xref: /openbmc/linux/mm/memcontrol.c (revision 11976fe2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include <linux/sched/isolation.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "swap.h"
72 
73 #include <linux/uaccess.h>
74 
75 #include <trace/events/vmscan.h>
76 
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79 
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81 
82 /* Active memory cgroup to use from an interrupt context */
83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
85 
86 /* Socket memory accounting disabled? */
87 static bool cgroup_memory_nosocket __ro_after_init;
88 
89 /* Kernel memory accounting disabled? */
90 static bool cgroup_memory_nokmem __ro_after_init;
91 
92 /* BPF memory accounting disabled? */
93 static bool cgroup_memory_nobpf __ro_after_init;
94 
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98 
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
103 }
104 
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107 
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112 
113 struct mem_cgroup_tree_per_node {
114 	struct rb_root rb_root;
115 	struct rb_node *rb_rightmost;
116 	spinlock_t lock;
117 };
118 
119 struct mem_cgroup_tree {
120 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122 
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124 
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 	struct list_head list;
128 	struct eventfd_ctx *eventfd;
129 };
130 
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135 	/*
136 	 * memcg which the event belongs to.
137 	 */
138 	struct mem_cgroup *memcg;
139 	/*
140 	 * eventfd to signal userspace about the event.
141 	 */
142 	struct eventfd_ctx *eventfd;
143 	/*
144 	 * Each of these stored in a list by the cgroup.
145 	 */
146 	struct list_head list;
147 	/*
148 	 * register_event() callback will be used to add new userspace
149 	 * waiter for changes related to this event.  Use eventfd_signal()
150 	 * on eventfd to send notification to userspace.
151 	 */
152 	int (*register_event)(struct mem_cgroup *memcg,
153 			      struct eventfd_ctx *eventfd, const char *args);
154 	/*
155 	 * unregister_event() callback will be called when userspace closes
156 	 * the eventfd or on cgroup removing.  This callback must be set,
157 	 * if you want provide notification functionality.
158 	 */
159 	void (*unregister_event)(struct mem_cgroup *memcg,
160 				 struct eventfd_ctx *eventfd);
161 	/*
162 	 * All fields below needed to unregister event when
163 	 * userspace closes eventfd.
164 	 */
165 	poll_table pt;
166 	wait_queue_head_t *wqh;
167 	wait_queue_entry_t wait;
168 	struct work_struct remove;
169 };
170 
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173 
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON	0x1U
179 #define MOVE_FILE	0x2U
180 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181 
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 	spinlock_t	  lock; /* for from, to */
185 	struct mm_struct  *mm;
186 	struct mem_cgroup *from;
187 	struct mem_cgroup *to;
188 	unsigned long flags;
189 	unsigned long precharge;
190 	unsigned long moved_charge;
191 	unsigned long moved_swap;
192 	struct task_struct *moving_task;	/* a task moving charges */
193 	wait_queue_head_t waitq;		/* a waitq for other context */
194 } mc = {
195 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198 
199 /*
200  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205 
206 /* for encoding cft->private value on file */
207 enum res_type {
208 	_MEM,
209 	_MEMSWAP,
210 	_KMEM,
211 	_TCP,
212 };
213 
214 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
215 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
216 #define MEMFILE_ATTR(val)	((val) & 0xffff)
217 
218 /*
219  * Iteration constructs for visiting all cgroups (under a tree).  If
220  * loops are exited prematurely (break), mem_cgroup_iter_break() must
221  * be used for reference counting.
222  */
223 #define for_each_mem_cgroup_tree(iter, root)		\
224 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
225 	     iter != NULL;				\
226 	     iter = mem_cgroup_iter(root, iter, NULL))
227 
228 #define for_each_mem_cgroup(iter)			\
229 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
230 	     iter != NULL;				\
231 	     iter = mem_cgroup_iter(NULL, iter, NULL))
232 
233 static inline bool task_is_dying(void)
234 {
235 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 		(current->flags & PF_EXITING);
237 }
238 
239 /* Some nice accessors for the vmpressure. */
240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242 	if (!memcg)
243 		memcg = root_mem_cgroup;
244 	return &memcg->vmpressure;
245 }
246 
247 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
248 {
249 	return container_of(vmpr, struct mem_cgroup, vmpressure);
250 }
251 
252 #ifdef CONFIG_MEMCG_KMEM
253 static DEFINE_SPINLOCK(objcg_lock);
254 
255 bool mem_cgroup_kmem_disabled(void)
256 {
257 	return cgroup_memory_nokmem;
258 }
259 
260 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261 				      unsigned int nr_pages);
262 
263 static void obj_cgroup_release(struct percpu_ref *ref)
264 {
265 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266 	unsigned int nr_bytes;
267 	unsigned int nr_pages;
268 	unsigned long flags;
269 
270 	/*
271 	 * At this point all allocated objects are freed, and
272 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
273 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274 	 *
275 	 * The following sequence can lead to it:
276 	 * 1) CPU0: objcg == stock->cached_objcg
277 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278 	 *          PAGE_SIZE bytes are charged
279 	 * 3) CPU1: a process from another memcg is allocating something,
280 	 *          the stock if flushed,
281 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
282 	 * 5) CPU0: we do release this object,
283 	 *          92 bytes are added to stock->nr_bytes
284 	 * 6) CPU0: stock is flushed,
285 	 *          92 bytes are added to objcg->nr_charged_bytes
286 	 *
287 	 * In the result, nr_charged_bytes == PAGE_SIZE.
288 	 * This page will be uncharged in obj_cgroup_release().
289 	 */
290 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292 	nr_pages = nr_bytes >> PAGE_SHIFT;
293 
294 	if (nr_pages)
295 		obj_cgroup_uncharge_pages(objcg, nr_pages);
296 
297 	spin_lock_irqsave(&objcg_lock, flags);
298 	list_del(&objcg->list);
299 	spin_unlock_irqrestore(&objcg_lock, flags);
300 
301 	percpu_ref_exit(ref);
302 	kfree_rcu(objcg, rcu);
303 }
304 
305 static struct obj_cgroup *obj_cgroup_alloc(void)
306 {
307 	struct obj_cgroup *objcg;
308 	int ret;
309 
310 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311 	if (!objcg)
312 		return NULL;
313 
314 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315 			      GFP_KERNEL);
316 	if (ret) {
317 		kfree(objcg);
318 		return NULL;
319 	}
320 	INIT_LIST_HEAD(&objcg->list);
321 	return objcg;
322 }
323 
324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325 				  struct mem_cgroup *parent)
326 {
327 	struct obj_cgroup *objcg, *iter;
328 
329 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330 
331 	spin_lock_irq(&objcg_lock);
332 
333 	/* 1) Ready to reparent active objcg. */
334 	list_add(&objcg->list, &memcg->objcg_list);
335 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
336 	list_for_each_entry(iter, &memcg->objcg_list, list)
337 		WRITE_ONCE(iter->memcg, parent);
338 	/* 3) Move already reparented objcgs to the parent's list */
339 	list_splice(&memcg->objcg_list, &parent->objcg_list);
340 
341 	spin_unlock_irq(&objcg_lock);
342 
343 	percpu_ref_kill(&objcg->refcnt);
344 }
345 
346 /*
347  * A lot of the calls to the cache allocation functions are expected to be
348  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
349  * conditional to this static branch, we'll have to allow modules that does
350  * kmem_cache_alloc and the such to see this symbol as well
351  */
352 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353 EXPORT_SYMBOL(memcg_kmem_online_key);
354 
355 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356 EXPORT_SYMBOL(memcg_bpf_enabled_key);
357 #endif
358 
359 /**
360  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361  * @folio: folio of interest
362  *
363  * If memcg is bound to the default hierarchy, css of the memcg associated
364  * with @folio is returned.  The returned css remains associated with @folio
365  * until it is released.
366  *
367  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368  * is returned.
369  */
370 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
371 {
372 	struct mem_cgroup *memcg = folio_memcg(folio);
373 
374 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
375 		memcg = root_mem_cgroup;
376 
377 	return &memcg->css;
378 }
379 
380 /**
381  * page_cgroup_ino - return inode number of the memcg a page is charged to
382  * @page: the page
383  *
384  * Look up the closest online ancestor of the memory cgroup @page is charged to
385  * and return its inode number or 0 if @page is not charged to any cgroup. It
386  * is safe to call this function without holding a reference to @page.
387  *
388  * Note, this function is inherently racy, because there is nothing to prevent
389  * the cgroup inode from getting torn down and potentially reallocated a moment
390  * after page_cgroup_ino() returns, so it only should be used by callers that
391  * do not care (such as procfs interfaces).
392  */
393 ino_t page_cgroup_ino(struct page *page)
394 {
395 	struct mem_cgroup *memcg;
396 	unsigned long ino = 0;
397 
398 	rcu_read_lock();
399 	/* page_folio() is racy here, but the entire function is racy anyway */
400 	memcg = folio_memcg_check(page_folio(page));
401 
402 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
403 		memcg = parent_mem_cgroup(memcg);
404 	if (memcg)
405 		ino = cgroup_ino(memcg->css.cgroup);
406 	rcu_read_unlock();
407 	return ino;
408 }
409 
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411 					 struct mem_cgroup_tree_per_node *mctz,
412 					 unsigned long new_usage_in_excess)
413 {
414 	struct rb_node **p = &mctz->rb_root.rb_node;
415 	struct rb_node *parent = NULL;
416 	struct mem_cgroup_per_node *mz_node;
417 	bool rightmost = true;
418 
419 	if (mz->on_tree)
420 		return;
421 
422 	mz->usage_in_excess = new_usage_in_excess;
423 	if (!mz->usage_in_excess)
424 		return;
425 	while (*p) {
426 		parent = *p;
427 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
428 					tree_node);
429 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
430 			p = &(*p)->rb_left;
431 			rightmost = false;
432 		} else {
433 			p = &(*p)->rb_right;
434 		}
435 	}
436 
437 	if (rightmost)
438 		mctz->rb_rightmost = &mz->tree_node;
439 
440 	rb_link_node(&mz->tree_node, parent, p);
441 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
442 	mz->on_tree = true;
443 }
444 
445 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446 					 struct mem_cgroup_tree_per_node *mctz)
447 {
448 	if (!mz->on_tree)
449 		return;
450 
451 	if (&mz->tree_node == mctz->rb_rightmost)
452 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
453 
454 	rb_erase(&mz->tree_node, &mctz->rb_root);
455 	mz->on_tree = false;
456 }
457 
458 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459 				       struct mem_cgroup_tree_per_node *mctz)
460 {
461 	unsigned long flags;
462 
463 	spin_lock_irqsave(&mctz->lock, flags);
464 	__mem_cgroup_remove_exceeded(mz, mctz);
465 	spin_unlock_irqrestore(&mctz->lock, flags);
466 }
467 
468 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469 {
470 	unsigned long nr_pages = page_counter_read(&memcg->memory);
471 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
472 	unsigned long excess = 0;
473 
474 	if (nr_pages > soft_limit)
475 		excess = nr_pages - soft_limit;
476 
477 	return excess;
478 }
479 
480 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
481 {
482 	unsigned long excess;
483 	struct mem_cgroup_per_node *mz;
484 	struct mem_cgroup_tree_per_node *mctz;
485 
486 	if (lru_gen_enabled()) {
487 		if (soft_limit_excess(memcg))
488 			lru_gen_soft_reclaim(&memcg->nodeinfo[nid]->lruvec);
489 		return;
490 	}
491 
492 	mctz = soft_limit_tree.rb_tree_per_node[nid];
493 	if (!mctz)
494 		return;
495 	/*
496 	 * Necessary to update all ancestors when hierarchy is used.
497 	 * because their event counter is not touched.
498 	 */
499 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
500 		mz = memcg->nodeinfo[nid];
501 		excess = soft_limit_excess(memcg);
502 		/*
503 		 * We have to update the tree if mz is on RB-tree or
504 		 * mem is over its softlimit.
505 		 */
506 		if (excess || mz->on_tree) {
507 			unsigned long flags;
508 
509 			spin_lock_irqsave(&mctz->lock, flags);
510 			/* if on-tree, remove it */
511 			if (mz->on_tree)
512 				__mem_cgroup_remove_exceeded(mz, mctz);
513 			/*
514 			 * Insert again. mz->usage_in_excess will be updated.
515 			 * If excess is 0, no tree ops.
516 			 */
517 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
518 			spin_unlock_irqrestore(&mctz->lock, flags);
519 		}
520 	}
521 }
522 
523 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524 {
525 	struct mem_cgroup_tree_per_node *mctz;
526 	struct mem_cgroup_per_node *mz;
527 	int nid;
528 
529 	for_each_node(nid) {
530 		mz = memcg->nodeinfo[nid];
531 		mctz = soft_limit_tree.rb_tree_per_node[nid];
532 		if (mctz)
533 			mem_cgroup_remove_exceeded(mz, mctz);
534 	}
535 }
536 
537 static struct mem_cgroup_per_node *
538 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
539 {
540 	struct mem_cgroup_per_node *mz;
541 
542 retry:
543 	mz = NULL;
544 	if (!mctz->rb_rightmost)
545 		goto done;		/* Nothing to reclaim from */
546 
547 	mz = rb_entry(mctz->rb_rightmost,
548 		      struct mem_cgroup_per_node, tree_node);
549 	/*
550 	 * Remove the node now but someone else can add it back,
551 	 * we will to add it back at the end of reclaim to its correct
552 	 * position in the tree.
553 	 */
554 	__mem_cgroup_remove_exceeded(mz, mctz);
555 	if (!soft_limit_excess(mz->memcg) ||
556 	    !css_tryget(&mz->memcg->css))
557 		goto retry;
558 done:
559 	return mz;
560 }
561 
562 static struct mem_cgroup_per_node *
563 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
564 {
565 	struct mem_cgroup_per_node *mz;
566 
567 	spin_lock_irq(&mctz->lock);
568 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
569 	spin_unlock_irq(&mctz->lock);
570 	return mz;
571 }
572 
573 /*
574  * memcg and lruvec stats flushing
575  *
576  * Many codepaths leading to stats update or read are performance sensitive and
577  * adding stats flushing in such codepaths is not desirable. So, to optimize the
578  * flushing the kernel does:
579  *
580  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581  *    rstat update tree grow unbounded.
582  *
583  * 2) Flush the stats synchronously on reader side only when there are more than
584  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586  *    only for 2 seconds due to (1).
587  */
588 static void flush_memcg_stats_dwork(struct work_struct *w);
589 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
590 static DEFINE_PER_CPU(unsigned int, stats_updates);
591 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
592 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
593 static u64 flush_next_time;
594 
595 #define FLUSH_TIME (2UL*HZ)
596 
597 /*
598  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599  * not rely on this as part of an acquired spinlock_t lock. These functions are
600  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601  * is sufficient.
602  */
603 static void memcg_stats_lock(void)
604 {
605 	preempt_disable_nested();
606 	VM_WARN_ON_IRQS_ENABLED();
607 }
608 
609 static void __memcg_stats_lock(void)
610 {
611 	preempt_disable_nested();
612 }
613 
614 static void memcg_stats_unlock(void)
615 {
616 	preempt_enable_nested();
617 }
618 
619 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
620 {
621 	unsigned int x;
622 
623 	if (!val)
624 		return;
625 
626 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
627 
628 	x = __this_cpu_add_return(stats_updates, abs(val));
629 	if (x > MEMCG_CHARGE_BATCH) {
630 		/*
631 		 * If stats_flush_threshold exceeds the threshold
632 		 * (>num_online_cpus()), cgroup stats update will be triggered
633 		 * in __mem_cgroup_flush_stats(). Increasing this var further
634 		 * is redundant and simply adds overhead in atomic update.
635 		 */
636 		if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637 			atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
638 		__this_cpu_write(stats_updates, 0);
639 	}
640 }
641 
642 static void do_flush_stats(bool atomic)
643 {
644 	/*
645 	 * We always flush the entire tree, so concurrent flushers can just
646 	 * skip. This avoids a thundering herd problem on the rstat global lock
647 	 * from memcg flushers (e.g. reclaim, refault, etc).
648 	 */
649 	if (atomic_read(&stats_flush_ongoing) ||
650 	    atomic_xchg(&stats_flush_ongoing, 1))
651 		return;
652 
653 	WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
654 
655 	if (atomic)
656 		cgroup_rstat_flush_atomic(root_mem_cgroup->css.cgroup);
657 	else
658 		cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
659 
660 	atomic_set(&stats_flush_threshold, 0);
661 	atomic_set(&stats_flush_ongoing, 0);
662 }
663 
664 static bool should_flush_stats(void)
665 {
666 	return atomic_read(&stats_flush_threshold) > num_online_cpus();
667 }
668 
669 void mem_cgroup_flush_stats(void)
670 {
671 	if (should_flush_stats())
672 		do_flush_stats(false);
673 }
674 
675 void mem_cgroup_flush_stats_atomic(void)
676 {
677 	if (should_flush_stats())
678 		do_flush_stats(true);
679 }
680 
681 void mem_cgroup_flush_stats_ratelimited(void)
682 {
683 	if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
684 		mem_cgroup_flush_stats();
685 }
686 
687 static void flush_memcg_stats_dwork(struct work_struct *w)
688 {
689 	/*
690 	 * Always flush here so that flushing in latency-sensitive paths is
691 	 * as cheap as possible.
692 	 */
693 	do_flush_stats(false);
694 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
695 }
696 
697 /* Subset of vm_event_item to report for memcg event stats */
698 static const unsigned int memcg_vm_event_stat[] = {
699 	PGPGIN,
700 	PGPGOUT,
701 	PGSCAN_KSWAPD,
702 	PGSCAN_DIRECT,
703 	PGSCAN_KHUGEPAGED,
704 	PGSTEAL_KSWAPD,
705 	PGSTEAL_DIRECT,
706 	PGSTEAL_KHUGEPAGED,
707 	PGFAULT,
708 	PGMAJFAULT,
709 	PGREFILL,
710 	PGACTIVATE,
711 	PGDEACTIVATE,
712 	PGLAZYFREE,
713 	PGLAZYFREED,
714 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
715 	ZSWPIN,
716 	ZSWPOUT,
717 #endif
718 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
719 	THP_FAULT_ALLOC,
720 	THP_COLLAPSE_ALLOC,
721 #endif
722 };
723 
724 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
725 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
726 
727 static void init_memcg_events(void)
728 {
729 	int i;
730 
731 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
732 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
733 }
734 
735 static inline int memcg_events_index(enum vm_event_item idx)
736 {
737 	return mem_cgroup_events_index[idx] - 1;
738 }
739 
740 struct memcg_vmstats_percpu {
741 	/* Local (CPU and cgroup) page state & events */
742 	long			state[MEMCG_NR_STAT];
743 	unsigned long		events[NR_MEMCG_EVENTS];
744 
745 	/* Delta calculation for lockless upward propagation */
746 	long			state_prev[MEMCG_NR_STAT];
747 	unsigned long		events_prev[NR_MEMCG_EVENTS];
748 
749 	/* Cgroup1: threshold notifications & softlimit tree updates */
750 	unsigned long		nr_page_events;
751 	unsigned long		targets[MEM_CGROUP_NTARGETS];
752 };
753 
754 struct memcg_vmstats {
755 	/* Aggregated (CPU and subtree) page state & events */
756 	long			state[MEMCG_NR_STAT];
757 	unsigned long		events[NR_MEMCG_EVENTS];
758 
759 	/* Pending child counts during tree propagation */
760 	long			state_pending[MEMCG_NR_STAT];
761 	unsigned long		events_pending[NR_MEMCG_EVENTS];
762 };
763 
764 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
765 {
766 	long x = READ_ONCE(memcg->vmstats->state[idx]);
767 #ifdef CONFIG_SMP
768 	if (x < 0)
769 		x = 0;
770 #endif
771 	return x;
772 }
773 
774 /**
775  * __mod_memcg_state - update cgroup memory statistics
776  * @memcg: the memory cgroup
777  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
778  * @val: delta to add to the counter, can be negative
779  */
780 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
781 {
782 	if (mem_cgroup_disabled())
783 		return;
784 
785 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
786 	memcg_rstat_updated(memcg, val);
787 }
788 
789 /* idx can be of type enum memcg_stat_item or node_stat_item. */
790 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
791 {
792 	long x = 0;
793 	int cpu;
794 
795 	for_each_possible_cpu(cpu)
796 		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
797 #ifdef CONFIG_SMP
798 	if (x < 0)
799 		x = 0;
800 #endif
801 	return x;
802 }
803 
804 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
805 			      int val)
806 {
807 	struct mem_cgroup_per_node *pn;
808 	struct mem_cgroup *memcg;
809 
810 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
811 	memcg = pn->memcg;
812 
813 	/*
814 	 * The caller from rmap relay on disabled preemption becase they never
815 	 * update their counter from in-interrupt context. For these two
816 	 * counters we check that the update is never performed from an
817 	 * interrupt context while other caller need to have disabled interrupt.
818 	 */
819 	__memcg_stats_lock();
820 	if (IS_ENABLED(CONFIG_DEBUG_VM)) {
821 		switch (idx) {
822 		case NR_ANON_MAPPED:
823 		case NR_FILE_MAPPED:
824 		case NR_ANON_THPS:
825 		case NR_SHMEM_PMDMAPPED:
826 		case NR_FILE_PMDMAPPED:
827 			WARN_ON_ONCE(!in_task());
828 			break;
829 		default:
830 			VM_WARN_ON_IRQS_ENABLED();
831 		}
832 	}
833 
834 	/* Update memcg */
835 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
836 
837 	/* Update lruvec */
838 	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
839 
840 	memcg_rstat_updated(memcg, val);
841 	memcg_stats_unlock();
842 }
843 
844 /**
845  * __mod_lruvec_state - update lruvec memory statistics
846  * @lruvec: the lruvec
847  * @idx: the stat item
848  * @val: delta to add to the counter, can be negative
849  *
850  * The lruvec is the intersection of the NUMA node and a cgroup. This
851  * function updates the all three counters that are affected by a
852  * change of state at this level: per-node, per-cgroup, per-lruvec.
853  */
854 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
855 			int val)
856 {
857 	/* Update node */
858 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
859 
860 	/* Update memcg and lruvec */
861 	if (!mem_cgroup_disabled())
862 		__mod_memcg_lruvec_state(lruvec, idx, val);
863 }
864 
865 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
866 			     int val)
867 {
868 	struct page *head = compound_head(page); /* rmap on tail pages */
869 	struct mem_cgroup *memcg;
870 	pg_data_t *pgdat = page_pgdat(page);
871 	struct lruvec *lruvec;
872 
873 	rcu_read_lock();
874 	memcg = page_memcg(head);
875 	/* Untracked pages have no memcg, no lruvec. Update only the node */
876 	if (!memcg) {
877 		rcu_read_unlock();
878 		__mod_node_page_state(pgdat, idx, val);
879 		return;
880 	}
881 
882 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
883 	__mod_lruvec_state(lruvec, idx, val);
884 	rcu_read_unlock();
885 }
886 EXPORT_SYMBOL(__mod_lruvec_page_state);
887 
888 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
889 {
890 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
891 	struct mem_cgroup *memcg;
892 	struct lruvec *lruvec;
893 
894 	rcu_read_lock();
895 	memcg = mem_cgroup_from_slab_obj(p);
896 
897 	/*
898 	 * Untracked pages have no memcg, no lruvec. Update only the
899 	 * node. If we reparent the slab objects to the root memcg,
900 	 * when we free the slab object, we need to update the per-memcg
901 	 * vmstats to keep it correct for the root memcg.
902 	 */
903 	if (!memcg) {
904 		__mod_node_page_state(pgdat, idx, val);
905 	} else {
906 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
907 		__mod_lruvec_state(lruvec, idx, val);
908 	}
909 	rcu_read_unlock();
910 }
911 
912 /**
913  * __count_memcg_events - account VM events in a cgroup
914  * @memcg: the memory cgroup
915  * @idx: the event item
916  * @count: the number of events that occurred
917  */
918 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
919 			  unsigned long count)
920 {
921 	int index = memcg_events_index(idx);
922 
923 	if (mem_cgroup_disabled() || index < 0)
924 		return;
925 
926 	memcg_stats_lock();
927 	__this_cpu_add(memcg->vmstats_percpu->events[index], count);
928 	memcg_rstat_updated(memcg, count);
929 	memcg_stats_unlock();
930 }
931 
932 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
933 {
934 	int index = memcg_events_index(event);
935 
936 	if (index < 0)
937 		return 0;
938 	return READ_ONCE(memcg->vmstats->events[index]);
939 }
940 
941 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
942 {
943 	long x = 0;
944 	int cpu;
945 	int index = memcg_events_index(event);
946 
947 	if (index < 0)
948 		return 0;
949 
950 	for_each_possible_cpu(cpu)
951 		x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
952 	return x;
953 }
954 
955 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
956 					 int nr_pages)
957 {
958 	/* pagein of a big page is an event. So, ignore page size */
959 	if (nr_pages > 0)
960 		__count_memcg_events(memcg, PGPGIN, 1);
961 	else {
962 		__count_memcg_events(memcg, PGPGOUT, 1);
963 		nr_pages = -nr_pages; /* for event */
964 	}
965 
966 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
967 }
968 
969 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
970 				       enum mem_cgroup_events_target target)
971 {
972 	unsigned long val, next;
973 
974 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
975 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
976 	/* from time_after() in jiffies.h */
977 	if ((long)(next - val) < 0) {
978 		switch (target) {
979 		case MEM_CGROUP_TARGET_THRESH:
980 			next = val + THRESHOLDS_EVENTS_TARGET;
981 			break;
982 		case MEM_CGROUP_TARGET_SOFTLIMIT:
983 			next = val + SOFTLIMIT_EVENTS_TARGET;
984 			break;
985 		default:
986 			break;
987 		}
988 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
989 		return true;
990 	}
991 	return false;
992 }
993 
994 /*
995  * Check events in order.
996  *
997  */
998 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
999 {
1000 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
1001 		return;
1002 
1003 	/* threshold event is triggered in finer grain than soft limit */
1004 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1005 						MEM_CGROUP_TARGET_THRESH))) {
1006 		bool do_softlimit;
1007 
1008 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1009 						MEM_CGROUP_TARGET_SOFTLIMIT);
1010 		mem_cgroup_threshold(memcg);
1011 		if (unlikely(do_softlimit))
1012 			mem_cgroup_update_tree(memcg, nid);
1013 	}
1014 }
1015 
1016 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1017 {
1018 	/*
1019 	 * mm_update_next_owner() may clear mm->owner to NULL
1020 	 * if it races with swapoff, page migration, etc.
1021 	 * So this can be called with p == NULL.
1022 	 */
1023 	if (unlikely(!p))
1024 		return NULL;
1025 
1026 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1027 }
1028 EXPORT_SYMBOL(mem_cgroup_from_task);
1029 
1030 static __always_inline struct mem_cgroup *active_memcg(void)
1031 {
1032 	if (!in_task())
1033 		return this_cpu_read(int_active_memcg);
1034 	else
1035 		return current->active_memcg;
1036 }
1037 
1038 /**
1039  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1040  * @mm: mm from which memcg should be extracted. It can be NULL.
1041  *
1042  * Obtain a reference on mm->memcg and returns it if successful. If mm
1043  * is NULL, then the memcg is chosen as follows:
1044  * 1) The active memcg, if set.
1045  * 2) current->mm->memcg, if available
1046  * 3) root memcg
1047  * If mem_cgroup is disabled, NULL is returned.
1048  */
1049 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1050 {
1051 	struct mem_cgroup *memcg;
1052 
1053 	if (mem_cgroup_disabled())
1054 		return NULL;
1055 
1056 	/*
1057 	 * Page cache insertions can happen without an
1058 	 * actual mm context, e.g. during disk probing
1059 	 * on boot, loopback IO, acct() writes etc.
1060 	 *
1061 	 * No need to css_get on root memcg as the reference
1062 	 * counting is disabled on the root level in the
1063 	 * cgroup core. See CSS_NO_REF.
1064 	 */
1065 	if (unlikely(!mm)) {
1066 		memcg = active_memcg();
1067 		if (unlikely(memcg)) {
1068 			/* remote memcg must hold a ref */
1069 			css_get(&memcg->css);
1070 			return memcg;
1071 		}
1072 		mm = current->mm;
1073 		if (unlikely(!mm))
1074 			return root_mem_cgroup;
1075 	}
1076 
1077 	rcu_read_lock();
1078 	do {
1079 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1080 		if (unlikely(!memcg))
1081 			memcg = root_mem_cgroup;
1082 	} while (!css_tryget(&memcg->css));
1083 	rcu_read_unlock();
1084 	return memcg;
1085 }
1086 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1087 
1088 static __always_inline bool memcg_kmem_bypass(void)
1089 {
1090 	/* Allow remote memcg charging from any context. */
1091 	if (unlikely(active_memcg()))
1092 		return false;
1093 
1094 	/* Memcg to charge can't be determined. */
1095 	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1096 		return true;
1097 
1098 	return false;
1099 }
1100 
1101 /**
1102  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1103  * @root: hierarchy root
1104  * @prev: previously returned memcg, NULL on first invocation
1105  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1106  *
1107  * Returns references to children of the hierarchy below @root, or
1108  * @root itself, or %NULL after a full round-trip.
1109  *
1110  * Caller must pass the return value in @prev on subsequent
1111  * invocations for reference counting, or use mem_cgroup_iter_break()
1112  * to cancel a hierarchy walk before the round-trip is complete.
1113  *
1114  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1115  * in the hierarchy among all concurrent reclaimers operating on the
1116  * same node.
1117  */
1118 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1119 				   struct mem_cgroup *prev,
1120 				   struct mem_cgroup_reclaim_cookie *reclaim)
1121 {
1122 	struct mem_cgroup_reclaim_iter *iter;
1123 	struct cgroup_subsys_state *css = NULL;
1124 	struct mem_cgroup *memcg = NULL;
1125 	struct mem_cgroup *pos = NULL;
1126 
1127 	if (mem_cgroup_disabled())
1128 		return NULL;
1129 
1130 	if (!root)
1131 		root = root_mem_cgroup;
1132 
1133 	rcu_read_lock();
1134 
1135 	if (reclaim) {
1136 		struct mem_cgroup_per_node *mz;
1137 
1138 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1139 		iter = &mz->iter;
1140 
1141 		/*
1142 		 * On start, join the current reclaim iteration cycle.
1143 		 * Exit when a concurrent walker completes it.
1144 		 */
1145 		if (!prev)
1146 			reclaim->generation = iter->generation;
1147 		else if (reclaim->generation != iter->generation)
1148 			goto out_unlock;
1149 
1150 		while (1) {
1151 			pos = READ_ONCE(iter->position);
1152 			if (!pos || css_tryget(&pos->css))
1153 				break;
1154 			/*
1155 			 * css reference reached zero, so iter->position will
1156 			 * be cleared by ->css_released. However, we should not
1157 			 * rely on this happening soon, because ->css_released
1158 			 * is called from a work queue, and by busy-waiting we
1159 			 * might block it. So we clear iter->position right
1160 			 * away.
1161 			 */
1162 			(void)cmpxchg(&iter->position, pos, NULL);
1163 		}
1164 	} else if (prev) {
1165 		pos = prev;
1166 	}
1167 
1168 	if (pos)
1169 		css = &pos->css;
1170 
1171 	for (;;) {
1172 		css = css_next_descendant_pre(css, &root->css);
1173 		if (!css) {
1174 			/*
1175 			 * Reclaimers share the hierarchy walk, and a
1176 			 * new one might jump in right at the end of
1177 			 * the hierarchy - make sure they see at least
1178 			 * one group and restart from the beginning.
1179 			 */
1180 			if (!prev)
1181 				continue;
1182 			break;
1183 		}
1184 
1185 		/*
1186 		 * Verify the css and acquire a reference.  The root
1187 		 * is provided by the caller, so we know it's alive
1188 		 * and kicking, and don't take an extra reference.
1189 		 */
1190 		if (css == &root->css || css_tryget(css)) {
1191 			memcg = mem_cgroup_from_css(css);
1192 			break;
1193 		}
1194 	}
1195 
1196 	if (reclaim) {
1197 		/*
1198 		 * The position could have already been updated by a competing
1199 		 * thread, so check that the value hasn't changed since we read
1200 		 * it to avoid reclaiming from the same cgroup twice.
1201 		 */
1202 		(void)cmpxchg(&iter->position, pos, memcg);
1203 
1204 		if (pos)
1205 			css_put(&pos->css);
1206 
1207 		if (!memcg)
1208 			iter->generation++;
1209 	}
1210 
1211 out_unlock:
1212 	rcu_read_unlock();
1213 	if (prev && prev != root)
1214 		css_put(&prev->css);
1215 
1216 	return memcg;
1217 }
1218 
1219 /**
1220  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1221  * @root: hierarchy root
1222  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1223  */
1224 void mem_cgroup_iter_break(struct mem_cgroup *root,
1225 			   struct mem_cgroup *prev)
1226 {
1227 	if (!root)
1228 		root = root_mem_cgroup;
1229 	if (prev && prev != root)
1230 		css_put(&prev->css);
1231 }
1232 
1233 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1234 					struct mem_cgroup *dead_memcg)
1235 {
1236 	struct mem_cgroup_reclaim_iter *iter;
1237 	struct mem_cgroup_per_node *mz;
1238 	int nid;
1239 
1240 	for_each_node(nid) {
1241 		mz = from->nodeinfo[nid];
1242 		iter = &mz->iter;
1243 		cmpxchg(&iter->position, dead_memcg, NULL);
1244 	}
1245 }
1246 
1247 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1248 {
1249 	struct mem_cgroup *memcg = dead_memcg;
1250 	struct mem_cgroup *last;
1251 
1252 	do {
1253 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1254 		last = memcg;
1255 	} while ((memcg = parent_mem_cgroup(memcg)));
1256 
1257 	/*
1258 	 * When cgroup1 non-hierarchy mode is used,
1259 	 * parent_mem_cgroup() does not walk all the way up to the
1260 	 * cgroup root (root_mem_cgroup). So we have to handle
1261 	 * dead_memcg from cgroup root separately.
1262 	 */
1263 	if (!mem_cgroup_is_root(last))
1264 		__invalidate_reclaim_iterators(root_mem_cgroup,
1265 						dead_memcg);
1266 }
1267 
1268 /**
1269  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1270  * @memcg: hierarchy root
1271  * @fn: function to call for each task
1272  * @arg: argument passed to @fn
1273  *
1274  * This function iterates over tasks attached to @memcg or to any of its
1275  * descendants and calls @fn for each task. If @fn returns a non-zero
1276  * value, the function breaks the iteration loop and returns the value.
1277  * Otherwise, it will iterate over all tasks and return 0.
1278  *
1279  * This function must not be called for the root memory cgroup.
1280  */
1281 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1282 			  int (*fn)(struct task_struct *, void *), void *arg)
1283 {
1284 	struct mem_cgroup *iter;
1285 	int ret = 0;
1286 
1287 	BUG_ON(mem_cgroup_is_root(memcg));
1288 
1289 	for_each_mem_cgroup_tree(iter, memcg) {
1290 		struct css_task_iter it;
1291 		struct task_struct *task;
1292 
1293 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1294 		while (!ret && (task = css_task_iter_next(&it)))
1295 			ret = fn(task, arg);
1296 		css_task_iter_end(&it);
1297 		if (ret) {
1298 			mem_cgroup_iter_break(memcg, iter);
1299 			break;
1300 		}
1301 	}
1302 	return ret;
1303 }
1304 
1305 #ifdef CONFIG_DEBUG_VM
1306 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1307 {
1308 	struct mem_cgroup *memcg;
1309 
1310 	if (mem_cgroup_disabled())
1311 		return;
1312 
1313 	memcg = folio_memcg(folio);
1314 
1315 	if (!memcg)
1316 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1317 	else
1318 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1319 }
1320 #endif
1321 
1322 /**
1323  * folio_lruvec_lock - Lock the lruvec for a folio.
1324  * @folio: Pointer to the folio.
1325  *
1326  * These functions are safe to use under any of the following conditions:
1327  * - folio locked
1328  * - folio_test_lru false
1329  * - folio_memcg_lock()
1330  * - folio frozen (refcount of 0)
1331  *
1332  * Return: The lruvec this folio is on with its lock held.
1333  */
1334 struct lruvec *folio_lruvec_lock(struct folio *folio)
1335 {
1336 	struct lruvec *lruvec = folio_lruvec(folio);
1337 
1338 	spin_lock(&lruvec->lru_lock);
1339 	lruvec_memcg_debug(lruvec, folio);
1340 
1341 	return lruvec;
1342 }
1343 
1344 /**
1345  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1346  * @folio: Pointer to the folio.
1347  *
1348  * These functions are safe to use under any of the following conditions:
1349  * - folio locked
1350  * - folio_test_lru false
1351  * - folio_memcg_lock()
1352  * - folio frozen (refcount of 0)
1353  *
1354  * Return: The lruvec this folio is on with its lock held and interrupts
1355  * disabled.
1356  */
1357 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1358 {
1359 	struct lruvec *lruvec = folio_lruvec(folio);
1360 
1361 	spin_lock_irq(&lruvec->lru_lock);
1362 	lruvec_memcg_debug(lruvec, folio);
1363 
1364 	return lruvec;
1365 }
1366 
1367 /**
1368  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1369  * @folio: Pointer to the folio.
1370  * @flags: Pointer to irqsave flags.
1371  *
1372  * These functions are safe to use under any of the following conditions:
1373  * - folio locked
1374  * - folio_test_lru false
1375  * - folio_memcg_lock()
1376  * - folio frozen (refcount of 0)
1377  *
1378  * Return: The lruvec this folio is on with its lock held and interrupts
1379  * disabled.
1380  */
1381 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1382 		unsigned long *flags)
1383 {
1384 	struct lruvec *lruvec = folio_lruvec(folio);
1385 
1386 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1387 	lruvec_memcg_debug(lruvec, folio);
1388 
1389 	return lruvec;
1390 }
1391 
1392 /**
1393  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1394  * @lruvec: mem_cgroup per zone lru vector
1395  * @lru: index of lru list the page is sitting on
1396  * @zid: zone id of the accounted pages
1397  * @nr_pages: positive when adding or negative when removing
1398  *
1399  * This function must be called under lru_lock, just before a page is added
1400  * to or just after a page is removed from an lru list.
1401  */
1402 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1403 				int zid, int nr_pages)
1404 {
1405 	struct mem_cgroup_per_node *mz;
1406 	unsigned long *lru_size;
1407 	long size;
1408 
1409 	if (mem_cgroup_disabled())
1410 		return;
1411 
1412 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1413 	lru_size = &mz->lru_zone_size[zid][lru];
1414 
1415 	if (nr_pages < 0)
1416 		*lru_size += nr_pages;
1417 
1418 	size = *lru_size;
1419 	if (WARN_ONCE(size < 0,
1420 		"%s(%p, %d, %d): lru_size %ld\n",
1421 		__func__, lruvec, lru, nr_pages, size)) {
1422 		VM_BUG_ON(1);
1423 		*lru_size = 0;
1424 	}
1425 
1426 	if (nr_pages > 0)
1427 		*lru_size += nr_pages;
1428 }
1429 
1430 /**
1431  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1432  * @memcg: the memory cgroup
1433  *
1434  * Returns the maximum amount of memory @mem can be charged with, in
1435  * pages.
1436  */
1437 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1438 {
1439 	unsigned long margin = 0;
1440 	unsigned long count;
1441 	unsigned long limit;
1442 
1443 	count = page_counter_read(&memcg->memory);
1444 	limit = READ_ONCE(memcg->memory.max);
1445 	if (count < limit)
1446 		margin = limit - count;
1447 
1448 	if (do_memsw_account()) {
1449 		count = page_counter_read(&memcg->memsw);
1450 		limit = READ_ONCE(memcg->memsw.max);
1451 		if (count < limit)
1452 			margin = min(margin, limit - count);
1453 		else
1454 			margin = 0;
1455 	}
1456 
1457 	return margin;
1458 }
1459 
1460 /*
1461  * A routine for checking "mem" is under move_account() or not.
1462  *
1463  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1464  * moving cgroups. This is for waiting at high-memory pressure
1465  * caused by "move".
1466  */
1467 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1468 {
1469 	struct mem_cgroup *from;
1470 	struct mem_cgroup *to;
1471 	bool ret = false;
1472 	/*
1473 	 * Unlike task_move routines, we access mc.to, mc.from not under
1474 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1475 	 */
1476 	spin_lock(&mc.lock);
1477 	from = mc.from;
1478 	to = mc.to;
1479 	if (!from)
1480 		goto unlock;
1481 
1482 	ret = mem_cgroup_is_descendant(from, memcg) ||
1483 		mem_cgroup_is_descendant(to, memcg);
1484 unlock:
1485 	spin_unlock(&mc.lock);
1486 	return ret;
1487 }
1488 
1489 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1490 {
1491 	if (mc.moving_task && current != mc.moving_task) {
1492 		if (mem_cgroup_under_move(memcg)) {
1493 			DEFINE_WAIT(wait);
1494 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1495 			/* moving charge context might have finished. */
1496 			if (mc.moving_task)
1497 				schedule();
1498 			finish_wait(&mc.waitq, &wait);
1499 			return true;
1500 		}
1501 	}
1502 	return false;
1503 }
1504 
1505 struct memory_stat {
1506 	const char *name;
1507 	unsigned int idx;
1508 };
1509 
1510 static const struct memory_stat memory_stats[] = {
1511 	{ "anon",			NR_ANON_MAPPED			},
1512 	{ "file",			NR_FILE_PAGES			},
1513 	{ "kernel",			MEMCG_KMEM			},
1514 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1515 	{ "pagetables",			NR_PAGETABLE			},
1516 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1517 	{ "percpu",			MEMCG_PERCPU_B			},
1518 	{ "sock",			MEMCG_SOCK			},
1519 	{ "vmalloc",			MEMCG_VMALLOC			},
1520 	{ "shmem",			NR_SHMEM			},
1521 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1522 	{ "zswap",			MEMCG_ZSWAP_B			},
1523 	{ "zswapped",			MEMCG_ZSWAPPED			},
1524 #endif
1525 	{ "file_mapped",		NR_FILE_MAPPED			},
1526 	{ "file_dirty",			NR_FILE_DIRTY			},
1527 	{ "file_writeback",		NR_WRITEBACK			},
1528 #ifdef CONFIG_SWAP
1529 	{ "swapcached",			NR_SWAPCACHE			},
1530 #endif
1531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1532 	{ "anon_thp",			NR_ANON_THPS			},
1533 	{ "file_thp",			NR_FILE_THPS			},
1534 	{ "shmem_thp",			NR_SHMEM_THPS			},
1535 #endif
1536 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1537 	{ "active_anon",		NR_ACTIVE_ANON			},
1538 	{ "inactive_file",		NR_INACTIVE_FILE		},
1539 	{ "active_file",		NR_ACTIVE_FILE			},
1540 	{ "unevictable",		NR_UNEVICTABLE			},
1541 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1542 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1543 
1544 	/* The memory events */
1545 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1546 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1547 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1548 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1549 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1550 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1551 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1552 };
1553 
1554 /* Translate stat items to the correct unit for memory.stat output */
1555 static int memcg_page_state_unit(int item)
1556 {
1557 	switch (item) {
1558 	case MEMCG_PERCPU_B:
1559 	case MEMCG_ZSWAP_B:
1560 	case NR_SLAB_RECLAIMABLE_B:
1561 	case NR_SLAB_UNRECLAIMABLE_B:
1562 	case WORKINGSET_REFAULT_ANON:
1563 	case WORKINGSET_REFAULT_FILE:
1564 	case WORKINGSET_ACTIVATE_ANON:
1565 	case WORKINGSET_ACTIVATE_FILE:
1566 	case WORKINGSET_RESTORE_ANON:
1567 	case WORKINGSET_RESTORE_FILE:
1568 	case WORKINGSET_NODERECLAIM:
1569 		return 1;
1570 	case NR_KERNEL_STACK_KB:
1571 		return SZ_1K;
1572 	default:
1573 		return PAGE_SIZE;
1574 	}
1575 }
1576 
1577 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1578 						    int item)
1579 {
1580 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1581 }
1582 
1583 static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
1584 {
1585 	struct seq_buf s;
1586 	int i;
1587 
1588 	seq_buf_init(&s, buf, bufsize);
1589 
1590 	/*
1591 	 * Provide statistics on the state of the memory subsystem as
1592 	 * well as cumulative event counters that show past behavior.
1593 	 *
1594 	 * This list is ordered following a combination of these gradients:
1595 	 * 1) generic big picture -> specifics and details
1596 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1597 	 *
1598 	 * Current memory state:
1599 	 */
1600 	mem_cgroup_flush_stats();
1601 
1602 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1603 		u64 size;
1604 
1605 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1606 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1607 
1608 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1609 			size += memcg_page_state_output(memcg,
1610 							NR_SLAB_RECLAIMABLE_B);
1611 			seq_buf_printf(&s, "slab %llu\n", size);
1612 		}
1613 	}
1614 
1615 	/* Accumulated memory events */
1616 	seq_buf_printf(&s, "pgscan %lu\n",
1617 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1618 		       memcg_events(memcg, PGSCAN_DIRECT) +
1619 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1620 	seq_buf_printf(&s, "pgsteal %lu\n",
1621 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1622 		       memcg_events(memcg, PGSTEAL_DIRECT) +
1623 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1624 
1625 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1626 		if (memcg_vm_event_stat[i] == PGPGIN ||
1627 		    memcg_vm_event_stat[i] == PGPGOUT)
1628 			continue;
1629 
1630 		seq_buf_printf(&s, "%s %lu\n",
1631 			       vm_event_name(memcg_vm_event_stat[i]),
1632 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1633 	}
1634 
1635 	/* The above should easily fit into one page */
1636 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1637 }
1638 
1639 #define K(x) ((x) << (PAGE_SHIFT-10))
1640 /**
1641  * mem_cgroup_print_oom_context: Print OOM information relevant to
1642  * memory controller.
1643  * @memcg: The memory cgroup that went over limit
1644  * @p: Task that is going to be killed
1645  *
1646  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1647  * enabled
1648  */
1649 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1650 {
1651 	rcu_read_lock();
1652 
1653 	if (memcg) {
1654 		pr_cont(",oom_memcg=");
1655 		pr_cont_cgroup_path(memcg->css.cgroup);
1656 	} else
1657 		pr_cont(",global_oom");
1658 	if (p) {
1659 		pr_cont(",task_memcg=");
1660 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1661 	}
1662 	rcu_read_unlock();
1663 }
1664 
1665 /**
1666  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1667  * memory controller.
1668  * @memcg: The memory cgroup that went over limit
1669  */
1670 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1671 {
1672 	/* Use static buffer, for the caller is holding oom_lock. */
1673 	static char buf[PAGE_SIZE];
1674 
1675 	lockdep_assert_held(&oom_lock);
1676 
1677 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1678 		K((u64)page_counter_read(&memcg->memory)),
1679 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1680 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1681 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1682 			K((u64)page_counter_read(&memcg->swap)),
1683 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1684 	else {
1685 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1686 			K((u64)page_counter_read(&memcg->memsw)),
1687 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1688 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1689 			K((u64)page_counter_read(&memcg->kmem)),
1690 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1691 	}
1692 
1693 	pr_info("Memory cgroup stats for ");
1694 	pr_cont_cgroup_path(memcg->css.cgroup);
1695 	pr_cont(":");
1696 	memory_stat_format(memcg, buf, sizeof(buf));
1697 	pr_info("%s", buf);
1698 }
1699 
1700 /*
1701  * Return the memory (and swap, if configured) limit for a memcg.
1702  */
1703 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1704 {
1705 	unsigned long max = READ_ONCE(memcg->memory.max);
1706 
1707 	if (do_memsw_account()) {
1708 		if (mem_cgroup_swappiness(memcg)) {
1709 			/* Calculate swap excess capacity from memsw limit */
1710 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1711 
1712 			max += min(swap, (unsigned long)total_swap_pages);
1713 		}
1714 	} else {
1715 		if (mem_cgroup_swappiness(memcg))
1716 			max += min(READ_ONCE(memcg->swap.max),
1717 				   (unsigned long)total_swap_pages);
1718 	}
1719 	return max;
1720 }
1721 
1722 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1723 {
1724 	return page_counter_read(&memcg->memory);
1725 }
1726 
1727 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1728 				     int order)
1729 {
1730 	struct oom_control oc = {
1731 		.zonelist = NULL,
1732 		.nodemask = NULL,
1733 		.memcg = memcg,
1734 		.gfp_mask = gfp_mask,
1735 		.order = order,
1736 	};
1737 	bool ret = true;
1738 
1739 	if (mutex_lock_killable(&oom_lock))
1740 		return true;
1741 
1742 	if (mem_cgroup_margin(memcg) >= (1 << order))
1743 		goto unlock;
1744 
1745 	/*
1746 	 * A few threads which were not waiting at mutex_lock_killable() can
1747 	 * fail to bail out. Therefore, check again after holding oom_lock.
1748 	 */
1749 	ret = task_is_dying() || out_of_memory(&oc);
1750 
1751 unlock:
1752 	mutex_unlock(&oom_lock);
1753 	return ret;
1754 }
1755 
1756 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1757 				   pg_data_t *pgdat,
1758 				   gfp_t gfp_mask,
1759 				   unsigned long *total_scanned)
1760 {
1761 	struct mem_cgroup *victim = NULL;
1762 	int total = 0;
1763 	int loop = 0;
1764 	unsigned long excess;
1765 	unsigned long nr_scanned;
1766 	struct mem_cgroup_reclaim_cookie reclaim = {
1767 		.pgdat = pgdat,
1768 	};
1769 
1770 	excess = soft_limit_excess(root_memcg);
1771 
1772 	while (1) {
1773 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1774 		if (!victim) {
1775 			loop++;
1776 			if (loop >= 2) {
1777 				/*
1778 				 * If we have not been able to reclaim
1779 				 * anything, it might because there are
1780 				 * no reclaimable pages under this hierarchy
1781 				 */
1782 				if (!total)
1783 					break;
1784 				/*
1785 				 * We want to do more targeted reclaim.
1786 				 * excess >> 2 is not to excessive so as to
1787 				 * reclaim too much, nor too less that we keep
1788 				 * coming back to reclaim from this cgroup
1789 				 */
1790 				if (total >= (excess >> 2) ||
1791 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1792 					break;
1793 			}
1794 			continue;
1795 		}
1796 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1797 					pgdat, &nr_scanned);
1798 		*total_scanned += nr_scanned;
1799 		if (!soft_limit_excess(root_memcg))
1800 			break;
1801 	}
1802 	mem_cgroup_iter_break(root_memcg, victim);
1803 	return total;
1804 }
1805 
1806 #ifdef CONFIG_LOCKDEP
1807 static struct lockdep_map memcg_oom_lock_dep_map = {
1808 	.name = "memcg_oom_lock",
1809 };
1810 #endif
1811 
1812 static DEFINE_SPINLOCK(memcg_oom_lock);
1813 
1814 /*
1815  * Check OOM-Killer is already running under our hierarchy.
1816  * If someone is running, return false.
1817  */
1818 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1819 {
1820 	struct mem_cgroup *iter, *failed = NULL;
1821 
1822 	spin_lock(&memcg_oom_lock);
1823 
1824 	for_each_mem_cgroup_tree(iter, memcg) {
1825 		if (iter->oom_lock) {
1826 			/*
1827 			 * this subtree of our hierarchy is already locked
1828 			 * so we cannot give a lock.
1829 			 */
1830 			failed = iter;
1831 			mem_cgroup_iter_break(memcg, iter);
1832 			break;
1833 		} else
1834 			iter->oom_lock = true;
1835 	}
1836 
1837 	if (failed) {
1838 		/*
1839 		 * OK, we failed to lock the whole subtree so we have
1840 		 * to clean up what we set up to the failing subtree
1841 		 */
1842 		for_each_mem_cgroup_tree(iter, memcg) {
1843 			if (iter == failed) {
1844 				mem_cgroup_iter_break(memcg, iter);
1845 				break;
1846 			}
1847 			iter->oom_lock = false;
1848 		}
1849 	} else
1850 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1851 
1852 	spin_unlock(&memcg_oom_lock);
1853 
1854 	return !failed;
1855 }
1856 
1857 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1858 {
1859 	struct mem_cgroup *iter;
1860 
1861 	spin_lock(&memcg_oom_lock);
1862 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1863 	for_each_mem_cgroup_tree(iter, memcg)
1864 		iter->oom_lock = false;
1865 	spin_unlock(&memcg_oom_lock);
1866 }
1867 
1868 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1869 {
1870 	struct mem_cgroup *iter;
1871 
1872 	spin_lock(&memcg_oom_lock);
1873 	for_each_mem_cgroup_tree(iter, memcg)
1874 		iter->under_oom++;
1875 	spin_unlock(&memcg_oom_lock);
1876 }
1877 
1878 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1879 {
1880 	struct mem_cgroup *iter;
1881 
1882 	/*
1883 	 * Be careful about under_oom underflows because a child memcg
1884 	 * could have been added after mem_cgroup_mark_under_oom.
1885 	 */
1886 	spin_lock(&memcg_oom_lock);
1887 	for_each_mem_cgroup_tree(iter, memcg)
1888 		if (iter->under_oom > 0)
1889 			iter->under_oom--;
1890 	spin_unlock(&memcg_oom_lock);
1891 }
1892 
1893 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1894 
1895 struct oom_wait_info {
1896 	struct mem_cgroup *memcg;
1897 	wait_queue_entry_t	wait;
1898 };
1899 
1900 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1901 	unsigned mode, int sync, void *arg)
1902 {
1903 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1904 	struct mem_cgroup *oom_wait_memcg;
1905 	struct oom_wait_info *oom_wait_info;
1906 
1907 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1908 	oom_wait_memcg = oom_wait_info->memcg;
1909 
1910 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1911 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1912 		return 0;
1913 	return autoremove_wake_function(wait, mode, sync, arg);
1914 }
1915 
1916 static void memcg_oom_recover(struct mem_cgroup *memcg)
1917 {
1918 	/*
1919 	 * For the following lockless ->under_oom test, the only required
1920 	 * guarantee is that it must see the state asserted by an OOM when
1921 	 * this function is called as a result of userland actions
1922 	 * triggered by the notification of the OOM.  This is trivially
1923 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1924 	 * triggering notification.
1925 	 */
1926 	if (memcg && memcg->under_oom)
1927 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1928 }
1929 
1930 /*
1931  * Returns true if successfully killed one or more processes. Though in some
1932  * corner cases it can return true even without killing any process.
1933  */
1934 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1935 {
1936 	bool locked, ret;
1937 
1938 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1939 		return false;
1940 
1941 	memcg_memory_event(memcg, MEMCG_OOM);
1942 
1943 	/*
1944 	 * We are in the middle of the charge context here, so we
1945 	 * don't want to block when potentially sitting on a callstack
1946 	 * that holds all kinds of filesystem and mm locks.
1947 	 *
1948 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1949 	 * handling until the charge can succeed; remember the context and put
1950 	 * the task to sleep at the end of the page fault when all locks are
1951 	 * released.
1952 	 *
1953 	 * On the other hand, in-kernel OOM killer allows for an async victim
1954 	 * memory reclaim (oom_reaper) and that means that we are not solely
1955 	 * relying on the oom victim to make a forward progress and we can
1956 	 * invoke the oom killer here.
1957 	 *
1958 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1959 	 * victim and then we have to bail out from the charge path.
1960 	 */
1961 	if (READ_ONCE(memcg->oom_kill_disable)) {
1962 		if (current->in_user_fault) {
1963 			css_get(&memcg->css);
1964 			current->memcg_in_oom = memcg;
1965 			current->memcg_oom_gfp_mask = mask;
1966 			current->memcg_oom_order = order;
1967 		}
1968 		return false;
1969 	}
1970 
1971 	mem_cgroup_mark_under_oom(memcg);
1972 
1973 	locked = mem_cgroup_oom_trylock(memcg);
1974 
1975 	if (locked)
1976 		mem_cgroup_oom_notify(memcg);
1977 
1978 	mem_cgroup_unmark_under_oom(memcg);
1979 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1980 
1981 	if (locked)
1982 		mem_cgroup_oom_unlock(memcg);
1983 
1984 	return ret;
1985 }
1986 
1987 /**
1988  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1989  * @handle: actually kill/wait or just clean up the OOM state
1990  *
1991  * This has to be called at the end of a page fault if the memcg OOM
1992  * handler was enabled.
1993  *
1994  * Memcg supports userspace OOM handling where failed allocations must
1995  * sleep on a waitqueue until the userspace task resolves the
1996  * situation.  Sleeping directly in the charge context with all kinds
1997  * of locks held is not a good idea, instead we remember an OOM state
1998  * in the task and mem_cgroup_oom_synchronize() has to be called at
1999  * the end of the page fault to complete the OOM handling.
2000  *
2001  * Returns %true if an ongoing memcg OOM situation was detected and
2002  * completed, %false otherwise.
2003  */
2004 bool mem_cgroup_oom_synchronize(bool handle)
2005 {
2006 	struct mem_cgroup *memcg = current->memcg_in_oom;
2007 	struct oom_wait_info owait;
2008 	bool locked;
2009 
2010 	/* OOM is global, do not handle */
2011 	if (!memcg)
2012 		return false;
2013 
2014 	if (!handle)
2015 		goto cleanup;
2016 
2017 	owait.memcg = memcg;
2018 	owait.wait.flags = 0;
2019 	owait.wait.func = memcg_oom_wake_function;
2020 	owait.wait.private = current;
2021 	INIT_LIST_HEAD(&owait.wait.entry);
2022 
2023 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2024 	mem_cgroup_mark_under_oom(memcg);
2025 
2026 	locked = mem_cgroup_oom_trylock(memcg);
2027 
2028 	if (locked)
2029 		mem_cgroup_oom_notify(memcg);
2030 
2031 	if (locked && !READ_ONCE(memcg->oom_kill_disable)) {
2032 		mem_cgroup_unmark_under_oom(memcg);
2033 		finish_wait(&memcg_oom_waitq, &owait.wait);
2034 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2035 					 current->memcg_oom_order);
2036 	} else {
2037 		schedule();
2038 		mem_cgroup_unmark_under_oom(memcg);
2039 		finish_wait(&memcg_oom_waitq, &owait.wait);
2040 	}
2041 
2042 	if (locked) {
2043 		mem_cgroup_oom_unlock(memcg);
2044 		/*
2045 		 * There is no guarantee that an OOM-lock contender
2046 		 * sees the wakeups triggered by the OOM kill
2047 		 * uncharges.  Wake any sleepers explicitly.
2048 		 */
2049 		memcg_oom_recover(memcg);
2050 	}
2051 cleanup:
2052 	current->memcg_in_oom = NULL;
2053 	css_put(&memcg->css);
2054 	return true;
2055 }
2056 
2057 /**
2058  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2059  * @victim: task to be killed by the OOM killer
2060  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2061  *
2062  * Returns a pointer to a memory cgroup, which has to be cleaned up
2063  * by killing all belonging OOM-killable tasks.
2064  *
2065  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2066  */
2067 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2068 					    struct mem_cgroup *oom_domain)
2069 {
2070 	struct mem_cgroup *oom_group = NULL;
2071 	struct mem_cgroup *memcg;
2072 
2073 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2074 		return NULL;
2075 
2076 	if (!oom_domain)
2077 		oom_domain = root_mem_cgroup;
2078 
2079 	rcu_read_lock();
2080 
2081 	memcg = mem_cgroup_from_task(victim);
2082 	if (mem_cgroup_is_root(memcg))
2083 		goto out;
2084 
2085 	/*
2086 	 * If the victim task has been asynchronously moved to a different
2087 	 * memory cgroup, we might end up killing tasks outside oom_domain.
2088 	 * In this case it's better to ignore memory.group.oom.
2089 	 */
2090 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2091 		goto out;
2092 
2093 	/*
2094 	 * Traverse the memory cgroup hierarchy from the victim task's
2095 	 * cgroup up to the OOMing cgroup (or root) to find the
2096 	 * highest-level memory cgroup with oom.group set.
2097 	 */
2098 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2099 		if (READ_ONCE(memcg->oom_group))
2100 			oom_group = memcg;
2101 
2102 		if (memcg == oom_domain)
2103 			break;
2104 	}
2105 
2106 	if (oom_group)
2107 		css_get(&oom_group->css);
2108 out:
2109 	rcu_read_unlock();
2110 
2111 	return oom_group;
2112 }
2113 
2114 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2115 {
2116 	pr_info("Tasks in ");
2117 	pr_cont_cgroup_path(memcg->css.cgroup);
2118 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2119 }
2120 
2121 /**
2122  * folio_memcg_lock - Bind a folio to its memcg.
2123  * @folio: The folio.
2124  *
2125  * This function prevents unlocked LRU folios from being moved to
2126  * another cgroup.
2127  *
2128  * It ensures lifetime of the bound memcg.  The caller is responsible
2129  * for the lifetime of the folio.
2130  */
2131 void folio_memcg_lock(struct folio *folio)
2132 {
2133 	struct mem_cgroup *memcg;
2134 	unsigned long flags;
2135 
2136 	/*
2137 	 * The RCU lock is held throughout the transaction.  The fast
2138 	 * path can get away without acquiring the memcg->move_lock
2139 	 * because page moving starts with an RCU grace period.
2140          */
2141 	rcu_read_lock();
2142 
2143 	if (mem_cgroup_disabled())
2144 		return;
2145 again:
2146 	memcg = folio_memcg(folio);
2147 	if (unlikely(!memcg))
2148 		return;
2149 
2150 #ifdef CONFIG_PROVE_LOCKING
2151 	local_irq_save(flags);
2152 	might_lock(&memcg->move_lock);
2153 	local_irq_restore(flags);
2154 #endif
2155 
2156 	if (atomic_read(&memcg->moving_account) <= 0)
2157 		return;
2158 
2159 	spin_lock_irqsave(&memcg->move_lock, flags);
2160 	if (memcg != folio_memcg(folio)) {
2161 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2162 		goto again;
2163 	}
2164 
2165 	/*
2166 	 * When charge migration first begins, we can have multiple
2167 	 * critical sections holding the fast-path RCU lock and one
2168 	 * holding the slowpath move_lock. Track the task who has the
2169 	 * move_lock for unlock_page_memcg().
2170 	 */
2171 	memcg->move_lock_task = current;
2172 	memcg->move_lock_flags = flags;
2173 }
2174 
2175 void lock_page_memcg(struct page *page)
2176 {
2177 	folio_memcg_lock(page_folio(page));
2178 }
2179 
2180 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2181 {
2182 	if (memcg && memcg->move_lock_task == current) {
2183 		unsigned long flags = memcg->move_lock_flags;
2184 
2185 		memcg->move_lock_task = NULL;
2186 		memcg->move_lock_flags = 0;
2187 
2188 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2189 	}
2190 
2191 	rcu_read_unlock();
2192 }
2193 
2194 /**
2195  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2196  * @folio: The folio.
2197  *
2198  * This releases the binding created by folio_memcg_lock().  This does
2199  * not change the accounting of this folio to its memcg, but it does
2200  * permit others to change it.
2201  */
2202 void folio_memcg_unlock(struct folio *folio)
2203 {
2204 	__folio_memcg_unlock(folio_memcg(folio));
2205 }
2206 
2207 void unlock_page_memcg(struct page *page)
2208 {
2209 	folio_memcg_unlock(page_folio(page));
2210 }
2211 
2212 struct memcg_stock_pcp {
2213 	local_lock_t stock_lock;
2214 	struct mem_cgroup *cached; /* this never be root cgroup */
2215 	unsigned int nr_pages;
2216 
2217 #ifdef CONFIG_MEMCG_KMEM
2218 	struct obj_cgroup *cached_objcg;
2219 	struct pglist_data *cached_pgdat;
2220 	unsigned int nr_bytes;
2221 	int nr_slab_reclaimable_b;
2222 	int nr_slab_unreclaimable_b;
2223 #endif
2224 
2225 	struct work_struct work;
2226 	unsigned long flags;
2227 #define FLUSHING_CACHED_CHARGE	0
2228 };
2229 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2230 	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
2231 };
2232 static DEFINE_MUTEX(percpu_charge_mutex);
2233 
2234 #ifdef CONFIG_MEMCG_KMEM
2235 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2236 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2237 				     struct mem_cgroup *root_memcg);
2238 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2239 
2240 #else
2241 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2242 {
2243 	return NULL;
2244 }
2245 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2246 				     struct mem_cgroup *root_memcg)
2247 {
2248 	return false;
2249 }
2250 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2251 {
2252 }
2253 #endif
2254 
2255 /**
2256  * consume_stock: Try to consume stocked charge on this cpu.
2257  * @memcg: memcg to consume from.
2258  * @nr_pages: how many pages to charge.
2259  *
2260  * The charges will only happen if @memcg matches the current cpu's memcg
2261  * stock, and at least @nr_pages are available in that stock.  Failure to
2262  * service an allocation will refill the stock.
2263  *
2264  * returns true if successful, false otherwise.
2265  */
2266 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2267 {
2268 	struct memcg_stock_pcp *stock;
2269 	unsigned long flags;
2270 	bool ret = false;
2271 
2272 	if (nr_pages > MEMCG_CHARGE_BATCH)
2273 		return ret;
2274 
2275 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2276 
2277 	stock = this_cpu_ptr(&memcg_stock);
2278 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2279 		stock->nr_pages -= nr_pages;
2280 		ret = true;
2281 	}
2282 
2283 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2284 
2285 	return ret;
2286 }
2287 
2288 /*
2289  * Returns stocks cached in percpu and reset cached information.
2290  */
2291 static void drain_stock(struct memcg_stock_pcp *stock)
2292 {
2293 	struct mem_cgroup *old = stock->cached;
2294 
2295 	if (!old)
2296 		return;
2297 
2298 	if (stock->nr_pages) {
2299 		page_counter_uncharge(&old->memory, stock->nr_pages);
2300 		if (do_memsw_account())
2301 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2302 		stock->nr_pages = 0;
2303 	}
2304 
2305 	css_put(&old->css);
2306 	stock->cached = NULL;
2307 }
2308 
2309 static void drain_local_stock(struct work_struct *dummy)
2310 {
2311 	struct memcg_stock_pcp *stock;
2312 	struct obj_cgroup *old = NULL;
2313 	unsigned long flags;
2314 
2315 	/*
2316 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2317 	 * drain_stock races is that we always operate on local CPU stock
2318 	 * here with IRQ disabled
2319 	 */
2320 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2321 
2322 	stock = this_cpu_ptr(&memcg_stock);
2323 	old = drain_obj_stock(stock);
2324 	drain_stock(stock);
2325 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2326 
2327 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2328 	if (old)
2329 		obj_cgroup_put(old);
2330 }
2331 
2332 /*
2333  * Cache charges(val) to local per_cpu area.
2334  * This will be consumed by consume_stock() function, later.
2335  */
2336 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2337 {
2338 	struct memcg_stock_pcp *stock;
2339 
2340 	stock = this_cpu_ptr(&memcg_stock);
2341 	if (stock->cached != memcg) { /* reset if necessary */
2342 		drain_stock(stock);
2343 		css_get(&memcg->css);
2344 		stock->cached = memcg;
2345 	}
2346 	stock->nr_pages += nr_pages;
2347 
2348 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2349 		drain_stock(stock);
2350 }
2351 
2352 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2353 {
2354 	unsigned long flags;
2355 
2356 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2357 	__refill_stock(memcg, nr_pages);
2358 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2359 }
2360 
2361 /*
2362  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2363  * of the hierarchy under it.
2364  */
2365 static void drain_all_stock(struct mem_cgroup *root_memcg)
2366 {
2367 	int cpu, curcpu;
2368 
2369 	/* If someone's already draining, avoid adding running more workers. */
2370 	if (!mutex_trylock(&percpu_charge_mutex))
2371 		return;
2372 	/*
2373 	 * Notify other cpus that system-wide "drain" is running
2374 	 * We do not care about races with the cpu hotplug because cpu down
2375 	 * as well as workers from this path always operate on the local
2376 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2377 	 */
2378 	migrate_disable();
2379 	curcpu = smp_processor_id();
2380 	for_each_online_cpu(cpu) {
2381 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2382 		struct mem_cgroup *memcg;
2383 		bool flush = false;
2384 
2385 		rcu_read_lock();
2386 		memcg = stock->cached;
2387 		if (memcg && stock->nr_pages &&
2388 		    mem_cgroup_is_descendant(memcg, root_memcg))
2389 			flush = true;
2390 		else if (obj_stock_flush_required(stock, root_memcg))
2391 			flush = true;
2392 		rcu_read_unlock();
2393 
2394 		if (flush &&
2395 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2396 			if (cpu == curcpu)
2397 				drain_local_stock(&stock->work);
2398 			else if (!cpu_is_isolated(cpu))
2399 				schedule_work_on(cpu, &stock->work);
2400 		}
2401 	}
2402 	migrate_enable();
2403 	mutex_unlock(&percpu_charge_mutex);
2404 }
2405 
2406 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2407 {
2408 	struct memcg_stock_pcp *stock;
2409 
2410 	stock = &per_cpu(memcg_stock, cpu);
2411 	drain_stock(stock);
2412 
2413 	return 0;
2414 }
2415 
2416 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2417 				  unsigned int nr_pages,
2418 				  gfp_t gfp_mask)
2419 {
2420 	unsigned long nr_reclaimed = 0;
2421 
2422 	do {
2423 		unsigned long pflags;
2424 
2425 		if (page_counter_read(&memcg->memory) <=
2426 		    READ_ONCE(memcg->memory.high))
2427 			continue;
2428 
2429 		memcg_memory_event(memcg, MEMCG_HIGH);
2430 
2431 		psi_memstall_enter(&pflags);
2432 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2433 							gfp_mask,
2434 							MEMCG_RECLAIM_MAY_SWAP);
2435 		psi_memstall_leave(&pflags);
2436 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2437 		 !mem_cgroup_is_root(memcg));
2438 
2439 	return nr_reclaimed;
2440 }
2441 
2442 static void high_work_func(struct work_struct *work)
2443 {
2444 	struct mem_cgroup *memcg;
2445 
2446 	memcg = container_of(work, struct mem_cgroup, high_work);
2447 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2448 }
2449 
2450 /*
2451  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2452  * enough to still cause a significant slowdown in most cases, while still
2453  * allowing diagnostics and tracing to proceed without becoming stuck.
2454  */
2455 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2456 
2457 /*
2458  * When calculating the delay, we use these either side of the exponentiation to
2459  * maintain precision and scale to a reasonable number of jiffies (see the table
2460  * below.
2461  *
2462  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2463  *   overage ratio to a delay.
2464  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2465  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2466  *   to produce a reasonable delay curve.
2467  *
2468  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2469  * reasonable delay curve compared to precision-adjusted overage, not
2470  * penalising heavily at first, but still making sure that growth beyond the
2471  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2472  * example, with a high of 100 megabytes:
2473  *
2474  *  +-------+------------------------+
2475  *  | usage | time to allocate in ms |
2476  *  +-------+------------------------+
2477  *  | 100M  |                      0 |
2478  *  | 101M  |                      6 |
2479  *  | 102M  |                     25 |
2480  *  | 103M  |                     57 |
2481  *  | 104M  |                    102 |
2482  *  | 105M  |                    159 |
2483  *  | 106M  |                    230 |
2484  *  | 107M  |                    313 |
2485  *  | 108M  |                    409 |
2486  *  | 109M  |                    518 |
2487  *  | 110M  |                    639 |
2488  *  | 111M  |                    774 |
2489  *  | 112M  |                    921 |
2490  *  | 113M  |                   1081 |
2491  *  | 114M  |                   1254 |
2492  *  | 115M  |                   1439 |
2493  *  | 116M  |                   1638 |
2494  *  | 117M  |                   1849 |
2495  *  | 118M  |                   2000 |
2496  *  | 119M  |                   2000 |
2497  *  | 120M  |                   2000 |
2498  *  +-------+------------------------+
2499  */
2500  #define MEMCG_DELAY_PRECISION_SHIFT 20
2501  #define MEMCG_DELAY_SCALING_SHIFT 14
2502 
2503 static u64 calculate_overage(unsigned long usage, unsigned long high)
2504 {
2505 	u64 overage;
2506 
2507 	if (usage <= high)
2508 		return 0;
2509 
2510 	/*
2511 	 * Prevent division by 0 in overage calculation by acting as if
2512 	 * it was a threshold of 1 page
2513 	 */
2514 	high = max(high, 1UL);
2515 
2516 	overage = usage - high;
2517 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2518 	return div64_u64(overage, high);
2519 }
2520 
2521 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2522 {
2523 	u64 overage, max_overage = 0;
2524 
2525 	do {
2526 		overage = calculate_overage(page_counter_read(&memcg->memory),
2527 					    READ_ONCE(memcg->memory.high));
2528 		max_overage = max(overage, max_overage);
2529 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2530 		 !mem_cgroup_is_root(memcg));
2531 
2532 	return max_overage;
2533 }
2534 
2535 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2536 {
2537 	u64 overage, max_overage = 0;
2538 
2539 	do {
2540 		overage = calculate_overage(page_counter_read(&memcg->swap),
2541 					    READ_ONCE(memcg->swap.high));
2542 		if (overage)
2543 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2544 		max_overage = max(overage, max_overage);
2545 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2546 		 !mem_cgroup_is_root(memcg));
2547 
2548 	return max_overage;
2549 }
2550 
2551 /*
2552  * Get the number of jiffies that we should penalise a mischievous cgroup which
2553  * is exceeding its memory.high by checking both it and its ancestors.
2554  */
2555 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2556 					  unsigned int nr_pages,
2557 					  u64 max_overage)
2558 {
2559 	unsigned long penalty_jiffies;
2560 
2561 	if (!max_overage)
2562 		return 0;
2563 
2564 	/*
2565 	 * We use overage compared to memory.high to calculate the number of
2566 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2567 	 * fairly lenient on small overages, and increasingly harsh when the
2568 	 * memcg in question makes it clear that it has no intention of stopping
2569 	 * its crazy behaviour, so we exponentially increase the delay based on
2570 	 * overage amount.
2571 	 */
2572 	penalty_jiffies = max_overage * max_overage * HZ;
2573 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2574 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2575 
2576 	/*
2577 	 * Factor in the task's own contribution to the overage, such that four
2578 	 * N-sized allocations are throttled approximately the same as one
2579 	 * 4N-sized allocation.
2580 	 *
2581 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2582 	 * larger the current charge patch is than that.
2583 	 */
2584 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2585 }
2586 
2587 /*
2588  * Scheduled by try_charge() to be executed from the userland return path
2589  * and reclaims memory over the high limit.
2590  */
2591 void mem_cgroup_handle_over_high(void)
2592 {
2593 	unsigned long penalty_jiffies;
2594 	unsigned long pflags;
2595 	unsigned long nr_reclaimed;
2596 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2597 	int nr_retries = MAX_RECLAIM_RETRIES;
2598 	struct mem_cgroup *memcg;
2599 	bool in_retry = false;
2600 
2601 	if (likely(!nr_pages))
2602 		return;
2603 
2604 	memcg = get_mem_cgroup_from_mm(current->mm);
2605 	current->memcg_nr_pages_over_high = 0;
2606 
2607 retry_reclaim:
2608 	/*
2609 	 * The allocating task should reclaim at least the batch size, but for
2610 	 * subsequent retries we only want to do what's necessary to prevent oom
2611 	 * or breaching resource isolation.
2612 	 *
2613 	 * This is distinct from memory.max or page allocator behaviour because
2614 	 * memory.high is currently batched, whereas memory.max and the page
2615 	 * allocator run every time an allocation is made.
2616 	 */
2617 	nr_reclaimed = reclaim_high(memcg,
2618 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2619 				    GFP_KERNEL);
2620 
2621 	/*
2622 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2623 	 * allocators proactively to slow down excessive growth.
2624 	 */
2625 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2626 					       mem_find_max_overage(memcg));
2627 
2628 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2629 						swap_find_max_overage(memcg));
2630 
2631 	/*
2632 	 * Clamp the max delay per usermode return so as to still keep the
2633 	 * application moving forwards and also permit diagnostics, albeit
2634 	 * extremely slowly.
2635 	 */
2636 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2637 
2638 	/*
2639 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2640 	 * that it's not even worth doing, in an attempt to be nice to those who
2641 	 * go only a small amount over their memory.high value and maybe haven't
2642 	 * been aggressively reclaimed enough yet.
2643 	 */
2644 	if (penalty_jiffies <= HZ / 100)
2645 		goto out;
2646 
2647 	/*
2648 	 * If reclaim is making forward progress but we're still over
2649 	 * memory.high, we want to encourage that rather than doing allocator
2650 	 * throttling.
2651 	 */
2652 	if (nr_reclaimed || nr_retries--) {
2653 		in_retry = true;
2654 		goto retry_reclaim;
2655 	}
2656 
2657 	/*
2658 	 * If we exit early, we're guaranteed to die (since
2659 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2660 	 * need to account for any ill-begotten jiffies to pay them off later.
2661 	 */
2662 	psi_memstall_enter(&pflags);
2663 	schedule_timeout_killable(penalty_jiffies);
2664 	psi_memstall_leave(&pflags);
2665 
2666 out:
2667 	css_put(&memcg->css);
2668 }
2669 
2670 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2671 			unsigned int nr_pages)
2672 {
2673 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2674 	int nr_retries = MAX_RECLAIM_RETRIES;
2675 	struct mem_cgroup *mem_over_limit;
2676 	struct page_counter *counter;
2677 	unsigned long nr_reclaimed;
2678 	bool passed_oom = false;
2679 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2680 	bool drained = false;
2681 	bool raised_max_event = false;
2682 	unsigned long pflags;
2683 
2684 retry:
2685 	if (consume_stock(memcg, nr_pages))
2686 		return 0;
2687 
2688 	if (!do_memsw_account() ||
2689 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2690 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2691 			goto done_restock;
2692 		if (do_memsw_account())
2693 			page_counter_uncharge(&memcg->memsw, batch);
2694 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2695 	} else {
2696 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2697 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2698 	}
2699 
2700 	if (batch > nr_pages) {
2701 		batch = nr_pages;
2702 		goto retry;
2703 	}
2704 
2705 	/*
2706 	 * Prevent unbounded recursion when reclaim operations need to
2707 	 * allocate memory. This might exceed the limits temporarily,
2708 	 * but we prefer facilitating memory reclaim and getting back
2709 	 * under the limit over triggering OOM kills in these cases.
2710 	 */
2711 	if (unlikely(current->flags & PF_MEMALLOC))
2712 		goto force;
2713 
2714 	if (unlikely(task_in_memcg_oom(current)))
2715 		goto nomem;
2716 
2717 	if (!gfpflags_allow_blocking(gfp_mask))
2718 		goto nomem;
2719 
2720 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2721 	raised_max_event = true;
2722 
2723 	psi_memstall_enter(&pflags);
2724 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2725 						    gfp_mask, reclaim_options);
2726 	psi_memstall_leave(&pflags);
2727 
2728 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2729 		goto retry;
2730 
2731 	if (!drained) {
2732 		drain_all_stock(mem_over_limit);
2733 		drained = true;
2734 		goto retry;
2735 	}
2736 
2737 	if (gfp_mask & __GFP_NORETRY)
2738 		goto nomem;
2739 	/*
2740 	 * Even though the limit is exceeded at this point, reclaim
2741 	 * may have been able to free some pages.  Retry the charge
2742 	 * before killing the task.
2743 	 *
2744 	 * Only for regular pages, though: huge pages are rather
2745 	 * unlikely to succeed so close to the limit, and we fall back
2746 	 * to regular pages anyway in case of failure.
2747 	 */
2748 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2749 		goto retry;
2750 	/*
2751 	 * At task move, charge accounts can be doubly counted. So, it's
2752 	 * better to wait until the end of task_move if something is going on.
2753 	 */
2754 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2755 		goto retry;
2756 
2757 	if (nr_retries--)
2758 		goto retry;
2759 
2760 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2761 		goto nomem;
2762 
2763 	/* Avoid endless loop for tasks bypassed by the oom killer */
2764 	if (passed_oom && task_is_dying())
2765 		goto nomem;
2766 
2767 	/*
2768 	 * keep retrying as long as the memcg oom killer is able to make
2769 	 * a forward progress or bypass the charge if the oom killer
2770 	 * couldn't make any progress.
2771 	 */
2772 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2773 			   get_order(nr_pages * PAGE_SIZE))) {
2774 		passed_oom = true;
2775 		nr_retries = MAX_RECLAIM_RETRIES;
2776 		goto retry;
2777 	}
2778 nomem:
2779 	/*
2780 	 * Memcg doesn't have a dedicated reserve for atomic
2781 	 * allocations. But like the global atomic pool, we need to
2782 	 * put the burden of reclaim on regular allocation requests
2783 	 * and let these go through as privileged allocations.
2784 	 */
2785 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2786 		return -ENOMEM;
2787 force:
2788 	/*
2789 	 * If the allocation has to be enforced, don't forget to raise
2790 	 * a MEMCG_MAX event.
2791 	 */
2792 	if (!raised_max_event)
2793 		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2794 
2795 	/*
2796 	 * The allocation either can't fail or will lead to more memory
2797 	 * being freed very soon.  Allow memory usage go over the limit
2798 	 * temporarily by force charging it.
2799 	 */
2800 	page_counter_charge(&memcg->memory, nr_pages);
2801 	if (do_memsw_account())
2802 		page_counter_charge(&memcg->memsw, nr_pages);
2803 
2804 	return 0;
2805 
2806 done_restock:
2807 	if (batch > nr_pages)
2808 		refill_stock(memcg, batch - nr_pages);
2809 
2810 	/*
2811 	 * If the hierarchy is above the normal consumption range, schedule
2812 	 * reclaim on returning to userland.  We can perform reclaim here
2813 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2814 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2815 	 * not recorded as it most likely matches current's and won't
2816 	 * change in the meantime.  As high limit is checked again before
2817 	 * reclaim, the cost of mismatch is negligible.
2818 	 */
2819 	do {
2820 		bool mem_high, swap_high;
2821 
2822 		mem_high = page_counter_read(&memcg->memory) >
2823 			READ_ONCE(memcg->memory.high);
2824 		swap_high = page_counter_read(&memcg->swap) >
2825 			READ_ONCE(memcg->swap.high);
2826 
2827 		/* Don't bother a random interrupted task */
2828 		if (!in_task()) {
2829 			if (mem_high) {
2830 				schedule_work(&memcg->high_work);
2831 				break;
2832 			}
2833 			continue;
2834 		}
2835 
2836 		if (mem_high || swap_high) {
2837 			/*
2838 			 * The allocating tasks in this cgroup will need to do
2839 			 * reclaim or be throttled to prevent further growth
2840 			 * of the memory or swap footprints.
2841 			 *
2842 			 * Target some best-effort fairness between the tasks,
2843 			 * and distribute reclaim work and delay penalties
2844 			 * based on how much each task is actually allocating.
2845 			 */
2846 			current->memcg_nr_pages_over_high += batch;
2847 			set_notify_resume(current);
2848 			break;
2849 		}
2850 	} while ((memcg = parent_mem_cgroup(memcg)));
2851 
2852 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2853 	    !(current->flags & PF_MEMALLOC) &&
2854 	    gfpflags_allow_blocking(gfp_mask)) {
2855 		mem_cgroup_handle_over_high();
2856 	}
2857 	return 0;
2858 }
2859 
2860 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2861 			     unsigned int nr_pages)
2862 {
2863 	if (mem_cgroup_is_root(memcg))
2864 		return 0;
2865 
2866 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2867 }
2868 
2869 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2870 {
2871 	if (mem_cgroup_is_root(memcg))
2872 		return;
2873 
2874 	page_counter_uncharge(&memcg->memory, nr_pages);
2875 	if (do_memsw_account())
2876 		page_counter_uncharge(&memcg->memsw, nr_pages);
2877 }
2878 
2879 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2880 {
2881 	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2882 	/*
2883 	 * Any of the following ensures page's memcg stability:
2884 	 *
2885 	 * - the page lock
2886 	 * - LRU isolation
2887 	 * - lock_page_memcg()
2888 	 * - exclusive reference
2889 	 * - mem_cgroup_trylock_pages()
2890 	 */
2891 	folio->memcg_data = (unsigned long)memcg;
2892 }
2893 
2894 #ifdef CONFIG_MEMCG_KMEM
2895 /*
2896  * The allocated objcg pointers array is not accounted directly.
2897  * Moreover, it should not come from DMA buffer and is not readily
2898  * reclaimable. So those GFP bits should be masked off.
2899  */
2900 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2901 
2902 /*
2903  * mod_objcg_mlstate() may be called with irq enabled, so
2904  * mod_memcg_lruvec_state() should be used.
2905  */
2906 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2907 				     struct pglist_data *pgdat,
2908 				     enum node_stat_item idx, int nr)
2909 {
2910 	struct mem_cgroup *memcg;
2911 	struct lruvec *lruvec;
2912 
2913 	rcu_read_lock();
2914 	memcg = obj_cgroup_memcg(objcg);
2915 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2916 	mod_memcg_lruvec_state(lruvec, idx, nr);
2917 	rcu_read_unlock();
2918 }
2919 
2920 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2921 				 gfp_t gfp, bool new_slab)
2922 {
2923 	unsigned int objects = objs_per_slab(s, slab);
2924 	unsigned long memcg_data;
2925 	void *vec;
2926 
2927 	gfp &= ~OBJCGS_CLEAR_MASK;
2928 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2929 			   slab_nid(slab));
2930 	if (!vec)
2931 		return -ENOMEM;
2932 
2933 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2934 	if (new_slab) {
2935 		/*
2936 		 * If the slab is brand new and nobody can yet access its
2937 		 * memcg_data, no synchronization is required and memcg_data can
2938 		 * be simply assigned.
2939 		 */
2940 		slab->memcg_data = memcg_data;
2941 	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2942 		/*
2943 		 * If the slab is already in use, somebody can allocate and
2944 		 * assign obj_cgroups in parallel. In this case the existing
2945 		 * objcg vector should be reused.
2946 		 */
2947 		kfree(vec);
2948 		return 0;
2949 	}
2950 
2951 	kmemleak_not_leak(vec);
2952 	return 0;
2953 }
2954 
2955 static __always_inline
2956 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2957 {
2958 	/*
2959 	 * Slab objects are accounted individually, not per-page.
2960 	 * Memcg membership data for each individual object is saved in
2961 	 * slab->memcg_data.
2962 	 */
2963 	if (folio_test_slab(folio)) {
2964 		struct obj_cgroup **objcgs;
2965 		struct slab *slab;
2966 		unsigned int off;
2967 
2968 		slab = folio_slab(folio);
2969 		objcgs = slab_objcgs(slab);
2970 		if (!objcgs)
2971 			return NULL;
2972 
2973 		off = obj_to_index(slab->slab_cache, slab, p);
2974 		if (objcgs[off])
2975 			return obj_cgroup_memcg(objcgs[off]);
2976 
2977 		return NULL;
2978 	}
2979 
2980 	/*
2981 	 * folio_memcg_check() is used here, because in theory we can encounter
2982 	 * a folio where the slab flag has been cleared already, but
2983 	 * slab->memcg_data has not been freed yet
2984 	 * folio_memcg_check() will guarantee that a proper memory
2985 	 * cgroup pointer or NULL will be returned.
2986 	 */
2987 	return folio_memcg_check(folio);
2988 }
2989 
2990 /*
2991  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2992  *
2993  * A passed kernel object can be a slab object, vmalloc object or a generic
2994  * kernel page, so different mechanisms for getting the memory cgroup pointer
2995  * should be used.
2996  *
2997  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2998  * can not know for sure how the kernel object is implemented.
2999  * mem_cgroup_from_obj() can be safely used in such cases.
3000  *
3001  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3002  * cgroup_mutex, etc.
3003  */
3004 struct mem_cgroup *mem_cgroup_from_obj(void *p)
3005 {
3006 	struct folio *folio;
3007 
3008 	if (mem_cgroup_disabled())
3009 		return NULL;
3010 
3011 	if (unlikely(is_vmalloc_addr(p)))
3012 		folio = page_folio(vmalloc_to_page(p));
3013 	else
3014 		folio = virt_to_folio(p);
3015 
3016 	return mem_cgroup_from_obj_folio(folio, p);
3017 }
3018 
3019 /*
3020  * Returns a pointer to the memory cgroup to which the kernel object is charged.
3021  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3022  * allocated using vmalloc().
3023  *
3024  * A passed kernel object must be a slab object or a generic kernel page.
3025  *
3026  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3027  * cgroup_mutex, etc.
3028  */
3029 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3030 {
3031 	if (mem_cgroup_disabled())
3032 		return NULL;
3033 
3034 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3035 }
3036 
3037 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3038 {
3039 	struct obj_cgroup *objcg = NULL;
3040 
3041 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3042 		objcg = rcu_dereference(memcg->objcg);
3043 		if (objcg && obj_cgroup_tryget(objcg))
3044 			break;
3045 		objcg = NULL;
3046 	}
3047 	return objcg;
3048 }
3049 
3050 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3051 {
3052 	struct obj_cgroup *objcg = NULL;
3053 	struct mem_cgroup *memcg;
3054 
3055 	if (memcg_kmem_bypass())
3056 		return NULL;
3057 
3058 	rcu_read_lock();
3059 	if (unlikely(active_memcg()))
3060 		memcg = active_memcg();
3061 	else
3062 		memcg = mem_cgroup_from_task(current);
3063 	objcg = __get_obj_cgroup_from_memcg(memcg);
3064 	rcu_read_unlock();
3065 	return objcg;
3066 }
3067 
3068 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3069 {
3070 	struct obj_cgroup *objcg;
3071 
3072 	if (!memcg_kmem_online())
3073 		return NULL;
3074 
3075 	if (PageMemcgKmem(page)) {
3076 		objcg = __folio_objcg(page_folio(page));
3077 		obj_cgroup_get(objcg);
3078 	} else {
3079 		struct mem_cgroup *memcg;
3080 
3081 		rcu_read_lock();
3082 		memcg = __folio_memcg(page_folio(page));
3083 		if (memcg)
3084 			objcg = __get_obj_cgroup_from_memcg(memcg);
3085 		else
3086 			objcg = NULL;
3087 		rcu_read_unlock();
3088 	}
3089 	return objcg;
3090 }
3091 
3092 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3093 {
3094 	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3095 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3096 		if (nr_pages > 0)
3097 			page_counter_charge(&memcg->kmem, nr_pages);
3098 		else
3099 			page_counter_uncharge(&memcg->kmem, -nr_pages);
3100 	}
3101 }
3102 
3103 
3104 /*
3105  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3106  * @objcg: object cgroup to uncharge
3107  * @nr_pages: number of pages to uncharge
3108  */
3109 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3110 				      unsigned int nr_pages)
3111 {
3112 	struct mem_cgroup *memcg;
3113 
3114 	memcg = get_mem_cgroup_from_objcg(objcg);
3115 
3116 	memcg_account_kmem(memcg, -nr_pages);
3117 	refill_stock(memcg, nr_pages);
3118 
3119 	css_put(&memcg->css);
3120 }
3121 
3122 /*
3123  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3124  * @objcg: object cgroup to charge
3125  * @gfp: reclaim mode
3126  * @nr_pages: number of pages to charge
3127  *
3128  * Returns 0 on success, an error code on failure.
3129  */
3130 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3131 				   unsigned int nr_pages)
3132 {
3133 	struct mem_cgroup *memcg;
3134 	int ret;
3135 
3136 	memcg = get_mem_cgroup_from_objcg(objcg);
3137 
3138 	ret = try_charge_memcg(memcg, gfp, nr_pages);
3139 	if (ret)
3140 		goto out;
3141 
3142 	memcg_account_kmem(memcg, nr_pages);
3143 out:
3144 	css_put(&memcg->css);
3145 
3146 	return ret;
3147 }
3148 
3149 /**
3150  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3151  * @page: page to charge
3152  * @gfp: reclaim mode
3153  * @order: allocation order
3154  *
3155  * Returns 0 on success, an error code on failure.
3156  */
3157 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3158 {
3159 	struct obj_cgroup *objcg;
3160 	int ret = 0;
3161 
3162 	objcg = get_obj_cgroup_from_current();
3163 	if (objcg) {
3164 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3165 		if (!ret) {
3166 			page->memcg_data = (unsigned long)objcg |
3167 				MEMCG_DATA_KMEM;
3168 			return 0;
3169 		}
3170 		obj_cgroup_put(objcg);
3171 	}
3172 	return ret;
3173 }
3174 
3175 /**
3176  * __memcg_kmem_uncharge_page: uncharge a kmem page
3177  * @page: page to uncharge
3178  * @order: allocation order
3179  */
3180 void __memcg_kmem_uncharge_page(struct page *page, int order)
3181 {
3182 	struct folio *folio = page_folio(page);
3183 	struct obj_cgroup *objcg;
3184 	unsigned int nr_pages = 1 << order;
3185 
3186 	if (!folio_memcg_kmem(folio))
3187 		return;
3188 
3189 	objcg = __folio_objcg(folio);
3190 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3191 	folio->memcg_data = 0;
3192 	obj_cgroup_put(objcg);
3193 }
3194 
3195 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3196 		     enum node_stat_item idx, int nr)
3197 {
3198 	struct memcg_stock_pcp *stock;
3199 	struct obj_cgroup *old = NULL;
3200 	unsigned long flags;
3201 	int *bytes;
3202 
3203 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3204 	stock = this_cpu_ptr(&memcg_stock);
3205 
3206 	/*
3207 	 * Save vmstat data in stock and skip vmstat array update unless
3208 	 * accumulating over a page of vmstat data or when pgdat or idx
3209 	 * changes.
3210 	 */
3211 	if (stock->cached_objcg != objcg) {
3212 		old = drain_obj_stock(stock);
3213 		obj_cgroup_get(objcg);
3214 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3215 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3216 		stock->cached_objcg = objcg;
3217 		stock->cached_pgdat = pgdat;
3218 	} else if (stock->cached_pgdat != pgdat) {
3219 		/* Flush the existing cached vmstat data */
3220 		struct pglist_data *oldpg = stock->cached_pgdat;
3221 
3222 		if (stock->nr_slab_reclaimable_b) {
3223 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3224 					  stock->nr_slab_reclaimable_b);
3225 			stock->nr_slab_reclaimable_b = 0;
3226 		}
3227 		if (stock->nr_slab_unreclaimable_b) {
3228 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3229 					  stock->nr_slab_unreclaimable_b);
3230 			stock->nr_slab_unreclaimable_b = 0;
3231 		}
3232 		stock->cached_pgdat = pgdat;
3233 	}
3234 
3235 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3236 					       : &stock->nr_slab_unreclaimable_b;
3237 	/*
3238 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3239 	 * cached locally at least once before pushing it out.
3240 	 */
3241 	if (!*bytes) {
3242 		*bytes = nr;
3243 		nr = 0;
3244 	} else {
3245 		*bytes += nr;
3246 		if (abs(*bytes) > PAGE_SIZE) {
3247 			nr = *bytes;
3248 			*bytes = 0;
3249 		} else {
3250 			nr = 0;
3251 		}
3252 	}
3253 	if (nr)
3254 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3255 
3256 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3257 	if (old)
3258 		obj_cgroup_put(old);
3259 }
3260 
3261 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3262 {
3263 	struct memcg_stock_pcp *stock;
3264 	unsigned long flags;
3265 	bool ret = false;
3266 
3267 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3268 
3269 	stock = this_cpu_ptr(&memcg_stock);
3270 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3271 		stock->nr_bytes -= nr_bytes;
3272 		ret = true;
3273 	}
3274 
3275 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3276 
3277 	return ret;
3278 }
3279 
3280 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3281 {
3282 	struct obj_cgroup *old = stock->cached_objcg;
3283 
3284 	if (!old)
3285 		return NULL;
3286 
3287 	if (stock->nr_bytes) {
3288 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3289 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3290 
3291 		if (nr_pages) {
3292 			struct mem_cgroup *memcg;
3293 
3294 			memcg = get_mem_cgroup_from_objcg(old);
3295 
3296 			memcg_account_kmem(memcg, -nr_pages);
3297 			__refill_stock(memcg, nr_pages);
3298 
3299 			css_put(&memcg->css);
3300 		}
3301 
3302 		/*
3303 		 * The leftover is flushed to the centralized per-memcg value.
3304 		 * On the next attempt to refill obj stock it will be moved
3305 		 * to a per-cpu stock (probably, on an other CPU), see
3306 		 * refill_obj_stock().
3307 		 *
3308 		 * How often it's flushed is a trade-off between the memory
3309 		 * limit enforcement accuracy and potential CPU contention,
3310 		 * so it might be changed in the future.
3311 		 */
3312 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3313 		stock->nr_bytes = 0;
3314 	}
3315 
3316 	/*
3317 	 * Flush the vmstat data in current stock
3318 	 */
3319 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3320 		if (stock->nr_slab_reclaimable_b) {
3321 			mod_objcg_mlstate(old, stock->cached_pgdat,
3322 					  NR_SLAB_RECLAIMABLE_B,
3323 					  stock->nr_slab_reclaimable_b);
3324 			stock->nr_slab_reclaimable_b = 0;
3325 		}
3326 		if (stock->nr_slab_unreclaimable_b) {
3327 			mod_objcg_mlstate(old, stock->cached_pgdat,
3328 					  NR_SLAB_UNRECLAIMABLE_B,
3329 					  stock->nr_slab_unreclaimable_b);
3330 			stock->nr_slab_unreclaimable_b = 0;
3331 		}
3332 		stock->cached_pgdat = NULL;
3333 	}
3334 
3335 	stock->cached_objcg = NULL;
3336 	/*
3337 	 * The `old' objects needs to be released by the caller via
3338 	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3339 	 */
3340 	return old;
3341 }
3342 
3343 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3344 				     struct mem_cgroup *root_memcg)
3345 {
3346 	struct mem_cgroup *memcg;
3347 
3348 	if (stock->cached_objcg) {
3349 		memcg = obj_cgroup_memcg(stock->cached_objcg);
3350 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3351 			return true;
3352 	}
3353 
3354 	return false;
3355 }
3356 
3357 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3358 			     bool allow_uncharge)
3359 {
3360 	struct memcg_stock_pcp *stock;
3361 	struct obj_cgroup *old = NULL;
3362 	unsigned long flags;
3363 	unsigned int nr_pages = 0;
3364 
3365 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3366 
3367 	stock = this_cpu_ptr(&memcg_stock);
3368 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3369 		old = drain_obj_stock(stock);
3370 		obj_cgroup_get(objcg);
3371 		stock->cached_objcg = objcg;
3372 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3373 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3374 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3375 	}
3376 	stock->nr_bytes += nr_bytes;
3377 
3378 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3379 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3380 		stock->nr_bytes &= (PAGE_SIZE - 1);
3381 	}
3382 
3383 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3384 	if (old)
3385 		obj_cgroup_put(old);
3386 
3387 	if (nr_pages)
3388 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3389 }
3390 
3391 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3392 {
3393 	unsigned int nr_pages, nr_bytes;
3394 	int ret;
3395 
3396 	if (consume_obj_stock(objcg, size))
3397 		return 0;
3398 
3399 	/*
3400 	 * In theory, objcg->nr_charged_bytes can have enough
3401 	 * pre-charged bytes to satisfy the allocation. However,
3402 	 * flushing objcg->nr_charged_bytes requires two atomic
3403 	 * operations, and objcg->nr_charged_bytes can't be big.
3404 	 * The shared objcg->nr_charged_bytes can also become a
3405 	 * performance bottleneck if all tasks of the same memcg are
3406 	 * trying to update it. So it's better to ignore it and try
3407 	 * grab some new pages. The stock's nr_bytes will be flushed to
3408 	 * objcg->nr_charged_bytes later on when objcg changes.
3409 	 *
3410 	 * The stock's nr_bytes may contain enough pre-charged bytes
3411 	 * to allow one less page from being charged, but we can't rely
3412 	 * on the pre-charged bytes not being changed outside of
3413 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3414 	 * pre-charged bytes as well when charging pages. To avoid a
3415 	 * page uncharge right after a page charge, we set the
3416 	 * allow_uncharge flag to false when calling refill_obj_stock()
3417 	 * to temporarily allow the pre-charged bytes to exceed the page
3418 	 * size limit. The maximum reachable value of the pre-charged
3419 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3420 	 * race.
3421 	 */
3422 	nr_pages = size >> PAGE_SHIFT;
3423 	nr_bytes = size & (PAGE_SIZE - 1);
3424 
3425 	if (nr_bytes)
3426 		nr_pages += 1;
3427 
3428 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3429 	if (!ret && nr_bytes)
3430 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3431 
3432 	return ret;
3433 }
3434 
3435 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3436 {
3437 	refill_obj_stock(objcg, size, true);
3438 }
3439 
3440 #endif /* CONFIG_MEMCG_KMEM */
3441 
3442 /*
3443  * Because page_memcg(head) is not set on tails, set it now.
3444  */
3445 void split_page_memcg(struct page *head, unsigned int nr)
3446 {
3447 	struct folio *folio = page_folio(head);
3448 	struct mem_cgroup *memcg = folio_memcg(folio);
3449 	int i;
3450 
3451 	if (mem_cgroup_disabled() || !memcg)
3452 		return;
3453 
3454 	for (i = 1; i < nr; i++)
3455 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3456 
3457 	if (folio_memcg_kmem(folio))
3458 		obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3459 	else
3460 		css_get_many(&memcg->css, nr - 1);
3461 }
3462 
3463 #ifdef CONFIG_SWAP
3464 /**
3465  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3466  * @entry: swap entry to be moved
3467  * @from:  mem_cgroup which the entry is moved from
3468  * @to:  mem_cgroup which the entry is moved to
3469  *
3470  * It succeeds only when the swap_cgroup's record for this entry is the same
3471  * as the mem_cgroup's id of @from.
3472  *
3473  * Returns 0 on success, -EINVAL on failure.
3474  *
3475  * The caller must have charged to @to, IOW, called page_counter_charge() about
3476  * both res and memsw, and called css_get().
3477  */
3478 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3479 				struct mem_cgroup *from, struct mem_cgroup *to)
3480 {
3481 	unsigned short old_id, new_id;
3482 
3483 	old_id = mem_cgroup_id(from);
3484 	new_id = mem_cgroup_id(to);
3485 
3486 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3487 		mod_memcg_state(from, MEMCG_SWAP, -1);
3488 		mod_memcg_state(to, MEMCG_SWAP, 1);
3489 		return 0;
3490 	}
3491 	return -EINVAL;
3492 }
3493 #else
3494 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3495 				struct mem_cgroup *from, struct mem_cgroup *to)
3496 {
3497 	return -EINVAL;
3498 }
3499 #endif
3500 
3501 static DEFINE_MUTEX(memcg_max_mutex);
3502 
3503 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3504 				 unsigned long max, bool memsw)
3505 {
3506 	bool enlarge = false;
3507 	bool drained = false;
3508 	int ret;
3509 	bool limits_invariant;
3510 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3511 
3512 	do {
3513 		if (signal_pending(current)) {
3514 			ret = -EINTR;
3515 			break;
3516 		}
3517 
3518 		mutex_lock(&memcg_max_mutex);
3519 		/*
3520 		 * Make sure that the new limit (memsw or memory limit) doesn't
3521 		 * break our basic invariant rule memory.max <= memsw.max.
3522 		 */
3523 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3524 					   max <= memcg->memsw.max;
3525 		if (!limits_invariant) {
3526 			mutex_unlock(&memcg_max_mutex);
3527 			ret = -EINVAL;
3528 			break;
3529 		}
3530 		if (max > counter->max)
3531 			enlarge = true;
3532 		ret = page_counter_set_max(counter, max);
3533 		mutex_unlock(&memcg_max_mutex);
3534 
3535 		if (!ret)
3536 			break;
3537 
3538 		if (!drained) {
3539 			drain_all_stock(memcg);
3540 			drained = true;
3541 			continue;
3542 		}
3543 
3544 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3545 					memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3546 			ret = -EBUSY;
3547 			break;
3548 		}
3549 	} while (true);
3550 
3551 	if (!ret && enlarge)
3552 		memcg_oom_recover(memcg);
3553 
3554 	return ret;
3555 }
3556 
3557 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3558 					    gfp_t gfp_mask,
3559 					    unsigned long *total_scanned)
3560 {
3561 	unsigned long nr_reclaimed = 0;
3562 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3563 	unsigned long reclaimed;
3564 	int loop = 0;
3565 	struct mem_cgroup_tree_per_node *mctz;
3566 	unsigned long excess;
3567 
3568 	if (lru_gen_enabled())
3569 		return 0;
3570 
3571 	if (order > 0)
3572 		return 0;
3573 
3574 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3575 
3576 	/*
3577 	 * Do not even bother to check the largest node if the root
3578 	 * is empty. Do it lockless to prevent lock bouncing. Races
3579 	 * are acceptable as soft limit is best effort anyway.
3580 	 */
3581 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3582 		return 0;
3583 
3584 	/*
3585 	 * This loop can run a while, specially if mem_cgroup's continuously
3586 	 * keep exceeding their soft limit and putting the system under
3587 	 * pressure
3588 	 */
3589 	do {
3590 		if (next_mz)
3591 			mz = next_mz;
3592 		else
3593 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3594 		if (!mz)
3595 			break;
3596 
3597 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3598 						    gfp_mask, total_scanned);
3599 		nr_reclaimed += reclaimed;
3600 		spin_lock_irq(&mctz->lock);
3601 
3602 		/*
3603 		 * If we failed to reclaim anything from this memory cgroup
3604 		 * it is time to move on to the next cgroup
3605 		 */
3606 		next_mz = NULL;
3607 		if (!reclaimed)
3608 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3609 
3610 		excess = soft_limit_excess(mz->memcg);
3611 		/*
3612 		 * One school of thought says that we should not add
3613 		 * back the node to the tree if reclaim returns 0.
3614 		 * But our reclaim could return 0, simply because due
3615 		 * to priority we are exposing a smaller subset of
3616 		 * memory to reclaim from. Consider this as a longer
3617 		 * term TODO.
3618 		 */
3619 		/* If excess == 0, no tree ops */
3620 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3621 		spin_unlock_irq(&mctz->lock);
3622 		css_put(&mz->memcg->css);
3623 		loop++;
3624 		/*
3625 		 * Could not reclaim anything and there are no more
3626 		 * mem cgroups to try or we seem to be looping without
3627 		 * reclaiming anything.
3628 		 */
3629 		if (!nr_reclaimed &&
3630 			(next_mz == NULL ||
3631 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3632 			break;
3633 	} while (!nr_reclaimed);
3634 	if (next_mz)
3635 		css_put(&next_mz->memcg->css);
3636 	return nr_reclaimed;
3637 }
3638 
3639 /*
3640  * Reclaims as many pages from the given memcg as possible.
3641  *
3642  * Caller is responsible for holding css reference for memcg.
3643  */
3644 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3645 {
3646 	int nr_retries = MAX_RECLAIM_RETRIES;
3647 
3648 	/* we call try-to-free pages for make this cgroup empty */
3649 	lru_add_drain_all();
3650 
3651 	drain_all_stock(memcg);
3652 
3653 	/* try to free all pages in this cgroup */
3654 	while (nr_retries && page_counter_read(&memcg->memory)) {
3655 		if (signal_pending(current))
3656 			return -EINTR;
3657 
3658 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3659 						  MEMCG_RECLAIM_MAY_SWAP))
3660 			nr_retries--;
3661 	}
3662 
3663 	return 0;
3664 }
3665 
3666 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3667 					    char *buf, size_t nbytes,
3668 					    loff_t off)
3669 {
3670 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3671 
3672 	if (mem_cgroup_is_root(memcg))
3673 		return -EINVAL;
3674 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3675 }
3676 
3677 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3678 				     struct cftype *cft)
3679 {
3680 	return 1;
3681 }
3682 
3683 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3684 				      struct cftype *cft, u64 val)
3685 {
3686 	if (val == 1)
3687 		return 0;
3688 
3689 	pr_warn_once("Non-hierarchical mode is deprecated. "
3690 		     "Please report your usecase to linux-mm@kvack.org if you "
3691 		     "depend on this functionality.\n");
3692 
3693 	return -EINVAL;
3694 }
3695 
3696 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3697 {
3698 	unsigned long val;
3699 
3700 	if (mem_cgroup_is_root(memcg)) {
3701 		/*
3702 		 * We can reach here from irq context through:
3703 		 * uncharge_batch()
3704 		 * |--memcg_check_events()
3705 		 *    |--mem_cgroup_threshold()
3706 		 *       |--__mem_cgroup_threshold()
3707 		 *          |--mem_cgroup_usage
3708 		 *
3709 		 * rstat flushing is an expensive operation that should not be
3710 		 * done from irq context; use stale stats in this case.
3711 		 * Arguably, usage threshold events are not reliable on the root
3712 		 * memcg anyway since its usage is ill-defined.
3713 		 *
3714 		 * Additionally, other call paths through memcg_check_events()
3715 		 * disable irqs, so make sure we are flushing stats atomically.
3716 		 */
3717 		if (in_task())
3718 			mem_cgroup_flush_stats_atomic();
3719 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3720 			memcg_page_state(memcg, NR_ANON_MAPPED);
3721 		if (swap)
3722 			val += memcg_page_state(memcg, MEMCG_SWAP);
3723 	} else {
3724 		if (!swap)
3725 			val = page_counter_read(&memcg->memory);
3726 		else
3727 			val = page_counter_read(&memcg->memsw);
3728 	}
3729 	return val;
3730 }
3731 
3732 enum {
3733 	RES_USAGE,
3734 	RES_LIMIT,
3735 	RES_MAX_USAGE,
3736 	RES_FAILCNT,
3737 	RES_SOFT_LIMIT,
3738 };
3739 
3740 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3741 			       struct cftype *cft)
3742 {
3743 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3744 	struct page_counter *counter;
3745 
3746 	switch (MEMFILE_TYPE(cft->private)) {
3747 	case _MEM:
3748 		counter = &memcg->memory;
3749 		break;
3750 	case _MEMSWAP:
3751 		counter = &memcg->memsw;
3752 		break;
3753 	case _KMEM:
3754 		counter = &memcg->kmem;
3755 		break;
3756 	case _TCP:
3757 		counter = &memcg->tcpmem;
3758 		break;
3759 	default:
3760 		BUG();
3761 	}
3762 
3763 	switch (MEMFILE_ATTR(cft->private)) {
3764 	case RES_USAGE:
3765 		if (counter == &memcg->memory)
3766 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3767 		if (counter == &memcg->memsw)
3768 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3769 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3770 	case RES_LIMIT:
3771 		return (u64)counter->max * PAGE_SIZE;
3772 	case RES_MAX_USAGE:
3773 		return (u64)counter->watermark * PAGE_SIZE;
3774 	case RES_FAILCNT:
3775 		return counter->failcnt;
3776 	case RES_SOFT_LIMIT:
3777 		return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3778 	default:
3779 		BUG();
3780 	}
3781 }
3782 
3783 /*
3784  * This function doesn't do anything useful. Its only job is to provide a read
3785  * handler for a file so that cgroup_file_mode() will add read permissions.
3786  */
3787 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3788 				     __always_unused void *v)
3789 {
3790 	return -EINVAL;
3791 }
3792 
3793 #ifdef CONFIG_MEMCG_KMEM
3794 static int memcg_online_kmem(struct mem_cgroup *memcg)
3795 {
3796 	struct obj_cgroup *objcg;
3797 
3798 	if (mem_cgroup_kmem_disabled())
3799 		return 0;
3800 
3801 	if (unlikely(mem_cgroup_is_root(memcg)))
3802 		return 0;
3803 
3804 	objcg = obj_cgroup_alloc();
3805 	if (!objcg)
3806 		return -ENOMEM;
3807 
3808 	objcg->memcg = memcg;
3809 	rcu_assign_pointer(memcg->objcg, objcg);
3810 
3811 	static_branch_enable(&memcg_kmem_online_key);
3812 
3813 	memcg->kmemcg_id = memcg->id.id;
3814 
3815 	return 0;
3816 }
3817 
3818 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3819 {
3820 	struct mem_cgroup *parent;
3821 
3822 	if (mem_cgroup_kmem_disabled())
3823 		return;
3824 
3825 	if (unlikely(mem_cgroup_is_root(memcg)))
3826 		return;
3827 
3828 	parent = parent_mem_cgroup(memcg);
3829 	if (!parent)
3830 		parent = root_mem_cgroup;
3831 
3832 	memcg_reparent_objcgs(memcg, parent);
3833 
3834 	/*
3835 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3836 	 * corresponding to this cgroup are guaranteed to remain empty.
3837 	 * The ordering is imposed by list_lru_node->lock taken by
3838 	 * memcg_reparent_list_lrus().
3839 	 */
3840 	memcg_reparent_list_lrus(memcg, parent);
3841 }
3842 #else
3843 static int memcg_online_kmem(struct mem_cgroup *memcg)
3844 {
3845 	return 0;
3846 }
3847 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3848 {
3849 }
3850 #endif /* CONFIG_MEMCG_KMEM */
3851 
3852 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3853 {
3854 	int ret;
3855 
3856 	mutex_lock(&memcg_max_mutex);
3857 
3858 	ret = page_counter_set_max(&memcg->tcpmem, max);
3859 	if (ret)
3860 		goto out;
3861 
3862 	if (!memcg->tcpmem_active) {
3863 		/*
3864 		 * The active flag needs to be written after the static_key
3865 		 * update. This is what guarantees that the socket activation
3866 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3867 		 * for details, and note that we don't mark any socket as
3868 		 * belonging to this memcg until that flag is up.
3869 		 *
3870 		 * We need to do this, because static_keys will span multiple
3871 		 * sites, but we can't control their order. If we mark a socket
3872 		 * as accounted, but the accounting functions are not patched in
3873 		 * yet, we'll lose accounting.
3874 		 *
3875 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3876 		 * because when this value change, the code to process it is not
3877 		 * patched in yet.
3878 		 */
3879 		static_branch_inc(&memcg_sockets_enabled_key);
3880 		memcg->tcpmem_active = true;
3881 	}
3882 out:
3883 	mutex_unlock(&memcg_max_mutex);
3884 	return ret;
3885 }
3886 
3887 /*
3888  * The user of this function is...
3889  * RES_LIMIT.
3890  */
3891 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3892 				char *buf, size_t nbytes, loff_t off)
3893 {
3894 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3895 	unsigned long nr_pages;
3896 	int ret;
3897 
3898 	buf = strstrip(buf);
3899 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3900 	if (ret)
3901 		return ret;
3902 
3903 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3904 	case RES_LIMIT:
3905 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3906 			ret = -EINVAL;
3907 			break;
3908 		}
3909 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3910 		case _MEM:
3911 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3912 			break;
3913 		case _MEMSWAP:
3914 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3915 			break;
3916 		case _KMEM:
3917 			/* kmem.limit_in_bytes is deprecated. */
3918 			ret = -EOPNOTSUPP;
3919 			break;
3920 		case _TCP:
3921 			ret = memcg_update_tcp_max(memcg, nr_pages);
3922 			break;
3923 		}
3924 		break;
3925 	case RES_SOFT_LIMIT:
3926 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3927 			ret = -EOPNOTSUPP;
3928 		} else {
3929 			WRITE_ONCE(memcg->soft_limit, nr_pages);
3930 			ret = 0;
3931 		}
3932 		break;
3933 	}
3934 	return ret ?: nbytes;
3935 }
3936 
3937 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3938 				size_t nbytes, loff_t off)
3939 {
3940 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3941 	struct page_counter *counter;
3942 
3943 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3944 	case _MEM:
3945 		counter = &memcg->memory;
3946 		break;
3947 	case _MEMSWAP:
3948 		counter = &memcg->memsw;
3949 		break;
3950 	case _KMEM:
3951 		counter = &memcg->kmem;
3952 		break;
3953 	case _TCP:
3954 		counter = &memcg->tcpmem;
3955 		break;
3956 	default:
3957 		BUG();
3958 	}
3959 
3960 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3961 	case RES_MAX_USAGE:
3962 		page_counter_reset_watermark(counter);
3963 		break;
3964 	case RES_FAILCNT:
3965 		counter->failcnt = 0;
3966 		break;
3967 	default:
3968 		BUG();
3969 	}
3970 
3971 	return nbytes;
3972 }
3973 
3974 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3975 					struct cftype *cft)
3976 {
3977 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3978 }
3979 
3980 #ifdef CONFIG_MMU
3981 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3982 					struct cftype *cft, u64 val)
3983 {
3984 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3985 
3986 	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3987 		     "Please report your usecase to linux-mm@kvack.org if you "
3988 		     "depend on this functionality.\n");
3989 
3990 	if (val & ~MOVE_MASK)
3991 		return -EINVAL;
3992 
3993 	/*
3994 	 * No kind of locking is needed in here, because ->can_attach() will
3995 	 * check this value once in the beginning of the process, and then carry
3996 	 * on with stale data. This means that changes to this value will only
3997 	 * affect task migrations starting after the change.
3998 	 */
3999 	memcg->move_charge_at_immigrate = val;
4000 	return 0;
4001 }
4002 #else
4003 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4004 					struct cftype *cft, u64 val)
4005 {
4006 	return -ENOSYS;
4007 }
4008 #endif
4009 
4010 #ifdef CONFIG_NUMA
4011 
4012 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4013 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4014 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
4015 
4016 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4017 				int nid, unsigned int lru_mask, bool tree)
4018 {
4019 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4020 	unsigned long nr = 0;
4021 	enum lru_list lru;
4022 
4023 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
4024 
4025 	for_each_lru(lru) {
4026 		if (!(BIT(lru) & lru_mask))
4027 			continue;
4028 		if (tree)
4029 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4030 		else
4031 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4032 	}
4033 	return nr;
4034 }
4035 
4036 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4037 					     unsigned int lru_mask,
4038 					     bool tree)
4039 {
4040 	unsigned long nr = 0;
4041 	enum lru_list lru;
4042 
4043 	for_each_lru(lru) {
4044 		if (!(BIT(lru) & lru_mask))
4045 			continue;
4046 		if (tree)
4047 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4048 		else
4049 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4050 	}
4051 	return nr;
4052 }
4053 
4054 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4055 {
4056 	struct numa_stat {
4057 		const char *name;
4058 		unsigned int lru_mask;
4059 	};
4060 
4061 	static const struct numa_stat stats[] = {
4062 		{ "total", LRU_ALL },
4063 		{ "file", LRU_ALL_FILE },
4064 		{ "anon", LRU_ALL_ANON },
4065 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
4066 	};
4067 	const struct numa_stat *stat;
4068 	int nid;
4069 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4070 
4071 	mem_cgroup_flush_stats();
4072 
4073 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4074 		seq_printf(m, "%s=%lu", stat->name,
4075 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4076 						   false));
4077 		for_each_node_state(nid, N_MEMORY)
4078 			seq_printf(m, " N%d=%lu", nid,
4079 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4080 							stat->lru_mask, false));
4081 		seq_putc(m, '\n');
4082 	}
4083 
4084 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4085 
4086 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
4087 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4088 						   true));
4089 		for_each_node_state(nid, N_MEMORY)
4090 			seq_printf(m, " N%d=%lu", nid,
4091 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4092 							stat->lru_mask, true));
4093 		seq_putc(m, '\n');
4094 	}
4095 
4096 	return 0;
4097 }
4098 #endif /* CONFIG_NUMA */
4099 
4100 static const unsigned int memcg1_stats[] = {
4101 	NR_FILE_PAGES,
4102 	NR_ANON_MAPPED,
4103 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4104 	NR_ANON_THPS,
4105 #endif
4106 	NR_SHMEM,
4107 	NR_FILE_MAPPED,
4108 	NR_FILE_DIRTY,
4109 	NR_WRITEBACK,
4110 	WORKINGSET_REFAULT_ANON,
4111 	WORKINGSET_REFAULT_FILE,
4112 	MEMCG_SWAP,
4113 };
4114 
4115 static const char *const memcg1_stat_names[] = {
4116 	"cache",
4117 	"rss",
4118 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4119 	"rss_huge",
4120 #endif
4121 	"shmem",
4122 	"mapped_file",
4123 	"dirty",
4124 	"writeback",
4125 	"workingset_refault_anon",
4126 	"workingset_refault_file",
4127 	"swap",
4128 };
4129 
4130 /* Universal VM events cgroup1 shows, original sort order */
4131 static const unsigned int memcg1_events[] = {
4132 	PGPGIN,
4133 	PGPGOUT,
4134 	PGFAULT,
4135 	PGMAJFAULT,
4136 };
4137 
4138 static int memcg_stat_show(struct seq_file *m, void *v)
4139 {
4140 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4141 	unsigned long memory, memsw;
4142 	struct mem_cgroup *mi;
4143 	unsigned int i;
4144 
4145 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4146 
4147 	mem_cgroup_flush_stats();
4148 
4149 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4150 		unsigned long nr;
4151 
4152 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4153 			continue;
4154 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4155 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4156 			   nr * memcg_page_state_unit(memcg1_stats[i]));
4157 	}
4158 
4159 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4160 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4161 			   memcg_events_local(memcg, memcg1_events[i]));
4162 
4163 	for (i = 0; i < NR_LRU_LISTS; i++)
4164 		seq_printf(m, "%s %lu\n", lru_list_name(i),
4165 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4166 			   PAGE_SIZE);
4167 
4168 	/* Hierarchical information */
4169 	memory = memsw = PAGE_COUNTER_MAX;
4170 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4171 		memory = min(memory, READ_ONCE(mi->memory.max));
4172 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4173 	}
4174 	seq_printf(m, "hierarchical_memory_limit %llu\n",
4175 		   (u64)memory * PAGE_SIZE);
4176 	if (do_memsw_account())
4177 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4178 			   (u64)memsw * PAGE_SIZE);
4179 
4180 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4181 		unsigned long nr;
4182 
4183 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4184 			continue;
4185 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4186 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4187 			   (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4188 	}
4189 
4190 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4191 		seq_printf(m, "total_%s %llu\n",
4192 			   vm_event_name(memcg1_events[i]),
4193 			   (u64)memcg_events(memcg, memcg1_events[i]));
4194 
4195 	for (i = 0; i < NR_LRU_LISTS; i++)
4196 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4197 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4198 			   PAGE_SIZE);
4199 
4200 #ifdef CONFIG_DEBUG_VM
4201 	{
4202 		pg_data_t *pgdat;
4203 		struct mem_cgroup_per_node *mz;
4204 		unsigned long anon_cost = 0;
4205 		unsigned long file_cost = 0;
4206 
4207 		for_each_online_pgdat(pgdat) {
4208 			mz = memcg->nodeinfo[pgdat->node_id];
4209 
4210 			anon_cost += mz->lruvec.anon_cost;
4211 			file_cost += mz->lruvec.file_cost;
4212 		}
4213 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4214 		seq_printf(m, "file_cost %lu\n", file_cost);
4215 	}
4216 #endif
4217 
4218 	return 0;
4219 }
4220 
4221 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4222 				      struct cftype *cft)
4223 {
4224 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4225 
4226 	return mem_cgroup_swappiness(memcg);
4227 }
4228 
4229 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4230 				       struct cftype *cft, u64 val)
4231 {
4232 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4233 
4234 	if (val > 200)
4235 		return -EINVAL;
4236 
4237 	if (!mem_cgroup_is_root(memcg))
4238 		WRITE_ONCE(memcg->swappiness, val);
4239 	else
4240 		WRITE_ONCE(vm_swappiness, val);
4241 
4242 	return 0;
4243 }
4244 
4245 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4246 {
4247 	struct mem_cgroup_threshold_ary *t;
4248 	unsigned long usage;
4249 	int i;
4250 
4251 	rcu_read_lock();
4252 	if (!swap)
4253 		t = rcu_dereference(memcg->thresholds.primary);
4254 	else
4255 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4256 
4257 	if (!t)
4258 		goto unlock;
4259 
4260 	usage = mem_cgroup_usage(memcg, swap);
4261 
4262 	/*
4263 	 * current_threshold points to threshold just below or equal to usage.
4264 	 * If it's not true, a threshold was crossed after last
4265 	 * call of __mem_cgroup_threshold().
4266 	 */
4267 	i = t->current_threshold;
4268 
4269 	/*
4270 	 * Iterate backward over array of thresholds starting from
4271 	 * current_threshold and check if a threshold is crossed.
4272 	 * If none of thresholds below usage is crossed, we read
4273 	 * only one element of the array here.
4274 	 */
4275 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4276 		eventfd_signal(t->entries[i].eventfd, 1);
4277 
4278 	/* i = current_threshold + 1 */
4279 	i++;
4280 
4281 	/*
4282 	 * Iterate forward over array of thresholds starting from
4283 	 * current_threshold+1 and check if a threshold is crossed.
4284 	 * If none of thresholds above usage is crossed, we read
4285 	 * only one element of the array here.
4286 	 */
4287 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4288 		eventfd_signal(t->entries[i].eventfd, 1);
4289 
4290 	/* Update current_threshold */
4291 	t->current_threshold = i - 1;
4292 unlock:
4293 	rcu_read_unlock();
4294 }
4295 
4296 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4297 {
4298 	while (memcg) {
4299 		__mem_cgroup_threshold(memcg, false);
4300 		if (do_memsw_account())
4301 			__mem_cgroup_threshold(memcg, true);
4302 
4303 		memcg = parent_mem_cgroup(memcg);
4304 	}
4305 }
4306 
4307 static int compare_thresholds(const void *a, const void *b)
4308 {
4309 	const struct mem_cgroup_threshold *_a = a;
4310 	const struct mem_cgroup_threshold *_b = b;
4311 
4312 	if (_a->threshold > _b->threshold)
4313 		return 1;
4314 
4315 	if (_a->threshold < _b->threshold)
4316 		return -1;
4317 
4318 	return 0;
4319 }
4320 
4321 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4322 {
4323 	struct mem_cgroup_eventfd_list *ev;
4324 
4325 	spin_lock(&memcg_oom_lock);
4326 
4327 	list_for_each_entry(ev, &memcg->oom_notify, list)
4328 		eventfd_signal(ev->eventfd, 1);
4329 
4330 	spin_unlock(&memcg_oom_lock);
4331 	return 0;
4332 }
4333 
4334 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4335 {
4336 	struct mem_cgroup *iter;
4337 
4338 	for_each_mem_cgroup_tree(iter, memcg)
4339 		mem_cgroup_oom_notify_cb(iter);
4340 }
4341 
4342 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4343 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4344 {
4345 	struct mem_cgroup_thresholds *thresholds;
4346 	struct mem_cgroup_threshold_ary *new;
4347 	unsigned long threshold;
4348 	unsigned long usage;
4349 	int i, size, ret;
4350 
4351 	ret = page_counter_memparse(args, "-1", &threshold);
4352 	if (ret)
4353 		return ret;
4354 
4355 	mutex_lock(&memcg->thresholds_lock);
4356 
4357 	if (type == _MEM) {
4358 		thresholds = &memcg->thresholds;
4359 		usage = mem_cgroup_usage(memcg, false);
4360 	} else if (type == _MEMSWAP) {
4361 		thresholds = &memcg->memsw_thresholds;
4362 		usage = mem_cgroup_usage(memcg, true);
4363 	} else
4364 		BUG();
4365 
4366 	/* Check if a threshold crossed before adding a new one */
4367 	if (thresholds->primary)
4368 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4369 
4370 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4371 
4372 	/* Allocate memory for new array of thresholds */
4373 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4374 	if (!new) {
4375 		ret = -ENOMEM;
4376 		goto unlock;
4377 	}
4378 	new->size = size;
4379 
4380 	/* Copy thresholds (if any) to new array */
4381 	if (thresholds->primary)
4382 		memcpy(new->entries, thresholds->primary->entries,
4383 		       flex_array_size(new, entries, size - 1));
4384 
4385 	/* Add new threshold */
4386 	new->entries[size - 1].eventfd = eventfd;
4387 	new->entries[size - 1].threshold = threshold;
4388 
4389 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4390 	sort(new->entries, size, sizeof(*new->entries),
4391 			compare_thresholds, NULL);
4392 
4393 	/* Find current threshold */
4394 	new->current_threshold = -1;
4395 	for (i = 0; i < size; i++) {
4396 		if (new->entries[i].threshold <= usage) {
4397 			/*
4398 			 * new->current_threshold will not be used until
4399 			 * rcu_assign_pointer(), so it's safe to increment
4400 			 * it here.
4401 			 */
4402 			++new->current_threshold;
4403 		} else
4404 			break;
4405 	}
4406 
4407 	/* Free old spare buffer and save old primary buffer as spare */
4408 	kfree(thresholds->spare);
4409 	thresholds->spare = thresholds->primary;
4410 
4411 	rcu_assign_pointer(thresholds->primary, new);
4412 
4413 	/* To be sure that nobody uses thresholds */
4414 	synchronize_rcu();
4415 
4416 unlock:
4417 	mutex_unlock(&memcg->thresholds_lock);
4418 
4419 	return ret;
4420 }
4421 
4422 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4423 	struct eventfd_ctx *eventfd, const char *args)
4424 {
4425 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4426 }
4427 
4428 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4429 	struct eventfd_ctx *eventfd, const char *args)
4430 {
4431 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4432 }
4433 
4434 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4435 	struct eventfd_ctx *eventfd, enum res_type type)
4436 {
4437 	struct mem_cgroup_thresholds *thresholds;
4438 	struct mem_cgroup_threshold_ary *new;
4439 	unsigned long usage;
4440 	int i, j, size, entries;
4441 
4442 	mutex_lock(&memcg->thresholds_lock);
4443 
4444 	if (type == _MEM) {
4445 		thresholds = &memcg->thresholds;
4446 		usage = mem_cgroup_usage(memcg, false);
4447 	} else if (type == _MEMSWAP) {
4448 		thresholds = &memcg->memsw_thresholds;
4449 		usage = mem_cgroup_usage(memcg, true);
4450 	} else
4451 		BUG();
4452 
4453 	if (!thresholds->primary)
4454 		goto unlock;
4455 
4456 	/* Check if a threshold crossed before removing */
4457 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4458 
4459 	/* Calculate new number of threshold */
4460 	size = entries = 0;
4461 	for (i = 0; i < thresholds->primary->size; i++) {
4462 		if (thresholds->primary->entries[i].eventfd != eventfd)
4463 			size++;
4464 		else
4465 			entries++;
4466 	}
4467 
4468 	new = thresholds->spare;
4469 
4470 	/* If no items related to eventfd have been cleared, nothing to do */
4471 	if (!entries)
4472 		goto unlock;
4473 
4474 	/* Set thresholds array to NULL if we don't have thresholds */
4475 	if (!size) {
4476 		kfree(new);
4477 		new = NULL;
4478 		goto swap_buffers;
4479 	}
4480 
4481 	new->size = size;
4482 
4483 	/* Copy thresholds and find current threshold */
4484 	new->current_threshold = -1;
4485 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4486 		if (thresholds->primary->entries[i].eventfd == eventfd)
4487 			continue;
4488 
4489 		new->entries[j] = thresholds->primary->entries[i];
4490 		if (new->entries[j].threshold <= usage) {
4491 			/*
4492 			 * new->current_threshold will not be used
4493 			 * until rcu_assign_pointer(), so it's safe to increment
4494 			 * it here.
4495 			 */
4496 			++new->current_threshold;
4497 		}
4498 		j++;
4499 	}
4500 
4501 swap_buffers:
4502 	/* Swap primary and spare array */
4503 	thresholds->spare = thresholds->primary;
4504 
4505 	rcu_assign_pointer(thresholds->primary, new);
4506 
4507 	/* To be sure that nobody uses thresholds */
4508 	synchronize_rcu();
4509 
4510 	/* If all events are unregistered, free the spare array */
4511 	if (!new) {
4512 		kfree(thresholds->spare);
4513 		thresholds->spare = NULL;
4514 	}
4515 unlock:
4516 	mutex_unlock(&memcg->thresholds_lock);
4517 }
4518 
4519 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4520 	struct eventfd_ctx *eventfd)
4521 {
4522 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4523 }
4524 
4525 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4526 	struct eventfd_ctx *eventfd)
4527 {
4528 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4529 }
4530 
4531 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4532 	struct eventfd_ctx *eventfd, const char *args)
4533 {
4534 	struct mem_cgroup_eventfd_list *event;
4535 
4536 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4537 	if (!event)
4538 		return -ENOMEM;
4539 
4540 	spin_lock(&memcg_oom_lock);
4541 
4542 	event->eventfd = eventfd;
4543 	list_add(&event->list, &memcg->oom_notify);
4544 
4545 	/* already in OOM ? */
4546 	if (memcg->under_oom)
4547 		eventfd_signal(eventfd, 1);
4548 	spin_unlock(&memcg_oom_lock);
4549 
4550 	return 0;
4551 }
4552 
4553 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4554 	struct eventfd_ctx *eventfd)
4555 {
4556 	struct mem_cgroup_eventfd_list *ev, *tmp;
4557 
4558 	spin_lock(&memcg_oom_lock);
4559 
4560 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4561 		if (ev->eventfd == eventfd) {
4562 			list_del(&ev->list);
4563 			kfree(ev);
4564 		}
4565 	}
4566 
4567 	spin_unlock(&memcg_oom_lock);
4568 }
4569 
4570 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4571 {
4572 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4573 
4574 	seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4575 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4576 	seq_printf(sf, "oom_kill %lu\n",
4577 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4578 	return 0;
4579 }
4580 
4581 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4582 	struct cftype *cft, u64 val)
4583 {
4584 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4585 
4586 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4587 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4588 		return -EINVAL;
4589 
4590 	WRITE_ONCE(memcg->oom_kill_disable, val);
4591 	if (!val)
4592 		memcg_oom_recover(memcg);
4593 
4594 	return 0;
4595 }
4596 
4597 #ifdef CONFIG_CGROUP_WRITEBACK
4598 
4599 #include <trace/events/writeback.h>
4600 
4601 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4602 {
4603 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4604 }
4605 
4606 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4607 {
4608 	wb_domain_exit(&memcg->cgwb_domain);
4609 }
4610 
4611 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4612 {
4613 	wb_domain_size_changed(&memcg->cgwb_domain);
4614 }
4615 
4616 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4617 {
4618 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4619 
4620 	if (!memcg->css.parent)
4621 		return NULL;
4622 
4623 	return &memcg->cgwb_domain;
4624 }
4625 
4626 /**
4627  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4628  * @wb: bdi_writeback in question
4629  * @pfilepages: out parameter for number of file pages
4630  * @pheadroom: out parameter for number of allocatable pages according to memcg
4631  * @pdirty: out parameter for number of dirty pages
4632  * @pwriteback: out parameter for number of pages under writeback
4633  *
4634  * Determine the numbers of file, headroom, dirty, and writeback pages in
4635  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4636  * is a bit more involved.
4637  *
4638  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4639  * headroom is calculated as the lowest headroom of itself and the
4640  * ancestors.  Note that this doesn't consider the actual amount of
4641  * available memory in the system.  The caller should further cap
4642  * *@pheadroom accordingly.
4643  */
4644 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4645 			 unsigned long *pheadroom, unsigned long *pdirty,
4646 			 unsigned long *pwriteback)
4647 {
4648 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4649 	struct mem_cgroup *parent;
4650 
4651 	/*
4652 	 * wb_writeback() takes a spinlock and calls
4653 	 * wb_over_bg_thresh()->mem_cgroup_wb_stats(). Do not sleep.
4654 	 */
4655 	mem_cgroup_flush_stats_atomic();
4656 
4657 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4658 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4659 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4660 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4661 
4662 	*pheadroom = PAGE_COUNTER_MAX;
4663 	while ((parent = parent_mem_cgroup(memcg))) {
4664 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4665 					    READ_ONCE(memcg->memory.high));
4666 		unsigned long used = page_counter_read(&memcg->memory);
4667 
4668 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4669 		memcg = parent;
4670 	}
4671 }
4672 
4673 /*
4674  * Foreign dirty flushing
4675  *
4676  * There's an inherent mismatch between memcg and writeback.  The former
4677  * tracks ownership per-page while the latter per-inode.  This was a
4678  * deliberate design decision because honoring per-page ownership in the
4679  * writeback path is complicated, may lead to higher CPU and IO overheads
4680  * and deemed unnecessary given that write-sharing an inode across
4681  * different cgroups isn't a common use-case.
4682  *
4683  * Combined with inode majority-writer ownership switching, this works well
4684  * enough in most cases but there are some pathological cases.  For
4685  * example, let's say there are two cgroups A and B which keep writing to
4686  * different but confined parts of the same inode.  B owns the inode and
4687  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4688  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4689  * triggering background writeback.  A will be slowed down without a way to
4690  * make writeback of the dirty pages happen.
4691  *
4692  * Conditions like the above can lead to a cgroup getting repeatedly and
4693  * severely throttled after making some progress after each
4694  * dirty_expire_interval while the underlying IO device is almost
4695  * completely idle.
4696  *
4697  * Solving this problem completely requires matching the ownership tracking
4698  * granularities between memcg and writeback in either direction.  However,
4699  * the more egregious behaviors can be avoided by simply remembering the
4700  * most recent foreign dirtying events and initiating remote flushes on
4701  * them when local writeback isn't enough to keep the memory clean enough.
4702  *
4703  * The following two functions implement such mechanism.  When a foreign
4704  * page - a page whose memcg and writeback ownerships don't match - is
4705  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4706  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4707  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4708  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4709  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4710  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4711  * limited to MEMCG_CGWB_FRN_CNT.
4712  *
4713  * The mechanism only remembers IDs and doesn't hold any object references.
4714  * As being wrong occasionally doesn't matter, updates and accesses to the
4715  * records are lockless and racy.
4716  */
4717 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4718 					     struct bdi_writeback *wb)
4719 {
4720 	struct mem_cgroup *memcg = folio_memcg(folio);
4721 	struct memcg_cgwb_frn *frn;
4722 	u64 now = get_jiffies_64();
4723 	u64 oldest_at = now;
4724 	int oldest = -1;
4725 	int i;
4726 
4727 	trace_track_foreign_dirty(folio, wb);
4728 
4729 	/*
4730 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4731 	 * using it.  If not replace the oldest one which isn't being
4732 	 * written out.
4733 	 */
4734 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4735 		frn = &memcg->cgwb_frn[i];
4736 		if (frn->bdi_id == wb->bdi->id &&
4737 		    frn->memcg_id == wb->memcg_css->id)
4738 			break;
4739 		if (time_before64(frn->at, oldest_at) &&
4740 		    atomic_read(&frn->done.cnt) == 1) {
4741 			oldest = i;
4742 			oldest_at = frn->at;
4743 		}
4744 	}
4745 
4746 	if (i < MEMCG_CGWB_FRN_CNT) {
4747 		/*
4748 		 * Re-using an existing one.  Update timestamp lazily to
4749 		 * avoid making the cacheline hot.  We want them to be
4750 		 * reasonably up-to-date and significantly shorter than
4751 		 * dirty_expire_interval as that's what expires the record.
4752 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4753 		 */
4754 		unsigned long update_intv =
4755 			min_t(unsigned long, HZ,
4756 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4757 
4758 		if (time_before64(frn->at, now - update_intv))
4759 			frn->at = now;
4760 	} else if (oldest >= 0) {
4761 		/* replace the oldest free one */
4762 		frn = &memcg->cgwb_frn[oldest];
4763 		frn->bdi_id = wb->bdi->id;
4764 		frn->memcg_id = wb->memcg_css->id;
4765 		frn->at = now;
4766 	}
4767 }
4768 
4769 /* issue foreign writeback flushes for recorded foreign dirtying events */
4770 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4771 {
4772 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4773 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4774 	u64 now = jiffies_64;
4775 	int i;
4776 
4777 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4778 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4779 
4780 		/*
4781 		 * If the record is older than dirty_expire_interval,
4782 		 * writeback on it has already started.  No need to kick it
4783 		 * off again.  Also, don't start a new one if there's
4784 		 * already one in flight.
4785 		 */
4786 		if (time_after64(frn->at, now - intv) &&
4787 		    atomic_read(&frn->done.cnt) == 1) {
4788 			frn->at = 0;
4789 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4790 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4791 					       WB_REASON_FOREIGN_FLUSH,
4792 					       &frn->done);
4793 		}
4794 	}
4795 }
4796 
4797 #else	/* CONFIG_CGROUP_WRITEBACK */
4798 
4799 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4800 {
4801 	return 0;
4802 }
4803 
4804 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4805 {
4806 }
4807 
4808 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4809 {
4810 }
4811 
4812 #endif	/* CONFIG_CGROUP_WRITEBACK */
4813 
4814 /*
4815  * DO NOT USE IN NEW FILES.
4816  *
4817  * "cgroup.event_control" implementation.
4818  *
4819  * This is way over-engineered.  It tries to support fully configurable
4820  * events for each user.  Such level of flexibility is completely
4821  * unnecessary especially in the light of the planned unified hierarchy.
4822  *
4823  * Please deprecate this and replace with something simpler if at all
4824  * possible.
4825  */
4826 
4827 /*
4828  * Unregister event and free resources.
4829  *
4830  * Gets called from workqueue.
4831  */
4832 static void memcg_event_remove(struct work_struct *work)
4833 {
4834 	struct mem_cgroup_event *event =
4835 		container_of(work, struct mem_cgroup_event, remove);
4836 	struct mem_cgroup *memcg = event->memcg;
4837 
4838 	remove_wait_queue(event->wqh, &event->wait);
4839 
4840 	event->unregister_event(memcg, event->eventfd);
4841 
4842 	/* Notify userspace the event is going away. */
4843 	eventfd_signal(event->eventfd, 1);
4844 
4845 	eventfd_ctx_put(event->eventfd);
4846 	kfree(event);
4847 	css_put(&memcg->css);
4848 }
4849 
4850 /*
4851  * Gets called on EPOLLHUP on eventfd when user closes it.
4852  *
4853  * Called with wqh->lock held and interrupts disabled.
4854  */
4855 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4856 			    int sync, void *key)
4857 {
4858 	struct mem_cgroup_event *event =
4859 		container_of(wait, struct mem_cgroup_event, wait);
4860 	struct mem_cgroup *memcg = event->memcg;
4861 	__poll_t flags = key_to_poll(key);
4862 
4863 	if (flags & EPOLLHUP) {
4864 		/*
4865 		 * If the event has been detached at cgroup removal, we
4866 		 * can simply return knowing the other side will cleanup
4867 		 * for us.
4868 		 *
4869 		 * We can't race against event freeing since the other
4870 		 * side will require wqh->lock via remove_wait_queue(),
4871 		 * which we hold.
4872 		 */
4873 		spin_lock(&memcg->event_list_lock);
4874 		if (!list_empty(&event->list)) {
4875 			list_del_init(&event->list);
4876 			/*
4877 			 * We are in atomic context, but cgroup_event_remove()
4878 			 * may sleep, so we have to call it in workqueue.
4879 			 */
4880 			schedule_work(&event->remove);
4881 		}
4882 		spin_unlock(&memcg->event_list_lock);
4883 	}
4884 
4885 	return 0;
4886 }
4887 
4888 static void memcg_event_ptable_queue_proc(struct file *file,
4889 		wait_queue_head_t *wqh, poll_table *pt)
4890 {
4891 	struct mem_cgroup_event *event =
4892 		container_of(pt, struct mem_cgroup_event, pt);
4893 
4894 	event->wqh = wqh;
4895 	add_wait_queue(wqh, &event->wait);
4896 }
4897 
4898 /*
4899  * DO NOT USE IN NEW FILES.
4900  *
4901  * Parse input and register new cgroup event handler.
4902  *
4903  * Input must be in format '<event_fd> <control_fd> <args>'.
4904  * Interpretation of args is defined by control file implementation.
4905  */
4906 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4907 					 char *buf, size_t nbytes, loff_t off)
4908 {
4909 	struct cgroup_subsys_state *css = of_css(of);
4910 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4911 	struct mem_cgroup_event *event;
4912 	struct cgroup_subsys_state *cfile_css;
4913 	unsigned int efd, cfd;
4914 	struct fd efile;
4915 	struct fd cfile;
4916 	struct dentry *cdentry;
4917 	const char *name;
4918 	char *endp;
4919 	int ret;
4920 
4921 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
4922 		return -EOPNOTSUPP;
4923 
4924 	buf = strstrip(buf);
4925 
4926 	efd = simple_strtoul(buf, &endp, 10);
4927 	if (*endp != ' ')
4928 		return -EINVAL;
4929 	buf = endp + 1;
4930 
4931 	cfd = simple_strtoul(buf, &endp, 10);
4932 	if ((*endp != ' ') && (*endp != '\0'))
4933 		return -EINVAL;
4934 	buf = endp + 1;
4935 
4936 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4937 	if (!event)
4938 		return -ENOMEM;
4939 
4940 	event->memcg = memcg;
4941 	INIT_LIST_HEAD(&event->list);
4942 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4943 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4944 	INIT_WORK(&event->remove, memcg_event_remove);
4945 
4946 	efile = fdget(efd);
4947 	if (!efile.file) {
4948 		ret = -EBADF;
4949 		goto out_kfree;
4950 	}
4951 
4952 	event->eventfd = eventfd_ctx_fileget(efile.file);
4953 	if (IS_ERR(event->eventfd)) {
4954 		ret = PTR_ERR(event->eventfd);
4955 		goto out_put_efile;
4956 	}
4957 
4958 	cfile = fdget(cfd);
4959 	if (!cfile.file) {
4960 		ret = -EBADF;
4961 		goto out_put_eventfd;
4962 	}
4963 
4964 	/* the process need read permission on control file */
4965 	/* AV: shouldn't we check that it's been opened for read instead? */
4966 	ret = file_permission(cfile.file, MAY_READ);
4967 	if (ret < 0)
4968 		goto out_put_cfile;
4969 
4970 	/*
4971 	 * The control file must be a regular cgroup1 file. As a regular cgroup
4972 	 * file can't be renamed, it's safe to access its name afterwards.
4973 	 */
4974 	cdentry = cfile.file->f_path.dentry;
4975 	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4976 		ret = -EINVAL;
4977 		goto out_put_cfile;
4978 	}
4979 
4980 	/*
4981 	 * Determine the event callbacks and set them in @event.  This used
4982 	 * to be done via struct cftype but cgroup core no longer knows
4983 	 * about these events.  The following is crude but the whole thing
4984 	 * is for compatibility anyway.
4985 	 *
4986 	 * DO NOT ADD NEW FILES.
4987 	 */
4988 	name = cdentry->d_name.name;
4989 
4990 	if (!strcmp(name, "memory.usage_in_bytes")) {
4991 		event->register_event = mem_cgroup_usage_register_event;
4992 		event->unregister_event = mem_cgroup_usage_unregister_event;
4993 	} else if (!strcmp(name, "memory.oom_control")) {
4994 		event->register_event = mem_cgroup_oom_register_event;
4995 		event->unregister_event = mem_cgroup_oom_unregister_event;
4996 	} else if (!strcmp(name, "memory.pressure_level")) {
4997 		event->register_event = vmpressure_register_event;
4998 		event->unregister_event = vmpressure_unregister_event;
4999 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5000 		event->register_event = memsw_cgroup_usage_register_event;
5001 		event->unregister_event = memsw_cgroup_usage_unregister_event;
5002 	} else {
5003 		ret = -EINVAL;
5004 		goto out_put_cfile;
5005 	}
5006 
5007 	/*
5008 	 * Verify @cfile should belong to @css.  Also, remaining events are
5009 	 * automatically removed on cgroup destruction but the removal is
5010 	 * asynchronous, so take an extra ref on @css.
5011 	 */
5012 	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
5013 					       &memory_cgrp_subsys);
5014 	ret = -EINVAL;
5015 	if (IS_ERR(cfile_css))
5016 		goto out_put_cfile;
5017 	if (cfile_css != css) {
5018 		css_put(cfile_css);
5019 		goto out_put_cfile;
5020 	}
5021 
5022 	ret = event->register_event(memcg, event->eventfd, buf);
5023 	if (ret)
5024 		goto out_put_css;
5025 
5026 	vfs_poll(efile.file, &event->pt);
5027 
5028 	spin_lock_irq(&memcg->event_list_lock);
5029 	list_add(&event->list, &memcg->event_list);
5030 	spin_unlock_irq(&memcg->event_list_lock);
5031 
5032 	fdput(cfile);
5033 	fdput(efile);
5034 
5035 	return nbytes;
5036 
5037 out_put_css:
5038 	css_put(css);
5039 out_put_cfile:
5040 	fdput(cfile);
5041 out_put_eventfd:
5042 	eventfd_ctx_put(event->eventfd);
5043 out_put_efile:
5044 	fdput(efile);
5045 out_kfree:
5046 	kfree(event);
5047 
5048 	return ret;
5049 }
5050 
5051 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5052 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5053 {
5054 	/*
5055 	 * Deprecated.
5056 	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5057 	 */
5058 	return 0;
5059 }
5060 #endif
5061 
5062 static struct cftype mem_cgroup_legacy_files[] = {
5063 	{
5064 		.name = "usage_in_bytes",
5065 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5066 		.read_u64 = mem_cgroup_read_u64,
5067 	},
5068 	{
5069 		.name = "max_usage_in_bytes",
5070 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5071 		.write = mem_cgroup_reset,
5072 		.read_u64 = mem_cgroup_read_u64,
5073 	},
5074 	{
5075 		.name = "limit_in_bytes",
5076 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5077 		.write = mem_cgroup_write,
5078 		.read_u64 = mem_cgroup_read_u64,
5079 	},
5080 	{
5081 		.name = "soft_limit_in_bytes",
5082 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5083 		.write = mem_cgroup_write,
5084 		.read_u64 = mem_cgroup_read_u64,
5085 	},
5086 	{
5087 		.name = "failcnt",
5088 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5089 		.write = mem_cgroup_reset,
5090 		.read_u64 = mem_cgroup_read_u64,
5091 	},
5092 	{
5093 		.name = "stat",
5094 		.seq_show = memcg_stat_show,
5095 	},
5096 	{
5097 		.name = "force_empty",
5098 		.write = mem_cgroup_force_empty_write,
5099 	},
5100 	{
5101 		.name = "use_hierarchy",
5102 		.write_u64 = mem_cgroup_hierarchy_write,
5103 		.read_u64 = mem_cgroup_hierarchy_read,
5104 	},
5105 	{
5106 		.name = "cgroup.event_control",		/* XXX: for compat */
5107 		.write = memcg_write_event_control,
5108 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5109 	},
5110 	{
5111 		.name = "swappiness",
5112 		.read_u64 = mem_cgroup_swappiness_read,
5113 		.write_u64 = mem_cgroup_swappiness_write,
5114 	},
5115 	{
5116 		.name = "move_charge_at_immigrate",
5117 		.read_u64 = mem_cgroup_move_charge_read,
5118 		.write_u64 = mem_cgroup_move_charge_write,
5119 	},
5120 	{
5121 		.name = "oom_control",
5122 		.seq_show = mem_cgroup_oom_control_read,
5123 		.write_u64 = mem_cgroup_oom_control_write,
5124 	},
5125 	{
5126 		.name = "pressure_level",
5127 		.seq_show = mem_cgroup_dummy_seq_show,
5128 	},
5129 #ifdef CONFIG_NUMA
5130 	{
5131 		.name = "numa_stat",
5132 		.seq_show = memcg_numa_stat_show,
5133 	},
5134 #endif
5135 	{
5136 		.name = "kmem.limit_in_bytes",
5137 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5138 		.write = mem_cgroup_write,
5139 		.read_u64 = mem_cgroup_read_u64,
5140 	},
5141 	{
5142 		.name = "kmem.usage_in_bytes",
5143 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5144 		.read_u64 = mem_cgroup_read_u64,
5145 	},
5146 	{
5147 		.name = "kmem.failcnt",
5148 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5149 		.write = mem_cgroup_reset,
5150 		.read_u64 = mem_cgroup_read_u64,
5151 	},
5152 	{
5153 		.name = "kmem.max_usage_in_bytes",
5154 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5155 		.write = mem_cgroup_reset,
5156 		.read_u64 = mem_cgroup_read_u64,
5157 	},
5158 #if defined(CONFIG_MEMCG_KMEM) && \
5159 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5160 	{
5161 		.name = "kmem.slabinfo",
5162 		.seq_show = mem_cgroup_slab_show,
5163 	},
5164 #endif
5165 	{
5166 		.name = "kmem.tcp.limit_in_bytes",
5167 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5168 		.write = mem_cgroup_write,
5169 		.read_u64 = mem_cgroup_read_u64,
5170 	},
5171 	{
5172 		.name = "kmem.tcp.usage_in_bytes",
5173 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5174 		.read_u64 = mem_cgroup_read_u64,
5175 	},
5176 	{
5177 		.name = "kmem.tcp.failcnt",
5178 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5179 		.write = mem_cgroup_reset,
5180 		.read_u64 = mem_cgroup_read_u64,
5181 	},
5182 	{
5183 		.name = "kmem.tcp.max_usage_in_bytes",
5184 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5185 		.write = mem_cgroup_reset,
5186 		.read_u64 = mem_cgroup_read_u64,
5187 	},
5188 	{ },	/* terminate */
5189 };
5190 
5191 /*
5192  * Private memory cgroup IDR
5193  *
5194  * Swap-out records and page cache shadow entries need to store memcg
5195  * references in constrained space, so we maintain an ID space that is
5196  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5197  * memory-controlled cgroups to 64k.
5198  *
5199  * However, there usually are many references to the offline CSS after
5200  * the cgroup has been destroyed, such as page cache or reclaimable
5201  * slab objects, that don't need to hang on to the ID. We want to keep
5202  * those dead CSS from occupying IDs, or we might quickly exhaust the
5203  * relatively small ID space and prevent the creation of new cgroups
5204  * even when there are much fewer than 64k cgroups - possibly none.
5205  *
5206  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5207  * be freed and recycled when it's no longer needed, which is usually
5208  * when the CSS is offlined.
5209  *
5210  * The only exception to that are records of swapped out tmpfs/shmem
5211  * pages that need to be attributed to live ancestors on swapin. But
5212  * those references are manageable from userspace.
5213  */
5214 
5215 static DEFINE_IDR(mem_cgroup_idr);
5216 
5217 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5218 {
5219 	if (memcg->id.id > 0) {
5220 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5221 		memcg->id.id = 0;
5222 	}
5223 }
5224 
5225 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5226 						  unsigned int n)
5227 {
5228 	refcount_add(n, &memcg->id.ref);
5229 }
5230 
5231 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5232 {
5233 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5234 		mem_cgroup_id_remove(memcg);
5235 
5236 		/* Memcg ID pins CSS */
5237 		css_put(&memcg->css);
5238 	}
5239 }
5240 
5241 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5242 {
5243 	mem_cgroup_id_put_many(memcg, 1);
5244 }
5245 
5246 /**
5247  * mem_cgroup_from_id - look up a memcg from a memcg id
5248  * @id: the memcg id to look up
5249  *
5250  * Caller must hold rcu_read_lock().
5251  */
5252 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5253 {
5254 	WARN_ON_ONCE(!rcu_read_lock_held());
5255 	return idr_find(&mem_cgroup_idr, id);
5256 }
5257 
5258 #ifdef CONFIG_SHRINKER_DEBUG
5259 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5260 {
5261 	struct cgroup *cgrp;
5262 	struct cgroup_subsys_state *css;
5263 	struct mem_cgroup *memcg;
5264 
5265 	cgrp = cgroup_get_from_id(ino);
5266 	if (IS_ERR(cgrp))
5267 		return ERR_CAST(cgrp);
5268 
5269 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5270 	if (css)
5271 		memcg = container_of(css, struct mem_cgroup, css);
5272 	else
5273 		memcg = ERR_PTR(-ENOENT);
5274 
5275 	cgroup_put(cgrp);
5276 
5277 	return memcg;
5278 }
5279 #endif
5280 
5281 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5282 {
5283 	struct mem_cgroup_per_node *pn;
5284 
5285 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5286 	if (!pn)
5287 		return 1;
5288 
5289 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5290 						   GFP_KERNEL_ACCOUNT);
5291 	if (!pn->lruvec_stats_percpu) {
5292 		kfree(pn);
5293 		return 1;
5294 	}
5295 
5296 	lruvec_init(&pn->lruvec);
5297 	pn->memcg = memcg;
5298 
5299 	memcg->nodeinfo[node] = pn;
5300 	return 0;
5301 }
5302 
5303 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5304 {
5305 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5306 
5307 	if (!pn)
5308 		return;
5309 
5310 	free_percpu(pn->lruvec_stats_percpu);
5311 	kfree(pn);
5312 }
5313 
5314 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5315 {
5316 	int node;
5317 
5318 	for_each_node(node)
5319 		free_mem_cgroup_per_node_info(memcg, node);
5320 	kfree(memcg->vmstats);
5321 	free_percpu(memcg->vmstats_percpu);
5322 	kfree(memcg);
5323 }
5324 
5325 static void mem_cgroup_free(struct mem_cgroup *memcg)
5326 {
5327 	lru_gen_exit_memcg(memcg);
5328 	memcg_wb_domain_exit(memcg);
5329 	__mem_cgroup_free(memcg);
5330 }
5331 
5332 static struct mem_cgroup *mem_cgroup_alloc(void)
5333 {
5334 	struct mem_cgroup *memcg;
5335 	int node;
5336 	int __maybe_unused i;
5337 	long error = -ENOMEM;
5338 
5339 	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5340 	if (!memcg)
5341 		return ERR_PTR(error);
5342 
5343 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5344 				 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5345 	if (memcg->id.id < 0) {
5346 		error = memcg->id.id;
5347 		goto fail;
5348 	}
5349 
5350 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5351 	if (!memcg->vmstats)
5352 		goto fail;
5353 
5354 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5355 						 GFP_KERNEL_ACCOUNT);
5356 	if (!memcg->vmstats_percpu)
5357 		goto fail;
5358 
5359 	for_each_node(node)
5360 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5361 			goto fail;
5362 
5363 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5364 		goto fail;
5365 
5366 	INIT_WORK(&memcg->high_work, high_work_func);
5367 	INIT_LIST_HEAD(&memcg->oom_notify);
5368 	mutex_init(&memcg->thresholds_lock);
5369 	spin_lock_init(&memcg->move_lock);
5370 	vmpressure_init(&memcg->vmpressure);
5371 	INIT_LIST_HEAD(&memcg->event_list);
5372 	spin_lock_init(&memcg->event_list_lock);
5373 	memcg->socket_pressure = jiffies;
5374 #ifdef CONFIG_MEMCG_KMEM
5375 	memcg->kmemcg_id = -1;
5376 	INIT_LIST_HEAD(&memcg->objcg_list);
5377 #endif
5378 #ifdef CONFIG_CGROUP_WRITEBACK
5379 	INIT_LIST_HEAD(&memcg->cgwb_list);
5380 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5381 		memcg->cgwb_frn[i].done =
5382 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5383 #endif
5384 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5385 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5386 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5387 	memcg->deferred_split_queue.split_queue_len = 0;
5388 #endif
5389 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5390 	lru_gen_init_memcg(memcg);
5391 	return memcg;
5392 fail:
5393 	mem_cgroup_id_remove(memcg);
5394 	__mem_cgroup_free(memcg);
5395 	return ERR_PTR(error);
5396 }
5397 
5398 static struct cgroup_subsys_state * __ref
5399 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5400 {
5401 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5402 	struct mem_cgroup *memcg, *old_memcg;
5403 
5404 	old_memcg = set_active_memcg(parent);
5405 	memcg = mem_cgroup_alloc();
5406 	set_active_memcg(old_memcg);
5407 	if (IS_ERR(memcg))
5408 		return ERR_CAST(memcg);
5409 
5410 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5411 	WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5412 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5413 	memcg->zswap_max = PAGE_COUNTER_MAX;
5414 #endif
5415 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5416 	if (parent) {
5417 		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5418 		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5419 
5420 		page_counter_init(&memcg->memory, &parent->memory);
5421 		page_counter_init(&memcg->swap, &parent->swap);
5422 		page_counter_init(&memcg->kmem, &parent->kmem);
5423 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5424 	} else {
5425 		init_memcg_events();
5426 		page_counter_init(&memcg->memory, NULL);
5427 		page_counter_init(&memcg->swap, NULL);
5428 		page_counter_init(&memcg->kmem, NULL);
5429 		page_counter_init(&memcg->tcpmem, NULL);
5430 
5431 		root_mem_cgroup = memcg;
5432 		return &memcg->css;
5433 	}
5434 
5435 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5436 		static_branch_inc(&memcg_sockets_enabled_key);
5437 
5438 #if defined(CONFIG_MEMCG_KMEM)
5439 	if (!cgroup_memory_nobpf)
5440 		static_branch_inc(&memcg_bpf_enabled_key);
5441 #endif
5442 
5443 	return &memcg->css;
5444 }
5445 
5446 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5447 {
5448 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5449 
5450 	if (memcg_online_kmem(memcg))
5451 		goto remove_id;
5452 
5453 	/*
5454 	 * A memcg must be visible for expand_shrinker_info()
5455 	 * by the time the maps are allocated. So, we allocate maps
5456 	 * here, when for_each_mem_cgroup() can't skip it.
5457 	 */
5458 	if (alloc_shrinker_info(memcg))
5459 		goto offline_kmem;
5460 
5461 	/* Online state pins memcg ID, memcg ID pins CSS */
5462 	refcount_set(&memcg->id.ref, 1);
5463 	css_get(css);
5464 
5465 	if (unlikely(mem_cgroup_is_root(memcg)))
5466 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5467 				   2UL*HZ);
5468 	lru_gen_online_memcg(memcg);
5469 	return 0;
5470 offline_kmem:
5471 	memcg_offline_kmem(memcg);
5472 remove_id:
5473 	mem_cgroup_id_remove(memcg);
5474 	return -ENOMEM;
5475 }
5476 
5477 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5478 {
5479 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5480 	struct mem_cgroup_event *event, *tmp;
5481 
5482 	/*
5483 	 * Unregister events and notify userspace.
5484 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5485 	 * directory to avoid race between userspace and kernelspace.
5486 	 */
5487 	spin_lock_irq(&memcg->event_list_lock);
5488 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5489 		list_del_init(&event->list);
5490 		schedule_work(&event->remove);
5491 	}
5492 	spin_unlock_irq(&memcg->event_list_lock);
5493 
5494 	page_counter_set_min(&memcg->memory, 0);
5495 	page_counter_set_low(&memcg->memory, 0);
5496 
5497 	memcg_offline_kmem(memcg);
5498 	reparent_shrinker_deferred(memcg);
5499 	wb_memcg_offline(memcg);
5500 	lru_gen_offline_memcg(memcg);
5501 
5502 	drain_all_stock(memcg);
5503 
5504 	mem_cgroup_id_put(memcg);
5505 }
5506 
5507 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5508 {
5509 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5510 
5511 	invalidate_reclaim_iterators(memcg);
5512 	lru_gen_release_memcg(memcg);
5513 }
5514 
5515 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5516 {
5517 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5518 	int __maybe_unused i;
5519 
5520 #ifdef CONFIG_CGROUP_WRITEBACK
5521 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5522 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5523 #endif
5524 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5525 		static_branch_dec(&memcg_sockets_enabled_key);
5526 
5527 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5528 		static_branch_dec(&memcg_sockets_enabled_key);
5529 
5530 #if defined(CONFIG_MEMCG_KMEM)
5531 	if (!cgroup_memory_nobpf)
5532 		static_branch_dec(&memcg_bpf_enabled_key);
5533 #endif
5534 
5535 	vmpressure_cleanup(&memcg->vmpressure);
5536 	cancel_work_sync(&memcg->high_work);
5537 	mem_cgroup_remove_from_trees(memcg);
5538 	free_shrinker_info(memcg);
5539 	mem_cgroup_free(memcg);
5540 }
5541 
5542 /**
5543  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5544  * @css: the target css
5545  *
5546  * Reset the states of the mem_cgroup associated with @css.  This is
5547  * invoked when the userland requests disabling on the default hierarchy
5548  * but the memcg is pinned through dependency.  The memcg should stop
5549  * applying policies and should revert to the vanilla state as it may be
5550  * made visible again.
5551  *
5552  * The current implementation only resets the essential configurations.
5553  * This needs to be expanded to cover all the visible parts.
5554  */
5555 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5556 {
5557 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5558 
5559 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5560 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5561 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5562 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5563 	page_counter_set_min(&memcg->memory, 0);
5564 	page_counter_set_low(&memcg->memory, 0);
5565 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5566 	WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5567 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5568 	memcg_wb_domain_size_changed(memcg);
5569 }
5570 
5571 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5572 {
5573 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5574 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5575 	struct memcg_vmstats_percpu *statc;
5576 	long delta, v;
5577 	int i, nid;
5578 
5579 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5580 
5581 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5582 		/*
5583 		 * Collect the aggregated propagation counts of groups
5584 		 * below us. We're in a per-cpu loop here and this is
5585 		 * a global counter, so the first cycle will get them.
5586 		 */
5587 		delta = memcg->vmstats->state_pending[i];
5588 		if (delta)
5589 			memcg->vmstats->state_pending[i] = 0;
5590 
5591 		/* Add CPU changes on this level since the last flush */
5592 		v = READ_ONCE(statc->state[i]);
5593 		if (v != statc->state_prev[i]) {
5594 			delta += v - statc->state_prev[i];
5595 			statc->state_prev[i] = v;
5596 		}
5597 
5598 		if (!delta)
5599 			continue;
5600 
5601 		/* Aggregate counts on this level and propagate upwards */
5602 		memcg->vmstats->state[i] += delta;
5603 		if (parent)
5604 			parent->vmstats->state_pending[i] += delta;
5605 	}
5606 
5607 	for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5608 		delta = memcg->vmstats->events_pending[i];
5609 		if (delta)
5610 			memcg->vmstats->events_pending[i] = 0;
5611 
5612 		v = READ_ONCE(statc->events[i]);
5613 		if (v != statc->events_prev[i]) {
5614 			delta += v - statc->events_prev[i];
5615 			statc->events_prev[i] = v;
5616 		}
5617 
5618 		if (!delta)
5619 			continue;
5620 
5621 		memcg->vmstats->events[i] += delta;
5622 		if (parent)
5623 			parent->vmstats->events_pending[i] += delta;
5624 	}
5625 
5626 	for_each_node_state(nid, N_MEMORY) {
5627 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5628 		struct mem_cgroup_per_node *ppn = NULL;
5629 		struct lruvec_stats_percpu *lstatc;
5630 
5631 		if (parent)
5632 			ppn = parent->nodeinfo[nid];
5633 
5634 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5635 
5636 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5637 			delta = pn->lruvec_stats.state_pending[i];
5638 			if (delta)
5639 				pn->lruvec_stats.state_pending[i] = 0;
5640 
5641 			v = READ_ONCE(lstatc->state[i]);
5642 			if (v != lstatc->state_prev[i]) {
5643 				delta += v - lstatc->state_prev[i];
5644 				lstatc->state_prev[i] = v;
5645 			}
5646 
5647 			if (!delta)
5648 				continue;
5649 
5650 			pn->lruvec_stats.state[i] += delta;
5651 			if (ppn)
5652 				ppn->lruvec_stats.state_pending[i] += delta;
5653 		}
5654 	}
5655 }
5656 
5657 #ifdef CONFIG_MMU
5658 /* Handlers for move charge at task migration. */
5659 static int mem_cgroup_do_precharge(unsigned long count)
5660 {
5661 	int ret;
5662 
5663 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5664 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5665 	if (!ret) {
5666 		mc.precharge += count;
5667 		return ret;
5668 	}
5669 
5670 	/* Try charges one by one with reclaim, but do not retry */
5671 	while (count--) {
5672 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5673 		if (ret)
5674 			return ret;
5675 		mc.precharge++;
5676 		cond_resched();
5677 	}
5678 	return 0;
5679 }
5680 
5681 union mc_target {
5682 	struct page	*page;
5683 	swp_entry_t	ent;
5684 };
5685 
5686 enum mc_target_type {
5687 	MC_TARGET_NONE = 0,
5688 	MC_TARGET_PAGE,
5689 	MC_TARGET_SWAP,
5690 	MC_TARGET_DEVICE,
5691 };
5692 
5693 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5694 						unsigned long addr, pte_t ptent)
5695 {
5696 	struct page *page = vm_normal_page(vma, addr, ptent);
5697 
5698 	if (!page || !page_mapped(page))
5699 		return NULL;
5700 	if (PageAnon(page)) {
5701 		if (!(mc.flags & MOVE_ANON))
5702 			return NULL;
5703 	} else {
5704 		if (!(mc.flags & MOVE_FILE))
5705 			return NULL;
5706 	}
5707 	if (!get_page_unless_zero(page))
5708 		return NULL;
5709 
5710 	return page;
5711 }
5712 
5713 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5714 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5715 			pte_t ptent, swp_entry_t *entry)
5716 {
5717 	struct page *page = NULL;
5718 	swp_entry_t ent = pte_to_swp_entry(ptent);
5719 
5720 	if (!(mc.flags & MOVE_ANON))
5721 		return NULL;
5722 
5723 	/*
5724 	 * Handle device private pages that are not accessible by the CPU, but
5725 	 * stored as special swap entries in the page table.
5726 	 */
5727 	if (is_device_private_entry(ent)) {
5728 		page = pfn_swap_entry_to_page(ent);
5729 		if (!get_page_unless_zero(page))
5730 			return NULL;
5731 		return page;
5732 	}
5733 
5734 	if (non_swap_entry(ent))
5735 		return NULL;
5736 
5737 	/*
5738 	 * Because swap_cache_get_folio() updates some statistics counter,
5739 	 * we call find_get_page() with swapper_space directly.
5740 	 */
5741 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5742 	entry->val = ent.val;
5743 
5744 	return page;
5745 }
5746 #else
5747 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5748 			pte_t ptent, swp_entry_t *entry)
5749 {
5750 	return NULL;
5751 }
5752 #endif
5753 
5754 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5755 			unsigned long addr, pte_t ptent)
5756 {
5757 	unsigned long index;
5758 	struct folio *folio;
5759 
5760 	if (!vma->vm_file) /* anonymous vma */
5761 		return NULL;
5762 	if (!(mc.flags & MOVE_FILE))
5763 		return NULL;
5764 
5765 	/* folio is moved even if it's not RSS of this task(page-faulted). */
5766 	/* shmem/tmpfs may report page out on swap: account for that too. */
5767 	index = linear_page_index(vma, addr);
5768 	folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5769 	if (IS_ERR(folio))
5770 		return NULL;
5771 	return folio_file_page(folio, index);
5772 }
5773 
5774 /**
5775  * mem_cgroup_move_account - move account of the page
5776  * @page: the page
5777  * @compound: charge the page as compound or small page
5778  * @from: mem_cgroup which the page is moved from.
5779  * @to:	mem_cgroup which the page is moved to. @from != @to.
5780  *
5781  * The page must be locked and not on the LRU.
5782  *
5783  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5784  * from old cgroup.
5785  */
5786 static int mem_cgroup_move_account(struct page *page,
5787 				   bool compound,
5788 				   struct mem_cgroup *from,
5789 				   struct mem_cgroup *to)
5790 {
5791 	struct folio *folio = page_folio(page);
5792 	struct lruvec *from_vec, *to_vec;
5793 	struct pglist_data *pgdat;
5794 	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5795 	int nid, ret;
5796 
5797 	VM_BUG_ON(from == to);
5798 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5799 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5800 	VM_BUG_ON(compound && !folio_test_large(folio));
5801 
5802 	ret = -EINVAL;
5803 	if (folio_memcg(folio) != from)
5804 		goto out;
5805 
5806 	pgdat = folio_pgdat(folio);
5807 	from_vec = mem_cgroup_lruvec(from, pgdat);
5808 	to_vec = mem_cgroup_lruvec(to, pgdat);
5809 
5810 	folio_memcg_lock(folio);
5811 
5812 	if (folio_test_anon(folio)) {
5813 		if (folio_mapped(folio)) {
5814 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5815 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5816 			if (folio_test_transhuge(folio)) {
5817 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5818 						   -nr_pages);
5819 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5820 						   nr_pages);
5821 			}
5822 		}
5823 	} else {
5824 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5825 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5826 
5827 		if (folio_test_swapbacked(folio)) {
5828 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5829 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5830 		}
5831 
5832 		if (folio_mapped(folio)) {
5833 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5834 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5835 		}
5836 
5837 		if (folio_test_dirty(folio)) {
5838 			struct address_space *mapping = folio_mapping(folio);
5839 
5840 			if (mapping_can_writeback(mapping)) {
5841 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5842 						   -nr_pages);
5843 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5844 						   nr_pages);
5845 			}
5846 		}
5847 	}
5848 
5849 #ifdef CONFIG_SWAP
5850 	if (folio_test_swapcache(folio)) {
5851 		__mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5852 		__mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5853 	}
5854 #endif
5855 	if (folio_test_writeback(folio)) {
5856 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5857 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5858 	}
5859 
5860 	/*
5861 	 * All state has been migrated, let's switch to the new memcg.
5862 	 *
5863 	 * It is safe to change page's memcg here because the page
5864 	 * is referenced, charged, isolated, and locked: we can't race
5865 	 * with (un)charging, migration, LRU putback, or anything else
5866 	 * that would rely on a stable page's memory cgroup.
5867 	 *
5868 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5869 	 * to save space. As soon as we switch page's memory cgroup to a
5870 	 * new memcg that isn't locked, the above state can change
5871 	 * concurrently again. Make sure we're truly done with it.
5872 	 */
5873 	smp_mb();
5874 
5875 	css_get(&to->css);
5876 	css_put(&from->css);
5877 
5878 	folio->memcg_data = (unsigned long)to;
5879 
5880 	__folio_memcg_unlock(from);
5881 
5882 	ret = 0;
5883 	nid = folio_nid(folio);
5884 
5885 	local_irq_disable();
5886 	mem_cgroup_charge_statistics(to, nr_pages);
5887 	memcg_check_events(to, nid);
5888 	mem_cgroup_charge_statistics(from, -nr_pages);
5889 	memcg_check_events(from, nid);
5890 	local_irq_enable();
5891 out:
5892 	return ret;
5893 }
5894 
5895 /**
5896  * get_mctgt_type - get target type of moving charge
5897  * @vma: the vma the pte to be checked belongs
5898  * @addr: the address corresponding to the pte to be checked
5899  * @ptent: the pte to be checked
5900  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5901  *
5902  * Returns
5903  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5904  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5905  *     move charge. if @target is not NULL, the page is stored in target->page
5906  *     with extra refcnt got(Callers should handle it).
5907  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5908  *     target for charge migration. if @target is not NULL, the entry is stored
5909  *     in target->ent.
5910  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is device memory and
5911  *   thus not on the lru.
5912  *     For now we such page is charge like a regular page would be as for all
5913  *     intent and purposes it is just special memory taking the place of a
5914  *     regular page.
5915  *
5916  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5917  *
5918  * Called with pte lock held.
5919  */
5920 
5921 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5922 		unsigned long addr, pte_t ptent, union mc_target *target)
5923 {
5924 	struct page *page = NULL;
5925 	enum mc_target_type ret = MC_TARGET_NONE;
5926 	swp_entry_t ent = { .val = 0 };
5927 
5928 	if (pte_present(ptent))
5929 		page = mc_handle_present_pte(vma, addr, ptent);
5930 	else if (pte_none_mostly(ptent))
5931 		/*
5932 		 * PTE markers should be treated as a none pte here, separated
5933 		 * from other swap handling below.
5934 		 */
5935 		page = mc_handle_file_pte(vma, addr, ptent);
5936 	else if (is_swap_pte(ptent))
5937 		page = mc_handle_swap_pte(vma, ptent, &ent);
5938 
5939 	if (target && page) {
5940 		if (!trylock_page(page)) {
5941 			put_page(page);
5942 			return ret;
5943 		}
5944 		/*
5945 		 * page_mapped() must be stable during the move. This
5946 		 * pte is locked, so if it's present, the page cannot
5947 		 * become unmapped. If it isn't, we have only partial
5948 		 * control over the mapped state: the page lock will
5949 		 * prevent new faults against pagecache and swapcache,
5950 		 * so an unmapped page cannot become mapped. However,
5951 		 * if the page is already mapped elsewhere, it can
5952 		 * unmap, and there is nothing we can do about it.
5953 		 * Alas, skip moving the page in this case.
5954 		 */
5955 		if (!pte_present(ptent) && page_mapped(page)) {
5956 			unlock_page(page);
5957 			put_page(page);
5958 			return ret;
5959 		}
5960 	}
5961 
5962 	if (!page && !ent.val)
5963 		return ret;
5964 	if (page) {
5965 		/*
5966 		 * Do only loose check w/o serialization.
5967 		 * mem_cgroup_move_account() checks the page is valid or
5968 		 * not under LRU exclusion.
5969 		 */
5970 		if (page_memcg(page) == mc.from) {
5971 			ret = MC_TARGET_PAGE;
5972 			if (is_device_private_page(page) ||
5973 			    is_device_coherent_page(page))
5974 				ret = MC_TARGET_DEVICE;
5975 			if (target)
5976 				target->page = page;
5977 		}
5978 		if (!ret || !target) {
5979 			if (target)
5980 				unlock_page(page);
5981 			put_page(page);
5982 		}
5983 	}
5984 	/*
5985 	 * There is a swap entry and a page doesn't exist or isn't charged.
5986 	 * But we cannot move a tail-page in a THP.
5987 	 */
5988 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5989 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5990 		ret = MC_TARGET_SWAP;
5991 		if (target)
5992 			target->ent = ent;
5993 	}
5994 	return ret;
5995 }
5996 
5997 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5998 /*
5999  * We don't consider PMD mapped swapping or file mapped pages because THP does
6000  * not support them for now.
6001  * Caller should make sure that pmd_trans_huge(pmd) is true.
6002  */
6003 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6004 		unsigned long addr, pmd_t pmd, union mc_target *target)
6005 {
6006 	struct page *page = NULL;
6007 	enum mc_target_type ret = MC_TARGET_NONE;
6008 
6009 	if (unlikely(is_swap_pmd(pmd))) {
6010 		VM_BUG_ON(thp_migration_supported() &&
6011 				  !is_pmd_migration_entry(pmd));
6012 		return ret;
6013 	}
6014 	page = pmd_page(pmd);
6015 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6016 	if (!(mc.flags & MOVE_ANON))
6017 		return ret;
6018 	if (page_memcg(page) == mc.from) {
6019 		ret = MC_TARGET_PAGE;
6020 		if (target) {
6021 			get_page(page);
6022 			if (!trylock_page(page)) {
6023 				put_page(page);
6024 				return MC_TARGET_NONE;
6025 			}
6026 			target->page = page;
6027 		}
6028 	}
6029 	return ret;
6030 }
6031 #else
6032 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6033 		unsigned long addr, pmd_t pmd, union mc_target *target)
6034 {
6035 	return MC_TARGET_NONE;
6036 }
6037 #endif
6038 
6039 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6040 					unsigned long addr, unsigned long end,
6041 					struct mm_walk *walk)
6042 {
6043 	struct vm_area_struct *vma = walk->vma;
6044 	pte_t *pte;
6045 	spinlock_t *ptl;
6046 
6047 	ptl = pmd_trans_huge_lock(pmd, vma);
6048 	if (ptl) {
6049 		/*
6050 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
6051 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6052 		 * this might change.
6053 		 */
6054 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6055 			mc.precharge += HPAGE_PMD_NR;
6056 		spin_unlock(ptl);
6057 		return 0;
6058 	}
6059 
6060 	if (pmd_trans_unstable(pmd))
6061 		return 0;
6062 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6063 	for (; addr != end; pte++, addr += PAGE_SIZE)
6064 		if (get_mctgt_type(vma, addr, *pte, NULL))
6065 			mc.precharge++;	/* increment precharge temporarily */
6066 	pte_unmap_unlock(pte - 1, ptl);
6067 	cond_resched();
6068 
6069 	return 0;
6070 }
6071 
6072 static const struct mm_walk_ops precharge_walk_ops = {
6073 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
6074 };
6075 
6076 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6077 {
6078 	unsigned long precharge;
6079 
6080 	mmap_read_lock(mm);
6081 	walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6082 	mmap_read_unlock(mm);
6083 
6084 	precharge = mc.precharge;
6085 	mc.precharge = 0;
6086 
6087 	return precharge;
6088 }
6089 
6090 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6091 {
6092 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6093 
6094 	VM_BUG_ON(mc.moving_task);
6095 	mc.moving_task = current;
6096 	return mem_cgroup_do_precharge(precharge);
6097 }
6098 
6099 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6100 static void __mem_cgroup_clear_mc(void)
6101 {
6102 	struct mem_cgroup *from = mc.from;
6103 	struct mem_cgroup *to = mc.to;
6104 
6105 	/* we must uncharge all the leftover precharges from mc.to */
6106 	if (mc.precharge) {
6107 		cancel_charge(mc.to, mc.precharge);
6108 		mc.precharge = 0;
6109 	}
6110 	/*
6111 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6112 	 * we must uncharge here.
6113 	 */
6114 	if (mc.moved_charge) {
6115 		cancel_charge(mc.from, mc.moved_charge);
6116 		mc.moved_charge = 0;
6117 	}
6118 	/* we must fixup refcnts and charges */
6119 	if (mc.moved_swap) {
6120 		/* uncharge swap account from the old cgroup */
6121 		if (!mem_cgroup_is_root(mc.from))
6122 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6123 
6124 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6125 
6126 		/*
6127 		 * we charged both to->memory and to->memsw, so we
6128 		 * should uncharge to->memory.
6129 		 */
6130 		if (!mem_cgroup_is_root(mc.to))
6131 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6132 
6133 		mc.moved_swap = 0;
6134 	}
6135 	memcg_oom_recover(from);
6136 	memcg_oom_recover(to);
6137 	wake_up_all(&mc.waitq);
6138 }
6139 
6140 static void mem_cgroup_clear_mc(void)
6141 {
6142 	struct mm_struct *mm = mc.mm;
6143 
6144 	/*
6145 	 * we must clear moving_task before waking up waiters at the end of
6146 	 * task migration.
6147 	 */
6148 	mc.moving_task = NULL;
6149 	__mem_cgroup_clear_mc();
6150 	spin_lock(&mc.lock);
6151 	mc.from = NULL;
6152 	mc.to = NULL;
6153 	mc.mm = NULL;
6154 	spin_unlock(&mc.lock);
6155 
6156 	mmput(mm);
6157 }
6158 
6159 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6160 {
6161 	struct cgroup_subsys_state *css;
6162 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6163 	struct mem_cgroup *from;
6164 	struct task_struct *leader, *p;
6165 	struct mm_struct *mm;
6166 	unsigned long move_flags;
6167 	int ret = 0;
6168 
6169 	/* charge immigration isn't supported on the default hierarchy */
6170 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6171 		return 0;
6172 
6173 	/*
6174 	 * Multi-process migrations only happen on the default hierarchy
6175 	 * where charge immigration is not used.  Perform charge
6176 	 * immigration if @tset contains a leader and whine if there are
6177 	 * multiple.
6178 	 */
6179 	p = NULL;
6180 	cgroup_taskset_for_each_leader(leader, css, tset) {
6181 		WARN_ON_ONCE(p);
6182 		p = leader;
6183 		memcg = mem_cgroup_from_css(css);
6184 	}
6185 	if (!p)
6186 		return 0;
6187 
6188 	/*
6189 	 * We are now committed to this value whatever it is. Changes in this
6190 	 * tunable will only affect upcoming migrations, not the current one.
6191 	 * So we need to save it, and keep it going.
6192 	 */
6193 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6194 	if (!move_flags)
6195 		return 0;
6196 
6197 	from = mem_cgroup_from_task(p);
6198 
6199 	VM_BUG_ON(from == memcg);
6200 
6201 	mm = get_task_mm(p);
6202 	if (!mm)
6203 		return 0;
6204 	/* We move charges only when we move a owner of the mm */
6205 	if (mm->owner == p) {
6206 		VM_BUG_ON(mc.from);
6207 		VM_BUG_ON(mc.to);
6208 		VM_BUG_ON(mc.precharge);
6209 		VM_BUG_ON(mc.moved_charge);
6210 		VM_BUG_ON(mc.moved_swap);
6211 
6212 		spin_lock(&mc.lock);
6213 		mc.mm = mm;
6214 		mc.from = from;
6215 		mc.to = memcg;
6216 		mc.flags = move_flags;
6217 		spin_unlock(&mc.lock);
6218 		/* We set mc.moving_task later */
6219 
6220 		ret = mem_cgroup_precharge_mc(mm);
6221 		if (ret)
6222 			mem_cgroup_clear_mc();
6223 	} else {
6224 		mmput(mm);
6225 	}
6226 	return ret;
6227 }
6228 
6229 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6230 {
6231 	if (mc.to)
6232 		mem_cgroup_clear_mc();
6233 }
6234 
6235 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6236 				unsigned long addr, unsigned long end,
6237 				struct mm_walk *walk)
6238 {
6239 	int ret = 0;
6240 	struct vm_area_struct *vma = walk->vma;
6241 	pte_t *pte;
6242 	spinlock_t *ptl;
6243 	enum mc_target_type target_type;
6244 	union mc_target target;
6245 	struct page *page;
6246 
6247 	ptl = pmd_trans_huge_lock(pmd, vma);
6248 	if (ptl) {
6249 		if (mc.precharge < HPAGE_PMD_NR) {
6250 			spin_unlock(ptl);
6251 			return 0;
6252 		}
6253 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6254 		if (target_type == MC_TARGET_PAGE) {
6255 			page = target.page;
6256 			if (isolate_lru_page(page)) {
6257 				if (!mem_cgroup_move_account(page, true,
6258 							     mc.from, mc.to)) {
6259 					mc.precharge -= HPAGE_PMD_NR;
6260 					mc.moved_charge += HPAGE_PMD_NR;
6261 				}
6262 				putback_lru_page(page);
6263 			}
6264 			unlock_page(page);
6265 			put_page(page);
6266 		} else if (target_type == MC_TARGET_DEVICE) {
6267 			page = target.page;
6268 			if (!mem_cgroup_move_account(page, true,
6269 						     mc.from, mc.to)) {
6270 				mc.precharge -= HPAGE_PMD_NR;
6271 				mc.moved_charge += HPAGE_PMD_NR;
6272 			}
6273 			unlock_page(page);
6274 			put_page(page);
6275 		}
6276 		spin_unlock(ptl);
6277 		return 0;
6278 	}
6279 
6280 	if (pmd_trans_unstable(pmd))
6281 		return 0;
6282 retry:
6283 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6284 	for (; addr != end; addr += PAGE_SIZE) {
6285 		pte_t ptent = *(pte++);
6286 		bool device = false;
6287 		swp_entry_t ent;
6288 
6289 		if (!mc.precharge)
6290 			break;
6291 
6292 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6293 		case MC_TARGET_DEVICE:
6294 			device = true;
6295 			fallthrough;
6296 		case MC_TARGET_PAGE:
6297 			page = target.page;
6298 			/*
6299 			 * We can have a part of the split pmd here. Moving it
6300 			 * can be done but it would be too convoluted so simply
6301 			 * ignore such a partial THP and keep it in original
6302 			 * memcg. There should be somebody mapping the head.
6303 			 */
6304 			if (PageTransCompound(page))
6305 				goto put;
6306 			if (!device && !isolate_lru_page(page))
6307 				goto put;
6308 			if (!mem_cgroup_move_account(page, false,
6309 						mc.from, mc.to)) {
6310 				mc.precharge--;
6311 				/* we uncharge from mc.from later. */
6312 				mc.moved_charge++;
6313 			}
6314 			if (!device)
6315 				putback_lru_page(page);
6316 put:			/* get_mctgt_type() gets & locks the page */
6317 			unlock_page(page);
6318 			put_page(page);
6319 			break;
6320 		case MC_TARGET_SWAP:
6321 			ent = target.ent;
6322 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6323 				mc.precharge--;
6324 				mem_cgroup_id_get_many(mc.to, 1);
6325 				/* we fixup other refcnts and charges later. */
6326 				mc.moved_swap++;
6327 			}
6328 			break;
6329 		default:
6330 			break;
6331 		}
6332 	}
6333 	pte_unmap_unlock(pte - 1, ptl);
6334 	cond_resched();
6335 
6336 	if (addr != end) {
6337 		/*
6338 		 * We have consumed all precharges we got in can_attach().
6339 		 * We try charge one by one, but don't do any additional
6340 		 * charges to mc.to if we have failed in charge once in attach()
6341 		 * phase.
6342 		 */
6343 		ret = mem_cgroup_do_precharge(1);
6344 		if (!ret)
6345 			goto retry;
6346 	}
6347 
6348 	return ret;
6349 }
6350 
6351 static const struct mm_walk_ops charge_walk_ops = {
6352 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6353 };
6354 
6355 static void mem_cgroup_move_charge(void)
6356 {
6357 	lru_add_drain_all();
6358 	/*
6359 	 * Signal lock_page_memcg() to take the memcg's move_lock
6360 	 * while we're moving its pages to another memcg. Then wait
6361 	 * for already started RCU-only updates to finish.
6362 	 */
6363 	atomic_inc(&mc.from->moving_account);
6364 	synchronize_rcu();
6365 retry:
6366 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6367 		/*
6368 		 * Someone who are holding the mmap_lock might be waiting in
6369 		 * waitq. So we cancel all extra charges, wake up all waiters,
6370 		 * and retry. Because we cancel precharges, we might not be able
6371 		 * to move enough charges, but moving charge is a best-effort
6372 		 * feature anyway, so it wouldn't be a big problem.
6373 		 */
6374 		__mem_cgroup_clear_mc();
6375 		cond_resched();
6376 		goto retry;
6377 	}
6378 	/*
6379 	 * When we have consumed all precharges and failed in doing
6380 	 * additional charge, the page walk just aborts.
6381 	 */
6382 	walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6383 	mmap_read_unlock(mc.mm);
6384 	atomic_dec(&mc.from->moving_account);
6385 }
6386 
6387 static void mem_cgroup_move_task(void)
6388 {
6389 	if (mc.to) {
6390 		mem_cgroup_move_charge();
6391 		mem_cgroup_clear_mc();
6392 	}
6393 }
6394 #else	/* !CONFIG_MMU */
6395 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6396 {
6397 	return 0;
6398 }
6399 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6400 {
6401 }
6402 static void mem_cgroup_move_task(void)
6403 {
6404 }
6405 #endif
6406 
6407 #ifdef CONFIG_LRU_GEN
6408 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6409 {
6410 	struct task_struct *task;
6411 	struct cgroup_subsys_state *css;
6412 
6413 	/* find the first leader if there is any */
6414 	cgroup_taskset_for_each_leader(task, css, tset)
6415 		break;
6416 
6417 	if (!task)
6418 		return;
6419 
6420 	task_lock(task);
6421 	if (task->mm && READ_ONCE(task->mm->owner) == task)
6422 		lru_gen_migrate_mm(task->mm);
6423 	task_unlock(task);
6424 }
6425 #else
6426 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6427 {
6428 }
6429 #endif /* CONFIG_LRU_GEN */
6430 
6431 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6432 {
6433 	if (value == PAGE_COUNTER_MAX)
6434 		seq_puts(m, "max\n");
6435 	else
6436 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6437 
6438 	return 0;
6439 }
6440 
6441 static u64 memory_current_read(struct cgroup_subsys_state *css,
6442 			       struct cftype *cft)
6443 {
6444 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6445 
6446 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6447 }
6448 
6449 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6450 			    struct cftype *cft)
6451 {
6452 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6453 
6454 	return (u64)memcg->memory.watermark * PAGE_SIZE;
6455 }
6456 
6457 static int memory_min_show(struct seq_file *m, void *v)
6458 {
6459 	return seq_puts_memcg_tunable(m,
6460 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6461 }
6462 
6463 static ssize_t memory_min_write(struct kernfs_open_file *of,
6464 				char *buf, size_t nbytes, loff_t off)
6465 {
6466 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6467 	unsigned long min;
6468 	int err;
6469 
6470 	buf = strstrip(buf);
6471 	err = page_counter_memparse(buf, "max", &min);
6472 	if (err)
6473 		return err;
6474 
6475 	page_counter_set_min(&memcg->memory, min);
6476 
6477 	return nbytes;
6478 }
6479 
6480 static int memory_low_show(struct seq_file *m, void *v)
6481 {
6482 	return seq_puts_memcg_tunable(m,
6483 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6484 }
6485 
6486 static ssize_t memory_low_write(struct kernfs_open_file *of,
6487 				char *buf, size_t nbytes, loff_t off)
6488 {
6489 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6490 	unsigned long low;
6491 	int err;
6492 
6493 	buf = strstrip(buf);
6494 	err = page_counter_memparse(buf, "max", &low);
6495 	if (err)
6496 		return err;
6497 
6498 	page_counter_set_low(&memcg->memory, low);
6499 
6500 	return nbytes;
6501 }
6502 
6503 static int memory_high_show(struct seq_file *m, void *v)
6504 {
6505 	return seq_puts_memcg_tunable(m,
6506 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6507 }
6508 
6509 static ssize_t memory_high_write(struct kernfs_open_file *of,
6510 				 char *buf, size_t nbytes, loff_t off)
6511 {
6512 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6513 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6514 	bool drained = false;
6515 	unsigned long high;
6516 	int err;
6517 
6518 	buf = strstrip(buf);
6519 	err = page_counter_memparse(buf, "max", &high);
6520 	if (err)
6521 		return err;
6522 
6523 	page_counter_set_high(&memcg->memory, high);
6524 
6525 	for (;;) {
6526 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6527 		unsigned long reclaimed;
6528 
6529 		if (nr_pages <= high)
6530 			break;
6531 
6532 		if (signal_pending(current))
6533 			break;
6534 
6535 		if (!drained) {
6536 			drain_all_stock(memcg);
6537 			drained = true;
6538 			continue;
6539 		}
6540 
6541 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6542 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6543 
6544 		if (!reclaimed && !nr_retries--)
6545 			break;
6546 	}
6547 
6548 	memcg_wb_domain_size_changed(memcg);
6549 	return nbytes;
6550 }
6551 
6552 static int memory_max_show(struct seq_file *m, void *v)
6553 {
6554 	return seq_puts_memcg_tunable(m,
6555 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6556 }
6557 
6558 static ssize_t memory_max_write(struct kernfs_open_file *of,
6559 				char *buf, size_t nbytes, loff_t off)
6560 {
6561 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6562 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6563 	bool drained = false;
6564 	unsigned long max;
6565 	int err;
6566 
6567 	buf = strstrip(buf);
6568 	err = page_counter_memparse(buf, "max", &max);
6569 	if (err)
6570 		return err;
6571 
6572 	xchg(&memcg->memory.max, max);
6573 
6574 	for (;;) {
6575 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6576 
6577 		if (nr_pages <= max)
6578 			break;
6579 
6580 		if (signal_pending(current))
6581 			break;
6582 
6583 		if (!drained) {
6584 			drain_all_stock(memcg);
6585 			drained = true;
6586 			continue;
6587 		}
6588 
6589 		if (nr_reclaims) {
6590 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6591 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6592 				nr_reclaims--;
6593 			continue;
6594 		}
6595 
6596 		memcg_memory_event(memcg, MEMCG_OOM);
6597 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6598 			break;
6599 	}
6600 
6601 	memcg_wb_domain_size_changed(memcg);
6602 	return nbytes;
6603 }
6604 
6605 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6606 {
6607 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6608 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6609 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6610 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6611 	seq_printf(m, "oom_kill %lu\n",
6612 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6613 	seq_printf(m, "oom_group_kill %lu\n",
6614 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6615 }
6616 
6617 static int memory_events_show(struct seq_file *m, void *v)
6618 {
6619 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6620 
6621 	__memory_events_show(m, memcg->memory_events);
6622 	return 0;
6623 }
6624 
6625 static int memory_events_local_show(struct seq_file *m, void *v)
6626 {
6627 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6628 
6629 	__memory_events_show(m, memcg->memory_events_local);
6630 	return 0;
6631 }
6632 
6633 static int memory_stat_show(struct seq_file *m, void *v)
6634 {
6635 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6636 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6637 
6638 	if (!buf)
6639 		return -ENOMEM;
6640 	memory_stat_format(memcg, buf, PAGE_SIZE);
6641 	seq_puts(m, buf);
6642 	kfree(buf);
6643 	return 0;
6644 }
6645 
6646 #ifdef CONFIG_NUMA
6647 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6648 						     int item)
6649 {
6650 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6651 }
6652 
6653 static int memory_numa_stat_show(struct seq_file *m, void *v)
6654 {
6655 	int i;
6656 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6657 
6658 	mem_cgroup_flush_stats();
6659 
6660 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6661 		int nid;
6662 
6663 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6664 			continue;
6665 
6666 		seq_printf(m, "%s", memory_stats[i].name);
6667 		for_each_node_state(nid, N_MEMORY) {
6668 			u64 size;
6669 			struct lruvec *lruvec;
6670 
6671 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6672 			size = lruvec_page_state_output(lruvec,
6673 							memory_stats[i].idx);
6674 			seq_printf(m, " N%d=%llu", nid, size);
6675 		}
6676 		seq_putc(m, '\n');
6677 	}
6678 
6679 	return 0;
6680 }
6681 #endif
6682 
6683 static int memory_oom_group_show(struct seq_file *m, void *v)
6684 {
6685 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6686 
6687 	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6688 
6689 	return 0;
6690 }
6691 
6692 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6693 				      char *buf, size_t nbytes, loff_t off)
6694 {
6695 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6696 	int ret, oom_group;
6697 
6698 	buf = strstrip(buf);
6699 	if (!buf)
6700 		return -EINVAL;
6701 
6702 	ret = kstrtoint(buf, 0, &oom_group);
6703 	if (ret)
6704 		return ret;
6705 
6706 	if (oom_group != 0 && oom_group != 1)
6707 		return -EINVAL;
6708 
6709 	WRITE_ONCE(memcg->oom_group, oom_group);
6710 
6711 	return nbytes;
6712 }
6713 
6714 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6715 			      size_t nbytes, loff_t off)
6716 {
6717 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6718 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6719 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
6720 	unsigned int reclaim_options;
6721 	int err;
6722 
6723 	buf = strstrip(buf);
6724 	err = page_counter_memparse(buf, "", &nr_to_reclaim);
6725 	if (err)
6726 		return err;
6727 
6728 	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6729 	while (nr_reclaimed < nr_to_reclaim) {
6730 		unsigned long reclaimed;
6731 
6732 		if (signal_pending(current))
6733 			return -EINTR;
6734 
6735 		/*
6736 		 * This is the final attempt, drain percpu lru caches in the
6737 		 * hope of introducing more evictable pages for
6738 		 * try_to_free_mem_cgroup_pages().
6739 		 */
6740 		if (!nr_retries)
6741 			lru_add_drain_all();
6742 
6743 		reclaimed = try_to_free_mem_cgroup_pages(memcg,
6744 						nr_to_reclaim - nr_reclaimed,
6745 						GFP_KERNEL, reclaim_options);
6746 
6747 		if (!reclaimed && !nr_retries--)
6748 			return -EAGAIN;
6749 
6750 		nr_reclaimed += reclaimed;
6751 	}
6752 
6753 	return nbytes;
6754 }
6755 
6756 static struct cftype memory_files[] = {
6757 	{
6758 		.name = "current",
6759 		.flags = CFTYPE_NOT_ON_ROOT,
6760 		.read_u64 = memory_current_read,
6761 	},
6762 	{
6763 		.name = "peak",
6764 		.flags = CFTYPE_NOT_ON_ROOT,
6765 		.read_u64 = memory_peak_read,
6766 	},
6767 	{
6768 		.name = "min",
6769 		.flags = CFTYPE_NOT_ON_ROOT,
6770 		.seq_show = memory_min_show,
6771 		.write = memory_min_write,
6772 	},
6773 	{
6774 		.name = "low",
6775 		.flags = CFTYPE_NOT_ON_ROOT,
6776 		.seq_show = memory_low_show,
6777 		.write = memory_low_write,
6778 	},
6779 	{
6780 		.name = "high",
6781 		.flags = CFTYPE_NOT_ON_ROOT,
6782 		.seq_show = memory_high_show,
6783 		.write = memory_high_write,
6784 	},
6785 	{
6786 		.name = "max",
6787 		.flags = CFTYPE_NOT_ON_ROOT,
6788 		.seq_show = memory_max_show,
6789 		.write = memory_max_write,
6790 	},
6791 	{
6792 		.name = "events",
6793 		.flags = CFTYPE_NOT_ON_ROOT,
6794 		.file_offset = offsetof(struct mem_cgroup, events_file),
6795 		.seq_show = memory_events_show,
6796 	},
6797 	{
6798 		.name = "events.local",
6799 		.flags = CFTYPE_NOT_ON_ROOT,
6800 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6801 		.seq_show = memory_events_local_show,
6802 	},
6803 	{
6804 		.name = "stat",
6805 		.seq_show = memory_stat_show,
6806 	},
6807 #ifdef CONFIG_NUMA
6808 	{
6809 		.name = "numa_stat",
6810 		.seq_show = memory_numa_stat_show,
6811 	},
6812 #endif
6813 	{
6814 		.name = "oom.group",
6815 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6816 		.seq_show = memory_oom_group_show,
6817 		.write = memory_oom_group_write,
6818 	},
6819 	{
6820 		.name = "reclaim",
6821 		.flags = CFTYPE_NS_DELEGATABLE,
6822 		.write = memory_reclaim,
6823 	},
6824 	{ }	/* terminate */
6825 };
6826 
6827 struct cgroup_subsys memory_cgrp_subsys = {
6828 	.css_alloc = mem_cgroup_css_alloc,
6829 	.css_online = mem_cgroup_css_online,
6830 	.css_offline = mem_cgroup_css_offline,
6831 	.css_released = mem_cgroup_css_released,
6832 	.css_free = mem_cgroup_css_free,
6833 	.css_reset = mem_cgroup_css_reset,
6834 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6835 	.can_attach = mem_cgroup_can_attach,
6836 	.attach = mem_cgroup_attach,
6837 	.cancel_attach = mem_cgroup_cancel_attach,
6838 	.post_attach = mem_cgroup_move_task,
6839 	.dfl_cftypes = memory_files,
6840 	.legacy_cftypes = mem_cgroup_legacy_files,
6841 	.early_init = 0,
6842 };
6843 
6844 /*
6845  * This function calculates an individual cgroup's effective
6846  * protection which is derived from its own memory.min/low, its
6847  * parent's and siblings' settings, as well as the actual memory
6848  * distribution in the tree.
6849  *
6850  * The following rules apply to the effective protection values:
6851  *
6852  * 1. At the first level of reclaim, effective protection is equal to
6853  *    the declared protection in memory.min and memory.low.
6854  *
6855  * 2. To enable safe delegation of the protection configuration, at
6856  *    subsequent levels the effective protection is capped to the
6857  *    parent's effective protection.
6858  *
6859  * 3. To make complex and dynamic subtrees easier to configure, the
6860  *    user is allowed to overcommit the declared protection at a given
6861  *    level. If that is the case, the parent's effective protection is
6862  *    distributed to the children in proportion to how much protection
6863  *    they have declared and how much of it they are utilizing.
6864  *
6865  *    This makes distribution proportional, but also work-conserving:
6866  *    if one cgroup claims much more protection than it uses memory,
6867  *    the unused remainder is available to its siblings.
6868  *
6869  * 4. Conversely, when the declared protection is undercommitted at a
6870  *    given level, the distribution of the larger parental protection
6871  *    budget is NOT proportional. A cgroup's protection from a sibling
6872  *    is capped to its own memory.min/low setting.
6873  *
6874  * 5. However, to allow protecting recursive subtrees from each other
6875  *    without having to declare each individual cgroup's fixed share
6876  *    of the ancestor's claim to protection, any unutilized -
6877  *    "floating" - protection from up the tree is distributed in
6878  *    proportion to each cgroup's *usage*. This makes the protection
6879  *    neutral wrt sibling cgroups and lets them compete freely over
6880  *    the shared parental protection budget, but it protects the
6881  *    subtree as a whole from neighboring subtrees.
6882  *
6883  * Note that 4. and 5. are not in conflict: 4. is about protecting
6884  * against immediate siblings whereas 5. is about protecting against
6885  * neighboring subtrees.
6886  */
6887 static unsigned long effective_protection(unsigned long usage,
6888 					  unsigned long parent_usage,
6889 					  unsigned long setting,
6890 					  unsigned long parent_effective,
6891 					  unsigned long siblings_protected)
6892 {
6893 	unsigned long protected;
6894 	unsigned long ep;
6895 
6896 	protected = min(usage, setting);
6897 	/*
6898 	 * If all cgroups at this level combined claim and use more
6899 	 * protection then what the parent affords them, distribute
6900 	 * shares in proportion to utilization.
6901 	 *
6902 	 * We are using actual utilization rather than the statically
6903 	 * claimed protection in order to be work-conserving: claimed
6904 	 * but unused protection is available to siblings that would
6905 	 * otherwise get a smaller chunk than what they claimed.
6906 	 */
6907 	if (siblings_protected > parent_effective)
6908 		return protected * parent_effective / siblings_protected;
6909 
6910 	/*
6911 	 * Ok, utilized protection of all children is within what the
6912 	 * parent affords them, so we know whatever this child claims
6913 	 * and utilizes is effectively protected.
6914 	 *
6915 	 * If there is unprotected usage beyond this value, reclaim
6916 	 * will apply pressure in proportion to that amount.
6917 	 *
6918 	 * If there is unutilized protection, the cgroup will be fully
6919 	 * shielded from reclaim, but we do return a smaller value for
6920 	 * protection than what the group could enjoy in theory. This
6921 	 * is okay. With the overcommit distribution above, effective
6922 	 * protection is always dependent on how memory is actually
6923 	 * consumed among the siblings anyway.
6924 	 */
6925 	ep = protected;
6926 
6927 	/*
6928 	 * If the children aren't claiming (all of) the protection
6929 	 * afforded to them by the parent, distribute the remainder in
6930 	 * proportion to the (unprotected) memory of each cgroup. That
6931 	 * way, cgroups that aren't explicitly prioritized wrt each
6932 	 * other compete freely over the allowance, but they are
6933 	 * collectively protected from neighboring trees.
6934 	 *
6935 	 * We're using unprotected memory for the weight so that if
6936 	 * some cgroups DO claim explicit protection, we don't protect
6937 	 * the same bytes twice.
6938 	 *
6939 	 * Check both usage and parent_usage against the respective
6940 	 * protected values. One should imply the other, but they
6941 	 * aren't read atomically - make sure the division is sane.
6942 	 */
6943 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6944 		return ep;
6945 	if (parent_effective > siblings_protected &&
6946 	    parent_usage > siblings_protected &&
6947 	    usage > protected) {
6948 		unsigned long unclaimed;
6949 
6950 		unclaimed = parent_effective - siblings_protected;
6951 		unclaimed *= usage - protected;
6952 		unclaimed /= parent_usage - siblings_protected;
6953 
6954 		ep += unclaimed;
6955 	}
6956 
6957 	return ep;
6958 }
6959 
6960 /**
6961  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6962  * @root: the top ancestor of the sub-tree being checked
6963  * @memcg: the memory cgroup to check
6964  *
6965  * WARNING: This function is not stateless! It can only be used as part
6966  *          of a top-down tree iteration, not for isolated queries.
6967  */
6968 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6969 				     struct mem_cgroup *memcg)
6970 {
6971 	unsigned long usage, parent_usage;
6972 	struct mem_cgroup *parent;
6973 
6974 	if (mem_cgroup_disabled())
6975 		return;
6976 
6977 	if (!root)
6978 		root = root_mem_cgroup;
6979 
6980 	/*
6981 	 * Effective values of the reclaim targets are ignored so they
6982 	 * can be stale. Have a look at mem_cgroup_protection for more
6983 	 * details.
6984 	 * TODO: calculation should be more robust so that we do not need
6985 	 * that special casing.
6986 	 */
6987 	if (memcg == root)
6988 		return;
6989 
6990 	usage = page_counter_read(&memcg->memory);
6991 	if (!usage)
6992 		return;
6993 
6994 	parent = parent_mem_cgroup(memcg);
6995 
6996 	if (parent == root) {
6997 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6998 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6999 		return;
7000 	}
7001 
7002 	parent_usage = page_counter_read(&parent->memory);
7003 
7004 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7005 			READ_ONCE(memcg->memory.min),
7006 			READ_ONCE(parent->memory.emin),
7007 			atomic_long_read(&parent->memory.children_min_usage)));
7008 
7009 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7010 			READ_ONCE(memcg->memory.low),
7011 			READ_ONCE(parent->memory.elow),
7012 			atomic_long_read(&parent->memory.children_low_usage)));
7013 }
7014 
7015 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7016 			gfp_t gfp)
7017 {
7018 	long nr_pages = folio_nr_pages(folio);
7019 	int ret;
7020 
7021 	ret = try_charge(memcg, gfp, nr_pages);
7022 	if (ret)
7023 		goto out;
7024 
7025 	css_get(&memcg->css);
7026 	commit_charge(folio, memcg);
7027 
7028 	local_irq_disable();
7029 	mem_cgroup_charge_statistics(memcg, nr_pages);
7030 	memcg_check_events(memcg, folio_nid(folio));
7031 	local_irq_enable();
7032 out:
7033 	return ret;
7034 }
7035 
7036 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7037 {
7038 	struct mem_cgroup *memcg;
7039 	int ret;
7040 
7041 	memcg = get_mem_cgroup_from_mm(mm);
7042 	ret = charge_memcg(folio, memcg, gfp);
7043 	css_put(&memcg->css);
7044 
7045 	return ret;
7046 }
7047 
7048 /**
7049  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7050  * @folio: folio to charge.
7051  * @mm: mm context of the victim
7052  * @gfp: reclaim mode
7053  * @entry: swap entry for which the folio is allocated
7054  *
7055  * This function charges a folio allocated for swapin. Please call this before
7056  * adding the folio to the swapcache.
7057  *
7058  * Returns 0 on success. Otherwise, an error code is returned.
7059  */
7060 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7061 				  gfp_t gfp, swp_entry_t entry)
7062 {
7063 	struct mem_cgroup *memcg;
7064 	unsigned short id;
7065 	int ret;
7066 
7067 	if (mem_cgroup_disabled())
7068 		return 0;
7069 
7070 	id = lookup_swap_cgroup_id(entry);
7071 	rcu_read_lock();
7072 	memcg = mem_cgroup_from_id(id);
7073 	if (!memcg || !css_tryget_online(&memcg->css))
7074 		memcg = get_mem_cgroup_from_mm(mm);
7075 	rcu_read_unlock();
7076 
7077 	ret = charge_memcg(folio, memcg, gfp);
7078 
7079 	css_put(&memcg->css);
7080 	return ret;
7081 }
7082 
7083 /*
7084  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7085  * @entry: swap entry for which the page is charged
7086  *
7087  * Call this function after successfully adding the charged page to swapcache.
7088  *
7089  * Note: This function assumes the page for which swap slot is being uncharged
7090  * is order 0 page.
7091  */
7092 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7093 {
7094 	/*
7095 	 * Cgroup1's unified memory+swap counter has been charged with the
7096 	 * new swapcache page, finish the transfer by uncharging the swap
7097 	 * slot. The swap slot would also get uncharged when it dies, but
7098 	 * it can stick around indefinitely and we'd count the page twice
7099 	 * the entire time.
7100 	 *
7101 	 * Cgroup2 has separate resource counters for memory and swap,
7102 	 * so this is a non-issue here. Memory and swap charge lifetimes
7103 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
7104 	 * page to memory here, and uncharge swap when the slot is freed.
7105 	 */
7106 	if (!mem_cgroup_disabled() && do_memsw_account()) {
7107 		/*
7108 		 * The swap entry might not get freed for a long time,
7109 		 * let's not wait for it.  The page already received a
7110 		 * memory+swap charge, drop the swap entry duplicate.
7111 		 */
7112 		mem_cgroup_uncharge_swap(entry, 1);
7113 	}
7114 }
7115 
7116 struct uncharge_gather {
7117 	struct mem_cgroup *memcg;
7118 	unsigned long nr_memory;
7119 	unsigned long pgpgout;
7120 	unsigned long nr_kmem;
7121 	int nid;
7122 };
7123 
7124 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7125 {
7126 	memset(ug, 0, sizeof(*ug));
7127 }
7128 
7129 static void uncharge_batch(const struct uncharge_gather *ug)
7130 {
7131 	unsigned long flags;
7132 
7133 	if (ug->nr_memory) {
7134 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7135 		if (do_memsw_account())
7136 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7137 		if (ug->nr_kmem)
7138 			memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7139 		memcg_oom_recover(ug->memcg);
7140 	}
7141 
7142 	local_irq_save(flags);
7143 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7144 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7145 	memcg_check_events(ug->memcg, ug->nid);
7146 	local_irq_restore(flags);
7147 
7148 	/* drop reference from uncharge_folio */
7149 	css_put(&ug->memcg->css);
7150 }
7151 
7152 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7153 {
7154 	long nr_pages;
7155 	struct mem_cgroup *memcg;
7156 	struct obj_cgroup *objcg;
7157 
7158 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7159 
7160 	/*
7161 	 * Nobody should be changing or seriously looking at
7162 	 * folio memcg or objcg at this point, we have fully
7163 	 * exclusive access to the folio.
7164 	 */
7165 	if (folio_memcg_kmem(folio)) {
7166 		objcg = __folio_objcg(folio);
7167 		/*
7168 		 * This get matches the put at the end of the function and
7169 		 * kmem pages do not hold memcg references anymore.
7170 		 */
7171 		memcg = get_mem_cgroup_from_objcg(objcg);
7172 	} else {
7173 		memcg = __folio_memcg(folio);
7174 	}
7175 
7176 	if (!memcg)
7177 		return;
7178 
7179 	if (ug->memcg != memcg) {
7180 		if (ug->memcg) {
7181 			uncharge_batch(ug);
7182 			uncharge_gather_clear(ug);
7183 		}
7184 		ug->memcg = memcg;
7185 		ug->nid = folio_nid(folio);
7186 
7187 		/* pairs with css_put in uncharge_batch */
7188 		css_get(&memcg->css);
7189 	}
7190 
7191 	nr_pages = folio_nr_pages(folio);
7192 
7193 	if (folio_memcg_kmem(folio)) {
7194 		ug->nr_memory += nr_pages;
7195 		ug->nr_kmem += nr_pages;
7196 
7197 		folio->memcg_data = 0;
7198 		obj_cgroup_put(objcg);
7199 	} else {
7200 		/* LRU pages aren't accounted at the root level */
7201 		if (!mem_cgroup_is_root(memcg))
7202 			ug->nr_memory += nr_pages;
7203 		ug->pgpgout++;
7204 
7205 		folio->memcg_data = 0;
7206 	}
7207 
7208 	css_put(&memcg->css);
7209 }
7210 
7211 void __mem_cgroup_uncharge(struct folio *folio)
7212 {
7213 	struct uncharge_gather ug;
7214 
7215 	/* Don't touch folio->lru of any random page, pre-check: */
7216 	if (!folio_memcg(folio))
7217 		return;
7218 
7219 	uncharge_gather_clear(&ug);
7220 	uncharge_folio(folio, &ug);
7221 	uncharge_batch(&ug);
7222 }
7223 
7224 /**
7225  * __mem_cgroup_uncharge_list - uncharge a list of page
7226  * @page_list: list of pages to uncharge
7227  *
7228  * Uncharge a list of pages previously charged with
7229  * __mem_cgroup_charge().
7230  */
7231 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7232 {
7233 	struct uncharge_gather ug;
7234 	struct folio *folio;
7235 
7236 	uncharge_gather_clear(&ug);
7237 	list_for_each_entry(folio, page_list, lru)
7238 		uncharge_folio(folio, &ug);
7239 	if (ug.memcg)
7240 		uncharge_batch(&ug);
7241 }
7242 
7243 /**
7244  * mem_cgroup_migrate - Charge a folio's replacement.
7245  * @old: Currently circulating folio.
7246  * @new: Replacement folio.
7247  *
7248  * Charge @new as a replacement folio for @old. @old will
7249  * be uncharged upon free.
7250  *
7251  * Both folios must be locked, @new->mapping must be set up.
7252  */
7253 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7254 {
7255 	struct mem_cgroup *memcg;
7256 	long nr_pages = folio_nr_pages(new);
7257 	unsigned long flags;
7258 
7259 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7260 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7261 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7262 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7263 
7264 	if (mem_cgroup_disabled())
7265 		return;
7266 
7267 	/* Page cache replacement: new folio already charged? */
7268 	if (folio_memcg(new))
7269 		return;
7270 
7271 	memcg = folio_memcg(old);
7272 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7273 	if (!memcg)
7274 		return;
7275 
7276 	/* Force-charge the new page. The old one will be freed soon */
7277 	if (!mem_cgroup_is_root(memcg)) {
7278 		page_counter_charge(&memcg->memory, nr_pages);
7279 		if (do_memsw_account())
7280 			page_counter_charge(&memcg->memsw, nr_pages);
7281 	}
7282 
7283 	css_get(&memcg->css);
7284 	commit_charge(new, memcg);
7285 
7286 	local_irq_save(flags);
7287 	mem_cgroup_charge_statistics(memcg, nr_pages);
7288 	memcg_check_events(memcg, folio_nid(new));
7289 	local_irq_restore(flags);
7290 }
7291 
7292 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7293 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7294 
7295 void mem_cgroup_sk_alloc(struct sock *sk)
7296 {
7297 	struct mem_cgroup *memcg;
7298 
7299 	if (!mem_cgroup_sockets_enabled)
7300 		return;
7301 
7302 	/* Do not associate the sock with unrelated interrupted task's memcg. */
7303 	if (!in_task())
7304 		return;
7305 
7306 	rcu_read_lock();
7307 	memcg = mem_cgroup_from_task(current);
7308 	if (mem_cgroup_is_root(memcg))
7309 		goto out;
7310 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7311 		goto out;
7312 	if (css_tryget(&memcg->css))
7313 		sk->sk_memcg = memcg;
7314 out:
7315 	rcu_read_unlock();
7316 }
7317 
7318 void mem_cgroup_sk_free(struct sock *sk)
7319 {
7320 	if (sk->sk_memcg)
7321 		css_put(&sk->sk_memcg->css);
7322 }
7323 
7324 /**
7325  * mem_cgroup_charge_skmem - charge socket memory
7326  * @memcg: memcg to charge
7327  * @nr_pages: number of pages to charge
7328  * @gfp_mask: reclaim mode
7329  *
7330  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7331  * @memcg's configured limit, %false if it doesn't.
7332  */
7333 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7334 			     gfp_t gfp_mask)
7335 {
7336 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7337 		struct page_counter *fail;
7338 
7339 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7340 			memcg->tcpmem_pressure = 0;
7341 			return true;
7342 		}
7343 		memcg->tcpmem_pressure = 1;
7344 		if (gfp_mask & __GFP_NOFAIL) {
7345 			page_counter_charge(&memcg->tcpmem, nr_pages);
7346 			return true;
7347 		}
7348 		return false;
7349 	}
7350 
7351 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7352 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7353 		return true;
7354 	}
7355 
7356 	return false;
7357 }
7358 
7359 /**
7360  * mem_cgroup_uncharge_skmem - uncharge socket memory
7361  * @memcg: memcg to uncharge
7362  * @nr_pages: number of pages to uncharge
7363  */
7364 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7365 {
7366 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7367 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7368 		return;
7369 	}
7370 
7371 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7372 
7373 	refill_stock(memcg, nr_pages);
7374 }
7375 
7376 static int __init cgroup_memory(char *s)
7377 {
7378 	char *token;
7379 
7380 	while ((token = strsep(&s, ",")) != NULL) {
7381 		if (!*token)
7382 			continue;
7383 		if (!strcmp(token, "nosocket"))
7384 			cgroup_memory_nosocket = true;
7385 		if (!strcmp(token, "nokmem"))
7386 			cgroup_memory_nokmem = true;
7387 		if (!strcmp(token, "nobpf"))
7388 			cgroup_memory_nobpf = true;
7389 	}
7390 	return 1;
7391 }
7392 __setup("cgroup.memory=", cgroup_memory);
7393 
7394 /*
7395  * subsys_initcall() for memory controller.
7396  *
7397  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7398  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7399  * basically everything that doesn't depend on a specific mem_cgroup structure
7400  * should be initialized from here.
7401  */
7402 static int __init mem_cgroup_init(void)
7403 {
7404 	int cpu, node;
7405 
7406 	/*
7407 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7408 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7409 	 * to work fine, we should make sure that the overfill threshold can't
7410 	 * exceed S32_MAX / PAGE_SIZE.
7411 	 */
7412 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7413 
7414 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7415 				  memcg_hotplug_cpu_dead);
7416 
7417 	for_each_possible_cpu(cpu)
7418 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7419 			  drain_local_stock);
7420 
7421 	for_each_node(node) {
7422 		struct mem_cgroup_tree_per_node *rtpn;
7423 
7424 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7425 				    node_online(node) ? node : NUMA_NO_NODE);
7426 
7427 		rtpn->rb_root = RB_ROOT;
7428 		rtpn->rb_rightmost = NULL;
7429 		spin_lock_init(&rtpn->lock);
7430 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7431 	}
7432 
7433 	return 0;
7434 }
7435 subsys_initcall(mem_cgroup_init);
7436 
7437 #ifdef CONFIG_SWAP
7438 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7439 {
7440 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7441 		/*
7442 		 * The root cgroup cannot be destroyed, so it's refcount must
7443 		 * always be >= 1.
7444 		 */
7445 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7446 			VM_BUG_ON(1);
7447 			break;
7448 		}
7449 		memcg = parent_mem_cgroup(memcg);
7450 		if (!memcg)
7451 			memcg = root_mem_cgroup;
7452 	}
7453 	return memcg;
7454 }
7455 
7456 /**
7457  * mem_cgroup_swapout - transfer a memsw charge to swap
7458  * @folio: folio whose memsw charge to transfer
7459  * @entry: swap entry to move the charge to
7460  *
7461  * Transfer the memsw charge of @folio to @entry.
7462  */
7463 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7464 {
7465 	struct mem_cgroup *memcg, *swap_memcg;
7466 	unsigned int nr_entries;
7467 	unsigned short oldid;
7468 
7469 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7470 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7471 
7472 	if (mem_cgroup_disabled())
7473 		return;
7474 
7475 	if (!do_memsw_account())
7476 		return;
7477 
7478 	memcg = folio_memcg(folio);
7479 
7480 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7481 	if (!memcg)
7482 		return;
7483 
7484 	/*
7485 	 * In case the memcg owning these pages has been offlined and doesn't
7486 	 * have an ID allocated to it anymore, charge the closest online
7487 	 * ancestor for the swap instead and transfer the memory+swap charge.
7488 	 */
7489 	swap_memcg = mem_cgroup_id_get_online(memcg);
7490 	nr_entries = folio_nr_pages(folio);
7491 	/* Get references for the tail pages, too */
7492 	if (nr_entries > 1)
7493 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7494 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7495 				   nr_entries);
7496 	VM_BUG_ON_FOLIO(oldid, folio);
7497 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7498 
7499 	folio->memcg_data = 0;
7500 
7501 	if (!mem_cgroup_is_root(memcg))
7502 		page_counter_uncharge(&memcg->memory, nr_entries);
7503 
7504 	if (memcg != swap_memcg) {
7505 		if (!mem_cgroup_is_root(swap_memcg))
7506 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7507 		page_counter_uncharge(&memcg->memsw, nr_entries);
7508 	}
7509 
7510 	/*
7511 	 * Interrupts should be disabled here because the caller holds the
7512 	 * i_pages lock which is taken with interrupts-off. It is
7513 	 * important here to have the interrupts disabled because it is the
7514 	 * only synchronisation we have for updating the per-CPU variables.
7515 	 */
7516 	memcg_stats_lock();
7517 	mem_cgroup_charge_statistics(memcg, -nr_entries);
7518 	memcg_stats_unlock();
7519 	memcg_check_events(memcg, folio_nid(folio));
7520 
7521 	css_put(&memcg->css);
7522 }
7523 
7524 /**
7525  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7526  * @folio: folio being added to swap
7527  * @entry: swap entry to charge
7528  *
7529  * Try to charge @folio's memcg for the swap space at @entry.
7530  *
7531  * Returns 0 on success, -ENOMEM on failure.
7532  */
7533 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7534 {
7535 	unsigned int nr_pages = folio_nr_pages(folio);
7536 	struct page_counter *counter;
7537 	struct mem_cgroup *memcg;
7538 	unsigned short oldid;
7539 
7540 	if (do_memsw_account())
7541 		return 0;
7542 
7543 	memcg = folio_memcg(folio);
7544 
7545 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7546 	if (!memcg)
7547 		return 0;
7548 
7549 	if (!entry.val) {
7550 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7551 		return 0;
7552 	}
7553 
7554 	memcg = mem_cgroup_id_get_online(memcg);
7555 
7556 	if (!mem_cgroup_is_root(memcg) &&
7557 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7558 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7559 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7560 		mem_cgroup_id_put(memcg);
7561 		return -ENOMEM;
7562 	}
7563 
7564 	/* Get references for the tail pages, too */
7565 	if (nr_pages > 1)
7566 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7567 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7568 	VM_BUG_ON_FOLIO(oldid, folio);
7569 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7570 
7571 	return 0;
7572 }
7573 
7574 /**
7575  * __mem_cgroup_uncharge_swap - uncharge swap space
7576  * @entry: swap entry to uncharge
7577  * @nr_pages: the amount of swap space to uncharge
7578  */
7579 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7580 {
7581 	struct mem_cgroup *memcg;
7582 	unsigned short id;
7583 
7584 	if (mem_cgroup_disabled())
7585 		return;
7586 
7587 	id = swap_cgroup_record(entry, 0, nr_pages);
7588 	rcu_read_lock();
7589 	memcg = mem_cgroup_from_id(id);
7590 	if (memcg) {
7591 		if (!mem_cgroup_is_root(memcg)) {
7592 			if (do_memsw_account())
7593 				page_counter_uncharge(&memcg->memsw, nr_pages);
7594 			else
7595 				page_counter_uncharge(&memcg->swap, nr_pages);
7596 		}
7597 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7598 		mem_cgroup_id_put_many(memcg, nr_pages);
7599 	}
7600 	rcu_read_unlock();
7601 }
7602 
7603 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7604 {
7605 	long nr_swap_pages = get_nr_swap_pages();
7606 
7607 	if (mem_cgroup_disabled() || do_memsw_account())
7608 		return nr_swap_pages;
7609 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7610 		nr_swap_pages = min_t(long, nr_swap_pages,
7611 				      READ_ONCE(memcg->swap.max) -
7612 				      page_counter_read(&memcg->swap));
7613 	return nr_swap_pages;
7614 }
7615 
7616 bool mem_cgroup_swap_full(struct folio *folio)
7617 {
7618 	struct mem_cgroup *memcg;
7619 
7620 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7621 
7622 	if (vm_swap_full())
7623 		return true;
7624 	if (do_memsw_account())
7625 		return false;
7626 
7627 	memcg = folio_memcg(folio);
7628 	if (!memcg)
7629 		return false;
7630 
7631 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7632 		unsigned long usage = page_counter_read(&memcg->swap);
7633 
7634 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7635 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7636 			return true;
7637 	}
7638 
7639 	return false;
7640 }
7641 
7642 static int __init setup_swap_account(char *s)
7643 {
7644 	pr_warn_once("The swapaccount= commandline option is deprecated. "
7645 		     "Please report your usecase to linux-mm@kvack.org if you "
7646 		     "depend on this functionality.\n");
7647 	return 1;
7648 }
7649 __setup("swapaccount=", setup_swap_account);
7650 
7651 static u64 swap_current_read(struct cgroup_subsys_state *css,
7652 			     struct cftype *cft)
7653 {
7654 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7655 
7656 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7657 }
7658 
7659 static int swap_high_show(struct seq_file *m, void *v)
7660 {
7661 	return seq_puts_memcg_tunable(m,
7662 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7663 }
7664 
7665 static ssize_t swap_high_write(struct kernfs_open_file *of,
7666 			       char *buf, size_t nbytes, loff_t off)
7667 {
7668 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7669 	unsigned long high;
7670 	int err;
7671 
7672 	buf = strstrip(buf);
7673 	err = page_counter_memparse(buf, "max", &high);
7674 	if (err)
7675 		return err;
7676 
7677 	page_counter_set_high(&memcg->swap, high);
7678 
7679 	return nbytes;
7680 }
7681 
7682 static int swap_max_show(struct seq_file *m, void *v)
7683 {
7684 	return seq_puts_memcg_tunable(m,
7685 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7686 }
7687 
7688 static ssize_t swap_max_write(struct kernfs_open_file *of,
7689 			      char *buf, size_t nbytes, loff_t off)
7690 {
7691 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7692 	unsigned long max;
7693 	int err;
7694 
7695 	buf = strstrip(buf);
7696 	err = page_counter_memparse(buf, "max", &max);
7697 	if (err)
7698 		return err;
7699 
7700 	xchg(&memcg->swap.max, max);
7701 
7702 	return nbytes;
7703 }
7704 
7705 static int swap_events_show(struct seq_file *m, void *v)
7706 {
7707 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7708 
7709 	seq_printf(m, "high %lu\n",
7710 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7711 	seq_printf(m, "max %lu\n",
7712 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7713 	seq_printf(m, "fail %lu\n",
7714 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7715 
7716 	return 0;
7717 }
7718 
7719 static struct cftype swap_files[] = {
7720 	{
7721 		.name = "swap.current",
7722 		.flags = CFTYPE_NOT_ON_ROOT,
7723 		.read_u64 = swap_current_read,
7724 	},
7725 	{
7726 		.name = "swap.high",
7727 		.flags = CFTYPE_NOT_ON_ROOT,
7728 		.seq_show = swap_high_show,
7729 		.write = swap_high_write,
7730 	},
7731 	{
7732 		.name = "swap.max",
7733 		.flags = CFTYPE_NOT_ON_ROOT,
7734 		.seq_show = swap_max_show,
7735 		.write = swap_max_write,
7736 	},
7737 	{
7738 		.name = "swap.events",
7739 		.flags = CFTYPE_NOT_ON_ROOT,
7740 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7741 		.seq_show = swap_events_show,
7742 	},
7743 	{ }	/* terminate */
7744 };
7745 
7746 static struct cftype memsw_files[] = {
7747 	{
7748 		.name = "memsw.usage_in_bytes",
7749 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7750 		.read_u64 = mem_cgroup_read_u64,
7751 	},
7752 	{
7753 		.name = "memsw.max_usage_in_bytes",
7754 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7755 		.write = mem_cgroup_reset,
7756 		.read_u64 = mem_cgroup_read_u64,
7757 	},
7758 	{
7759 		.name = "memsw.limit_in_bytes",
7760 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7761 		.write = mem_cgroup_write,
7762 		.read_u64 = mem_cgroup_read_u64,
7763 	},
7764 	{
7765 		.name = "memsw.failcnt",
7766 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7767 		.write = mem_cgroup_reset,
7768 		.read_u64 = mem_cgroup_read_u64,
7769 	},
7770 	{ },	/* terminate */
7771 };
7772 
7773 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7774 /**
7775  * obj_cgroup_may_zswap - check if this cgroup can zswap
7776  * @objcg: the object cgroup
7777  *
7778  * Check if the hierarchical zswap limit has been reached.
7779  *
7780  * This doesn't check for specific headroom, and it is not atomic
7781  * either. But with zswap, the size of the allocation is only known
7782  * once compression has occured, and this optimistic pre-check avoids
7783  * spending cycles on compression when there is already no room left
7784  * or zswap is disabled altogether somewhere in the hierarchy.
7785  */
7786 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7787 {
7788 	struct mem_cgroup *memcg, *original_memcg;
7789 	bool ret = true;
7790 
7791 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7792 		return true;
7793 
7794 	original_memcg = get_mem_cgroup_from_objcg(objcg);
7795 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7796 	     memcg = parent_mem_cgroup(memcg)) {
7797 		unsigned long max = READ_ONCE(memcg->zswap_max);
7798 		unsigned long pages;
7799 
7800 		if (max == PAGE_COUNTER_MAX)
7801 			continue;
7802 		if (max == 0) {
7803 			ret = false;
7804 			break;
7805 		}
7806 
7807 		cgroup_rstat_flush(memcg->css.cgroup);
7808 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7809 		if (pages < max)
7810 			continue;
7811 		ret = false;
7812 		break;
7813 	}
7814 	mem_cgroup_put(original_memcg);
7815 	return ret;
7816 }
7817 
7818 /**
7819  * obj_cgroup_charge_zswap - charge compression backend memory
7820  * @objcg: the object cgroup
7821  * @size: size of compressed object
7822  *
7823  * This forces the charge after obj_cgroup_may_swap() allowed
7824  * compression and storage in zwap for this cgroup to go ahead.
7825  */
7826 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7827 {
7828 	struct mem_cgroup *memcg;
7829 
7830 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7831 		return;
7832 
7833 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7834 
7835 	/* PF_MEMALLOC context, charging must succeed */
7836 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7837 		VM_WARN_ON_ONCE(1);
7838 
7839 	rcu_read_lock();
7840 	memcg = obj_cgroup_memcg(objcg);
7841 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7842 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7843 	rcu_read_unlock();
7844 }
7845 
7846 /**
7847  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7848  * @objcg: the object cgroup
7849  * @size: size of compressed object
7850  *
7851  * Uncharges zswap memory on page in.
7852  */
7853 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7854 {
7855 	struct mem_cgroup *memcg;
7856 
7857 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7858 		return;
7859 
7860 	obj_cgroup_uncharge(objcg, size);
7861 
7862 	rcu_read_lock();
7863 	memcg = obj_cgroup_memcg(objcg);
7864 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7865 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7866 	rcu_read_unlock();
7867 }
7868 
7869 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7870 			      struct cftype *cft)
7871 {
7872 	cgroup_rstat_flush(css->cgroup);
7873 	return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7874 }
7875 
7876 static int zswap_max_show(struct seq_file *m, void *v)
7877 {
7878 	return seq_puts_memcg_tunable(m,
7879 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7880 }
7881 
7882 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7883 			       char *buf, size_t nbytes, loff_t off)
7884 {
7885 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7886 	unsigned long max;
7887 	int err;
7888 
7889 	buf = strstrip(buf);
7890 	err = page_counter_memparse(buf, "max", &max);
7891 	if (err)
7892 		return err;
7893 
7894 	xchg(&memcg->zswap_max, max);
7895 
7896 	return nbytes;
7897 }
7898 
7899 static struct cftype zswap_files[] = {
7900 	{
7901 		.name = "zswap.current",
7902 		.flags = CFTYPE_NOT_ON_ROOT,
7903 		.read_u64 = zswap_current_read,
7904 	},
7905 	{
7906 		.name = "zswap.max",
7907 		.flags = CFTYPE_NOT_ON_ROOT,
7908 		.seq_show = zswap_max_show,
7909 		.write = zswap_max_write,
7910 	},
7911 	{ }	/* terminate */
7912 };
7913 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7914 
7915 static int __init mem_cgroup_swap_init(void)
7916 {
7917 	if (mem_cgroup_disabled())
7918 		return 0;
7919 
7920 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7921 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7922 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7923 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7924 #endif
7925 	return 0;
7926 }
7927 subsys_initcall(mem_cgroup_swap_init);
7928 
7929 #endif /* CONFIG_SWAP */
7930