1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/file.h> 63 #include <linux/resume_user_mode.h> 64 #include <linux/psi.h> 65 #include <linux/seq_buf.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 71 #include <linux/uaccess.h> 72 73 #include <trace/events/vmscan.h> 74 75 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 76 EXPORT_SYMBOL(memory_cgrp_subsys); 77 78 struct mem_cgroup *root_mem_cgroup __read_mostly; 79 80 /* Active memory cgroup to use from an interrupt context */ 81 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 82 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 83 84 /* Socket memory accounting disabled? */ 85 static bool cgroup_memory_nosocket __ro_after_init; 86 87 /* Kernel memory accounting disabled? */ 88 static bool cgroup_memory_nokmem __ro_after_init; 89 90 /* Whether the swap controller is active */ 91 #ifdef CONFIG_MEMCG_SWAP 92 bool cgroup_memory_noswap __ro_after_init; 93 #else 94 #define cgroup_memory_noswap 1 95 #endif 96 97 #ifdef CONFIG_CGROUP_WRITEBACK 98 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 99 #endif 100 101 /* Whether legacy memory+swap accounting is active */ 102 static bool do_memsw_account(void) 103 { 104 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap; 105 } 106 107 #define THRESHOLDS_EVENTS_TARGET 128 108 #define SOFTLIMIT_EVENTS_TARGET 1024 109 110 /* 111 * Cgroups above their limits are maintained in a RB-Tree, independent of 112 * their hierarchy representation 113 */ 114 115 struct mem_cgroup_tree_per_node { 116 struct rb_root rb_root; 117 struct rb_node *rb_rightmost; 118 spinlock_t lock; 119 }; 120 121 struct mem_cgroup_tree { 122 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 123 }; 124 125 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 126 127 /* for OOM */ 128 struct mem_cgroup_eventfd_list { 129 struct list_head list; 130 struct eventfd_ctx *eventfd; 131 }; 132 133 /* 134 * cgroup_event represents events which userspace want to receive. 135 */ 136 struct mem_cgroup_event { 137 /* 138 * memcg which the event belongs to. 139 */ 140 struct mem_cgroup *memcg; 141 /* 142 * eventfd to signal userspace about the event. 143 */ 144 struct eventfd_ctx *eventfd; 145 /* 146 * Each of these stored in a list by the cgroup. 147 */ 148 struct list_head list; 149 /* 150 * register_event() callback will be used to add new userspace 151 * waiter for changes related to this event. Use eventfd_signal() 152 * on eventfd to send notification to userspace. 153 */ 154 int (*register_event)(struct mem_cgroup *memcg, 155 struct eventfd_ctx *eventfd, const char *args); 156 /* 157 * unregister_event() callback will be called when userspace closes 158 * the eventfd or on cgroup removing. This callback must be set, 159 * if you want provide notification functionality. 160 */ 161 void (*unregister_event)(struct mem_cgroup *memcg, 162 struct eventfd_ctx *eventfd); 163 /* 164 * All fields below needed to unregister event when 165 * userspace closes eventfd. 166 */ 167 poll_table pt; 168 wait_queue_head_t *wqh; 169 wait_queue_entry_t wait; 170 struct work_struct remove; 171 }; 172 173 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 174 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 175 176 /* Stuffs for move charges at task migration. */ 177 /* 178 * Types of charges to be moved. 179 */ 180 #define MOVE_ANON 0x1U 181 #define MOVE_FILE 0x2U 182 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 183 184 /* "mc" and its members are protected by cgroup_mutex */ 185 static struct move_charge_struct { 186 spinlock_t lock; /* for from, to */ 187 struct mm_struct *mm; 188 struct mem_cgroup *from; 189 struct mem_cgroup *to; 190 unsigned long flags; 191 unsigned long precharge; 192 unsigned long moved_charge; 193 unsigned long moved_swap; 194 struct task_struct *moving_task; /* a task moving charges */ 195 wait_queue_head_t waitq; /* a waitq for other context */ 196 } mc = { 197 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 198 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 199 }; 200 201 /* 202 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 203 * limit reclaim to prevent infinite loops, if they ever occur. 204 */ 205 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 206 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 207 208 /* for encoding cft->private value on file */ 209 enum res_type { 210 _MEM, 211 _MEMSWAP, 212 _OOM_TYPE, 213 _KMEM, 214 _TCP, 215 }; 216 217 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 218 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 219 #define MEMFILE_ATTR(val) ((val) & 0xffff) 220 /* Used for OOM notifier */ 221 #define OOM_CONTROL (0) 222 223 /* 224 * Iteration constructs for visiting all cgroups (under a tree). If 225 * loops are exited prematurely (break), mem_cgroup_iter_break() must 226 * be used for reference counting. 227 */ 228 #define for_each_mem_cgroup_tree(iter, root) \ 229 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 230 iter != NULL; \ 231 iter = mem_cgroup_iter(root, iter, NULL)) 232 233 #define for_each_mem_cgroup(iter) \ 234 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 235 iter != NULL; \ 236 iter = mem_cgroup_iter(NULL, iter, NULL)) 237 238 static inline bool task_is_dying(void) 239 { 240 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 241 (current->flags & PF_EXITING); 242 } 243 244 /* Some nice accessors for the vmpressure. */ 245 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 246 { 247 if (!memcg) 248 memcg = root_mem_cgroup; 249 return &memcg->vmpressure; 250 } 251 252 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 253 { 254 return container_of(vmpr, struct mem_cgroup, vmpressure); 255 } 256 257 #ifdef CONFIG_MEMCG_KMEM 258 static DEFINE_SPINLOCK(objcg_lock); 259 260 bool mem_cgroup_kmem_disabled(void) 261 { 262 return cgroup_memory_nokmem; 263 } 264 265 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 266 unsigned int nr_pages); 267 268 static void obj_cgroup_release(struct percpu_ref *ref) 269 { 270 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 271 unsigned int nr_bytes; 272 unsigned int nr_pages; 273 unsigned long flags; 274 275 /* 276 * At this point all allocated objects are freed, and 277 * objcg->nr_charged_bytes can't have an arbitrary byte value. 278 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 279 * 280 * The following sequence can lead to it: 281 * 1) CPU0: objcg == stock->cached_objcg 282 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 283 * PAGE_SIZE bytes are charged 284 * 3) CPU1: a process from another memcg is allocating something, 285 * the stock if flushed, 286 * objcg->nr_charged_bytes = PAGE_SIZE - 92 287 * 5) CPU0: we do release this object, 288 * 92 bytes are added to stock->nr_bytes 289 * 6) CPU0: stock is flushed, 290 * 92 bytes are added to objcg->nr_charged_bytes 291 * 292 * In the result, nr_charged_bytes == PAGE_SIZE. 293 * This page will be uncharged in obj_cgroup_release(). 294 */ 295 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 296 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 297 nr_pages = nr_bytes >> PAGE_SHIFT; 298 299 if (nr_pages) 300 obj_cgroup_uncharge_pages(objcg, nr_pages); 301 302 spin_lock_irqsave(&objcg_lock, flags); 303 list_del(&objcg->list); 304 spin_unlock_irqrestore(&objcg_lock, flags); 305 306 percpu_ref_exit(ref); 307 kfree_rcu(objcg, rcu); 308 } 309 310 static struct obj_cgroup *obj_cgroup_alloc(void) 311 { 312 struct obj_cgroup *objcg; 313 int ret; 314 315 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 316 if (!objcg) 317 return NULL; 318 319 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 320 GFP_KERNEL); 321 if (ret) { 322 kfree(objcg); 323 return NULL; 324 } 325 INIT_LIST_HEAD(&objcg->list); 326 return objcg; 327 } 328 329 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 330 struct mem_cgroup *parent) 331 { 332 struct obj_cgroup *objcg, *iter; 333 334 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 335 336 spin_lock_irq(&objcg_lock); 337 338 /* 1) Ready to reparent active objcg. */ 339 list_add(&objcg->list, &memcg->objcg_list); 340 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 341 list_for_each_entry(iter, &memcg->objcg_list, list) 342 WRITE_ONCE(iter->memcg, parent); 343 /* 3) Move already reparented objcgs to the parent's list */ 344 list_splice(&memcg->objcg_list, &parent->objcg_list); 345 346 spin_unlock_irq(&objcg_lock); 347 348 percpu_ref_kill(&objcg->refcnt); 349 } 350 351 /* 352 * A lot of the calls to the cache allocation functions are expected to be 353 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 354 * conditional to this static branch, we'll have to allow modules that does 355 * kmem_cache_alloc and the such to see this symbol as well 356 */ 357 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 358 EXPORT_SYMBOL(memcg_kmem_enabled_key); 359 #endif 360 361 /** 362 * mem_cgroup_css_from_page - css of the memcg associated with a page 363 * @page: page of interest 364 * 365 * If memcg is bound to the default hierarchy, css of the memcg associated 366 * with @page is returned. The returned css remains associated with @page 367 * until it is released. 368 * 369 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 370 * is returned. 371 */ 372 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 373 { 374 struct mem_cgroup *memcg; 375 376 memcg = page_memcg(page); 377 378 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 379 memcg = root_mem_cgroup; 380 381 return &memcg->css; 382 } 383 384 /** 385 * page_cgroup_ino - return inode number of the memcg a page is charged to 386 * @page: the page 387 * 388 * Look up the closest online ancestor of the memory cgroup @page is charged to 389 * and return its inode number or 0 if @page is not charged to any cgroup. It 390 * is safe to call this function without holding a reference to @page. 391 * 392 * Note, this function is inherently racy, because there is nothing to prevent 393 * the cgroup inode from getting torn down and potentially reallocated a moment 394 * after page_cgroup_ino() returns, so it only should be used by callers that 395 * do not care (such as procfs interfaces). 396 */ 397 ino_t page_cgroup_ino(struct page *page) 398 { 399 struct mem_cgroup *memcg; 400 unsigned long ino = 0; 401 402 rcu_read_lock(); 403 memcg = page_memcg_check(page); 404 405 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 406 memcg = parent_mem_cgroup(memcg); 407 if (memcg) 408 ino = cgroup_ino(memcg->css.cgroup); 409 rcu_read_unlock(); 410 return ino; 411 } 412 413 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 414 struct mem_cgroup_tree_per_node *mctz, 415 unsigned long new_usage_in_excess) 416 { 417 struct rb_node **p = &mctz->rb_root.rb_node; 418 struct rb_node *parent = NULL; 419 struct mem_cgroup_per_node *mz_node; 420 bool rightmost = true; 421 422 if (mz->on_tree) 423 return; 424 425 mz->usage_in_excess = new_usage_in_excess; 426 if (!mz->usage_in_excess) 427 return; 428 while (*p) { 429 parent = *p; 430 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 431 tree_node); 432 if (mz->usage_in_excess < mz_node->usage_in_excess) { 433 p = &(*p)->rb_left; 434 rightmost = false; 435 } else { 436 p = &(*p)->rb_right; 437 } 438 } 439 440 if (rightmost) 441 mctz->rb_rightmost = &mz->tree_node; 442 443 rb_link_node(&mz->tree_node, parent, p); 444 rb_insert_color(&mz->tree_node, &mctz->rb_root); 445 mz->on_tree = true; 446 } 447 448 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 449 struct mem_cgroup_tree_per_node *mctz) 450 { 451 if (!mz->on_tree) 452 return; 453 454 if (&mz->tree_node == mctz->rb_rightmost) 455 mctz->rb_rightmost = rb_prev(&mz->tree_node); 456 457 rb_erase(&mz->tree_node, &mctz->rb_root); 458 mz->on_tree = false; 459 } 460 461 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 462 struct mem_cgroup_tree_per_node *mctz) 463 { 464 unsigned long flags; 465 466 spin_lock_irqsave(&mctz->lock, flags); 467 __mem_cgroup_remove_exceeded(mz, mctz); 468 spin_unlock_irqrestore(&mctz->lock, flags); 469 } 470 471 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 472 { 473 unsigned long nr_pages = page_counter_read(&memcg->memory); 474 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 475 unsigned long excess = 0; 476 477 if (nr_pages > soft_limit) 478 excess = nr_pages - soft_limit; 479 480 return excess; 481 } 482 483 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 484 { 485 unsigned long excess; 486 struct mem_cgroup_per_node *mz; 487 struct mem_cgroup_tree_per_node *mctz; 488 489 mctz = soft_limit_tree.rb_tree_per_node[nid]; 490 if (!mctz) 491 return; 492 /* 493 * Necessary to update all ancestors when hierarchy is used. 494 * because their event counter is not touched. 495 */ 496 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 497 mz = memcg->nodeinfo[nid]; 498 excess = soft_limit_excess(memcg); 499 /* 500 * We have to update the tree if mz is on RB-tree or 501 * mem is over its softlimit. 502 */ 503 if (excess || mz->on_tree) { 504 unsigned long flags; 505 506 spin_lock_irqsave(&mctz->lock, flags); 507 /* if on-tree, remove it */ 508 if (mz->on_tree) 509 __mem_cgroup_remove_exceeded(mz, mctz); 510 /* 511 * Insert again. mz->usage_in_excess will be updated. 512 * If excess is 0, no tree ops. 513 */ 514 __mem_cgroup_insert_exceeded(mz, mctz, excess); 515 spin_unlock_irqrestore(&mctz->lock, flags); 516 } 517 } 518 } 519 520 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 521 { 522 struct mem_cgroup_tree_per_node *mctz; 523 struct mem_cgroup_per_node *mz; 524 int nid; 525 526 for_each_node(nid) { 527 mz = memcg->nodeinfo[nid]; 528 mctz = soft_limit_tree.rb_tree_per_node[nid]; 529 if (mctz) 530 mem_cgroup_remove_exceeded(mz, mctz); 531 } 532 } 533 534 static struct mem_cgroup_per_node * 535 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 536 { 537 struct mem_cgroup_per_node *mz; 538 539 retry: 540 mz = NULL; 541 if (!mctz->rb_rightmost) 542 goto done; /* Nothing to reclaim from */ 543 544 mz = rb_entry(mctz->rb_rightmost, 545 struct mem_cgroup_per_node, tree_node); 546 /* 547 * Remove the node now but someone else can add it back, 548 * we will to add it back at the end of reclaim to its correct 549 * position in the tree. 550 */ 551 __mem_cgroup_remove_exceeded(mz, mctz); 552 if (!soft_limit_excess(mz->memcg) || 553 !css_tryget(&mz->memcg->css)) 554 goto retry; 555 done: 556 return mz; 557 } 558 559 static struct mem_cgroup_per_node * 560 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 561 { 562 struct mem_cgroup_per_node *mz; 563 564 spin_lock_irq(&mctz->lock); 565 mz = __mem_cgroup_largest_soft_limit_node(mctz); 566 spin_unlock_irq(&mctz->lock); 567 return mz; 568 } 569 570 /* 571 * memcg and lruvec stats flushing 572 * 573 * Many codepaths leading to stats update or read are performance sensitive and 574 * adding stats flushing in such codepaths is not desirable. So, to optimize the 575 * flushing the kernel does: 576 * 577 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 578 * rstat update tree grow unbounded. 579 * 580 * 2) Flush the stats synchronously on reader side only when there are more than 581 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 582 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 583 * only for 2 seconds due to (1). 584 */ 585 static void flush_memcg_stats_dwork(struct work_struct *w); 586 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 587 static DEFINE_SPINLOCK(stats_flush_lock); 588 static DEFINE_PER_CPU(unsigned int, stats_updates); 589 static atomic_t stats_flush_threshold = ATOMIC_INIT(0); 590 static u64 flush_next_time; 591 592 #define FLUSH_TIME (2UL*HZ) 593 594 /* 595 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 596 * not rely on this as part of an acquired spinlock_t lock. These functions are 597 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 598 * is sufficient. 599 */ 600 static void memcg_stats_lock(void) 601 { 602 #ifdef CONFIG_PREEMPT_RT 603 preempt_disable(); 604 #else 605 VM_BUG_ON(!irqs_disabled()); 606 #endif 607 } 608 609 static void __memcg_stats_lock(void) 610 { 611 #ifdef CONFIG_PREEMPT_RT 612 preempt_disable(); 613 #endif 614 } 615 616 static void memcg_stats_unlock(void) 617 { 618 #ifdef CONFIG_PREEMPT_RT 619 preempt_enable(); 620 #endif 621 } 622 623 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 624 { 625 unsigned int x; 626 627 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 628 629 x = __this_cpu_add_return(stats_updates, abs(val)); 630 if (x > MEMCG_CHARGE_BATCH) { 631 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold); 632 __this_cpu_write(stats_updates, 0); 633 } 634 } 635 636 static void __mem_cgroup_flush_stats(void) 637 { 638 unsigned long flag; 639 640 if (!spin_trylock_irqsave(&stats_flush_lock, flag)) 641 return; 642 643 flush_next_time = jiffies_64 + 2*FLUSH_TIME; 644 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup); 645 atomic_set(&stats_flush_threshold, 0); 646 spin_unlock_irqrestore(&stats_flush_lock, flag); 647 } 648 649 void mem_cgroup_flush_stats(void) 650 { 651 if (atomic_read(&stats_flush_threshold) > num_online_cpus()) 652 __mem_cgroup_flush_stats(); 653 } 654 655 void mem_cgroup_flush_stats_delayed(void) 656 { 657 if (time_after64(jiffies_64, flush_next_time)) 658 mem_cgroup_flush_stats(); 659 } 660 661 static void flush_memcg_stats_dwork(struct work_struct *w) 662 { 663 __mem_cgroup_flush_stats(); 664 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 665 } 666 667 /** 668 * __mod_memcg_state - update cgroup memory statistics 669 * @memcg: the memory cgroup 670 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 671 * @val: delta to add to the counter, can be negative 672 */ 673 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 674 { 675 if (mem_cgroup_disabled()) 676 return; 677 678 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 679 memcg_rstat_updated(memcg, val); 680 } 681 682 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 683 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 684 { 685 long x = 0; 686 int cpu; 687 688 for_each_possible_cpu(cpu) 689 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu); 690 #ifdef CONFIG_SMP 691 if (x < 0) 692 x = 0; 693 #endif 694 return x; 695 } 696 697 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 698 int val) 699 { 700 struct mem_cgroup_per_node *pn; 701 struct mem_cgroup *memcg; 702 703 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 704 memcg = pn->memcg; 705 706 /* 707 * The caller from rmap relay on disabled preemption becase they never 708 * update their counter from in-interrupt context. For these two 709 * counters we check that the update is never performed from an 710 * interrupt context while other caller need to have disabled interrupt. 711 */ 712 __memcg_stats_lock(); 713 if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) { 714 switch (idx) { 715 case NR_ANON_MAPPED: 716 case NR_FILE_MAPPED: 717 case NR_ANON_THPS: 718 case NR_SHMEM_PMDMAPPED: 719 case NR_FILE_PMDMAPPED: 720 WARN_ON_ONCE(!in_task()); 721 break; 722 default: 723 WARN_ON_ONCE(!irqs_disabled()); 724 } 725 } 726 727 /* Update memcg */ 728 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 729 730 /* Update lruvec */ 731 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 732 733 memcg_rstat_updated(memcg, val); 734 memcg_stats_unlock(); 735 } 736 737 /** 738 * __mod_lruvec_state - update lruvec memory statistics 739 * @lruvec: the lruvec 740 * @idx: the stat item 741 * @val: delta to add to the counter, can be negative 742 * 743 * The lruvec is the intersection of the NUMA node and a cgroup. This 744 * function updates the all three counters that are affected by a 745 * change of state at this level: per-node, per-cgroup, per-lruvec. 746 */ 747 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 748 int val) 749 { 750 /* Update node */ 751 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 752 753 /* Update memcg and lruvec */ 754 if (!mem_cgroup_disabled()) 755 __mod_memcg_lruvec_state(lruvec, idx, val); 756 } 757 758 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 759 int val) 760 { 761 struct page *head = compound_head(page); /* rmap on tail pages */ 762 struct mem_cgroup *memcg; 763 pg_data_t *pgdat = page_pgdat(page); 764 struct lruvec *lruvec; 765 766 rcu_read_lock(); 767 memcg = page_memcg(head); 768 /* Untracked pages have no memcg, no lruvec. Update only the node */ 769 if (!memcg) { 770 rcu_read_unlock(); 771 __mod_node_page_state(pgdat, idx, val); 772 return; 773 } 774 775 lruvec = mem_cgroup_lruvec(memcg, pgdat); 776 __mod_lruvec_state(lruvec, idx, val); 777 rcu_read_unlock(); 778 } 779 EXPORT_SYMBOL(__mod_lruvec_page_state); 780 781 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 782 { 783 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 784 struct mem_cgroup *memcg; 785 struct lruvec *lruvec; 786 787 rcu_read_lock(); 788 memcg = mem_cgroup_from_obj(p); 789 790 /* 791 * Untracked pages have no memcg, no lruvec. Update only the 792 * node. If we reparent the slab objects to the root memcg, 793 * when we free the slab object, we need to update the per-memcg 794 * vmstats to keep it correct for the root memcg. 795 */ 796 if (!memcg) { 797 __mod_node_page_state(pgdat, idx, val); 798 } else { 799 lruvec = mem_cgroup_lruvec(memcg, pgdat); 800 __mod_lruvec_state(lruvec, idx, val); 801 } 802 rcu_read_unlock(); 803 } 804 805 /** 806 * __count_memcg_events - account VM events in a cgroup 807 * @memcg: the memory cgroup 808 * @idx: the event item 809 * @count: the number of events that occurred 810 */ 811 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 812 unsigned long count) 813 { 814 if (mem_cgroup_disabled()) 815 return; 816 817 memcg_stats_lock(); 818 __this_cpu_add(memcg->vmstats_percpu->events[idx], count); 819 memcg_rstat_updated(memcg, count); 820 memcg_stats_unlock(); 821 } 822 823 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 824 { 825 return READ_ONCE(memcg->vmstats.events[event]); 826 } 827 828 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 829 { 830 long x = 0; 831 int cpu; 832 833 for_each_possible_cpu(cpu) 834 x += per_cpu(memcg->vmstats_percpu->events[event], cpu); 835 return x; 836 } 837 838 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 839 int nr_pages) 840 { 841 /* pagein of a big page is an event. So, ignore page size */ 842 if (nr_pages > 0) 843 __count_memcg_events(memcg, PGPGIN, 1); 844 else { 845 __count_memcg_events(memcg, PGPGOUT, 1); 846 nr_pages = -nr_pages; /* for event */ 847 } 848 849 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 850 } 851 852 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 853 enum mem_cgroup_events_target target) 854 { 855 unsigned long val, next; 856 857 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 858 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 859 /* from time_after() in jiffies.h */ 860 if ((long)(next - val) < 0) { 861 switch (target) { 862 case MEM_CGROUP_TARGET_THRESH: 863 next = val + THRESHOLDS_EVENTS_TARGET; 864 break; 865 case MEM_CGROUP_TARGET_SOFTLIMIT: 866 next = val + SOFTLIMIT_EVENTS_TARGET; 867 break; 868 default: 869 break; 870 } 871 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 872 return true; 873 } 874 return false; 875 } 876 877 /* 878 * Check events in order. 879 * 880 */ 881 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 882 { 883 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 884 return; 885 886 /* threshold event is triggered in finer grain than soft limit */ 887 if (unlikely(mem_cgroup_event_ratelimit(memcg, 888 MEM_CGROUP_TARGET_THRESH))) { 889 bool do_softlimit; 890 891 do_softlimit = mem_cgroup_event_ratelimit(memcg, 892 MEM_CGROUP_TARGET_SOFTLIMIT); 893 mem_cgroup_threshold(memcg); 894 if (unlikely(do_softlimit)) 895 mem_cgroup_update_tree(memcg, nid); 896 } 897 } 898 899 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 900 { 901 /* 902 * mm_update_next_owner() may clear mm->owner to NULL 903 * if it races with swapoff, page migration, etc. 904 * So this can be called with p == NULL. 905 */ 906 if (unlikely(!p)) 907 return NULL; 908 909 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 910 } 911 EXPORT_SYMBOL(mem_cgroup_from_task); 912 913 static __always_inline struct mem_cgroup *active_memcg(void) 914 { 915 if (!in_task()) 916 return this_cpu_read(int_active_memcg); 917 else 918 return current->active_memcg; 919 } 920 921 /** 922 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 923 * @mm: mm from which memcg should be extracted. It can be NULL. 924 * 925 * Obtain a reference on mm->memcg and returns it if successful. If mm 926 * is NULL, then the memcg is chosen as follows: 927 * 1) The active memcg, if set. 928 * 2) current->mm->memcg, if available 929 * 3) root memcg 930 * If mem_cgroup is disabled, NULL is returned. 931 */ 932 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 933 { 934 struct mem_cgroup *memcg; 935 936 if (mem_cgroup_disabled()) 937 return NULL; 938 939 /* 940 * Page cache insertions can happen without an 941 * actual mm context, e.g. during disk probing 942 * on boot, loopback IO, acct() writes etc. 943 * 944 * No need to css_get on root memcg as the reference 945 * counting is disabled on the root level in the 946 * cgroup core. See CSS_NO_REF. 947 */ 948 if (unlikely(!mm)) { 949 memcg = active_memcg(); 950 if (unlikely(memcg)) { 951 /* remote memcg must hold a ref */ 952 css_get(&memcg->css); 953 return memcg; 954 } 955 mm = current->mm; 956 if (unlikely(!mm)) 957 return root_mem_cgroup; 958 } 959 960 rcu_read_lock(); 961 do { 962 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 963 if (unlikely(!memcg)) 964 memcg = root_mem_cgroup; 965 } while (!css_tryget(&memcg->css)); 966 rcu_read_unlock(); 967 return memcg; 968 } 969 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 970 971 static __always_inline bool memcg_kmem_bypass(void) 972 { 973 /* Allow remote memcg charging from any context. */ 974 if (unlikely(active_memcg())) 975 return false; 976 977 /* Memcg to charge can't be determined. */ 978 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD)) 979 return true; 980 981 return false; 982 } 983 984 /** 985 * mem_cgroup_iter - iterate over memory cgroup hierarchy 986 * @root: hierarchy root 987 * @prev: previously returned memcg, NULL on first invocation 988 * @reclaim: cookie for shared reclaim walks, NULL for full walks 989 * 990 * Returns references to children of the hierarchy below @root, or 991 * @root itself, or %NULL after a full round-trip. 992 * 993 * Caller must pass the return value in @prev on subsequent 994 * invocations for reference counting, or use mem_cgroup_iter_break() 995 * to cancel a hierarchy walk before the round-trip is complete. 996 * 997 * Reclaimers can specify a node in @reclaim to divide up the memcgs 998 * in the hierarchy among all concurrent reclaimers operating on the 999 * same node. 1000 */ 1001 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1002 struct mem_cgroup *prev, 1003 struct mem_cgroup_reclaim_cookie *reclaim) 1004 { 1005 struct mem_cgroup_reclaim_iter *iter; 1006 struct cgroup_subsys_state *css = NULL; 1007 struct mem_cgroup *memcg = NULL; 1008 struct mem_cgroup *pos = NULL; 1009 1010 if (mem_cgroup_disabled()) 1011 return NULL; 1012 1013 if (!root) 1014 root = root_mem_cgroup; 1015 1016 if (prev && !reclaim) 1017 pos = prev; 1018 1019 rcu_read_lock(); 1020 1021 if (reclaim) { 1022 struct mem_cgroup_per_node *mz; 1023 1024 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1025 iter = &mz->iter; 1026 1027 if (prev && reclaim->generation != iter->generation) 1028 goto out_unlock; 1029 1030 while (1) { 1031 pos = READ_ONCE(iter->position); 1032 if (!pos || css_tryget(&pos->css)) 1033 break; 1034 /* 1035 * css reference reached zero, so iter->position will 1036 * be cleared by ->css_released. However, we should not 1037 * rely on this happening soon, because ->css_released 1038 * is called from a work queue, and by busy-waiting we 1039 * might block it. So we clear iter->position right 1040 * away. 1041 */ 1042 (void)cmpxchg(&iter->position, pos, NULL); 1043 } 1044 } 1045 1046 if (pos) 1047 css = &pos->css; 1048 1049 for (;;) { 1050 css = css_next_descendant_pre(css, &root->css); 1051 if (!css) { 1052 /* 1053 * Reclaimers share the hierarchy walk, and a 1054 * new one might jump in right at the end of 1055 * the hierarchy - make sure they see at least 1056 * one group and restart from the beginning. 1057 */ 1058 if (!prev) 1059 continue; 1060 break; 1061 } 1062 1063 /* 1064 * Verify the css and acquire a reference. The root 1065 * is provided by the caller, so we know it's alive 1066 * and kicking, and don't take an extra reference. 1067 */ 1068 memcg = mem_cgroup_from_css(css); 1069 1070 if (css == &root->css) 1071 break; 1072 1073 if (css_tryget(css)) 1074 break; 1075 1076 memcg = NULL; 1077 } 1078 1079 if (reclaim) { 1080 /* 1081 * The position could have already been updated by a competing 1082 * thread, so check that the value hasn't changed since we read 1083 * it to avoid reclaiming from the same cgroup twice. 1084 */ 1085 (void)cmpxchg(&iter->position, pos, memcg); 1086 1087 if (pos) 1088 css_put(&pos->css); 1089 1090 if (!memcg) 1091 iter->generation++; 1092 else if (!prev) 1093 reclaim->generation = iter->generation; 1094 } 1095 1096 out_unlock: 1097 rcu_read_unlock(); 1098 if (prev && prev != root) 1099 css_put(&prev->css); 1100 1101 return memcg; 1102 } 1103 1104 /** 1105 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1106 * @root: hierarchy root 1107 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1108 */ 1109 void mem_cgroup_iter_break(struct mem_cgroup *root, 1110 struct mem_cgroup *prev) 1111 { 1112 if (!root) 1113 root = root_mem_cgroup; 1114 if (prev && prev != root) 1115 css_put(&prev->css); 1116 } 1117 1118 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1119 struct mem_cgroup *dead_memcg) 1120 { 1121 struct mem_cgroup_reclaim_iter *iter; 1122 struct mem_cgroup_per_node *mz; 1123 int nid; 1124 1125 for_each_node(nid) { 1126 mz = from->nodeinfo[nid]; 1127 iter = &mz->iter; 1128 cmpxchg(&iter->position, dead_memcg, NULL); 1129 } 1130 } 1131 1132 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1133 { 1134 struct mem_cgroup *memcg = dead_memcg; 1135 struct mem_cgroup *last; 1136 1137 do { 1138 __invalidate_reclaim_iterators(memcg, dead_memcg); 1139 last = memcg; 1140 } while ((memcg = parent_mem_cgroup(memcg))); 1141 1142 /* 1143 * When cgruop1 non-hierarchy mode is used, 1144 * parent_mem_cgroup() does not walk all the way up to the 1145 * cgroup root (root_mem_cgroup). So we have to handle 1146 * dead_memcg from cgroup root separately. 1147 */ 1148 if (last != root_mem_cgroup) 1149 __invalidate_reclaim_iterators(root_mem_cgroup, 1150 dead_memcg); 1151 } 1152 1153 /** 1154 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1155 * @memcg: hierarchy root 1156 * @fn: function to call for each task 1157 * @arg: argument passed to @fn 1158 * 1159 * This function iterates over tasks attached to @memcg or to any of its 1160 * descendants and calls @fn for each task. If @fn returns a non-zero 1161 * value, the function breaks the iteration loop and returns the value. 1162 * Otherwise, it will iterate over all tasks and return 0. 1163 * 1164 * This function must not be called for the root memory cgroup. 1165 */ 1166 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1167 int (*fn)(struct task_struct *, void *), void *arg) 1168 { 1169 struct mem_cgroup *iter; 1170 int ret = 0; 1171 1172 BUG_ON(memcg == root_mem_cgroup); 1173 1174 for_each_mem_cgroup_tree(iter, memcg) { 1175 struct css_task_iter it; 1176 struct task_struct *task; 1177 1178 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1179 while (!ret && (task = css_task_iter_next(&it))) 1180 ret = fn(task, arg); 1181 css_task_iter_end(&it); 1182 if (ret) { 1183 mem_cgroup_iter_break(memcg, iter); 1184 break; 1185 } 1186 } 1187 return ret; 1188 } 1189 1190 #ifdef CONFIG_DEBUG_VM 1191 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1192 { 1193 struct mem_cgroup *memcg; 1194 1195 if (mem_cgroup_disabled()) 1196 return; 1197 1198 memcg = folio_memcg(folio); 1199 1200 if (!memcg) 1201 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio); 1202 else 1203 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1204 } 1205 #endif 1206 1207 /** 1208 * folio_lruvec_lock - Lock the lruvec for a folio. 1209 * @folio: Pointer to the folio. 1210 * 1211 * These functions are safe to use under any of the following conditions: 1212 * - folio locked 1213 * - folio_test_lru false 1214 * - folio_memcg_lock() 1215 * - folio frozen (refcount of 0) 1216 * 1217 * Return: The lruvec this folio is on with its lock held. 1218 */ 1219 struct lruvec *folio_lruvec_lock(struct folio *folio) 1220 { 1221 struct lruvec *lruvec = folio_lruvec(folio); 1222 1223 spin_lock(&lruvec->lru_lock); 1224 lruvec_memcg_debug(lruvec, folio); 1225 1226 return lruvec; 1227 } 1228 1229 /** 1230 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1231 * @folio: Pointer to the folio. 1232 * 1233 * These functions are safe to use under any of the following conditions: 1234 * - folio locked 1235 * - folio_test_lru false 1236 * - folio_memcg_lock() 1237 * - folio frozen (refcount of 0) 1238 * 1239 * Return: The lruvec this folio is on with its lock held and interrupts 1240 * disabled. 1241 */ 1242 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1243 { 1244 struct lruvec *lruvec = folio_lruvec(folio); 1245 1246 spin_lock_irq(&lruvec->lru_lock); 1247 lruvec_memcg_debug(lruvec, folio); 1248 1249 return lruvec; 1250 } 1251 1252 /** 1253 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1254 * @folio: Pointer to the folio. 1255 * @flags: Pointer to irqsave flags. 1256 * 1257 * These functions are safe to use under any of the following conditions: 1258 * - folio locked 1259 * - folio_test_lru false 1260 * - folio_memcg_lock() 1261 * - folio frozen (refcount of 0) 1262 * 1263 * Return: The lruvec this folio is on with its lock held and interrupts 1264 * disabled. 1265 */ 1266 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1267 unsigned long *flags) 1268 { 1269 struct lruvec *lruvec = folio_lruvec(folio); 1270 1271 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1272 lruvec_memcg_debug(lruvec, folio); 1273 1274 return lruvec; 1275 } 1276 1277 /** 1278 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1279 * @lruvec: mem_cgroup per zone lru vector 1280 * @lru: index of lru list the page is sitting on 1281 * @zid: zone id of the accounted pages 1282 * @nr_pages: positive when adding or negative when removing 1283 * 1284 * This function must be called under lru_lock, just before a page is added 1285 * to or just after a page is removed from an lru list. 1286 */ 1287 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1288 int zid, int nr_pages) 1289 { 1290 struct mem_cgroup_per_node *mz; 1291 unsigned long *lru_size; 1292 long size; 1293 1294 if (mem_cgroup_disabled()) 1295 return; 1296 1297 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1298 lru_size = &mz->lru_zone_size[zid][lru]; 1299 1300 if (nr_pages < 0) 1301 *lru_size += nr_pages; 1302 1303 size = *lru_size; 1304 if (WARN_ONCE(size < 0, 1305 "%s(%p, %d, %d): lru_size %ld\n", 1306 __func__, lruvec, lru, nr_pages, size)) { 1307 VM_BUG_ON(1); 1308 *lru_size = 0; 1309 } 1310 1311 if (nr_pages > 0) 1312 *lru_size += nr_pages; 1313 } 1314 1315 /** 1316 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1317 * @memcg: the memory cgroup 1318 * 1319 * Returns the maximum amount of memory @mem can be charged with, in 1320 * pages. 1321 */ 1322 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1323 { 1324 unsigned long margin = 0; 1325 unsigned long count; 1326 unsigned long limit; 1327 1328 count = page_counter_read(&memcg->memory); 1329 limit = READ_ONCE(memcg->memory.max); 1330 if (count < limit) 1331 margin = limit - count; 1332 1333 if (do_memsw_account()) { 1334 count = page_counter_read(&memcg->memsw); 1335 limit = READ_ONCE(memcg->memsw.max); 1336 if (count < limit) 1337 margin = min(margin, limit - count); 1338 else 1339 margin = 0; 1340 } 1341 1342 return margin; 1343 } 1344 1345 /* 1346 * A routine for checking "mem" is under move_account() or not. 1347 * 1348 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1349 * moving cgroups. This is for waiting at high-memory pressure 1350 * caused by "move". 1351 */ 1352 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1353 { 1354 struct mem_cgroup *from; 1355 struct mem_cgroup *to; 1356 bool ret = false; 1357 /* 1358 * Unlike task_move routines, we access mc.to, mc.from not under 1359 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1360 */ 1361 spin_lock(&mc.lock); 1362 from = mc.from; 1363 to = mc.to; 1364 if (!from) 1365 goto unlock; 1366 1367 ret = mem_cgroup_is_descendant(from, memcg) || 1368 mem_cgroup_is_descendant(to, memcg); 1369 unlock: 1370 spin_unlock(&mc.lock); 1371 return ret; 1372 } 1373 1374 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1375 { 1376 if (mc.moving_task && current != mc.moving_task) { 1377 if (mem_cgroup_under_move(memcg)) { 1378 DEFINE_WAIT(wait); 1379 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1380 /* moving charge context might have finished. */ 1381 if (mc.moving_task) 1382 schedule(); 1383 finish_wait(&mc.waitq, &wait); 1384 return true; 1385 } 1386 } 1387 return false; 1388 } 1389 1390 struct memory_stat { 1391 const char *name; 1392 unsigned int idx; 1393 }; 1394 1395 static const struct memory_stat memory_stats[] = { 1396 { "anon", NR_ANON_MAPPED }, 1397 { "file", NR_FILE_PAGES }, 1398 { "kernel", MEMCG_KMEM }, 1399 { "kernel_stack", NR_KERNEL_STACK_KB }, 1400 { "pagetables", NR_PAGETABLE }, 1401 { "percpu", MEMCG_PERCPU_B }, 1402 { "sock", MEMCG_SOCK }, 1403 { "vmalloc", MEMCG_VMALLOC }, 1404 { "shmem", NR_SHMEM }, 1405 { "file_mapped", NR_FILE_MAPPED }, 1406 { "file_dirty", NR_FILE_DIRTY }, 1407 { "file_writeback", NR_WRITEBACK }, 1408 #ifdef CONFIG_SWAP 1409 { "swapcached", NR_SWAPCACHE }, 1410 #endif 1411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1412 { "anon_thp", NR_ANON_THPS }, 1413 { "file_thp", NR_FILE_THPS }, 1414 { "shmem_thp", NR_SHMEM_THPS }, 1415 #endif 1416 { "inactive_anon", NR_INACTIVE_ANON }, 1417 { "active_anon", NR_ACTIVE_ANON }, 1418 { "inactive_file", NR_INACTIVE_FILE }, 1419 { "active_file", NR_ACTIVE_FILE }, 1420 { "unevictable", NR_UNEVICTABLE }, 1421 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1422 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1423 1424 /* The memory events */ 1425 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1426 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1427 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1428 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1429 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1430 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1431 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1432 }; 1433 1434 /* Translate stat items to the correct unit for memory.stat output */ 1435 static int memcg_page_state_unit(int item) 1436 { 1437 switch (item) { 1438 case MEMCG_PERCPU_B: 1439 case NR_SLAB_RECLAIMABLE_B: 1440 case NR_SLAB_UNRECLAIMABLE_B: 1441 case WORKINGSET_REFAULT_ANON: 1442 case WORKINGSET_REFAULT_FILE: 1443 case WORKINGSET_ACTIVATE_ANON: 1444 case WORKINGSET_ACTIVATE_FILE: 1445 case WORKINGSET_RESTORE_ANON: 1446 case WORKINGSET_RESTORE_FILE: 1447 case WORKINGSET_NODERECLAIM: 1448 return 1; 1449 case NR_KERNEL_STACK_KB: 1450 return SZ_1K; 1451 default: 1452 return PAGE_SIZE; 1453 } 1454 } 1455 1456 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1457 int item) 1458 { 1459 return memcg_page_state(memcg, item) * memcg_page_state_unit(item); 1460 } 1461 1462 static char *memory_stat_format(struct mem_cgroup *memcg) 1463 { 1464 struct seq_buf s; 1465 int i; 1466 1467 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1468 if (!s.buffer) 1469 return NULL; 1470 1471 /* 1472 * Provide statistics on the state of the memory subsystem as 1473 * well as cumulative event counters that show past behavior. 1474 * 1475 * This list is ordered following a combination of these gradients: 1476 * 1) generic big picture -> specifics and details 1477 * 2) reflecting userspace activity -> reflecting kernel heuristics 1478 * 1479 * Current memory state: 1480 */ 1481 mem_cgroup_flush_stats(); 1482 1483 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1484 u64 size; 1485 1486 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1487 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1488 1489 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1490 size += memcg_page_state_output(memcg, 1491 NR_SLAB_RECLAIMABLE_B); 1492 seq_buf_printf(&s, "slab %llu\n", size); 1493 } 1494 } 1495 1496 /* Accumulated memory events */ 1497 1498 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1499 memcg_events(memcg, PGFAULT)); 1500 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1501 memcg_events(memcg, PGMAJFAULT)); 1502 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1503 memcg_events(memcg, PGREFILL)); 1504 seq_buf_printf(&s, "pgscan %lu\n", 1505 memcg_events(memcg, PGSCAN_KSWAPD) + 1506 memcg_events(memcg, PGSCAN_DIRECT)); 1507 seq_buf_printf(&s, "pgsteal %lu\n", 1508 memcg_events(memcg, PGSTEAL_KSWAPD) + 1509 memcg_events(memcg, PGSTEAL_DIRECT)); 1510 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1511 memcg_events(memcg, PGACTIVATE)); 1512 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1513 memcg_events(memcg, PGDEACTIVATE)); 1514 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1515 memcg_events(memcg, PGLAZYFREE)); 1516 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1517 memcg_events(memcg, PGLAZYFREED)); 1518 1519 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1520 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1521 memcg_events(memcg, THP_FAULT_ALLOC)); 1522 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1523 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1524 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1525 1526 /* The above should easily fit into one page */ 1527 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1528 1529 return s.buffer; 1530 } 1531 1532 #define K(x) ((x) << (PAGE_SHIFT-10)) 1533 /** 1534 * mem_cgroup_print_oom_context: Print OOM information relevant to 1535 * memory controller. 1536 * @memcg: The memory cgroup that went over limit 1537 * @p: Task that is going to be killed 1538 * 1539 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1540 * enabled 1541 */ 1542 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1543 { 1544 rcu_read_lock(); 1545 1546 if (memcg) { 1547 pr_cont(",oom_memcg="); 1548 pr_cont_cgroup_path(memcg->css.cgroup); 1549 } else 1550 pr_cont(",global_oom"); 1551 if (p) { 1552 pr_cont(",task_memcg="); 1553 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1554 } 1555 rcu_read_unlock(); 1556 } 1557 1558 /** 1559 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1560 * memory controller. 1561 * @memcg: The memory cgroup that went over limit 1562 */ 1563 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1564 { 1565 char *buf; 1566 1567 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1568 K((u64)page_counter_read(&memcg->memory)), 1569 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1570 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1571 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1572 K((u64)page_counter_read(&memcg->swap)), 1573 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1574 else { 1575 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1576 K((u64)page_counter_read(&memcg->memsw)), 1577 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1578 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1579 K((u64)page_counter_read(&memcg->kmem)), 1580 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1581 } 1582 1583 pr_info("Memory cgroup stats for "); 1584 pr_cont_cgroup_path(memcg->css.cgroup); 1585 pr_cont(":"); 1586 buf = memory_stat_format(memcg); 1587 if (!buf) 1588 return; 1589 pr_info("%s", buf); 1590 kfree(buf); 1591 } 1592 1593 /* 1594 * Return the memory (and swap, if configured) limit for a memcg. 1595 */ 1596 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1597 { 1598 unsigned long max = READ_ONCE(memcg->memory.max); 1599 1600 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 1601 if (mem_cgroup_swappiness(memcg)) 1602 max += min(READ_ONCE(memcg->swap.max), 1603 (unsigned long)total_swap_pages); 1604 } else { /* v1 */ 1605 if (mem_cgroup_swappiness(memcg)) { 1606 /* Calculate swap excess capacity from memsw limit */ 1607 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1608 1609 max += min(swap, (unsigned long)total_swap_pages); 1610 } 1611 } 1612 return max; 1613 } 1614 1615 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1616 { 1617 return page_counter_read(&memcg->memory); 1618 } 1619 1620 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1621 int order) 1622 { 1623 struct oom_control oc = { 1624 .zonelist = NULL, 1625 .nodemask = NULL, 1626 .memcg = memcg, 1627 .gfp_mask = gfp_mask, 1628 .order = order, 1629 }; 1630 bool ret = true; 1631 1632 if (mutex_lock_killable(&oom_lock)) 1633 return true; 1634 1635 if (mem_cgroup_margin(memcg) >= (1 << order)) 1636 goto unlock; 1637 1638 /* 1639 * A few threads which were not waiting at mutex_lock_killable() can 1640 * fail to bail out. Therefore, check again after holding oom_lock. 1641 */ 1642 ret = task_is_dying() || out_of_memory(&oc); 1643 1644 unlock: 1645 mutex_unlock(&oom_lock); 1646 return ret; 1647 } 1648 1649 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1650 pg_data_t *pgdat, 1651 gfp_t gfp_mask, 1652 unsigned long *total_scanned) 1653 { 1654 struct mem_cgroup *victim = NULL; 1655 int total = 0; 1656 int loop = 0; 1657 unsigned long excess; 1658 unsigned long nr_scanned; 1659 struct mem_cgroup_reclaim_cookie reclaim = { 1660 .pgdat = pgdat, 1661 }; 1662 1663 excess = soft_limit_excess(root_memcg); 1664 1665 while (1) { 1666 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1667 if (!victim) { 1668 loop++; 1669 if (loop >= 2) { 1670 /* 1671 * If we have not been able to reclaim 1672 * anything, it might because there are 1673 * no reclaimable pages under this hierarchy 1674 */ 1675 if (!total) 1676 break; 1677 /* 1678 * We want to do more targeted reclaim. 1679 * excess >> 2 is not to excessive so as to 1680 * reclaim too much, nor too less that we keep 1681 * coming back to reclaim from this cgroup 1682 */ 1683 if (total >= (excess >> 2) || 1684 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1685 break; 1686 } 1687 continue; 1688 } 1689 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1690 pgdat, &nr_scanned); 1691 *total_scanned += nr_scanned; 1692 if (!soft_limit_excess(root_memcg)) 1693 break; 1694 } 1695 mem_cgroup_iter_break(root_memcg, victim); 1696 return total; 1697 } 1698 1699 #ifdef CONFIG_LOCKDEP 1700 static struct lockdep_map memcg_oom_lock_dep_map = { 1701 .name = "memcg_oom_lock", 1702 }; 1703 #endif 1704 1705 static DEFINE_SPINLOCK(memcg_oom_lock); 1706 1707 /* 1708 * Check OOM-Killer is already running under our hierarchy. 1709 * If someone is running, return false. 1710 */ 1711 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1712 { 1713 struct mem_cgroup *iter, *failed = NULL; 1714 1715 spin_lock(&memcg_oom_lock); 1716 1717 for_each_mem_cgroup_tree(iter, memcg) { 1718 if (iter->oom_lock) { 1719 /* 1720 * this subtree of our hierarchy is already locked 1721 * so we cannot give a lock. 1722 */ 1723 failed = iter; 1724 mem_cgroup_iter_break(memcg, iter); 1725 break; 1726 } else 1727 iter->oom_lock = true; 1728 } 1729 1730 if (failed) { 1731 /* 1732 * OK, we failed to lock the whole subtree so we have 1733 * to clean up what we set up to the failing subtree 1734 */ 1735 for_each_mem_cgroup_tree(iter, memcg) { 1736 if (iter == failed) { 1737 mem_cgroup_iter_break(memcg, iter); 1738 break; 1739 } 1740 iter->oom_lock = false; 1741 } 1742 } else 1743 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1744 1745 spin_unlock(&memcg_oom_lock); 1746 1747 return !failed; 1748 } 1749 1750 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1751 { 1752 struct mem_cgroup *iter; 1753 1754 spin_lock(&memcg_oom_lock); 1755 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1756 for_each_mem_cgroup_tree(iter, memcg) 1757 iter->oom_lock = false; 1758 spin_unlock(&memcg_oom_lock); 1759 } 1760 1761 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1762 { 1763 struct mem_cgroup *iter; 1764 1765 spin_lock(&memcg_oom_lock); 1766 for_each_mem_cgroup_tree(iter, memcg) 1767 iter->under_oom++; 1768 spin_unlock(&memcg_oom_lock); 1769 } 1770 1771 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1772 { 1773 struct mem_cgroup *iter; 1774 1775 /* 1776 * Be careful about under_oom underflows because a child memcg 1777 * could have been added after mem_cgroup_mark_under_oom. 1778 */ 1779 spin_lock(&memcg_oom_lock); 1780 for_each_mem_cgroup_tree(iter, memcg) 1781 if (iter->under_oom > 0) 1782 iter->under_oom--; 1783 spin_unlock(&memcg_oom_lock); 1784 } 1785 1786 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1787 1788 struct oom_wait_info { 1789 struct mem_cgroup *memcg; 1790 wait_queue_entry_t wait; 1791 }; 1792 1793 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1794 unsigned mode, int sync, void *arg) 1795 { 1796 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1797 struct mem_cgroup *oom_wait_memcg; 1798 struct oom_wait_info *oom_wait_info; 1799 1800 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1801 oom_wait_memcg = oom_wait_info->memcg; 1802 1803 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1804 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1805 return 0; 1806 return autoremove_wake_function(wait, mode, sync, arg); 1807 } 1808 1809 static void memcg_oom_recover(struct mem_cgroup *memcg) 1810 { 1811 /* 1812 * For the following lockless ->under_oom test, the only required 1813 * guarantee is that it must see the state asserted by an OOM when 1814 * this function is called as a result of userland actions 1815 * triggered by the notification of the OOM. This is trivially 1816 * achieved by invoking mem_cgroup_mark_under_oom() before 1817 * triggering notification. 1818 */ 1819 if (memcg && memcg->under_oom) 1820 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1821 } 1822 1823 /* 1824 * Returns true if successfully killed one or more processes. Though in some 1825 * corner cases it can return true even without killing any process. 1826 */ 1827 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1828 { 1829 bool locked, ret; 1830 1831 if (order > PAGE_ALLOC_COSTLY_ORDER) 1832 return false; 1833 1834 memcg_memory_event(memcg, MEMCG_OOM); 1835 1836 /* 1837 * We are in the middle of the charge context here, so we 1838 * don't want to block when potentially sitting on a callstack 1839 * that holds all kinds of filesystem and mm locks. 1840 * 1841 * cgroup1 allows disabling the OOM killer and waiting for outside 1842 * handling until the charge can succeed; remember the context and put 1843 * the task to sleep at the end of the page fault when all locks are 1844 * released. 1845 * 1846 * On the other hand, in-kernel OOM killer allows for an async victim 1847 * memory reclaim (oom_reaper) and that means that we are not solely 1848 * relying on the oom victim to make a forward progress and we can 1849 * invoke the oom killer here. 1850 * 1851 * Please note that mem_cgroup_out_of_memory might fail to find a 1852 * victim and then we have to bail out from the charge path. 1853 */ 1854 if (memcg->oom_kill_disable) { 1855 if (current->in_user_fault) { 1856 css_get(&memcg->css); 1857 current->memcg_in_oom = memcg; 1858 current->memcg_oom_gfp_mask = mask; 1859 current->memcg_oom_order = order; 1860 } 1861 return false; 1862 } 1863 1864 mem_cgroup_mark_under_oom(memcg); 1865 1866 locked = mem_cgroup_oom_trylock(memcg); 1867 1868 if (locked) 1869 mem_cgroup_oom_notify(memcg); 1870 1871 mem_cgroup_unmark_under_oom(memcg); 1872 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1873 1874 if (locked) 1875 mem_cgroup_oom_unlock(memcg); 1876 1877 return ret; 1878 } 1879 1880 /** 1881 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1882 * @handle: actually kill/wait or just clean up the OOM state 1883 * 1884 * This has to be called at the end of a page fault if the memcg OOM 1885 * handler was enabled. 1886 * 1887 * Memcg supports userspace OOM handling where failed allocations must 1888 * sleep on a waitqueue until the userspace task resolves the 1889 * situation. Sleeping directly in the charge context with all kinds 1890 * of locks held is not a good idea, instead we remember an OOM state 1891 * in the task and mem_cgroup_oom_synchronize() has to be called at 1892 * the end of the page fault to complete the OOM handling. 1893 * 1894 * Returns %true if an ongoing memcg OOM situation was detected and 1895 * completed, %false otherwise. 1896 */ 1897 bool mem_cgroup_oom_synchronize(bool handle) 1898 { 1899 struct mem_cgroup *memcg = current->memcg_in_oom; 1900 struct oom_wait_info owait; 1901 bool locked; 1902 1903 /* OOM is global, do not handle */ 1904 if (!memcg) 1905 return false; 1906 1907 if (!handle) 1908 goto cleanup; 1909 1910 owait.memcg = memcg; 1911 owait.wait.flags = 0; 1912 owait.wait.func = memcg_oom_wake_function; 1913 owait.wait.private = current; 1914 INIT_LIST_HEAD(&owait.wait.entry); 1915 1916 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1917 mem_cgroup_mark_under_oom(memcg); 1918 1919 locked = mem_cgroup_oom_trylock(memcg); 1920 1921 if (locked) 1922 mem_cgroup_oom_notify(memcg); 1923 1924 if (locked && !memcg->oom_kill_disable) { 1925 mem_cgroup_unmark_under_oom(memcg); 1926 finish_wait(&memcg_oom_waitq, &owait.wait); 1927 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1928 current->memcg_oom_order); 1929 } else { 1930 schedule(); 1931 mem_cgroup_unmark_under_oom(memcg); 1932 finish_wait(&memcg_oom_waitq, &owait.wait); 1933 } 1934 1935 if (locked) { 1936 mem_cgroup_oom_unlock(memcg); 1937 /* 1938 * There is no guarantee that an OOM-lock contender 1939 * sees the wakeups triggered by the OOM kill 1940 * uncharges. Wake any sleepers explicitly. 1941 */ 1942 memcg_oom_recover(memcg); 1943 } 1944 cleanup: 1945 current->memcg_in_oom = NULL; 1946 css_put(&memcg->css); 1947 return true; 1948 } 1949 1950 /** 1951 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1952 * @victim: task to be killed by the OOM killer 1953 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1954 * 1955 * Returns a pointer to a memory cgroup, which has to be cleaned up 1956 * by killing all belonging OOM-killable tasks. 1957 * 1958 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1959 */ 1960 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1961 struct mem_cgroup *oom_domain) 1962 { 1963 struct mem_cgroup *oom_group = NULL; 1964 struct mem_cgroup *memcg; 1965 1966 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1967 return NULL; 1968 1969 if (!oom_domain) 1970 oom_domain = root_mem_cgroup; 1971 1972 rcu_read_lock(); 1973 1974 memcg = mem_cgroup_from_task(victim); 1975 if (memcg == root_mem_cgroup) 1976 goto out; 1977 1978 /* 1979 * If the victim task has been asynchronously moved to a different 1980 * memory cgroup, we might end up killing tasks outside oom_domain. 1981 * In this case it's better to ignore memory.group.oom. 1982 */ 1983 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1984 goto out; 1985 1986 /* 1987 * Traverse the memory cgroup hierarchy from the victim task's 1988 * cgroup up to the OOMing cgroup (or root) to find the 1989 * highest-level memory cgroup with oom.group set. 1990 */ 1991 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1992 if (memcg->oom_group) 1993 oom_group = memcg; 1994 1995 if (memcg == oom_domain) 1996 break; 1997 } 1998 1999 if (oom_group) 2000 css_get(&oom_group->css); 2001 out: 2002 rcu_read_unlock(); 2003 2004 return oom_group; 2005 } 2006 2007 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2008 { 2009 pr_info("Tasks in "); 2010 pr_cont_cgroup_path(memcg->css.cgroup); 2011 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2012 } 2013 2014 /** 2015 * folio_memcg_lock - Bind a folio to its memcg. 2016 * @folio: The folio. 2017 * 2018 * This function prevents unlocked LRU folios from being moved to 2019 * another cgroup. 2020 * 2021 * It ensures lifetime of the bound memcg. The caller is responsible 2022 * for the lifetime of the folio. 2023 */ 2024 void folio_memcg_lock(struct folio *folio) 2025 { 2026 struct mem_cgroup *memcg; 2027 unsigned long flags; 2028 2029 /* 2030 * The RCU lock is held throughout the transaction. The fast 2031 * path can get away without acquiring the memcg->move_lock 2032 * because page moving starts with an RCU grace period. 2033 */ 2034 rcu_read_lock(); 2035 2036 if (mem_cgroup_disabled()) 2037 return; 2038 again: 2039 memcg = folio_memcg(folio); 2040 if (unlikely(!memcg)) 2041 return; 2042 2043 #ifdef CONFIG_PROVE_LOCKING 2044 local_irq_save(flags); 2045 might_lock(&memcg->move_lock); 2046 local_irq_restore(flags); 2047 #endif 2048 2049 if (atomic_read(&memcg->moving_account) <= 0) 2050 return; 2051 2052 spin_lock_irqsave(&memcg->move_lock, flags); 2053 if (memcg != folio_memcg(folio)) { 2054 spin_unlock_irqrestore(&memcg->move_lock, flags); 2055 goto again; 2056 } 2057 2058 /* 2059 * When charge migration first begins, we can have multiple 2060 * critical sections holding the fast-path RCU lock and one 2061 * holding the slowpath move_lock. Track the task who has the 2062 * move_lock for unlock_page_memcg(). 2063 */ 2064 memcg->move_lock_task = current; 2065 memcg->move_lock_flags = flags; 2066 } 2067 2068 void lock_page_memcg(struct page *page) 2069 { 2070 folio_memcg_lock(page_folio(page)); 2071 } 2072 2073 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2074 { 2075 if (memcg && memcg->move_lock_task == current) { 2076 unsigned long flags = memcg->move_lock_flags; 2077 2078 memcg->move_lock_task = NULL; 2079 memcg->move_lock_flags = 0; 2080 2081 spin_unlock_irqrestore(&memcg->move_lock, flags); 2082 } 2083 2084 rcu_read_unlock(); 2085 } 2086 2087 /** 2088 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2089 * @folio: The folio. 2090 * 2091 * This releases the binding created by folio_memcg_lock(). This does 2092 * not change the accounting of this folio to its memcg, but it does 2093 * permit others to change it. 2094 */ 2095 void folio_memcg_unlock(struct folio *folio) 2096 { 2097 __folio_memcg_unlock(folio_memcg(folio)); 2098 } 2099 2100 void unlock_page_memcg(struct page *page) 2101 { 2102 folio_memcg_unlock(page_folio(page)); 2103 } 2104 2105 struct memcg_stock_pcp { 2106 local_lock_t stock_lock; 2107 struct mem_cgroup *cached; /* this never be root cgroup */ 2108 unsigned int nr_pages; 2109 2110 #ifdef CONFIG_MEMCG_KMEM 2111 struct obj_cgroup *cached_objcg; 2112 struct pglist_data *cached_pgdat; 2113 unsigned int nr_bytes; 2114 int nr_slab_reclaimable_b; 2115 int nr_slab_unreclaimable_b; 2116 #endif 2117 2118 struct work_struct work; 2119 unsigned long flags; 2120 #define FLUSHING_CACHED_CHARGE 0 2121 }; 2122 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 2123 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 2124 }; 2125 static DEFINE_MUTEX(percpu_charge_mutex); 2126 2127 #ifdef CONFIG_MEMCG_KMEM 2128 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 2129 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2130 struct mem_cgroup *root_memcg); 2131 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages); 2132 2133 #else 2134 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2135 { 2136 return NULL; 2137 } 2138 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2139 struct mem_cgroup *root_memcg) 2140 { 2141 return false; 2142 } 2143 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2144 { 2145 } 2146 #endif 2147 2148 /** 2149 * consume_stock: Try to consume stocked charge on this cpu. 2150 * @memcg: memcg to consume from. 2151 * @nr_pages: how many pages to charge. 2152 * 2153 * The charges will only happen if @memcg matches the current cpu's memcg 2154 * stock, and at least @nr_pages are available in that stock. Failure to 2155 * service an allocation will refill the stock. 2156 * 2157 * returns true if successful, false otherwise. 2158 */ 2159 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2160 { 2161 struct memcg_stock_pcp *stock; 2162 unsigned long flags; 2163 bool ret = false; 2164 2165 if (nr_pages > MEMCG_CHARGE_BATCH) 2166 return ret; 2167 2168 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2169 2170 stock = this_cpu_ptr(&memcg_stock); 2171 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2172 stock->nr_pages -= nr_pages; 2173 ret = true; 2174 } 2175 2176 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2177 2178 return ret; 2179 } 2180 2181 /* 2182 * Returns stocks cached in percpu and reset cached information. 2183 */ 2184 static void drain_stock(struct memcg_stock_pcp *stock) 2185 { 2186 struct mem_cgroup *old = stock->cached; 2187 2188 if (!old) 2189 return; 2190 2191 if (stock->nr_pages) { 2192 page_counter_uncharge(&old->memory, stock->nr_pages); 2193 if (do_memsw_account()) 2194 page_counter_uncharge(&old->memsw, stock->nr_pages); 2195 stock->nr_pages = 0; 2196 } 2197 2198 css_put(&old->css); 2199 stock->cached = NULL; 2200 } 2201 2202 static void drain_local_stock(struct work_struct *dummy) 2203 { 2204 struct memcg_stock_pcp *stock; 2205 struct obj_cgroup *old = NULL; 2206 unsigned long flags; 2207 2208 /* 2209 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2210 * drain_stock races is that we always operate on local CPU stock 2211 * here with IRQ disabled 2212 */ 2213 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2214 2215 stock = this_cpu_ptr(&memcg_stock); 2216 old = drain_obj_stock(stock); 2217 drain_stock(stock); 2218 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2219 2220 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2221 if (old) 2222 obj_cgroup_put(old); 2223 } 2224 2225 /* 2226 * Cache charges(val) to local per_cpu area. 2227 * This will be consumed by consume_stock() function, later. 2228 */ 2229 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2230 { 2231 struct memcg_stock_pcp *stock; 2232 2233 stock = this_cpu_ptr(&memcg_stock); 2234 if (stock->cached != memcg) { /* reset if necessary */ 2235 drain_stock(stock); 2236 css_get(&memcg->css); 2237 stock->cached = memcg; 2238 } 2239 stock->nr_pages += nr_pages; 2240 2241 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2242 drain_stock(stock); 2243 } 2244 2245 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2246 { 2247 unsigned long flags; 2248 2249 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2250 __refill_stock(memcg, nr_pages); 2251 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2252 } 2253 2254 /* 2255 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2256 * of the hierarchy under it. 2257 */ 2258 static void drain_all_stock(struct mem_cgroup *root_memcg) 2259 { 2260 int cpu, curcpu; 2261 2262 /* If someone's already draining, avoid adding running more workers. */ 2263 if (!mutex_trylock(&percpu_charge_mutex)) 2264 return; 2265 /* 2266 * Notify other cpus that system-wide "drain" is running 2267 * We do not care about races with the cpu hotplug because cpu down 2268 * as well as workers from this path always operate on the local 2269 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2270 */ 2271 migrate_disable(); 2272 curcpu = smp_processor_id(); 2273 for_each_online_cpu(cpu) { 2274 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2275 struct mem_cgroup *memcg; 2276 bool flush = false; 2277 2278 rcu_read_lock(); 2279 memcg = stock->cached; 2280 if (memcg && stock->nr_pages && 2281 mem_cgroup_is_descendant(memcg, root_memcg)) 2282 flush = true; 2283 else if (obj_stock_flush_required(stock, root_memcg)) 2284 flush = true; 2285 rcu_read_unlock(); 2286 2287 if (flush && 2288 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2289 if (cpu == curcpu) 2290 drain_local_stock(&stock->work); 2291 else 2292 schedule_work_on(cpu, &stock->work); 2293 } 2294 } 2295 migrate_enable(); 2296 mutex_unlock(&percpu_charge_mutex); 2297 } 2298 2299 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2300 { 2301 struct memcg_stock_pcp *stock; 2302 2303 stock = &per_cpu(memcg_stock, cpu); 2304 drain_stock(stock); 2305 2306 return 0; 2307 } 2308 2309 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2310 unsigned int nr_pages, 2311 gfp_t gfp_mask) 2312 { 2313 unsigned long nr_reclaimed = 0; 2314 2315 do { 2316 unsigned long pflags; 2317 2318 if (page_counter_read(&memcg->memory) <= 2319 READ_ONCE(memcg->memory.high)) 2320 continue; 2321 2322 memcg_memory_event(memcg, MEMCG_HIGH); 2323 2324 psi_memstall_enter(&pflags); 2325 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2326 gfp_mask, true); 2327 psi_memstall_leave(&pflags); 2328 } while ((memcg = parent_mem_cgroup(memcg)) && 2329 !mem_cgroup_is_root(memcg)); 2330 2331 return nr_reclaimed; 2332 } 2333 2334 static void high_work_func(struct work_struct *work) 2335 { 2336 struct mem_cgroup *memcg; 2337 2338 memcg = container_of(work, struct mem_cgroup, high_work); 2339 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2340 } 2341 2342 /* 2343 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2344 * enough to still cause a significant slowdown in most cases, while still 2345 * allowing diagnostics and tracing to proceed without becoming stuck. 2346 */ 2347 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2348 2349 /* 2350 * When calculating the delay, we use these either side of the exponentiation to 2351 * maintain precision and scale to a reasonable number of jiffies (see the table 2352 * below. 2353 * 2354 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2355 * overage ratio to a delay. 2356 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2357 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2358 * to produce a reasonable delay curve. 2359 * 2360 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2361 * reasonable delay curve compared to precision-adjusted overage, not 2362 * penalising heavily at first, but still making sure that growth beyond the 2363 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2364 * example, with a high of 100 megabytes: 2365 * 2366 * +-------+------------------------+ 2367 * | usage | time to allocate in ms | 2368 * +-------+------------------------+ 2369 * | 100M | 0 | 2370 * | 101M | 6 | 2371 * | 102M | 25 | 2372 * | 103M | 57 | 2373 * | 104M | 102 | 2374 * | 105M | 159 | 2375 * | 106M | 230 | 2376 * | 107M | 313 | 2377 * | 108M | 409 | 2378 * | 109M | 518 | 2379 * | 110M | 639 | 2380 * | 111M | 774 | 2381 * | 112M | 921 | 2382 * | 113M | 1081 | 2383 * | 114M | 1254 | 2384 * | 115M | 1439 | 2385 * | 116M | 1638 | 2386 * | 117M | 1849 | 2387 * | 118M | 2000 | 2388 * | 119M | 2000 | 2389 * | 120M | 2000 | 2390 * +-------+------------------------+ 2391 */ 2392 #define MEMCG_DELAY_PRECISION_SHIFT 20 2393 #define MEMCG_DELAY_SCALING_SHIFT 14 2394 2395 static u64 calculate_overage(unsigned long usage, unsigned long high) 2396 { 2397 u64 overage; 2398 2399 if (usage <= high) 2400 return 0; 2401 2402 /* 2403 * Prevent division by 0 in overage calculation by acting as if 2404 * it was a threshold of 1 page 2405 */ 2406 high = max(high, 1UL); 2407 2408 overage = usage - high; 2409 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2410 return div64_u64(overage, high); 2411 } 2412 2413 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2414 { 2415 u64 overage, max_overage = 0; 2416 2417 do { 2418 overage = calculate_overage(page_counter_read(&memcg->memory), 2419 READ_ONCE(memcg->memory.high)); 2420 max_overage = max(overage, max_overage); 2421 } while ((memcg = parent_mem_cgroup(memcg)) && 2422 !mem_cgroup_is_root(memcg)); 2423 2424 return max_overage; 2425 } 2426 2427 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2428 { 2429 u64 overage, max_overage = 0; 2430 2431 do { 2432 overage = calculate_overage(page_counter_read(&memcg->swap), 2433 READ_ONCE(memcg->swap.high)); 2434 if (overage) 2435 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2436 max_overage = max(overage, max_overage); 2437 } while ((memcg = parent_mem_cgroup(memcg)) && 2438 !mem_cgroup_is_root(memcg)); 2439 2440 return max_overage; 2441 } 2442 2443 /* 2444 * Get the number of jiffies that we should penalise a mischievous cgroup which 2445 * is exceeding its memory.high by checking both it and its ancestors. 2446 */ 2447 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2448 unsigned int nr_pages, 2449 u64 max_overage) 2450 { 2451 unsigned long penalty_jiffies; 2452 2453 if (!max_overage) 2454 return 0; 2455 2456 /* 2457 * We use overage compared to memory.high to calculate the number of 2458 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2459 * fairly lenient on small overages, and increasingly harsh when the 2460 * memcg in question makes it clear that it has no intention of stopping 2461 * its crazy behaviour, so we exponentially increase the delay based on 2462 * overage amount. 2463 */ 2464 penalty_jiffies = max_overage * max_overage * HZ; 2465 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2466 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2467 2468 /* 2469 * Factor in the task's own contribution to the overage, such that four 2470 * N-sized allocations are throttled approximately the same as one 2471 * 4N-sized allocation. 2472 * 2473 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2474 * larger the current charge patch is than that. 2475 */ 2476 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2477 } 2478 2479 /* 2480 * Scheduled by try_charge() to be executed from the userland return path 2481 * and reclaims memory over the high limit. 2482 */ 2483 void mem_cgroup_handle_over_high(void) 2484 { 2485 unsigned long penalty_jiffies; 2486 unsigned long pflags; 2487 unsigned long nr_reclaimed; 2488 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2489 int nr_retries = MAX_RECLAIM_RETRIES; 2490 struct mem_cgroup *memcg; 2491 bool in_retry = false; 2492 2493 if (likely(!nr_pages)) 2494 return; 2495 2496 memcg = get_mem_cgroup_from_mm(current->mm); 2497 current->memcg_nr_pages_over_high = 0; 2498 2499 retry_reclaim: 2500 /* 2501 * The allocating task should reclaim at least the batch size, but for 2502 * subsequent retries we only want to do what's necessary to prevent oom 2503 * or breaching resource isolation. 2504 * 2505 * This is distinct from memory.max or page allocator behaviour because 2506 * memory.high is currently batched, whereas memory.max and the page 2507 * allocator run every time an allocation is made. 2508 */ 2509 nr_reclaimed = reclaim_high(memcg, 2510 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2511 GFP_KERNEL); 2512 2513 /* 2514 * memory.high is breached and reclaim is unable to keep up. Throttle 2515 * allocators proactively to slow down excessive growth. 2516 */ 2517 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2518 mem_find_max_overage(memcg)); 2519 2520 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2521 swap_find_max_overage(memcg)); 2522 2523 /* 2524 * Clamp the max delay per usermode return so as to still keep the 2525 * application moving forwards and also permit diagnostics, albeit 2526 * extremely slowly. 2527 */ 2528 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2529 2530 /* 2531 * Don't sleep if the amount of jiffies this memcg owes us is so low 2532 * that it's not even worth doing, in an attempt to be nice to those who 2533 * go only a small amount over their memory.high value and maybe haven't 2534 * been aggressively reclaimed enough yet. 2535 */ 2536 if (penalty_jiffies <= HZ / 100) 2537 goto out; 2538 2539 /* 2540 * If reclaim is making forward progress but we're still over 2541 * memory.high, we want to encourage that rather than doing allocator 2542 * throttling. 2543 */ 2544 if (nr_reclaimed || nr_retries--) { 2545 in_retry = true; 2546 goto retry_reclaim; 2547 } 2548 2549 /* 2550 * If we exit early, we're guaranteed to die (since 2551 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2552 * need to account for any ill-begotten jiffies to pay them off later. 2553 */ 2554 psi_memstall_enter(&pflags); 2555 schedule_timeout_killable(penalty_jiffies); 2556 psi_memstall_leave(&pflags); 2557 2558 out: 2559 css_put(&memcg->css); 2560 } 2561 2562 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2563 unsigned int nr_pages) 2564 { 2565 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2566 int nr_retries = MAX_RECLAIM_RETRIES; 2567 struct mem_cgroup *mem_over_limit; 2568 struct page_counter *counter; 2569 unsigned long nr_reclaimed; 2570 bool passed_oom = false; 2571 bool may_swap = true; 2572 bool drained = false; 2573 unsigned long pflags; 2574 2575 retry: 2576 if (consume_stock(memcg, nr_pages)) 2577 return 0; 2578 2579 if (!do_memsw_account() || 2580 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2581 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2582 goto done_restock; 2583 if (do_memsw_account()) 2584 page_counter_uncharge(&memcg->memsw, batch); 2585 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2586 } else { 2587 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2588 may_swap = false; 2589 } 2590 2591 if (batch > nr_pages) { 2592 batch = nr_pages; 2593 goto retry; 2594 } 2595 2596 /* 2597 * Prevent unbounded recursion when reclaim operations need to 2598 * allocate memory. This might exceed the limits temporarily, 2599 * but we prefer facilitating memory reclaim and getting back 2600 * under the limit over triggering OOM kills in these cases. 2601 */ 2602 if (unlikely(current->flags & PF_MEMALLOC)) 2603 goto force; 2604 2605 if (unlikely(task_in_memcg_oom(current))) 2606 goto nomem; 2607 2608 if (!gfpflags_allow_blocking(gfp_mask)) 2609 goto nomem; 2610 2611 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2612 2613 psi_memstall_enter(&pflags); 2614 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2615 gfp_mask, may_swap); 2616 psi_memstall_leave(&pflags); 2617 2618 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2619 goto retry; 2620 2621 if (!drained) { 2622 drain_all_stock(mem_over_limit); 2623 drained = true; 2624 goto retry; 2625 } 2626 2627 if (gfp_mask & __GFP_NORETRY) 2628 goto nomem; 2629 /* 2630 * Even though the limit is exceeded at this point, reclaim 2631 * may have been able to free some pages. Retry the charge 2632 * before killing the task. 2633 * 2634 * Only for regular pages, though: huge pages are rather 2635 * unlikely to succeed so close to the limit, and we fall back 2636 * to regular pages anyway in case of failure. 2637 */ 2638 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2639 goto retry; 2640 /* 2641 * At task move, charge accounts can be doubly counted. So, it's 2642 * better to wait until the end of task_move if something is going on. 2643 */ 2644 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2645 goto retry; 2646 2647 if (nr_retries--) 2648 goto retry; 2649 2650 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2651 goto nomem; 2652 2653 /* Avoid endless loop for tasks bypassed by the oom killer */ 2654 if (passed_oom && task_is_dying()) 2655 goto nomem; 2656 2657 /* 2658 * keep retrying as long as the memcg oom killer is able to make 2659 * a forward progress or bypass the charge if the oom killer 2660 * couldn't make any progress. 2661 */ 2662 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2663 get_order(nr_pages * PAGE_SIZE))) { 2664 passed_oom = true; 2665 nr_retries = MAX_RECLAIM_RETRIES; 2666 goto retry; 2667 } 2668 nomem: 2669 /* 2670 * Memcg doesn't have a dedicated reserve for atomic 2671 * allocations. But like the global atomic pool, we need to 2672 * put the burden of reclaim on regular allocation requests 2673 * and let these go through as privileged allocations. 2674 */ 2675 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2676 return -ENOMEM; 2677 force: 2678 /* 2679 * The allocation either can't fail or will lead to more memory 2680 * being freed very soon. Allow memory usage go over the limit 2681 * temporarily by force charging it. 2682 */ 2683 page_counter_charge(&memcg->memory, nr_pages); 2684 if (do_memsw_account()) 2685 page_counter_charge(&memcg->memsw, nr_pages); 2686 2687 return 0; 2688 2689 done_restock: 2690 if (batch > nr_pages) 2691 refill_stock(memcg, batch - nr_pages); 2692 2693 /* 2694 * If the hierarchy is above the normal consumption range, schedule 2695 * reclaim on returning to userland. We can perform reclaim here 2696 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2697 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2698 * not recorded as it most likely matches current's and won't 2699 * change in the meantime. As high limit is checked again before 2700 * reclaim, the cost of mismatch is negligible. 2701 */ 2702 do { 2703 bool mem_high, swap_high; 2704 2705 mem_high = page_counter_read(&memcg->memory) > 2706 READ_ONCE(memcg->memory.high); 2707 swap_high = page_counter_read(&memcg->swap) > 2708 READ_ONCE(memcg->swap.high); 2709 2710 /* Don't bother a random interrupted task */ 2711 if (!in_task()) { 2712 if (mem_high) { 2713 schedule_work(&memcg->high_work); 2714 break; 2715 } 2716 continue; 2717 } 2718 2719 if (mem_high || swap_high) { 2720 /* 2721 * The allocating tasks in this cgroup will need to do 2722 * reclaim or be throttled to prevent further growth 2723 * of the memory or swap footprints. 2724 * 2725 * Target some best-effort fairness between the tasks, 2726 * and distribute reclaim work and delay penalties 2727 * based on how much each task is actually allocating. 2728 */ 2729 current->memcg_nr_pages_over_high += batch; 2730 set_notify_resume(current); 2731 break; 2732 } 2733 } while ((memcg = parent_mem_cgroup(memcg))); 2734 2735 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2736 !(current->flags & PF_MEMALLOC) && 2737 gfpflags_allow_blocking(gfp_mask)) { 2738 mem_cgroup_handle_over_high(); 2739 } 2740 return 0; 2741 } 2742 2743 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2744 unsigned int nr_pages) 2745 { 2746 if (mem_cgroup_is_root(memcg)) 2747 return 0; 2748 2749 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2750 } 2751 2752 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2753 { 2754 if (mem_cgroup_is_root(memcg)) 2755 return; 2756 2757 page_counter_uncharge(&memcg->memory, nr_pages); 2758 if (do_memsw_account()) 2759 page_counter_uncharge(&memcg->memsw, nr_pages); 2760 } 2761 2762 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2763 { 2764 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2765 /* 2766 * Any of the following ensures page's memcg stability: 2767 * 2768 * - the page lock 2769 * - LRU isolation 2770 * - lock_page_memcg() 2771 * - exclusive reference 2772 */ 2773 folio->memcg_data = (unsigned long)memcg; 2774 } 2775 2776 #ifdef CONFIG_MEMCG_KMEM 2777 /* 2778 * The allocated objcg pointers array is not accounted directly. 2779 * Moreover, it should not come from DMA buffer and is not readily 2780 * reclaimable. So those GFP bits should be masked off. 2781 */ 2782 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT) 2783 2784 /* 2785 * mod_objcg_mlstate() may be called with irq enabled, so 2786 * mod_memcg_lruvec_state() should be used. 2787 */ 2788 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2789 struct pglist_data *pgdat, 2790 enum node_stat_item idx, int nr) 2791 { 2792 struct mem_cgroup *memcg; 2793 struct lruvec *lruvec; 2794 2795 rcu_read_lock(); 2796 memcg = obj_cgroup_memcg(objcg); 2797 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2798 mod_memcg_lruvec_state(lruvec, idx, nr); 2799 rcu_read_unlock(); 2800 } 2801 2802 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, 2803 gfp_t gfp, bool new_slab) 2804 { 2805 unsigned int objects = objs_per_slab(s, slab); 2806 unsigned long memcg_data; 2807 void *vec; 2808 2809 gfp &= ~OBJCGS_CLEAR_MASK; 2810 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2811 slab_nid(slab)); 2812 if (!vec) 2813 return -ENOMEM; 2814 2815 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 2816 if (new_slab) { 2817 /* 2818 * If the slab is brand new and nobody can yet access its 2819 * memcg_data, no synchronization is required and memcg_data can 2820 * be simply assigned. 2821 */ 2822 slab->memcg_data = memcg_data; 2823 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) { 2824 /* 2825 * If the slab is already in use, somebody can allocate and 2826 * assign obj_cgroups in parallel. In this case the existing 2827 * objcg vector should be reused. 2828 */ 2829 kfree(vec); 2830 return 0; 2831 } 2832 2833 kmemleak_not_leak(vec); 2834 return 0; 2835 } 2836 2837 /* 2838 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2839 * 2840 * A passed kernel object can be a slab object or a generic kernel page, so 2841 * different mechanisms for getting the memory cgroup pointer should be used. 2842 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2843 * can not know for sure how the kernel object is implemented. 2844 * mem_cgroup_from_obj() can be safely used in such cases. 2845 * 2846 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2847 * cgroup_mutex, etc. 2848 */ 2849 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2850 { 2851 struct folio *folio; 2852 2853 if (mem_cgroup_disabled()) 2854 return NULL; 2855 2856 folio = virt_to_folio(p); 2857 2858 /* 2859 * Slab objects are accounted individually, not per-page. 2860 * Memcg membership data for each individual object is saved in 2861 * slab->memcg_data. 2862 */ 2863 if (folio_test_slab(folio)) { 2864 struct obj_cgroup **objcgs; 2865 struct slab *slab; 2866 unsigned int off; 2867 2868 slab = folio_slab(folio); 2869 objcgs = slab_objcgs(slab); 2870 if (!objcgs) 2871 return NULL; 2872 2873 off = obj_to_index(slab->slab_cache, slab, p); 2874 if (objcgs[off]) 2875 return obj_cgroup_memcg(objcgs[off]); 2876 2877 return NULL; 2878 } 2879 2880 /* 2881 * page_memcg_check() is used here, because in theory we can encounter 2882 * a folio where the slab flag has been cleared already, but 2883 * slab->memcg_data has not been freed yet 2884 * page_memcg_check(page) will guarantee that a proper memory 2885 * cgroup pointer or NULL will be returned. 2886 */ 2887 return page_memcg_check(folio_page(folio, 0)); 2888 } 2889 2890 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 2891 { 2892 struct obj_cgroup *objcg = NULL; 2893 struct mem_cgroup *memcg; 2894 2895 if (memcg_kmem_bypass()) 2896 return NULL; 2897 2898 rcu_read_lock(); 2899 if (unlikely(active_memcg())) 2900 memcg = active_memcg(); 2901 else 2902 memcg = mem_cgroup_from_task(current); 2903 2904 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 2905 objcg = rcu_dereference(memcg->objcg); 2906 if (objcg && obj_cgroup_tryget(objcg)) 2907 break; 2908 objcg = NULL; 2909 } 2910 rcu_read_unlock(); 2911 2912 return objcg; 2913 } 2914 2915 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2916 { 2917 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2918 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 2919 if (nr_pages > 0) 2920 page_counter_charge(&memcg->kmem, nr_pages); 2921 else 2922 page_counter_uncharge(&memcg->kmem, -nr_pages); 2923 } 2924 } 2925 2926 2927 /* 2928 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2929 * @objcg: object cgroup to uncharge 2930 * @nr_pages: number of pages to uncharge 2931 */ 2932 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2933 unsigned int nr_pages) 2934 { 2935 struct mem_cgroup *memcg; 2936 2937 memcg = get_mem_cgroup_from_objcg(objcg); 2938 2939 memcg_account_kmem(memcg, -nr_pages); 2940 refill_stock(memcg, nr_pages); 2941 2942 css_put(&memcg->css); 2943 } 2944 2945 /* 2946 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2947 * @objcg: object cgroup to charge 2948 * @gfp: reclaim mode 2949 * @nr_pages: number of pages to charge 2950 * 2951 * Returns 0 on success, an error code on failure. 2952 */ 2953 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2954 unsigned int nr_pages) 2955 { 2956 struct mem_cgroup *memcg; 2957 int ret; 2958 2959 memcg = get_mem_cgroup_from_objcg(objcg); 2960 2961 ret = try_charge_memcg(memcg, gfp, nr_pages); 2962 if (ret) 2963 goto out; 2964 2965 memcg_account_kmem(memcg, nr_pages); 2966 out: 2967 css_put(&memcg->css); 2968 2969 return ret; 2970 } 2971 2972 /** 2973 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2974 * @page: page to charge 2975 * @gfp: reclaim mode 2976 * @order: allocation order 2977 * 2978 * Returns 0 on success, an error code on failure. 2979 */ 2980 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2981 { 2982 struct obj_cgroup *objcg; 2983 int ret = 0; 2984 2985 objcg = get_obj_cgroup_from_current(); 2986 if (objcg) { 2987 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2988 if (!ret) { 2989 page->memcg_data = (unsigned long)objcg | 2990 MEMCG_DATA_KMEM; 2991 return 0; 2992 } 2993 obj_cgroup_put(objcg); 2994 } 2995 return ret; 2996 } 2997 2998 /** 2999 * __memcg_kmem_uncharge_page: uncharge a kmem page 3000 * @page: page to uncharge 3001 * @order: allocation order 3002 */ 3003 void __memcg_kmem_uncharge_page(struct page *page, int order) 3004 { 3005 struct folio *folio = page_folio(page); 3006 struct obj_cgroup *objcg; 3007 unsigned int nr_pages = 1 << order; 3008 3009 if (!folio_memcg_kmem(folio)) 3010 return; 3011 3012 objcg = __folio_objcg(folio); 3013 obj_cgroup_uncharge_pages(objcg, nr_pages); 3014 folio->memcg_data = 0; 3015 obj_cgroup_put(objcg); 3016 } 3017 3018 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3019 enum node_stat_item idx, int nr) 3020 { 3021 struct memcg_stock_pcp *stock; 3022 struct obj_cgroup *old = NULL; 3023 unsigned long flags; 3024 int *bytes; 3025 3026 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3027 stock = this_cpu_ptr(&memcg_stock); 3028 3029 /* 3030 * Save vmstat data in stock and skip vmstat array update unless 3031 * accumulating over a page of vmstat data or when pgdat or idx 3032 * changes. 3033 */ 3034 if (stock->cached_objcg != objcg) { 3035 old = drain_obj_stock(stock); 3036 obj_cgroup_get(objcg); 3037 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3038 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3039 stock->cached_objcg = objcg; 3040 stock->cached_pgdat = pgdat; 3041 } else if (stock->cached_pgdat != pgdat) { 3042 /* Flush the existing cached vmstat data */ 3043 struct pglist_data *oldpg = stock->cached_pgdat; 3044 3045 if (stock->nr_slab_reclaimable_b) { 3046 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3047 stock->nr_slab_reclaimable_b); 3048 stock->nr_slab_reclaimable_b = 0; 3049 } 3050 if (stock->nr_slab_unreclaimable_b) { 3051 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3052 stock->nr_slab_unreclaimable_b); 3053 stock->nr_slab_unreclaimable_b = 0; 3054 } 3055 stock->cached_pgdat = pgdat; 3056 } 3057 3058 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3059 : &stock->nr_slab_unreclaimable_b; 3060 /* 3061 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3062 * cached locally at least once before pushing it out. 3063 */ 3064 if (!*bytes) { 3065 *bytes = nr; 3066 nr = 0; 3067 } else { 3068 *bytes += nr; 3069 if (abs(*bytes) > PAGE_SIZE) { 3070 nr = *bytes; 3071 *bytes = 0; 3072 } else { 3073 nr = 0; 3074 } 3075 } 3076 if (nr) 3077 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3078 3079 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3080 if (old) 3081 obj_cgroup_put(old); 3082 } 3083 3084 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3085 { 3086 struct memcg_stock_pcp *stock; 3087 unsigned long flags; 3088 bool ret = false; 3089 3090 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3091 3092 stock = this_cpu_ptr(&memcg_stock); 3093 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3094 stock->nr_bytes -= nr_bytes; 3095 ret = true; 3096 } 3097 3098 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3099 3100 return ret; 3101 } 3102 3103 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 3104 { 3105 struct obj_cgroup *old = stock->cached_objcg; 3106 3107 if (!old) 3108 return NULL; 3109 3110 if (stock->nr_bytes) { 3111 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3112 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3113 3114 if (nr_pages) { 3115 struct mem_cgroup *memcg; 3116 3117 memcg = get_mem_cgroup_from_objcg(old); 3118 3119 memcg_account_kmem(memcg, -nr_pages); 3120 __refill_stock(memcg, nr_pages); 3121 3122 css_put(&memcg->css); 3123 } 3124 3125 /* 3126 * The leftover is flushed to the centralized per-memcg value. 3127 * On the next attempt to refill obj stock it will be moved 3128 * to a per-cpu stock (probably, on an other CPU), see 3129 * refill_obj_stock(). 3130 * 3131 * How often it's flushed is a trade-off between the memory 3132 * limit enforcement accuracy and potential CPU contention, 3133 * so it might be changed in the future. 3134 */ 3135 atomic_add(nr_bytes, &old->nr_charged_bytes); 3136 stock->nr_bytes = 0; 3137 } 3138 3139 /* 3140 * Flush the vmstat data in current stock 3141 */ 3142 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3143 if (stock->nr_slab_reclaimable_b) { 3144 mod_objcg_mlstate(old, stock->cached_pgdat, 3145 NR_SLAB_RECLAIMABLE_B, 3146 stock->nr_slab_reclaimable_b); 3147 stock->nr_slab_reclaimable_b = 0; 3148 } 3149 if (stock->nr_slab_unreclaimable_b) { 3150 mod_objcg_mlstate(old, stock->cached_pgdat, 3151 NR_SLAB_UNRECLAIMABLE_B, 3152 stock->nr_slab_unreclaimable_b); 3153 stock->nr_slab_unreclaimable_b = 0; 3154 } 3155 stock->cached_pgdat = NULL; 3156 } 3157 3158 stock->cached_objcg = NULL; 3159 /* 3160 * The `old' objects needs to be released by the caller via 3161 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 3162 */ 3163 return old; 3164 } 3165 3166 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3167 struct mem_cgroup *root_memcg) 3168 { 3169 struct mem_cgroup *memcg; 3170 3171 if (stock->cached_objcg) { 3172 memcg = obj_cgroup_memcg(stock->cached_objcg); 3173 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3174 return true; 3175 } 3176 3177 return false; 3178 } 3179 3180 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3181 bool allow_uncharge) 3182 { 3183 struct memcg_stock_pcp *stock; 3184 struct obj_cgroup *old = NULL; 3185 unsigned long flags; 3186 unsigned int nr_pages = 0; 3187 3188 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3189 3190 stock = this_cpu_ptr(&memcg_stock); 3191 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3192 old = drain_obj_stock(stock); 3193 obj_cgroup_get(objcg); 3194 stock->cached_objcg = objcg; 3195 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3196 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3197 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3198 } 3199 stock->nr_bytes += nr_bytes; 3200 3201 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3202 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3203 stock->nr_bytes &= (PAGE_SIZE - 1); 3204 } 3205 3206 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3207 if (old) 3208 obj_cgroup_put(old); 3209 3210 if (nr_pages) 3211 obj_cgroup_uncharge_pages(objcg, nr_pages); 3212 } 3213 3214 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3215 { 3216 unsigned int nr_pages, nr_bytes; 3217 int ret; 3218 3219 if (consume_obj_stock(objcg, size)) 3220 return 0; 3221 3222 /* 3223 * In theory, objcg->nr_charged_bytes can have enough 3224 * pre-charged bytes to satisfy the allocation. However, 3225 * flushing objcg->nr_charged_bytes requires two atomic 3226 * operations, and objcg->nr_charged_bytes can't be big. 3227 * The shared objcg->nr_charged_bytes can also become a 3228 * performance bottleneck if all tasks of the same memcg are 3229 * trying to update it. So it's better to ignore it and try 3230 * grab some new pages. The stock's nr_bytes will be flushed to 3231 * objcg->nr_charged_bytes later on when objcg changes. 3232 * 3233 * The stock's nr_bytes may contain enough pre-charged bytes 3234 * to allow one less page from being charged, but we can't rely 3235 * on the pre-charged bytes not being changed outside of 3236 * consume_obj_stock() or refill_obj_stock(). So ignore those 3237 * pre-charged bytes as well when charging pages. To avoid a 3238 * page uncharge right after a page charge, we set the 3239 * allow_uncharge flag to false when calling refill_obj_stock() 3240 * to temporarily allow the pre-charged bytes to exceed the page 3241 * size limit. The maximum reachable value of the pre-charged 3242 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3243 * race. 3244 */ 3245 nr_pages = size >> PAGE_SHIFT; 3246 nr_bytes = size & (PAGE_SIZE - 1); 3247 3248 if (nr_bytes) 3249 nr_pages += 1; 3250 3251 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3252 if (!ret && nr_bytes) 3253 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3254 3255 return ret; 3256 } 3257 3258 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3259 { 3260 refill_obj_stock(objcg, size, true); 3261 } 3262 3263 #endif /* CONFIG_MEMCG_KMEM */ 3264 3265 /* 3266 * Because page_memcg(head) is not set on tails, set it now. 3267 */ 3268 void split_page_memcg(struct page *head, unsigned int nr) 3269 { 3270 struct folio *folio = page_folio(head); 3271 struct mem_cgroup *memcg = folio_memcg(folio); 3272 int i; 3273 3274 if (mem_cgroup_disabled() || !memcg) 3275 return; 3276 3277 for (i = 1; i < nr; i++) 3278 folio_page(folio, i)->memcg_data = folio->memcg_data; 3279 3280 if (folio_memcg_kmem(folio)) 3281 obj_cgroup_get_many(__folio_objcg(folio), nr - 1); 3282 else 3283 css_get_many(&memcg->css, nr - 1); 3284 } 3285 3286 #ifdef CONFIG_MEMCG_SWAP 3287 /** 3288 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3289 * @entry: swap entry to be moved 3290 * @from: mem_cgroup which the entry is moved from 3291 * @to: mem_cgroup which the entry is moved to 3292 * 3293 * It succeeds only when the swap_cgroup's record for this entry is the same 3294 * as the mem_cgroup's id of @from. 3295 * 3296 * Returns 0 on success, -EINVAL on failure. 3297 * 3298 * The caller must have charged to @to, IOW, called page_counter_charge() about 3299 * both res and memsw, and called css_get(). 3300 */ 3301 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3302 struct mem_cgroup *from, struct mem_cgroup *to) 3303 { 3304 unsigned short old_id, new_id; 3305 3306 old_id = mem_cgroup_id(from); 3307 new_id = mem_cgroup_id(to); 3308 3309 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3310 mod_memcg_state(from, MEMCG_SWAP, -1); 3311 mod_memcg_state(to, MEMCG_SWAP, 1); 3312 return 0; 3313 } 3314 return -EINVAL; 3315 } 3316 #else 3317 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3318 struct mem_cgroup *from, struct mem_cgroup *to) 3319 { 3320 return -EINVAL; 3321 } 3322 #endif 3323 3324 static DEFINE_MUTEX(memcg_max_mutex); 3325 3326 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3327 unsigned long max, bool memsw) 3328 { 3329 bool enlarge = false; 3330 bool drained = false; 3331 int ret; 3332 bool limits_invariant; 3333 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3334 3335 do { 3336 if (signal_pending(current)) { 3337 ret = -EINTR; 3338 break; 3339 } 3340 3341 mutex_lock(&memcg_max_mutex); 3342 /* 3343 * Make sure that the new limit (memsw or memory limit) doesn't 3344 * break our basic invariant rule memory.max <= memsw.max. 3345 */ 3346 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3347 max <= memcg->memsw.max; 3348 if (!limits_invariant) { 3349 mutex_unlock(&memcg_max_mutex); 3350 ret = -EINVAL; 3351 break; 3352 } 3353 if (max > counter->max) 3354 enlarge = true; 3355 ret = page_counter_set_max(counter, max); 3356 mutex_unlock(&memcg_max_mutex); 3357 3358 if (!ret) 3359 break; 3360 3361 if (!drained) { 3362 drain_all_stock(memcg); 3363 drained = true; 3364 continue; 3365 } 3366 3367 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3368 GFP_KERNEL, !memsw)) { 3369 ret = -EBUSY; 3370 break; 3371 } 3372 } while (true); 3373 3374 if (!ret && enlarge) 3375 memcg_oom_recover(memcg); 3376 3377 return ret; 3378 } 3379 3380 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3381 gfp_t gfp_mask, 3382 unsigned long *total_scanned) 3383 { 3384 unsigned long nr_reclaimed = 0; 3385 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3386 unsigned long reclaimed; 3387 int loop = 0; 3388 struct mem_cgroup_tree_per_node *mctz; 3389 unsigned long excess; 3390 unsigned long nr_scanned; 3391 3392 if (order > 0) 3393 return 0; 3394 3395 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3396 3397 /* 3398 * Do not even bother to check the largest node if the root 3399 * is empty. Do it lockless to prevent lock bouncing. Races 3400 * are acceptable as soft limit is best effort anyway. 3401 */ 3402 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3403 return 0; 3404 3405 /* 3406 * This loop can run a while, specially if mem_cgroup's continuously 3407 * keep exceeding their soft limit and putting the system under 3408 * pressure 3409 */ 3410 do { 3411 if (next_mz) 3412 mz = next_mz; 3413 else 3414 mz = mem_cgroup_largest_soft_limit_node(mctz); 3415 if (!mz) 3416 break; 3417 3418 nr_scanned = 0; 3419 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3420 gfp_mask, &nr_scanned); 3421 nr_reclaimed += reclaimed; 3422 *total_scanned += nr_scanned; 3423 spin_lock_irq(&mctz->lock); 3424 __mem_cgroup_remove_exceeded(mz, mctz); 3425 3426 /* 3427 * If we failed to reclaim anything from this memory cgroup 3428 * it is time to move on to the next cgroup 3429 */ 3430 next_mz = NULL; 3431 if (!reclaimed) 3432 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3433 3434 excess = soft_limit_excess(mz->memcg); 3435 /* 3436 * One school of thought says that we should not add 3437 * back the node to the tree if reclaim returns 0. 3438 * But our reclaim could return 0, simply because due 3439 * to priority we are exposing a smaller subset of 3440 * memory to reclaim from. Consider this as a longer 3441 * term TODO. 3442 */ 3443 /* If excess == 0, no tree ops */ 3444 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3445 spin_unlock_irq(&mctz->lock); 3446 css_put(&mz->memcg->css); 3447 loop++; 3448 /* 3449 * Could not reclaim anything and there are no more 3450 * mem cgroups to try or we seem to be looping without 3451 * reclaiming anything. 3452 */ 3453 if (!nr_reclaimed && 3454 (next_mz == NULL || 3455 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3456 break; 3457 } while (!nr_reclaimed); 3458 if (next_mz) 3459 css_put(&next_mz->memcg->css); 3460 return nr_reclaimed; 3461 } 3462 3463 /* 3464 * Reclaims as many pages from the given memcg as possible. 3465 * 3466 * Caller is responsible for holding css reference for memcg. 3467 */ 3468 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3469 { 3470 int nr_retries = MAX_RECLAIM_RETRIES; 3471 3472 /* we call try-to-free pages for make this cgroup empty */ 3473 lru_add_drain_all(); 3474 3475 drain_all_stock(memcg); 3476 3477 /* try to free all pages in this cgroup */ 3478 while (nr_retries && page_counter_read(&memcg->memory)) { 3479 if (signal_pending(current)) 3480 return -EINTR; 3481 3482 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true)) 3483 nr_retries--; 3484 } 3485 3486 return 0; 3487 } 3488 3489 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3490 char *buf, size_t nbytes, 3491 loff_t off) 3492 { 3493 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3494 3495 if (mem_cgroup_is_root(memcg)) 3496 return -EINVAL; 3497 return mem_cgroup_force_empty(memcg) ?: nbytes; 3498 } 3499 3500 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3501 struct cftype *cft) 3502 { 3503 return 1; 3504 } 3505 3506 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3507 struct cftype *cft, u64 val) 3508 { 3509 if (val == 1) 3510 return 0; 3511 3512 pr_warn_once("Non-hierarchical mode is deprecated. " 3513 "Please report your usecase to linux-mm@kvack.org if you " 3514 "depend on this functionality.\n"); 3515 3516 return -EINVAL; 3517 } 3518 3519 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3520 { 3521 unsigned long val; 3522 3523 if (mem_cgroup_is_root(memcg)) { 3524 mem_cgroup_flush_stats(); 3525 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3526 memcg_page_state(memcg, NR_ANON_MAPPED); 3527 if (swap) 3528 val += memcg_page_state(memcg, MEMCG_SWAP); 3529 } else { 3530 if (!swap) 3531 val = page_counter_read(&memcg->memory); 3532 else 3533 val = page_counter_read(&memcg->memsw); 3534 } 3535 return val; 3536 } 3537 3538 enum { 3539 RES_USAGE, 3540 RES_LIMIT, 3541 RES_MAX_USAGE, 3542 RES_FAILCNT, 3543 RES_SOFT_LIMIT, 3544 }; 3545 3546 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3547 struct cftype *cft) 3548 { 3549 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3550 struct page_counter *counter; 3551 3552 switch (MEMFILE_TYPE(cft->private)) { 3553 case _MEM: 3554 counter = &memcg->memory; 3555 break; 3556 case _MEMSWAP: 3557 counter = &memcg->memsw; 3558 break; 3559 case _KMEM: 3560 counter = &memcg->kmem; 3561 break; 3562 case _TCP: 3563 counter = &memcg->tcpmem; 3564 break; 3565 default: 3566 BUG(); 3567 } 3568 3569 switch (MEMFILE_ATTR(cft->private)) { 3570 case RES_USAGE: 3571 if (counter == &memcg->memory) 3572 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3573 if (counter == &memcg->memsw) 3574 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3575 return (u64)page_counter_read(counter) * PAGE_SIZE; 3576 case RES_LIMIT: 3577 return (u64)counter->max * PAGE_SIZE; 3578 case RES_MAX_USAGE: 3579 return (u64)counter->watermark * PAGE_SIZE; 3580 case RES_FAILCNT: 3581 return counter->failcnt; 3582 case RES_SOFT_LIMIT: 3583 return (u64)memcg->soft_limit * PAGE_SIZE; 3584 default: 3585 BUG(); 3586 } 3587 } 3588 3589 #ifdef CONFIG_MEMCG_KMEM 3590 static int memcg_online_kmem(struct mem_cgroup *memcg) 3591 { 3592 struct obj_cgroup *objcg; 3593 3594 if (cgroup_memory_nokmem) 3595 return 0; 3596 3597 if (unlikely(mem_cgroup_is_root(memcg))) 3598 return 0; 3599 3600 objcg = obj_cgroup_alloc(); 3601 if (!objcg) 3602 return -ENOMEM; 3603 3604 objcg->memcg = memcg; 3605 rcu_assign_pointer(memcg->objcg, objcg); 3606 3607 static_branch_enable(&memcg_kmem_enabled_key); 3608 3609 memcg->kmemcg_id = memcg->id.id; 3610 3611 return 0; 3612 } 3613 3614 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3615 { 3616 struct mem_cgroup *parent; 3617 3618 if (cgroup_memory_nokmem) 3619 return; 3620 3621 if (unlikely(mem_cgroup_is_root(memcg))) 3622 return; 3623 3624 parent = parent_mem_cgroup(memcg); 3625 if (!parent) 3626 parent = root_mem_cgroup; 3627 3628 memcg_reparent_objcgs(memcg, parent); 3629 3630 /* 3631 * After we have finished memcg_reparent_objcgs(), all list_lrus 3632 * corresponding to this cgroup are guaranteed to remain empty. 3633 * The ordering is imposed by list_lru_node->lock taken by 3634 * memcg_reparent_list_lrus(). 3635 */ 3636 memcg_reparent_list_lrus(memcg, parent); 3637 } 3638 #else 3639 static int memcg_online_kmem(struct mem_cgroup *memcg) 3640 { 3641 return 0; 3642 } 3643 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3644 { 3645 } 3646 #endif /* CONFIG_MEMCG_KMEM */ 3647 3648 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3649 { 3650 int ret; 3651 3652 mutex_lock(&memcg_max_mutex); 3653 3654 ret = page_counter_set_max(&memcg->tcpmem, max); 3655 if (ret) 3656 goto out; 3657 3658 if (!memcg->tcpmem_active) { 3659 /* 3660 * The active flag needs to be written after the static_key 3661 * update. This is what guarantees that the socket activation 3662 * function is the last one to run. See mem_cgroup_sk_alloc() 3663 * for details, and note that we don't mark any socket as 3664 * belonging to this memcg until that flag is up. 3665 * 3666 * We need to do this, because static_keys will span multiple 3667 * sites, but we can't control their order. If we mark a socket 3668 * as accounted, but the accounting functions are not patched in 3669 * yet, we'll lose accounting. 3670 * 3671 * We never race with the readers in mem_cgroup_sk_alloc(), 3672 * because when this value change, the code to process it is not 3673 * patched in yet. 3674 */ 3675 static_branch_inc(&memcg_sockets_enabled_key); 3676 memcg->tcpmem_active = true; 3677 } 3678 out: 3679 mutex_unlock(&memcg_max_mutex); 3680 return ret; 3681 } 3682 3683 /* 3684 * The user of this function is... 3685 * RES_LIMIT. 3686 */ 3687 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3688 char *buf, size_t nbytes, loff_t off) 3689 { 3690 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3691 unsigned long nr_pages; 3692 int ret; 3693 3694 buf = strstrip(buf); 3695 ret = page_counter_memparse(buf, "-1", &nr_pages); 3696 if (ret) 3697 return ret; 3698 3699 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3700 case RES_LIMIT: 3701 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3702 ret = -EINVAL; 3703 break; 3704 } 3705 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3706 case _MEM: 3707 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3708 break; 3709 case _MEMSWAP: 3710 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3711 break; 3712 case _KMEM: 3713 /* kmem.limit_in_bytes is deprecated. */ 3714 ret = -EOPNOTSUPP; 3715 break; 3716 case _TCP: 3717 ret = memcg_update_tcp_max(memcg, nr_pages); 3718 break; 3719 } 3720 break; 3721 case RES_SOFT_LIMIT: 3722 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 3723 ret = -EOPNOTSUPP; 3724 } else { 3725 memcg->soft_limit = nr_pages; 3726 ret = 0; 3727 } 3728 break; 3729 } 3730 return ret ?: nbytes; 3731 } 3732 3733 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3734 size_t nbytes, loff_t off) 3735 { 3736 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3737 struct page_counter *counter; 3738 3739 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3740 case _MEM: 3741 counter = &memcg->memory; 3742 break; 3743 case _MEMSWAP: 3744 counter = &memcg->memsw; 3745 break; 3746 case _KMEM: 3747 counter = &memcg->kmem; 3748 break; 3749 case _TCP: 3750 counter = &memcg->tcpmem; 3751 break; 3752 default: 3753 BUG(); 3754 } 3755 3756 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3757 case RES_MAX_USAGE: 3758 page_counter_reset_watermark(counter); 3759 break; 3760 case RES_FAILCNT: 3761 counter->failcnt = 0; 3762 break; 3763 default: 3764 BUG(); 3765 } 3766 3767 return nbytes; 3768 } 3769 3770 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3771 struct cftype *cft) 3772 { 3773 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3774 } 3775 3776 #ifdef CONFIG_MMU 3777 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3778 struct cftype *cft, u64 val) 3779 { 3780 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3781 3782 if (val & ~MOVE_MASK) 3783 return -EINVAL; 3784 3785 /* 3786 * No kind of locking is needed in here, because ->can_attach() will 3787 * check this value once in the beginning of the process, and then carry 3788 * on with stale data. This means that changes to this value will only 3789 * affect task migrations starting after the change. 3790 */ 3791 memcg->move_charge_at_immigrate = val; 3792 return 0; 3793 } 3794 #else 3795 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3796 struct cftype *cft, u64 val) 3797 { 3798 return -ENOSYS; 3799 } 3800 #endif 3801 3802 #ifdef CONFIG_NUMA 3803 3804 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3805 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3806 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3807 3808 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3809 int nid, unsigned int lru_mask, bool tree) 3810 { 3811 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3812 unsigned long nr = 0; 3813 enum lru_list lru; 3814 3815 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3816 3817 for_each_lru(lru) { 3818 if (!(BIT(lru) & lru_mask)) 3819 continue; 3820 if (tree) 3821 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3822 else 3823 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3824 } 3825 return nr; 3826 } 3827 3828 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3829 unsigned int lru_mask, 3830 bool tree) 3831 { 3832 unsigned long nr = 0; 3833 enum lru_list lru; 3834 3835 for_each_lru(lru) { 3836 if (!(BIT(lru) & lru_mask)) 3837 continue; 3838 if (tree) 3839 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3840 else 3841 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3842 } 3843 return nr; 3844 } 3845 3846 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3847 { 3848 struct numa_stat { 3849 const char *name; 3850 unsigned int lru_mask; 3851 }; 3852 3853 static const struct numa_stat stats[] = { 3854 { "total", LRU_ALL }, 3855 { "file", LRU_ALL_FILE }, 3856 { "anon", LRU_ALL_ANON }, 3857 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3858 }; 3859 const struct numa_stat *stat; 3860 int nid; 3861 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3862 3863 mem_cgroup_flush_stats(); 3864 3865 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3866 seq_printf(m, "%s=%lu", stat->name, 3867 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3868 false)); 3869 for_each_node_state(nid, N_MEMORY) 3870 seq_printf(m, " N%d=%lu", nid, 3871 mem_cgroup_node_nr_lru_pages(memcg, nid, 3872 stat->lru_mask, false)); 3873 seq_putc(m, '\n'); 3874 } 3875 3876 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3877 3878 seq_printf(m, "hierarchical_%s=%lu", stat->name, 3879 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3880 true)); 3881 for_each_node_state(nid, N_MEMORY) 3882 seq_printf(m, " N%d=%lu", nid, 3883 mem_cgroup_node_nr_lru_pages(memcg, nid, 3884 stat->lru_mask, true)); 3885 seq_putc(m, '\n'); 3886 } 3887 3888 return 0; 3889 } 3890 #endif /* CONFIG_NUMA */ 3891 3892 static const unsigned int memcg1_stats[] = { 3893 NR_FILE_PAGES, 3894 NR_ANON_MAPPED, 3895 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3896 NR_ANON_THPS, 3897 #endif 3898 NR_SHMEM, 3899 NR_FILE_MAPPED, 3900 NR_FILE_DIRTY, 3901 NR_WRITEBACK, 3902 MEMCG_SWAP, 3903 }; 3904 3905 static const char *const memcg1_stat_names[] = { 3906 "cache", 3907 "rss", 3908 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3909 "rss_huge", 3910 #endif 3911 "shmem", 3912 "mapped_file", 3913 "dirty", 3914 "writeback", 3915 "swap", 3916 }; 3917 3918 /* Universal VM events cgroup1 shows, original sort order */ 3919 static const unsigned int memcg1_events[] = { 3920 PGPGIN, 3921 PGPGOUT, 3922 PGFAULT, 3923 PGMAJFAULT, 3924 }; 3925 3926 static int memcg_stat_show(struct seq_file *m, void *v) 3927 { 3928 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3929 unsigned long memory, memsw; 3930 struct mem_cgroup *mi; 3931 unsigned int i; 3932 3933 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3934 3935 mem_cgroup_flush_stats(); 3936 3937 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3938 unsigned long nr; 3939 3940 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3941 continue; 3942 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 3943 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE); 3944 } 3945 3946 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3947 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 3948 memcg_events_local(memcg, memcg1_events[i])); 3949 3950 for (i = 0; i < NR_LRU_LISTS; i++) 3951 seq_printf(m, "%s %lu\n", lru_list_name(i), 3952 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3953 PAGE_SIZE); 3954 3955 /* Hierarchical information */ 3956 memory = memsw = PAGE_COUNTER_MAX; 3957 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3958 memory = min(memory, READ_ONCE(mi->memory.max)); 3959 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 3960 } 3961 seq_printf(m, "hierarchical_memory_limit %llu\n", 3962 (u64)memory * PAGE_SIZE); 3963 if (do_memsw_account()) 3964 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3965 (u64)memsw * PAGE_SIZE); 3966 3967 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3968 unsigned long nr; 3969 3970 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3971 continue; 3972 nr = memcg_page_state(memcg, memcg1_stats[i]); 3973 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3974 (u64)nr * PAGE_SIZE); 3975 } 3976 3977 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3978 seq_printf(m, "total_%s %llu\n", 3979 vm_event_name(memcg1_events[i]), 3980 (u64)memcg_events(memcg, memcg1_events[i])); 3981 3982 for (i = 0; i < NR_LRU_LISTS; i++) 3983 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 3984 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 3985 PAGE_SIZE); 3986 3987 #ifdef CONFIG_DEBUG_VM 3988 { 3989 pg_data_t *pgdat; 3990 struct mem_cgroup_per_node *mz; 3991 unsigned long anon_cost = 0; 3992 unsigned long file_cost = 0; 3993 3994 for_each_online_pgdat(pgdat) { 3995 mz = memcg->nodeinfo[pgdat->node_id]; 3996 3997 anon_cost += mz->lruvec.anon_cost; 3998 file_cost += mz->lruvec.file_cost; 3999 } 4000 seq_printf(m, "anon_cost %lu\n", anon_cost); 4001 seq_printf(m, "file_cost %lu\n", file_cost); 4002 } 4003 #endif 4004 4005 return 0; 4006 } 4007 4008 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4009 struct cftype *cft) 4010 { 4011 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4012 4013 return mem_cgroup_swappiness(memcg); 4014 } 4015 4016 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4017 struct cftype *cft, u64 val) 4018 { 4019 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4020 4021 if (val > 200) 4022 return -EINVAL; 4023 4024 if (!mem_cgroup_is_root(memcg)) 4025 memcg->swappiness = val; 4026 else 4027 vm_swappiness = val; 4028 4029 return 0; 4030 } 4031 4032 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4033 { 4034 struct mem_cgroup_threshold_ary *t; 4035 unsigned long usage; 4036 int i; 4037 4038 rcu_read_lock(); 4039 if (!swap) 4040 t = rcu_dereference(memcg->thresholds.primary); 4041 else 4042 t = rcu_dereference(memcg->memsw_thresholds.primary); 4043 4044 if (!t) 4045 goto unlock; 4046 4047 usage = mem_cgroup_usage(memcg, swap); 4048 4049 /* 4050 * current_threshold points to threshold just below or equal to usage. 4051 * If it's not true, a threshold was crossed after last 4052 * call of __mem_cgroup_threshold(). 4053 */ 4054 i = t->current_threshold; 4055 4056 /* 4057 * Iterate backward over array of thresholds starting from 4058 * current_threshold and check if a threshold is crossed. 4059 * If none of thresholds below usage is crossed, we read 4060 * only one element of the array here. 4061 */ 4062 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4063 eventfd_signal(t->entries[i].eventfd, 1); 4064 4065 /* i = current_threshold + 1 */ 4066 i++; 4067 4068 /* 4069 * Iterate forward over array of thresholds starting from 4070 * current_threshold+1 and check if a threshold is crossed. 4071 * If none of thresholds above usage is crossed, we read 4072 * only one element of the array here. 4073 */ 4074 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4075 eventfd_signal(t->entries[i].eventfd, 1); 4076 4077 /* Update current_threshold */ 4078 t->current_threshold = i - 1; 4079 unlock: 4080 rcu_read_unlock(); 4081 } 4082 4083 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4084 { 4085 while (memcg) { 4086 __mem_cgroup_threshold(memcg, false); 4087 if (do_memsw_account()) 4088 __mem_cgroup_threshold(memcg, true); 4089 4090 memcg = parent_mem_cgroup(memcg); 4091 } 4092 } 4093 4094 static int compare_thresholds(const void *a, const void *b) 4095 { 4096 const struct mem_cgroup_threshold *_a = a; 4097 const struct mem_cgroup_threshold *_b = b; 4098 4099 if (_a->threshold > _b->threshold) 4100 return 1; 4101 4102 if (_a->threshold < _b->threshold) 4103 return -1; 4104 4105 return 0; 4106 } 4107 4108 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4109 { 4110 struct mem_cgroup_eventfd_list *ev; 4111 4112 spin_lock(&memcg_oom_lock); 4113 4114 list_for_each_entry(ev, &memcg->oom_notify, list) 4115 eventfd_signal(ev->eventfd, 1); 4116 4117 spin_unlock(&memcg_oom_lock); 4118 return 0; 4119 } 4120 4121 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4122 { 4123 struct mem_cgroup *iter; 4124 4125 for_each_mem_cgroup_tree(iter, memcg) 4126 mem_cgroup_oom_notify_cb(iter); 4127 } 4128 4129 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4130 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4131 { 4132 struct mem_cgroup_thresholds *thresholds; 4133 struct mem_cgroup_threshold_ary *new; 4134 unsigned long threshold; 4135 unsigned long usage; 4136 int i, size, ret; 4137 4138 ret = page_counter_memparse(args, "-1", &threshold); 4139 if (ret) 4140 return ret; 4141 4142 mutex_lock(&memcg->thresholds_lock); 4143 4144 if (type == _MEM) { 4145 thresholds = &memcg->thresholds; 4146 usage = mem_cgroup_usage(memcg, false); 4147 } else if (type == _MEMSWAP) { 4148 thresholds = &memcg->memsw_thresholds; 4149 usage = mem_cgroup_usage(memcg, true); 4150 } else 4151 BUG(); 4152 4153 /* Check if a threshold crossed before adding a new one */ 4154 if (thresholds->primary) 4155 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4156 4157 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4158 4159 /* Allocate memory for new array of thresholds */ 4160 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4161 if (!new) { 4162 ret = -ENOMEM; 4163 goto unlock; 4164 } 4165 new->size = size; 4166 4167 /* Copy thresholds (if any) to new array */ 4168 if (thresholds->primary) 4169 memcpy(new->entries, thresholds->primary->entries, 4170 flex_array_size(new, entries, size - 1)); 4171 4172 /* Add new threshold */ 4173 new->entries[size - 1].eventfd = eventfd; 4174 new->entries[size - 1].threshold = threshold; 4175 4176 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4177 sort(new->entries, size, sizeof(*new->entries), 4178 compare_thresholds, NULL); 4179 4180 /* Find current threshold */ 4181 new->current_threshold = -1; 4182 for (i = 0; i < size; i++) { 4183 if (new->entries[i].threshold <= usage) { 4184 /* 4185 * new->current_threshold will not be used until 4186 * rcu_assign_pointer(), so it's safe to increment 4187 * it here. 4188 */ 4189 ++new->current_threshold; 4190 } else 4191 break; 4192 } 4193 4194 /* Free old spare buffer and save old primary buffer as spare */ 4195 kfree(thresholds->spare); 4196 thresholds->spare = thresholds->primary; 4197 4198 rcu_assign_pointer(thresholds->primary, new); 4199 4200 /* To be sure that nobody uses thresholds */ 4201 synchronize_rcu(); 4202 4203 unlock: 4204 mutex_unlock(&memcg->thresholds_lock); 4205 4206 return ret; 4207 } 4208 4209 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4210 struct eventfd_ctx *eventfd, const char *args) 4211 { 4212 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4213 } 4214 4215 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4216 struct eventfd_ctx *eventfd, const char *args) 4217 { 4218 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4219 } 4220 4221 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4222 struct eventfd_ctx *eventfd, enum res_type type) 4223 { 4224 struct mem_cgroup_thresholds *thresholds; 4225 struct mem_cgroup_threshold_ary *new; 4226 unsigned long usage; 4227 int i, j, size, entries; 4228 4229 mutex_lock(&memcg->thresholds_lock); 4230 4231 if (type == _MEM) { 4232 thresholds = &memcg->thresholds; 4233 usage = mem_cgroup_usage(memcg, false); 4234 } else if (type == _MEMSWAP) { 4235 thresholds = &memcg->memsw_thresholds; 4236 usage = mem_cgroup_usage(memcg, true); 4237 } else 4238 BUG(); 4239 4240 if (!thresholds->primary) 4241 goto unlock; 4242 4243 /* Check if a threshold crossed before removing */ 4244 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4245 4246 /* Calculate new number of threshold */ 4247 size = entries = 0; 4248 for (i = 0; i < thresholds->primary->size; i++) { 4249 if (thresholds->primary->entries[i].eventfd != eventfd) 4250 size++; 4251 else 4252 entries++; 4253 } 4254 4255 new = thresholds->spare; 4256 4257 /* If no items related to eventfd have been cleared, nothing to do */ 4258 if (!entries) 4259 goto unlock; 4260 4261 /* Set thresholds array to NULL if we don't have thresholds */ 4262 if (!size) { 4263 kfree(new); 4264 new = NULL; 4265 goto swap_buffers; 4266 } 4267 4268 new->size = size; 4269 4270 /* Copy thresholds and find current threshold */ 4271 new->current_threshold = -1; 4272 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4273 if (thresholds->primary->entries[i].eventfd == eventfd) 4274 continue; 4275 4276 new->entries[j] = thresholds->primary->entries[i]; 4277 if (new->entries[j].threshold <= usage) { 4278 /* 4279 * new->current_threshold will not be used 4280 * until rcu_assign_pointer(), so it's safe to increment 4281 * it here. 4282 */ 4283 ++new->current_threshold; 4284 } 4285 j++; 4286 } 4287 4288 swap_buffers: 4289 /* Swap primary and spare array */ 4290 thresholds->spare = thresholds->primary; 4291 4292 rcu_assign_pointer(thresholds->primary, new); 4293 4294 /* To be sure that nobody uses thresholds */ 4295 synchronize_rcu(); 4296 4297 /* If all events are unregistered, free the spare array */ 4298 if (!new) { 4299 kfree(thresholds->spare); 4300 thresholds->spare = NULL; 4301 } 4302 unlock: 4303 mutex_unlock(&memcg->thresholds_lock); 4304 } 4305 4306 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4307 struct eventfd_ctx *eventfd) 4308 { 4309 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4310 } 4311 4312 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4313 struct eventfd_ctx *eventfd) 4314 { 4315 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4316 } 4317 4318 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4319 struct eventfd_ctx *eventfd, const char *args) 4320 { 4321 struct mem_cgroup_eventfd_list *event; 4322 4323 event = kmalloc(sizeof(*event), GFP_KERNEL); 4324 if (!event) 4325 return -ENOMEM; 4326 4327 spin_lock(&memcg_oom_lock); 4328 4329 event->eventfd = eventfd; 4330 list_add(&event->list, &memcg->oom_notify); 4331 4332 /* already in OOM ? */ 4333 if (memcg->under_oom) 4334 eventfd_signal(eventfd, 1); 4335 spin_unlock(&memcg_oom_lock); 4336 4337 return 0; 4338 } 4339 4340 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4341 struct eventfd_ctx *eventfd) 4342 { 4343 struct mem_cgroup_eventfd_list *ev, *tmp; 4344 4345 spin_lock(&memcg_oom_lock); 4346 4347 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4348 if (ev->eventfd == eventfd) { 4349 list_del(&ev->list); 4350 kfree(ev); 4351 } 4352 } 4353 4354 spin_unlock(&memcg_oom_lock); 4355 } 4356 4357 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4358 { 4359 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4360 4361 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4362 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4363 seq_printf(sf, "oom_kill %lu\n", 4364 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4365 return 0; 4366 } 4367 4368 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4369 struct cftype *cft, u64 val) 4370 { 4371 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4372 4373 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4374 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4375 return -EINVAL; 4376 4377 memcg->oom_kill_disable = val; 4378 if (!val) 4379 memcg_oom_recover(memcg); 4380 4381 return 0; 4382 } 4383 4384 #ifdef CONFIG_CGROUP_WRITEBACK 4385 4386 #include <trace/events/writeback.h> 4387 4388 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4389 { 4390 return wb_domain_init(&memcg->cgwb_domain, gfp); 4391 } 4392 4393 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4394 { 4395 wb_domain_exit(&memcg->cgwb_domain); 4396 } 4397 4398 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4399 { 4400 wb_domain_size_changed(&memcg->cgwb_domain); 4401 } 4402 4403 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4404 { 4405 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4406 4407 if (!memcg->css.parent) 4408 return NULL; 4409 4410 return &memcg->cgwb_domain; 4411 } 4412 4413 /** 4414 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4415 * @wb: bdi_writeback in question 4416 * @pfilepages: out parameter for number of file pages 4417 * @pheadroom: out parameter for number of allocatable pages according to memcg 4418 * @pdirty: out parameter for number of dirty pages 4419 * @pwriteback: out parameter for number of pages under writeback 4420 * 4421 * Determine the numbers of file, headroom, dirty, and writeback pages in 4422 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4423 * is a bit more involved. 4424 * 4425 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4426 * headroom is calculated as the lowest headroom of itself and the 4427 * ancestors. Note that this doesn't consider the actual amount of 4428 * available memory in the system. The caller should further cap 4429 * *@pheadroom accordingly. 4430 */ 4431 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4432 unsigned long *pheadroom, unsigned long *pdirty, 4433 unsigned long *pwriteback) 4434 { 4435 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4436 struct mem_cgroup *parent; 4437 4438 mem_cgroup_flush_stats(); 4439 4440 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4441 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4442 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4443 memcg_page_state(memcg, NR_ACTIVE_FILE); 4444 4445 *pheadroom = PAGE_COUNTER_MAX; 4446 while ((parent = parent_mem_cgroup(memcg))) { 4447 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4448 READ_ONCE(memcg->memory.high)); 4449 unsigned long used = page_counter_read(&memcg->memory); 4450 4451 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4452 memcg = parent; 4453 } 4454 } 4455 4456 /* 4457 * Foreign dirty flushing 4458 * 4459 * There's an inherent mismatch between memcg and writeback. The former 4460 * tracks ownership per-page while the latter per-inode. This was a 4461 * deliberate design decision because honoring per-page ownership in the 4462 * writeback path is complicated, may lead to higher CPU and IO overheads 4463 * and deemed unnecessary given that write-sharing an inode across 4464 * different cgroups isn't a common use-case. 4465 * 4466 * Combined with inode majority-writer ownership switching, this works well 4467 * enough in most cases but there are some pathological cases. For 4468 * example, let's say there are two cgroups A and B which keep writing to 4469 * different but confined parts of the same inode. B owns the inode and 4470 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4471 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4472 * triggering background writeback. A will be slowed down without a way to 4473 * make writeback of the dirty pages happen. 4474 * 4475 * Conditions like the above can lead to a cgroup getting repeatedly and 4476 * severely throttled after making some progress after each 4477 * dirty_expire_interval while the underlying IO device is almost 4478 * completely idle. 4479 * 4480 * Solving this problem completely requires matching the ownership tracking 4481 * granularities between memcg and writeback in either direction. However, 4482 * the more egregious behaviors can be avoided by simply remembering the 4483 * most recent foreign dirtying events and initiating remote flushes on 4484 * them when local writeback isn't enough to keep the memory clean enough. 4485 * 4486 * The following two functions implement such mechanism. When a foreign 4487 * page - a page whose memcg and writeback ownerships don't match - is 4488 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4489 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4490 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4491 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4492 * foreign bdi_writebacks which haven't expired. Both the numbers of 4493 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4494 * limited to MEMCG_CGWB_FRN_CNT. 4495 * 4496 * The mechanism only remembers IDs and doesn't hold any object references. 4497 * As being wrong occasionally doesn't matter, updates and accesses to the 4498 * records are lockless and racy. 4499 */ 4500 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 4501 struct bdi_writeback *wb) 4502 { 4503 struct mem_cgroup *memcg = folio_memcg(folio); 4504 struct memcg_cgwb_frn *frn; 4505 u64 now = get_jiffies_64(); 4506 u64 oldest_at = now; 4507 int oldest = -1; 4508 int i; 4509 4510 trace_track_foreign_dirty(folio, wb); 4511 4512 /* 4513 * Pick the slot to use. If there is already a slot for @wb, keep 4514 * using it. If not replace the oldest one which isn't being 4515 * written out. 4516 */ 4517 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4518 frn = &memcg->cgwb_frn[i]; 4519 if (frn->bdi_id == wb->bdi->id && 4520 frn->memcg_id == wb->memcg_css->id) 4521 break; 4522 if (time_before64(frn->at, oldest_at) && 4523 atomic_read(&frn->done.cnt) == 1) { 4524 oldest = i; 4525 oldest_at = frn->at; 4526 } 4527 } 4528 4529 if (i < MEMCG_CGWB_FRN_CNT) { 4530 /* 4531 * Re-using an existing one. Update timestamp lazily to 4532 * avoid making the cacheline hot. We want them to be 4533 * reasonably up-to-date and significantly shorter than 4534 * dirty_expire_interval as that's what expires the record. 4535 * Use the shorter of 1s and dirty_expire_interval / 8. 4536 */ 4537 unsigned long update_intv = 4538 min_t(unsigned long, HZ, 4539 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4540 4541 if (time_before64(frn->at, now - update_intv)) 4542 frn->at = now; 4543 } else if (oldest >= 0) { 4544 /* replace the oldest free one */ 4545 frn = &memcg->cgwb_frn[oldest]; 4546 frn->bdi_id = wb->bdi->id; 4547 frn->memcg_id = wb->memcg_css->id; 4548 frn->at = now; 4549 } 4550 } 4551 4552 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4553 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4554 { 4555 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4556 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4557 u64 now = jiffies_64; 4558 int i; 4559 4560 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4561 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4562 4563 /* 4564 * If the record is older than dirty_expire_interval, 4565 * writeback on it has already started. No need to kick it 4566 * off again. Also, don't start a new one if there's 4567 * already one in flight. 4568 */ 4569 if (time_after64(frn->at, now - intv) && 4570 atomic_read(&frn->done.cnt) == 1) { 4571 frn->at = 0; 4572 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4573 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4574 WB_REASON_FOREIGN_FLUSH, 4575 &frn->done); 4576 } 4577 } 4578 } 4579 4580 #else /* CONFIG_CGROUP_WRITEBACK */ 4581 4582 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4583 { 4584 return 0; 4585 } 4586 4587 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4588 { 4589 } 4590 4591 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4592 { 4593 } 4594 4595 #endif /* CONFIG_CGROUP_WRITEBACK */ 4596 4597 /* 4598 * DO NOT USE IN NEW FILES. 4599 * 4600 * "cgroup.event_control" implementation. 4601 * 4602 * This is way over-engineered. It tries to support fully configurable 4603 * events for each user. Such level of flexibility is completely 4604 * unnecessary especially in the light of the planned unified hierarchy. 4605 * 4606 * Please deprecate this and replace with something simpler if at all 4607 * possible. 4608 */ 4609 4610 /* 4611 * Unregister event and free resources. 4612 * 4613 * Gets called from workqueue. 4614 */ 4615 static void memcg_event_remove(struct work_struct *work) 4616 { 4617 struct mem_cgroup_event *event = 4618 container_of(work, struct mem_cgroup_event, remove); 4619 struct mem_cgroup *memcg = event->memcg; 4620 4621 remove_wait_queue(event->wqh, &event->wait); 4622 4623 event->unregister_event(memcg, event->eventfd); 4624 4625 /* Notify userspace the event is going away. */ 4626 eventfd_signal(event->eventfd, 1); 4627 4628 eventfd_ctx_put(event->eventfd); 4629 kfree(event); 4630 css_put(&memcg->css); 4631 } 4632 4633 /* 4634 * Gets called on EPOLLHUP on eventfd when user closes it. 4635 * 4636 * Called with wqh->lock held and interrupts disabled. 4637 */ 4638 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4639 int sync, void *key) 4640 { 4641 struct mem_cgroup_event *event = 4642 container_of(wait, struct mem_cgroup_event, wait); 4643 struct mem_cgroup *memcg = event->memcg; 4644 __poll_t flags = key_to_poll(key); 4645 4646 if (flags & EPOLLHUP) { 4647 /* 4648 * If the event has been detached at cgroup removal, we 4649 * can simply return knowing the other side will cleanup 4650 * for us. 4651 * 4652 * We can't race against event freeing since the other 4653 * side will require wqh->lock via remove_wait_queue(), 4654 * which we hold. 4655 */ 4656 spin_lock(&memcg->event_list_lock); 4657 if (!list_empty(&event->list)) { 4658 list_del_init(&event->list); 4659 /* 4660 * We are in atomic context, but cgroup_event_remove() 4661 * may sleep, so we have to call it in workqueue. 4662 */ 4663 schedule_work(&event->remove); 4664 } 4665 spin_unlock(&memcg->event_list_lock); 4666 } 4667 4668 return 0; 4669 } 4670 4671 static void memcg_event_ptable_queue_proc(struct file *file, 4672 wait_queue_head_t *wqh, poll_table *pt) 4673 { 4674 struct mem_cgroup_event *event = 4675 container_of(pt, struct mem_cgroup_event, pt); 4676 4677 event->wqh = wqh; 4678 add_wait_queue(wqh, &event->wait); 4679 } 4680 4681 /* 4682 * DO NOT USE IN NEW FILES. 4683 * 4684 * Parse input and register new cgroup event handler. 4685 * 4686 * Input must be in format '<event_fd> <control_fd> <args>'. 4687 * Interpretation of args is defined by control file implementation. 4688 */ 4689 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4690 char *buf, size_t nbytes, loff_t off) 4691 { 4692 struct cgroup_subsys_state *css = of_css(of); 4693 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4694 struct mem_cgroup_event *event; 4695 struct cgroup_subsys_state *cfile_css; 4696 unsigned int efd, cfd; 4697 struct fd efile; 4698 struct fd cfile; 4699 const char *name; 4700 char *endp; 4701 int ret; 4702 4703 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 4704 return -EOPNOTSUPP; 4705 4706 buf = strstrip(buf); 4707 4708 efd = simple_strtoul(buf, &endp, 10); 4709 if (*endp != ' ') 4710 return -EINVAL; 4711 buf = endp + 1; 4712 4713 cfd = simple_strtoul(buf, &endp, 10); 4714 if ((*endp != ' ') && (*endp != '\0')) 4715 return -EINVAL; 4716 buf = endp + 1; 4717 4718 event = kzalloc(sizeof(*event), GFP_KERNEL); 4719 if (!event) 4720 return -ENOMEM; 4721 4722 event->memcg = memcg; 4723 INIT_LIST_HEAD(&event->list); 4724 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4725 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4726 INIT_WORK(&event->remove, memcg_event_remove); 4727 4728 efile = fdget(efd); 4729 if (!efile.file) { 4730 ret = -EBADF; 4731 goto out_kfree; 4732 } 4733 4734 event->eventfd = eventfd_ctx_fileget(efile.file); 4735 if (IS_ERR(event->eventfd)) { 4736 ret = PTR_ERR(event->eventfd); 4737 goto out_put_efile; 4738 } 4739 4740 cfile = fdget(cfd); 4741 if (!cfile.file) { 4742 ret = -EBADF; 4743 goto out_put_eventfd; 4744 } 4745 4746 /* the process need read permission on control file */ 4747 /* AV: shouldn't we check that it's been opened for read instead? */ 4748 ret = file_permission(cfile.file, MAY_READ); 4749 if (ret < 0) 4750 goto out_put_cfile; 4751 4752 /* 4753 * Determine the event callbacks and set them in @event. This used 4754 * to be done via struct cftype but cgroup core no longer knows 4755 * about these events. The following is crude but the whole thing 4756 * is for compatibility anyway. 4757 * 4758 * DO NOT ADD NEW FILES. 4759 */ 4760 name = cfile.file->f_path.dentry->d_name.name; 4761 4762 if (!strcmp(name, "memory.usage_in_bytes")) { 4763 event->register_event = mem_cgroup_usage_register_event; 4764 event->unregister_event = mem_cgroup_usage_unregister_event; 4765 } else if (!strcmp(name, "memory.oom_control")) { 4766 event->register_event = mem_cgroup_oom_register_event; 4767 event->unregister_event = mem_cgroup_oom_unregister_event; 4768 } else if (!strcmp(name, "memory.pressure_level")) { 4769 event->register_event = vmpressure_register_event; 4770 event->unregister_event = vmpressure_unregister_event; 4771 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4772 event->register_event = memsw_cgroup_usage_register_event; 4773 event->unregister_event = memsw_cgroup_usage_unregister_event; 4774 } else { 4775 ret = -EINVAL; 4776 goto out_put_cfile; 4777 } 4778 4779 /* 4780 * Verify @cfile should belong to @css. Also, remaining events are 4781 * automatically removed on cgroup destruction but the removal is 4782 * asynchronous, so take an extra ref on @css. 4783 */ 4784 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4785 &memory_cgrp_subsys); 4786 ret = -EINVAL; 4787 if (IS_ERR(cfile_css)) 4788 goto out_put_cfile; 4789 if (cfile_css != css) { 4790 css_put(cfile_css); 4791 goto out_put_cfile; 4792 } 4793 4794 ret = event->register_event(memcg, event->eventfd, buf); 4795 if (ret) 4796 goto out_put_css; 4797 4798 vfs_poll(efile.file, &event->pt); 4799 4800 spin_lock_irq(&memcg->event_list_lock); 4801 list_add(&event->list, &memcg->event_list); 4802 spin_unlock_irq(&memcg->event_list_lock); 4803 4804 fdput(cfile); 4805 fdput(efile); 4806 4807 return nbytes; 4808 4809 out_put_css: 4810 css_put(css); 4811 out_put_cfile: 4812 fdput(cfile); 4813 out_put_eventfd: 4814 eventfd_ctx_put(event->eventfd); 4815 out_put_efile: 4816 fdput(efile); 4817 out_kfree: 4818 kfree(event); 4819 4820 return ret; 4821 } 4822 4823 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4824 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 4825 { 4826 /* 4827 * Deprecated. 4828 * Please, take a look at tools/cgroup/slabinfo.py . 4829 */ 4830 return 0; 4831 } 4832 #endif 4833 4834 static struct cftype mem_cgroup_legacy_files[] = { 4835 { 4836 .name = "usage_in_bytes", 4837 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4838 .read_u64 = mem_cgroup_read_u64, 4839 }, 4840 { 4841 .name = "max_usage_in_bytes", 4842 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4843 .write = mem_cgroup_reset, 4844 .read_u64 = mem_cgroup_read_u64, 4845 }, 4846 { 4847 .name = "limit_in_bytes", 4848 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4849 .write = mem_cgroup_write, 4850 .read_u64 = mem_cgroup_read_u64, 4851 }, 4852 { 4853 .name = "soft_limit_in_bytes", 4854 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4855 .write = mem_cgroup_write, 4856 .read_u64 = mem_cgroup_read_u64, 4857 }, 4858 { 4859 .name = "failcnt", 4860 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4861 .write = mem_cgroup_reset, 4862 .read_u64 = mem_cgroup_read_u64, 4863 }, 4864 { 4865 .name = "stat", 4866 .seq_show = memcg_stat_show, 4867 }, 4868 { 4869 .name = "force_empty", 4870 .write = mem_cgroup_force_empty_write, 4871 }, 4872 { 4873 .name = "use_hierarchy", 4874 .write_u64 = mem_cgroup_hierarchy_write, 4875 .read_u64 = mem_cgroup_hierarchy_read, 4876 }, 4877 { 4878 .name = "cgroup.event_control", /* XXX: for compat */ 4879 .write = memcg_write_event_control, 4880 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4881 }, 4882 { 4883 .name = "swappiness", 4884 .read_u64 = mem_cgroup_swappiness_read, 4885 .write_u64 = mem_cgroup_swappiness_write, 4886 }, 4887 { 4888 .name = "move_charge_at_immigrate", 4889 .read_u64 = mem_cgroup_move_charge_read, 4890 .write_u64 = mem_cgroup_move_charge_write, 4891 }, 4892 { 4893 .name = "oom_control", 4894 .seq_show = mem_cgroup_oom_control_read, 4895 .write_u64 = mem_cgroup_oom_control_write, 4896 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4897 }, 4898 { 4899 .name = "pressure_level", 4900 }, 4901 #ifdef CONFIG_NUMA 4902 { 4903 .name = "numa_stat", 4904 .seq_show = memcg_numa_stat_show, 4905 }, 4906 #endif 4907 { 4908 .name = "kmem.limit_in_bytes", 4909 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4910 .write = mem_cgroup_write, 4911 .read_u64 = mem_cgroup_read_u64, 4912 }, 4913 { 4914 .name = "kmem.usage_in_bytes", 4915 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4916 .read_u64 = mem_cgroup_read_u64, 4917 }, 4918 { 4919 .name = "kmem.failcnt", 4920 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4921 .write = mem_cgroup_reset, 4922 .read_u64 = mem_cgroup_read_u64, 4923 }, 4924 { 4925 .name = "kmem.max_usage_in_bytes", 4926 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4927 .write = mem_cgroup_reset, 4928 .read_u64 = mem_cgroup_read_u64, 4929 }, 4930 #if defined(CONFIG_MEMCG_KMEM) && \ 4931 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4932 { 4933 .name = "kmem.slabinfo", 4934 .seq_show = mem_cgroup_slab_show, 4935 }, 4936 #endif 4937 { 4938 .name = "kmem.tcp.limit_in_bytes", 4939 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4940 .write = mem_cgroup_write, 4941 .read_u64 = mem_cgroup_read_u64, 4942 }, 4943 { 4944 .name = "kmem.tcp.usage_in_bytes", 4945 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4946 .read_u64 = mem_cgroup_read_u64, 4947 }, 4948 { 4949 .name = "kmem.tcp.failcnt", 4950 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4951 .write = mem_cgroup_reset, 4952 .read_u64 = mem_cgroup_read_u64, 4953 }, 4954 { 4955 .name = "kmem.tcp.max_usage_in_bytes", 4956 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4957 .write = mem_cgroup_reset, 4958 .read_u64 = mem_cgroup_read_u64, 4959 }, 4960 { }, /* terminate */ 4961 }; 4962 4963 /* 4964 * Private memory cgroup IDR 4965 * 4966 * Swap-out records and page cache shadow entries need to store memcg 4967 * references in constrained space, so we maintain an ID space that is 4968 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4969 * memory-controlled cgroups to 64k. 4970 * 4971 * However, there usually are many references to the offline CSS after 4972 * the cgroup has been destroyed, such as page cache or reclaimable 4973 * slab objects, that don't need to hang on to the ID. We want to keep 4974 * those dead CSS from occupying IDs, or we might quickly exhaust the 4975 * relatively small ID space and prevent the creation of new cgroups 4976 * even when there are much fewer than 64k cgroups - possibly none. 4977 * 4978 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4979 * be freed and recycled when it's no longer needed, which is usually 4980 * when the CSS is offlined. 4981 * 4982 * The only exception to that are records of swapped out tmpfs/shmem 4983 * pages that need to be attributed to live ancestors on swapin. But 4984 * those references are manageable from userspace. 4985 */ 4986 4987 static DEFINE_IDR(mem_cgroup_idr); 4988 4989 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4990 { 4991 if (memcg->id.id > 0) { 4992 idr_remove(&mem_cgroup_idr, memcg->id.id); 4993 memcg->id.id = 0; 4994 } 4995 } 4996 4997 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 4998 unsigned int n) 4999 { 5000 refcount_add(n, &memcg->id.ref); 5001 } 5002 5003 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5004 { 5005 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5006 mem_cgroup_id_remove(memcg); 5007 5008 /* Memcg ID pins CSS */ 5009 css_put(&memcg->css); 5010 } 5011 } 5012 5013 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5014 { 5015 mem_cgroup_id_put_many(memcg, 1); 5016 } 5017 5018 /** 5019 * mem_cgroup_from_id - look up a memcg from a memcg id 5020 * @id: the memcg id to look up 5021 * 5022 * Caller must hold rcu_read_lock(). 5023 */ 5024 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5025 { 5026 WARN_ON_ONCE(!rcu_read_lock_held()); 5027 return idr_find(&mem_cgroup_idr, id); 5028 } 5029 5030 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5031 { 5032 struct mem_cgroup_per_node *pn; 5033 5034 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 5035 if (!pn) 5036 return 1; 5037 5038 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5039 GFP_KERNEL_ACCOUNT); 5040 if (!pn->lruvec_stats_percpu) { 5041 kfree(pn); 5042 return 1; 5043 } 5044 5045 lruvec_init(&pn->lruvec); 5046 pn->memcg = memcg; 5047 5048 memcg->nodeinfo[node] = pn; 5049 return 0; 5050 } 5051 5052 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5053 { 5054 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5055 5056 if (!pn) 5057 return; 5058 5059 free_percpu(pn->lruvec_stats_percpu); 5060 kfree(pn); 5061 } 5062 5063 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5064 { 5065 int node; 5066 5067 for_each_node(node) 5068 free_mem_cgroup_per_node_info(memcg, node); 5069 free_percpu(memcg->vmstats_percpu); 5070 kfree(memcg); 5071 } 5072 5073 static void mem_cgroup_free(struct mem_cgroup *memcg) 5074 { 5075 memcg_wb_domain_exit(memcg); 5076 __mem_cgroup_free(memcg); 5077 } 5078 5079 static struct mem_cgroup *mem_cgroup_alloc(void) 5080 { 5081 struct mem_cgroup *memcg; 5082 int node; 5083 int __maybe_unused i; 5084 long error = -ENOMEM; 5085 5086 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 5087 if (!memcg) 5088 return ERR_PTR(error); 5089 5090 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5091 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL); 5092 if (memcg->id.id < 0) { 5093 error = memcg->id.id; 5094 goto fail; 5095 } 5096 5097 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5098 GFP_KERNEL_ACCOUNT); 5099 if (!memcg->vmstats_percpu) 5100 goto fail; 5101 5102 for_each_node(node) 5103 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5104 goto fail; 5105 5106 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5107 goto fail; 5108 5109 INIT_WORK(&memcg->high_work, high_work_func); 5110 INIT_LIST_HEAD(&memcg->oom_notify); 5111 mutex_init(&memcg->thresholds_lock); 5112 spin_lock_init(&memcg->move_lock); 5113 vmpressure_init(&memcg->vmpressure); 5114 INIT_LIST_HEAD(&memcg->event_list); 5115 spin_lock_init(&memcg->event_list_lock); 5116 memcg->socket_pressure = jiffies; 5117 #ifdef CONFIG_MEMCG_KMEM 5118 memcg->kmemcg_id = -1; 5119 INIT_LIST_HEAD(&memcg->objcg_list); 5120 #endif 5121 #ifdef CONFIG_CGROUP_WRITEBACK 5122 INIT_LIST_HEAD(&memcg->cgwb_list); 5123 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5124 memcg->cgwb_frn[i].done = 5125 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5126 #endif 5127 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5128 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5129 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5130 memcg->deferred_split_queue.split_queue_len = 0; 5131 #endif 5132 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5133 return memcg; 5134 fail: 5135 mem_cgroup_id_remove(memcg); 5136 __mem_cgroup_free(memcg); 5137 return ERR_PTR(error); 5138 } 5139 5140 static struct cgroup_subsys_state * __ref 5141 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5142 { 5143 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5144 struct mem_cgroup *memcg, *old_memcg; 5145 5146 old_memcg = set_active_memcg(parent); 5147 memcg = mem_cgroup_alloc(); 5148 set_active_memcg(old_memcg); 5149 if (IS_ERR(memcg)) 5150 return ERR_CAST(memcg); 5151 5152 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5153 memcg->soft_limit = PAGE_COUNTER_MAX; 5154 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5155 if (parent) { 5156 memcg->swappiness = mem_cgroup_swappiness(parent); 5157 memcg->oom_kill_disable = parent->oom_kill_disable; 5158 5159 page_counter_init(&memcg->memory, &parent->memory); 5160 page_counter_init(&memcg->swap, &parent->swap); 5161 page_counter_init(&memcg->kmem, &parent->kmem); 5162 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5163 } else { 5164 page_counter_init(&memcg->memory, NULL); 5165 page_counter_init(&memcg->swap, NULL); 5166 page_counter_init(&memcg->kmem, NULL); 5167 page_counter_init(&memcg->tcpmem, NULL); 5168 5169 root_mem_cgroup = memcg; 5170 return &memcg->css; 5171 } 5172 5173 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5174 static_branch_inc(&memcg_sockets_enabled_key); 5175 5176 return &memcg->css; 5177 } 5178 5179 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5180 { 5181 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5182 5183 if (memcg_online_kmem(memcg)) 5184 goto remove_id; 5185 5186 /* 5187 * A memcg must be visible for expand_shrinker_info() 5188 * by the time the maps are allocated. So, we allocate maps 5189 * here, when for_each_mem_cgroup() can't skip it. 5190 */ 5191 if (alloc_shrinker_info(memcg)) 5192 goto offline_kmem; 5193 5194 /* Online state pins memcg ID, memcg ID pins CSS */ 5195 refcount_set(&memcg->id.ref, 1); 5196 css_get(css); 5197 5198 if (unlikely(mem_cgroup_is_root(memcg))) 5199 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5200 2UL*HZ); 5201 return 0; 5202 offline_kmem: 5203 memcg_offline_kmem(memcg); 5204 remove_id: 5205 mem_cgroup_id_remove(memcg); 5206 return -ENOMEM; 5207 } 5208 5209 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5210 { 5211 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5212 struct mem_cgroup_event *event, *tmp; 5213 5214 /* 5215 * Unregister events and notify userspace. 5216 * Notify userspace about cgroup removing only after rmdir of cgroup 5217 * directory to avoid race between userspace and kernelspace. 5218 */ 5219 spin_lock_irq(&memcg->event_list_lock); 5220 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5221 list_del_init(&event->list); 5222 schedule_work(&event->remove); 5223 } 5224 spin_unlock_irq(&memcg->event_list_lock); 5225 5226 page_counter_set_min(&memcg->memory, 0); 5227 page_counter_set_low(&memcg->memory, 0); 5228 5229 memcg_offline_kmem(memcg); 5230 reparent_shrinker_deferred(memcg); 5231 wb_memcg_offline(memcg); 5232 5233 drain_all_stock(memcg); 5234 5235 mem_cgroup_id_put(memcg); 5236 } 5237 5238 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5239 { 5240 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5241 5242 invalidate_reclaim_iterators(memcg); 5243 } 5244 5245 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5246 { 5247 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5248 int __maybe_unused i; 5249 5250 #ifdef CONFIG_CGROUP_WRITEBACK 5251 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5252 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5253 #endif 5254 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5255 static_branch_dec(&memcg_sockets_enabled_key); 5256 5257 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5258 static_branch_dec(&memcg_sockets_enabled_key); 5259 5260 vmpressure_cleanup(&memcg->vmpressure); 5261 cancel_work_sync(&memcg->high_work); 5262 mem_cgroup_remove_from_trees(memcg); 5263 free_shrinker_info(memcg); 5264 mem_cgroup_free(memcg); 5265 } 5266 5267 /** 5268 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5269 * @css: the target css 5270 * 5271 * Reset the states of the mem_cgroup associated with @css. This is 5272 * invoked when the userland requests disabling on the default hierarchy 5273 * but the memcg is pinned through dependency. The memcg should stop 5274 * applying policies and should revert to the vanilla state as it may be 5275 * made visible again. 5276 * 5277 * The current implementation only resets the essential configurations. 5278 * This needs to be expanded to cover all the visible parts. 5279 */ 5280 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5281 { 5282 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5283 5284 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5285 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5286 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5287 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5288 page_counter_set_min(&memcg->memory, 0); 5289 page_counter_set_low(&memcg->memory, 0); 5290 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5291 memcg->soft_limit = PAGE_COUNTER_MAX; 5292 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5293 memcg_wb_domain_size_changed(memcg); 5294 } 5295 5296 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5297 { 5298 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5299 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5300 struct memcg_vmstats_percpu *statc; 5301 long delta, v; 5302 int i, nid; 5303 5304 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5305 5306 for (i = 0; i < MEMCG_NR_STAT; i++) { 5307 /* 5308 * Collect the aggregated propagation counts of groups 5309 * below us. We're in a per-cpu loop here and this is 5310 * a global counter, so the first cycle will get them. 5311 */ 5312 delta = memcg->vmstats.state_pending[i]; 5313 if (delta) 5314 memcg->vmstats.state_pending[i] = 0; 5315 5316 /* Add CPU changes on this level since the last flush */ 5317 v = READ_ONCE(statc->state[i]); 5318 if (v != statc->state_prev[i]) { 5319 delta += v - statc->state_prev[i]; 5320 statc->state_prev[i] = v; 5321 } 5322 5323 if (!delta) 5324 continue; 5325 5326 /* Aggregate counts on this level and propagate upwards */ 5327 memcg->vmstats.state[i] += delta; 5328 if (parent) 5329 parent->vmstats.state_pending[i] += delta; 5330 } 5331 5332 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 5333 delta = memcg->vmstats.events_pending[i]; 5334 if (delta) 5335 memcg->vmstats.events_pending[i] = 0; 5336 5337 v = READ_ONCE(statc->events[i]); 5338 if (v != statc->events_prev[i]) { 5339 delta += v - statc->events_prev[i]; 5340 statc->events_prev[i] = v; 5341 } 5342 5343 if (!delta) 5344 continue; 5345 5346 memcg->vmstats.events[i] += delta; 5347 if (parent) 5348 parent->vmstats.events_pending[i] += delta; 5349 } 5350 5351 for_each_node_state(nid, N_MEMORY) { 5352 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5353 struct mem_cgroup_per_node *ppn = NULL; 5354 struct lruvec_stats_percpu *lstatc; 5355 5356 if (parent) 5357 ppn = parent->nodeinfo[nid]; 5358 5359 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5360 5361 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5362 delta = pn->lruvec_stats.state_pending[i]; 5363 if (delta) 5364 pn->lruvec_stats.state_pending[i] = 0; 5365 5366 v = READ_ONCE(lstatc->state[i]); 5367 if (v != lstatc->state_prev[i]) { 5368 delta += v - lstatc->state_prev[i]; 5369 lstatc->state_prev[i] = v; 5370 } 5371 5372 if (!delta) 5373 continue; 5374 5375 pn->lruvec_stats.state[i] += delta; 5376 if (ppn) 5377 ppn->lruvec_stats.state_pending[i] += delta; 5378 } 5379 } 5380 } 5381 5382 #ifdef CONFIG_MMU 5383 /* Handlers for move charge at task migration. */ 5384 static int mem_cgroup_do_precharge(unsigned long count) 5385 { 5386 int ret; 5387 5388 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5389 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5390 if (!ret) { 5391 mc.precharge += count; 5392 return ret; 5393 } 5394 5395 /* Try charges one by one with reclaim, but do not retry */ 5396 while (count--) { 5397 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5398 if (ret) 5399 return ret; 5400 mc.precharge++; 5401 cond_resched(); 5402 } 5403 return 0; 5404 } 5405 5406 union mc_target { 5407 struct page *page; 5408 swp_entry_t ent; 5409 }; 5410 5411 enum mc_target_type { 5412 MC_TARGET_NONE = 0, 5413 MC_TARGET_PAGE, 5414 MC_TARGET_SWAP, 5415 MC_TARGET_DEVICE, 5416 }; 5417 5418 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5419 unsigned long addr, pte_t ptent) 5420 { 5421 struct page *page = vm_normal_page(vma, addr, ptent); 5422 5423 if (!page || !page_mapped(page)) 5424 return NULL; 5425 if (PageAnon(page)) { 5426 if (!(mc.flags & MOVE_ANON)) 5427 return NULL; 5428 } else { 5429 if (!(mc.flags & MOVE_FILE)) 5430 return NULL; 5431 } 5432 if (!get_page_unless_zero(page)) 5433 return NULL; 5434 5435 return page; 5436 } 5437 5438 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5439 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5440 pte_t ptent, swp_entry_t *entry) 5441 { 5442 struct page *page = NULL; 5443 swp_entry_t ent = pte_to_swp_entry(ptent); 5444 5445 if (!(mc.flags & MOVE_ANON)) 5446 return NULL; 5447 5448 /* 5449 * Handle device private pages that are not accessible by the CPU, but 5450 * stored as special swap entries in the page table. 5451 */ 5452 if (is_device_private_entry(ent)) { 5453 page = pfn_swap_entry_to_page(ent); 5454 if (!get_page_unless_zero(page)) 5455 return NULL; 5456 return page; 5457 } 5458 5459 if (non_swap_entry(ent)) 5460 return NULL; 5461 5462 /* 5463 * Because lookup_swap_cache() updates some statistics counter, 5464 * we call find_get_page() with swapper_space directly. 5465 */ 5466 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5467 entry->val = ent.val; 5468 5469 return page; 5470 } 5471 #else 5472 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5473 pte_t ptent, swp_entry_t *entry) 5474 { 5475 return NULL; 5476 } 5477 #endif 5478 5479 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5480 unsigned long addr, pte_t ptent) 5481 { 5482 if (!vma->vm_file) /* anonymous vma */ 5483 return NULL; 5484 if (!(mc.flags & MOVE_FILE)) 5485 return NULL; 5486 5487 /* page is moved even if it's not RSS of this task(page-faulted). */ 5488 /* shmem/tmpfs may report page out on swap: account for that too. */ 5489 return find_get_incore_page(vma->vm_file->f_mapping, 5490 linear_page_index(vma, addr)); 5491 } 5492 5493 /** 5494 * mem_cgroup_move_account - move account of the page 5495 * @page: the page 5496 * @compound: charge the page as compound or small page 5497 * @from: mem_cgroup which the page is moved from. 5498 * @to: mem_cgroup which the page is moved to. @from != @to. 5499 * 5500 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5501 * 5502 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5503 * from old cgroup. 5504 */ 5505 static int mem_cgroup_move_account(struct page *page, 5506 bool compound, 5507 struct mem_cgroup *from, 5508 struct mem_cgroup *to) 5509 { 5510 struct folio *folio = page_folio(page); 5511 struct lruvec *from_vec, *to_vec; 5512 struct pglist_data *pgdat; 5513 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 5514 int nid, ret; 5515 5516 VM_BUG_ON(from == to); 5517 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 5518 VM_BUG_ON(compound && !folio_test_large(folio)); 5519 5520 /* 5521 * Prevent mem_cgroup_migrate() from looking at 5522 * page's memory cgroup of its source page while we change it. 5523 */ 5524 ret = -EBUSY; 5525 if (!folio_trylock(folio)) 5526 goto out; 5527 5528 ret = -EINVAL; 5529 if (folio_memcg(folio) != from) 5530 goto out_unlock; 5531 5532 pgdat = folio_pgdat(folio); 5533 from_vec = mem_cgroup_lruvec(from, pgdat); 5534 to_vec = mem_cgroup_lruvec(to, pgdat); 5535 5536 folio_memcg_lock(folio); 5537 5538 if (folio_test_anon(folio)) { 5539 if (folio_mapped(folio)) { 5540 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5541 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5542 if (folio_test_transhuge(folio)) { 5543 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5544 -nr_pages); 5545 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5546 nr_pages); 5547 } 5548 } 5549 } else { 5550 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5551 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5552 5553 if (folio_test_swapbacked(folio)) { 5554 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5555 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5556 } 5557 5558 if (folio_mapped(folio)) { 5559 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5560 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5561 } 5562 5563 if (folio_test_dirty(folio)) { 5564 struct address_space *mapping = folio_mapping(folio); 5565 5566 if (mapping_can_writeback(mapping)) { 5567 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5568 -nr_pages); 5569 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5570 nr_pages); 5571 } 5572 } 5573 } 5574 5575 if (folio_test_writeback(folio)) { 5576 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5577 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5578 } 5579 5580 /* 5581 * All state has been migrated, let's switch to the new memcg. 5582 * 5583 * It is safe to change page's memcg here because the page 5584 * is referenced, charged, isolated, and locked: we can't race 5585 * with (un)charging, migration, LRU putback, or anything else 5586 * that would rely on a stable page's memory cgroup. 5587 * 5588 * Note that lock_page_memcg is a memcg lock, not a page lock, 5589 * to save space. As soon as we switch page's memory cgroup to a 5590 * new memcg that isn't locked, the above state can change 5591 * concurrently again. Make sure we're truly done with it. 5592 */ 5593 smp_mb(); 5594 5595 css_get(&to->css); 5596 css_put(&from->css); 5597 5598 folio->memcg_data = (unsigned long)to; 5599 5600 __folio_memcg_unlock(from); 5601 5602 ret = 0; 5603 nid = folio_nid(folio); 5604 5605 local_irq_disable(); 5606 mem_cgroup_charge_statistics(to, nr_pages); 5607 memcg_check_events(to, nid); 5608 mem_cgroup_charge_statistics(from, -nr_pages); 5609 memcg_check_events(from, nid); 5610 local_irq_enable(); 5611 out_unlock: 5612 folio_unlock(folio); 5613 out: 5614 return ret; 5615 } 5616 5617 /** 5618 * get_mctgt_type - get target type of moving charge 5619 * @vma: the vma the pte to be checked belongs 5620 * @addr: the address corresponding to the pte to be checked 5621 * @ptent: the pte to be checked 5622 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5623 * 5624 * Returns 5625 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5626 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5627 * move charge. if @target is not NULL, the page is stored in target->page 5628 * with extra refcnt got(Callers should handle it). 5629 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5630 * target for charge migration. if @target is not NULL, the entry is stored 5631 * in target->ent. 5632 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5633 * (so ZONE_DEVICE page and thus not on the lru). 5634 * For now we such page is charge like a regular page would be as for all 5635 * intent and purposes it is just special memory taking the place of a 5636 * regular page. 5637 * 5638 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5639 * 5640 * Called with pte lock held. 5641 */ 5642 5643 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5644 unsigned long addr, pte_t ptent, union mc_target *target) 5645 { 5646 struct page *page = NULL; 5647 enum mc_target_type ret = MC_TARGET_NONE; 5648 swp_entry_t ent = { .val = 0 }; 5649 5650 if (pte_present(ptent)) 5651 page = mc_handle_present_pte(vma, addr, ptent); 5652 else if (is_swap_pte(ptent)) 5653 page = mc_handle_swap_pte(vma, ptent, &ent); 5654 else if (pte_none(ptent)) 5655 page = mc_handle_file_pte(vma, addr, ptent); 5656 5657 if (!page && !ent.val) 5658 return ret; 5659 if (page) { 5660 /* 5661 * Do only loose check w/o serialization. 5662 * mem_cgroup_move_account() checks the page is valid or 5663 * not under LRU exclusion. 5664 */ 5665 if (page_memcg(page) == mc.from) { 5666 ret = MC_TARGET_PAGE; 5667 if (is_device_private_page(page)) 5668 ret = MC_TARGET_DEVICE; 5669 if (target) 5670 target->page = page; 5671 } 5672 if (!ret || !target) 5673 put_page(page); 5674 } 5675 /* 5676 * There is a swap entry and a page doesn't exist or isn't charged. 5677 * But we cannot move a tail-page in a THP. 5678 */ 5679 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5680 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5681 ret = MC_TARGET_SWAP; 5682 if (target) 5683 target->ent = ent; 5684 } 5685 return ret; 5686 } 5687 5688 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5689 /* 5690 * We don't consider PMD mapped swapping or file mapped pages because THP does 5691 * not support them for now. 5692 * Caller should make sure that pmd_trans_huge(pmd) is true. 5693 */ 5694 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5695 unsigned long addr, pmd_t pmd, union mc_target *target) 5696 { 5697 struct page *page = NULL; 5698 enum mc_target_type ret = MC_TARGET_NONE; 5699 5700 if (unlikely(is_swap_pmd(pmd))) { 5701 VM_BUG_ON(thp_migration_supported() && 5702 !is_pmd_migration_entry(pmd)); 5703 return ret; 5704 } 5705 page = pmd_page(pmd); 5706 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5707 if (!(mc.flags & MOVE_ANON)) 5708 return ret; 5709 if (page_memcg(page) == mc.from) { 5710 ret = MC_TARGET_PAGE; 5711 if (target) { 5712 get_page(page); 5713 target->page = page; 5714 } 5715 } 5716 return ret; 5717 } 5718 #else 5719 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5720 unsigned long addr, pmd_t pmd, union mc_target *target) 5721 { 5722 return MC_TARGET_NONE; 5723 } 5724 #endif 5725 5726 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5727 unsigned long addr, unsigned long end, 5728 struct mm_walk *walk) 5729 { 5730 struct vm_area_struct *vma = walk->vma; 5731 pte_t *pte; 5732 spinlock_t *ptl; 5733 5734 ptl = pmd_trans_huge_lock(pmd, vma); 5735 if (ptl) { 5736 /* 5737 * Note their can not be MC_TARGET_DEVICE for now as we do not 5738 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5739 * this might change. 5740 */ 5741 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5742 mc.precharge += HPAGE_PMD_NR; 5743 spin_unlock(ptl); 5744 return 0; 5745 } 5746 5747 if (pmd_trans_unstable(pmd)) 5748 return 0; 5749 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5750 for (; addr != end; pte++, addr += PAGE_SIZE) 5751 if (get_mctgt_type(vma, addr, *pte, NULL)) 5752 mc.precharge++; /* increment precharge temporarily */ 5753 pte_unmap_unlock(pte - 1, ptl); 5754 cond_resched(); 5755 5756 return 0; 5757 } 5758 5759 static const struct mm_walk_ops precharge_walk_ops = { 5760 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5761 }; 5762 5763 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5764 { 5765 unsigned long precharge; 5766 5767 mmap_read_lock(mm); 5768 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5769 mmap_read_unlock(mm); 5770 5771 precharge = mc.precharge; 5772 mc.precharge = 0; 5773 5774 return precharge; 5775 } 5776 5777 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5778 { 5779 unsigned long precharge = mem_cgroup_count_precharge(mm); 5780 5781 VM_BUG_ON(mc.moving_task); 5782 mc.moving_task = current; 5783 return mem_cgroup_do_precharge(precharge); 5784 } 5785 5786 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5787 static void __mem_cgroup_clear_mc(void) 5788 { 5789 struct mem_cgroup *from = mc.from; 5790 struct mem_cgroup *to = mc.to; 5791 5792 /* we must uncharge all the leftover precharges from mc.to */ 5793 if (mc.precharge) { 5794 cancel_charge(mc.to, mc.precharge); 5795 mc.precharge = 0; 5796 } 5797 /* 5798 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5799 * we must uncharge here. 5800 */ 5801 if (mc.moved_charge) { 5802 cancel_charge(mc.from, mc.moved_charge); 5803 mc.moved_charge = 0; 5804 } 5805 /* we must fixup refcnts and charges */ 5806 if (mc.moved_swap) { 5807 /* uncharge swap account from the old cgroup */ 5808 if (!mem_cgroup_is_root(mc.from)) 5809 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5810 5811 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5812 5813 /* 5814 * we charged both to->memory and to->memsw, so we 5815 * should uncharge to->memory. 5816 */ 5817 if (!mem_cgroup_is_root(mc.to)) 5818 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5819 5820 mc.moved_swap = 0; 5821 } 5822 memcg_oom_recover(from); 5823 memcg_oom_recover(to); 5824 wake_up_all(&mc.waitq); 5825 } 5826 5827 static void mem_cgroup_clear_mc(void) 5828 { 5829 struct mm_struct *mm = mc.mm; 5830 5831 /* 5832 * we must clear moving_task before waking up waiters at the end of 5833 * task migration. 5834 */ 5835 mc.moving_task = NULL; 5836 __mem_cgroup_clear_mc(); 5837 spin_lock(&mc.lock); 5838 mc.from = NULL; 5839 mc.to = NULL; 5840 mc.mm = NULL; 5841 spin_unlock(&mc.lock); 5842 5843 mmput(mm); 5844 } 5845 5846 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5847 { 5848 struct cgroup_subsys_state *css; 5849 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5850 struct mem_cgroup *from; 5851 struct task_struct *leader, *p; 5852 struct mm_struct *mm; 5853 unsigned long move_flags; 5854 int ret = 0; 5855 5856 /* charge immigration isn't supported on the default hierarchy */ 5857 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5858 return 0; 5859 5860 /* 5861 * Multi-process migrations only happen on the default hierarchy 5862 * where charge immigration is not used. Perform charge 5863 * immigration if @tset contains a leader and whine if there are 5864 * multiple. 5865 */ 5866 p = NULL; 5867 cgroup_taskset_for_each_leader(leader, css, tset) { 5868 WARN_ON_ONCE(p); 5869 p = leader; 5870 memcg = mem_cgroup_from_css(css); 5871 } 5872 if (!p) 5873 return 0; 5874 5875 /* 5876 * We are now committed to this value whatever it is. Changes in this 5877 * tunable will only affect upcoming migrations, not the current one. 5878 * So we need to save it, and keep it going. 5879 */ 5880 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5881 if (!move_flags) 5882 return 0; 5883 5884 from = mem_cgroup_from_task(p); 5885 5886 VM_BUG_ON(from == memcg); 5887 5888 mm = get_task_mm(p); 5889 if (!mm) 5890 return 0; 5891 /* We move charges only when we move a owner of the mm */ 5892 if (mm->owner == p) { 5893 VM_BUG_ON(mc.from); 5894 VM_BUG_ON(mc.to); 5895 VM_BUG_ON(mc.precharge); 5896 VM_BUG_ON(mc.moved_charge); 5897 VM_BUG_ON(mc.moved_swap); 5898 5899 spin_lock(&mc.lock); 5900 mc.mm = mm; 5901 mc.from = from; 5902 mc.to = memcg; 5903 mc.flags = move_flags; 5904 spin_unlock(&mc.lock); 5905 /* We set mc.moving_task later */ 5906 5907 ret = mem_cgroup_precharge_mc(mm); 5908 if (ret) 5909 mem_cgroup_clear_mc(); 5910 } else { 5911 mmput(mm); 5912 } 5913 return ret; 5914 } 5915 5916 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5917 { 5918 if (mc.to) 5919 mem_cgroup_clear_mc(); 5920 } 5921 5922 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5923 unsigned long addr, unsigned long end, 5924 struct mm_walk *walk) 5925 { 5926 int ret = 0; 5927 struct vm_area_struct *vma = walk->vma; 5928 pte_t *pte; 5929 spinlock_t *ptl; 5930 enum mc_target_type target_type; 5931 union mc_target target; 5932 struct page *page; 5933 5934 ptl = pmd_trans_huge_lock(pmd, vma); 5935 if (ptl) { 5936 if (mc.precharge < HPAGE_PMD_NR) { 5937 spin_unlock(ptl); 5938 return 0; 5939 } 5940 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5941 if (target_type == MC_TARGET_PAGE) { 5942 page = target.page; 5943 if (!isolate_lru_page(page)) { 5944 if (!mem_cgroup_move_account(page, true, 5945 mc.from, mc.to)) { 5946 mc.precharge -= HPAGE_PMD_NR; 5947 mc.moved_charge += HPAGE_PMD_NR; 5948 } 5949 putback_lru_page(page); 5950 } 5951 put_page(page); 5952 } else if (target_type == MC_TARGET_DEVICE) { 5953 page = target.page; 5954 if (!mem_cgroup_move_account(page, true, 5955 mc.from, mc.to)) { 5956 mc.precharge -= HPAGE_PMD_NR; 5957 mc.moved_charge += HPAGE_PMD_NR; 5958 } 5959 put_page(page); 5960 } 5961 spin_unlock(ptl); 5962 return 0; 5963 } 5964 5965 if (pmd_trans_unstable(pmd)) 5966 return 0; 5967 retry: 5968 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5969 for (; addr != end; addr += PAGE_SIZE) { 5970 pte_t ptent = *(pte++); 5971 bool device = false; 5972 swp_entry_t ent; 5973 5974 if (!mc.precharge) 5975 break; 5976 5977 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5978 case MC_TARGET_DEVICE: 5979 device = true; 5980 fallthrough; 5981 case MC_TARGET_PAGE: 5982 page = target.page; 5983 /* 5984 * We can have a part of the split pmd here. Moving it 5985 * can be done but it would be too convoluted so simply 5986 * ignore such a partial THP and keep it in original 5987 * memcg. There should be somebody mapping the head. 5988 */ 5989 if (PageTransCompound(page)) 5990 goto put; 5991 if (!device && isolate_lru_page(page)) 5992 goto put; 5993 if (!mem_cgroup_move_account(page, false, 5994 mc.from, mc.to)) { 5995 mc.precharge--; 5996 /* we uncharge from mc.from later. */ 5997 mc.moved_charge++; 5998 } 5999 if (!device) 6000 putback_lru_page(page); 6001 put: /* get_mctgt_type() gets the page */ 6002 put_page(page); 6003 break; 6004 case MC_TARGET_SWAP: 6005 ent = target.ent; 6006 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6007 mc.precharge--; 6008 mem_cgroup_id_get_many(mc.to, 1); 6009 /* we fixup other refcnts and charges later. */ 6010 mc.moved_swap++; 6011 } 6012 break; 6013 default: 6014 break; 6015 } 6016 } 6017 pte_unmap_unlock(pte - 1, ptl); 6018 cond_resched(); 6019 6020 if (addr != end) { 6021 /* 6022 * We have consumed all precharges we got in can_attach(). 6023 * We try charge one by one, but don't do any additional 6024 * charges to mc.to if we have failed in charge once in attach() 6025 * phase. 6026 */ 6027 ret = mem_cgroup_do_precharge(1); 6028 if (!ret) 6029 goto retry; 6030 } 6031 6032 return ret; 6033 } 6034 6035 static const struct mm_walk_ops charge_walk_ops = { 6036 .pmd_entry = mem_cgroup_move_charge_pte_range, 6037 }; 6038 6039 static void mem_cgroup_move_charge(void) 6040 { 6041 lru_add_drain_all(); 6042 /* 6043 * Signal lock_page_memcg() to take the memcg's move_lock 6044 * while we're moving its pages to another memcg. Then wait 6045 * for already started RCU-only updates to finish. 6046 */ 6047 atomic_inc(&mc.from->moving_account); 6048 synchronize_rcu(); 6049 retry: 6050 if (unlikely(!mmap_read_trylock(mc.mm))) { 6051 /* 6052 * Someone who are holding the mmap_lock might be waiting in 6053 * waitq. So we cancel all extra charges, wake up all waiters, 6054 * and retry. Because we cancel precharges, we might not be able 6055 * to move enough charges, but moving charge is a best-effort 6056 * feature anyway, so it wouldn't be a big problem. 6057 */ 6058 __mem_cgroup_clear_mc(); 6059 cond_resched(); 6060 goto retry; 6061 } 6062 /* 6063 * When we have consumed all precharges and failed in doing 6064 * additional charge, the page walk just aborts. 6065 */ 6066 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 6067 NULL); 6068 6069 mmap_read_unlock(mc.mm); 6070 atomic_dec(&mc.from->moving_account); 6071 } 6072 6073 static void mem_cgroup_move_task(void) 6074 { 6075 if (mc.to) { 6076 mem_cgroup_move_charge(); 6077 mem_cgroup_clear_mc(); 6078 } 6079 } 6080 #else /* !CONFIG_MMU */ 6081 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6082 { 6083 return 0; 6084 } 6085 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6086 { 6087 } 6088 static void mem_cgroup_move_task(void) 6089 { 6090 } 6091 #endif 6092 6093 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6094 { 6095 if (value == PAGE_COUNTER_MAX) 6096 seq_puts(m, "max\n"); 6097 else 6098 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6099 6100 return 0; 6101 } 6102 6103 static u64 memory_current_read(struct cgroup_subsys_state *css, 6104 struct cftype *cft) 6105 { 6106 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6107 6108 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6109 } 6110 6111 static int memory_min_show(struct seq_file *m, void *v) 6112 { 6113 return seq_puts_memcg_tunable(m, 6114 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6115 } 6116 6117 static ssize_t memory_min_write(struct kernfs_open_file *of, 6118 char *buf, size_t nbytes, loff_t off) 6119 { 6120 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6121 unsigned long min; 6122 int err; 6123 6124 buf = strstrip(buf); 6125 err = page_counter_memparse(buf, "max", &min); 6126 if (err) 6127 return err; 6128 6129 page_counter_set_min(&memcg->memory, min); 6130 6131 return nbytes; 6132 } 6133 6134 static int memory_low_show(struct seq_file *m, void *v) 6135 { 6136 return seq_puts_memcg_tunable(m, 6137 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6138 } 6139 6140 static ssize_t memory_low_write(struct kernfs_open_file *of, 6141 char *buf, size_t nbytes, loff_t off) 6142 { 6143 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6144 unsigned long low; 6145 int err; 6146 6147 buf = strstrip(buf); 6148 err = page_counter_memparse(buf, "max", &low); 6149 if (err) 6150 return err; 6151 6152 page_counter_set_low(&memcg->memory, low); 6153 6154 return nbytes; 6155 } 6156 6157 static int memory_high_show(struct seq_file *m, void *v) 6158 { 6159 return seq_puts_memcg_tunable(m, 6160 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6161 } 6162 6163 static ssize_t memory_high_write(struct kernfs_open_file *of, 6164 char *buf, size_t nbytes, loff_t off) 6165 { 6166 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6167 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6168 bool drained = false; 6169 unsigned long high; 6170 int err; 6171 6172 buf = strstrip(buf); 6173 err = page_counter_memparse(buf, "max", &high); 6174 if (err) 6175 return err; 6176 6177 page_counter_set_high(&memcg->memory, high); 6178 6179 for (;;) { 6180 unsigned long nr_pages = page_counter_read(&memcg->memory); 6181 unsigned long reclaimed; 6182 6183 if (nr_pages <= high) 6184 break; 6185 6186 if (signal_pending(current)) 6187 break; 6188 6189 if (!drained) { 6190 drain_all_stock(memcg); 6191 drained = true; 6192 continue; 6193 } 6194 6195 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6196 GFP_KERNEL, true); 6197 6198 if (!reclaimed && !nr_retries--) 6199 break; 6200 } 6201 6202 memcg_wb_domain_size_changed(memcg); 6203 return nbytes; 6204 } 6205 6206 static int memory_max_show(struct seq_file *m, void *v) 6207 { 6208 return seq_puts_memcg_tunable(m, 6209 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6210 } 6211 6212 static ssize_t memory_max_write(struct kernfs_open_file *of, 6213 char *buf, size_t nbytes, loff_t off) 6214 { 6215 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6216 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6217 bool drained = false; 6218 unsigned long max; 6219 int err; 6220 6221 buf = strstrip(buf); 6222 err = page_counter_memparse(buf, "max", &max); 6223 if (err) 6224 return err; 6225 6226 xchg(&memcg->memory.max, max); 6227 6228 for (;;) { 6229 unsigned long nr_pages = page_counter_read(&memcg->memory); 6230 6231 if (nr_pages <= max) 6232 break; 6233 6234 if (signal_pending(current)) 6235 break; 6236 6237 if (!drained) { 6238 drain_all_stock(memcg); 6239 drained = true; 6240 continue; 6241 } 6242 6243 if (nr_reclaims) { 6244 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6245 GFP_KERNEL, true)) 6246 nr_reclaims--; 6247 continue; 6248 } 6249 6250 memcg_memory_event(memcg, MEMCG_OOM); 6251 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6252 break; 6253 } 6254 6255 memcg_wb_domain_size_changed(memcg); 6256 return nbytes; 6257 } 6258 6259 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6260 { 6261 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6262 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6263 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6264 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6265 seq_printf(m, "oom_kill %lu\n", 6266 atomic_long_read(&events[MEMCG_OOM_KILL])); 6267 seq_printf(m, "oom_group_kill %lu\n", 6268 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 6269 } 6270 6271 static int memory_events_show(struct seq_file *m, void *v) 6272 { 6273 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6274 6275 __memory_events_show(m, memcg->memory_events); 6276 return 0; 6277 } 6278 6279 static int memory_events_local_show(struct seq_file *m, void *v) 6280 { 6281 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6282 6283 __memory_events_show(m, memcg->memory_events_local); 6284 return 0; 6285 } 6286 6287 static int memory_stat_show(struct seq_file *m, void *v) 6288 { 6289 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6290 char *buf; 6291 6292 buf = memory_stat_format(memcg); 6293 if (!buf) 6294 return -ENOMEM; 6295 seq_puts(m, buf); 6296 kfree(buf); 6297 return 0; 6298 } 6299 6300 #ifdef CONFIG_NUMA 6301 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6302 int item) 6303 { 6304 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); 6305 } 6306 6307 static int memory_numa_stat_show(struct seq_file *m, void *v) 6308 { 6309 int i; 6310 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6311 6312 mem_cgroup_flush_stats(); 6313 6314 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6315 int nid; 6316 6317 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6318 continue; 6319 6320 seq_printf(m, "%s", memory_stats[i].name); 6321 for_each_node_state(nid, N_MEMORY) { 6322 u64 size; 6323 struct lruvec *lruvec; 6324 6325 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6326 size = lruvec_page_state_output(lruvec, 6327 memory_stats[i].idx); 6328 seq_printf(m, " N%d=%llu", nid, size); 6329 } 6330 seq_putc(m, '\n'); 6331 } 6332 6333 return 0; 6334 } 6335 #endif 6336 6337 static int memory_oom_group_show(struct seq_file *m, void *v) 6338 { 6339 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6340 6341 seq_printf(m, "%d\n", memcg->oom_group); 6342 6343 return 0; 6344 } 6345 6346 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6347 char *buf, size_t nbytes, loff_t off) 6348 { 6349 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6350 int ret, oom_group; 6351 6352 buf = strstrip(buf); 6353 if (!buf) 6354 return -EINVAL; 6355 6356 ret = kstrtoint(buf, 0, &oom_group); 6357 if (ret) 6358 return ret; 6359 6360 if (oom_group != 0 && oom_group != 1) 6361 return -EINVAL; 6362 6363 memcg->oom_group = oom_group; 6364 6365 return nbytes; 6366 } 6367 6368 static struct cftype memory_files[] = { 6369 { 6370 .name = "current", 6371 .flags = CFTYPE_NOT_ON_ROOT, 6372 .read_u64 = memory_current_read, 6373 }, 6374 { 6375 .name = "min", 6376 .flags = CFTYPE_NOT_ON_ROOT, 6377 .seq_show = memory_min_show, 6378 .write = memory_min_write, 6379 }, 6380 { 6381 .name = "low", 6382 .flags = CFTYPE_NOT_ON_ROOT, 6383 .seq_show = memory_low_show, 6384 .write = memory_low_write, 6385 }, 6386 { 6387 .name = "high", 6388 .flags = CFTYPE_NOT_ON_ROOT, 6389 .seq_show = memory_high_show, 6390 .write = memory_high_write, 6391 }, 6392 { 6393 .name = "max", 6394 .flags = CFTYPE_NOT_ON_ROOT, 6395 .seq_show = memory_max_show, 6396 .write = memory_max_write, 6397 }, 6398 { 6399 .name = "events", 6400 .flags = CFTYPE_NOT_ON_ROOT, 6401 .file_offset = offsetof(struct mem_cgroup, events_file), 6402 .seq_show = memory_events_show, 6403 }, 6404 { 6405 .name = "events.local", 6406 .flags = CFTYPE_NOT_ON_ROOT, 6407 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6408 .seq_show = memory_events_local_show, 6409 }, 6410 { 6411 .name = "stat", 6412 .seq_show = memory_stat_show, 6413 }, 6414 #ifdef CONFIG_NUMA 6415 { 6416 .name = "numa_stat", 6417 .seq_show = memory_numa_stat_show, 6418 }, 6419 #endif 6420 { 6421 .name = "oom.group", 6422 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6423 .seq_show = memory_oom_group_show, 6424 .write = memory_oom_group_write, 6425 }, 6426 { } /* terminate */ 6427 }; 6428 6429 struct cgroup_subsys memory_cgrp_subsys = { 6430 .css_alloc = mem_cgroup_css_alloc, 6431 .css_online = mem_cgroup_css_online, 6432 .css_offline = mem_cgroup_css_offline, 6433 .css_released = mem_cgroup_css_released, 6434 .css_free = mem_cgroup_css_free, 6435 .css_reset = mem_cgroup_css_reset, 6436 .css_rstat_flush = mem_cgroup_css_rstat_flush, 6437 .can_attach = mem_cgroup_can_attach, 6438 .cancel_attach = mem_cgroup_cancel_attach, 6439 .post_attach = mem_cgroup_move_task, 6440 .dfl_cftypes = memory_files, 6441 .legacy_cftypes = mem_cgroup_legacy_files, 6442 .early_init = 0, 6443 }; 6444 6445 /* 6446 * This function calculates an individual cgroup's effective 6447 * protection which is derived from its own memory.min/low, its 6448 * parent's and siblings' settings, as well as the actual memory 6449 * distribution in the tree. 6450 * 6451 * The following rules apply to the effective protection values: 6452 * 6453 * 1. At the first level of reclaim, effective protection is equal to 6454 * the declared protection in memory.min and memory.low. 6455 * 6456 * 2. To enable safe delegation of the protection configuration, at 6457 * subsequent levels the effective protection is capped to the 6458 * parent's effective protection. 6459 * 6460 * 3. To make complex and dynamic subtrees easier to configure, the 6461 * user is allowed to overcommit the declared protection at a given 6462 * level. If that is the case, the parent's effective protection is 6463 * distributed to the children in proportion to how much protection 6464 * they have declared and how much of it they are utilizing. 6465 * 6466 * This makes distribution proportional, but also work-conserving: 6467 * if one cgroup claims much more protection than it uses memory, 6468 * the unused remainder is available to its siblings. 6469 * 6470 * 4. Conversely, when the declared protection is undercommitted at a 6471 * given level, the distribution of the larger parental protection 6472 * budget is NOT proportional. A cgroup's protection from a sibling 6473 * is capped to its own memory.min/low setting. 6474 * 6475 * 5. However, to allow protecting recursive subtrees from each other 6476 * without having to declare each individual cgroup's fixed share 6477 * of the ancestor's claim to protection, any unutilized - 6478 * "floating" - protection from up the tree is distributed in 6479 * proportion to each cgroup's *usage*. This makes the protection 6480 * neutral wrt sibling cgroups and lets them compete freely over 6481 * the shared parental protection budget, but it protects the 6482 * subtree as a whole from neighboring subtrees. 6483 * 6484 * Note that 4. and 5. are not in conflict: 4. is about protecting 6485 * against immediate siblings whereas 5. is about protecting against 6486 * neighboring subtrees. 6487 */ 6488 static unsigned long effective_protection(unsigned long usage, 6489 unsigned long parent_usage, 6490 unsigned long setting, 6491 unsigned long parent_effective, 6492 unsigned long siblings_protected) 6493 { 6494 unsigned long protected; 6495 unsigned long ep; 6496 6497 protected = min(usage, setting); 6498 /* 6499 * If all cgroups at this level combined claim and use more 6500 * protection then what the parent affords them, distribute 6501 * shares in proportion to utilization. 6502 * 6503 * We are using actual utilization rather than the statically 6504 * claimed protection in order to be work-conserving: claimed 6505 * but unused protection is available to siblings that would 6506 * otherwise get a smaller chunk than what they claimed. 6507 */ 6508 if (siblings_protected > parent_effective) 6509 return protected * parent_effective / siblings_protected; 6510 6511 /* 6512 * Ok, utilized protection of all children is within what the 6513 * parent affords them, so we know whatever this child claims 6514 * and utilizes is effectively protected. 6515 * 6516 * If there is unprotected usage beyond this value, reclaim 6517 * will apply pressure in proportion to that amount. 6518 * 6519 * If there is unutilized protection, the cgroup will be fully 6520 * shielded from reclaim, but we do return a smaller value for 6521 * protection than what the group could enjoy in theory. This 6522 * is okay. With the overcommit distribution above, effective 6523 * protection is always dependent on how memory is actually 6524 * consumed among the siblings anyway. 6525 */ 6526 ep = protected; 6527 6528 /* 6529 * If the children aren't claiming (all of) the protection 6530 * afforded to them by the parent, distribute the remainder in 6531 * proportion to the (unprotected) memory of each cgroup. That 6532 * way, cgroups that aren't explicitly prioritized wrt each 6533 * other compete freely over the allowance, but they are 6534 * collectively protected from neighboring trees. 6535 * 6536 * We're using unprotected memory for the weight so that if 6537 * some cgroups DO claim explicit protection, we don't protect 6538 * the same bytes twice. 6539 * 6540 * Check both usage and parent_usage against the respective 6541 * protected values. One should imply the other, but they 6542 * aren't read atomically - make sure the division is sane. 6543 */ 6544 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6545 return ep; 6546 if (parent_effective > siblings_protected && 6547 parent_usage > siblings_protected && 6548 usage > protected) { 6549 unsigned long unclaimed; 6550 6551 unclaimed = parent_effective - siblings_protected; 6552 unclaimed *= usage - protected; 6553 unclaimed /= parent_usage - siblings_protected; 6554 6555 ep += unclaimed; 6556 } 6557 6558 return ep; 6559 } 6560 6561 /** 6562 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 6563 * @root: the top ancestor of the sub-tree being checked 6564 * @memcg: the memory cgroup to check 6565 * 6566 * WARNING: This function is not stateless! It can only be used as part 6567 * of a top-down tree iteration, not for isolated queries. 6568 */ 6569 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6570 struct mem_cgroup *memcg) 6571 { 6572 unsigned long usage, parent_usage; 6573 struct mem_cgroup *parent; 6574 6575 if (mem_cgroup_disabled()) 6576 return; 6577 6578 if (!root) 6579 root = root_mem_cgroup; 6580 6581 /* 6582 * Effective values of the reclaim targets are ignored so they 6583 * can be stale. Have a look at mem_cgroup_protection for more 6584 * details. 6585 * TODO: calculation should be more robust so that we do not need 6586 * that special casing. 6587 */ 6588 if (memcg == root) 6589 return; 6590 6591 usage = page_counter_read(&memcg->memory); 6592 if (!usage) 6593 return; 6594 6595 parent = parent_mem_cgroup(memcg); 6596 /* No parent means a non-hierarchical mode on v1 memcg */ 6597 if (!parent) 6598 return; 6599 6600 if (parent == root) { 6601 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6602 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6603 return; 6604 } 6605 6606 parent_usage = page_counter_read(&parent->memory); 6607 6608 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6609 READ_ONCE(memcg->memory.min), 6610 READ_ONCE(parent->memory.emin), 6611 atomic_long_read(&parent->memory.children_min_usage))); 6612 6613 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6614 READ_ONCE(memcg->memory.low), 6615 READ_ONCE(parent->memory.elow), 6616 atomic_long_read(&parent->memory.children_low_usage))); 6617 } 6618 6619 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 6620 gfp_t gfp) 6621 { 6622 long nr_pages = folio_nr_pages(folio); 6623 int ret; 6624 6625 ret = try_charge(memcg, gfp, nr_pages); 6626 if (ret) 6627 goto out; 6628 6629 css_get(&memcg->css); 6630 commit_charge(folio, memcg); 6631 6632 local_irq_disable(); 6633 mem_cgroup_charge_statistics(memcg, nr_pages); 6634 memcg_check_events(memcg, folio_nid(folio)); 6635 local_irq_enable(); 6636 out: 6637 return ret; 6638 } 6639 6640 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 6641 { 6642 struct mem_cgroup *memcg; 6643 int ret; 6644 6645 memcg = get_mem_cgroup_from_mm(mm); 6646 ret = charge_memcg(folio, memcg, gfp); 6647 css_put(&memcg->css); 6648 6649 return ret; 6650 } 6651 6652 /** 6653 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin 6654 * @page: page to charge 6655 * @mm: mm context of the victim 6656 * @gfp: reclaim mode 6657 * @entry: swap entry for which the page is allocated 6658 * 6659 * This function charges a page allocated for swapin. Please call this before 6660 * adding the page to the swapcache. 6661 * 6662 * Returns 0 on success. Otherwise, an error code is returned. 6663 */ 6664 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, 6665 gfp_t gfp, swp_entry_t entry) 6666 { 6667 struct folio *folio = page_folio(page); 6668 struct mem_cgroup *memcg; 6669 unsigned short id; 6670 int ret; 6671 6672 if (mem_cgroup_disabled()) 6673 return 0; 6674 6675 id = lookup_swap_cgroup_id(entry); 6676 rcu_read_lock(); 6677 memcg = mem_cgroup_from_id(id); 6678 if (!memcg || !css_tryget_online(&memcg->css)) 6679 memcg = get_mem_cgroup_from_mm(mm); 6680 rcu_read_unlock(); 6681 6682 ret = charge_memcg(folio, memcg, gfp); 6683 6684 css_put(&memcg->css); 6685 return ret; 6686 } 6687 6688 /* 6689 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 6690 * @entry: swap entry for which the page is charged 6691 * 6692 * Call this function after successfully adding the charged page to swapcache. 6693 * 6694 * Note: This function assumes the page for which swap slot is being uncharged 6695 * is order 0 page. 6696 */ 6697 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 6698 { 6699 /* 6700 * Cgroup1's unified memory+swap counter has been charged with the 6701 * new swapcache page, finish the transfer by uncharging the swap 6702 * slot. The swap slot would also get uncharged when it dies, but 6703 * it can stick around indefinitely and we'd count the page twice 6704 * the entire time. 6705 * 6706 * Cgroup2 has separate resource counters for memory and swap, 6707 * so this is a non-issue here. Memory and swap charge lifetimes 6708 * correspond 1:1 to page and swap slot lifetimes: we charge the 6709 * page to memory here, and uncharge swap when the slot is freed. 6710 */ 6711 if (!mem_cgroup_disabled() && do_memsw_account()) { 6712 /* 6713 * The swap entry might not get freed for a long time, 6714 * let's not wait for it. The page already received a 6715 * memory+swap charge, drop the swap entry duplicate. 6716 */ 6717 mem_cgroup_uncharge_swap(entry, 1); 6718 } 6719 } 6720 6721 struct uncharge_gather { 6722 struct mem_cgroup *memcg; 6723 unsigned long nr_memory; 6724 unsigned long pgpgout; 6725 unsigned long nr_kmem; 6726 int nid; 6727 }; 6728 6729 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6730 { 6731 memset(ug, 0, sizeof(*ug)); 6732 } 6733 6734 static void uncharge_batch(const struct uncharge_gather *ug) 6735 { 6736 unsigned long flags; 6737 6738 if (ug->nr_memory) { 6739 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 6740 if (do_memsw_account()) 6741 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 6742 if (ug->nr_kmem) 6743 memcg_account_kmem(ug->memcg, -ug->nr_kmem); 6744 memcg_oom_recover(ug->memcg); 6745 } 6746 6747 local_irq_save(flags); 6748 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6749 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 6750 memcg_check_events(ug->memcg, ug->nid); 6751 local_irq_restore(flags); 6752 6753 /* drop reference from uncharge_folio */ 6754 css_put(&ug->memcg->css); 6755 } 6756 6757 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 6758 { 6759 long nr_pages; 6760 struct mem_cgroup *memcg; 6761 struct obj_cgroup *objcg; 6762 6763 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 6764 6765 /* 6766 * Nobody should be changing or seriously looking at 6767 * folio memcg or objcg at this point, we have fully 6768 * exclusive access to the folio. 6769 */ 6770 if (folio_memcg_kmem(folio)) { 6771 objcg = __folio_objcg(folio); 6772 /* 6773 * This get matches the put at the end of the function and 6774 * kmem pages do not hold memcg references anymore. 6775 */ 6776 memcg = get_mem_cgroup_from_objcg(objcg); 6777 } else { 6778 memcg = __folio_memcg(folio); 6779 } 6780 6781 if (!memcg) 6782 return; 6783 6784 if (ug->memcg != memcg) { 6785 if (ug->memcg) { 6786 uncharge_batch(ug); 6787 uncharge_gather_clear(ug); 6788 } 6789 ug->memcg = memcg; 6790 ug->nid = folio_nid(folio); 6791 6792 /* pairs with css_put in uncharge_batch */ 6793 css_get(&memcg->css); 6794 } 6795 6796 nr_pages = folio_nr_pages(folio); 6797 6798 if (folio_memcg_kmem(folio)) { 6799 ug->nr_memory += nr_pages; 6800 ug->nr_kmem += nr_pages; 6801 6802 folio->memcg_data = 0; 6803 obj_cgroup_put(objcg); 6804 } else { 6805 /* LRU pages aren't accounted at the root level */ 6806 if (!mem_cgroup_is_root(memcg)) 6807 ug->nr_memory += nr_pages; 6808 ug->pgpgout++; 6809 6810 folio->memcg_data = 0; 6811 } 6812 6813 css_put(&memcg->css); 6814 } 6815 6816 void __mem_cgroup_uncharge(struct folio *folio) 6817 { 6818 struct uncharge_gather ug; 6819 6820 /* Don't touch folio->lru of any random page, pre-check: */ 6821 if (!folio_memcg(folio)) 6822 return; 6823 6824 uncharge_gather_clear(&ug); 6825 uncharge_folio(folio, &ug); 6826 uncharge_batch(&ug); 6827 } 6828 6829 /** 6830 * __mem_cgroup_uncharge_list - uncharge a list of page 6831 * @page_list: list of pages to uncharge 6832 * 6833 * Uncharge a list of pages previously charged with 6834 * __mem_cgroup_charge(). 6835 */ 6836 void __mem_cgroup_uncharge_list(struct list_head *page_list) 6837 { 6838 struct uncharge_gather ug; 6839 struct folio *folio; 6840 6841 uncharge_gather_clear(&ug); 6842 list_for_each_entry(folio, page_list, lru) 6843 uncharge_folio(folio, &ug); 6844 if (ug.memcg) 6845 uncharge_batch(&ug); 6846 } 6847 6848 /** 6849 * mem_cgroup_migrate - Charge a folio's replacement. 6850 * @old: Currently circulating folio. 6851 * @new: Replacement folio. 6852 * 6853 * Charge @new as a replacement folio for @old. @old will 6854 * be uncharged upon free. 6855 * 6856 * Both folios must be locked, @new->mapping must be set up. 6857 */ 6858 void mem_cgroup_migrate(struct folio *old, struct folio *new) 6859 { 6860 struct mem_cgroup *memcg; 6861 long nr_pages = folio_nr_pages(new); 6862 unsigned long flags; 6863 6864 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 6865 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 6866 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 6867 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 6868 6869 if (mem_cgroup_disabled()) 6870 return; 6871 6872 /* Page cache replacement: new folio already charged? */ 6873 if (folio_memcg(new)) 6874 return; 6875 6876 memcg = folio_memcg(old); 6877 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 6878 if (!memcg) 6879 return; 6880 6881 /* Force-charge the new page. The old one will be freed soon */ 6882 if (!mem_cgroup_is_root(memcg)) { 6883 page_counter_charge(&memcg->memory, nr_pages); 6884 if (do_memsw_account()) 6885 page_counter_charge(&memcg->memsw, nr_pages); 6886 } 6887 6888 css_get(&memcg->css); 6889 commit_charge(new, memcg); 6890 6891 local_irq_save(flags); 6892 mem_cgroup_charge_statistics(memcg, nr_pages); 6893 memcg_check_events(memcg, folio_nid(new)); 6894 local_irq_restore(flags); 6895 } 6896 6897 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6898 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6899 6900 void mem_cgroup_sk_alloc(struct sock *sk) 6901 { 6902 struct mem_cgroup *memcg; 6903 6904 if (!mem_cgroup_sockets_enabled) 6905 return; 6906 6907 /* Do not associate the sock with unrelated interrupted task's memcg. */ 6908 if (!in_task()) 6909 return; 6910 6911 rcu_read_lock(); 6912 memcg = mem_cgroup_from_task(current); 6913 if (memcg == root_mem_cgroup) 6914 goto out; 6915 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6916 goto out; 6917 if (css_tryget(&memcg->css)) 6918 sk->sk_memcg = memcg; 6919 out: 6920 rcu_read_unlock(); 6921 } 6922 6923 void mem_cgroup_sk_free(struct sock *sk) 6924 { 6925 if (sk->sk_memcg) 6926 css_put(&sk->sk_memcg->css); 6927 } 6928 6929 /** 6930 * mem_cgroup_charge_skmem - charge socket memory 6931 * @memcg: memcg to charge 6932 * @nr_pages: number of pages to charge 6933 * @gfp_mask: reclaim mode 6934 * 6935 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6936 * @memcg's configured limit, %false if it doesn't. 6937 */ 6938 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 6939 gfp_t gfp_mask) 6940 { 6941 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6942 struct page_counter *fail; 6943 6944 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6945 memcg->tcpmem_pressure = 0; 6946 return true; 6947 } 6948 memcg->tcpmem_pressure = 1; 6949 if (gfp_mask & __GFP_NOFAIL) { 6950 page_counter_charge(&memcg->tcpmem, nr_pages); 6951 return true; 6952 } 6953 return false; 6954 } 6955 6956 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 6957 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6958 return true; 6959 } 6960 6961 return false; 6962 } 6963 6964 /** 6965 * mem_cgroup_uncharge_skmem - uncharge socket memory 6966 * @memcg: memcg to uncharge 6967 * @nr_pages: number of pages to uncharge 6968 */ 6969 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6970 { 6971 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6972 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6973 return; 6974 } 6975 6976 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6977 6978 refill_stock(memcg, nr_pages); 6979 } 6980 6981 static int __init cgroup_memory(char *s) 6982 { 6983 char *token; 6984 6985 while ((token = strsep(&s, ",")) != NULL) { 6986 if (!*token) 6987 continue; 6988 if (!strcmp(token, "nosocket")) 6989 cgroup_memory_nosocket = true; 6990 if (!strcmp(token, "nokmem")) 6991 cgroup_memory_nokmem = true; 6992 } 6993 return 1; 6994 } 6995 __setup("cgroup.memory=", cgroup_memory); 6996 6997 /* 6998 * subsys_initcall() for memory controller. 6999 * 7000 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7001 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7002 * basically everything that doesn't depend on a specific mem_cgroup structure 7003 * should be initialized from here. 7004 */ 7005 static int __init mem_cgroup_init(void) 7006 { 7007 int cpu, node; 7008 7009 /* 7010 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7011 * used for per-memcg-per-cpu caching of per-node statistics. In order 7012 * to work fine, we should make sure that the overfill threshold can't 7013 * exceed S32_MAX / PAGE_SIZE. 7014 */ 7015 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7016 7017 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7018 memcg_hotplug_cpu_dead); 7019 7020 for_each_possible_cpu(cpu) 7021 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7022 drain_local_stock); 7023 7024 for_each_node(node) { 7025 struct mem_cgroup_tree_per_node *rtpn; 7026 7027 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7028 node_online(node) ? node : NUMA_NO_NODE); 7029 7030 rtpn->rb_root = RB_ROOT; 7031 rtpn->rb_rightmost = NULL; 7032 spin_lock_init(&rtpn->lock); 7033 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7034 } 7035 7036 return 0; 7037 } 7038 subsys_initcall(mem_cgroup_init); 7039 7040 #ifdef CONFIG_MEMCG_SWAP 7041 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7042 { 7043 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7044 /* 7045 * The root cgroup cannot be destroyed, so it's refcount must 7046 * always be >= 1. 7047 */ 7048 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 7049 VM_BUG_ON(1); 7050 break; 7051 } 7052 memcg = parent_mem_cgroup(memcg); 7053 if (!memcg) 7054 memcg = root_mem_cgroup; 7055 } 7056 return memcg; 7057 } 7058 7059 /** 7060 * mem_cgroup_swapout - transfer a memsw charge to swap 7061 * @folio: folio whose memsw charge to transfer 7062 * @entry: swap entry to move the charge to 7063 * 7064 * Transfer the memsw charge of @folio to @entry. 7065 */ 7066 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 7067 { 7068 struct mem_cgroup *memcg, *swap_memcg; 7069 unsigned int nr_entries; 7070 unsigned short oldid; 7071 7072 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7073 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 7074 7075 if (mem_cgroup_disabled()) 7076 return; 7077 7078 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7079 return; 7080 7081 memcg = folio_memcg(folio); 7082 7083 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7084 if (!memcg) 7085 return; 7086 7087 /* 7088 * In case the memcg owning these pages has been offlined and doesn't 7089 * have an ID allocated to it anymore, charge the closest online 7090 * ancestor for the swap instead and transfer the memory+swap charge. 7091 */ 7092 swap_memcg = mem_cgroup_id_get_online(memcg); 7093 nr_entries = folio_nr_pages(folio); 7094 /* Get references for the tail pages, too */ 7095 if (nr_entries > 1) 7096 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7097 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7098 nr_entries); 7099 VM_BUG_ON_FOLIO(oldid, folio); 7100 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7101 7102 folio->memcg_data = 0; 7103 7104 if (!mem_cgroup_is_root(memcg)) 7105 page_counter_uncharge(&memcg->memory, nr_entries); 7106 7107 if (!cgroup_memory_noswap && memcg != swap_memcg) { 7108 if (!mem_cgroup_is_root(swap_memcg)) 7109 page_counter_charge(&swap_memcg->memsw, nr_entries); 7110 page_counter_uncharge(&memcg->memsw, nr_entries); 7111 } 7112 7113 /* 7114 * Interrupts should be disabled here because the caller holds the 7115 * i_pages lock which is taken with interrupts-off. It is 7116 * important here to have the interrupts disabled because it is the 7117 * only synchronisation we have for updating the per-CPU variables. 7118 */ 7119 memcg_stats_lock(); 7120 mem_cgroup_charge_statistics(memcg, -nr_entries); 7121 memcg_stats_unlock(); 7122 memcg_check_events(memcg, folio_nid(folio)); 7123 7124 css_put(&memcg->css); 7125 } 7126 7127 /** 7128 * __mem_cgroup_try_charge_swap - try charging swap space for a page 7129 * @page: page being added to swap 7130 * @entry: swap entry to charge 7131 * 7132 * Try to charge @page's memcg for the swap space at @entry. 7133 * 7134 * Returns 0 on success, -ENOMEM on failure. 7135 */ 7136 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 7137 { 7138 unsigned int nr_pages = thp_nr_pages(page); 7139 struct page_counter *counter; 7140 struct mem_cgroup *memcg; 7141 unsigned short oldid; 7142 7143 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7144 return 0; 7145 7146 memcg = page_memcg(page); 7147 7148 VM_WARN_ON_ONCE_PAGE(!memcg, page); 7149 if (!memcg) 7150 return 0; 7151 7152 if (!entry.val) { 7153 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7154 return 0; 7155 } 7156 7157 memcg = mem_cgroup_id_get_online(memcg); 7158 7159 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) && 7160 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7161 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7162 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7163 mem_cgroup_id_put(memcg); 7164 return -ENOMEM; 7165 } 7166 7167 /* Get references for the tail pages, too */ 7168 if (nr_pages > 1) 7169 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7170 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7171 VM_BUG_ON_PAGE(oldid, page); 7172 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7173 7174 return 0; 7175 } 7176 7177 /** 7178 * __mem_cgroup_uncharge_swap - uncharge swap space 7179 * @entry: swap entry to uncharge 7180 * @nr_pages: the amount of swap space to uncharge 7181 */ 7182 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7183 { 7184 struct mem_cgroup *memcg; 7185 unsigned short id; 7186 7187 id = swap_cgroup_record(entry, 0, nr_pages); 7188 rcu_read_lock(); 7189 memcg = mem_cgroup_from_id(id); 7190 if (memcg) { 7191 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) { 7192 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7193 page_counter_uncharge(&memcg->swap, nr_pages); 7194 else 7195 page_counter_uncharge(&memcg->memsw, nr_pages); 7196 } 7197 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7198 mem_cgroup_id_put_many(memcg, nr_pages); 7199 } 7200 rcu_read_unlock(); 7201 } 7202 7203 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7204 { 7205 long nr_swap_pages = get_nr_swap_pages(); 7206 7207 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7208 return nr_swap_pages; 7209 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7210 nr_swap_pages = min_t(long, nr_swap_pages, 7211 READ_ONCE(memcg->swap.max) - 7212 page_counter_read(&memcg->swap)); 7213 return nr_swap_pages; 7214 } 7215 7216 bool mem_cgroup_swap_full(struct page *page) 7217 { 7218 struct mem_cgroup *memcg; 7219 7220 VM_BUG_ON_PAGE(!PageLocked(page), page); 7221 7222 if (vm_swap_full()) 7223 return true; 7224 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7225 return false; 7226 7227 memcg = page_memcg(page); 7228 if (!memcg) 7229 return false; 7230 7231 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 7232 unsigned long usage = page_counter_read(&memcg->swap); 7233 7234 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7235 usage * 2 >= READ_ONCE(memcg->swap.max)) 7236 return true; 7237 } 7238 7239 return false; 7240 } 7241 7242 static int __init setup_swap_account(char *s) 7243 { 7244 if (!strcmp(s, "1")) 7245 cgroup_memory_noswap = false; 7246 else if (!strcmp(s, "0")) 7247 cgroup_memory_noswap = true; 7248 return 1; 7249 } 7250 __setup("swapaccount=", setup_swap_account); 7251 7252 static u64 swap_current_read(struct cgroup_subsys_state *css, 7253 struct cftype *cft) 7254 { 7255 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7256 7257 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7258 } 7259 7260 static int swap_high_show(struct seq_file *m, void *v) 7261 { 7262 return seq_puts_memcg_tunable(m, 7263 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7264 } 7265 7266 static ssize_t swap_high_write(struct kernfs_open_file *of, 7267 char *buf, size_t nbytes, loff_t off) 7268 { 7269 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7270 unsigned long high; 7271 int err; 7272 7273 buf = strstrip(buf); 7274 err = page_counter_memparse(buf, "max", &high); 7275 if (err) 7276 return err; 7277 7278 page_counter_set_high(&memcg->swap, high); 7279 7280 return nbytes; 7281 } 7282 7283 static int swap_max_show(struct seq_file *m, void *v) 7284 { 7285 return seq_puts_memcg_tunable(m, 7286 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7287 } 7288 7289 static ssize_t swap_max_write(struct kernfs_open_file *of, 7290 char *buf, size_t nbytes, loff_t off) 7291 { 7292 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7293 unsigned long max; 7294 int err; 7295 7296 buf = strstrip(buf); 7297 err = page_counter_memparse(buf, "max", &max); 7298 if (err) 7299 return err; 7300 7301 xchg(&memcg->swap.max, max); 7302 7303 return nbytes; 7304 } 7305 7306 static int swap_events_show(struct seq_file *m, void *v) 7307 { 7308 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7309 7310 seq_printf(m, "high %lu\n", 7311 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7312 seq_printf(m, "max %lu\n", 7313 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7314 seq_printf(m, "fail %lu\n", 7315 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7316 7317 return 0; 7318 } 7319 7320 static struct cftype swap_files[] = { 7321 { 7322 .name = "swap.current", 7323 .flags = CFTYPE_NOT_ON_ROOT, 7324 .read_u64 = swap_current_read, 7325 }, 7326 { 7327 .name = "swap.high", 7328 .flags = CFTYPE_NOT_ON_ROOT, 7329 .seq_show = swap_high_show, 7330 .write = swap_high_write, 7331 }, 7332 { 7333 .name = "swap.max", 7334 .flags = CFTYPE_NOT_ON_ROOT, 7335 .seq_show = swap_max_show, 7336 .write = swap_max_write, 7337 }, 7338 { 7339 .name = "swap.events", 7340 .flags = CFTYPE_NOT_ON_ROOT, 7341 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7342 .seq_show = swap_events_show, 7343 }, 7344 { } /* terminate */ 7345 }; 7346 7347 static struct cftype memsw_files[] = { 7348 { 7349 .name = "memsw.usage_in_bytes", 7350 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7351 .read_u64 = mem_cgroup_read_u64, 7352 }, 7353 { 7354 .name = "memsw.max_usage_in_bytes", 7355 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7356 .write = mem_cgroup_reset, 7357 .read_u64 = mem_cgroup_read_u64, 7358 }, 7359 { 7360 .name = "memsw.limit_in_bytes", 7361 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7362 .write = mem_cgroup_write, 7363 .read_u64 = mem_cgroup_read_u64, 7364 }, 7365 { 7366 .name = "memsw.failcnt", 7367 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7368 .write = mem_cgroup_reset, 7369 .read_u64 = mem_cgroup_read_u64, 7370 }, 7371 { }, /* terminate */ 7372 }; 7373 7374 /* 7375 * If mem_cgroup_swap_init() is implemented as a subsys_initcall() 7376 * instead of a core_initcall(), this could mean cgroup_memory_noswap still 7377 * remains set to false even when memcg is disabled via "cgroup_disable=memory" 7378 * boot parameter. This may result in premature OOPS inside 7379 * mem_cgroup_get_nr_swap_pages() function in corner cases. 7380 */ 7381 static int __init mem_cgroup_swap_init(void) 7382 { 7383 /* No memory control -> no swap control */ 7384 if (mem_cgroup_disabled()) 7385 cgroup_memory_noswap = true; 7386 7387 if (cgroup_memory_noswap) 7388 return 0; 7389 7390 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7391 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7392 7393 return 0; 7394 } 7395 core_initcall(mem_cgroup_swap_init); 7396 7397 #endif /* CONFIG_MEMCG_SWAP */ 7398