could return 0, simply because due 3176 * to priority we are exposing a smaller subset of 3177 * memory to reclaim from. Consider this as a longer 3178 * term TODO. 3179 */ 3180 /* If excess == 0, no tree ops */ 3181 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3182 spin_unlock_irq(&mctz->lock); 3183 css_put(&mz->memcg->css); 3184 loop++; 3185 /* 3186 * Could not reclaim anything and there are no more 3187 * mem cgroups to try or we seem to be looping without 3188 * reclaiming anything. 3189 */ 3190 if (!nr_reclaimed && 3191 (next_mz == NULL || 3192 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3193 break; 3194 } while (!nr_reclaimed); 3195 if (next_mz) 3196 css_put(&next_mz->memcg->css); 3197 return nr_reclaimed; 3198 } 3199 3200 /* 3201 * Test whether @memcg has children, dead or alive. Note that this 3202 * function doesn't care whether @memcg has use_hierarchy enabled and 3203 * returns %true if there are child csses according to the cgroup 3204 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 3205 */ 3206 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3207 { 3208 bool ret; 3209 3210 rcu_read_lock(); 3211 ret = css_next_child(NULL, &memcg->css); 3212 rcu_read_unlock(); 3213 return ret; 3214 } 3215 3216 /* 3217 * Reclaims as many pages from the given memcg as possible. 3218 * 3219 * Caller is responsible for holding css reference for memcg. 3220 */ 3221 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3222 { 3223 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3224 3225 /* we call try-to-free pages for make this cgroup empty */ 3226 lru_add_drain_all(); 3227 3228 drain_all_stock(memcg); 3229 3230 /* try to free all pages in this cgroup */ 3231 while (nr_retries && page_counter_read(&memcg->memory)) { 3232 int progress; 3233 3234 if (signal_pending(current)) 3235 return -EINTR; 3236 3237 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3238 GFP_KERNEL, true); 3239 if (!progress) { 3240 nr_retries--; 3241 /* maybe some writeback is necessary */ 3242 congestion_wait(BLK_RW_ASYNC, HZ/10); 3243 } 3244 3245 } 3246 3247 return 0; 3248 } 3249 3250 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3251 char *buf, size_t nbytes, 3252 loff_t off) 3253 { 3254 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3255 3256 if (mem_cgroup_is_root(memcg)) 3257 return -EINVAL; 3258 return mem_cgroup_force_empty(memcg) ?: nbytes; 3259 } 3260 3261 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3262 struct cftype *cft) 3263 { 3264 return mem_cgroup_from_css(css)->use_hierarchy; 3265 } 3266 3267 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3268 struct cftype *cft, u64 val) 3269 { 3270 int retval = 0; 3271 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3272 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3273 3274 if (memcg->use_hierarchy == val) 3275 return 0; 3276 3277 /* 3278 * If parent's use_hierarchy is set, we can't make any modifications 3279 * in the child subtrees. If it is unset, then the change can 3280 * occur, provided the current cgroup has no children. 3281 * 3282 * For the root cgroup, parent_mem is NULL, we allow value to be 3283 * set if there are no children. 3284 */ 3285 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3286 (val == 1 || val == 0)) { 3287 if (!memcg_has_children(memcg)) 3288 memcg->use_hierarchy = val; 3289 else 3290 retval = -EBUSY; 3291 } else 3292 retval = -EINVAL; 3293 3294 return retval; 3295 } 3296 3297 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3298 { 3299 unsigned long val; 3300 3301 if (mem_cgroup_is_root(memcg)) { 3302 val = memcg_page_state(memcg, MEMCG_CACHE) + 3303 memcg_page_state(memcg, MEMCG_RSS); 3304 if (swap) 3305 val += memcg_page_state(memcg, MEMCG_SWAP); 3306 } else { 3307 if (!swap) 3308 val = page_counter_read(&memcg->memory); 3309 else 3310 val = page_counter_read(&memcg->memsw); 3311 } 3312 return val; 3313 } 3314 3315 enum { 3316 RES_USAGE, 3317 RES_LIMIT, 3318 RES_MAX_USAGE, 3319 RES_FAILCNT, 3320 RES_SOFT_LIMIT, 3321 }; 3322 3323 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3324 struct cftype *cft) 3325 { 3326 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3327 struct page_counter *counter; 3328 3329 switch (MEMFILE_TYPE(cft->private)) { 3330 case _MEM: 3331 counter = &memcg->memory; 3332 break; 3333 case _MEMSWAP: 3334 counter = &memcg->memsw; 3335 break; 3336 case _KMEM: 3337 counter = &memcg->kmem; 3338 break; 3339 case _TCP: 3340 counter = &memcg->tcpmem; 3341 break; 3342 default: 3343 BUG(); 3344 } 3345 3346 switch (MEMFILE_ATTR(cft->private)) { 3347 case RES_USAGE: 3348 if (counter == &memcg->memory) 3349 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3350 if (counter == &memcg->memsw) 3351 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3352 return (u64)page_counter_read(counter) * PAGE_SIZE; 3353 case RES_LIMIT: 3354 return (u64)counter->max * PAGE_SIZE; 3355 case RES_MAX_USAGE: 3356 return (u64)counter->watermark * PAGE_SIZE; 3357 case RES_FAILCNT: 3358 return counter->failcnt; 3359 case RES_SOFT_LIMIT: 3360 return (u64)memcg->soft_limit * PAGE_SIZE; 3361 default: 3362 BUG(); 3363 } 3364 } 3365 3366 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg) 3367 { 3368 unsigned long stat[MEMCG_NR_STAT] = {0}; 3369 struct mem_cgroup *mi; 3370 int node, cpu, i; 3371 3372 for_each_online_cpu(cpu) 3373 for (i = 0; i < MEMCG_NR_STAT; i++) 3374 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); 3375 3376 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3377 for (i = 0; i < MEMCG_NR_STAT; i++) 3378 atomic_long_add(stat[i], &mi->vmstats[i]); 3379 3380 for_each_node(node) { 3381 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3382 struct mem_cgroup_per_node *pi; 3383 3384 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3385 stat[i] = 0; 3386 3387 for_each_online_cpu(cpu) 3388 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3389 stat[i] += per_cpu( 3390 pn->lruvec_stat_cpu->count[i], cpu); 3391 3392 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3393 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3394 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3395 } 3396 } 3397 3398 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3399 { 3400 unsigned long events[NR_VM_EVENT_ITEMS]; 3401 struct mem_cgroup *mi; 3402 int cpu, i; 3403 3404 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3405 events[i] = 0; 3406 3407 for_each_online_cpu(cpu) 3408 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3409 events[i] += per_cpu(memcg->vmstats_percpu->events[i], 3410 cpu); 3411 3412 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3413 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3414 atomic_long_add(events[i], &mi->vmevents[i]); 3415 } 3416 3417 #ifdef CONFIG_MEMCG_KMEM 3418 static int memcg_online_kmem(struct mem_cgroup *memcg) 3419 { 3420 int memcg_id; 3421 3422 if (cgroup_memory_nokmem) 3423 return 0; 3424 3425 BUG_ON(memcg->kmemcg_id >= 0); 3426 BUG_ON(memcg->kmem_state); 3427 3428 memcg_id = memcg_alloc_cache_id(); 3429 if (memcg_id < 0) 3430 return memcg_id; 3431 3432 static_branch_inc(&memcg_kmem_enabled_key); 3433 /* 3434 * A memory cgroup is considered kmem-online as soon as it gets 3435 * kmemcg_id. Setting the id after enabling static branching will 3436 * guarantee no one starts accounting before all call sites are 3437 * patched. 3438 */ 3439 memcg->kmemcg_id = memcg_id; 3440 memcg->kmem_state = KMEM_ONLINE; 3441 INIT_LIST_HEAD(&memcg->kmem_caches); 3442 3443 return 0; 3444 } 3445 3446 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3447 { 3448 struct cgroup_subsys_state *css; 3449 struct mem_cgroup *parent, *child; 3450 int kmemcg_id; 3451 3452 if (memcg->kmem_state != KMEM_ONLINE) 3453 return; 3454 /* 3455 * Clear the online state before clearing memcg_caches array 3456 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3457 * guarantees that no cache will be created for this cgroup 3458 * after we are done (see memcg_create_kmem_cache()). 3459 */ 3460 memcg->kmem_state = KMEM_ALLOCATED; 3461 3462 parent = parent_mem_cgroup(memcg); 3463 if (!parent) 3464 parent = root_mem_cgroup; 3465 3466 /* 3467 * Deactivate and reparent kmem_caches. 3468 */ 3469 memcg_deactivate_kmem_caches(memcg, parent); 3470 3471 kmemcg_id = memcg->kmemcg_id; 3472 BUG_ON(kmemcg_id < 0); 3473 3474 /* 3475 * Change kmemcg_id of this cgroup and all its descendants to the 3476 * parent's id, and then move all entries from this cgroup's list_lrus 3477 * to ones of the parent. After we have finished, all list_lrus 3478 * corresponding to this cgroup are guaranteed to remain empty. The 3479 * ordering is imposed by list_lru_node->lock taken by 3480 * memcg_drain_all_list_lrus(). 3481 */ 3482 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3483 css_for_each_descendant_pre(css, &memcg->css) { 3484 child = mem_cgroup_from_css(css); 3485 BUG_ON(child->kmemcg_id != kmemcg_id); 3486 child->kmemcg_id = parent->kmemcg_id; 3487 if (!memcg->use_hierarchy) 3488 break; 3489 } 3490 rcu_read_unlock(); 3491 3492 memcg_drain_all_list_lrus(kmemcg_id, parent); 3493 3494 memcg_free_cache_id(kmemcg_id); 3495 } 3496 3497 static void memcg_free_kmem(struct mem_cgroup *memcg) 3498 { 3499 /* css_alloc() failed, offlining didn't happen */ 3500 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3501 memcg_offline_kmem(memcg); 3502 3503 if (memcg->kmem_state == KMEM_ALLOCATED) { 3504 WARN_ON(!list_empty(&memcg->kmem_caches)); 3505 static_branch_dec(&memcg_kmem_enabled_key); 3506 } 3507 } 3508 #else 3509 static int memcg_online_kmem(struct mem_cgroup *memcg) 3510 { 3511 return 0; 3512 } 3513 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3514 { 3515 } 3516 static void memcg_free_kmem(struct mem_cgroup *memcg) 3517 { 3518 } 3519 #endif /* CONFIG_MEMCG_KMEM */ 3520 3521 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3522 unsigned long max) 3523 { 3524 int ret; 3525 3526 mutex_lock(&memcg_max_mutex); 3527 ret = page_counter_set_max(&memcg->kmem, max); 3528 mutex_unlock(&memcg_max_mutex); 3529 return ret; 3530 } 3531 3532 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3533 { 3534 int ret; 3535 3536 mutex_lock(&memcg_max_mutex); 3537 3538 ret = page_counter_set_max(&memcg->tcpmem, max); 3539 if (ret) 3540 goto out; 3541 3542 if (!memcg->tcpmem_active) { 3543 /* 3544 * The active flag needs to be written after the static_key 3545 * update. This is what guarantees that the socket activation 3546 * function is the last one to run. See mem_cgroup_sk_alloc() 3547 * for details, and note that we don't mark any socket as 3548 * belonging to this memcg until that flag is up. 3549 * 3550 * We need to do this, because static_keys will span multiple 3551 * sites, but we can't control their order. If we mark a socket 3552 * as accounted, but the accounting functions are not patched in 3553 * yet, we'll lose accounting. 3554 * 3555 * We never race with the readers in mem_cgroup_sk_alloc(), 3556 * because when this value change, the code to process it is not 3557 * patched in yet. 3558 */ 3559 static_branch_inc(&memcg_sockets_enabled_key); 3560 memcg->tcpmem_active = true; 3561 } 3562 out: 3563 mutex_unlock(&memcg_max_mutex); 3564 return ret; 3565 } 3566 3567 /* 3568 * The user of this function is... 3569 * RES_LIMIT. 3570 */ 3571 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3572 char *buf, size_t nbytes, loff_t off) 3573 { 3574 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3575 unsigned long nr_pages; 3576 int ret; 3577 3578 buf = strstrip(buf); 3579 ret = page_counter_memparse(buf, "-1", &nr_pages); 3580 if (ret) 3581 return ret; 3582 3583 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3584 case RES_LIMIT: 3585 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3586 ret = -EINVAL; 3587 break; 3588 } 3589 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3590 case _MEM: 3591 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3592 break; 3593 case _MEMSWAP: 3594 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3595 break; 3596 case _KMEM: 3597 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3598 "Please report your usecase to linux-mm@kvack.org if you " 3599 "depend on this functionality.\n"); 3600 ret = memcg_update_kmem_max(memcg, nr_pages); 3601 break; 3602 case _TCP: 3603 ret = memcg_update_tcp_max(memcg, nr_pages); 3604 break; 3605 } 3606 break; 3607 case RES_SOFT_LIMIT: 3608 memcg->soft_limit = nr_pages; 3609 ret = 0; 3610 break; 3611 } 3612 return ret ?: nbytes; 3613 } 3614 3615 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3616 size_t nbytes, loff_t off) 3617 { 3618 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3619 struct page_counter *counter; 3620 3621 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3622 case _MEM: 3623 counter = &memcg->memory; 3624 break; 3625 case _MEMSWAP: 3626 counter = &memcg->memsw; 3627 break; 3628 case _KMEM: 3629 counter = &memcg->kmem; 3630 break; 3631 case _TCP: 3632 counter = &memcg->tcpmem; 3633 break; 3634 default: 3635 BUG(); 3636 } 3637 3638 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3639 case RES_MAX_USAGE: 3640 page_counter_reset_watermark(counter); 3641 break; 3642 case RES_FAILCNT: 3643 counter->failcnt = 0; 3644 break; 3645 default: 3646 BUG(); 3647 } 3648 3649 return nbytes; 3650 } 3651 3652 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3653 struct cftype *cft) 3654 { 3655 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3656 } 3657 3658 #ifdef CONFIG_MMU 3659 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3660 struct cftype *cft, u64 val) 3661 { 3662 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3663 3664 if (val & ~MOVE_MASK) 3665 return -EINVAL; 3666 3667 /* 3668 * No kind of locking is needed in here, because ->can_attach() will 3669 * check this value once in the beginning of the process, and then carry 3670 * on with stale data. This means that changes to this value will only 3671 * affect task migrations starting after the change. 3672 */ 3673 memcg->move_charge_at_immigrate = val; 3674 return 0; 3675 } 3676 #else 3677 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3678 struct cftype *cft, u64 val) 3679 { 3680 return -ENOSYS; 3681 } 3682 #endif 3683 3684 #ifdef CONFIG_NUMA 3685 3686 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3687 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3688 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3689 3690 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3691 int nid, unsigned int lru_mask) 3692 { 3693 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3694 unsigned long nr = 0; 3695 enum lru_list lru; 3696 3697 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3698 3699 for_each_lru(lru) { 3700 if (!(BIT(lru) & lru_mask)) 3701 continue; 3702 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3703 } 3704 return nr; 3705 } 3706 3707 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3708 unsigned int lru_mask) 3709 { 3710 unsigned long nr = 0; 3711 enum lru_list lru; 3712 3713 for_each_lru(lru) { 3714 if (!(BIT(lru) & lru_mask)) 3715 continue; 3716 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3717 } 3718 return nr; 3719 } 3720 3721 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3722 { 3723 struct numa_stat { 3724 const char *name; 3725 unsigned int lru_mask; 3726 }; 3727 3728 static const struct numa_stat stats[] = { 3729 { "total", LRU_ALL }, 3730 { "file", LRU_ALL_FILE }, 3731 { "anon", LRU_ALL_ANON }, 3732 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3733 }; 3734 const struct numa_stat *stat; 3735 int nid; 3736 unsigned long nr; 3737 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3738 3739 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3740 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3741 seq_printf(m, "%s=%lu", stat->name, nr); 3742 for_each_node_state(nid, N_MEMORY) { 3743 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3744 stat->lru_mask); 3745 seq_printf(m, " N%d=%lu", nid, nr); 3746 } 3747 seq_putc(m, '\n'); 3748 } 3749 3750 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3751 struct mem_cgroup *iter; 3752 3753 nr = 0; 3754 for_each_mem_cgroup_tree(iter, memcg) 3755 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3756 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3757 for_each_node_state(nid, N_MEMORY) { 3758 nr = 0; 3759 for_each_mem_cgroup_tree(iter, memcg) 3760 nr += mem_cgroup_node_nr_lru_pages( 3761 iter, nid, stat->lru_mask); 3762 seq_printf(m, " N%d=%lu", nid, nr); 3763 } 3764 seq_putc(m, '\n'); 3765 } 3766 3767 return 0; 3768 } 3769 #endif /* CONFIG_NUMA */ 3770 3771 static const unsigned int memcg1_stats[] = { 3772 MEMCG_CACHE, 3773 MEMCG_RSS, 3774 MEMCG_RSS_HUGE, 3775 NR_SHMEM, 3776 NR_FILE_MAPPED, 3777 NR_FILE_DIRTY, 3778 NR_WRITEBACK, 3779 MEMCG_SWAP, 3780 }; 3781 3782 static const char *const memcg1_stat_names[] = { 3783 "cache", 3784 "rss", 3785 "rss_huge", 3786 "shmem", 3787 "mapped_file", 3788 "dirty", 3789 "writeback", 3790 "swap", 3791 }; 3792 3793 /* Universal VM events cgroup1 shows, original sort order */ 3794 static const unsigned int memcg1_events[] = { 3795 PGPGIN, 3796 PGPGOUT, 3797 PGFAULT, 3798 PGMAJFAULT, 3799 }; 3800 3801 static int memcg_stat_show(struct seq_file *m, void *v) 3802 { 3803 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3804 unsigned long memory, memsw; 3805 struct mem_cgroup *mi; 3806 unsigned int i; 3807 3808 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3809 3810 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3811 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3812 continue; 3813 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3814 memcg_page_state_local(memcg, memcg1_stats[i]) * 3815 PAGE_SIZE); 3816 } 3817 3818 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3819 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 3820 memcg_events_local(memcg, memcg1_events[i])); 3821 3822 for (i = 0; i < NR_LRU_LISTS; i++) 3823 seq_printf(m, "%s %lu\n", lru_list_name(i), 3824 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3825 PAGE_SIZE); 3826 3827 /* Hierarchical information */ 3828 memory = memsw = PAGE_COUNTER_MAX; 3829 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3830 memory = min(memory, READ_ONCE(mi->memory.max)); 3831 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 3832 } 3833 seq_printf(m, "hierarchical_memory_limit %llu\n", 3834 (u64)memory * PAGE_SIZE); 3835 if (do_memsw_account()) 3836 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3837 (u64)memsw * PAGE_SIZE); 3838 3839 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3840 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3841 continue; 3842 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3843 (u64)memcg_page_state(memcg, memcg1_stats[i]) * 3844 PAGE_SIZE); 3845 } 3846 3847 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3848 seq_printf(m, "total_%s %llu\n", 3849 vm_event_name(memcg1_events[i]), 3850 (u64)memcg_events(memcg, memcg1_events[i])); 3851 3852 for (i = 0; i < NR_LRU_LISTS; i++) 3853 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 3854 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 3855 PAGE_SIZE); 3856 3857 #ifdef CONFIG_DEBUG_VM 3858 { 3859 pg_data_t *pgdat; 3860 struct mem_cgroup_per_node *mz; 3861 struct zone_reclaim_stat *rstat; 3862 unsigned long recent_rotated[2] = {0, 0}; 3863 unsigned long recent_scanned[2] = {0, 0}; 3864 3865 for_each_online_pgdat(pgdat) { 3866 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3867 rstat = &mz->lruvec.reclaim_stat; 3868 3869 recent_rotated[0] += rstat->recent_rotated[0]; 3870 recent_rotated[1] += rstat->recent_rotated[1]; 3871 recent_scanned[0] += rstat->recent_scanned[0]; 3872 recent_scanned[1] += rstat->recent_scanned[1]; 3873 } 3874 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3875 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3876 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3877 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3878 } 3879 #endif 3880 3881 return 0; 3882 } 3883 3884 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3885 struct cftype *cft) 3886 { 3887 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3888 3889 return mem_cgroup_swappiness(memcg); 3890 } 3891 3892 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3893 struct cftype *cft, u64 val) 3894 { 3895 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3896 3897 if (val > 100) 3898 return -EINVAL; 3899 3900 if (css->parent) 3901 memcg->swappiness = val; 3902 else 3903 vm_swappiness = val; 3904 3905 return 0; 3906 } 3907 3908 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3909 { 3910 struct mem_cgroup_threshold_ary *t; 3911 unsigned long usage; 3912 int i; 3913 3914 rcu_read_lock(); 3915 if (!swap) 3916 t = rcu_dereference(memcg->thresholds.primary); 3917 else 3918 t = rcu_dereference(memcg->memsw_thresholds.primary); 3919 3920 if (!t) 3921 goto unlock; 3922 3923 usage = mem_cgroup_usage(memcg, swap); 3924 3925 /* 3926 * current_threshold points to threshold just below or equal to usage. 3927 * If it's not true, a threshold was crossed after last 3928 * call of __mem_cgroup_threshold(). 3929 */ 3930 i = t->current_threshold; 3931 3932 /* 3933 * Iterate backward over array of thresholds starting from 3934 * current_threshold and check if a threshold is crossed. 3935 * If none of thresholds below usage is crossed, we read 3936 * only one element of the array here. 3937 */ 3938 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3939 eventfd_signal(t->entries[i].eventfd, 1); 3940 3941 /* i = current_threshold + 1 */ 3942 i++; 3943 3944 /* 3945 * Iterate forward over array of thresholds starting from 3946 * current_threshold+1 and check if a threshold is crossed. 3947 * If none of thresholds above usage is crossed, we read 3948 * only one element of the array here. 3949 */ 3950 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3951 eventfd_signal(t->entries[i].eventfd, 1); 3952 3953 /* Update current_threshold */ 3954 t->current_threshold = i - 1; 3955 unlock: 3956 rcu_read_unlock(); 3957 } 3958 3959 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3960 { 3961 while (memcg) { 3962 __mem_cgroup_threshold(memcg, false); 3963 if (do_memsw_account()) 3964 __mem_cgroup_threshold(memcg, true); 3965 3966 memcg = parent_mem_cgroup(memcg); 3967 } 3968 } 3969 3970 static int compare_thresholds(const void *a, const void *b) 3971 { 3972 const struct mem_cgroup_threshold *_a = a; 3973 const struct mem_cgroup_threshold *_b = b; 3974 3975 if (_a->threshold > _b->threshold) 3976 return 1; 3977 3978 if (_a->threshold < _b->threshold) 3979 return -1; 3980 3981 return 0; 3982 } 3983 3984 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3985 { 3986 struct mem_cgroup_eventfd_list *ev; 3987 3988 spin_lock(&memcg_oom_lock); 3989 3990 list_for_each_entry(ev, &memcg->oom_notify, list) 3991 eventfd_signal(ev->eventfd, 1); 3992 3993 spin_unlock(&memcg_oom_lock); 3994 return 0; 3995 } 3996 3997 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3998 { 3999 struct mem_cgroup *iter; 4000 4001 for_each_mem_cgroup_tree(iter, memcg) 4002 mem_cgroup_oom_notify_cb(iter); 4003 } 4004 4005 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4006 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4007 { 4008 struct mem_cgroup_thresholds *thresholds; 4009 struct mem_cgroup_threshold_ary *new; 4010 unsigned long threshold; 4011 unsigned long usage; 4012 int i, size, ret; 4013 4014 ret = page_counter_memparse(args, "-1", &threshold); 4015 if (ret) 4016 return ret; 4017 4018 mutex_lock(&memcg->thresholds_lock); 4019 4020 if (type == _MEM) { 4021 thresholds = &memcg->thresholds; 4022 usage = mem_cgroup_usage(memcg, false); 4023 } else if (type == _MEMSWAP) { 4024 thresholds = &memcg->memsw_thresholds; 4025 usage = mem_cgroup_usage(memcg, true); 4026 } else 4027 BUG(); 4028 4029 /* Check if a threshold crossed before adding a new one */ 4030 if (thresholds->primary) 4031 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4032 4033 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4034 4035 /* Allocate memory for new array of thresholds */ 4036 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4037 if (!new) { 4038 ret = -ENOMEM; 4039 goto unlock; 4040 } 4041 new->size = size; 4042 4043 /* Copy thresholds (if any) to new array */ 4044 if (thresholds->primary) { 4045 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4046 sizeof(struct mem_cgroup_threshold)); 4047 } 4048 4049 /* Add new threshold */ 4050 new->entries[size - 1].eventfd = eventfd; 4051 new->entries[size - 1].threshold = threshold; 4052 4053 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4054 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4055 compare_thresholds, NULL); 4056 4057 /* Find current threshold */ 4058 new->current_threshold = -1; 4059 for (i = 0; i < size; i++) { 4060 if (new->entries[i].threshold <= usage) { 4061 /* 4062 * new->current_threshold will not be used until 4063 * rcu_assign_pointer(), so it's safe to increment 4064 * it here. 4065 */ 4066 ++new->current_threshold; 4067 } else 4068 break; 4069 } 4070 4071 /* Free old spare buffer and save old primary buffer as spare */ 4072 kfree(thresholds->spare); 4073 thresholds->spare = thresholds->primary; 4074 4075 rcu_assign_pointer(thresholds->primary, new); 4076 4077 /* To be sure that nobody uses thresholds */ 4078 synchronize_rcu(); 4079 4080 unlock: 4081 mutex_unlock(&memcg->thresholds_lock); 4082 4083 return ret; 4084 } 4085 4086 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4087 struct eventfd_ctx *eventfd, const char *args) 4088 { 4089 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4090 } 4091 4092 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4093 struct eventfd_ctx *eventfd, const char *args) 4094 { 4095 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4096 } 4097 4098 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4099 struct eventfd_ctx *eventfd, enum res_type type) 4100 { 4101 struct mem_cgroup_thresholds *thresholds; 4102 struct mem_cgroup_threshold_ary *new; 4103 unsigned long usage; 4104 int i, j, size, entries; 4105 4106 mutex_lock(&memcg->thresholds_lock); 4107 4108 if (type == _MEM) { 4109 thresholds = &memcg->thresholds; 4110 usage = mem_cgroup_usage(memcg, false); 4111 } else if (type == _MEMSWAP) { 4112 thresholds = &memcg->memsw_thresholds; 4113 usage = mem_cgroup_usage(memcg, true); 4114 } else 4115 BUG(); 4116 4117 if (!thresholds->primary) 4118 goto unlock; 4119 4120 /* Check if a threshold crossed before removing */ 4121 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4122 4123 /* Calculate new number of threshold */ 4124 size = entries = 0; 4125 for (i = 0; i < thresholds->primary->size; i++) { 4126 if (thresholds->primary->entries[i].eventfd != eventfd) 4127 size++; 4128 else 4129 entries++; 4130 } 4131 4132 new = thresholds->spare; 4133 4134 /* If no items related to eventfd have been cleared, nothing to do */ 4135 if (!entries) 4136 goto unlock; 4137 4138 /* Set thresholds array to NULL if we don't have thresholds */ 4139 if (!size) { 4140 kfree(new); 4141 new = NULL; 4142 goto swap_buffers; 4143 } 4144 4145 new->size = size; 4146 4147 /* Copy thresholds and find current threshold */ 4148 new->current_threshold = -1; 4149 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4150 if (thresholds->primary->entries[i].eventfd == eventfd) 4151 continue; 4152 4153 new->entries[j] = thresholds->primary->entries[i]; 4154 if (new->entries[j].threshold <= usage) { 4155 /* 4156 * new->current_threshold will not be used 4157 * until rcu_assign_pointer(), so it's safe to increment 4158 * it here. 4159 */ 4160 ++new->current_threshold; 4161 } 4162 j++; 4163 } 4164 4165 swap_buffers: 4166 /* Swap primary and spare array */ 4167 thresholds->spare = thresholds->primary; 4168 4169 rcu_assign_pointer(thresholds->primary, new); 4170 4171 /* To be sure that nobody uses thresholds */ 4172 synchronize_rcu(); 4173 4174 /* If all events are unregistered, free the spare array */ 4175 if (!new) { 4176 kfree(thresholds->spare); 4177 thresholds->spare = NULL; 4178 } 4179 unlock: 4180 mutex_unlock(&memcg->thresholds_lock); 4181 } 4182 4183 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4184 struct eventfd_ctx *eventfd) 4185 { 4186 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4187 } 4188 4189 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4190 struct eventfd_ctx *eventfd) 4191 { 4192 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4193 } 4194 4195 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4196 struct eventfd_ctx *eventfd, const char *args) 4197 { 4198 struct mem_cgroup_eventfd_list *event; 4199 4200 event = kmalloc(sizeof(*event), GFP_KERNEL); 4201 if (!event) 4202 return -ENOMEM; 4203 4204 spin_lock(&memcg_oom_lock); 4205 4206 event->eventfd = eventfd; 4207 list_add(&event->list, &memcg->oom_notify); 4208 4209 /* already in OOM ? */ 4210 if (memcg->under_oom) 4211 eventfd_signal(eventfd, 1); 4212 spin_unlock(&memcg_oom_lock); 4213 4214 return 0; 4215 } 4216 4217 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4218 struct eventfd_ctx *eventfd) 4219 { 4220 struct mem_cgroup_eventfd_list *ev, *tmp; 4221 4222 spin_lock(&memcg_oom_lock); 4223 4224 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4225 if (ev->eventfd == eventfd) { 4226 list_del(&ev->list); 4227 kfree(ev); 4228 } 4229 } 4230 4231 spin_unlock(&memcg_oom_lock); 4232 } 4233 4234 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4235 { 4236 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4237 4238 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4239 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4240 seq_printf(sf, "oom_kill %lu\n", 4241 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4242 return 0; 4243 } 4244 4245 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4246 struct cftype *cft, u64 val) 4247 { 4248 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4249 4250 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4251 if (!css->parent || !((val == 0) || (val == 1))) 4252 return -EINVAL; 4253 4254 memcg->oom_kill_disable = val; 4255 if (!val) 4256 memcg_oom_recover(memcg); 4257 4258 return 0; 4259 } 4260 4261 #ifdef CONFIG_CGROUP_WRITEBACK 4262 4263 #include <trace/events/writeback.h> 4264 4265 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4266 { 4267 return wb_domain_init(&memcg->cgwb_domain, gfp); 4268 } 4269 4270 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4271 { 4272 wb_domain_exit(&memcg->cgwb_domain); 4273 } 4274 4275 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4276 { 4277 wb_domain_size_changed(&memcg->cgwb_domain); 4278 } 4279 4280 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4281 { 4282 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4283 4284 if (!memcg->css.parent) 4285 return NULL; 4286 4287 return &memcg->cgwb_domain; 4288 } 4289 4290 /* 4291 * idx can be of type enum memcg_stat_item or node_stat_item. 4292 * Keep in sync with memcg_exact_page(). 4293 */ 4294 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4295 { 4296 long x = atomic_long_read(&memcg->vmstats[idx]); 4297 int cpu; 4298 4299 for_each_online_cpu(cpu) 4300 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4301 if (x < 0) 4302 x = 0; 4303 return x; 4304 } 4305 4306 /** 4307 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4308 * @wb: bdi_writeback in question 4309 * @pfilepages: out parameter for number of file pages 4310 * @pheadroom: out parameter for number of allocatable pages according to memcg 4311 * @pdirty: out parameter for number of dirty pages 4312 * @pwriteback: out parameter for number of pages under writeback 4313 * 4314 * Determine the numbers of file, headroom, dirty, and writeback pages in 4315 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4316 * is a bit more involved. 4317 * 4318 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4319 * headroom is calculated as the lowest headroom of itself and the 4320 * ancestors. Note that this doesn't consider the actual amount of 4321 * available memory in the system. The caller should further cap 4322 * *@pheadroom accordingly. 4323 */ 4324 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4325 unsigned long *pheadroom, unsigned long *pdirty, 4326 unsigned long *pwriteback) 4327 { 4328 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4329 struct mem_cgroup *parent; 4330 4331 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4332 4333 /* this should eventually include NR_UNSTABLE_NFS */ 4334 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4335 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4336 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4337 *pheadroom = PAGE_COUNTER_MAX; 4338 4339 while ((parent = parent_mem_cgroup(memcg))) { 4340 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4341 READ_ONCE(memcg->high)); 4342 unsigned long used = page_counter_read(&memcg->memory); 4343 4344 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4345 memcg = parent; 4346 } 4347 } 4348 4349 /* 4350 * Foreign dirty flushing 4351 * 4352 * There's an inherent mismatch between memcg and writeback. The former 4353 * trackes ownership per-page while the latter per-inode. This was a 4354 * deliberate design decision because honoring per-page ownership in the 4355 * writeback path is complicated, may lead to higher CPU and IO overheads 4356 * and deemed unnecessary given that write-sharing an inode across 4357 * different cgroups isn't a common use-case. 4358 * 4359 * Combined with inode majority-writer ownership switching, this works well 4360 * enough in most cases but there are some pathological cases. For 4361 * example, let's say there are two cgroups A and B which keep writing to 4362 * different but confined parts of the same inode. B owns the inode and 4363 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4364 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4365 * triggering background writeback. A will be slowed down without a way to 4366 * make writeback of the dirty pages happen. 4367 * 4368 * Conditions like the above can lead to a cgroup getting repatedly and 4369 * severely throttled after making some progress after each 4370 * dirty_expire_interval while the underyling IO device is almost 4371 * completely idle. 4372 * 4373 * Solving this problem completely requires matching the ownership tracking 4374 * granularities between memcg and writeback in either direction. However, 4375 * the more egregious behaviors can be avoided by simply remembering the 4376 * most recent foreign dirtying events and initiating remote flushes on 4377 * them when local writeback isn't enough to keep the memory clean enough. 4378 * 4379 * The following two functions implement such mechanism. When a foreign 4380 * page - a page whose memcg and writeback ownerships don't match - is 4381 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4382 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4383 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4384 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4385 * foreign bdi_writebacks which haven't expired. Both the numbers of 4386 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4387 * limited to MEMCG_CGWB_FRN_CNT. 4388 * 4389 * The mechanism only remembers IDs and doesn't hold any object references. 4390 * As being wrong occasionally doesn't matter, updates and accesses to the 4391 * records are lockless and racy. 4392 */ 4393 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4394 struct bdi_writeback *wb) 4395 { 4396 struct mem_cgroup *memcg = page->mem_cgroup; 4397 struct memcg_cgwb_frn *frn; 4398 u64 now = get_jiffies_64(); 4399 u64 oldest_at = now; 4400 int oldest = -1; 4401 int i; 4402 4403 trace_track_foreign_dirty(page, wb); 4404 4405 /* 4406 * Pick the slot to use. If there is already a slot for @wb, keep 4407 * using it. If not replace the oldest one which isn't being 4408 * written out. 4409 */ 4410 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4411 frn = &memcg->cgwb_frn[i]; 4412 if (frn->bdi_id == wb->bdi->id && 4413 frn->memcg_id == wb->memcg_css->id) 4414 break; 4415 if (time_before64(frn->at, oldest_at) && 4416 atomic_read(&frn->done.cnt) == 1) { 4417 oldest = i; 4418 oldest_at = frn->at; 4419 } 4420 } 4421 4422 if (i < MEMCG_CGWB_FRN_CNT) { 4423 /* 4424 * Re-using an existing one. Update timestamp lazily to 4425 * avoid making the cacheline hot. We want them to be 4426 * reasonably up-to-date and significantly shorter than 4427 * dirty_expire_interval as that's what expires the record. 4428 * Use the shorter of 1s and dirty_expire_interval / 8. 4429 */ 4430 unsigned long update_intv = 4431 min_t(unsigned long, HZ, 4432 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4433 4434 if (time_before64(frn->at, now - update_intv)) 4435 frn->at = now; 4436 } else if (oldest >= 0) { 4437 /* replace the oldest free one */ 4438 frn = &memcg->cgwb_frn[oldest]; 4439 frn->bdi_id = wb->bdi->id; 4440 frn->memcg_id = wb->memcg_css->id; 4441 frn->at = now; 4442 } 4443 } 4444 4445 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4446 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4447 { 4448 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4449 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4450 u64 now = jiffies_64; 4451 int i; 4452 4453 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4454 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4455 4456 /* 4457 * If the record is older than dirty_expire_interval, 4458 * writeback on it has already started. No need to kick it 4459 * off again. Also, don't start a new one if there's 4460 * already one in flight. 4461 */ 4462 if (time_after64(frn->at, now - intv) && 4463 atomic_read(&frn->done.cnt) == 1) { 4464 frn->at = 0; 4465 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4466 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0, 4467 WB_REASON_FOREIGN_FLUSH, 4468 &frn->done); 4469 } 4470 } 4471 } 4472 4473 #else /* CONFIG_CGROUP_WRITEBACK */ 4474 4475 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4476 { 4477 return 0; 4478 } 4479 4480 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4481 { 4482 } 4483 4484 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4485 { 4486 } 4487 4488 #endif /* CONFIG_CGROUP_WRITEBACK */ 4489 4490 /* 4491 * DO NOT USE IN NEW FILES. 4492 * 4493 * "cgroup.event_control" implementation. 4494 * 4495 * This is way over-engineered. It tries to support fully configurable 4496 * events for each user. Such level of flexibility is completely 4497 * unnecessary especially in the light of the planned unified hierarchy. 4498 * 4499 * Please deprecate this and replace with something simpler if at all 4500 * possible. 4501 */ 4502 4503 /* 4504 * Unregister event and free resources. 4505 * 4506 * Gets called from workqueue. 4507 */ 4508 static void memcg_event_remove(struct work_struct *work) 4509 { 4510 struct mem_cgroup_event *event = 4511 container_of(work, struct mem_cgroup_event, remove); 4512 struct mem_cgroup *memcg = event->memcg; 4513 4514 remove_wait_queue(event->wqh, &event->wait); 4515 4516 event->unregister_event(memcg, event->eventfd); 4517 4518 /* Notify userspace the event is going away. */ 4519 eventfd_signal(event->eventfd, 1); 4520 4521 eventfd_ctx_put(event->eventfd); 4522 kfree(event); 4523 css_put(&memcg->css); 4524 } 4525 4526 /* 4527 * Gets called on EPOLLHUP on eventfd when user closes it. 4528 * 4529 * Called with wqh->lock held and interrupts disabled. 4530 */ 4531 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4532 int sync, void *key) 4533 { 4534 struct mem_cgroup_event *event = 4535 container_of(wait, struct mem_cgroup_event, wait); 4536 struct mem_cgroup *memcg = event->memcg; 4537 __poll_t flags = key_to_poll(key); 4538 4539 if (flags & EPOLLHUP) { 4540 /* 4541 * If the event has been detached at cgroup removal, we 4542 * can simply return knowing the other side will cleanup 4543 * for us. 4544 * 4545 * We can't race against event freeing since the other 4546 * side will require wqh->lock via remove_wait_queue(), 4547 * which we hold. 4548 */ 4549 spin_lock(&memcg->event_list_lock); 4550 if (!list_empty(&event->list)) { 4551 list_del_init(&event->list); 4552 /* 4553 * We are in atomic context, but cgroup_event_remove() 4554 * may sleep, so we have to call it in workqueue. 4555 */ 4556 schedule_work(&event->remove); 4557 } 4558 spin_unlock(&memcg->event_list_lock); 4559 } 4560 4561 return 0; 4562 } 4563 4564 static void memcg_event_ptable_queue_proc(struct file *file, 4565 wait_queue_head_t *wqh, poll_table *pt) 4566 { 4567 struct mem_cgroup_event *event = 4568 container_of(pt, struct mem_cgroup_event, pt); 4569 4570 event->wqh = wqh; 4571 add_wait_queue(wqh, &event->wait); 4572 } 4573 4574 /* 4575 * DO NOT USE IN NEW FILES. 4576 * 4577 * Parse input and register new cgroup event handler. 4578 * 4579 * Input must be in format '<event_fd> <control_fd> <args>'. 4580 * Interpretation of args is defined by control file implementation. 4581 */ 4582 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4583 char *buf, size_t nbytes, loff_t off) 4584 { 4585 struct cgroup_subsys_state *css = of_css(of); 4586 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4587 struct mem_cgroup_event *event; 4588 struct cgroup_subsys_state *cfile_css; 4589 unsigned int efd, cfd; 4590 struct fd efile; 4591 struct fd cfile; 4592 const char *name; 4593 char *endp; 4594 int ret; 4595 4596 buf = strstrip(buf); 4597 4598 efd = simple_strtoul(buf, &endp, 10); 4599 if (*endp != ' ') 4600 return -EINVAL; 4601 buf = endp + 1; 4602 4603 cfd = simple_strtoul(buf, &endp, 10); 4604 if ((*endp != ' ') && (*endp != '\0')) 4605 return -EINVAL; 4606 buf = endp + 1; 4607 4608 event = kzalloc(sizeof(*event), GFP_KERNEL); 4609 if (!event) 4610 return -ENOMEM; 4611 4612 event->memcg = memcg; 4613 INIT_LIST_HEAD(&event->list); 4614 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4615 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4616 INIT_WORK(&event->remove, memcg_event_remove); 4617 4618 efile = fdget(efd); 4619 if (!efile.file) { 4620 ret = -EBADF; 4621 goto out_kfree; 4622 } 4623 4624 event->eventfd = eventfd_ctx_fileget(efile.file); 4625 if (IS_ERR(event->eventfd)) { 4626 ret = PTR_ERR(event->eventfd); 4627 goto out_put_efile; 4628 } 4629 4630 cfile = fdget(cfd); 4631 if (!cfile.file) { 4632 ret = -EBADF; 4633 goto out_put_eventfd; 4634 } 4635 4636 /* the process need read permission on control file */ 4637 /* AV: shouldn't we check that it's been opened for read instead? */ 4638 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4639 if (ret < 0) 4640 goto out_put_cfile; 4641 4642 /* 4643 * Determine the event callbacks and set them in @event. This used 4644 * to be done via struct cftype but cgroup core no longer knows 4645 * about these events. The following is crude but the whole thing 4646 * is for compatibility anyway. 4647 * 4648 * DO NOT ADD NEW FILES. 4649 */ 4650 name = cfile.file->f_path.dentry->d_name.name; 4651 4652 if (!strcmp(name, "memory.usage_in_bytes")) { 4653 event->register_event = mem_cgroup_usage_register_event; 4654 event->unregister_event = mem_cgroup_usage_unregister_event; 4655 } else if (!strcmp(name, "memory.oom_control")) { 4656 event->register_event = mem_cgroup_oom_register_event; 4657 event->unregister_event = mem_cgroup_oom_unregister_event; 4658 } else if (!strcmp(name, "memory.pressure_level")) { 4659 event->register_event = vmpressure_register_event; 4660 event->unregister_event = vmpressure_unregister_event; 4661 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4662 event->register_event = memsw_cgroup_usage_register_event; 4663 event->unregister_event = memsw_cgroup_usage_unregister_event; 4664 } else { 4665 ret = -EINVAL; 4666 goto out_put_cfile; 4667 } 4668 4669 /* 4670 * Verify @cfile should belong to @css. Also, remaining events are 4671 * automatically removed on cgroup destruction but the removal is 4672 * asynchronous, so take an extra ref on @css. 4673 */ 4674 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4675 &memory_cgrp_subsys); 4676 ret = -EINVAL; 4677 if (IS_ERR(cfile_css)) 4678 goto out_put_cfile; 4679 if (cfile_css != css) { 4680 css_put(cfile_css); 4681 goto out_put_cfile; 4682 } 4683 4684 ret = event->register_event(memcg, event->eventfd, buf); 4685 if (ret) 4686 goto out_put_css; 4687 4688 vfs_poll(efile.file, &event->pt); 4689 4690 spin_lock(&memcg->event_list_lock); 4691 list_add(&event->list, &memcg->event_list); 4692 spin_unlock(&memcg->event_list_lock); 4693 4694 fdput(cfile); 4695 fdput(efile); 4696 4697 return nbytes; 4698 4699 out_put_css: 4700 css_put(css); 4701 out_put_cfile: 4702 fdput(cfile); 4703 out_put_eventfd: 4704 eventfd_ctx_put(event->eventfd); 4705 out_put_efile: 4706 fdput(efile); 4707 out_kfree: 4708 kfree(event); 4709 4710 return ret; 4711 } 4712 4713 static struct cftype mem_cgroup_legacy_files[] = { 4714 { 4715 .name = "usage_in_bytes", 4716 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4717 .read_u64 = mem_cgroup_read_u64, 4718 }, 4719 { 4720 .name = "max_usage_in_bytes", 4721 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4722 .write = mem_cgroup_reset, 4723 .read_u64 = mem_cgroup_read_u64, 4724 }, 4725 { 4726 .name = "limit_in_bytes", 4727 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4728 .write = mem_cgroup_write, 4729 .read_u64 = mem_cgroup_read_u64, 4730 }, 4731 { 4732 .name = "soft_limit_in_bytes", 4733 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4734 .write = mem_cgroup_write, 4735 .read_u64 = mem_cgroup_read_u64, 4736 }, 4737 { 4738 .name = "failcnt", 4739 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4740 .write = mem_cgroup_reset, 4741 .read_u64 = mem_cgroup_read_u64, 4742 }, 4743 { 4744 .name = "stat", 4745 .seq_show = memcg_stat_show, 4746 }, 4747 { 4748 .name = "force_empty", 4749 .write = mem_cgroup_force_empty_write, 4750 }, 4751 { 4752 .name = "use_hierarchy", 4753 .write_u64 = mem_cgroup_hierarchy_write, 4754 .read_u64 = mem_cgroup_hierarchy_read, 4755 }, 4756 { 4757 .name = "cgroup.event_control", /* XXX: for compat */ 4758 .write = memcg_write_event_control, 4759 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4760 }, 4761 { 4762 .name = "swappiness", 4763 .read_u64 = mem_cgroup_swappiness_read, 4764 .write_u64 = mem_cgroup_swappiness_write, 4765 }, 4766 { 4767 .name = "move_charge_at_immigrate", 4768 .read_u64 = mem_cgroup_move_charge_read, 4769 .write_u64 = mem_cgroup_move_charge_write, 4770 }, 4771 { 4772 .name = "oom_control", 4773 .seq_show = mem_cgroup_oom_control_read, 4774 .write_u64 = mem_cgroup_oom_control_write, 4775 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4776 }, 4777 { 4778 .name = "pressure_level", 4779 }, 4780 #ifdef CONFIG_NUMA 4781 { 4782 .name = "numa_stat", 4783 .seq_show = memcg_numa_stat_show, 4784 }, 4785 #endif 4786 { 4787 .name = "kmem.limit_in_bytes", 4788 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4789 .write = mem_cgroup_write, 4790 .read_u64 = mem_cgroup_read_u64, 4791 }, 4792 { 4793 .name = "kmem.usage_in_bytes", 4794 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4795 .read_u64 = mem_cgroup_read_u64, 4796 }, 4797 { 4798 .name = "kmem.failcnt", 4799 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4800 .write = mem_cgroup_reset, 4801 .read_u64 = mem_cgroup_read_u64, 4802 }, 4803 { 4804 .name = "kmem.max_usage_in_bytes", 4805 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4806 .write = mem_cgroup_reset, 4807 .read_u64 = mem_cgroup_read_u64, 4808 }, 4809 #if defined(CONFIG_MEMCG_KMEM) && \ 4810 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4811 { 4812 .name = "kmem.slabinfo", 4813 .seq_start = memcg_slab_start, 4814 .seq_next = memcg_slab_next, 4815 .seq_stop = memcg_slab_stop, 4816 .seq_show = memcg_slab_show, 4817 }, 4818 #endif 4819 { 4820 .name = "kmem.tcp.limit_in_bytes", 4821 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4822 .write = mem_cgroup_write, 4823 .read_u64 = mem_cgroup_read_u64, 4824 }, 4825 { 4826 .name = "kmem.tcp.usage_in_bytes", 4827 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4828 .read_u64 = mem_cgroup_read_u64, 4829 }, 4830 { 4831 .name = "kmem.tcp.failcnt", 4832 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4833 .write = mem_cgroup_reset, 4834 .read_u64 = mem_cgroup_read_u64, 4835 }, 4836 { 4837 .name = "kmem.tcp.max_usage_in_bytes", 4838 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4839 .write = mem_cgroup_reset, 4840 .read_u64 = mem_cgroup_read_u64, 4841 }, 4842 { }, /* terminate */ 4843 }; 4844 4845 /* 4846 * Private memory cgroup IDR 4847 * 4848 * Swap-out records and page cache shadow entries need to store memcg 4849 * references in constrained space, so we maintain an ID space that is 4850 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4851 * memory-controlled cgroups to 64k. 4852 * 4853 * However, there usually are many references to the oflline CSS after 4854 * the cgroup has been destroyed, such as page cache or reclaimable 4855 * slab objects, that don't need to hang on to the ID. We want to keep 4856 * those dead CSS from occupying IDs, or we might quickly exhaust the 4857 * relatively small ID space and prevent the creation of new cgroups 4858 * even when there are much fewer than 64k cgroups - possibly none. 4859 * 4860 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4861 * be freed and recycled when it's no longer needed, which is usually 4862 * when the CSS is offlined. 4863 * 4864 * The only exception to that are records of swapped out tmpfs/shmem 4865 * pages that need to be attributed to live ancestors on swapin. But 4866 * those references are manageable from userspace. 4867 */ 4868 4869 static DEFINE_IDR(mem_cgroup_idr); 4870 4871 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4872 { 4873 if (memcg->id.id > 0) { 4874 idr_remove(&mem_cgroup_idr, memcg->id.id); 4875 memcg->id.id = 0; 4876 } 4877 } 4878 4879 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 4880 unsigned int n) 4881 { 4882 refcount_add(n, &memcg->id.ref); 4883 } 4884 4885 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4886 { 4887 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4888 mem_cgroup_id_remove(memcg); 4889 4890 /* Memcg ID pins CSS */ 4891 css_put(&memcg->css); 4892 } 4893 } 4894 4895 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4896 { 4897 mem_cgroup_id_put_many(memcg, 1); 4898 } 4899 4900 /** 4901 * mem_cgroup_from_id - look up a memcg from a memcg id 4902 * @id: the memcg id to look up 4903 * 4904 * Caller must hold rcu_read_lock(). 4905 */ 4906 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4907 { 4908 WARN_ON_ONCE(!rcu_read_lock_held()); 4909 return idr_find(&mem_cgroup_idr, id); 4910 } 4911 4912 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4913 { 4914 struct mem_cgroup_per_node *pn; 4915 int tmp = node; 4916 /* 4917 * This routine is called against possible nodes. 4918 * But it's BUG to call kmalloc() against offline node. 4919 * 4920 * TODO: this routine can waste much memory for nodes which will 4921 * never be onlined. It's better to use memory hotplug callback 4922 * function. 4923 */ 4924 if (!node_state(node, N_NORMAL_MEMORY)) 4925 tmp = -1; 4926 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4927 if (!pn) 4928 return 1; 4929 4930 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat); 4931 if (!pn->lruvec_stat_local) { 4932 kfree(pn); 4933 return 1; 4934 } 4935 4936 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4937 if (!pn->lruvec_stat_cpu) { 4938 free_percpu(pn->lruvec_stat_local); 4939 kfree(pn); 4940 return 1; 4941 } 4942 4943 lruvec_init(&pn->lruvec); 4944 pn->usage_in_excess = 0; 4945 pn->on_tree = false; 4946 pn->memcg = memcg; 4947 4948 memcg->nodeinfo[node] = pn; 4949 return 0; 4950 } 4951 4952 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4953 { 4954 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4955 4956 if (!pn) 4957 return; 4958 4959 free_percpu(pn->lruvec_stat_cpu); 4960 free_percpu(pn->lruvec_stat_local); 4961 kfree(pn); 4962 } 4963 4964 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4965 { 4966 int node; 4967 4968 for_each_node(node) 4969 free_mem_cgroup_per_node_info(memcg, node); 4970 free_percpu(memcg->vmstats_percpu); 4971 free_percpu(memcg->vmstats_local); 4972 kfree(memcg); 4973 } 4974 4975 static void mem_cgroup_free(struct mem_cgroup *memcg) 4976 { 4977 memcg_wb_domain_exit(memcg); 4978 /* 4979 * Flush percpu vmstats and vmevents to guarantee the value correctness 4980 * on parent's and all ancestor levels. 4981 */ 4982 memcg_flush_percpu_vmstats(memcg); 4983 memcg_flush_percpu_vmevents(memcg); 4984 __mem_cgroup_free(memcg); 4985 } 4986 4987 static struct mem_cgroup *mem_cgroup_alloc(void) 4988 { 4989 struct mem_cgroup *memcg; 4990 unsigned int size; 4991 int node; 4992 int __maybe_unused i; 4993 4994 size = sizeof(struct mem_cgroup); 4995 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4996 4997 memcg = kzalloc(size, GFP_KERNEL); 4998 if (!memcg) 4999 return NULL; 5000 5001 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5002 1, MEM_CGROUP_ID_MAX, 5003 GFP_KERNEL); 5004 if (memcg->id.id < 0) 5005 goto fail; 5006 5007 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu); 5008 if (!memcg->vmstats_local) 5009 goto fail; 5010 5011 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); 5012 if (!memcg->vmstats_percpu) 5013 goto fail; 5014 5015 for_each_node(node) 5016 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5017 goto fail; 5018 5019 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5020 goto fail; 5021 5022 INIT_WORK(&memcg->high_work, high_work_func); 5023 INIT_LIST_HEAD(&memcg->oom_notify); 5024 mutex_init(&memcg->thresholds_lock); 5025 spin_lock_init(&memcg->move_lock); 5026 vmpressure_init(&memcg->vmpressure); 5027 INIT_LIST_HEAD(&memcg->event_list); 5028 spin_lock_init(&memcg->event_list_lock); 5029 memcg->socket_pressure = jiffies; 5030 #ifdef CONFIG_MEMCG_KMEM 5031 memcg->kmemcg_id = -1; 5032 #endif 5033 #ifdef CONFIG_CGROUP_WRITEBACK 5034 INIT_LIST_HEAD(&memcg->cgwb_list); 5035 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5036 memcg->cgwb_frn[i].done = 5037 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5038 #endif 5039 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5040 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5041 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5042 memcg->deferred_split_queue.split_queue_len = 0; 5043 #endif 5044 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5045 return memcg; 5046 fail: 5047 mem_cgroup_id_remove(memcg); 5048 __mem_cgroup_free(memcg); 5049 return NULL; 5050 } 5051 5052 static struct cgroup_subsys_state * __ref 5053 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5054 { 5055 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5056 struct mem_cgroup *memcg; 5057 long error = -ENOMEM; 5058 5059 memcg = mem_cgroup_alloc(); 5060 if (!memcg) 5061 return ERR_PTR(error); 5062 5063 WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX); 5064 memcg->soft_limit = PAGE_COUNTER_MAX; 5065 if (parent) { 5066 memcg->swappiness = mem_cgroup_swappiness(parent); 5067 memcg->oom_kill_disable = parent->oom_kill_disable; 5068 } 5069 if (parent && parent->use_hierarchy) { 5070 memcg->use_hierarchy = true; 5071 page_counter_init(&memcg->memory, &parent->memory); 5072 page_counter_init(&memcg->swap, &parent->swap); 5073 page_counter_init(&memcg->memsw, &parent->memsw); 5074 page_counter_init(&memcg->kmem, &parent->kmem); 5075 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5076 } else { 5077 page_counter_init(&memcg->memory, NULL); 5078 page_counter_init(&memcg->swap, NULL); 5079 page_counter_init(&memcg->memsw, NULL); 5080 page_counter_init(&memcg->kmem, NULL); 5081 page_counter_init(&memcg->tcpmem, NULL); 5082 /* 5083 * Deeper hierachy with use_hierarchy == false doesn't make 5084 * much sense so let cgroup subsystem know about this 5085 * unfortunate state in our controller. 5086 */ 5087 if (parent != root_mem_cgroup) 5088 memory_cgrp_subsys.broken_hierarchy = true; 5089 } 5090 5091 /* The following stuff does not apply to the root */ 5092 if (!parent) { 5093 #ifdef CONFIG_MEMCG_KMEM 5094 INIT_LIST_HEAD(&memcg->kmem_caches); 5095 #endif 5096 root_mem_cgroup = memcg; 5097 return &memcg->css; 5098 } 5099 5100 error = memcg_online_kmem(memcg); 5101 if (error) 5102 goto fail; 5103 5104 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5105 static_branch_inc(&memcg_sockets_enabled_key); 5106 5107 return &memcg->css; 5108 fail: 5109 mem_cgroup_id_remove(memcg); 5110 mem_cgroup_free(memcg); 5111 return ERR_PTR(-ENOMEM); 5112 } 5113 5114 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5115 { 5116 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5117 5118 /* 5119 * A memcg must be visible for memcg_expand_shrinker_maps() 5120 * by the time the maps are allocated. So, we allocate maps 5121 * here, when for_each_mem_cgroup() can't skip it. 5122 */ 5123 if (memcg_alloc_shrinker_maps(memcg)) { 5124 mem_cgroup_id_remove(memcg); 5125 return -ENOMEM; 5126 } 5127 5128 /* Online state pins memcg ID, memcg ID pins CSS */ 5129 refcount_set(&memcg->id.ref, 1); 5130 css_get(css); 5131 return 0; 5132 } 5133 5134 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5135 { 5136 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5137 struct mem_cgroup_event *event, *tmp; 5138 5139 /* 5140 * Unregister events and notify userspace. 5141 * Notify userspace about cgroup removing only after rmdir of cgroup 5142 * directory to avoid race between userspace and kernelspace. 5143 */ 5144 spin_lock(&memcg->event_list_lock); 5145 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5146 list_del_init(&event->list); 5147 schedule_work(&event->remove); 5148 } 5149 spin_unlock(&memcg->event_list_lock); 5150 5151 page_counter_set_min(&memcg->memory, 0); 5152 page_counter_set_low(&memcg->memory, 0); 5153 5154 memcg_offline_kmem(memcg); 5155 wb_memcg_offline(memcg); 5156 5157 drain_all_stock(memcg); 5158 5159 mem_cgroup_id_put(memcg); 5160 } 5161 5162 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5163 { 5164 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5165 5166 invalidate_reclaim_iterators(memcg); 5167 } 5168 5169 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5170 { 5171 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5172 int __maybe_unused i; 5173 5174 #ifdef CONFIG_CGROUP_WRITEBACK 5175 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5176 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5177 #endif 5178 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5179 static_branch_dec(&memcg_sockets_enabled_key); 5180 5181 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5182 static_branch_dec(&memcg_sockets_enabled_key); 5183 5184 vmpressure_cleanup(&memcg->vmpressure); 5185 cancel_work_sync(&memcg->high_work); 5186 mem_cgroup_remove_from_trees(memcg); 5187 memcg_free_shrinker_maps(memcg); 5188 memcg_free_kmem(memcg); 5189 mem_cgroup_free(memcg); 5190 } 5191 5192 /** 5193 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5194 * @css: the target css 5195 * 5196 * Reset the states of the mem_cgroup associated with @css. This is 5197 * invoked when the userland requests disabling on the default hierarchy 5198 * but the memcg is pinned through dependency. The memcg should stop 5199 * applying policies and should revert to the vanilla state as it may be 5200 * made visible again. 5201 * 5202 * The current implementation only resets the essential configurations. 5203 * This needs to be expanded to cover all the visible parts. 5204 */ 5205 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5206 { 5207 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5208 5209 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5210 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5211 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 5212 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5213 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5214 page_counter_set_min(&memcg->memory, 0); 5215 page_counter_set_low(&memcg->memory, 0); 5216 WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX); 5217 memcg->soft_limit = PAGE_COUNTER_MAX; 5218 memcg_wb_domain_size_changed(memcg); 5219 } 5220 5221 #ifdef CONFIG_MMU 5222 /* Handlers for move charge at task migration. */ 5223 static int mem_cgroup_do_precharge(unsigned long count) 5224 { 5225 int ret; 5226 5227 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5228 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5229 if (!ret) { 5230 mc.precharge += count; 5231 return ret; 5232 } 5233 5234 /* Try charges one by one with reclaim, but do not retry */ 5235 while (count--) { 5236 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5237 if (ret) 5238 return ret; 5239 mc.precharge++; 5240 cond_resched(); 5241 } 5242 return 0; 5243 } 5244 5245 union mc_target { 5246 struct page *page; 5247 swp_entry_t ent; 5248 }; 5249 5250 enum mc_target_type { 5251 MC_TARGET_NONE = 0, 5252 MC_TARGET_PAGE, 5253 MC_TARGET_SWAP, 5254 MC_TARGET_DEVICE, 5255 }; 5256 5257 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5258 unsigned long addr, pte_t ptent) 5259 { 5260 struct page *page = vm_normal_page(vma, addr, ptent); 5261 5262 if (!page || !page_mapped(page)) 5263 return NULL; 5264 if (PageAnon(page)) { 5265 if (!(mc.flags & MOVE_ANON)) 5266 return NULL; 5267 } else { 5268 if (!(mc.flags & MOVE_FILE)) 5269 return NULL; 5270 } 5271 if (!get_page_unless_zero(page)) 5272 return NULL; 5273 5274 return page; 5275 } 5276 5277 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5278 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5279 pte_t ptent, swp_entry_t *entry) 5280 { 5281 struct page *page = NULL; 5282 swp_entry_t ent = pte_to_swp_entry(ptent); 5283 5284 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 5285 return NULL; 5286 5287 /* 5288 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5289 * a device and because they are not accessible by CPU they are store 5290 * as special swap entry in the CPU page table. 5291 */ 5292 if (is_device_private_entry(ent)) { 5293 page = device_private_entry_to_page(ent); 5294 /* 5295 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5296 * a refcount of 1 when free (unlike normal page) 5297 */ 5298 if (!page_ref_add_unless(page, 1, 1)) 5299 return NULL; 5300 return page; 5301 } 5302 5303 /* 5304 * Because lookup_swap_cache() updates some statistics counter, 5305 * we call find_get_page() with swapper_space directly. 5306 */ 5307 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5308 if (do_memsw_account()) 5309 entry->val = ent.val; 5310 5311 return page; 5312 } 5313 #else 5314 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5315 pte_t ptent, swp_entry_t *entry) 5316 { 5317 return NULL; 5318 } 5319 #endif 5320 5321 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5322 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5323 { 5324 struct page *page = NULL; 5325 struct address_space *mapping; 5326 pgoff_t pgoff; 5327 5328 if (!vma->vm_file) /* anonymous vma */ 5329 return NULL; 5330 if (!(mc.flags & MOVE_FILE)) 5331 return NULL; 5332 5333 mapping = vma->vm_file->f_mapping; 5334 pgoff = linear_page_index(vma, addr); 5335 5336 /* page is moved even if it's not RSS of this task(page-faulted). */ 5337 #ifdef CONFIG_SWAP 5338 /* shmem/tmpfs may report page out on swap: account for that too. */ 5339 if (shmem_mapping(mapping)) { 5340 page = find_get_entry(mapping, pgoff); 5341 if (xa_is_value(page)) { 5342 swp_entry_t swp = radix_to_swp_entry(page); 5343 if (do_memsw_account()) 5344 *entry = swp; 5345 page = find_get_page(swap_address_space(swp), 5346 swp_offset(swp)); 5347 } 5348 } else 5349 page = find_get_page(mapping, pgoff); 5350 #else 5351 page = find_get_page(mapping, pgoff); 5352 #endif 5353 return page; 5354 } 5355 5356 /** 5357 * mem_cgroup_move_account - move account of the page 5358 * @page: the page 5359 * @compound: charge the page as compound or small page 5360 * @from: mem_cgroup which the page is moved from. 5361 * @to: mem_cgroup which the page is moved to. @from != @to. 5362 * 5363 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5364 * 5365 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5366 * from old cgroup. 5367 */ 5368 static int mem_cgroup_move_account(struct page *page, 5369 bool compound, 5370 struct mem_cgroup *from, 5371 struct mem_cgroup *to) 5372 { 5373 struct lruvec *from_vec, *to_vec; 5374 struct pglist_data *pgdat; 5375 unsigned long flags; 5376 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5377 int ret; 5378 bool anon; 5379 5380 VM_BUG_ON(from == to); 5381 VM_BUG_ON_PAGE(PageLRU(page), page); 5382 VM_BUG_ON(compound && !PageTransHuge(page)); 5383 5384 /* 5385 * Prevent mem_cgroup_migrate() from looking at 5386 * page->mem_cgroup of its source page while we change it. 5387 */ 5388 ret = -EBUSY; 5389 if (!trylock_page(page)) 5390 goto out; 5391 5392 ret = -EINVAL; 5393 if (page->mem_cgroup != from) 5394 goto out_unlock; 5395 5396 anon = PageAnon(page); 5397 5398 pgdat = page_pgdat(page); 5399 from_vec = mem_cgroup_lruvec(from, pgdat); 5400 to_vec = mem_cgroup_lruvec(to, pgdat); 5401 5402 spin_lock_irqsave(&from->move_lock, flags); 5403 5404 if (!anon && page_mapped(page)) { 5405 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5406 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5407 } 5408 5409 /* 5410 * move_lock grabbed above and caller set from->moving_account, so 5411 * mod_memcg_page_state will serialize updates to PageDirty. 5412 * So mapping should be stable for dirty pages. 5413 */ 5414 if (!anon && PageDirty(page)) { 5415 struct address_space *mapping = page_mapping(page); 5416 5417 if (mapping_cap_account_dirty(mapping)) { 5418 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages); 5419 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages); 5420 } 5421 } 5422 5423 if (PageWriteback(page)) { 5424 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5425 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5426 } 5427 5428 /* 5429 * It is safe to change page->mem_cgroup here because the page 5430 * is referenced, charged, and isolated - we can't race with 5431 * uncharging, charging, migration, or LRU putback. 5432 */ 5433 5434 /* caller should have done css_get */ 5435 page->mem_cgroup = to; 5436 5437 spin_unlock_irqrestore(&from->move_lock, flags); 5438 5439 ret = 0; 5440 5441 local_irq_disable(); 5442 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 5443 memcg_check_events(to, page); 5444 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 5445 memcg_check_events(from, page); 5446 local_irq_enable(); 5447 out_unlock: 5448 unlock_page(page); 5449 out: 5450 return ret; 5451 } 5452 5453 /** 5454 * get_mctgt_type - get target type of moving charge 5455 * @vma: the vma the pte to be checked belongs 5456 * @addr: the address corresponding to the pte to be checked 5457 * @ptent: the pte to be checked 5458 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5459 * 5460 * Returns 5461 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5462 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5463 * move charge. if @target is not NULL, the page is stored in target->page 5464 * with extra refcnt got(Callers should handle it). 5465 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5466 * target for charge migration. if @target is not NULL, the entry is stored 5467 * in target->ent. 5468 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5469 * (so ZONE_DEVICE page and thus not on the lru). 5470 * For now we such page is charge like a regular page would be as for all 5471 * intent and purposes it is just special memory taking the place of a 5472 * regular page. 5473 * 5474 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5475 * 5476 * Called with pte lock held. 5477 */ 5478 5479 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5480 unsigned long addr, pte_t ptent, union mc_target *target) 5481 { 5482 struct page *page = NULL; 5483 enum mc_target_type ret = MC_TARGET_NONE; 5484 swp_entry_t ent = { .val = 0 }; 5485 5486 if (pte_present(ptent)) 5487 page = mc_handle_present_pte(vma, addr, ptent); 5488 else if (is_swap_pte(ptent)) 5489 page = mc_handle_swap_pte(vma, ptent, &ent); 5490 else if (pte_none(ptent)) 5491 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5492 5493 if (!page && !ent.val) 5494 return ret; 5495 if (page) { 5496 /* 5497 * Do only loose check w/o serialization. 5498 * mem_cgroup_move_account() checks the page is valid or 5499 * not under LRU exclusion. 5500 */ 5501 if (page->mem_cgroup == mc.from) { 5502 ret = MC_TARGET_PAGE; 5503 if (is_device_private_page(page)) 5504 ret = MC_TARGET_DEVICE; 5505 if (target) 5506 target->page = page; 5507 } 5508 if (!ret || !target) 5509 put_page(page); 5510 } 5511 /* 5512 * There is a swap entry and a page doesn't exist or isn't charged. 5513 * But we cannot move a tail-page in a THP. 5514 */ 5515 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5516 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5517 ret = MC_TARGET_SWAP; 5518 if (target) 5519 target->ent = ent; 5520 } 5521 return ret; 5522 } 5523 5524 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5525 /* 5526 * We don't consider PMD mapped swapping or file mapped pages because THP does 5527 * not support them for now. 5528 * Caller should make sure that pmd_trans_huge(pmd) is true. 5529 */ 5530 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5531 unsigned long addr, pmd_t pmd, union mc_target *target) 5532 { 5533 struct page *page = NULL; 5534 enum mc_target_type ret = MC_TARGET_NONE; 5535 5536 if (unlikely(is_swap_pmd(pmd))) { 5537 VM_BUG_ON(thp_migration_supported() && 5538 !is_pmd_migration_entry(pmd)); 5539 return ret; 5540 } 5541 page = pmd_page(pmd); 5542 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5543 if (!(mc.flags & MOVE_ANON)) 5544 return ret; 5545 if (page->mem_cgroup == mc.from) { 5546 ret = MC_TARGET_PAGE; 5547 if (target) { 5548 get_page(page); 5549 target->page = page; 5550 } 5551 } 5552 return ret; 5553 } 5554 #else 5555 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5556 unsigned long addr, pmd_t pmd, union mc_target *target) 5557 { 5558 return MC_TARGET_NONE; 5559 } 5560 #endif 5561 5562 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5563 unsigned long addr, unsigned long end, 5564 struct mm_walk *walk) 5565 { 5566 struct vm_area_struct *vma = walk->vma; 5567 pte_t *pte; 5568 spinlock_t *ptl; 5569 5570 ptl = pmd_trans_huge_lock(pmd, vma); 5571 if (ptl) { 5572 /* 5573 * Note their can not be MC_TARGET_DEVICE for now as we do not 5574 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5575 * this might change. 5576 */ 5577 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5578 mc.precharge += HPAGE_PMD_NR; 5579 spin_unlock(ptl); 5580 return 0; 5581 } 5582 5583 if (pmd_trans_unstable(pmd)) 5584 return 0; 5585 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5586 for (; addr != end; pte++, addr += PAGE_SIZE) 5587 if (get_mctgt_type(vma, addr, *pte, NULL)) 5588 mc.precharge++; /* increment precharge temporarily */ 5589 pte_unmap_unlock(pte - 1, ptl); 5590 cond_resched(); 5591 5592 return 0; 5593 } 5594 5595 static const struct mm_walk_ops precharge_walk_ops = { 5596 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5597 }; 5598 5599 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5600 { 5601 unsigned long precharge; 5602 5603 down_read(&mm->mmap_sem); 5604 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5605 up_read(&mm->mmap_sem); 5606 5607 precharge = mc.precharge; 5608 mc.precharge = 0; 5609 5610 return precharge; 5611 } 5612 5613 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5614 { 5615 unsigned long precharge = mem_cgroup_count_precharge(mm); 5616 5617 VM_BUG_ON(mc.moving_task); 5618 mc.moving_task = current; 5619 return mem_cgroup_do_precharge(precharge); 5620 } 5621 5622 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5623 static void __mem_cgroup_clear_mc(void) 5624 { 5625 struct mem_cgroup *from = mc.from; 5626 struct mem_cgroup *to = mc.to; 5627 5628 /* we must uncharge all the leftover precharges from mc.to */ 5629 if (mc.precharge) { 5630 cancel_charge(mc.to, mc.precharge); 5631 mc.precharge = 0; 5632 } 5633 /* 5634 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5635 * we must uncharge here. 5636 */ 5637 if (mc.moved_charge) { 5638 cancel_charge(mc.from, mc.moved_charge); 5639 mc.moved_charge = 0; 5640 } 5641 /* we must fixup refcnts and charges */ 5642 if (mc.moved_swap) { 5643 /* uncharge swap account from the old cgroup */ 5644 if (!mem_cgroup_is_root(mc.from)) 5645 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5646 5647 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5648 5649 /* 5650 * we charged both to->memory and to->memsw, so we 5651 * should uncharge to->memory. 5652 */ 5653 if (!mem_cgroup_is_root(mc.to)) 5654 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5655 5656 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5657 css_put_many(&mc.to->css, mc.moved_swap); 5658 5659 mc.moved_swap = 0; 5660 } 5661 memcg_oom_recover(from); 5662 memcg_oom_recover(to); 5663 wake_up_all(&mc.waitq); 5664 } 5665 5666 static void mem_cgroup_clear_mc(void) 5667 { 5668 struct mm_struct *mm = mc.mm; 5669 5670 /* 5671 * we must clear moving_task before waking up waiters at the end of 5672 * task migration. 5673 */ 5674 mc.moving_task = NULL; 5675 __mem_cgroup_clear_mc(); 5676 spin_lock(&mc.lock); 5677 mc.from = NULL; 5678 mc.to = NULL; 5679 mc.mm = NULL; 5680 spin_unlock(&mc.lock); 5681 5682 mmput(mm); 5683 } 5684 5685 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5686 { 5687 struct cgroup_subsys_state *css; 5688 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5689 struct mem_cgroup *from; 5690 struct task_struct *leader, *p; 5691 struct mm_struct *mm; 5692 unsigned long move_flags; 5693 int ret = 0; 5694 5695 /* charge immigration isn't supported on the default hierarchy */ 5696 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5697 return 0; 5698 5699 /* 5700 * Multi-process migrations only happen on the default hierarchy 5701 * where charge immigration is not used. Perform charge 5702 * immigration if @tset contains a leader and whine if there are 5703 * multiple. 5704 */ 5705 p = NULL; 5706 cgroup_taskset_for_each_leader(leader, css, tset) { 5707 WARN_ON_ONCE(p); 5708 p = leader; 5709 memcg = mem_cgroup_from_css(css); 5710 } 5711 if (!p) 5712 return 0; 5713 5714 /* 5715 * We are now commited to this value whatever it is. Changes in this 5716 * tunable will only affect upcoming migrations, not the current one. 5717 * So we need to save it, and keep it going. 5718 */ 5719 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5720 if (!move_flags) 5721 return 0; 5722 5723 from = mem_cgroup_from_task(p); 5724 5725 VM_BUG_ON(from == memcg); 5726 5727 mm = get_task_mm(p); 5728 if (!mm) 5729 return 0; 5730 /* We move charges only when we move a owner of the mm */ 5731 if (mm->owner == p) { 5732 VM_BUG_ON(mc.from); 5733 VM_BUG_ON(mc.to); 5734 VM_BUG_ON(mc.precharge); 5735 VM_BUG_ON(mc.moved_charge); 5736 VM_BUG_ON(mc.moved_swap); 5737 5738 spin_lock(&mc.lock); 5739 mc.mm = mm; 5740 mc.from = from; 5741 mc.to = memcg; 5742 mc.flags = move_flags; 5743 spin_unlock(&mc.lock); 5744 /* We set mc.moving_task later */ 5745 5746 ret = mem_cgroup_precharge_mc(mm); 5747 if (ret) 5748 mem_cgroup_clear_mc(); 5749 } else { 5750 mmput(mm); 5751 } 5752 return ret; 5753 } 5754 5755 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5756 { 5757 if (mc.to) 5758 mem_cgroup_clear_mc(); 5759 } 5760 5761 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5762 unsigned long addr, unsigned long end, 5763 struct mm_walk *walk) 5764 { 5765 int ret = 0; 5766 struct vm_area_struct *vma = walk->vma; 5767 pte_t *pte; 5768 spinlock_t *ptl; 5769 enum mc_target_type target_type; 5770 union mc_target target; 5771 struct page *page; 5772 5773 ptl = pmd_trans_huge_lock(pmd, vma); 5774 if (ptl) { 5775 if (mc.precharge < HPAGE_PMD_NR) { 5776 spin_unlock(ptl); 5777 return 0; 5778 } 5779 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5780 if (target_type == MC_TARGET_PAGE) { 5781 page = target.page; 5782 if (!isolate_lru_page(page)) { 5783 if (!mem_cgroup_move_account(page, true, 5784 mc.from, mc.to)) { 5785 mc.precharge -= HPAGE_PMD_NR; 5786 mc.moved_charge += HPAGE_PMD_NR; 5787 } 5788 putback_lru_page(page); 5789 } 5790 put_page(page); 5791 } else if (target_type == MC_TARGET_DEVICE) { 5792 page = target.page; 5793 if (!mem_cgroup_move_account(page, true, 5794 mc.from, mc.to)) { 5795 mc.precharge -= HPAGE_PMD_NR; 5796 mc.moved_charge += HPAGE_PMD_NR; 5797 } 5798 put_page(page); 5799 } 5800 spin_unlock(ptl); 5801 return 0; 5802 } 5803 5804 if (pmd_trans_unstable(pmd)) 5805 return 0; 5806 retry: 5807 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5808 for (; addr != end; addr += PAGE_SIZE) { 5809 pte_t ptent = *(pte++); 5810 bool device = false; 5811 swp_entry_t ent; 5812 5813 if (!mc.precharge) 5814 break; 5815 5816 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5817 case MC_TARGET_DEVICE: 5818 device = true; 5819 fallthrough; 5820 case MC_TARGET_PAGE: 5821 page = target.page; 5822 /* 5823 * We can have a part of the split pmd here. Moving it 5824 * can be done but it would be too convoluted so simply 5825 * ignore such a partial THP and keep it in original 5826 * memcg. There should be somebody mapping the head. 5827 */ 5828 if (PageTransCompound(page)) 5829 goto put; 5830 if (!device && isolate_lru_page(page)) 5831 goto put; 5832 if (!mem_cgroup_move_account(page, false, 5833 mc.from, mc.to)) { 5834 mc.precharge--; 5835 /* we uncharge from mc.from later. */ 5836 mc.moved_charge++; 5837 } 5838 if (!device) 5839 putback_lru_page(page); 5840 put: /* get_mctgt_type() gets the page */ 5841 put_page(page); 5842 break; 5843 case MC_TARGET_SWAP: 5844 ent = target.ent; 5845 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5846 mc.precharge--; 5847 /* we fixup refcnts and charges later. */ 5848 mc.moved_swap++; 5849 } 5850 break; 5851 default: 5852 break; 5853 } 5854 } 5855 pte_unmap_unlock(pte - 1, ptl); 5856 cond_resched(); 5857 5858 if (addr != end) { 5859 /* 5860 * We have consumed all precharges we got in can_attach(). 5861 * We try charge one by one, but don't do any additional 5862 * charges to mc.to if we have failed in charge once in attach() 5863 * phase. 5864 */ 5865 ret = mem_cgroup_do_precharge(1); 5866 if (!ret) 5867 goto retry; 5868 } 5869 5870 return ret; 5871 } 5872 5873 static const struct mm_walk_ops charge_walk_ops = { 5874 .pmd_entry = mem_cgroup_move_charge_pte_range, 5875 }; 5876 5877 static void mem_cgroup_move_charge(void) 5878 { 5879 lru_add_drain_all(); 5880 /* 5881 * Signal lock_page_memcg() to take the memcg's move_lock 5882 * while we're moving its pages to another memcg. Then wait 5883 * for already started RCU-only updates to finish. 5884 */ 5885 atomic_inc(&mc.from->moving_account); 5886 synchronize_rcu(); 5887 retry: 5888 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5889 /* 5890 * Someone who are holding the mmap_sem might be waiting in 5891 * waitq. So we cancel all extra charges, wake up all waiters, 5892 * and retry. Because we cancel precharges, we might not be able 5893 * to move enough charges, but moving charge is a best-effort 5894 * feature anyway, so it wouldn't be a big problem. 5895 */ 5896 __mem_cgroup_clear_mc(); 5897 cond_resched(); 5898 goto retry; 5899 } 5900 /* 5901 * When we have consumed all precharges and failed in doing 5902 * additional charge, the page walk just aborts. 5903 */ 5904 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 5905 NULL); 5906 5907 up_read(&mc.mm->mmap_sem); 5908 atomic_dec(&mc.from->moving_account); 5909 } 5910 5911 static void mem_cgroup_move_task(void) 5912 { 5913 if (mc.to) { 5914 mem_cgroup_move_charge(); 5915 mem_cgroup_clear_mc(); 5916 } 5917 } 5918 #else /* !CONFIG_MMU */ 5919 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5920 { 5921 return 0; 5922 } 5923 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5924 { 5925 } 5926 static void mem_cgroup_move_task(void) 5927 { 5928 } 5929 #endif 5930 5931 /* 5932 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5933 * to verify whether we're attached to the default hierarchy on each mount 5934 * attempt. 5935 */ 5936 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5937 { 5938 /* 5939 * use_hierarchy is forced on the default hierarchy. cgroup core 5940 * guarantees that @root doesn't have any children, so turning it 5941 * on for the root memcg is enough. 5942 */ 5943 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5944 root_mem_cgroup->use_hierarchy = true; 5945 else 5946 root_mem_cgroup->use_hierarchy = false; 5947 } 5948 5949 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 5950 { 5951 if (value == PAGE_COUNTER_MAX) 5952 seq_puts(m, "max\n"); 5953 else 5954 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 5955 5956 return 0; 5957 } 5958 5959 static u64 memory_current_read(struct cgroup_subsys_state *css, 5960 struct cftype *cft) 5961 { 5962 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5963 5964 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5965 } 5966 5967 static int memory_min_show(struct seq_file *m, void *v) 5968 { 5969 return seq_puts_memcg_tunable(m, 5970 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 5971 } 5972 5973 static ssize_t memory_min_write(struct kernfs_open_file *of, 5974 char *buf, size_t nbytes, loff_t off) 5975 { 5976 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5977 unsigned long min; 5978 int err; 5979 5980 buf = strstrip(buf); 5981 err = page_counter_memparse(buf, "max", &min); 5982 if (err) 5983 return err; 5984 5985 page_counter_set_min(&memcg->memory, min); 5986 5987 return nbytes; 5988 } 5989 5990 static int memory_low_show(struct seq_file *m, void *v) 5991 { 5992 return seq_puts_memcg_tunable(m, 5993 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 5994 } 5995 5996 static ssize_t memory_low_write(struct kernfs_open_file *of, 5997 char *buf, size_t nbytes, loff_t off) 5998 { 5999 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6000 unsigned long low; 6001 int err; 6002 6003 buf = strstrip(buf); 6004 err = page_counter_memparse(buf, "max", &low); 6005 if (err) 6006 return err; 6007 6008 page_counter_set_low(&memcg->memory, low); 6009 6010 return nbytes; 6011 } 6012 6013 static int memory_high_show(struct seq_file *m, void *v) 6014 { 6015 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); 6016 } 6017 6018 static ssize_t memory_high_write(struct kernfs_open_file *of, 6019 char *buf, size_t nbytes, loff_t off) 6020 { 6021 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6022 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 6023 bool drained = false; 6024 unsigned long high; 6025 int err; 6026 6027 buf = strstrip(buf); 6028 err = page_counter_memparse(buf, "max", &high); 6029 if (err) 6030 return err; 6031 6032 WRITE_ONCE(memcg->high, high); 6033 6034 for (;;) { 6035 unsigned long nr_pages = page_counter_read(&memcg->memory); 6036 unsigned long reclaimed; 6037 6038 if (nr_pages <= high) 6039 break; 6040 6041 if (signal_pending(current)) 6042 break; 6043 6044 if (!drained) { 6045 drain_all_stock(memcg); 6046 drained = true; 6047 continue; 6048 } 6049 6050 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6051 GFP_KERNEL, true); 6052 6053 if (!reclaimed && !nr_retries--) 6054 break; 6055 } 6056 6057 return nbytes; 6058 } 6059 6060 static int memory_max_show(struct seq_file *m, void *v) 6061 { 6062 return seq_puts_memcg_tunable(m, 6063 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6064 } 6065 6066 static ssize_t memory_max_write(struct kernfs_open_file *of, 6067 char *buf, size_t nbytes, loff_t off) 6068 { 6069 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6070 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 6071 bool drained = false; 6072 unsigned long max; 6073 int err; 6074 6075 buf = strstrip(buf); 6076 err = page_counter_memparse(buf, "max", &max); 6077 if (err) 6078 return err; 6079 6080 xchg(&memcg->memory.max, max); 6081 6082 for (;;) { 6083 unsigned long nr_pages = page_counter_read(&memcg->memory); 6084 6085 if (nr_pages <= max) 6086 break; 6087 6088 if (signal_pending(current)) 6089 break; 6090 6091 if (!drained) { 6092 drain_all_stock(memcg); 6093 drained = true; 6094 continue; 6095 } 6096 6097 if (nr_reclaims) { 6098 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6099 GFP_KERNEL, true)) 6100 nr_reclaims--; 6101 continue; 6102 } 6103 6104 memcg_memory_event(memcg, MEMCG_OOM); 6105 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6106 break; 6107 } 6108 6109 memcg_wb_domain_size_changed(memcg); 6110 return nbytes; 6111 } 6112 6113 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6114 { 6115 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6116 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6117 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6118 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6119 seq_printf(m, "oom_kill %lu\n", 6120 atomic_long_read(&events[MEMCG_OOM_KILL])); 6121 } 6122 6123 static int memory_events_show(struct seq_file *m, void *v) 6124 { 6125 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6126 6127 __memory_events_show(m, memcg->memory_events); 6128 return 0; 6129 } 6130 6131 static int memory_events_local_show(struct seq_file *m, void *v) 6132 { 6133 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6134 6135 __memory_events_show(m, memcg->memory_events_local); 6136 return 0; 6137 } 6138 6139 static int memory_stat_show(struct seq_file *m, void *v) 6140 { 6141 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6142 char *buf; 6143 6144 buf = memory_stat_format(memcg); 6145 if (!buf) 6146 return -ENOMEM; 6147 seq_puts(m, buf); 6148 kfree(buf); 6149 return 0; 6150 } 6151 6152 static int memory_oom_group_show(struct seq_file *m, void *v) 6153 { 6154 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6155 6156 seq_printf(m, "%d\n", memcg->oom_group); 6157 6158 return 0; 6159 } 6160 6161 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6162 char *buf, size_t nbytes, loff_t off) 6163 { 6164 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6165 int ret, oom_group; 6166 6167 buf = strstrip(buf); 6168 if (!buf) 6169 return -EINVAL; 6170 6171 ret = kstrtoint(buf, 0, &oom_group); 6172 if (ret) 6173 return ret; 6174 6175 if (oom_group != 0 && oom_group != 1) 6176 return -EINVAL; 6177 6178 memcg->oom_group = oom_group; 6179 6180 return nbytes; 6181 } 6182 6183 static struct cftype memory_files[] = { 6184 { 6185 .name = "current", 6186 .flags = CFTYPE_NOT_ON_ROOT, 6187 .read_u64 = memory_current_read, 6188 }, 6189 { 6190 .name = "min", 6191 .flags = CFTYPE_NOT_ON_ROOT, 6192 .seq_show = memory_min_show, 6193 .write = memory_min_write, 6194 }, 6195 { 6196 .name = "low", 6197 .flags = CFTYPE_NOT_ON_ROOT, 6198 .seq_show = memory_low_show, 6199 .write = memory_low_write, 6200 }, 6201 { 6202 .name = "high", 6203 .flags = CFTYPE_NOT_ON_ROOT, 6204 .seq_show = memory_high_show, 6205 .write = memory_high_write, 6206 }, 6207 { 6208 .name = "max", 6209 .flags = CFTYPE_NOT_ON_ROOT, 6210 .seq_show = memory_max_show, 6211 .write = memory_max_write, 6212 }, 6213 { 6214 .name = "events", 6215 .flags = CFTYPE_NOT_ON_ROOT, 6216 .file_offset = offsetof(struct mem_cgroup, events_file), 6217 .seq_show = memory_events_show, 6218 }, 6219 { 6220 .name = "events.local", 6221 .flags = CFTYPE_NOT_ON_ROOT, 6222 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6223 .seq_show = memory_events_local_show, 6224 }, 6225 { 6226 .name = "stat", 6227 .flags = CFTYPE_NOT_ON_ROOT, 6228 .seq_show = memory_stat_show, 6229 }, 6230 { 6231 .name = "oom.group", 6232 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6233 .seq_show = memory_oom_group_show, 6234 .write = memory_oom_group_write, 6235 }, 6236 { } /* terminate */ 6237 }; 6238 6239 struct cgroup_subsys memory_cgrp_subsys = { 6240 .css_alloc = mem_cgroup_css_alloc, 6241 .css_online = mem_cgroup_css_online, 6242 .css_offline = mem_cgroup_css_offline, 6243 .css_released = mem_cgroup_css_released, 6244 .css_free = mem_cgroup_css_free, 6245 .css_reset = mem_cgroup_css_reset, 6246 .can_attach = mem_cgroup_can_attach, 6247 .cancel_attach = mem_cgroup_cancel_attach, 6248 .post_attach = mem_cgroup_move_task, 6249 .bind = mem_cgroup_bind, 6250 .dfl_cftypes = memory_files, 6251 .legacy_cftypes = mem_cgroup_legacy_files, 6252 .early_init = 0, 6253 }; 6254 6255 /* 6256 * This function calculates an individual cgroup's effective 6257 * protection which is derived from its own memory.min/low, its 6258 * parent's and siblings' settings, as well as the actual memory 6259 * distribution in the tree. 6260 * 6261 * The following rules apply to the effective protection values: 6262 * 6263 * 1. At the first level of reclaim, effective protection is equal to 6264 * the declared protection in memory.min and memory.low. 6265 * 6266 * 2. To enable safe delegation of the protection configuration, at 6267 * subsequent levels the effective protection is capped to the 6268 * parent's effective protection. 6269 * 6270 * 3. To make complex and dynamic subtrees easier to configure, the 6271 * user is allowed to overcommit the declared protection at a given 6272 * level. If that is the case, the parent's effective protection is 6273 * distributed to the children in proportion to how much protection 6274 * they have declared and how much of it they are utilizing. 6275 * 6276 * This makes distribution proportional, but also work-conserving: 6277 * if one cgroup claims much more protection than it uses memory, 6278 * the unused remainder is available to its siblings. 6279 * 6280 * 4. Conversely, when the declared protection is undercommitted at a 6281 * given level, the distribution of the larger parental protection 6282 * budget is NOT proportional. A cgroup's protection from a sibling 6283 * is capped to its own memory.min/low setting. 6284 * 6285 * 5. However, to allow protecting recursive subtrees from each other 6286 * without having to declare each individual cgroup's fixed share 6287 * of the ancestor's claim to protection, any unutilized - 6288 * "floating" - protection from up the tree is distributed in 6289 * proportion to each cgroup's *usage*. This makes the protection 6290 * neutral wrt sibling cgroups and lets them compete freely over 6291 * the shared parental protection budget, but it protects the 6292 * subtree as a whole from neighboring subtrees. 6293 * 6294 * Note that 4. and 5. are not in conflict: 4. is about protecting 6295 * against immediate siblings whereas 5. is about protecting against 6296 * neighboring subtrees. 6297 */ 6298 static unsigned long effective_protection(unsigned long usage, 6299 unsigned long parent_usage, 6300 unsigned long setting, 6301 unsigned long parent_effective, 6302 unsigned long siblings_protected) 6303 { 6304 unsigned long protected; 6305 unsigned long ep; 6306 6307 protected = min(usage, setting); 6308 /* 6309 * If all cgroups at this level combined claim and use more 6310 * protection then what the parent affords them, distribute 6311 * shares in proportion to utilization. 6312 * 6313 * We are using actual utilization rather than the statically 6314 * claimed protection in order to be work-conserving: claimed 6315 * but unused protection is available to siblings that would 6316 * otherwise get a smaller chunk than what they claimed. 6317 */ 6318 if (siblings_protected > parent_effective) 6319 return protected * parent_effective / siblings_protected; 6320 6321 /* 6322 * Ok, utilized protection of all children is within what the 6323 * parent affords them, so we know whatever this child claims 6324 * and utilizes is effectively protected. 6325 * 6326 * If there is unprotected usage beyond this value, reclaim 6327 * will apply pressure in proportion to that amount. 6328 * 6329 * If there is unutilized protection, the cgroup will be fully 6330 * shielded from reclaim, but we do return a smaller value for 6331 * protection than what the group could enjoy in theory. This 6332 * is okay. With the overcommit distribution above, effective 6333 * protection is always dependent on how memory is actually 6334 * consumed among the siblings anyway. 6335 */ 6336 ep = protected; 6337 6338 /* 6339 * If the children aren't claiming (all of) the protection 6340 * afforded to them by the parent, distribute the remainder in 6341 * proportion to the (unprotected) memory of each cgroup. That 6342 * way, cgroups that aren't explicitly prioritized wrt each 6343 * other compete freely over the allowance, but they are 6344 * collectively protected from neighboring trees. 6345 * 6346 * We're using unprotected memory for the weight so that if 6347 * some cgroups DO claim explicit protection, we don't protect 6348 * the same bytes twice. 6349 */ 6350 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6351 return ep; 6352 6353 if (parent_effective > siblings_protected && usage > protected) { 6354 unsigned long unclaimed; 6355 6356 unclaimed = parent_effective - siblings_protected; 6357 unclaimed *= usage - protected; 6358 unclaimed /= parent_usage - siblings_protected; 6359 6360 ep += unclaimed; 6361 } 6362 6363 return ep; 6364 } 6365 6366 /** 6367 * mem_cgroup_protected - check if memory consumption is in the normal range 6368 * @root: the top ancestor of the sub-tree being checked 6369 * @memcg: the memory cgroup to check 6370 * 6371 * WARNING: This function is not stateless! It can only be used as part 6372 * of a top-down tree iteration, not for isolated queries. 6373 * 6374 * Returns one of the following: 6375 * MEMCG_PROT_NONE: cgroup memory is not protected 6376 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 6377 * an unprotected supply of reclaimable memory from other cgroups. 6378 * MEMCG_PROT_MIN: cgroup memory is protected 6379 */ 6380 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 6381 struct mem_cgroup *memcg) 6382 { 6383 unsigned long usage, parent_usage; 6384 struct mem_cgroup *parent; 6385 6386 if (mem_cgroup_disabled()) 6387 return MEMCG_PROT_NONE; 6388 6389 if (!root) 6390 root = root_mem_cgroup; 6391 if (memcg == root) 6392 return MEMCG_PROT_NONE; 6393 6394 usage = page_counter_read(&memcg->memory); 6395 if (!usage) 6396 return MEMCG_PROT_NONE; 6397 6398 parent = parent_mem_cgroup(memcg); 6399 /* No parent means a non-hierarchical mode on v1 memcg */ 6400 if (!parent) 6401 return MEMCG_PROT_NONE; 6402 6403 if (parent == root) { 6404 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6405 memcg->memory.elow = memcg->memory.low; 6406 goto out; 6407 } 6408 6409 parent_usage = page_counter_read(&parent->memory); 6410 6411 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6412 READ_ONCE(memcg->memory.min), 6413 READ_ONCE(parent->memory.emin), 6414 atomic_long_read(&parent->memory.children_min_usage))); 6415 6416 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6417 memcg->memory.low, READ_ONCE(parent->memory.elow), 6418 atomic_long_read(&parent->memory.children_low_usage))); 6419 6420 out: 6421 if (usage <= memcg->memory.emin) 6422 return MEMCG_PROT_MIN; 6423 else if (usage <= memcg->memory.elow) 6424 return MEMCG_PROT_LOW; 6425 else 6426 return MEMCG_PROT_NONE; 6427 } 6428 6429 /** 6430 * mem_cgroup_try_charge - try charging a page 6431 * @page: page to charge 6432 * @mm: mm context of the victim 6433 * @gfp_mask: reclaim mode 6434 * @memcgp: charged memcg return 6435 * @compound: charge the page as compound or small page 6436 * 6437 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6438 * pages according to @gfp_mask if necessary. 6439 * 6440 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 6441 * Otherwise, an error code is returned. 6442 * 6443 * After page->mapping has been set up, the caller must finalize the 6444 * charge with mem_cgroup_commit_charge(). Or abort the transaction 6445 * with mem_cgroup_cancel_charge() in case page instantiation fails. 6446 */ 6447 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 6448 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6449 bool compound) 6450 { 6451 struct mem_cgroup *memcg = NULL; 6452 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6453 int ret = 0; 6454 6455 if (mem_cgroup_disabled()) 6456 goto out; 6457 6458 if (PageSwapCache(page)) { 6459 /* 6460 * Every swap fault against a single page tries to charge the 6461 * page, bail as early as possible. shmem_unuse() encounters 6462 * already charged pages, too. The USED bit is protected by 6463 * the page lock, which serializes swap cache removal, which 6464 * in turn serializes uncharging. 6465 */ 6466 VM_BUG_ON_PAGE(!PageLocked(page), page); 6467 if (compound_head(page)->mem_cgroup) 6468 goto out; 6469 6470 if (do_swap_account) { 6471 swp_entry_t ent = { .val = page_private(page), }; 6472 unsigned short id = lookup_swap_cgroup_id(ent); 6473 6474 rcu_read_lock(); 6475 memcg = mem_cgroup_from_id(id); 6476 if (memcg && !css_tryget_online(&memcg->css)) 6477 memcg = NULL; 6478 rcu_read_unlock(); 6479 } 6480 } 6481 6482 if (!memcg) 6483 memcg = get_mem_cgroup_from_mm(mm); 6484 6485 ret = try_charge(memcg, gfp_mask, nr_pages); 6486 6487 css_put(&memcg->css); 6488 out: 6489 *memcgp = memcg; 6490 return ret; 6491 } 6492 6493 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 6494 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6495 bool compound) 6496 { 6497 struct mem_cgroup *memcg; 6498 int ret; 6499 6500 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 6501 memcg = *memcgp; 6502 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 6503 return ret; 6504 } 6505 6506 /** 6507 * mem_cgroup_commit_charge - commit a page charge 6508 * @page: page to charge 6509 * @memcg: memcg to charge the page to 6510 * @lrucare: page might be on LRU already 6511 * @compound: charge the page as compound or small page 6512 * 6513 * Finalize a charge transaction started by mem_cgroup_try_charge(), 6514 * after page->mapping has been set up. This must happen atomically 6515 * as part of the page instantiation, i.e. under the page table lock 6516 * for anonymous pages, under the page lock for page and swap cache. 6517 * 6518 * In addition, the page must not be on the LRU during the commit, to 6519 * prevent racing with task migration. If it might be, use @lrucare. 6520 * 6521 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 6522 */ 6523 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 6524 bool lrucare, bool compound) 6525 { 6526 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6527 6528 VM_BUG_ON_PAGE(!page->mapping, page); 6529 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 6530 6531 if (mem_cgroup_disabled()) 6532 return; 6533 /* 6534 * Swap faults will attempt to charge the same page multiple 6535 * times. But reuse_swap_page() might have removed the page 6536 * from swapcache already, so we can't check PageSwapCache(). 6537 */ 6538 if (!memcg) 6539 return; 6540 6541 commit_charge(page, memcg, lrucare); 6542 6543 local_irq_disable(); 6544 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 6545 memcg_check_events(memcg, page); 6546 local_irq_enable(); 6547 6548 if (do_memsw_account() && PageSwapCache(page)) { 6549 swp_entry_t entry = { .val = page_private(page) }; 6550 /* 6551 * The swap entry might not get freed for a long time, 6552 * let's not wait for it. The page already received a 6553 * memory+swap charge, drop the swap entry duplicate. 6554 */ 6555 mem_cgroup_uncharge_swap(entry, nr_pages); 6556 } 6557 } 6558 6559 /** 6560 * mem_cgroup_cancel_charge - cancel a page charge 6561 * @page: page to charge 6562 * @memcg: memcg to charge the page to 6563 * @compound: charge the page as compound or small page 6564 * 6565 * Cancel a charge transaction started by mem_cgroup_try_charge(). 6566 */ 6567 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 6568 bool compound) 6569 { 6570 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6571 6572 if (mem_cgroup_disabled()) 6573 return; 6574 /* 6575 * Swap faults will attempt to charge the same page multiple 6576 * times. But reuse_swap_page() might have removed the page 6577 * from swapcache already, so we can't check PageSwapCache(). 6578 */ 6579 if (!memcg) 6580 return; 6581 6582 cancel_charge(memcg, nr_pages); 6583 } 6584 6585 struct uncharge_gather { 6586 struct mem_cgroup *memcg; 6587 unsigned long pgpgout; 6588 unsigned long nr_anon; 6589 unsigned long nr_file; 6590 unsigned long nr_kmem; 6591 unsigned long nr_huge; 6592 unsigned long nr_shmem; 6593 struct page *dummy_page; 6594 }; 6595 6596 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6597 { 6598 memset(ug, 0, sizeof(*ug)); 6599 } 6600 6601 static void uncharge_batch(const struct uncharge_gather *ug) 6602 { 6603 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6604 unsigned long flags; 6605 6606 if (!mem_cgroup_is_root(ug->memcg)) { 6607 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6608 if (do_memsw_account()) 6609 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6610 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6611 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6612 memcg_oom_recover(ug->memcg); 6613 } 6614 6615 local_irq_save(flags); 6616 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6617 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6618 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6619 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6620 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6621 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages); 6622 memcg_check_events(ug->memcg, ug->dummy_page); 6623 local_irq_restore(flags); 6624 6625 if (!mem_cgroup_is_root(ug->memcg)) 6626 css_put_many(&ug->memcg->css, nr_pages); 6627 } 6628 6629 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6630 { 6631 VM_BUG_ON_PAGE(PageLRU(page), page); 6632 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6633 !PageHWPoison(page) , page); 6634 6635 if (!page->mem_cgroup) 6636 return; 6637 6638 /* 6639 * Nobody should be changing or seriously looking at 6640 * page->mem_cgroup at this point, we have fully 6641 * exclusive access to the page. 6642 */ 6643 6644 if (ug->memcg != page->mem_cgroup) { 6645 if (ug->memcg) { 6646 uncharge_batch(ug); 6647 uncharge_gather_clear(ug); 6648 } 6649 ug->memcg = page->mem_cgroup; 6650 } 6651 6652 if (!PageKmemcg(page)) { 6653 unsigned int nr_pages = 1; 6654 6655 if (PageTransHuge(page)) { 6656 nr_pages = compound_nr(page); 6657 ug->nr_huge += nr_pages; 6658 } 6659 if (PageAnon(page)) 6660 ug->nr_anon += nr_pages; 6661 else { 6662 ug->nr_file += nr_pages; 6663 if (PageSwapBacked(page)) 6664 ug->nr_shmem += nr_pages; 6665 } 6666 ug->pgpgout++; 6667 } else { 6668 ug->nr_kmem += compound_nr(page); 6669 __ClearPageKmemcg(page); 6670 } 6671 6672 ug->dummy_page = page; 6673 page->mem_cgroup = NULL; 6674 } 6675 6676 static void uncharge_list(struct list_head *page_list) 6677 { 6678 struct uncharge_gather ug; 6679 struct list_head *next; 6680 6681 uncharge_gather_clear(&ug); 6682 6683 /* 6684 * Note that the list can be a single page->lru; hence the 6685 * do-while loop instead of a simple list_for_each_entry(). 6686 */ 6687 next = page_list->next; 6688 do { 6689 struct page *page; 6690 6691 page = list_entry(next, struct page, lru); 6692 next = page->lru.next; 6693 6694 uncharge_page(page, &ug); 6695 } while (next != page_list); 6696 6697 if (ug.memcg) 6698 uncharge_batch(&ug); 6699 } 6700 6701 /** 6702 * mem_cgroup_uncharge - uncharge a page 6703 * @page: page to uncharge 6704 * 6705 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6706 * mem_cgroup_commit_charge(). 6707 */ 6708 void mem_cgroup_uncharge(struct page *page) 6709 { 6710 struct uncharge_gather ug; 6711 6712 if (mem_cgroup_disabled()) 6713 return; 6714 6715 /* Don't touch page->lru of any random page, pre-check: */ 6716 if (!page->mem_cgroup) 6717 return; 6718 6719 uncharge_gather_clear(&ug); 6720 uncharge_page(page, &ug); 6721 uncharge_batch(&ug); 6722 } 6723 6724 /** 6725 * mem_cgroup_uncharge_list - uncharge a list of page 6726 * @page_list: list of pages to uncharge 6727 * 6728 * Uncharge a list of pages previously charged with 6729 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6730 */ 6731 void mem_cgroup_uncharge_list(struct list_head *page_list) 6732 { 6733 if (mem_cgroup_disabled()) 6734 return; 6735 6736 if (!list_empty(page_list)) 6737 uncharge_list(page_list); 6738 } 6739 6740 /** 6741 * mem_cgroup_migrate - charge a page's replacement 6742 * @oldpage: currently circulating page 6743 * @newpage: replacement page 6744 * 6745 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6746 * be uncharged upon free. 6747 * 6748 * Both pages must be locked, @newpage->mapping must be set up. 6749 */ 6750 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6751 { 6752 struct mem_cgroup *memcg; 6753 unsigned int nr_pages; 6754 unsigned long flags; 6755 6756 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6757 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6758 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6759 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6760 newpage); 6761 6762 if (mem_cgroup_disabled()) 6763 return; 6764 6765 /* Page cache replacement: new page already charged? */ 6766 if (newpage->mem_cgroup) 6767 return; 6768 6769 /* Swapcache readahead pages can get replaced before being charged */ 6770 memcg = oldpage->mem_cgroup; 6771 if (!memcg) 6772 return; 6773 6774 /* Force-charge the new page. The old one will be freed soon */ 6775 nr_pages = hpage_nr_pages(newpage); 6776 6777 page_counter_charge(&memcg->memory, nr_pages); 6778 if (do_memsw_account()) 6779 page_counter_charge(&memcg->memsw, nr_pages); 6780 css_get_many(&memcg->css, nr_pages); 6781 6782 commit_charge(newpage, memcg, false); 6783 6784 local_irq_save(flags); 6785 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage), 6786 nr_pages); 6787 memcg_check_events(memcg, newpage); 6788 local_irq_restore(flags); 6789 } 6790 6791 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6792 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6793 6794 void mem_cgroup_sk_alloc(struct sock *sk) 6795 { 6796 struct mem_cgroup *memcg; 6797 6798 if (!mem_cgroup_sockets_enabled) 6799 return; 6800 6801 /* Do not associate the sock with unrelated interrupted task's memcg. */ 6802 if (in_interrupt()) 6803 return; 6804 6805 rcu_read_lock(); 6806 memcg = mem_cgroup_from_task(current); 6807 if (memcg == root_mem_cgroup) 6808 goto out; 6809 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6810 goto out; 6811 if (css_tryget(&memcg->css)) 6812 sk->sk_memcg = memcg; 6813 out: 6814 rcu_read_unlock(); 6815 } 6816 6817 void mem_cgroup_sk_free(struct sock *sk) 6818 { 6819 if (sk->sk_memcg) 6820 css_put(&sk->sk_memcg->css); 6821 } 6822 6823 /** 6824 * mem_cgroup_charge_skmem - charge socket memory 6825 * @memcg: memcg to charge 6826 * @nr_pages: number of pages to charge 6827 * 6828 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6829 * @memcg's configured limit, %false if the charge had to be forced. 6830 */ 6831 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6832 { 6833 gfp_t gfp_mask = GFP_KERNEL; 6834 6835 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6836 struct page_counter *fail; 6837 6838 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6839 memcg->tcpmem_pressure = 0; 6840 return true; 6841 } 6842 page_counter_charge(&memcg->tcpmem, nr_pages); 6843 memcg->tcpmem_pressure = 1; 6844 return false; 6845 } 6846 6847 /* Don't block in the packet receive path */ 6848 if (in_softirq()) 6849 gfp_mask = GFP_NOWAIT; 6850 6851 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6852 6853 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6854 return true; 6855 6856 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6857 return false; 6858 } 6859 6860 /** 6861 * mem_cgroup_uncharge_skmem - uncharge socket memory 6862 * @memcg: memcg to uncharge 6863 * @nr_pages: number of pages to uncharge 6864 */ 6865 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6866 { 6867 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6868 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6869 return; 6870 } 6871 6872 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6873 6874 refill_stock(memcg, nr_pages); 6875 } 6876 6877 static int __init cgroup_memory(char *s) 6878 { 6879 char *token; 6880 6881 while ((token = strsep(&s, ",")) != NULL) { 6882 if (!*token) 6883 continue; 6884 if (!strcmp(token, "nosocket")) 6885 cgroup_memory_nosocket = true; 6886 if (!strcmp(token, "nokmem")) 6887 cgroup_memory_nokmem = true; 6888 } 6889 return 0; 6890 } 6891 __setup("cgroup.memory=", cgroup_memory); 6892 6893 /* 6894 * subsys_initcall() for memory controller. 6895 * 6896 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6897 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6898 * basically everything that doesn't depend on a specific mem_cgroup structure 6899 * should be initialized from here. 6900 */ 6901 static int __init mem_cgroup_init(void) 6902 { 6903 int cpu, node; 6904 6905 #ifdef CONFIG_MEMCG_KMEM 6906 /* 6907 * Kmem cache creation is mostly done with the slab_mutex held, 6908 * so use a workqueue with limited concurrency to avoid stalling 6909 * all worker threads in case lots of cgroups are created and 6910 * destroyed simultaneously. 6911 */ 6912 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6913 BUG_ON(!memcg_kmem_cache_wq); 6914 #endif 6915 6916 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6917 memcg_hotplug_cpu_dead); 6918 6919 for_each_possible_cpu(cpu) 6920 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6921 drain_local_stock); 6922 6923 for_each_node(node) { 6924 struct mem_cgroup_tree_per_node *rtpn; 6925 6926 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6927 node_online(node) ? node : NUMA_NO_NODE); 6928 6929 rtpn->rb_root = RB_ROOT; 6930 rtpn->rb_rightmost = NULL; 6931 spin_lock_init(&rtpn->lock); 6932 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6933 } 6934 6935 return 0; 6936 } 6937 subsys_initcall(mem_cgroup_init); 6938 6939 #ifdef CONFIG_MEMCG_SWAP 6940 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6941 { 6942 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6943 /* 6944 * The root cgroup cannot be destroyed, so it's refcount must 6945 * always be >= 1. 6946 */ 6947 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6948 VM_BUG_ON(1); 6949 break; 6950 } 6951 memcg = parent_mem_cgroup(memcg); 6952 if (!memcg) 6953 memcg = root_mem_cgroup; 6954 } 6955 return memcg; 6956 } 6957 6958 /** 6959 * mem_cgroup_swapout - transfer a memsw charge to swap 6960 * @page: page whose memsw charge to transfer 6961 * @entry: swap entry to move the charge to 6962 * 6963 * Transfer the memsw charge of @page to @entry. 6964 */ 6965 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6966 { 6967 struct mem_cgroup *memcg, *swap_memcg; 6968 unsigned int nr_entries; 6969 unsigned short oldid; 6970 6971 VM_BUG_ON_PAGE(PageLRU(page), page); 6972 VM_BUG_ON_PAGE(page_count(page), page); 6973 6974 if (!do_memsw_account()) 6975 return; 6976 6977 memcg = page->mem_cgroup; 6978 6979 /* Readahead page, never charged */ 6980 if (!memcg) 6981 return; 6982 6983 /* 6984 * In case the memcg owning these pages has been offlined and doesn't 6985 * have an ID allocated to it anymore, charge the closest online 6986 * ancestor for the swap instead and transfer the memory+swap charge. 6987 */ 6988 swap_memcg = mem_cgroup_id_get_online(memcg); 6989 nr_entries = hpage_nr_pages(page); 6990 /* Get references for the tail pages, too */ 6991 if (nr_entries > 1) 6992 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6993 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6994 nr_entries); 6995 VM_BUG_ON_PAGE(oldid, page); 6996 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6997 6998 page->mem_cgroup = NULL; 6999 7000 if (!mem_cgroup_is_root(memcg)) 7001 page_counter_uncharge(&memcg->memory, nr_entries); 7002 7003 if (memcg != swap_memcg) { 7004 if (!mem_cgroup_is_root(swap_memcg)) 7005 page_counter_charge(&swap_memcg->memsw, nr_entries); 7006 page_counter_uncharge(&memcg->memsw, nr_entries); 7007 } 7008 7009 /* 7010 * Interrupts should be disabled here because the caller holds the 7011 * i_pages lock which is taken with interrupts-off. It is 7012 * important here to have the interrupts disabled because it is the 7013 * only synchronisation we have for updating the per-CPU variables. 7014 */ 7015 VM_BUG_ON(!irqs_disabled()); 7016 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 7017 -nr_entries); 7018 memcg_check_events(memcg, page); 7019 7020 if (!mem_cgroup_is_root(memcg)) 7021 css_put_many(&memcg->css, nr_entries); 7022 } 7023 7024 /** 7025 * mem_cgroup_try_charge_swap - try charging swap space for a page 7026 * @page: page being added to swap 7027 * @entry: swap entry to charge 7028 * 7029 * Try to charge @page's memcg for the swap space at @entry. 7030 * 7031 * Returns 0 on success, -ENOMEM on failure. 7032 */ 7033 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 7034 { 7035 unsigned int nr_pages = hpage_nr_pages(page); 7036 struct page_counter *counter; 7037 struct mem_cgroup *memcg; 7038 unsigned short oldid; 7039 7040 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 7041 return 0; 7042 7043 memcg = page->mem_cgroup; 7044 7045 /* Readahead page, never charged */ 7046 if (!memcg) 7047 return 0; 7048 7049 if (!entry.val) { 7050 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7051 return 0; 7052 } 7053 7054 memcg = mem_cgroup_id_get_online(memcg); 7055 7056 if (!mem_cgroup_is_root(memcg) && 7057 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7058 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7059 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7060 mem_cgroup_id_put(memcg); 7061 return -ENOMEM; 7062 } 7063 7064 /* Get references for the tail pages, too */ 7065 if (nr_pages > 1) 7066 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7067 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7068 VM_BUG_ON_PAGE(oldid, page); 7069 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7070 7071 return 0; 7072 } 7073 7074 /** 7075 * mem_cgroup_uncharge_swap - uncharge swap space 7076 * @entry: swap entry to uncharge 7077 * @nr_pages: the amount of swap space to uncharge 7078 */ 7079 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7080 { 7081 struct mem_cgroup *memcg; 7082 unsigned short id; 7083 7084 if (!do_swap_account) 7085 return; 7086 7087 id = swap_cgroup_record(entry, 0, nr_pages); 7088 rcu_read_lock(); 7089 memcg = mem_cgroup_from_id(id); 7090 if (memcg) { 7091 if (!mem_cgroup_is_root(memcg)) { 7092 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7093 page_counter_uncharge(&memcg->swap, nr_pages); 7094 else 7095 page_counter_uncharge(&memcg->memsw, nr_pages); 7096 } 7097 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7098 mem_cgroup_id_put_many(memcg, nr_pages); 7099 } 7100 rcu_read_unlock(); 7101 } 7102 7103 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7104 { 7105 long nr_swap_pages = get_nr_swap_pages(); 7106 7107 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7108 return nr_swap_pages; 7109 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7110 nr_swap_pages = min_t(long, nr_swap_pages, 7111 READ_ONCE(memcg->swap.max) - 7112 page_counter_read(&memcg->swap)); 7113 return nr_swap_pages; 7114 } 7115 7116 bool mem_cgroup_swap_full(struct page *page) 7117 { 7118 struct mem_cgroup *memcg; 7119 7120 VM_BUG_ON_PAGE(!PageLocked(page), page); 7121 7122 if (vm_swap_full()) 7123 return true; 7124 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7125 return false; 7126 7127 memcg = page->mem_cgroup; 7128 if (!memcg) 7129 return false; 7130 7131 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7132 if (page_counter_read(&memcg->swap) * 2 >= 7133 READ_ONCE(memcg->swap.max)) 7134 return true; 7135 7136 return false; 7137 } 7138 7139 /* for remember boot option*/ 7140 #ifdef CONFIG_MEMCG_SWAP_ENABLED 7141 static int really_do_swap_account __initdata = 1; 7142 #else 7143 static int really_do_swap_account __initdata; 7144 #endif 7145 7146 static int __init enable_swap_account(char *s) 7147 { 7148 if (!strcmp(s, "1")) 7149 really_do_swap_account = 1; 7150 else if (!strcmp(s, "0")) 7151 really_do_swap_account = 0; 7152 return 1; 7153 } 7154 __setup("swapaccount=", enable_swap_account); 7155 7156 static u64 swap_current_read(struct cgroup_subsys_state *css, 7157 struct cftype *cft) 7158 { 7159 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7160 7161 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7162 } 7163 7164 static int swap_max_show(struct seq_file *m, void *v) 7165 { 7166 return seq_puts_memcg_tunable(m, 7167 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7168 } 7169 7170 static ssize_t swap_max_write(struct kernfs_open_file *of, 7171 char *buf, size_t nbytes, loff_t off) 7172 { 7173 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7174 unsigned long max; 7175 int err; 7176 7177 buf = strstrip(buf); 7178 err = page_counter_memparse(buf, "max", &max); 7179 if (err) 7180 return err; 7181 7182 xchg(&memcg->swap.max, max); 7183 7184 return nbytes; 7185 } 7186 7187 static int swap_events_show(struct seq_file *m, void *v) 7188 { 7189 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7190 7191 seq_printf(m, "max %lu\n", 7192 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7193 seq_printf(m, "fail %lu\n", 7194 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7195 7196 return 0; 7197 } 7198 7199 static struct cftype swap_files[] = { 7200 { 7201 .name = "swap.current", 7202 .flags = CFTYPE_NOT_ON_ROOT, 7203 .read_u64 = swap_current_read, 7204 }, 7205 { 7206 .name = "swap.max", 7207 .flags = CFTYPE_NOT_ON_ROOT, 7208 .seq_show = swap_max_show, 7209 .write = swap_max_write, 7210 }, 7211 { 7212 .name = "swap.events", 7213 .flags = CFTYPE_NOT_ON_ROOT, 7214 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7215 .seq_show = swap_events_show, 7216 }, 7217 { } /* terminate */ 7218 }; 7219 7220 static struct cftype memsw_cgroup_files[] = { 7221 { 7222 .name = "memsw.usage_in_bytes", 7223 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7224 .read_u64 = mem_cgroup_read_u64, 7225 }, 7226 { 7227 .name = "memsw.max_usage_in_bytes", 7228 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7229 .write = mem_cgroup_reset, 7230 .read_u64 = mem_cgroup_read_u64, 7231 }, 7232 { 7233 .name = "memsw.limit_in_bytes", 7234 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7235 .write = mem_cgroup_write, 7236 .read_u64 = mem_cgroup_read_u64, 7237 }, 7238 { 7239 .name = "memsw.failcnt", 7240 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7241 .write = mem_cgroup_reset, 7242 .read_u64 = mem_cgroup_read_u64, 7243 }, 7244 { }, /* terminate */ 7245 }; 7246 7247 static int __init mem_cgroup_swap_init(void) 7248 { 7249 if (!mem_cgroup_disabled() && really_do_swap_account) { 7250 do_swap_account = 1; 7251 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 7252 swap_files)); 7253 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 7254 memsw_cgroup_files)); 7255 } 7256 return 0; 7257 } 7258 subsys_initcall(mem_cgroup_swap_init); 7259 7260 #endif /* CONFIG_MEMCG_SWAP */ 7261