xref: /openbmc/linux/mm/memcontrol.c (revision 0a4cad9c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 
71 #include <linux/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 
80 /* Active memory cgroup to use from an interrupt context */
81 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
82 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
83 
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket __ro_after_init;
86 
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem __ro_after_init;
89 
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 bool cgroup_memory_noswap __ro_after_init;
93 #else
94 #define cgroup_memory_noswap		1
95 #endif
96 
97 #ifdef CONFIG_CGROUP_WRITEBACK
98 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
99 #endif
100 
101 /* Whether legacy memory+swap accounting is active */
102 static bool do_memsw_account(void)
103 {
104 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
105 }
106 
107 #define THRESHOLDS_EVENTS_TARGET 128
108 #define SOFTLIMIT_EVENTS_TARGET 1024
109 
110 /*
111  * Cgroups above their limits are maintained in a RB-Tree, independent of
112  * their hierarchy representation
113  */
114 
115 struct mem_cgroup_tree_per_node {
116 	struct rb_root rb_root;
117 	struct rb_node *rb_rightmost;
118 	spinlock_t lock;
119 };
120 
121 struct mem_cgroup_tree {
122 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
123 };
124 
125 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
126 
127 /* for OOM */
128 struct mem_cgroup_eventfd_list {
129 	struct list_head list;
130 	struct eventfd_ctx *eventfd;
131 };
132 
133 /*
134  * cgroup_event represents events which userspace want to receive.
135  */
136 struct mem_cgroup_event {
137 	/*
138 	 * memcg which the event belongs to.
139 	 */
140 	struct mem_cgroup *memcg;
141 	/*
142 	 * eventfd to signal userspace about the event.
143 	 */
144 	struct eventfd_ctx *eventfd;
145 	/*
146 	 * Each of these stored in a list by the cgroup.
147 	 */
148 	struct list_head list;
149 	/*
150 	 * register_event() callback will be used to add new userspace
151 	 * waiter for changes related to this event.  Use eventfd_signal()
152 	 * on eventfd to send notification to userspace.
153 	 */
154 	int (*register_event)(struct mem_cgroup *memcg,
155 			      struct eventfd_ctx *eventfd, const char *args);
156 	/*
157 	 * unregister_event() callback will be called when userspace closes
158 	 * the eventfd or on cgroup removing.  This callback must be set,
159 	 * if you want provide notification functionality.
160 	 */
161 	void (*unregister_event)(struct mem_cgroup *memcg,
162 				 struct eventfd_ctx *eventfd);
163 	/*
164 	 * All fields below needed to unregister event when
165 	 * userspace closes eventfd.
166 	 */
167 	poll_table pt;
168 	wait_queue_head_t *wqh;
169 	wait_queue_entry_t wait;
170 	struct work_struct remove;
171 };
172 
173 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
174 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
175 
176 /* Stuffs for move charges at task migration. */
177 /*
178  * Types of charges to be moved.
179  */
180 #define MOVE_ANON	0x1U
181 #define MOVE_FILE	0x2U
182 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
183 
184 /* "mc" and its members are protected by cgroup_mutex */
185 static struct move_charge_struct {
186 	spinlock_t	  lock; /* for from, to */
187 	struct mm_struct  *mm;
188 	struct mem_cgroup *from;
189 	struct mem_cgroup *to;
190 	unsigned long flags;
191 	unsigned long precharge;
192 	unsigned long moved_charge;
193 	unsigned long moved_swap;
194 	struct task_struct *moving_task;	/* a task moving charges */
195 	wait_queue_head_t waitq;		/* a waitq for other context */
196 } mc = {
197 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
198 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
199 };
200 
201 /*
202  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
203  * limit reclaim to prevent infinite loops, if they ever occur.
204  */
205 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
206 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
207 
208 /* for encoding cft->private value on file */
209 enum res_type {
210 	_MEM,
211 	_MEMSWAP,
212 	_OOM_TYPE,
213 	_KMEM,
214 	_TCP,
215 };
216 
217 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
218 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
219 #define MEMFILE_ATTR(val)	((val) & 0xffff)
220 /* Used for OOM notifier */
221 #define OOM_CONTROL		(0)
222 
223 /*
224  * Iteration constructs for visiting all cgroups (under a tree).  If
225  * loops are exited prematurely (break), mem_cgroup_iter_break() must
226  * be used for reference counting.
227  */
228 #define for_each_mem_cgroup_tree(iter, root)		\
229 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
230 	     iter != NULL;				\
231 	     iter = mem_cgroup_iter(root, iter, NULL))
232 
233 #define for_each_mem_cgroup(iter)			\
234 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
235 	     iter != NULL;				\
236 	     iter = mem_cgroup_iter(NULL, iter, NULL))
237 
238 static inline bool task_is_dying(void)
239 {
240 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
241 		(current->flags & PF_EXITING);
242 }
243 
244 /* Some nice accessors for the vmpressure. */
245 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
246 {
247 	if (!memcg)
248 		memcg = root_mem_cgroup;
249 	return &memcg->vmpressure;
250 }
251 
252 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
253 {
254 	return container_of(vmpr, struct mem_cgroup, vmpressure);
255 }
256 
257 #ifdef CONFIG_MEMCG_KMEM
258 static DEFINE_SPINLOCK(objcg_lock);
259 
260 bool mem_cgroup_kmem_disabled(void)
261 {
262 	return cgroup_memory_nokmem;
263 }
264 
265 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
266 				      unsigned int nr_pages);
267 
268 static void obj_cgroup_release(struct percpu_ref *ref)
269 {
270 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
271 	unsigned int nr_bytes;
272 	unsigned int nr_pages;
273 	unsigned long flags;
274 
275 	/*
276 	 * At this point all allocated objects are freed, and
277 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
278 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
279 	 *
280 	 * The following sequence can lead to it:
281 	 * 1) CPU0: objcg == stock->cached_objcg
282 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
283 	 *          PAGE_SIZE bytes are charged
284 	 * 3) CPU1: a process from another memcg is allocating something,
285 	 *          the stock if flushed,
286 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
287 	 * 5) CPU0: we do release this object,
288 	 *          92 bytes are added to stock->nr_bytes
289 	 * 6) CPU0: stock is flushed,
290 	 *          92 bytes are added to objcg->nr_charged_bytes
291 	 *
292 	 * In the result, nr_charged_bytes == PAGE_SIZE.
293 	 * This page will be uncharged in obj_cgroup_release().
294 	 */
295 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
296 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
297 	nr_pages = nr_bytes >> PAGE_SHIFT;
298 
299 	if (nr_pages)
300 		obj_cgroup_uncharge_pages(objcg, nr_pages);
301 
302 	spin_lock_irqsave(&objcg_lock, flags);
303 	list_del(&objcg->list);
304 	spin_unlock_irqrestore(&objcg_lock, flags);
305 
306 	percpu_ref_exit(ref);
307 	kfree_rcu(objcg, rcu);
308 }
309 
310 static struct obj_cgroup *obj_cgroup_alloc(void)
311 {
312 	struct obj_cgroup *objcg;
313 	int ret;
314 
315 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
316 	if (!objcg)
317 		return NULL;
318 
319 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
320 			      GFP_KERNEL);
321 	if (ret) {
322 		kfree(objcg);
323 		return NULL;
324 	}
325 	INIT_LIST_HEAD(&objcg->list);
326 	return objcg;
327 }
328 
329 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
330 				  struct mem_cgroup *parent)
331 {
332 	struct obj_cgroup *objcg, *iter;
333 
334 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
335 
336 	spin_lock_irq(&objcg_lock);
337 
338 	/* 1) Ready to reparent active objcg. */
339 	list_add(&objcg->list, &memcg->objcg_list);
340 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
341 	list_for_each_entry(iter, &memcg->objcg_list, list)
342 		WRITE_ONCE(iter->memcg, parent);
343 	/* 3) Move already reparented objcgs to the parent's list */
344 	list_splice(&memcg->objcg_list, &parent->objcg_list);
345 
346 	spin_unlock_irq(&objcg_lock);
347 
348 	percpu_ref_kill(&objcg->refcnt);
349 }
350 
351 /*
352  * A lot of the calls to the cache allocation functions are expected to be
353  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
354  * conditional to this static branch, we'll have to allow modules that does
355  * kmem_cache_alloc and the such to see this symbol as well
356  */
357 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
358 EXPORT_SYMBOL(memcg_kmem_enabled_key);
359 #endif
360 
361 /**
362  * mem_cgroup_css_from_page - css of the memcg associated with a page
363  * @page: page of interest
364  *
365  * If memcg is bound to the default hierarchy, css of the memcg associated
366  * with @page is returned.  The returned css remains associated with @page
367  * until it is released.
368  *
369  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
370  * is returned.
371  */
372 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
373 {
374 	struct mem_cgroup *memcg;
375 
376 	memcg = page_memcg(page);
377 
378 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
379 		memcg = root_mem_cgroup;
380 
381 	return &memcg->css;
382 }
383 
384 /**
385  * page_cgroup_ino - return inode number of the memcg a page is charged to
386  * @page: the page
387  *
388  * Look up the closest online ancestor of the memory cgroup @page is charged to
389  * and return its inode number or 0 if @page is not charged to any cgroup. It
390  * is safe to call this function without holding a reference to @page.
391  *
392  * Note, this function is inherently racy, because there is nothing to prevent
393  * the cgroup inode from getting torn down and potentially reallocated a moment
394  * after page_cgroup_ino() returns, so it only should be used by callers that
395  * do not care (such as procfs interfaces).
396  */
397 ino_t page_cgroup_ino(struct page *page)
398 {
399 	struct mem_cgroup *memcg;
400 	unsigned long ino = 0;
401 
402 	rcu_read_lock();
403 	memcg = page_memcg_check(page);
404 
405 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
406 		memcg = parent_mem_cgroup(memcg);
407 	if (memcg)
408 		ino = cgroup_ino(memcg->css.cgroup);
409 	rcu_read_unlock();
410 	return ino;
411 }
412 
413 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
414 					 struct mem_cgroup_tree_per_node *mctz,
415 					 unsigned long new_usage_in_excess)
416 {
417 	struct rb_node **p = &mctz->rb_root.rb_node;
418 	struct rb_node *parent = NULL;
419 	struct mem_cgroup_per_node *mz_node;
420 	bool rightmost = true;
421 
422 	if (mz->on_tree)
423 		return;
424 
425 	mz->usage_in_excess = new_usage_in_excess;
426 	if (!mz->usage_in_excess)
427 		return;
428 	while (*p) {
429 		parent = *p;
430 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
431 					tree_node);
432 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
433 			p = &(*p)->rb_left;
434 			rightmost = false;
435 		} else {
436 			p = &(*p)->rb_right;
437 		}
438 	}
439 
440 	if (rightmost)
441 		mctz->rb_rightmost = &mz->tree_node;
442 
443 	rb_link_node(&mz->tree_node, parent, p);
444 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
445 	mz->on_tree = true;
446 }
447 
448 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
449 					 struct mem_cgroup_tree_per_node *mctz)
450 {
451 	if (!mz->on_tree)
452 		return;
453 
454 	if (&mz->tree_node == mctz->rb_rightmost)
455 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
456 
457 	rb_erase(&mz->tree_node, &mctz->rb_root);
458 	mz->on_tree = false;
459 }
460 
461 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
462 				       struct mem_cgroup_tree_per_node *mctz)
463 {
464 	unsigned long flags;
465 
466 	spin_lock_irqsave(&mctz->lock, flags);
467 	__mem_cgroup_remove_exceeded(mz, mctz);
468 	spin_unlock_irqrestore(&mctz->lock, flags);
469 }
470 
471 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
472 {
473 	unsigned long nr_pages = page_counter_read(&memcg->memory);
474 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
475 	unsigned long excess = 0;
476 
477 	if (nr_pages > soft_limit)
478 		excess = nr_pages - soft_limit;
479 
480 	return excess;
481 }
482 
483 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
484 {
485 	unsigned long excess;
486 	struct mem_cgroup_per_node *mz;
487 	struct mem_cgroup_tree_per_node *mctz;
488 
489 	mctz = soft_limit_tree.rb_tree_per_node[nid];
490 	if (!mctz)
491 		return;
492 	/*
493 	 * Necessary to update all ancestors when hierarchy is used.
494 	 * because their event counter is not touched.
495 	 */
496 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
497 		mz = memcg->nodeinfo[nid];
498 		excess = soft_limit_excess(memcg);
499 		/*
500 		 * We have to update the tree if mz is on RB-tree or
501 		 * mem is over its softlimit.
502 		 */
503 		if (excess || mz->on_tree) {
504 			unsigned long flags;
505 
506 			spin_lock_irqsave(&mctz->lock, flags);
507 			/* if on-tree, remove it */
508 			if (mz->on_tree)
509 				__mem_cgroup_remove_exceeded(mz, mctz);
510 			/*
511 			 * Insert again. mz->usage_in_excess will be updated.
512 			 * If excess is 0, no tree ops.
513 			 */
514 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
515 			spin_unlock_irqrestore(&mctz->lock, flags);
516 		}
517 	}
518 }
519 
520 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
521 {
522 	struct mem_cgroup_tree_per_node *mctz;
523 	struct mem_cgroup_per_node *mz;
524 	int nid;
525 
526 	for_each_node(nid) {
527 		mz = memcg->nodeinfo[nid];
528 		mctz = soft_limit_tree.rb_tree_per_node[nid];
529 		if (mctz)
530 			mem_cgroup_remove_exceeded(mz, mctz);
531 	}
532 }
533 
534 static struct mem_cgroup_per_node *
535 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
536 {
537 	struct mem_cgroup_per_node *mz;
538 
539 retry:
540 	mz = NULL;
541 	if (!mctz->rb_rightmost)
542 		goto done;		/* Nothing to reclaim from */
543 
544 	mz = rb_entry(mctz->rb_rightmost,
545 		      struct mem_cgroup_per_node, tree_node);
546 	/*
547 	 * Remove the node now but someone else can add it back,
548 	 * we will to add it back at the end of reclaim to its correct
549 	 * position in the tree.
550 	 */
551 	__mem_cgroup_remove_exceeded(mz, mctz);
552 	if (!soft_limit_excess(mz->memcg) ||
553 	    !css_tryget(&mz->memcg->css))
554 		goto retry;
555 done:
556 	return mz;
557 }
558 
559 static struct mem_cgroup_per_node *
560 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
561 {
562 	struct mem_cgroup_per_node *mz;
563 
564 	spin_lock_irq(&mctz->lock);
565 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
566 	spin_unlock_irq(&mctz->lock);
567 	return mz;
568 }
569 
570 /*
571  * memcg and lruvec stats flushing
572  *
573  * Many codepaths leading to stats update or read are performance sensitive and
574  * adding stats flushing in such codepaths is not desirable. So, to optimize the
575  * flushing the kernel does:
576  *
577  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
578  *    rstat update tree grow unbounded.
579  *
580  * 2) Flush the stats synchronously on reader side only when there are more than
581  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
582  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
583  *    only for 2 seconds due to (1).
584  */
585 static void flush_memcg_stats_dwork(struct work_struct *w);
586 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
587 static DEFINE_SPINLOCK(stats_flush_lock);
588 static DEFINE_PER_CPU(unsigned int, stats_updates);
589 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
590 
591 /*
592  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
593  * not rely on this as part of an acquired spinlock_t lock. These functions are
594  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
595  * is sufficient.
596  */
597 static void memcg_stats_lock(void)
598 {
599 #ifdef CONFIG_PREEMPT_RT
600       preempt_disable();
601 #else
602       VM_BUG_ON(!irqs_disabled());
603 #endif
604 }
605 
606 static void __memcg_stats_lock(void)
607 {
608 #ifdef CONFIG_PREEMPT_RT
609       preempt_disable();
610 #endif
611 }
612 
613 static void memcg_stats_unlock(void)
614 {
615 #ifdef CONFIG_PREEMPT_RT
616       preempt_enable();
617 #endif
618 }
619 
620 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
621 {
622 	unsigned int x;
623 
624 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
625 
626 	x = __this_cpu_add_return(stats_updates, abs(val));
627 	if (x > MEMCG_CHARGE_BATCH) {
628 		atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
629 		__this_cpu_write(stats_updates, 0);
630 	}
631 }
632 
633 static void __mem_cgroup_flush_stats(void)
634 {
635 	unsigned long flag;
636 
637 	if (!spin_trylock_irqsave(&stats_flush_lock, flag))
638 		return;
639 
640 	cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
641 	atomic_set(&stats_flush_threshold, 0);
642 	spin_unlock_irqrestore(&stats_flush_lock, flag);
643 }
644 
645 void mem_cgroup_flush_stats(void)
646 {
647 	if (atomic_read(&stats_flush_threshold) > num_online_cpus())
648 		__mem_cgroup_flush_stats();
649 }
650 
651 static void flush_memcg_stats_dwork(struct work_struct *w)
652 {
653 	__mem_cgroup_flush_stats();
654 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
655 }
656 
657 /**
658  * __mod_memcg_state - update cgroup memory statistics
659  * @memcg: the memory cgroup
660  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
661  * @val: delta to add to the counter, can be negative
662  */
663 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
664 {
665 	if (mem_cgroup_disabled())
666 		return;
667 
668 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
669 	memcg_rstat_updated(memcg, val);
670 }
671 
672 /* idx can be of type enum memcg_stat_item or node_stat_item. */
673 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
674 {
675 	long x = 0;
676 	int cpu;
677 
678 	for_each_possible_cpu(cpu)
679 		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
680 #ifdef CONFIG_SMP
681 	if (x < 0)
682 		x = 0;
683 #endif
684 	return x;
685 }
686 
687 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
688 			      int val)
689 {
690 	struct mem_cgroup_per_node *pn;
691 	struct mem_cgroup *memcg;
692 
693 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
694 	memcg = pn->memcg;
695 
696 	/*
697 	 * The caller from rmap relay on disabled preemption becase they never
698 	 * update their counter from in-interrupt context. For these two
699 	 * counters we check that the update is never performed from an
700 	 * interrupt context while other caller need to have disabled interrupt.
701 	 */
702 	__memcg_stats_lock();
703 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) {
704 		switch (idx) {
705 		case NR_ANON_MAPPED:
706 		case NR_FILE_MAPPED:
707 		case NR_ANON_THPS:
708 		case NR_SHMEM_PMDMAPPED:
709 		case NR_FILE_PMDMAPPED:
710 			WARN_ON_ONCE(!in_task());
711 			break;
712 		default:
713 			WARN_ON_ONCE(!irqs_disabled());
714 		}
715 	}
716 
717 	/* Update memcg */
718 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
719 
720 	/* Update lruvec */
721 	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
722 
723 	memcg_rstat_updated(memcg, val);
724 	memcg_stats_unlock();
725 }
726 
727 /**
728  * __mod_lruvec_state - update lruvec memory statistics
729  * @lruvec: the lruvec
730  * @idx: the stat item
731  * @val: delta to add to the counter, can be negative
732  *
733  * The lruvec is the intersection of the NUMA node and a cgroup. This
734  * function updates the all three counters that are affected by a
735  * change of state at this level: per-node, per-cgroup, per-lruvec.
736  */
737 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
738 			int val)
739 {
740 	/* Update node */
741 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
742 
743 	/* Update memcg and lruvec */
744 	if (!mem_cgroup_disabled())
745 		__mod_memcg_lruvec_state(lruvec, idx, val);
746 }
747 
748 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
749 			     int val)
750 {
751 	struct page *head = compound_head(page); /* rmap on tail pages */
752 	struct mem_cgroup *memcg;
753 	pg_data_t *pgdat = page_pgdat(page);
754 	struct lruvec *lruvec;
755 
756 	rcu_read_lock();
757 	memcg = page_memcg(head);
758 	/* Untracked pages have no memcg, no lruvec. Update only the node */
759 	if (!memcg) {
760 		rcu_read_unlock();
761 		__mod_node_page_state(pgdat, idx, val);
762 		return;
763 	}
764 
765 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
766 	__mod_lruvec_state(lruvec, idx, val);
767 	rcu_read_unlock();
768 }
769 EXPORT_SYMBOL(__mod_lruvec_page_state);
770 
771 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
772 {
773 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
774 	struct mem_cgroup *memcg;
775 	struct lruvec *lruvec;
776 
777 	rcu_read_lock();
778 	memcg = mem_cgroup_from_obj(p);
779 
780 	/*
781 	 * Untracked pages have no memcg, no lruvec. Update only the
782 	 * node. If we reparent the slab objects to the root memcg,
783 	 * when we free the slab object, we need to update the per-memcg
784 	 * vmstats to keep it correct for the root memcg.
785 	 */
786 	if (!memcg) {
787 		__mod_node_page_state(pgdat, idx, val);
788 	} else {
789 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
790 		__mod_lruvec_state(lruvec, idx, val);
791 	}
792 	rcu_read_unlock();
793 }
794 
795 /**
796  * __count_memcg_events - account VM events in a cgroup
797  * @memcg: the memory cgroup
798  * @idx: the event item
799  * @count: the number of events that occurred
800  */
801 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
802 			  unsigned long count)
803 {
804 	if (mem_cgroup_disabled())
805 		return;
806 
807 	memcg_stats_lock();
808 	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
809 	memcg_rstat_updated(memcg, count);
810 	memcg_stats_unlock();
811 }
812 
813 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
814 {
815 	return READ_ONCE(memcg->vmstats.events[event]);
816 }
817 
818 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
819 {
820 	long x = 0;
821 	int cpu;
822 
823 	for_each_possible_cpu(cpu)
824 		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
825 	return x;
826 }
827 
828 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
829 					 int nr_pages)
830 {
831 	/* pagein of a big page is an event. So, ignore page size */
832 	if (nr_pages > 0)
833 		__count_memcg_events(memcg, PGPGIN, 1);
834 	else {
835 		__count_memcg_events(memcg, PGPGOUT, 1);
836 		nr_pages = -nr_pages; /* for event */
837 	}
838 
839 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
840 }
841 
842 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
843 				       enum mem_cgroup_events_target target)
844 {
845 	unsigned long val, next;
846 
847 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
848 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
849 	/* from time_after() in jiffies.h */
850 	if ((long)(next - val) < 0) {
851 		switch (target) {
852 		case MEM_CGROUP_TARGET_THRESH:
853 			next = val + THRESHOLDS_EVENTS_TARGET;
854 			break;
855 		case MEM_CGROUP_TARGET_SOFTLIMIT:
856 			next = val + SOFTLIMIT_EVENTS_TARGET;
857 			break;
858 		default:
859 			break;
860 		}
861 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
862 		return true;
863 	}
864 	return false;
865 }
866 
867 /*
868  * Check events in order.
869  *
870  */
871 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
872 {
873 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
874 		return;
875 
876 	/* threshold event is triggered in finer grain than soft limit */
877 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
878 						MEM_CGROUP_TARGET_THRESH))) {
879 		bool do_softlimit;
880 
881 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
882 						MEM_CGROUP_TARGET_SOFTLIMIT);
883 		mem_cgroup_threshold(memcg);
884 		if (unlikely(do_softlimit))
885 			mem_cgroup_update_tree(memcg, nid);
886 	}
887 }
888 
889 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
890 {
891 	/*
892 	 * mm_update_next_owner() may clear mm->owner to NULL
893 	 * if it races with swapoff, page migration, etc.
894 	 * So this can be called with p == NULL.
895 	 */
896 	if (unlikely(!p))
897 		return NULL;
898 
899 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
900 }
901 EXPORT_SYMBOL(mem_cgroup_from_task);
902 
903 static __always_inline struct mem_cgroup *active_memcg(void)
904 {
905 	if (!in_task())
906 		return this_cpu_read(int_active_memcg);
907 	else
908 		return current->active_memcg;
909 }
910 
911 /**
912  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
913  * @mm: mm from which memcg should be extracted. It can be NULL.
914  *
915  * Obtain a reference on mm->memcg and returns it if successful. If mm
916  * is NULL, then the memcg is chosen as follows:
917  * 1) The active memcg, if set.
918  * 2) current->mm->memcg, if available
919  * 3) root memcg
920  * If mem_cgroup is disabled, NULL is returned.
921  */
922 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
923 {
924 	struct mem_cgroup *memcg;
925 
926 	if (mem_cgroup_disabled())
927 		return NULL;
928 
929 	/*
930 	 * Page cache insertions can happen without an
931 	 * actual mm context, e.g. during disk probing
932 	 * on boot, loopback IO, acct() writes etc.
933 	 *
934 	 * No need to css_get on root memcg as the reference
935 	 * counting is disabled on the root level in the
936 	 * cgroup core. See CSS_NO_REF.
937 	 */
938 	if (unlikely(!mm)) {
939 		memcg = active_memcg();
940 		if (unlikely(memcg)) {
941 			/* remote memcg must hold a ref */
942 			css_get(&memcg->css);
943 			return memcg;
944 		}
945 		mm = current->mm;
946 		if (unlikely(!mm))
947 			return root_mem_cgroup;
948 	}
949 
950 	rcu_read_lock();
951 	do {
952 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
953 		if (unlikely(!memcg))
954 			memcg = root_mem_cgroup;
955 	} while (!css_tryget(&memcg->css));
956 	rcu_read_unlock();
957 	return memcg;
958 }
959 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
960 
961 static __always_inline bool memcg_kmem_bypass(void)
962 {
963 	/* Allow remote memcg charging from any context. */
964 	if (unlikely(active_memcg()))
965 		return false;
966 
967 	/* Memcg to charge can't be determined. */
968 	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
969 		return true;
970 
971 	return false;
972 }
973 
974 /**
975  * mem_cgroup_iter - iterate over memory cgroup hierarchy
976  * @root: hierarchy root
977  * @prev: previously returned memcg, NULL on first invocation
978  * @reclaim: cookie for shared reclaim walks, NULL for full walks
979  *
980  * Returns references to children of the hierarchy below @root, or
981  * @root itself, or %NULL after a full round-trip.
982  *
983  * Caller must pass the return value in @prev on subsequent
984  * invocations for reference counting, or use mem_cgroup_iter_break()
985  * to cancel a hierarchy walk before the round-trip is complete.
986  *
987  * Reclaimers can specify a node in @reclaim to divide up the memcgs
988  * in the hierarchy among all concurrent reclaimers operating on the
989  * same node.
990  */
991 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
992 				   struct mem_cgroup *prev,
993 				   struct mem_cgroup_reclaim_cookie *reclaim)
994 {
995 	struct mem_cgroup_reclaim_iter *iter;
996 	struct cgroup_subsys_state *css = NULL;
997 	struct mem_cgroup *memcg = NULL;
998 	struct mem_cgroup *pos = NULL;
999 
1000 	if (mem_cgroup_disabled())
1001 		return NULL;
1002 
1003 	if (!root)
1004 		root = root_mem_cgroup;
1005 
1006 	if (prev && !reclaim)
1007 		pos = prev;
1008 
1009 	rcu_read_lock();
1010 
1011 	if (reclaim) {
1012 		struct mem_cgroup_per_node *mz;
1013 
1014 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1015 		iter = &mz->iter;
1016 
1017 		if (prev && reclaim->generation != iter->generation)
1018 			goto out_unlock;
1019 
1020 		while (1) {
1021 			pos = READ_ONCE(iter->position);
1022 			if (!pos || css_tryget(&pos->css))
1023 				break;
1024 			/*
1025 			 * css reference reached zero, so iter->position will
1026 			 * be cleared by ->css_released. However, we should not
1027 			 * rely on this happening soon, because ->css_released
1028 			 * is called from a work queue, and by busy-waiting we
1029 			 * might block it. So we clear iter->position right
1030 			 * away.
1031 			 */
1032 			(void)cmpxchg(&iter->position, pos, NULL);
1033 		}
1034 	}
1035 
1036 	if (pos)
1037 		css = &pos->css;
1038 
1039 	for (;;) {
1040 		css = css_next_descendant_pre(css, &root->css);
1041 		if (!css) {
1042 			/*
1043 			 * Reclaimers share the hierarchy walk, and a
1044 			 * new one might jump in right at the end of
1045 			 * the hierarchy - make sure they see at least
1046 			 * one group and restart from the beginning.
1047 			 */
1048 			if (!prev)
1049 				continue;
1050 			break;
1051 		}
1052 
1053 		/*
1054 		 * Verify the css and acquire a reference.  The root
1055 		 * is provided by the caller, so we know it's alive
1056 		 * and kicking, and don't take an extra reference.
1057 		 */
1058 		memcg = mem_cgroup_from_css(css);
1059 
1060 		if (css == &root->css)
1061 			break;
1062 
1063 		if (css_tryget(css))
1064 			break;
1065 
1066 		memcg = NULL;
1067 	}
1068 
1069 	if (reclaim) {
1070 		/*
1071 		 * The position could have already been updated by a competing
1072 		 * thread, so check that the value hasn't changed since we read
1073 		 * it to avoid reclaiming from the same cgroup twice.
1074 		 */
1075 		(void)cmpxchg(&iter->position, pos, memcg);
1076 
1077 		if (pos)
1078 			css_put(&pos->css);
1079 
1080 		if (!memcg)
1081 			iter->generation++;
1082 		else if (!prev)
1083 			reclaim->generation = iter->generation;
1084 	}
1085 
1086 out_unlock:
1087 	rcu_read_unlock();
1088 	if (prev && prev != root)
1089 		css_put(&prev->css);
1090 
1091 	return memcg;
1092 }
1093 
1094 /**
1095  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1096  * @root: hierarchy root
1097  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1098  */
1099 void mem_cgroup_iter_break(struct mem_cgroup *root,
1100 			   struct mem_cgroup *prev)
1101 {
1102 	if (!root)
1103 		root = root_mem_cgroup;
1104 	if (prev && prev != root)
1105 		css_put(&prev->css);
1106 }
1107 
1108 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1109 					struct mem_cgroup *dead_memcg)
1110 {
1111 	struct mem_cgroup_reclaim_iter *iter;
1112 	struct mem_cgroup_per_node *mz;
1113 	int nid;
1114 
1115 	for_each_node(nid) {
1116 		mz = from->nodeinfo[nid];
1117 		iter = &mz->iter;
1118 		cmpxchg(&iter->position, dead_memcg, NULL);
1119 	}
1120 }
1121 
1122 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1123 {
1124 	struct mem_cgroup *memcg = dead_memcg;
1125 	struct mem_cgroup *last;
1126 
1127 	do {
1128 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1129 		last = memcg;
1130 	} while ((memcg = parent_mem_cgroup(memcg)));
1131 
1132 	/*
1133 	 * When cgruop1 non-hierarchy mode is used,
1134 	 * parent_mem_cgroup() does not walk all the way up to the
1135 	 * cgroup root (root_mem_cgroup). So we have to handle
1136 	 * dead_memcg from cgroup root separately.
1137 	 */
1138 	if (last != root_mem_cgroup)
1139 		__invalidate_reclaim_iterators(root_mem_cgroup,
1140 						dead_memcg);
1141 }
1142 
1143 /**
1144  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1145  * @memcg: hierarchy root
1146  * @fn: function to call for each task
1147  * @arg: argument passed to @fn
1148  *
1149  * This function iterates over tasks attached to @memcg or to any of its
1150  * descendants and calls @fn for each task. If @fn returns a non-zero
1151  * value, the function breaks the iteration loop and returns the value.
1152  * Otherwise, it will iterate over all tasks and return 0.
1153  *
1154  * This function must not be called for the root memory cgroup.
1155  */
1156 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1157 			  int (*fn)(struct task_struct *, void *), void *arg)
1158 {
1159 	struct mem_cgroup *iter;
1160 	int ret = 0;
1161 
1162 	BUG_ON(memcg == root_mem_cgroup);
1163 
1164 	for_each_mem_cgroup_tree(iter, memcg) {
1165 		struct css_task_iter it;
1166 		struct task_struct *task;
1167 
1168 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1169 		while (!ret && (task = css_task_iter_next(&it)))
1170 			ret = fn(task, arg);
1171 		css_task_iter_end(&it);
1172 		if (ret) {
1173 			mem_cgroup_iter_break(memcg, iter);
1174 			break;
1175 		}
1176 	}
1177 	return ret;
1178 }
1179 
1180 #ifdef CONFIG_DEBUG_VM
1181 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1182 {
1183 	struct mem_cgroup *memcg;
1184 
1185 	if (mem_cgroup_disabled())
1186 		return;
1187 
1188 	memcg = folio_memcg(folio);
1189 
1190 	if (!memcg)
1191 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1192 	else
1193 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1194 }
1195 #endif
1196 
1197 /**
1198  * folio_lruvec_lock - Lock the lruvec for a folio.
1199  * @folio: Pointer to the folio.
1200  *
1201  * These functions are safe to use under any of the following conditions:
1202  * - folio locked
1203  * - folio_test_lru false
1204  * - folio_memcg_lock()
1205  * - folio frozen (refcount of 0)
1206  *
1207  * Return: The lruvec this folio is on with its lock held.
1208  */
1209 struct lruvec *folio_lruvec_lock(struct folio *folio)
1210 {
1211 	struct lruvec *lruvec = folio_lruvec(folio);
1212 
1213 	spin_lock(&lruvec->lru_lock);
1214 	lruvec_memcg_debug(lruvec, folio);
1215 
1216 	return lruvec;
1217 }
1218 
1219 /**
1220  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1221  * @folio: Pointer to the folio.
1222  *
1223  * These functions are safe to use under any of the following conditions:
1224  * - folio locked
1225  * - folio_test_lru false
1226  * - folio_memcg_lock()
1227  * - folio frozen (refcount of 0)
1228  *
1229  * Return: The lruvec this folio is on with its lock held and interrupts
1230  * disabled.
1231  */
1232 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1233 {
1234 	struct lruvec *lruvec = folio_lruvec(folio);
1235 
1236 	spin_lock_irq(&lruvec->lru_lock);
1237 	lruvec_memcg_debug(lruvec, folio);
1238 
1239 	return lruvec;
1240 }
1241 
1242 /**
1243  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1244  * @folio: Pointer to the folio.
1245  * @flags: Pointer to irqsave flags.
1246  *
1247  * These functions are safe to use under any of the following conditions:
1248  * - folio locked
1249  * - folio_test_lru false
1250  * - folio_memcg_lock()
1251  * - folio frozen (refcount of 0)
1252  *
1253  * Return: The lruvec this folio is on with its lock held and interrupts
1254  * disabled.
1255  */
1256 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1257 		unsigned long *flags)
1258 {
1259 	struct lruvec *lruvec = folio_lruvec(folio);
1260 
1261 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1262 	lruvec_memcg_debug(lruvec, folio);
1263 
1264 	return lruvec;
1265 }
1266 
1267 /**
1268  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1269  * @lruvec: mem_cgroup per zone lru vector
1270  * @lru: index of lru list the page is sitting on
1271  * @zid: zone id of the accounted pages
1272  * @nr_pages: positive when adding or negative when removing
1273  *
1274  * This function must be called under lru_lock, just before a page is added
1275  * to or just after a page is removed from an lru list.
1276  */
1277 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1278 				int zid, int nr_pages)
1279 {
1280 	struct mem_cgroup_per_node *mz;
1281 	unsigned long *lru_size;
1282 	long size;
1283 
1284 	if (mem_cgroup_disabled())
1285 		return;
1286 
1287 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1288 	lru_size = &mz->lru_zone_size[zid][lru];
1289 
1290 	if (nr_pages < 0)
1291 		*lru_size += nr_pages;
1292 
1293 	size = *lru_size;
1294 	if (WARN_ONCE(size < 0,
1295 		"%s(%p, %d, %d): lru_size %ld\n",
1296 		__func__, lruvec, lru, nr_pages, size)) {
1297 		VM_BUG_ON(1);
1298 		*lru_size = 0;
1299 	}
1300 
1301 	if (nr_pages > 0)
1302 		*lru_size += nr_pages;
1303 }
1304 
1305 /**
1306  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1307  * @memcg: the memory cgroup
1308  *
1309  * Returns the maximum amount of memory @mem can be charged with, in
1310  * pages.
1311  */
1312 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1313 {
1314 	unsigned long margin = 0;
1315 	unsigned long count;
1316 	unsigned long limit;
1317 
1318 	count = page_counter_read(&memcg->memory);
1319 	limit = READ_ONCE(memcg->memory.max);
1320 	if (count < limit)
1321 		margin = limit - count;
1322 
1323 	if (do_memsw_account()) {
1324 		count = page_counter_read(&memcg->memsw);
1325 		limit = READ_ONCE(memcg->memsw.max);
1326 		if (count < limit)
1327 			margin = min(margin, limit - count);
1328 		else
1329 			margin = 0;
1330 	}
1331 
1332 	return margin;
1333 }
1334 
1335 /*
1336  * A routine for checking "mem" is under move_account() or not.
1337  *
1338  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1339  * moving cgroups. This is for waiting at high-memory pressure
1340  * caused by "move".
1341  */
1342 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1343 {
1344 	struct mem_cgroup *from;
1345 	struct mem_cgroup *to;
1346 	bool ret = false;
1347 	/*
1348 	 * Unlike task_move routines, we access mc.to, mc.from not under
1349 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1350 	 */
1351 	spin_lock(&mc.lock);
1352 	from = mc.from;
1353 	to = mc.to;
1354 	if (!from)
1355 		goto unlock;
1356 
1357 	ret = mem_cgroup_is_descendant(from, memcg) ||
1358 		mem_cgroup_is_descendant(to, memcg);
1359 unlock:
1360 	spin_unlock(&mc.lock);
1361 	return ret;
1362 }
1363 
1364 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1365 {
1366 	if (mc.moving_task && current != mc.moving_task) {
1367 		if (mem_cgroup_under_move(memcg)) {
1368 			DEFINE_WAIT(wait);
1369 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1370 			/* moving charge context might have finished. */
1371 			if (mc.moving_task)
1372 				schedule();
1373 			finish_wait(&mc.waitq, &wait);
1374 			return true;
1375 		}
1376 	}
1377 	return false;
1378 }
1379 
1380 struct memory_stat {
1381 	const char *name;
1382 	unsigned int idx;
1383 };
1384 
1385 static const struct memory_stat memory_stats[] = {
1386 	{ "anon",			NR_ANON_MAPPED			},
1387 	{ "file",			NR_FILE_PAGES			},
1388 	{ "kernel",			MEMCG_KMEM			},
1389 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1390 	{ "pagetables",			NR_PAGETABLE			},
1391 	{ "percpu",			MEMCG_PERCPU_B			},
1392 	{ "sock",			MEMCG_SOCK			},
1393 	{ "vmalloc",			MEMCG_VMALLOC			},
1394 	{ "shmem",			NR_SHMEM			},
1395 	{ "file_mapped",		NR_FILE_MAPPED			},
1396 	{ "file_dirty",			NR_FILE_DIRTY			},
1397 	{ "file_writeback",		NR_WRITEBACK			},
1398 #ifdef CONFIG_SWAP
1399 	{ "swapcached",			NR_SWAPCACHE			},
1400 #endif
1401 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1402 	{ "anon_thp",			NR_ANON_THPS			},
1403 	{ "file_thp",			NR_FILE_THPS			},
1404 	{ "shmem_thp",			NR_SHMEM_THPS			},
1405 #endif
1406 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1407 	{ "active_anon",		NR_ACTIVE_ANON			},
1408 	{ "inactive_file",		NR_INACTIVE_FILE		},
1409 	{ "active_file",		NR_ACTIVE_FILE			},
1410 	{ "unevictable",		NR_UNEVICTABLE			},
1411 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1412 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1413 
1414 	/* The memory events */
1415 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1416 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1417 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1418 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1419 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1420 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1421 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1422 };
1423 
1424 /* Translate stat items to the correct unit for memory.stat output */
1425 static int memcg_page_state_unit(int item)
1426 {
1427 	switch (item) {
1428 	case MEMCG_PERCPU_B:
1429 	case NR_SLAB_RECLAIMABLE_B:
1430 	case NR_SLAB_UNRECLAIMABLE_B:
1431 	case WORKINGSET_REFAULT_ANON:
1432 	case WORKINGSET_REFAULT_FILE:
1433 	case WORKINGSET_ACTIVATE_ANON:
1434 	case WORKINGSET_ACTIVATE_FILE:
1435 	case WORKINGSET_RESTORE_ANON:
1436 	case WORKINGSET_RESTORE_FILE:
1437 	case WORKINGSET_NODERECLAIM:
1438 		return 1;
1439 	case NR_KERNEL_STACK_KB:
1440 		return SZ_1K;
1441 	default:
1442 		return PAGE_SIZE;
1443 	}
1444 }
1445 
1446 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1447 						    int item)
1448 {
1449 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1450 }
1451 
1452 static char *memory_stat_format(struct mem_cgroup *memcg)
1453 {
1454 	struct seq_buf s;
1455 	int i;
1456 
1457 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1458 	if (!s.buffer)
1459 		return NULL;
1460 
1461 	/*
1462 	 * Provide statistics on the state of the memory subsystem as
1463 	 * well as cumulative event counters that show past behavior.
1464 	 *
1465 	 * This list is ordered following a combination of these gradients:
1466 	 * 1) generic big picture -> specifics and details
1467 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1468 	 *
1469 	 * Current memory state:
1470 	 */
1471 	mem_cgroup_flush_stats();
1472 
1473 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1474 		u64 size;
1475 
1476 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1477 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1478 
1479 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1480 			size += memcg_page_state_output(memcg,
1481 							NR_SLAB_RECLAIMABLE_B);
1482 			seq_buf_printf(&s, "slab %llu\n", size);
1483 		}
1484 	}
1485 
1486 	/* Accumulated memory events */
1487 
1488 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1489 		       memcg_events(memcg, PGFAULT));
1490 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1491 		       memcg_events(memcg, PGMAJFAULT));
1492 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1493 		       memcg_events(memcg, PGREFILL));
1494 	seq_buf_printf(&s, "pgscan %lu\n",
1495 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1496 		       memcg_events(memcg, PGSCAN_DIRECT));
1497 	seq_buf_printf(&s, "pgsteal %lu\n",
1498 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1499 		       memcg_events(memcg, PGSTEAL_DIRECT));
1500 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1501 		       memcg_events(memcg, PGACTIVATE));
1502 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1503 		       memcg_events(memcg, PGDEACTIVATE));
1504 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1505 		       memcg_events(memcg, PGLAZYFREE));
1506 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1507 		       memcg_events(memcg, PGLAZYFREED));
1508 
1509 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1510 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1511 		       memcg_events(memcg, THP_FAULT_ALLOC));
1512 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1513 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1514 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1515 
1516 	/* The above should easily fit into one page */
1517 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1518 
1519 	return s.buffer;
1520 }
1521 
1522 #define K(x) ((x) << (PAGE_SHIFT-10))
1523 /**
1524  * mem_cgroup_print_oom_context: Print OOM information relevant to
1525  * memory controller.
1526  * @memcg: The memory cgroup that went over limit
1527  * @p: Task that is going to be killed
1528  *
1529  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1530  * enabled
1531  */
1532 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1533 {
1534 	rcu_read_lock();
1535 
1536 	if (memcg) {
1537 		pr_cont(",oom_memcg=");
1538 		pr_cont_cgroup_path(memcg->css.cgroup);
1539 	} else
1540 		pr_cont(",global_oom");
1541 	if (p) {
1542 		pr_cont(",task_memcg=");
1543 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1544 	}
1545 	rcu_read_unlock();
1546 }
1547 
1548 /**
1549  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1550  * memory controller.
1551  * @memcg: The memory cgroup that went over limit
1552  */
1553 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1554 {
1555 	char *buf;
1556 
1557 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1558 		K((u64)page_counter_read(&memcg->memory)),
1559 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1560 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1561 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1562 			K((u64)page_counter_read(&memcg->swap)),
1563 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1564 	else {
1565 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1566 			K((u64)page_counter_read(&memcg->memsw)),
1567 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1568 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1569 			K((u64)page_counter_read(&memcg->kmem)),
1570 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1571 	}
1572 
1573 	pr_info("Memory cgroup stats for ");
1574 	pr_cont_cgroup_path(memcg->css.cgroup);
1575 	pr_cont(":");
1576 	buf = memory_stat_format(memcg);
1577 	if (!buf)
1578 		return;
1579 	pr_info("%s", buf);
1580 	kfree(buf);
1581 }
1582 
1583 /*
1584  * Return the memory (and swap, if configured) limit for a memcg.
1585  */
1586 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1587 {
1588 	unsigned long max = READ_ONCE(memcg->memory.max);
1589 
1590 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1591 		if (mem_cgroup_swappiness(memcg))
1592 			max += min(READ_ONCE(memcg->swap.max),
1593 				   (unsigned long)total_swap_pages);
1594 	} else { /* v1 */
1595 		if (mem_cgroup_swappiness(memcg)) {
1596 			/* Calculate swap excess capacity from memsw limit */
1597 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1598 
1599 			max += min(swap, (unsigned long)total_swap_pages);
1600 		}
1601 	}
1602 	return max;
1603 }
1604 
1605 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1606 {
1607 	return page_counter_read(&memcg->memory);
1608 }
1609 
1610 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1611 				     int order)
1612 {
1613 	struct oom_control oc = {
1614 		.zonelist = NULL,
1615 		.nodemask = NULL,
1616 		.memcg = memcg,
1617 		.gfp_mask = gfp_mask,
1618 		.order = order,
1619 	};
1620 	bool ret = true;
1621 
1622 	if (mutex_lock_killable(&oom_lock))
1623 		return true;
1624 
1625 	if (mem_cgroup_margin(memcg) >= (1 << order))
1626 		goto unlock;
1627 
1628 	/*
1629 	 * A few threads which were not waiting at mutex_lock_killable() can
1630 	 * fail to bail out. Therefore, check again after holding oom_lock.
1631 	 */
1632 	ret = task_is_dying() || out_of_memory(&oc);
1633 
1634 unlock:
1635 	mutex_unlock(&oom_lock);
1636 	return ret;
1637 }
1638 
1639 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1640 				   pg_data_t *pgdat,
1641 				   gfp_t gfp_mask,
1642 				   unsigned long *total_scanned)
1643 {
1644 	struct mem_cgroup *victim = NULL;
1645 	int total = 0;
1646 	int loop = 0;
1647 	unsigned long excess;
1648 	unsigned long nr_scanned;
1649 	struct mem_cgroup_reclaim_cookie reclaim = {
1650 		.pgdat = pgdat,
1651 	};
1652 
1653 	excess = soft_limit_excess(root_memcg);
1654 
1655 	while (1) {
1656 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1657 		if (!victim) {
1658 			loop++;
1659 			if (loop >= 2) {
1660 				/*
1661 				 * If we have not been able to reclaim
1662 				 * anything, it might because there are
1663 				 * no reclaimable pages under this hierarchy
1664 				 */
1665 				if (!total)
1666 					break;
1667 				/*
1668 				 * We want to do more targeted reclaim.
1669 				 * excess >> 2 is not to excessive so as to
1670 				 * reclaim too much, nor too less that we keep
1671 				 * coming back to reclaim from this cgroup
1672 				 */
1673 				if (total >= (excess >> 2) ||
1674 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1675 					break;
1676 			}
1677 			continue;
1678 		}
1679 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1680 					pgdat, &nr_scanned);
1681 		*total_scanned += nr_scanned;
1682 		if (!soft_limit_excess(root_memcg))
1683 			break;
1684 	}
1685 	mem_cgroup_iter_break(root_memcg, victim);
1686 	return total;
1687 }
1688 
1689 #ifdef CONFIG_LOCKDEP
1690 static struct lockdep_map memcg_oom_lock_dep_map = {
1691 	.name = "memcg_oom_lock",
1692 };
1693 #endif
1694 
1695 static DEFINE_SPINLOCK(memcg_oom_lock);
1696 
1697 /*
1698  * Check OOM-Killer is already running under our hierarchy.
1699  * If someone is running, return false.
1700  */
1701 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1702 {
1703 	struct mem_cgroup *iter, *failed = NULL;
1704 
1705 	spin_lock(&memcg_oom_lock);
1706 
1707 	for_each_mem_cgroup_tree(iter, memcg) {
1708 		if (iter->oom_lock) {
1709 			/*
1710 			 * this subtree of our hierarchy is already locked
1711 			 * so we cannot give a lock.
1712 			 */
1713 			failed = iter;
1714 			mem_cgroup_iter_break(memcg, iter);
1715 			break;
1716 		} else
1717 			iter->oom_lock = true;
1718 	}
1719 
1720 	if (failed) {
1721 		/*
1722 		 * OK, we failed to lock the whole subtree so we have
1723 		 * to clean up what we set up to the failing subtree
1724 		 */
1725 		for_each_mem_cgroup_tree(iter, memcg) {
1726 			if (iter == failed) {
1727 				mem_cgroup_iter_break(memcg, iter);
1728 				break;
1729 			}
1730 			iter->oom_lock = false;
1731 		}
1732 	} else
1733 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1734 
1735 	spin_unlock(&memcg_oom_lock);
1736 
1737 	return !failed;
1738 }
1739 
1740 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1741 {
1742 	struct mem_cgroup *iter;
1743 
1744 	spin_lock(&memcg_oom_lock);
1745 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1746 	for_each_mem_cgroup_tree(iter, memcg)
1747 		iter->oom_lock = false;
1748 	spin_unlock(&memcg_oom_lock);
1749 }
1750 
1751 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1752 {
1753 	struct mem_cgroup *iter;
1754 
1755 	spin_lock(&memcg_oom_lock);
1756 	for_each_mem_cgroup_tree(iter, memcg)
1757 		iter->under_oom++;
1758 	spin_unlock(&memcg_oom_lock);
1759 }
1760 
1761 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1762 {
1763 	struct mem_cgroup *iter;
1764 
1765 	/*
1766 	 * Be careful about under_oom underflows because a child memcg
1767 	 * could have been added after mem_cgroup_mark_under_oom.
1768 	 */
1769 	spin_lock(&memcg_oom_lock);
1770 	for_each_mem_cgroup_tree(iter, memcg)
1771 		if (iter->under_oom > 0)
1772 			iter->under_oom--;
1773 	spin_unlock(&memcg_oom_lock);
1774 }
1775 
1776 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1777 
1778 struct oom_wait_info {
1779 	struct mem_cgroup *memcg;
1780 	wait_queue_entry_t	wait;
1781 };
1782 
1783 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1784 	unsigned mode, int sync, void *arg)
1785 {
1786 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1787 	struct mem_cgroup *oom_wait_memcg;
1788 	struct oom_wait_info *oom_wait_info;
1789 
1790 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1791 	oom_wait_memcg = oom_wait_info->memcg;
1792 
1793 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1794 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1795 		return 0;
1796 	return autoremove_wake_function(wait, mode, sync, arg);
1797 }
1798 
1799 static void memcg_oom_recover(struct mem_cgroup *memcg)
1800 {
1801 	/*
1802 	 * For the following lockless ->under_oom test, the only required
1803 	 * guarantee is that it must see the state asserted by an OOM when
1804 	 * this function is called as a result of userland actions
1805 	 * triggered by the notification of the OOM.  This is trivially
1806 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1807 	 * triggering notification.
1808 	 */
1809 	if (memcg && memcg->under_oom)
1810 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1811 }
1812 
1813 /*
1814  * Returns true if successfully killed one or more processes. Though in some
1815  * corner cases it can return true even without killing any process.
1816  */
1817 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1818 {
1819 	bool locked, ret;
1820 
1821 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1822 		return false;
1823 
1824 	memcg_memory_event(memcg, MEMCG_OOM);
1825 
1826 	/*
1827 	 * We are in the middle of the charge context here, so we
1828 	 * don't want to block when potentially sitting on a callstack
1829 	 * that holds all kinds of filesystem and mm locks.
1830 	 *
1831 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1832 	 * handling until the charge can succeed; remember the context and put
1833 	 * the task to sleep at the end of the page fault when all locks are
1834 	 * released.
1835 	 *
1836 	 * On the other hand, in-kernel OOM killer allows for an async victim
1837 	 * memory reclaim (oom_reaper) and that means that we are not solely
1838 	 * relying on the oom victim to make a forward progress and we can
1839 	 * invoke the oom killer here.
1840 	 *
1841 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1842 	 * victim and then we have to bail out from the charge path.
1843 	 */
1844 	if (memcg->oom_kill_disable) {
1845 		if (current->in_user_fault) {
1846 			css_get(&memcg->css);
1847 			current->memcg_in_oom = memcg;
1848 			current->memcg_oom_gfp_mask = mask;
1849 			current->memcg_oom_order = order;
1850 		}
1851 		return false;
1852 	}
1853 
1854 	mem_cgroup_mark_under_oom(memcg);
1855 
1856 	locked = mem_cgroup_oom_trylock(memcg);
1857 
1858 	if (locked)
1859 		mem_cgroup_oom_notify(memcg);
1860 
1861 	mem_cgroup_unmark_under_oom(memcg);
1862 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1863 
1864 	if (locked)
1865 		mem_cgroup_oom_unlock(memcg);
1866 
1867 	return ret;
1868 }
1869 
1870 /**
1871  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1872  * @handle: actually kill/wait or just clean up the OOM state
1873  *
1874  * This has to be called at the end of a page fault if the memcg OOM
1875  * handler was enabled.
1876  *
1877  * Memcg supports userspace OOM handling where failed allocations must
1878  * sleep on a waitqueue until the userspace task resolves the
1879  * situation.  Sleeping directly in the charge context with all kinds
1880  * of locks held is not a good idea, instead we remember an OOM state
1881  * in the task and mem_cgroup_oom_synchronize() has to be called at
1882  * the end of the page fault to complete the OOM handling.
1883  *
1884  * Returns %true if an ongoing memcg OOM situation was detected and
1885  * completed, %false otherwise.
1886  */
1887 bool mem_cgroup_oom_synchronize(bool handle)
1888 {
1889 	struct mem_cgroup *memcg = current->memcg_in_oom;
1890 	struct oom_wait_info owait;
1891 	bool locked;
1892 
1893 	/* OOM is global, do not handle */
1894 	if (!memcg)
1895 		return false;
1896 
1897 	if (!handle)
1898 		goto cleanup;
1899 
1900 	owait.memcg = memcg;
1901 	owait.wait.flags = 0;
1902 	owait.wait.func = memcg_oom_wake_function;
1903 	owait.wait.private = current;
1904 	INIT_LIST_HEAD(&owait.wait.entry);
1905 
1906 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1907 	mem_cgroup_mark_under_oom(memcg);
1908 
1909 	locked = mem_cgroup_oom_trylock(memcg);
1910 
1911 	if (locked)
1912 		mem_cgroup_oom_notify(memcg);
1913 
1914 	if (locked && !memcg->oom_kill_disable) {
1915 		mem_cgroup_unmark_under_oom(memcg);
1916 		finish_wait(&memcg_oom_waitq, &owait.wait);
1917 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1918 					 current->memcg_oom_order);
1919 	} else {
1920 		schedule();
1921 		mem_cgroup_unmark_under_oom(memcg);
1922 		finish_wait(&memcg_oom_waitq, &owait.wait);
1923 	}
1924 
1925 	if (locked) {
1926 		mem_cgroup_oom_unlock(memcg);
1927 		/*
1928 		 * There is no guarantee that an OOM-lock contender
1929 		 * sees the wakeups triggered by the OOM kill
1930 		 * uncharges.  Wake any sleepers explicitly.
1931 		 */
1932 		memcg_oom_recover(memcg);
1933 	}
1934 cleanup:
1935 	current->memcg_in_oom = NULL;
1936 	css_put(&memcg->css);
1937 	return true;
1938 }
1939 
1940 /**
1941  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1942  * @victim: task to be killed by the OOM killer
1943  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1944  *
1945  * Returns a pointer to a memory cgroup, which has to be cleaned up
1946  * by killing all belonging OOM-killable tasks.
1947  *
1948  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1949  */
1950 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1951 					    struct mem_cgroup *oom_domain)
1952 {
1953 	struct mem_cgroup *oom_group = NULL;
1954 	struct mem_cgroup *memcg;
1955 
1956 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1957 		return NULL;
1958 
1959 	if (!oom_domain)
1960 		oom_domain = root_mem_cgroup;
1961 
1962 	rcu_read_lock();
1963 
1964 	memcg = mem_cgroup_from_task(victim);
1965 	if (memcg == root_mem_cgroup)
1966 		goto out;
1967 
1968 	/*
1969 	 * If the victim task has been asynchronously moved to a different
1970 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1971 	 * In this case it's better to ignore memory.group.oom.
1972 	 */
1973 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1974 		goto out;
1975 
1976 	/*
1977 	 * Traverse the memory cgroup hierarchy from the victim task's
1978 	 * cgroup up to the OOMing cgroup (or root) to find the
1979 	 * highest-level memory cgroup with oom.group set.
1980 	 */
1981 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1982 		if (memcg->oom_group)
1983 			oom_group = memcg;
1984 
1985 		if (memcg == oom_domain)
1986 			break;
1987 	}
1988 
1989 	if (oom_group)
1990 		css_get(&oom_group->css);
1991 out:
1992 	rcu_read_unlock();
1993 
1994 	return oom_group;
1995 }
1996 
1997 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1998 {
1999 	pr_info("Tasks in ");
2000 	pr_cont_cgroup_path(memcg->css.cgroup);
2001 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2002 }
2003 
2004 /**
2005  * folio_memcg_lock - Bind a folio to its memcg.
2006  * @folio: The folio.
2007  *
2008  * This function prevents unlocked LRU folios from being moved to
2009  * another cgroup.
2010  *
2011  * It ensures lifetime of the bound memcg.  The caller is responsible
2012  * for the lifetime of the folio.
2013  */
2014 void folio_memcg_lock(struct folio *folio)
2015 {
2016 	struct mem_cgroup *memcg;
2017 	unsigned long flags;
2018 
2019 	/*
2020 	 * The RCU lock is held throughout the transaction.  The fast
2021 	 * path can get away without acquiring the memcg->move_lock
2022 	 * because page moving starts with an RCU grace period.
2023          */
2024 	rcu_read_lock();
2025 
2026 	if (mem_cgroup_disabled())
2027 		return;
2028 again:
2029 	memcg = folio_memcg(folio);
2030 	if (unlikely(!memcg))
2031 		return;
2032 
2033 #ifdef CONFIG_PROVE_LOCKING
2034 	local_irq_save(flags);
2035 	might_lock(&memcg->move_lock);
2036 	local_irq_restore(flags);
2037 #endif
2038 
2039 	if (atomic_read(&memcg->moving_account) <= 0)
2040 		return;
2041 
2042 	spin_lock_irqsave(&memcg->move_lock, flags);
2043 	if (memcg != folio_memcg(folio)) {
2044 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2045 		goto again;
2046 	}
2047 
2048 	/*
2049 	 * When charge migration first begins, we can have multiple
2050 	 * critical sections holding the fast-path RCU lock and one
2051 	 * holding the slowpath move_lock. Track the task who has the
2052 	 * move_lock for unlock_page_memcg().
2053 	 */
2054 	memcg->move_lock_task = current;
2055 	memcg->move_lock_flags = flags;
2056 }
2057 
2058 void lock_page_memcg(struct page *page)
2059 {
2060 	folio_memcg_lock(page_folio(page));
2061 }
2062 
2063 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2064 {
2065 	if (memcg && memcg->move_lock_task == current) {
2066 		unsigned long flags = memcg->move_lock_flags;
2067 
2068 		memcg->move_lock_task = NULL;
2069 		memcg->move_lock_flags = 0;
2070 
2071 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2072 	}
2073 
2074 	rcu_read_unlock();
2075 }
2076 
2077 /**
2078  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2079  * @folio: The folio.
2080  *
2081  * This releases the binding created by folio_memcg_lock().  This does
2082  * not change the accounting of this folio to its memcg, but it does
2083  * permit others to change it.
2084  */
2085 void folio_memcg_unlock(struct folio *folio)
2086 {
2087 	__folio_memcg_unlock(folio_memcg(folio));
2088 }
2089 
2090 void unlock_page_memcg(struct page *page)
2091 {
2092 	folio_memcg_unlock(page_folio(page));
2093 }
2094 
2095 struct memcg_stock_pcp {
2096 	local_lock_t stock_lock;
2097 	struct mem_cgroup *cached; /* this never be root cgroup */
2098 	unsigned int nr_pages;
2099 
2100 #ifdef CONFIG_MEMCG_KMEM
2101 	struct obj_cgroup *cached_objcg;
2102 	struct pglist_data *cached_pgdat;
2103 	unsigned int nr_bytes;
2104 	int nr_slab_reclaimable_b;
2105 	int nr_slab_unreclaimable_b;
2106 #endif
2107 
2108 	struct work_struct work;
2109 	unsigned long flags;
2110 #define FLUSHING_CACHED_CHARGE	0
2111 };
2112 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2113 	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
2114 };
2115 static DEFINE_MUTEX(percpu_charge_mutex);
2116 
2117 #ifdef CONFIG_MEMCG_KMEM
2118 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2119 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2120 				     struct mem_cgroup *root_memcg);
2121 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2122 
2123 #else
2124 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2125 {
2126 	return NULL;
2127 }
2128 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2129 				     struct mem_cgroup *root_memcg)
2130 {
2131 	return false;
2132 }
2133 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2134 {
2135 }
2136 #endif
2137 
2138 /**
2139  * consume_stock: Try to consume stocked charge on this cpu.
2140  * @memcg: memcg to consume from.
2141  * @nr_pages: how many pages to charge.
2142  *
2143  * The charges will only happen if @memcg matches the current cpu's memcg
2144  * stock, and at least @nr_pages are available in that stock.  Failure to
2145  * service an allocation will refill the stock.
2146  *
2147  * returns true if successful, false otherwise.
2148  */
2149 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2150 {
2151 	struct memcg_stock_pcp *stock;
2152 	unsigned long flags;
2153 	bool ret = false;
2154 
2155 	if (nr_pages > MEMCG_CHARGE_BATCH)
2156 		return ret;
2157 
2158 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2159 
2160 	stock = this_cpu_ptr(&memcg_stock);
2161 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2162 		stock->nr_pages -= nr_pages;
2163 		ret = true;
2164 	}
2165 
2166 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2167 
2168 	return ret;
2169 }
2170 
2171 /*
2172  * Returns stocks cached in percpu and reset cached information.
2173  */
2174 static void drain_stock(struct memcg_stock_pcp *stock)
2175 {
2176 	struct mem_cgroup *old = stock->cached;
2177 
2178 	if (!old)
2179 		return;
2180 
2181 	if (stock->nr_pages) {
2182 		page_counter_uncharge(&old->memory, stock->nr_pages);
2183 		if (do_memsw_account())
2184 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2185 		stock->nr_pages = 0;
2186 	}
2187 
2188 	css_put(&old->css);
2189 	stock->cached = NULL;
2190 }
2191 
2192 static void drain_local_stock(struct work_struct *dummy)
2193 {
2194 	struct memcg_stock_pcp *stock;
2195 	struct obj_cgroup *old = NULL;
2196 	unsigned long flags;
2197 
2198 	/*
2199 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2200 	 * drain_stock races is that we always operate on local CPU stock
2201 	 * here with IRQ disabled
2202 	 */
2203 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2204 
2205 	stock = this_cpu_ptr(&memcg_stock);
2206 	old = drain_obj_stock(stock);
2207 	drain_stock(stock);
2208 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2209 
2210 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2211 	if (old)
2212 		obj_cgroup_put(old);
2213 }
2214 
2215 /*
2216  * Cache charges(val) to local per_cpu area.
2217  * This will be consumed by consume_stock() function, later.
2218  */
2219 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2220 {
2221 	struct memcg_stock_pcp *stock;
2222 
2223 	stock = this_cpu_ptr(&memcg_stock);
2224 	if (stock->cached != memcg) { /* reset if necessary */
2225 		drain_stock(stock);
2226 		css_get(&memcg->css);
2227 		stock->cached = memcg;
2228 	}
2229 	stock->nr_pages += nr_pages;
2230 
2231 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2232 		drain_stock(stock);
2233 }
2234 
2235 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2236 {
2237 	unsigned long flags;
2238 
2239 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2240 	__refill_stock(memcg, nr_pages);
2241 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2242 }
2243 
2244 /*
2245  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2246  * of the hierarchy under it.
2247  */
2248 static void drain_all_stock(struct mem_cgroup *root_memcg)
2249 {
2250 	int cpu, curcpu;
2251 
2252 	/* If someone's already draining, avoid adding running more workers. */
2253 	if (!mutex_trylock(&percpu_charge_mutex))
2254 		return;
2255 	/*
2256 	 * Notify other cpus that system-wide "drain" is running
2257 	 * We do not care about races with the cpu hotplug because cpu down
2258 	 * as well as workers from this path always operate on the local
2259 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2260 	 */
2261 	migrate_disable();
2262 	curcpu = smp_processor_id();
2263 	for_each_online_cpu(cpu) {
2264 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2265 		struct mem_cgroup *memcg;
2266 		bool flush = false;
2267 
2268 		rcu_read_lock();
2269 		memcg = stock->cached;
2270 		if (memcg && stock->nr_pages &&
2271 		    mem_cgroup_is_descendant(memcg, root_memcg))
2272 			flush = true;
2273 		else if (obj_stock_flush_required(stock, root_memcg))
2274 			flush = true;
2275 		rcu_read_unlock();
2276 
2277 		if (flush &&
2278 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2279 			if (cpu == curcpu)
2280 				drain_local_stock(&stock->work);
2281 			else
2282 				schedule_work_on(cpu, &stock->work);
2283 		}
2284 	}
2285 	migrate_enable();
2286 	mutex_unlock(&percpu_charge_mutex);
2287 }
2288 
2289 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2290 {
2291 	struct memcg_stock_pcp *stock;
2292 
2293 	stock = &per_cpu(memcg_stock, cpu);
2294 	drain_stock(stock);
2295 
2296 	return 0;
2297 }
2298 
2299 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2300 				  unsigned int nr_pages,
2301 				  gfp_t gfp_mask)
2302 {
2303 	unsigned long nr_reclaimed = 0;
2304 
2305 	do {
2306 		unsigned long pflags;
2307 
2308 		if (page_counter_read(&memcg->memory) <=
2309 		    READ_ONCE(memcg->memory.high))
2310 			continue;
2311 
2312 		memcg_memory_event(memcg, MEMCG_HIGH);
2313 
2314 		psi_memstall_enter(&pflags);
2315 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2316 							     gfp_mask, true);
2317 		psi_memstall_leave(&pflags);
2318 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2319 		 !mem_cgroup_is_root(memcg));
2320 
2321 	return nr_reclaimed;
2322 }
2323 
2324 static void high_work_func(struct work_struct *work)
2325 {
2326 	struct mem_cgroup *memcg;
2327 
2328 	memcg = container_of(work, struct mem_cgroup, high_work);
2329 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2330 }
2331 
2332 /*
2333  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2334  * enough to still cause a significant slowdown in most cases, while still
2335  * allowing diagnostics and tracing to proceed without becoming stuck.
2336  */
2337 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2338 
2339 /*
2340  * When calculating the delay, we use these either side of the exponentiation to
2341  * maintain precision and scale to a reasonable number of jiffies (see the table
2342  * below.
2343  *
2344  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2345  *   overage ratio to a delay.
2346  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2347  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2348  *   to produce a reasonable delay curve.
2349  *
2350  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2351  * reasonable delay curve compared to precision-adjusted overage, not
2352  * penalising heavily at first, but still making sure that growth beyond the
2353  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2354  * example, with a high of 100 megabytes:
2355  *
2356  *  +-------+------------------------+
2357  *  | usage | time to allocate in ms |
2358  *  +-------+------------------------+
2359  *  | 100M  |                      0 |
2360  *  | 101M  |                      6 |
2361  *  | 102M  |                     25 |
2362  *  | 103M  |                     57 |
2363  *  | 104M  |                    102 |
2364  *  | 105M  |                    159 |
2365  *  | 106M  |                    230 |
2366  *  | 107M  |                    313 |
2367  *  | 108M  |                    409 |
2368  *  | 109M  |                    518 |
2369  *  | 110M  |                    639 |
2370  *  | 111M  |                    774 |
2371  *  | 112M  |                    921 |
2372  *  | 113M  |                   1081 |
2373  *  | 114M  |                   1254 |
2374  *  | 115M  |                   1439 |
2375  *  | 116M  |                   1638 |
2376  *  | 117M  |                   1849 |
2377  *  | 118M  |                   2000 |
2378  *  | 119M  |                   2000 |
2379  *  | 120M  |                   2000 |
2380  *  +-------+------------------------+
2381  */
2382  #define MEMCG_DELAY_PRECISION_SHIFT 20
2383  #define MEMCG_DELAY_SCALING_SHIFT 14
2384 
2385 static u64 calculate_overage(unsigned long usage, unsigned long high)
2386 {
2387 	u64 overage;
2388 
2389 	if (usage <= high)
2390 		return 0;
2391 
2392 	/*
2393 	 * Prevent division by 0 in overage calculation by acting as if
2394 	 * it was a threshold of 1 page
2395 	 */
2396 	high = max(high, 1UL);
2397 
2398 	overage = usage - high;
2399 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2400 	return div64_u64(overage, high);
2401 }
2402 
2403 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2404 {
2405 	u64 overage, max_overage = 0;
2406 
2407 	do {
2408 		overage = calculate_overage(page_counter_read(&memcg->memory),
2409 					    READ_ONCE(memcg->memory.high));
2410 		max_overage = max(overage, max_overage);
2411 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2412 		 !mem_cgroup_is_root(memcg));
2413 
2414 	return max_overage;
2415 }
2416 
2417 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2418 {
2419 	u64 overage, max_overage = 0;
2420 
2421 	do {
2422 		overage = calculate_overage(page_counter_read(&memcg->swap),
2423 					    READ_ONCE(memcg->swap.high));
2424 		if (overage)
2425 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2426 		max_overage = max(overage, max_overage);
2427 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2428 		 !mem_cgroup_is_root(memcg));
2429 
2430 	return max_overage;
2431 }
2432 
2433 /*
2434  * Get the number of jiffies that we should penalise a mischievous cgroup which
2435  * is exceeding its memory.high by checking both it and its ancestors.
2436  */
2437 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2438 					  unsigned int nr_pages,
2439 					  u64 max_overage)
2440 {
2441 	unsigned long penalty_jiffies;
2442 
2443 	if (!max_overage)
2444 		return 0;
2445 
2446 	/*
2447 	 * We use overage compared to memory.high to calculate the number of
2448 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2449 	 * fairly lenient on small overages, and increasingly harsh when the
2450 	 * memcg in question makes it clear that it has no intention of stopping
2451 	 * its crazy behaviour, so we exponentially increase the delay based on
2452 	 * overage amount.
2453 	 */
2454 	penalty_jiffies = max_overage * max_overage * HZ;
2455 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2456 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2457 
2458 	/*
2459 	 * Factor in the task's own contribution to the overage, such that four
2460 	 * N-sized allocations are throttled approximately the same as one
2461 	 * 4N-sized allocation.
2462 	 *
2463 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2464 	 * larger the current charge patch is than that.
2465 	 */
2466 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2467 }
2468 
2469 /*
2470  * Scheduled by try_charge() to be executed from the userland return path
2471  * and reclaims memory over the high limit.
2472  */
2473 void mem_cgroup_handle_over_high(void)
2474 {
2475 	unsigned long penalty_jiffies;
2476 	unsigned long pflags;
2477 	unsigned long nr_reclaimed;
2478 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2479 	int nr_retries = MAX_RECLAIM_RETRIES;
2480 	struct mem_cgroup *memcg;
2481 	bool in_retry = false;
2482 
2483 	if (likely(!nr_pages))
2484 		return;
2485 
2486 	memcg = get_mem_cgroup_from_mm(current->mm);
2487 	current->memcg_nr_pages_over_high = 0;
2488 
2489 retry_reclaim:
2490 	/*
2491 	 * The allocating task should reclaim at least the batch size, but for
2492 	 * subsequent retries we only want to do what's necessary to prevent oom
2493 	 * or breaching resource isolation.
2494 	 *
2495 	 * This is distinct from memory.max or page allocator behaviour because
2496 	 * memory.high is currently batched, whereas memory.max and the page
2497 	 * allocator run every time an allocation is made.
2498 	 */
2499 	nr_reclaimed = reclaim_high(memcg,
2500 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2501 				    GFP_KERNEL);
2502 
2503 	/*
2504 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2505 	 * allocators proactively to slow down excessive growth.
2506 	 */
2507 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2508 					       mem_find_max_overage(memcg));
2509 
2510 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2511 						swap_find_max_overage(memcg));
2512 
2513 	/*
2514 	 * Clamp the max delay per usermode return so as to still keep the
2515 	 * application moving forwards and also permit diagnostics, albeit
2516 	 * extremely slowly.
2517 	 */
2518 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2519 
2520 	/*
2521 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2522 	 * that it's not even worth doing, in an attempt to be nice to those who
2523 	 * go only a small amount over their memory.high value and maybe haven't
2524 	 * been aggressively reclaimed enough yet.
2525 	 */
2526 	if (penalty_jiffies <= HZ / 100)
2527 		goto out;
2528 
2529 	/*
2530 	 * If reclaim is making forward progress but we're still over
2531 	 * memory.high, we want to encourage that rather than doing allocator
2532 	 * throttling.
2533 	 */
2534 	if (nr_reclaimed || nr_retries--) {
2535 		in_retry = true;
2536 		goto retry_reclaim;
2537 	}
2538 
2539 	/*
2540 	 * If we exit early, we're guaranteed to die (since
2541 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2542 	 * need to account for any ill-begotten jiffies to pay them off later.
2543 	 */
2544 	psi_memstall_enter(&pflags);
2545 	schedule_timeout_killable(penalty_jiffies);
2546 	psi_memstall_leave(&pflags);
2547 
2548 out:
2549 	css_put(&memcg->css);
2550 }
2551 
2552 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2553 			unsigned int nr_pages)
2554 {
2555 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2556 	int nr_retries = MAX_RECLAIM_RETRIES;
2557 	struct mem_cgroup *mem_over_limit;
2558 	struct page_counter *counter;
2559 	unsigned long nr_reclaimed;
2560 	bool passed_oom = false;
2561 	bool may_swap = true;
2562 	bool drained = false;
2563 	unsigned long pflags;
2564 
2565 retry:
2566 	if (consume_stock(memcg, nr_pages))
2567 		return 0;
2568 
2569 	if (!do_memsw_account() ||
2570 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2571 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2572 			goto done_restock;
2573 		if (do_memsw_account())
2574 			page_counter_uncharge(&memcg->memsw, batch);
2575 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2576 	} else {
2577 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2578 		may_swap = false;
2579 	}
2580 
2581 	if (batch > nr_pages) {
2582 		batch = nr_pages;
2583 		goto retry;
2584 	}
2585 
2586 	/*
2587 	 * Prevent unbounded recursion when reclaim operations need to
2588 	 * allocate memory. This might exceed the limits temporarily,
2589 	 * but we prefer facilitating memory reclaim and getting back
2590 	 * under the limit over triggering OOM kills in these cases.
2591 	 */
2592 	if (unlikely(current->flags & PF_MEMALLOC))
2593 		goto force;
2594 
2595 	if (unlikely(task_in_memcg_oom(current)))
2596 		goto nomem;
2597 
2598 	if (!gfpflags_allow_blocking(gfp_mask))
2599 		goto nomem;
2600 
2601 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2602 
2603 	psi_memstall_enter(&pflags);
2604 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2605 						    gfp_mask, may_swap);
2606 	psi_memstall_leave(&pflags);
2607 
2608 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2609 		goto retry;
2610 
2611 	if (!drained) {
2612 		drain_all_stock(mem_over_limit);
2613 		drained = true;
2614 		goto retry;
2615 	}
2616 
2617 	if (gfp_mask & __GFP_NORETRY)
2618 		goto nomem;
2619 	/*
2620 	 * Even though the limit is exceeded at this point, reclaim
2621 	 * may have been able to free some pages.  Retry the charge
2622 	 * before killing the task.
2623 	 *
2624 	 * Only for regular pages, though: huge pages are rather
2625 	 * unlikely to succeed so close to the limit, and we fall back
2626 	 * to regular pages anyway in case of failure.
2627 	 */
2628 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2629 		goto retry;
2630 	/*
2631 	 * At task move, charge accounts can be doubly counted. So, it's
2632 	 * better to wait until the end of task_move if something is going on.
2633 	 */
2634 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2635 		goto retry;
2636 
2637 	if (nr_retries--)
2638 		goto retry;
2639 
2640 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2641 		goto nomem;
2642 
2643 	/* Avoid endless loop for tasks bypassed by the oom killer */
2644 	if (passed_oom && task_is_dying())
2645 		goto nomem;
2646 
2647 	/*
2648 	 * keep retrying as long as the memcg oom killer is able to make
2649 	 * a forward progress or bypass the charge if the oom killer
2650 	 * couldn't make any progress.
2651 	 */
2652 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2653 			   get_order(nr_pages * PAGE_SIZE))) {
2654 		passed_oom = true;
2655 		nr_retries = MAX_RECLAIM_RETRIES;
2656 		goto retry;
2657 	}
2658 nomem:
2659 	/*
2660 	 * Memcg doesn't have a dedicated reserve for atomic
2661 	 * allocations. But like the global atomic pool, we need to
2662 	 * put the burden of reclaim on regular allocation requests
2663 	 * and let these go through as privileged allocations.
2664 	 */
2665 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2666 		return -ENOMEM;
2667 force:
2668 	/*
2669 	 * The allocation either can't fail or will lead to more memory
2670 	 * being freed very soon.  Allow memory usage go over the limit
2671 	 * temporarily by force charging it.
2672 	 */
2673 	page_counter_charge(&memcg->memory, nr_pages);
2674 	if (do_memsw_account())
2675 		page_counter_charge(&memcg->memsw, nr_pages);
2676 
2677 	return 0;
2678 
2679 done_restock:
2680 	if (batch > nr_pages)
2681 		refill_stock(memcg, batch - nr_pages);
2682 
2683 	/*
2684 	 * If the hierarchy is above the normal consumption range, schedule
2685 	 * reclaim on returning to userland.  We can perform reclaim here
2686 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2687 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2688 	 * not recorded as it most likely matches current's and won't
2689 	 * change in the meantime.  As high limit is checked again before
2690 	 * reclaim, the cost of mismatch is negligible.
2691 	 */
2692 	do {
2693 		bool mem_high, swap_high;
2694 
2695 		mem_high = page_counter_read(&memcg->memory) >
2696 			READ_ONCE(memcg->memory.high);
2697 		swap_high = page_counter_read(&memcg->swap) >
2698 			READ_ONCE(memcg->swap.high);
2699 
2700 		/* Don't bother a random interrupted task */
2701 		if (!in_task()) {
2702 			if (mem_high) {
2703 				schedule_work(&memcg->high_work);
2704 				break;
2705 			}
2706 			continue;
2707 		}
2708 
2709 		if (mem_high || swap_high) {
2710 			/*
2711 			 * The allocating tasks in this cgroup will need to do
2712 			 * reclaim or be throttled to prevent further growth
2713 			 * of the memory or swap footprints.
2714 			 *
2715 			 * Target some best-effort fairness between the tasks,
2716 			 * and distribute reclaim work and delay penalties
2717 			 * based on how much each task is actually allocating.
2718 			 */
2719 			current->memcg_nr_pages_over_high += batch;
2720 			set_notify_resume(current);
2721 			break;
2722 		}
2723 	} while ((memcg = parent_mem_cgroup(memcg)));
2724 
2725 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2726 	    !(current->flags & PF_MEMALLOC) &&
2727 	    gfpflags_allow_blocking(gfp_mask)) {
2728 		mem_cgroup_handle_over_high();
2729 	}
2730 	return 0;
2731 }
2732 
2733 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2734 			     unsigned int nr_pages)
2735 {
2736 	if (mem_cgroup_is_root(memcg))
2737 		return 0;
2738 
2739 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2740 }
2741 
2742 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2743 {
2744 	if (mem_cgroup_is_root(memcg))
2745 		return;
2746 
2747 	page_counter_uncharge(&memcg->memory, nr_pages);
2748 	if (do_memsw_account())
2749 		page_counter_uncharge(&memcg->memsw, nr_pages);
2750 }
2751 
2752 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2753 {
2754 	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2755 	/*
2756 	 * Any of the following ensures page's memcg stability:
2757 	 *
2758 	 * - the page lock
2759 	 * - LRU isolation
2760 	 * - lock_page_memcg()
2761 	 * - exclusive reference
2762 	 */
2763 	folio->memcg_data = (unsigned long)memcg;
2764 }
2765 
2766 #ifdef CONFIG_MEMCG_KMEM
2767 /*
2768  * The allocated objcg pointers array is not accounted directly.
2769  * Moreover, it should not come from DMA buffer and is not readily
2770  * reclaimable. So those GFP bits should be masked off.
2771  */
2772 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2773 
2774 /*
2775  * mod_objcg_mlstate() may be called with irq enabled, so
2776  * mod_memcg_lruvec_state() should be used.
2777  */
2778 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2779 				     struct pglist_data *pgdat,
2780 				     enum node_stat_item idx, int nr)
2781 {
2782 	struct mem_cgroup *memcg;
2783 	struct lruvec *lruvec;
2784 
2785 	rcu_read_lock();
2786 	memcg = obj_cgroup_memcg(objcg);
2787 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2788 	mod_memcg_lruvec_state(lruvec, idx, nr);
2789 	rcu_read_unlock();
2790 }
2791 
2792 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2793 				 gfp_t gfp, bool new_slab)
2794 {
2795 	unsigned int objects = objs_per_slab(s, slab);
2796 	unsigned long memcg_data;
2797 	void *vec;
2798 
2799 	gfp &= ~OBJCGS_CLEAR_MASK;
2800 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2801 			   slab_nid(slab));
2802 	if (!vec)
2803 		return -ENOMEM;
2804 
2805 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2806 	if (new_slab) {
2807 		/*
2808 		 * If the slab is brand new and nobody can yet access its
2809 		 * memcg_data, no synchronization is required and memcg_data can
2810 		 * be simply assigned.
2811 		 */
2812 		slab->memcg_data = memcg_data;
2813 	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2814 		/*
2815 		 * If the slab is already in use, somebody can allocate and
2816 		 * assign obj_cgroups in parallel. In this case the existing
2817 		 * objcg vector should be reused.
2818 		 */
2819 		kfree(vec);
2820 		return 0;
2821 	}
2822 
2823 	kmemleak_not_leak(vec);
2824 	return 0;
2825 }
2826 
2827 /*
2828  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2829  *
2830  * A passed kernel object can be a slab object or a generic kernel page, so
2831  * different mechanisms for getting the memory cgroup pointer should be used.
2832  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2833  * can not know for sure how the kernel object is implemented.
2834  * mem_cgroup_from_obj() can be safely used in such cases.
2835  *
2836  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2837  * cgroup_mutex, etc.
2838  */
2839 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2840 {
2841 	struct folio *folio;
2842 
2843 	if (mem_cgroup_disabled())
2844 		return NULL;
2845 
2846 	folio = virt_to_folio(p);
2847 
2848 	/*
2849 	 * Slab objects are accounted individually, not per-page.
2850 	 * Memcg membership data for each individual object is saved in
2851 	 * slab->memcg_data.
2852 	 */
2853 	if (folio_test_slab(folio)) {
2854 		struct obj_cgroup **objcgs;
2855 		struct slab *slab;
2856 		unsigned int off;
2857 
2858 		slab = folio_slab(folio);
2859 		objcgs = slab_objcgs(slab);
2860 		if (!objcgs)
2861 			return NULL;
2862 
2863 		off = obj_to_index(slab->slab_cache, slab, p);
2864 		if (objcgs[off])
2865 			return obj_cgroup_memcg(objcgs[off]);
2866 
2867 		return NULL;
2868 	}
2869 
2870 	/*
2871 	 * page_memcg_check() is used here, because in theory we can encounter
2872 	 * a folio where the slab flag has been cleared already, but
2873 	 * slab->memcg_data has not been freed yet
2874 	 * page_memcg_check(page) will guarantee that a proper memory
2875 	 * cgroup pointer or NULL will be returned.
2876 	 */
2877 	return page_memcg_check(folio_page(folio, 0));
2878 }
2879 
2880 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2881 {
2882 	struct obj_cgroup *objcg = NULL;
2883 	struct mem_cgroup *memcg;
2884 
2885 	if (memcg_kmem_bypass())
2886 		return NULL;
2887 
2888 	rcu_read_lock();
2889 	if (unlikely(active_memcg()))
2890 		memcg = active_memcg();
2891 	else
2892 		memcg = mem_cgroup_from_task(current);
2893 
2894 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2895 		objcg = rcu_dereference(memcg->objcg);
2896 		if (objcg && obj_cgroup_tryget(objcg))
2897 			break;
2898 		objcg = NULL;
2899 	}
2900 	rcu_read_unlock();
2901 
2902 	return objcg;
2903 }
2904 
2905 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2906 {
2907 	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2908 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2909 		if (nr_pages > 0)
2910 			page_counter_charge(&memcg->kmem, nr_pages);
2911 		else
2912 			page_counter_uncharge(&memcg->kmem, -nr_pages);
2913 	}
2914 }
2915 
2916 
2917 /*
2918  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2919  * @objcg: object cgroup to uncharge
2920  * @nr_pages: number of pages to uncharge
2921  */
2922 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2923 				      unsigned int nr_pages)
2924 {
2925 	struct mem_cgroup *memcg;
2926 
2927 	memcg = get_mem_cgroup_from_objcg(objcg);
2928 
2929 	memcg_account_kmem(memcg, -nr_pages);
2930 	refill_stock(memcg, nr_pages);
2931 
2932 	css_put(&memcg->css);
2933 }
2934 
2935 /*
2936  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2937  * @objcg: object cgroup to charge
2938  * @gfp: reclaim mode
2939  * @nr_pages: number of pages to charge
2940  *
2941  * Returns 0 on success, an error code on failure.
2942  */
2943 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2944 				   unsigned int nr_pages)
2945 {
2946 	struct mem_cgroup *memcg;
2947 	int ret;
2948 
2949 	memcg = get_mem_cgroup_from_objcg(objcg);
2950 
2951 	ret = try_charge_memcg(memcg, gfp, nr_pages);
2952 	if (ret)
2953 		goto out;
2954 
2955 	memcg_account_kmem(memcg, nr_pages);
2956 out:
2957 	css_put(&memcg->css);
2958 
2959 	return ret;
2960 }
2961 
2962 /**
2963  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2964  * @page: page to charge
2965  * @gfp: reclaim mode
2966  * @order: allocation order
2967  *
2968  * Returns 0 on success, an error code on failure.
2969  */
2970 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2971 {
2972 	struct obj_cgroup *objcg;
2973 	int ret = 0;
2974 
2975 	objcg = get_obj_cgroup_from_current();
2976 	if (objcg) {
2977 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2978 		if (!ret) {
2979 			page->memcg_data = (unsigned long)objcg |
2980 				MEMCG_DATA_KMEM;
2981 			return 0;
2982 		}
2983 		obj_cgroup_put(objcg);
2984 	}
2985 	return ret;
2986 }
2987 
2988 /**
2989  * __memcg_kmem_uncharge_page: uncharge a kmem page
2990  * @page: page to uncharge
2991  * @order: allocation order
2992  */
2993 void __memcg_kmem_uncharge_page(struct page *page, int order)
2994 {
2995 	struct folio *folio = page_folio(page);
2996 	struct obj_cgroup *objcg;
2997 	unsigned int nr_pages = 1 << order;
2998 
2999 	if (!folio_memcg_kmem(folio))
3000 		return;
3001 
3002 	objcg = __folio_objcg(folio);
3003 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3004 	folio->memcg_data = 0;
3005 	obj_cgroup_put(objcg);
3006 }
3007 
3008 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3009 		     enum node_stat_item idx, int nr)
3010 {
3011 	struct memcg_stock_pcp *stock;
3012 	struct obj_cgroup *old = NULL;
3013 	unsigned long flags;
3014 	int *bytes;
3015 
3016 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3017 	stock = this_cpu_ptr(&memcg_stock);
3018 
3019 	/*
3020 	 * Save vmstat data in stock and skip vmstat array update unless
3021 	 * accumulating over a page of vmstat data or when pgdat or idx
3022 	 * changes.
3023 	 */
3024 	if (stock->cached_objcg != objcg) {
3025 		old = drain_obj_stock(stock);
3026 		obj_cgroup_get(objcg);
3027 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3028 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3029 		stock->cached_objcg = objcg;
3030 		stock->cached_pgdat = pgdat;
3031 	} else if (stock->cached_pgdat != pgdat) {
3032 		/* Flush the existing cached vmstat data */
3033 		struct pglist_data *oldpg = stock->cached_pgdat;
3034 
3035 		if (stock->nr_slab_reclaimable_b) {
3036 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3037 					  stock->nr_slab_reclaimable_b);
3038 			stock->nr_slab_reclaimable_b = 0;
3039 		}
3040 		if (stock->nr_slab_unreclaimable_b) {
3041 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3042 					  stock->nr_slab_unreclaimable_b);
3043 			stock->nr_slab_unreclaimable_b = 0;
3044 		}
3045 		stock->cached_pgdat = pgdat;
3046 	}
3047 
3048 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3049 					       : &stock->nr_slab_unreclaimable_b;
3050 	/*
3051 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3052 	 * cached locally at least once before pushing it out.
3053 	 */
3054 	if (!*bytes) {
3055 		*bytes = nr;
3056 		nr = 0;
3057 	} else {
3058 		*bytes += nr;
3059 		if (abs(*bytes) > PAGE_SIZE) {
3060 			nr = *bytes;
3061 			*bytes = 0;
3062 		} else {
3063 			nr = 0;
3064 		}
3065 	}
3066 	if (nr)
3067 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3068 
3069 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3070 	if (old)
3071 		obj_cgroup_put(old);
3072 }
3073 
3074 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3075 {
3076 	struct memcg_stock_pcp *stock;
3077 	unsigned long flags;
3078 	bool ret = false;
3079 
3080 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3081 
3082 	stock = this_cpu_ptr(&memcg_stock);
3083 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3084 		stock->nr_bytes -= nr_bytes;
3085 		ret = true;
3086 	}
3087 
3088 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3089 
3090 	return ret;
3091 }
3092 
3093 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3094 {
3095 	struct obj_cgroup *old = stock->cached_objcg;
3096 
3097 	if (!old)
3098 		return NULL;
3099 
3100 	if (stock->nr_bytes) {
3101 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3102 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3103 
3104 		if (nr_pages) {
3105 			struct mem_cgroup *memcg;
3106 
3107 			memcg = get_mem_cgroup_from_objcg(old);
3108 
3109 			memcg_account_kmem(memcg, -nr_pages);
3110 			__refill_stock(memcg, nr_pages);
3111 
3112 			css_put(&memcg->css);
3113 		}
3114 
3115 		/*
3116 		 * The leftover is flushed to the centralized per-memcg value.
3117 		 * On the next attempt to refill obj stock it will be moved
3118 		 * to a per-cpu stock (probably, on an other CPU), see
3119 		 * refill_obj_stock().
3120 		 *
3121 		 * How often it's flushed is a trade-off between the memory
3122 		 * limit enforcement accuracy and potential CPU contention,
3123 		 * so it might be changed in the future.
3124 		 */
3125 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3126 		stock->nr_bytes = 0;
3127 	}
3128 
3129 	/*
3130 	 * Flush the vmstat data in current stock
3131 	 */
3132 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3133 		if (stock->nr_slab_reclaimable_b) {
3134 			mod_objcg_mlstate(old, stock->cached_pgdat,
3135 					  NR_SLAB_RECLAIMABLE_B,
3136 					  stock->nr_slab_reclaimable_b);
3137 			stock->nr_slab_reclaimable_b = 0;
3138 		}
3139 		if (stock->nr_slab_unreclaimable_b) {
3140 			mod_objcg_mlstate(old, stock->cached_pgdat,
3141 					  NR_SLAB_UNRECLAIMABLE_B,
3142 					  stock->nr_slab_unreclaimable_b);
3143 			stock->nr_slab_unreclaimable_b = 0;
3144 		}
3145 		stock->cached_pgdat = NULL;
3146 	}
3147 
3148 	stock->cached_objcg = NULL;
3149 	/*
3150 	 * The `old' objects needs to be released by the caller via
3151 	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3152 	 */
3153 	return old;
3154 }
3155 
3156 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3157 				     struct mem_cgroup *root_memcg)
3158 {
3159 	struct mem_cgroup *memcg;
3160 
3161 	if (stock->cached_objcg) {
3162 		memcg = obj_cgroup_memcg(stock->cached_objcg);
3163 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3164 			return true;
3165 	}
3166 
3167 	return false;
3168 }
3169 
3170 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3171 			     bool allow_uncharge)
3172 {
3173 	struct memcg_stock_pcp *stock;
3174 	struct obj_cgroup *old = NULL;
3175 	unsigned long flags;
3176 	unsigned int nr_pages = 0;
3177 
3178 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3179 
3180 	stock = this_cpu_ptr(&memcg_stock);
3181 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3182 		old = drain_obj_stock(stock);
3183 		obj_cgroup_get(objcg);
3184 		stock->cached_objcg = objcg;
3185 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3186 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3187 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3188 	}
3189 	stock->nr_bytes += nr_bytes;
3190 
3191 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3192 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3193 		stock->nr_bytes &= (PAGE_SIZE - 1);
3194 	}
3195 
3196 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3197 	if (old)
3198 		obj_cgroup_put(old);
3199 
3200 	if (nr_pages)
3201 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3202 }
3203 
3204 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3205 {
3206 	unsigned int nr_pages, nr_bytes;
3207 	int ret;
3208 
3209 	if (consume_obj_stock(objcg, size))
3210 		return 0;
3211 
3212 	/*
3213 	 * In theory, objcg->nr_charged_bytes can have enough
3214 	 * pre-charged bytes to satisfy the allocation. However,
3215 	 * flushing objcg->nr_charged_bytes requires two atomic
3216 	 * operations, and objcg->nr_charged_bytes can't be big.
3217 	 * The shared objcg->nr_charged_bytes can also become a
3218 	 * performance bottleneck if all tasks of the same memcg are
3219 	 * trying to update it. So it's better to ignore it and try
3220 	 * grab some new pages. The stock's nr_bytes will be flushed to
3221 	 * objcg->nr_charged_bytes later on when objcg changes.
3222 	 *
3223 	 * The stock's nr_bytes may contain enough pre-charged bytes
3224 	 * to allow one less page from being charged, but we can't rely
3225 	 * on the pre-charged bytes not being changed outside of
3226 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3227 	 * pre-charged bytes as well when charging pages. To avoid a
3228 	 * page uncharge right after a page charge, we set the
3229 	 * allow_uncharge flag to false when calling refill_obj_stock()
3230 	 * to temporarily allow the pre-charged bytes to exceed the page
3231 	 * size limit. The maximum reachable value of the pre-charged
3232 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3233 	 * race.
3234 	 */
3235 	nr_pages = size >> PAGE_SHIFT;
3236 	nr_bytes = size & (PAGE_SIZE - 1);
3237 
3238 	if (nr_bytes)
3239 		nr_pages += 1;
3240 
3241 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3242 	if (!ret && nr_bytes)
3243 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3244 
3245 	return ret;
3246 }
3247 
3248 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3249 {
3250 	refill_obj_stock(objcg, size, true);
3251 }
3252 
3253 #endif /* CONFIG_MEMCG_KMEM */
3254 
3255 /*
3256  * Because page_memcg(head) is not set on tails, set it now.
3257  */
3258 void split_page_memcg(struct page *head, unsigned int nr)
3259 {
3260 	struct folio *folio = page_folio(head);
3261 	struct mem_cgroup *memcg = folio_memcg(folio);
3262 	int i;
3263 
3264 	if (mem_cgroup_disabled() || !memcg)
3265 		return;
3266 
3267 	for (i = 1; i < nr; i++)
3268 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3269 
3270 	if (folio_memcg_kmem(folio))
3271 		obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3272 	else
3273 		css_get_many(&memcg->css, nr - 1);
3274 }
3275 
3276 #ifdef CONFIG_MEMCG_SWAP
3277 /**
3278  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3279  * @entry: swap entry to be moved
3280  * @from:  mem_cgroup which the entry is moved from
3281  * @to:  mem_cgroup which the entry is moved to
3282  *
3283  * It succeeds only when the swap_cgroup's record for this entry is the same
3284  * as the mem_cgroup's id of @from.
3285  *
3286  * Returns 0 on success, -EINVAL on failure.
3287  *
3288  * The caller must have charged to @to, IOW, called page_counter_charge() about
3289  * both res and memsw, and called css_get().
3290  */
3291 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3292 				struct mem_cgroup *from, struct mem_cgroup *to)
3293 {
3294 	unsigned short old_id, new_id;
3295 
3296 	old_id = mem_cgroup_id(from);
3297 	new_id = mem_cgroup_id(to);
3298 
3299 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3300 		mod_memcg_state(from, MEMCG_SWAP, -1);
3301 		mod_memcg_state(to, MEMCG_SWAP, 1);
3302 		return 0;
3303 	}
3304 	return -EINVAL;
3305 }
3306 #else
3307 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3308 				struct mem_cgroup *from, struct mem_cgroup *to)
3309 {
3310 	return -EINVAL;
3311 }
3312 #endif
3313 
3314 static DEFINE_MUTEX(memcg_max_mutex);
3315 
3316 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3317 				 unsigned long max, bool memsw)
3318 {
3319 	bool enlarge = false;
3320 	bool drained = false;
3321 	int ret;
3322 	bool limits_invariant;
3323 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3324 
3325 	do {
3326 		if (signal_pending(current)) {
3327 			ret = -EINTR;
3328 			break;
3329 		}
3330 
3331 		mutex_lock(&memcg_max_mutex);
3332 		/*
3333 		 * Make sure that the new limit (memsw or memory limit) doesn't
3334 		 * break our basic invariant rule memory.max <= memsw.max.
3335 		 */
3336 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3337 					   max <= memcg->memsw.max;
3338 		if (!limits_invariant) {
3339 			mutex_unlock(&memcg_max_mutex);
3340 			ret = -EINVAL;
3341 			break;
3342 		}
3343 		if (max > counter->max)
3344 			enlarge = true;
3345 		ret = page_counter_set_max(counter, max);
3346 		mutex_unlock(&memcg_max_mutex);
3347 
3348 		if (!ret)
3349 			break;
3350 
3351 		if (!drained) {
3352 			drain_all_stock(memcg);
3353 			drained = true;
3354 			continue;
3355 		}
3356 
3357 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3358 					GFP_KERNEL, !memsw)) {
3359 			ret = -EBUSY;
3360 			break;
3361 		}
3362 	} while (true);
3363 
3364 	if (!ret && enlarge)
3365 		memcg_oom_recover(memcg);
3366 
3367 	return ret;
3368 }
3369 
3370 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3371 					    gfp_t gfp_mask,
3372 					    unsigned long *total_scanned)
3373 {
3374 	unsigned long nr_reclaimed = 0;
3375 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3376 	unsigned long reclaimed;
3377 	int loop = 0;
3378 	struct mem_cgroup_tree_per_node *mctz;
3379 	unsigned long excess;
3380 	unsigned long nr_scanned;
3381 
3382 	if (order > 0)
3383 		return 0;
3384 
3385 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3386 
3387 	/*
3388 	 * Do not even bother to check the largest node if the root
3389 	 * is empty. Do it lockless to prevent lock bouncing. Races
3390 	 * are acceptable as soft limit is best effort anyway.
3391 	 */
3392 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3393 		return 0;
3394 
3395 	/*
3396 	 * This loop can run a while, specially if mem_cgroup's continuously
3397 	 * keep exceeding their soft limit and putting the system under
3398 	 * pressure
3399 	 */
3400 	do {
3401 		if (next_mz)
3402 			mz = next_mz;
3403 		else
3404 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3405 		if (!mz)
3406 			break;
3407 
3408 		nr_scanned = 0;
3409 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3410 						    gfp_mask, &nr_scanned);
3411 		nr_reclaimed += reclaimed;
3412 		*total_scanned += nr_scanned;
3413 		spin_lock_irq(&mctz->lock);
3414 		__mem_cgroup_remove_exceeded(mz, mctz);
3415 
3416 		/*
3417 		 * If we failed to reclaim anything from this memory cgroup
3418 		 * it is time to move on to the next cgroup
3419 		 */
3420 		next_mz = NULL;
3421 		if (!reclaimed)
3422 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3423 
3424 		excess = soft_limit_excess(mz->memcg);
3425 		/*
3426 		 * One school of thought says that we should not add
3427 		 * back the node to the tree if reclaim returns 0.
3428 		 * But our reclaim could return 0, simply because due
3429 		 * to priority we are exposing a smaller subset of
3430 		 * memory to reclaim from. Consider this as a longer
3431 		 * term TODO.
3432 		 */
3433 		/* If excess == 0, no tree ops */
3434 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3435 		spin_unlock_irq(&mctz->lock);
3436 		css_put(&mz->memcg->css);
3437 		loop++;
3438 		/*
3439 		 * Could not reclaim anything and there are no more
3440 		 * mem cgroups to try or we seem to be looping without
3441 		 * reclaiming anything.
3442 		 */
3443 		if (!nr_reclaimed &&
3444 			(next_mz == NULL ||
3445 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3446 			break;
3447 	} while (!nr_reclaimed);
3448 	if (next_mz)
3449 		css_put(&next_mz->memcg->css);
3450 	return nr_reclaimed;
3451 }
3452 
3453 /*
3454  * Reclaims as many pages from the given memcg as possible.
3455  *
3456  * Caller is responsible for holding css reference for memcg.
3457  */
3458 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3459 {
3460 	int nr_retries = MAX_RECLAIM_RETRIES;
3461 
3462 	/* we call try-to-free pages for make this cgroup empty */
3463 	lru_add_drain_all();
3464 
3465 	drain_all_stock(memcg);
3466 
3467 	/* try to free all pages in this cgroup */
3468 	while (nr_retries && page_counter_read(&memcg->memory)) {
3469 		if (signal_pending(current))
3470 			return -EINTR;
3471 
3472 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true))
3473 			nr_retries--;
3474 	}
3475 
3476 	return 0;
3477 }
3478 
3479 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3480 					    char *buf, size_t nbytes,
3481 					    loff_t off)
3482 {
3483 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3484 
3485 	if (mem_cgroup_is_root(memcg))
3486 		return -EINVAL;
3487 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3488 }
3489 
3490 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3491 				     struct cftype *cft)
3492 {
3493 	return 1;
3494 }
3495 
3496 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3497 				      struct cftype *cft, u64 val)
3498 {
3499 	if (val == 1)
3500 		return 0;
3501 
3502 	pr_warn_once("Non-hierarchical mode is deprecated. "
3503 		     "Please report your usecase to linux-mm@kvack.org if you "
3504 		     "depend on this functionality.\n");
3505 
3506 	return -EINVAL;
3507 }
3508 
3509 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3510 {
3511 	unsigned long val;
3512 
3513 	if (mem_cgroup_is_root(memcg)) {
3514 		mem_cgroup_flush_stats();
3515 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3516 			memcg_page_state(memcg, NR_ANON_MAPPED);
3517 		if (swap)
3518 			val += memcg_page_state(memcg, MEMCG_SWAP);
3519 	} else {
3520 		if (!swap)
3521 			val = page_counter_read(&memcg->memory);
3522 		else
3523 			val = page_counter_read(&memcg->memsw);
3524 	}
3525 	return val;
3526 }
3527 
3528 enum {
3529 	RES_USAGE,
3530 	RES_LIMIT,
3531 	RES_MAX_USAGE,
3532 	RES_FAILCNT,
3533 	RES_SOFT_LIMIT,
3534 };
3535 
3536 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3537 			       struct cftype *cft)
3538 {
3539 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3540 	struct page_counter *counter;
3541 
3542 	switch (MEMFILE_TYPE(cft->private)) {
3543 	case _MEM:
3544 		counter = &memcg->memory;
3545 		break;
3546 	case _MEMSWAP:
3547 		counter = &memcg->memsw;
3548 		break;
3549 	case _KMEM:
3550 		counter = &memcg->kmem;
3551 		break;
3552 	case _TCP:
3553 		counter = &memcg->tcpmem;
3554 		break;
3555 	default:
3556 		BUG();
3557 	}
3558 
3559 	switch (MEMFILE_ATTR(cft->private)) {
3560 	case RES_USAGE:
3561 		if (counter == &memcg->memory)
3562 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3563 		if (counter == &memcg->memsw)
3564 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3565 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3566 	case RES_LIMIT:
3567 		return (u64)counter->max * PAGE_SIZE;
3568 	case RES_MAX_USAGE:
3569 		return (u64)counter->watermark * PAGE_SIZE;
3570 	case RES_FAILCNT:
3571 		return counter->failcnt;
3572 	case RES_SOFT_LIMIT:
3573 		return (u64)memcg->soft_limit * PAGE_SIZE;
3574 	default:
3575 		BUG();
3576 	}
3577 }
3578 
3579 #ifdef CONFIG_MEMCG_KMEM
3580 static int memcg_online_kmem(struct mem_cgroup *memcg)
3581 {
3582 	struct obj_cgroup *objcg;
3583 
3584 	if (cgroup_memory_nokmem)
3585 		return 0;
3586 
3587 	if (unlikely(mem_cgroup_is_root(memcg)))
3588 		return 0;
3589 
3590 	objcg = obj_cgroup_alloc();
3591 	if (!objcg)
3592 		return -ENOMEM;
3593 
3594 	objcg->memcg = memcg;
3595 	rcu_assign_pointer(memcg->objcg, objcg);
3596 
3597 	static_branch_enable(&memcg_kmem_enabled_key);
3598 
3599 	memcg->kmemcg_id = memcg->id.id;
3600 
3601 	return 0;
3602 }
3603 
3604 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3605 {
3606 	struct mem_cgroup *parent;
3607 
3608 	if (cgroup_memory_nokmem)
3609 		return;
3610 
3611 	if (unlikely(mem_cgroup_is_root(memcg)))
3612 		return;
3613 
3614 	parent = parent_mem_cgroup(memcg);
3615 	if (!parent)
3616 		parent = root_mem_cgroup;
3617 
3618 	memcg_reparent_objcgs(memcg, parent);
3619 
3620 	/*
3621 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3622 	 * corresponding to this cgroup are guaranteed to remain empty.
3623 	 * The ordering is imposed by list_lru_node->lock taken by
3624 	 * memcg_reparent_list_lrus().
3625 	 */
3626 	memcg_reparent_list_lrus(memcg, parent);
3627 }
3628 #else
3629 static int memcg_online_kmem(struct mem_cgroup *memcg)
3630 {
3631 	return 0;
3632 }
3633 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3634 {
3635 }
3636 #endif /* CONFIG_MEMCG_KMEM */
3637 
3638 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3639 {
3640 	int ret;
3641 
3642 	mutex_lock(&memcg_max_mutex);
3643 
3644 	ret = page_counter_set_max(&memcg->tcpmem, max);
3645 	if (ret)
3646 		goto out;
3647 
3648 	if (!memcg->tcpmem_active) {
3649 		/*
3650 		 * The active flag needs to be written after the static_key
3651 		 * update. This is what guarantees that the socket activation
3652 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3653 		 * for details, and note that we don't mark any socket as
3654 		 * belonging to this memcg until that flag is up.
3655 		 *
3656 		 * We need to do this, because static_keys will span multiple
3657 		 * sites, but we can't control their order. If we mark a socket
3658 		 * as accounted, but the accounting functions are not patched in
3659 		 * yet, we'll lose accounting.
3660 		 *
3661 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3662 		 * because when this value change, the code to process it is not
3663 		 * patched in yet.
3664 		 */
3665 		static_branch_inc(&memcg_sockets_enabled_key);
3666 		memcg->tcpmem_active = true;
3667 	}
3668 out:
3669 	mutex_unlock(&memcg_max_mutex);
3670 	return ret;
3671 }
3672 
3673 /*
3674  * The user of this function is...
3675  * RES_LIMIT.
3676  */
3677 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3678 				char *buf, size_t nbytes, loff_t off)
3679 {
3680 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3681 	unsigned long nr_pages;
3682 	int ret;
3683 
3684 	buf = strstrip(buf);
3685 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3686 	if (ret)
3687 		return ret;
3688 
3689 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3690 	case RES_LIMIT:
3691 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3692 			ret = -EINVAL;
3693 			break;
3694 		}
3695 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3696 		case _MEM:
3697 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3698 			break;
3699 		case _MEMSWAP:
3700 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3701 			break;
3702 		case _KMEM:
3703 			/* kmem.limit_in_bytes is deprecated. */
3704 			ret = -EOPNOTSUPP;
3705 			break;
3706 		case _TCP:
3707 			ret = memcg_update_tcp_max(memcg, nr_pages);
3708 			break;
3709 		}
3710 		break;
3711 	case RES_SOFT_LIMIT:
3712 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3713 			ret = -EOPNOTSUPP;
3714 		} else {
3715 			memcg->soft_limit = nr_pages;
3716 			ret = 0;
3717 		}
3718 		break;
3719 	}
3720 	return ret ?: nbytes;
3721 }
3722 
3723 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3724 				size_t nbytes, loff_t off)
3725 {
3726 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3727 	struct page_counter *counter;
3728 
3729 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3730 	case _MEM:
3731 		counter = &memcg->memory;
3732 		break;
3733 	case _MEMSWAP:
3734 		counter = &memcg->memsw;
3735 		break;
3736 	case _KMEM:
3737 		counter = &memcg->kmem;
3738 		break;
3739 	case _TCP:
3740 		counter = &memcg->tcpmem;
3741 		break;
3742 	default:
3743 		BUG();
3744 	}
3745 
3746 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3747 	case RES_MAX_USAGE:
3748 		page_counter_reset_watermark(counter);
3749 		break;
3750 	case RES_FAILCNT:
3751 		counter->failcnt = 0;
3752 		break;
3753 	default:
3754 		BUG();
3755 	}
3756 
3757 	return nbytes;
3758 }
3759 
3760 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3761 					struct cftype *cft)
3762 {
3763 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3764 }
3765 
3766 #ifdef CONFIG_MMU
3767 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3768 					struct cftype *cft, u64 val)
3769 {
3770 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3771 
3772 	if (val & ~MOVE_MASK)
3773 		return -EINVAL;
3774 
3775 	/*
3776 	 * No kind of locking is needed in here, because ->can_attach() will
3777 	 * check this value once in the beginning of the process, and then carry
3778 	 * on with stale data. This means that changes to this value will only
3779 	 * affect task migrations starting after the change.
3780 	 */
3781 	memcg->move_charge_at_immigrate = val;
3782 	return 0;
3783 }
3784 #else
3785 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3786 					struct cftype *cft, u64 val)
3787 {
3788 	return -ENOSYS;
3789 }
3790 #endif
3791 
3792 #ifdef CONFIG_NUMA
3793 
3794 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3795 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3796 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3797 
3798 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3799 				int nid, unsigned int lru_mask, bool tree)
3800 {
3801 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3802 	unsigned long nr = 0;
3803 	enum lru_list lru;
3804 
3805 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3806 
3807 	for_each_lru(lru) {
3808 		if (!(BIT(lru) & lru_mask))
3809 			continue;
3810 		if (tree)
3811 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3812 		else
3813 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3814 	}
3815 	return nr;
3816 }
3817 
3818 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3819 					     unsigned int lru_mask,
3820 					     bool tree)
3821 {
3822 	unsigned long nr = 0;
3823 	enum lru_list lru;
3824 
3825 	for_each_lru(lru) {
3826 		if (!(BIT(lru) & lru_mask))
3827 			continue;
3828 		if (tree)
3829 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3830 		else
3831 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3832 	}
3833 	return nr;
3834 }
3835 
3836 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3837 {
3838 	struct numa_stat {
3839 		const char *name;
3840 		unsigned int lru_mask;
3841 	};
3842 
3843 	static const struct numa_stat stats[] = {
3844 		{ "total", LRU_ALL },
3845 		{ "file", LRU_ALL_FILE },
3846 		{ "anon", LRU_ALL_ANON },
3847 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3848 	};
3849 	const struct numa_stat *stat;
3850 	int nid;
3851 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3852 
3853 	mem_cgroup_flush_stats();
3854 
3855 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3856 		seq_printf(m, "%s=%lu", stat->name,
3857 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3858 						   false));
3859 		for_each_node_state(nid, N_MEMORY)
3860 			seq_printf(m, " N%d=%lu", nid,
3861 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3862 							stat->lru_mask, false));
3863 		seq_putc(m, '\n');
3864 	}
3865 
3866 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3867 
3868 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3869 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3870 						   true));
3871 		for_each_node_state(nid, N_MEMORY)
3872 			seq_printf(m, " N%d=%lu", nid,
3873 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3874 							stat->lru_mask, true));
3875 		seq_putc(m, '\n');
3876 	}
3877 
3878 	return 0;
3879 }
3880 #endif /* CONFIG_NUMA */
3881 
3882 static const unsigned int memcg1_stats[] = {
3883 	NR_FILE_PAGES,
3884 	NR_ANON_MAPPED,
3885 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3886 	NR_ANON_THPS,
3887 #endif
3888 	NR_SHMEM,
3889 	NR_FILE_MAPPED,
3890 	NR_FILE_DIRTY,
3891 	NR_WRITEBACK,
3892 	MEMCG_SWAP,
3893 };
3894 
3895 static const char *const memcg1_stat_names[] = {
3896 	"cache",
3897 	"rss",
3898 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3899 	"rss_huge",
3900 #endif
3901 	"shmem",
3902 	"mapped_file",
3903 	"dirty",
3904 	"writeback",
3905 	"swap",
3906 };
3907 
3908 /* Universal VM events cgroup1 shows, original sort order */
3909 static const unsigned int memcg1_events[] = {
3910 	PGPGIN,
3911 	PGPGOUT,
3912 	PGFAULT,
3913 	PGMAJFAULT,
3914 };
3915 
3916 static int memcg_stat_show(struct seq_file *m, void *v)
3917 {
3918 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3919 	unsigned long memory, memsw;
3920 	struct mem_cgroup *mi;
3921 	unsigned int i;
3922 
3923 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3924 
3925 	mem_cgroup_flush_stats();
3926 
3927 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3928 		unsigned long nr;
3929 
3930 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3931 			continue;
3932 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3933 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3934 	}
3935 
3936 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3937 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3938 			   memcg_events_local(memcg, memcg1_events[i]));
3939 
3940 	for (i = 0; i < NR_LRU_LISTS; i++)
3941 		seq_printf(m, "%s %lu\n", lru_list_name(i),
3942 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3943 			   PAGE_SIZE);
3944 
3945 	/* Hierarchical information */
3946 	memory = memsw = PAGE_COUNTER_MAX;
3947 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3948 		memory = min(memory, READ_ONCE(mi->memory.max));
3949 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
3950 	}
3951 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3952 		   (u64)memory * PAGE_SIZE);
3953 	if (do_memsw_account())
3954 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3955 			   (u64)memsw * PAGE_SIZE);
3956 
3957 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3958 		unsigned long nr;
3959 
3960 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3961 			continue;
3962 		nr = memcg_page_state(memcg, memcg1_stats[i]);
3963 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3964 						(u64)nr * PAGE_SIZE);
3965 	}
3966 
3967 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3968 		seq_printf(m, "total_%s %llu\n",
3969 			   vm_event_name(memcg1_events[i]),
3970 			   (u64)memcg_events(memcg, memcg1_events[i]));
3971 
3972 	for (i = 0; i < NR_LRU_LISTS; i++)
3973 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3974 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3975 			   PAGE_SIZE);
3976 
3977 #ifdef CONFIG_DEBUG_VM
3978 	{
3979 		pg_data_t *pgdat;
3980 		struct mem_cgroup_per_node *mz;
3981 		unsigned long anon_cost = 0;
3982 		unsigned long file_cost = 0;
3983 
3984 		for_each_online_pgdat(pgdat) {
3985 			mz = memcg->nodeinfo[pgdat->node_id];
3986 
3987 			anon_cost += mz->lruvec.anon_cost;
3988 			file_cost += mz->lruvec.file_cost;
3989 		}
3990 		seq_printf(m, "anon_cost %lu\n", anon_cost);
3991 		seq_printf(m, "file_cost %lu\n", file_cost);
3992 	}
3993 #endif
3994 
3995 	return 0;
3996 }
3997 
3998 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3999 				      struct cftype *cft)
4000 {
4001 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4002 
4003 	return mem_cgroup_swappiness(memcg);
4004 }
4005 
4006 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4007 				       struct cftype *cft, u64 val)
4008 {
4009 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4010 
4011 	if (val > 200)
4012 		return -EINVAL;
4013 
4014 	if (!mem_cgroup_is_root(memcg))
4015 		memcg->swappiness = val;
4016 	else
4017 		vm_swappiness = val;
4018 
4019 	return 0;
4020 }
4021 
4022 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4023 {
4024 	struct mem_cgroup_threshold_ary *t;
4025 	unsigned long usage;
4026 	int i;
4027 
4028 	rcu_read_lock();
4029 	if (!swap)
4030 		t = rcu_dereference(memcg->thresholds.primary);
4031 	else
4032 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4033 
4034 	if (!t)
4035 		goto unlock;
4036 
4037 	usage = mem_cgroup_usage(memcg, swap);
4038 
4039 	/*
4040 	 * current_threshold points to threshold just below or equal to usage.
4041 	 * If it's not true, a threshold was crossed after last
4042 	 * call of __mem_cgroup_threshold().
4043 	 */
4044 	i = t->current_threshold;
4045 
4046 	/*
4047 	 * Iterate backward over array of thresholds starting from
4048 	 * current_threshold and check if a threshold is crossed.
4049 	 * If none of thresholds below usage is crossed, we read
4050 	 * only one element of the array here.
4051 	 */
4052 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4053 		eventfd_signal(t->entries[i].eventfd, 1);
4054 
4055 	/* i = current_threshold + 1 */
4056 	i++;
4057 
4058 	/*
4059 	 * Iterate forward over array of thresholds starting from
4060 	 * current_threshold+1 and check if a threshold is crossed.
4061 	 * If none of thresholds above usage is crossed, we read
4062 	 * only one element of the array here.
4063 	 */
4064 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4065 		eventfd_signal(t->entries[i].eventfd, 1);
4066 
4067 	/* Update current_threshold */
4068 	t->current_threshold = i - 1;
4069 unlock:
4070 	rcu_read_unlock();
4071 }
4072 
4073 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4074 {
4075 	while (memcg) {
4076 		__mem_cgroup_threshold(memcg, false);
4077 		if (do_memsw_account())
4078 			__mem_cgroup_threshold(memcg, true);
4079 
4080 		memcg = parent_mem_cgroup(memcg);
4081 	}
4082 }
4083 
4084 static int compare_thresholds(const void *a, const void *b)
4085 {
4086 	const struct mem_cgroup_threshold *_a = a;
4087 	const struct mem_cgroup_threshold *_b = b;
4088 
4089 	if (_a->threshold > _b->threshold)
4090 		return 1;
4091 
4092 	if (_a->threshold < _b->threshold)
4093 		return -1;
4094 
4095 	return 0;
4096 }
4097 
4098 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4099 {
4100 	struct mem_cgroup_eventfd_list *ev;
4101 
4102 	spin_lock(&memcg_oom_lock);
4103 
4104 	list_for_each_entry(ev, &memcg->oom_notify, list)
4105 		eventfd_signal(ev->eventfd, 1);
4106 
4107 	spin_unlock(&memcg_oom_lock);
4108 	return 0;
4109 }
4110 
4111 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4112 {
4113 	struct mem_cgroup *iter;
4114 
4115 	for_each_mem_cgroup_tree(iter, memcg)
4116 		mem_cgroup_oom_notify_cb(iter);
4117 }
4118 
4119 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4120 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4121 {
4122 	struct mem_cgroup_thresholds *thresholds;
4123 	struct mem_cgroup_threshold_ary *new;
4124 	unsigned long threshold;
4125 	unsigned long usage;
4126 	int i, size, ret;
4127 
4128 	ret = page_counter_memparse(args, "-1", &threshold);
4129 	if (ret)
4130 		return ret;
4131 
4132 	mutex_lock(&memcg->thresholds_lock);
4133 
4134 	if (type == _MEM) {
4135 		thresholds = &memcg->thresholds;
4136 		usage = mem_cgroup_usage(memcg, false);
4137 	} else if (type == _MEMSWAP) {
4138 		thresholds = &memcg->memsw_thresholds;
4139 		usage = mem_cgroup_usage(memcg, true);
4140 	} else
4141 		BUG();
4142 
4143 	/* Check if a threshold crossed before adding a new one */
4144 	if (thresholds->primary)
4145 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4146 
4147 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4148 
4149 	/* Allocate memory for new array of thresholds */
4150 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4151 	if (!new) {
4152 		ret = -ENOMEM;
4153 		goto unlock;
4154 	}
4155 	new->size = size;
4156 
4157 	/* Copy thresholds (if any) to new array */
4158 	if (thresholds->primary)
4159 		memcpy(new->entries, thresholds->primary->entries,
4160 		       flex_array_size(new, entries, size - 1));
4161 
4162 	/* Add new threshold */
4163 	new->entries[size - 1].eventfd = eventfd;
4164 	new->entries[size - 1].threshold = threshold;
4165 
4166 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4167 	sort(new->entries, size, sizeof(*new->entries),
4168 			compare_thresholds, NULL);
4169 
4170 	/* Find current threshold */
4171 	new->current_threshold = -1;
4172 	for (i = 0; i < size; i++) {
4173 		if (new->entries[i].threshold <= usage) {
4174 			/*
4175 			 * new->current_threshold will not be used until
4176 			 * rcu_assign_pointer(), so it's safe to increment
4177 			 * it here.
4178 			 */
4179 			++new->current_threshold;
4180 		} else
4181 			break;
4182 	}
4183 
4184 	/* Free old spare buffer and save old primary buffer as spare */
4185 	kfree(thresholds->spare);
4186 	thresholds->spare = thresholds->primary;
4187 
4188 	rcu_assign_pointer(thresholds->primary, new);
4189 
4190 	/* To be sure that nobody uses thresholds */
4191 	synchronize_rcu();
4192 
4193 unlock:
4194 	mutex_unlock(&memcg->thresholds_lock);
4195 
4196 	return ret;
4197 }
4198 
4199 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4200 	struct eventfd_ctx *eventfd, const char *args)
4201 {
4202 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4203 }
4204 
4205 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4206 	struct eventfd_ctx *eventfd, const char *args)
4207 {
4208 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4209 }
4210 
4211 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4212 	struct eventfd_ctx *eventfd, enum res_type type)
4213 {
4214 	struct mem_cgroup_thresholds *thresholds;
4215 	struct mem_cgroup_threshold_ary *new;
4216 	unsigned long usage;
4217 	int i, j, size, entries;
4218 
4219 	mutex_lock(&memcg->thresholds_lock);
4220 
4221 	if (type == _MEM) {
4222 		thresholds = &memcg->thresholds;
4223 		usage = mem_cgroup_usage(memcg, false);
4224 	} else if (type == _MEMSWAP) {
4225 		thresholds = &memcg->memsw_thresholds;
4226 		usage = mem_cgroup_usage(memcg, true);
4227 	} else
4228 		BUG();
4229 
4230 	if (!thresholds->primary)
4231 		goto unlock;
4232 
4233 	/* Check if a threshold crossed before removing */
4234 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4235 
4236 	/* Calculate new number of threshold */
4237 	size = entries = 0;
4238 	for (i = 0; i < thresholds->primary->size; i++) {
4239 		if (thresholds->primary->entries[i].eventfd != eventfd)
4240 			size++;
4241 		else
4242 			entries++;
4243 	}
4244 
4245 	new = thresholds->spare;
4246 
4247 	/* If no items related to eventfd have been cleared, nothing to do */
4248 	if (!entries)
4249 		goto unlock;
4250 
4251 	/* Set thresholds array to NULL if we don't have thresholds */
4252 	if (!size) {
4253 		kfree(new);
4254 		new = NULL;
4255 		goto swap_buffers;
4256 	}
4257 
4258 	new->size = size;
4259 
4260 	/* Copy thresholds and find current threshold */
4261 	new->current_threshold = -1;
4262 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4263 		if (thresholds->primary->entries[i].eventfd == eventfd)
4264 			continue;
4265 
4266 		new->entries[j] = thresholds->primary->entries[i];
4267 		if (new->entries[j].threshold <= usage) {
4268 			/*
4269 			 * new->current_threshold will not be used
4270 			 * until rcu_assign_pointer(), so it's safe to increment
4271 			 * it here.
4272 			 */
4273 			++new->current_threshold;
4274 		}
4275 		j++;
4276 	}
4277 
4278 swap_buffers:
4279 	/* Swap primary and spare array */
4280 	thresholds->spare = thresholds->primary;
4281 
4282 	rcu_assign_pointer(thresholds->primary, new);
4283 
4284 	/* To be sure that nobody uses thresholds */
4285 	synchronize_rcu();
4286 
4287 	/* If all events are unregistered, free the spare array */
4288 	if (!new) {
4289 		kfree(thresholds->spare);
4290 		thresholds->spare = NULL;
4291 	}
4292 unlock:
4293 	mutex_unlock(&memcg->thresholds_lock);
4294 }
4295 
4296 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4297 	struct eventfd_ctx *eventfd)
4298 {
4299 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4300 }
4301 
4302 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4303 	struct eventfd_ctx *eventfd)
4304 {
4305 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4306 }
4307 
4308 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4309 	struct eventfd_ctx *eventfd, const char *args)
4310 {
4311 	struct mem_cgroup_eventfd_list *event;
4312 
4313 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4314 	if (!event)
4315 		return -ENOMEM;
4316 
4317 	spin_lock(&memcg_oom_lock);
4318 
4319 	event->eventfd = eventfd;
4320 	list_add(&event->list, &memcg->oom_notify);
4321 
4322 	/* already in OOM ? */
4323 	if (memcg->under_oom)
4324 		eventfd_signal(eventfd, 1);
4325 	spin_unlock(&memcg_oom_lock);
4326 
4327 	return 0;
4328 }
4329 
4330 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4331 	struct eventfd_ctx *eventfd)
4332 {
4333 	struct mem_cgroup_eventfd_list *ev, *tmp;
4334 
4335 	spin_lock(&memcg_oom_lock);
4336 
4337 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4338 		if (ev->eventfd == eventfd) {
4339 			list_del(&ev->list);
4340 			kfree(ev);
4341 		}
4342 	}
4343 
4344 	spin_unlock(&memcg_oom_lock);
4345 }
4346 
4347 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4348 {
4349 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4350 
4351 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4352 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4353 	seq_printf(sf, "oom_kill %lu\n",
4354 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4355 	return 0;
4356 }
4357 
4358 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4359 	struct cftype *cft, u64 val)
4360 {
4361 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4362 
4363 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4364 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4365 		return -EINVAL;
4366 
4367 	memcg->oom_kill_disable = val;
4368 	if (!val)
4369 		memcg_oom_recover(memcg);
4370 
4371 	return 0;
4372 }
4373 
4374 #ifdef CONFIG_CGROUP_WRITEBACK
4375 
4376 #include <trace/events/writeback.h>
4377 
4378 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4379 {
4380 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4381 }
4382 
4383 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4384 {
4385 	wb_domain_exit(&memcg->cgwb_domain);
4386 }
4387 
4388 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4389 {
4390 	wb_domain_size_changed(&memcg->cgwb_domain);
4391 }
4392 
4393 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4394 {
4395 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4396 
4397 	if (!memcg->css.parent)
4398 		return NULL;
4399 
4400 	return &memcg->cgwb_domain;
4401 }
4402 
4403 /**
4404  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4405  * @wb: bdi_writeback in question
4406  * @pfilepages: out parameter for number of file pages
4407  * @pheadroom: out parameter for number of allocatable pages according to memcg
4408  * @pdirty: out parameter for number of dirty pages
4409  * @pwriteback: out parameter for number of pages under writeback
4410  *
4411  * Determine the numbers of file, headroom, dirty, and writeback pages in
4412  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4413  * is a bit more involved.
4414  *
4415  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4416  * headroom is calculated as the lowest headroom of itself and the
4417  * ancestors.  Note that this doesn't consider the actual amount of
4418  * available memory in the system.  The caller should further cap
4419  * *@pheadroom accordingly.
4420  */
4421 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4422 			 unsigned long *pheadroom, unsigned long *pdirty,
4423 			 unsigned long *pwriteback)
4424 {
4425 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4426 	struct mem_cgroup *parent;
4427 
4428 	mem_cgroup_flush_stats();
4429 
4430 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4431 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4432 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4433 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4434 
4435 	*pheadroom = PAGE_COUNTER_MAX;
4436 	while ((parent = parent_mem_cgroup(memcg))) {
4437 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4438 					    READ_ONCE(memcg->memory.high));
4439 		unsigned long used = page_counter_read(&memcg->memory);
4440 
4441 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4442 		memcg = parent;
4443 	}
4444 }
4445 
4446 /*
4447  * Foreign dirty flushing
4448  *
4449  * There's an inherent mismatch between memcg and writeback.  The former
4450  * tracks ownership per-page while the latter per-inode.  This was a
4451  * deliberate design decision because honoring per-page ownership in the
4452  * writeback path is complicated, may lead to higher CPU and IO overheads
4453  * and deemed unnecessary given that write-sharing an inode across
4454  * different cgroups isn't a common use-case.
4455  *
4456  * Combined with inode majority-writer ownership switching, this works well
4457  * enough in most cases but there are some pathological cases.  For
4458  * example, let's say there are two cgroups A and B which keep writing to
4459  * different but confined parts of the same inode.  B owns the inode and
4460  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4461  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4462  * triggering background writeback.  A will be slowed down without a way to
4463  * make writeback of the dirty pages happen.
4464  *
4465  * Conditions like the above can lead to a cgroup getting repeatedly and
4466  * severely throttled after making some progress after each
4467  * dirty_expire_interval while the underlying IO device is almost
4468  * completely idle.
4469  *
4470  * Solving this problem completely requires matching the ownership tracking
4471  * granularities between memcg and writeback in either direction.  However,
4472  * the more egregious behaviors can be avoided by simply remembering the
4473  * most recent foreign dirtying events and initiating remote flushes on
4474  * them when local writeback isn't enough to keep the memory clean enough.
4475  *
4476  * The following two functions implement such mechanism.  When a foreign
4477  * page - a page whose memcg and writeback ownerships don't match - is
4478  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4479  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4480  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4481  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4482  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4483  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4484  * limited to MEMCG_CGWB_FRN_CNT.
4485  *
4486  * The mechanism only remembers IDs and doesn't hold any object references.
4487  * As being wrong occasionally doesn't matter, updates and accesses to the
4488  * records are lockless and racy.
4489  */
4490 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4491 					     struct bdi_writeback *wb)
4492 {
4493 	struct mem_cgroup *memcg = folio_memcg(folio);
4494 	struct memcg_cgwb_frn *frn;
4495 	u64 now = get_jiffies_64();
4496 	u64 oldest_at = now;
4497 	int oldest = -1;
4498 	int i;
4499 
4500 	trace_track_foreign_dirty(folio, wb);
4501 
4502 	/*
4503 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4504 	 * using it.  If not replace the oldest one which isn't being
4505 	 * written out.
4506 	 */
4507 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4508 		frn = &memcg->cgwb_frn[i];
4509 		if (frn->bdi_id == wb->bdi->id &&
4510 		    frn->memcg_id == wb->memcg_css->id)
4511 			break;
4512 		if (time_before64(frn->at, oldest_at) &&
4513 		    atomic_read(&frn->done.cnt) == 1) {
4514 			oldest = i;
4515 			oldest_at = frn->at;
4516 		}
4517 	}
4518 
4519 	if (i < MEMCG_CGWB_FRN_CNT) {
4520 		/*
4521 		 * Re-using an existing one.  Update timestamp lazily to
4522 		 * avoid making the cacheline hot.  We want them to be
4523 		 * reasonably up-to-date and significantly shorter than
4524 		 * dirty_expire_interval as that's what expires the record.
4525 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4526 		 */
4527 		unsigned long update_intv =
4528 			min_t(unsigned long, HZ,
4529 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4530 
4531 		if (time_before64(frn->at, now - update_intv))
4532 			frn->at = now;
4533 	} else if (oldest >= 0) {
4534 		/* replace the oldest free one */
4535 		frn = &memcg->cgwb_frn[oldest];
4536 		frn->bdi_id = wb->bdi->id;
4537 		frn->memcg_id = wb->memcg_css->id;
4538 		frn->at = now;
4539 	}
4540 }
4541 
4542 /* issue foreign writeback flushes for recorded foreign dirtying events */
4543 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4544 {
4545 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4546 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4547 	u64 now = jiffies_64;
4548 	int i;
4549 
4550 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4551 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4552 
4553 		/*
4554 		 * If the record is older than dirty_expire_interval,
4555 		 * writeback on it has already started.  No need to kick it
4556 		 * off again.  Also, don't start a new one if there's
4557 		 * already one in flight.
4558 		 */
4559 		if (time_after64(frn->at, now - intv) &&
4560 		    atomic_read(&frn->done.cnt) == 1) {
4561 			frn->at = 0;
4562 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4563 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4564 					       WB_REASON_FOREIGN_FLUSH,
4565 					       &frn->done);
4566 		}
4567 	}
4568 }
4569 
4570 #else	/* CONFIG_CGROUP_WRITEBACK */
4571 
4572 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4573 {
4574 	return 0;
4575 }
4576 
4577 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4578 {
4579 }
4580 
4581 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4582 {
4583 }
4584 
4585 #endif	/* CONFIG_CGROUP_WRITEBACK */
4586 
4587 /*
4588  * DO NOT USE IN NEW FILES.
4589  *
4590  * "cgroup.event_control" implementation.
4591  *
4592  * This is way over-engineered.  It tries to support fully configurable
4593  * events for each user.  Such level of flexibility is completely
4594  * unnecessary especially in the light of the planned unified hierarchy.
4595  *
4596  * Please deprecate this and replace with something simpler if at all
4597  * possible.
4598  */
4599 
4600 /*
4601  * Unregister event and free resources.
4602  *
4603  * Gets called from workqueue.
4604  */
4605 static void memcg_event_remove(struct work_struct *work)
4606 {
4607 	struct mem_cgroup_event *event =
4608 		container_of(work, struct mem_cgroup_event, remove);
4609 	struct mem_cgroup *memcg = event->memcg;
4610 
4611 	remove_wait_queue(event->wqh, &event->wait);
4612 
4613 	event->unregister_event(memcg, event->eventfd);
4614 
4615 	/* Notify userspace the event is going away. */
4616 	eventfd_signal(event->eventfd, 1);
4617 
4618 	eventfd_ctx_put(event->eventfd);
4619 	kfree(event);
4620 	css_put(&memcg->css);
4621 }
4622 
4623 /*
4624  * Gets called on EPOLLHUP on eventfd when user closes it.
4625  *
4626  * Called with wqh->lock held and interrupts disabled.
4627  */
4628 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4629 			    int sync, void *key)
4630 {
4631 	struct mem_cgroup_event *event =
4632 		container_of(wait, struct mem_cgroup_event, wait);
4633 	struct mem_cgroup *memcg = event->memcg;
4634 	__poll_t flags = key_to_poll(key);
4635 
4636 	if (flags & EPOLLHUP) {
4637 		/*
4638 		 * If the event has been detached at cgroup removal, we
4639 		 * can simply return knowing the other side will cleanup
4640 		 * for us.
4641 		 *
4642 		 * We can't race against event freeing since the other
4643 		 * side will require wqh->lock via remove_wait_queue(),
4644 		 * which we hold.
4645 		 */
4646 		spin_lock(&memcg->event_list_lock);
4647 		if (!list_empty(&event->list)) {
4648 			list_del_init(&event->list);
4649 			/*
4650 			 * We are in atomic context, but cgroup_event_remove()
4651 			 * may sleep, so we have to call it in workqueue.
4652 			 */
4653 			schedule_work(&event->remove);
4654 		}
4655 		spin_unlock(&memcg->event_list_lock);
4656 	}
4657 
4658 	return 0;
4659 }
4660 
4661 static void memcg_event_ptable_queue_proc(struct file *file,
4662 		wait_queue_head_t *wqh, poll_table *pt)
4663 {
4664 	struct mem_cgroup_event *event =
4665 		container_of(pt, struct mem_cgroup_event, pt);
4666 
4667 	event->wqh = wqh;
4668 	add_wait_queue(wqh, &event->wait);
4669 }
4670 
4671 /*
4672  * DO NOT USE IN NEW FILES.
4673  *
4674  * Parse input and register new cgroup event handler.
4675  *
4676  * Input must be in format '<event_fd> <control_fd> <args>'.
4677  * Interpretation of args is defined by control file implementation.
4678  */
4679 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4680 					 char *buf, size_t nbytes, loff_t off)
4681 {
4682 	struct cgroup_subsys_state *css = of_css(of);
4683 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4684 	struct mem_cgroup_event *event;
4685 	struct cgroup_subsys_state *cfile_css;
4686 	unsigned int efd, cfd;
4687 	struct fd efile;
4688 	struct fd cfile;
4689 	const char *name;
4690 	char *endp;
4691 	int ret;
4692 
4693 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
4694 		return -EOPNOTSUPP;
4695 
4696 	buf = strstrip(buf);
4697 
4698 	efd = simple_strtoul(buf, &endp, 10);
4699 	if (*endp != ' ')
4700 		return -EINVAL;
4701 	buf = endp + 1;
4702 
4703 	cfd = simple_strtoul(buf, &endp, 10);
4704 	if ((*endp != ' ') && (*endp != '\0'))
4705 		return -EINVAL;
4706 	buf = endp + 1;
4707 
4708 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4709 	if (!event)
4710 		return -ENOMEM;
4711 
4712 	event->memcg = memcg;
4713 	INIT_LIST_HEAD(&event->list);
4714 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4715 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4716 	INIT_WORK(&event->remove, memcg_event_remove);
4717 
4718 	efile = fdget(efd);
4719 	if (!efile.file) {
4720 		ret = -EBADF;
4721 		goto out_kfree;
4722 	}
4723 
4724 	event->eventfd = eventfd_ctx_fileget(efile.file);
4725 	if (IS_ERR(event->eventfd)) {
4726 		ret = PTR_ERR(event->eventfd);
4727 		goto out_put_efile;
4728 	}
4729 
4730 	cfile = fdget(cfd);
4731 	if (!cfile.file) {
4732 		ret = -EBADF;
4733 		goto out_put_eventfd;
4734 	}
4735 
4736 	/* the process need read permission on control file */
4737 	/* AV: shouldn't we check that it's been opened for read instead? */
4738 	ret = file_permission(cfile.file, MAY_READ);
4739 	if (ret < 0)
4740 		goto out_put_cfile;
4741 
4742 	/*
4743 	 * Determine the event callbacks and set them in @event.  This used
4744 	 * to be done via struct cftype but cgroup core no longer knows
4745 	 * about these events.  The following is crude but the whole thing
4746 	 * is for compatibility anyway.
4747 	 *
4748 	 * DO NOT ADD NEW FILES.
4749 	 */
4750 	name = cfile.file->f_path.dentry->d_name.name;
4751 
4752 	if (!strcmp(name, "memory.usage_in_bytes")) {
4753 		event->register_event = mem_cgroup_usage_register_event;
4754 		event->unregister_event = mem_cgroup_usage_unregister_event;
4755 	} else if (!strcmp(name, "memory.oom_control")) {
4756 		event->register_event = mem_cgroup_oom_register_event;
4757 		event->unregister_event = mem_cgroup_oom_unregister_event;
4758 	} else if (!strcmp(name, "memory.pressure_level")) {
4759 		event->register_event = vmpressure_register_event;
4760 		event->unregister_event = vmpressure_unregister_event;
4761 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4762 		event->register_event = memsw_cgroup_usage_register_event;
4763 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4764 	} else {
4765 		ret = -EINVAL;
4766 		goto out_put_cfile;
4767 	}
4768 
4769 	/*
4770 	 * Verify @cfile should belong to @css.  Also, remaining events are
4771 	 * automatically removed on cgroup destruction but the removal is
4772 	 * asynchronous, so take an extra ref on @css.
4773 	 */
4774 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4775 					       &memory_cgrp_subsys);
4776 	ret = -EINVAL;
4777 	if (IS_ERR(cfile_css))
4778 		goto out_put_cfile;
4779 	if (cfile_css != css) {
4780 		css_put(cfile_css);
4781 		goto out_put_cfile;
4782 	}
4783 
4784 	ret = event->register_event(memcg, event->eventfd, buf);
4785 	if (ret)
4786 		goto out_put_css;
4787 
4788 	vfs_poll(efile.file, &event->pt);
4789 
4790 	spin_lock_irq(&memcg->event_list_lock);
4791 	list_add(&event->list, &memcg->event_list);
4792 	spin_unlock_irq(&memcg->event_list_lock);
4793 
4794 	fdput(cfile);
4795 	fdput(efile);
4796 
4797 	return nbytes;
4798 
4799 out_put_css:
4800 	css_put(css);
4801 out_put_cfile:
4802 	fdput(cfile);
4803 out_put_eventfd:
4804 	eventfd_ctx_put(event->eventfd);
4805 out_put_efile:
4806 	fdput(efile);
4807 out_kfree:
4808 	kfree(event);
4809 
4810 	return ret;
4811 }
4812 
4813 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4814 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4815 {
4816 	/*
4817 	 * Deprecated.
4818 	 * Please, take a look at tools/cgroup/slabinfo.py .
4819 	 */
4820 	return 0;
4821 }
4822 #endif
4823 
4824 static struct cftype mem_cgroup_legacy_files[] = {
4825 	{
4826 		.name = "usage_in_bytes",
4827 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4828 		.read_u64 = mem_cgroup_read_u64,
4829 	},
4830 	{
4831 		.name = "max_usage_in_bytes",
4832 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4833 		.write = mem_cgroup_reset,
4834 		.read_u64 = mem_cgroup_read_u64,
4835 	},
4836 	{
4837 		.name = "limit_in_bytes",
4838 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4839 		.write = mem_cgroup_write,
4840 		.read_u64 = mem_cgroup_read_u64,
4841 	},
4842 	{
4843 		.name = "soft_limit_in_bytes",
4844 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4845 		.write = mem_cgroup_write,
4846 		.read_u64 = mem_cgroup_read_u64,
4847 	},
4848 	{
4849 		.name = "failcnt",
4850 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4851 		.write = mem_cgroup_reset,
4852 		.read_u64 = mem_cgroup_read_u64,
4853 	},
4854 	{
4855 		.name = "stat",
4856 		.seq_show = memcg_stat_show,
4857 	},
4858 	{
4859 		.name = "force_empty",
4860 		.write = mem_cgroup_force_empty_write,
4861 	},
4862 	{
4863 		.name = "use_hierarchy",
4864 		.write_u64 = mem_cgroup_hierarchy_write,
4865 		.read_u64 = mem_cgroup_hierarchy_read,
4866 	},
4867 	{
4868 		.name = "cgroup.event_control",		/* XXX: for compat */
4869 		.write = memcg_write_event_control,
4870 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4871 	},
4872 	{
4873 		.name = "swappiness",
4874 		.read_u64 = mem_cgroup_swappiness_read,
4875 		.write_u64 = mem_cgroup_swappiness_write,
4876 	},
4877 	{
4878 		.name = "move_charge_at_immigrate",
4879 		.read_u64 = mem_cgroup_move_charge_read,
4880 		.write_u64 = mem_cgroup_move_charge_write,
4881 	},
4882 	{
4883 		.name = "oom_control",
4884 		.seq_show = mem_cgroup_oom_control_read,
4885 		.write_u64 = mem_cgroup_oom_control_write,
4886 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4887 	},
4888 	{
4889 		.name = "pressure_level",
4890 	},
4891 #ifdef CONFIG_NUMA
4892 	{
4893 		.name = "numa_stat",
4894 		.seq_show = memcg_numa_stat_show,
4895 	},
4896 #endif
4897 	{
4898 		.name = "kmem.limit_in_bytes",
4899 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4900 		.write = mem_cgroup_write,
4901 		.read_u64 = mem_cgroup_read_u64,
4902 	},
4903 	{
4904 		.name = "kmem.usage_in_bytes",
4905 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4906 		.read_u64 = mem_cgroup_read_u64,
4907 	},
4908 	{
4909 		.name = "kmem.failcnt",
4910 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4911 		.write = mem_cgroup_reset,
4912 		.read_u64 = mem_cgroup_read_u64,
4913 	},
4914 	{
4915 		.name = "kmem.max_usage_in_bytes",
4916 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4917 		.write = mem_cgroup_reset,
4918 		.read_u64 = mem_cgroup_read_u64,
4919 	},
4920 #if defined(CONFIG_MEMCG_KMEM) && \
4921 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4922 	{
4923 		.name = "kmem.slabinfo",
4924 		.seq_show = mem_cgroup_slab_show,
4925 	},
4926 #endif
4927 	{
4928 		.name = "kmem.tcp.limit_in_bytes",
4929 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4930 		.write = mem_cgroup_write,
4931 		.read_u64 = mem_cgroup_read_u64,
4932 	},
4933 	{
4934 		.name = "kmem.tcp.usage_in_bytes",
4935 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4936 		.read_u64 = mem_cgroup_read_u64,
4937 	},
4938 	{
4939 		.name = "kmem.tcp.failcnt",
4940 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4941 		.write = mem_cgroup_reset,
4942 		.read_u64 = mem_cgroup_read_u64,
4943 	},
4944 	{
4945 		.name = "kmem.tcp.max_usage_in_bytes",
4946 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4947 		.write = mem_cgroup_reset,
4948 		.read_u64 = mem_cgroup_read_u64,
4949 	},
4950 	{ },	/* terminate */
4951 };
4952 
4953 /*
4954  * Private memory cgroup IDR
4955  *
4956  * Swap-out records and page cache shadow entries need to store memcg
4957  * references in constrained space, so we maintain an ID space that is
4958  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4959  * memory-controlled cgroups to 64k.
4960  *
4961  * However, there usually are many references to the offline CSS after
4962  * the cgroup has been destroyed, such as page cache or reclaimable
4963  * slab objects, that don't need to hang on to the ID. We want to keep
4964  * those dead CSS from occupying IDs, or we might quickly exhaust the
4965  * relatively small ID space and prevent the creation of new cgroups
4966  * even when there are much fewer than 64k cgroups - possibly none.
4967  *
4968  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4969  * be freed and recycled when it's no longer needed, which is usually
4970  * when the CSS is offlined.
4971  *
4972  * The only exception to that are records of swapped out tmpfs/shmem
4973  * pages that need to be attributed to live ancestors on swapin. But
4974  * those references are manageable from userspace.
4975  */
4976 
4977 static DEFINE_IDR(mem_cgroup_idr);
4978 
4979 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4980 {
4981 	if (memcg->id.id > 0) {
4982 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4983 		memcg->id.id = 0;
4984 	}
4985 }
4986 
4987 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4988 						  unsigned int n)
4989 {
4990 	refcount_add(n, &memcg->id.ref);
4991 }
4992 
4993 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4994 {
4995 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4996 		mem_cgroup_id_remove(memcg);
4997 
4998 		/* Memcg ID pins CSS */
4999 		css_put(&memcg->css);
5000 	}
5001 }
5002 
5003 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5004 {
5005 	mem_cgroup_id_put_many(memcg, 1);
5006 }
5007 
5008 /**
5009  * mem_cgroup_from_id - look up a memcg from a memcg id
5010  * @id: the memcg id to look up
5011  *
5012  * Caller must hold rcu_read_lock().
5013  */
5014 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5015 {
5016 	WARN_ON_ONCE(!rcu_read_lock_held());
5017 	return idr_find(&mem_cgroup_idr, id);
5018 }
5019 
5020 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5021 {
5022 	struct mem_cgroup_per_node *pn;
5023 
5024 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5025 	if (!pn)
5026 		return 1;
5027 
5028 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5029 						   GFP_KERNEL_ACCOUNT);
5030 	if (!pn->lruvec_stats_percpu) {
5031 		kfree(pn);
5032 		return 1;
5033 	}
5034 
5035 	lruvec_init(&pn->lruvec);
5036 	pn->memcg = memcg;
5037 
5038 	memcg->nodeinfo[node] = pn;
5039 	return 0;
5040 }
5041 
5042 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5043 {
5044 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5045 
5046 	if (!pn)
5047 		return;
5048 
5049 	free_percpu(pn->lruvec_stats_percpu);
5050 	kfree(pn);
5051 }
5052 
5053 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5054 {
5055 	int node;
5056 
5057 	for_each_node(node)
5058 		free_mem_cgroup_per_node_info(memcg, node);
5059 	free_percpu(memcg->vmstats_percpu);
5060 	kfree(memcg);
5061 }
5062 
5063 static void mem_cgroup_free(struct mem_cgroup *memcg)
5064 {
5065 	memcg_wb_domain_exit(memcg);
5066 	__mem_cgroup_free(memcg);
5067 }
5068 
5069 static struct mem_cgroup *mem_cgroup_alloc(void)
5070 {
5071 	struct mem_cgroup *memcg;
5072 	int node;
5073 	int __maybe_unused i;
5074 	long error = -ENOMEM;
5075 
5076 	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5077 	if (!memcg)
5078 		return ERR_PTR(error);
5079 
5080 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5081 				 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5082 	if (memcg->id.id < 0) {
5083 		error = memcg->id.id;
5084 		goto fail;
5085 	}
5086 
5087 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5088 						 GFP_KERNEL_ACCOUNT);
5089 	if (!memcg->vmstats_percpu)
5090 		goto fail;
5091 
5092 	for_each_node(node)
5093 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5094 			goto fail;
5095 
5096 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5097 		goto fail;
5098 
5099 	INIT_WORK(&memcg->high_work, high_work_func);
5100 	INIT_LIST_HEAD(&memcg->oom_notify);
5101 	mutex_init(&memcg->thresholds_lock);
5102 	spin_lock_init(&memcg->move_lock);
5103 	vmpressure_init(&memcg->vmpressure);
5104 	INIT_LIST_HEAD(&memcg->event_list);
5105 	spin_lock_init(&memcg->event_list_lock);
5106 	memcg->socket_pressure = jiffies;
5107 #ifdef CONFIG_MEMCG_KMEM
5108 	memcg->kmemcg_id = -1;
5109 	INIT_LIST_HEAD(&memcg->objcg_list);
5110 #endif
5111 #ifdef CONFIG_CGROUP_WRITEBACK
5112 	INIT_LIST_HEAD(&memcg->cgwb_list);
5113 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5114 		memcg->cgwb_frn[i].done =
5115 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5116 #endif
5117 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5118 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5119 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5120 	memcg->deferred_split_queue.split_queue_len = 0;
5121 #endif
5122 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5123 	return memcg;
5124 fail:
5125 	mem_cgroup_id_remove(memcg);
5126 	__mem_cgroup_free(memcg);
5127 	return ERR_PTR(error);
5128 }
5129 
5130 static struct cgroup_subsys_state * __ref
5131 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5132 {
5133 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5134 	struct mem_cgroup *memcg, *old_memcg;
5135 
5136 	old_memcg = set_active_memcg(parent);
5137 	memcg = mem_cgroup_alloc();
5138 	set_active_memcg(old_memcg);
5139 	if (IS_ERR(memcg))
5140 		return ERR_CAST(memcg);
5141 
5142 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5143 	memcg->soft_limit = PAGE_COUNTER_MAX;
5144 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5145 	if (parent) {
5146 		memcg->swappiness = mem_cgroup_swappiness(parent);
5147 		memcg->oom_kill_disable = parent->oom_kill_disable;
5148 
5149 		page_counter_init(&memcg->memory, &parent->memory);
5150 		page_counter_init(&memcg->swap, &parent->swap);
5151 		page_counter_init(&memcg->kmem, &parent->kmem);
5152 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5153 	} else {
5154 		page_counter_init(&memcg->memory, NULL);
5155 		page_counter_init(&memcg->swap, NULL);
5156 		page_counter_init(&memcg->kmem, NULL);
5157 		page_counter_init(&memcg->tcpmem, NULL);
5158 
5159 		root_mem_cgroup = memcg;
5160 		return &memcg->css;
5161 	}
5162 
5163 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5164 		static_branch_inc(&memcg_sockets_enabled_key);
5165 
5166 	return &memcg->css;
5167 }
5168 
5169 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5170 {
5171 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5172 
5173 	if (memcg_online_kmem(memcg))
5174 		goto remove_id;
5175 
5176 	/*
5177 	 * A memcg must be visible for expand_shrinker_info()
5178 	 * by the time the maps are allocated. So, we allocate maps
5179 	 * here, when for_each_mem_cgroup() can't skip it.
5180 	 */
5181 	if (alloc_shrinker_info(memcg))
5182 		goto offline_kmem;
5183 
5184 	/* Online state pins memcg ID, memcg ID pins CSS */
5185 	refcount_set(&memcg->id.ref, 1);
5186 	css_get(css);
5187 
5188 	if (unlikely(mem_cgroup_is_root(memcg)))
5189 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5190 				   2UL*HZ);
5191 	return 0;
5192 offline_kmem:
5193 	memcg_offline_kmem(memcg);
5194 remove_id:
5195 	mem_cgroup_id_remove(memcg);
5196 	return -ENOMEM;
5197 }
5198 
5199 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5200 {
5201 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5202 	struct mem_cgroup_event *event, *tmp;
5203 
5204 	/*
5205 	 * Unregister events and notify userspace.
5206 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5207 	 * directory to avoid race between userspace and kernelspace.
5208 	 */
5209 	spin_lock_irq(&memcg->event_list_lock);
5210 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5211 		list_del_init(&event->list);
5212 		schedule_work(&event->remove);
5213 	}
5214 	spin_unlock_irq(&memcg->event_list_lock);
5215 
5216 	page_counter_set_min(&memcg->memory, 0);
5217 	page_counter_set_low(&memcg->memory, 0);
5218 
5219 	memcg_offline_kmem(memcg);
5220 	reparent_shrinker_deferred(memcg);
5221 	wb_memcg_offline(memcg);
5222 
5223 	drain_all_stock(memcg);
5224 
5225 	mem_cgroup_id_put(memcg);
5226 }
5227 
5228 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5229 {
5230 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5231 
5232 	invalidate_reclaim_iterators(memcg);
5233 }
5234 
5235 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5236 {
5237 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5238 	int __maybe_unused i;
5239 
5240 #ifdef CONFIG_CGROUP_WRITEBACK
5241 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5242 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5243 #endif
5244 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5245 		static_branch_dec(&memcg_sockets_enabled_key);
5246 
5247 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5248 		static_branch_dec(&memcg_sockets_enabled_key);
5249 
5250 	vmpressure_cleanup(&memcg->vmpressure);
5251 	cancel_work_sync(&memcg->high_work);
5252 	mem_cgroup_remove_from_trees(memcg);
5253 	free_shrinker_info(memcg);
5254 	mem_cgroup_free(memcg);
5255 }
5256 
5257 /**
5258  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5259  * @css: the target css
5260  *
5261  * Reset the states of the mem_cgroup associated with @css.  This is
5262  * invoked when the userland requests disabling on the default hierarchy
5263  * but the memcg is pinned through dependency.  The memcg should stop
5264  * applying policies and should revert to the vanilla state as it may be
5265  * made visible again.
5266  *
5267  * The current implementation only resets the essential configurations.
5268  * This needs to be expanded to cover all the visible parts.
5269  */
5270 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5271 {
5272 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5273 
5274 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5275 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5276 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5277 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5278 	page_counter_set_min(&memcg->memory, 0);
5279 	page_counter_set_low(&memcg->memory, 0);
5280 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5281 	memcg->soft_limit = PAGE_COUNTER_MAX;
5282 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5283 	memcg_wb_domain_size_changed(memcg);
5284 }
5285 
5286 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5287 {
5288 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5289 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5290 	struct memcg_vmstats_percpu *statc;
5291 	long delta, v;
5292 	int i, nid;
5293 
5294 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5295 
5296 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5297 		/*
5298 		 * Collect the aggregated propagation counts of groups
5299 		 * below us. We're in a per-cpu loop here and this is
5300 		 * a global counter, so the first cycle will get them.
5301 		 */
5302 		delta = memcg->vmstats.state_pending[i];
5303 		if (delta)
5304 			memcg->vmstats.state_pending[i] = 0;
5305 
5306 		/* Add CPU changes on this level since the last flush */
5307 		v = READ_ONCE(statc->state[i]);
5308 		if (v != statc->state_prev[i]) {
5309 			delta += v - statc->state_prev[i];
5310 			statc->state_prev[i] = v;
5311 		}
5312 
5313 		if (!delta)
5314 			continue;
5315 
5316 		/* Aggregate counts on this level and propagate upwards */
5317 		memcg->vmstats.state[i] += delta;
5318 		if (parent)
5319 			parent->vmstats.state_pending[i] += delta;
5320 	}
5321 
5322 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5323 		delta = memcg->vmstats.events_pending[i];
5324 		if (delta)
5325 			memcg->vmstats.events_pending[i] = 0;
5326 
5327 		v = READ_ONCE(statc->events[i]);
5328 		if (v != statc->events_prev[i]) {
5329 			delta += v - statc->events_prev[i];
5330 			statc->events_prev[i] = v;
5331 		}
5332 
5333 		if (!delta)
5334 			continue;
5335 
5336 		memcg->vmstats.events[i] += delta;
5337 		if (parent)
5338 			parent->vmstats.events_pending[i] += delta;
5339 	}
5340 
5341 	for_each_node_state(nid, N_MEMORY) {
5342 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5343 		struct mem_cgroup_per_node *ppn = NULL;
5344 		struct lruvec_stats_percpu *lstatc;
5345 
5346 		if (parent)
5347 			ppn = parent->nodeinfo[nid];
5348 
5349 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5350 
5351 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5352 			delta = pn->lruvec_stats.state_pending[i];
5353 			if (delta)
5354 				pn->lruvec_stats.state_pending[i] = 0;
5355 
5356 			v = READ_ONCE(lstatc->state[i]);
5357 			if (v != lstatc->state_prev[i]) {
5358 				delta += v - lstatc->state_prev[i];
5359 				lstatc->state_prev[i] = v;
5360 			}
5361 
5362 			if (!delta)
5363 				continue;
5364 
5365 			pn->lruvec_stats.state[i] += delta;
5366 			if (ppn)
5367 				ppn->lruvec_stats.state_pending[i] += delta;
5368 		}
5369 	}
5370 }
5371 
5372 #ifdef CONFIG_MMU
5373 /* Handlers for move charge at task migration. */
5374 static int mem_cgroup_do_precharge(unsigned long count)
5375 {
5376 	int ret;
5377 
5378 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5379 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5380 	if (!ret) {
5381 		mc.precharge += count;
5382 		return ret;
5383 	}
5384 
5385 	/* Try charges one by one with reclaim, but do not retry */
5386 	while (count--) {
5387 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5388 		if (ret)
5389 			return ret;
5390 		mc.precharge++;
5391 		cond_resched();
5392 	}
5393 	return 0;
5394 }
5395 
5396 union mc_target {
5397 	struct page	*page;
5398 	swp_entry_t	ent;
5399 };
5400 
5401 enum mc_target_type {
5402 	MC_TARGET_NONE = 0,
5403 	MC_TARGET_PAGE,
5404 	MC_TARGET_SWAP,
5405 	MC_TARGET_DEVICE,
5406 };
5407 
5408 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5409 						unsigned long addr, pte_t ptent)
5410 {
5411 	struct page *page = vm_normal_page(vma, addr, ptent);
5412 
5413 	if (!page || !page_mapped(page))
5414 		return NULL;
5415 	if (PageAnon(page)) {
5416 		if (!(mc.flags & MOVE_ANON))
5417 			return NULL;
5418 	} else {
5419 		if (!(mc.flags & MOVE_FILE))
5420 			return NULL;
5421 	}
5422 	if (!get_page_unless_zero(page))
5423 		return NULL;
5424 
5425 	return page;
5426 }
5427 
5428 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5429 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5430 			pte_t ptent, swp_entry_t *entry)
5431 {
5432 	struct page *page = NULL;
5433 	swp_entry_t ent = pte_to_swp_entry(ptent);
5434 
5435 	if (!(mc.flags & MOVE_ANON))
5436 		return NULL;
5437 
5438 	/*
5439 	 * Handle device private pages that are not accessible by the CPU, but
5440 	 * stored as special swap entries in the page table.
5441 	 */
5442 	if (is_device_private_entry(ent)) {
5443 		page = pfn_swap_entry_to_page(ent);
5444 		if (!get_page_unless_zero(page))
5445 			return NULL;
5446 		return page;
5447 	}
5448 
5449 	if (non_swap_entry(ent))
5450 		return NULL;
5451 
5452 	/*
5453 	 * Because lookup_swap_cache() updates some statistics counter,
5454 	 * we call find_get_page() with swapper_space directly.
5455 	 */
5456 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5457 	entry->val = ent.val;
5458 
5459 	return page;
5460 }
5461 #else
5462 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5463 			pte_t ptent, swp_entry_t *entry)
5464 {
5465 	return NULL;
5466 }
5467 #endif
5468 
5469 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5470 			unsigned long addr, pte_t ptent)
5471 {
5472 	if (!vma->vm_file) /* anonymous vma */
5473 		return NULL;
5474 	if (!(mc.flags & MOVE_FILE))
5475 		return NULL;
5476 
5477 	/* page is moved even if it's not RSS of this task(page-faulted). */
5478 	/* shmem/tmpfs may report page out on swap: account for that too. */
5479 	return find_get_incore_page(vma->vm_file->f_mapping,
5480 			linear_page_index(vma, addr));
5481 }
5482 
5483 /**
5484  * mem_cgroup_move_account - move account of the page
5485  * @page: the page
5486  * @compound: charge the page as compound or small page
5487  * @from: mem_cgroup which the page is moved from.
5488  * @to:	mem_cgroup which the page is moved to. @from != @to.
5489  *
5490  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5491  *
5492  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5493  * from old cgroup.
5494  */
5495 static int mem_cgroup_move_account(struct page *page,
5496 				   bool compound,
5497 				   struct mem_cgroup *from,
5498 				   struct mem_cgroup *to)
5499 {
5500 	struct folio *folio = page_folio(page);
5501 	struct lruvec *from_vec, *to_vec;
5502 	struct pglist_data *pgdat;
5503 	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5504 	int nid, ret;
5505 
5506 	VM_BUG_ON(from == to);
5507 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5508 	VM_BUG_ON(compound && !folio_test_large(folio));
5509 
5510 	/*
5511 	 * Prevent mem_cgroup_migrate() from looking at
5512 	 * page's memory cgroup of its source page while we change it.
5513 	 */
5514 	ret = -EBUSY;
5515 	if (!folio_trylock(folio))
5516 		goto out;
5517 
5518 	ret = -EINVAL;
5519 	if (folio_memcg(folio) != from)
5520 		goto out_unlock;
5521 
5522 	pgdat = folio_pgdat(folio);
5523 	from_vec = mem_cgroup_lruvec(from, pgdat);
5524 	to_vec = mem_cgroup_lruvec(to, pgdat);
5525 
5526 	folio_memcg_lock(folio);
5527 
5528 	if (folio_test_anon(folio)) {
5529 		if (folio_mapped(folio)) {
5530 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5531 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5532 			if (folio_test_transhuge(folio)) {
5533 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5534 						   -nr_pages);
5535 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5536 						   nr_pages);
5537 			}
5538 		}
5539 	} else {
5540 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5541 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5542 
5543 		if (folio_test_swapbacked(folio)) {
5544 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5545 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5546 		}
5547 
5548 		if (folio_mapped(folio)) {
5549 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5550 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5551 		}
5552 
5553 		if (folio_test_dirty(folio)) {
5554 			struct address_space *mapping = folio_mapping(folio);
5555 
5556 			if (mapping_can_writeback(mapping)) {
5557 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5558 						   -nr_pages);
5559 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5560 						   nr_pages);
5561 			}
5562 		}
5563 	}
5564 
5565 	if (folio_test_writeback(folio)) {
5566 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5567 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5568 	}
5569 
5570 	/*
5571 	 * All state has been migrated, let's switch to the new memcg.
5572 	 *
5573 	 * It is safe to change page's memcg here because the page
5574 	 * is referenced, charged, isolated, and locked: we can't race
5575 	 * with (un)charging, migration, LRU putback, or anything else
5576 	 * that would rely on a stable page's memory cgroup.
5577 	 *
5578 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5579 	 * to save space. As soon as we switch page's memory cgroup to a
5580 	 * new memcg that isn't locked, the above state can change
5581 	 * concurrently again. Make sure we're truly done with it.
5582 	 */
5583 	smp_mb();
5584 
5585 	css_get(&to->css);
5586 	css_put(&from->css);
5587 
5588 	folio->memcg_data = (unsigned long)to;
5589 
5590 	__folio_memcg_unlock(from);
5591 
5592 	ret = 0;
5593 	nid = folio_nid(folio);
5594 
5595 	local_irq_disable();
5596 	mem_cgroup_charge_statistics(to, nr_pages);
5597 	memcg_check_events(to, nid);
5598 	mem_cgroup_charge_statistics(from, -nr_pages);
5599 	memcg_check_events(from, nid);
5600 	local_irq_enable();
5601 out_unlock:
5602 	folio_unlock(folio);
5603 out:
5604 	return ret;
5605 }
5606 
5607 /**
5608  * get_mctgt_type - get target type of moving charge
5609  * @vma: the vma the pte to be checked belongs
5610  * @addr: the address corresponding to the pte to be checked
5611  * @ptent: the pte to be checked
5612  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5613  *
5614  * Returns
5615  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5616  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5617  *     move charge. if @target is not NULL, the page is stored in target->page
5618  *     with extra refcnt got(Callers should handle it).
5619  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5620  *     target for charge migration. if @target is not NULL, the entry is stored
5621  *     in target->ent.
5622  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5623  *     (so ZONE_DEVICE page and thus not on the lru).
5624  *     For now we such page is charge like a regular page would be as for all
5625  *     intent and purposes it is just special memory taking the place of a
5626  *     regular page.
5627  *
5628  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5629  *
5630  * Called with pte lock held.
5631  */
5632 
5633 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5634 		unsigned long addr, pte_t ptent, union mc_target *target)
5635 {
5636 	struct page *page = NULL;
5637 	enum mc_target_type ret = MC_TARGET_NONE;
5638 	swp_entry_t ent = { .val = 0 };
5639 
5640 	if (pte_present(ptent))
5641 		page = mc_handle_present_pte(vma, addr, ptent);
5642 	else if (is_swap_pte(ptent))
5643 		page = mc_handle_swap_pte(vma, ptent, &ent);
5644 	else if (pte_none(ptent))
5645 		page = mc_handle_file_pte(vma, addr, ptent);
5646 
5647 	if (!page && !ent.val)
5648 		return ret;
5649 	if (page) {
5650 		/*
5651 		 * Do only loose check w/o serialization.
5652 		 * mem_cgroup_move_account() checks the page is valid or
5653 		 * not under LRU exclusion.
5654 		 */
5655 		if (page_memcg(page) == mc.from) {
5656 			ret = MC_TARGET_PAGE;
5657 			if (is_device_private_page(page))
5658 				ret = MC_TARGET_DEVICE;
5659 			if (target)
5660 				target->page = page;
5661 		}
5662 		if (!ret || !target)
5663 			put_page(page);
5664 	}
5665 	/*
5666 	 * There is a swap entry and a page doesn't exist or isn't charged.
5667 	 * But we cannot move a tail-page in a THP.
5668 	 */
5669 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5670 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5671 		ret = MC_TARGET_SWAP;
5672 		if (target)
5673 			target->ent = ent;
5674 	}
5675 	return ret;
5676 }
5677 
5678 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5679 /*
5680  * We don't consider PMD mapped swapping or file mapped pages because THP does
5681  * not support them for now.
5682  * Caller should make sure that pmd_trans_huge(pmd) is true.
5683  */
5684 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5685 		unsigned long addr, pmd_t pmd, union mc_target *target)
5686 {
5687 	struct page *page = NULL;
5688 	enum mc_target_type ret = MC_TARGET_NONE;
5689 
5690 	if (unlikely(is_swap_pmd(pmd))) {
5691 		VM_BUG_ON(thp_migration_supported() &&
5692 				  !is_pmd_migration_entry(pmd));
5693 		return ret;
5694 	}
5695 	page = pmd_page(pmd);
5696 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5697 	if (!(mc.flags & MOVE_ANON))
5698 		return ret;
5699 	if (page_memcg(page) == mc.from) {
5700 		ret = MC_TARGET_PAGE;
5701 		if (target) {
5702 			get_page(page);
5703 			target->page = page;
5704 		}
5705 	}
5706 	return ret;
5707 }
5708 #else
5709 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5710 		unsigned long addr, pmd_t pmd, union mc_target *target)
5711 {
5712 	return MC_TARGET_NONE;
5713 }
5714 #endif
5715 
5716 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5717 					unsigned long addr, unsigned long end,
5718 					struct mm_walk *walk)
5719 {
5720 	struct vm_area_struct *vma = walk->vma;
5721 	pte_t *pte;
5722 	spinlock_t *ptl;
5723 
5724 	ptl = pmd_trans_huge_lock(pmd, vma);
5725 	if (ptl) {
5726 		/*
5727 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5728 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5729 		 * this might change.
5730 		 */
5731 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5732 			mc.precharge += HPAGE_PMD_NR;
5733 		spin_unlock(ptl);
5734 		return 0;
5735 	}
5736 
5737 	if (pmd_trans_unstable(pmd))
5738 		return 0;
5739 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5740 	for (; addr != end; pte++, addr += PAGE_SIZE)
5741 		if (get_mctgt_type(vma, addr, *pte, NULL))
5742 			mc.precharge++;	/* increment precharge temporarily */
5743 	pte_unmap_unlock(pte - 1, ptl);
5744 	cond_resched();
5745 
5746 	return 0;
5747 }
5748 
5749 static const struct mm_walk_ops precharge_walk_ops = {
5750 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5751 };
5752 
5753 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5754 {
5755 	unsigned long precharge;
5756 
5757 	mmap_read_lock(mm);
5758 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5759 	mmap_read_unlock(mm);
5760 
5761 	precharge = mc.precharge;
5762 	mc.precharge = 0;
5763 
5764 	return precharge;
5765 }
5766 
5767 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5768 {
5769 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5770 
5771 	VM_BUG_ON(mc.moving_task);
5772 	mc.moving_task = current;
5773 	return mem_cgroup_do_precharge(precharge);
5774 }
5775 
5776 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5777 static void __mem_cgroup_clear_mc(void)
5778 {
5779 	struct mem_cgroup *from = mc.from;
5780 	struct mem_cgroup *to = mc.to;
5781 
5782 	/* we must uncharge all the leftover precharges from mc.to */
5783 	if (mc.precharge) {
5784 		cancel_charge(mc.to, mc.precharge);
5785 		mc.precharge = 0;
5786 	}
5787 	/*
5788 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5789 	 * we must uncharge here.
5790 	 */
5791 	if (mc.moved_charge) {
5792 		cancel_charge(mc.from, mc.moved_charge);
5793 		mc.moved_charge = 0;
5794 	}
5795 	/* we must fixup refcnts and charges */
5796 	if (mc.moved_swap) {
5797 		/* uncharge swap account from the old cgroup */
5798 		if (!mem_cgroup_is_root(mc.from))
5799 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5800 
5801 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5802 
5803 		/*
5804 		 * we charged both to->memory and to->memsw, so we
5805 		 * should uncharge to->memory.
5806 		 */
5807 		if (!mem_cgroup_is_root(mc.to))
5808 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5809 
5810 		mc.moved_swap = 0;
5811 	}
5812 	memcg_oom_recover(from);
5813 	memcg_oom_recover(to);
5814 	wake_up_all(&mc.waitq);
5815 }
5816 
5817 static void mem_cgroup_clear_mc(void)
5818 {
5819 	struct mm_struct *mm = mc.mm;
5820 
5821 	/*
5822 	 * we must clear moving_task before waking up waiters at the end of
5823 	 * task migration.
5824 	 */
5825 	mc.moving_task = NULL;
5826 	__mem_cgroup_clear_mc();
5827 	spin_lock(&mc.lock);
5828 	mc.from = NULL;
5829 	mc.to = NULL;
5830 	mc.mm = NULL;
5831 	spin_unlock(&mc.lock);
5832 
5833 	mmput(mm);
5834 }
5835 
5836 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5837 {
5838 	struct cgroup_subsys_state *css;
5839 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5840 	struct mem_cgroup *from;
5841 	struct task_struct *leader, *p;
5842 	struct mm_struct *mm;
5843 	unsigned long move_flags;
5844 	int ret = 0;
5845 
5846 	/* charge immigration isn't supported on the default hierarchy */
5847 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5848 		return 0;
5849 
5850 	/*
5851 	 * Multi-process migrations only happen on the default hierarchy
5852 	 * where charge immigration is not used.  Perform charge
5853 	 * immigration if @tset contains a leader and whine if there are
5854 	 * multiple.
5855 	 */
5856 	p = NULL;
5857 	cgroup_taskset_for_each_leader(leader, css, tset) {
5858 		WARN_ON_ONCE(p);
5859 		p = leader;
5860 		memcg = mem_cgroup_from_css(css);
5861 	}
5862 	if (!p)
5863 		return 0;
5864 
5865 	/*
5866 	 * We are now committed to this value whatever it is. Changes in this
5867 	 * tunable will only affect upcoming migrations, not the current one.
5868 	 * So we need to save it, and keep it going.
5869 	 */
5870 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5871 	if (!move_flags)
5872 		return 0;
5873 
5874 	from = mem_cgroup_from_task(p);
5875 
5876 	VM_BUG_ON(from == memcg);
5877 
5878 	mm = get_task_mm(p);
5879 	if (!mm)
5880 		return 0;
5881 	/* We move charges only when we move a owner of the mm */
5882 	if (mm->owner == p) {
5883 		VM_BUG_ON(mc.from);
5884 		VM_BUG_ON(mc.to);
5885 		VM_BUG_ON(mc.precharge);
5886 		VM_BUG_ON(mc.moved_charge);
5887 		VM_BUG_ON(mc.moved_swap);
5888 
5889 		spin_lock(&mc.lock);
5890 		mc.mm = mm;
5891 		mc.from = from;
5892 		mc.to = memcg;
5893 		mc.flags = move_flags;
5894 		spin_unlock(&mc.lock);
5895 		/* We set mc.moving_task later */
5896 
5897 		ret = mem_cgroup_precharge_mc(mm);
5898 		if (ret)
5899 			mem_cgroup_clear_mc();
5900 	} else {
5901 		mmput(mm);
5902 	}
5903 	return ret;
5904 }
5905 
5906 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5907 {
5908 	if (mc.to)
5909 		mem_cgroup_clear_mc();
5910 }
5911 
5912 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5913 				unsigned long addr, unsigned long end,
5914 				struct mm_walk *walk)
5915 {
5916 	int ret = 0;
5917 	struct vm_area_struct *vma = walk->vma;
5918 	pte_t *pte;
5919 	spinlock_t *ptl;
5920 	enum mc_target_type target_type;
5921 	union mc_target target;
5922 	struct page *page;
5923 
5924 	ptl = pmd_trans_huge_lock(pmd, vma);
5925 	if (ptl) {
5926 		if (mc.precharge < HPAGE_PMD_NR) {
5927 			spin_unlock(ptl);
5928 			return 0;
5929 		}
5930 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5931 		if (target_type == MC_TARGET_PAGE) {
5932 			page = target.page;
5933 			if (!isolate_lru_page(page)) {
5934 				if (!mem_cgroup_move_account(page, true,
5935 							     mc.from, mc.to)) {
5936 					mc.precharge -= HPAGE_PMD_NR;
5937 					mc.moved_charge += HPAGE_PMD_NR;
5938 				}
5939 				putback_lru_page(page);
5940 			}
5941 			put_page(page);
5942 		} else if (target_type == MC_TARGET_DEVICE) {
5943 			page = target.page;
5944 			if (!mem_cgroup_move_account(page, true,
5945 						     mc.from, mc.to)) {
5946 				mc.precharge -= HPAGE_PMD_NR;
5947 				mc.moved_charge += HPAGE_PMD_NR;
5948 			}
5949 			put_page(page);
5950 		}
5951 		spin_unlock(ptl);
5952 		return 0;
5953 	}
5954 
5955 	if (pmd_trans_unstable(pmd))
5956 		return 0;
5957 retry:
5958 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5959 	for (; addr != end; addr += PAGE_SIZE) {
5960 		pte_t ptent = *(pte++);
5961 		bool device = false;
5962 		swp_entry_t ent;
5963 
5964 		if (!mc.precharge)
5965 			break;
5966 
5967 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5968 		case MC_TARGET_DEVICE:
5969 			device = true;
5970 			fallthrough;
5971 		case MC_TARGET_PAGE:
5972 			page = target.page;
5973 			/*
5974 			 * We can have a part of the split pmd here. Moving it
5975 			 * can be done but it would be too convoluted so simply
5976 			 * ignore such a partial THP and keep it in original
5977 			 * memcg. There should be somebody mapping the head.
5978 			 */
5979 			if (PageTransCompound(page))
5980 				goto put;
5981 			if (!device && isolate_lru_page(page))
5982 				goto put;
5983 			if (!mem_cgroup_move_account(page, false,
5984 						mc.from, mc.to)) {
5985 				mc.precharge--;
5986 				/* we uncharge from mc.from later. */
5987 				mc.moved_charge++;
5988 			}
5989 			if (!device)
5990 				putback_lru_page(page);
5991 put:			/* get_mctgt_type() gets the page */
5992 			put_page(page);
5993 			break;
5994 		case MC_TARGET_SWAP:
5995 			ent = target.ent;
5996 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5997 				mc.precharge--;
5998 				mem_cgroup_id_get_many(mc.to, 1);
5999 				/* we fixup other refcnts and charges later. */
6000 				mc.moved_swap++;
6001 			}
6002 			break;
6003 		default:
6004 			break;
6005 		}
6006 	}
6007 	pte_unmap_unlock(pte - 1, ptl);
6008 	cond_resched();
6009 
6010 	if (addr != end) {
6011 		/*
6012 		 * We have consumed all precharges we got in can_attach().
6013 		 * We try charge one by one, but don't do any additional
6014 		 * charges to mc.to if we have failed in charge once in attach()
6015 		 * phase.
6016 		 */
6017 		ret = mem_cgroup_do_precharge(1);
6018 		if (!ret)
6019 			goto retry;
6020 	}
6021 
6022 	return ret;
6023 }
6024 
6025 static const struct mm_walk_ops charge_walk_ops = {
6026 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6027 };
6028 
6029 static void mem_cgroup_move_charge(void)
6030 {
6031 	lru_add_drain_all();
6032 	/*
6033 	 * Signal lock_page_memcg() to take the memcg's move_lock
6034 	 * while we're moving its pages to another memcg. Then wait
6035 	 * for already started RCU-only updates to finish.
6036 	 */
6037 	atomic_inc(&mc.from->moving_account);
6038 	synchronize_rcu();
6039 retry:
6040 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6041 		/*
6042 		 * Someone who are holding the mmap_lock might be waiting in
6043 		 * waitq. So we cancel all extra charges, wake up all waiters,
6044 		 * and retry. Because we cancel precharges, we might not be able
6045 		 * to move enough charges, but moving charge is a best-effort
6046 		 * feature anyway, so it wouldn't be a big problem.
6047 		 */
6048 		__mem_cgroup_clear_mc();
6049 		cond_resched();
6050 		goto retry;
6051 	}
6052 	/*
6053 	 * When we have consumed all precharges and failed in doing
6054 	 * additional charge, the page walk just aborts.
6055 	 */
6056 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6057 			NULL);
6058 
6059 	mmap_read_unlock(mc.mm);
6060 	atomic_dec(&mc.from->moving_account);
6061 }
6062 
6063 static void mem_cgroup_move_task(void)
6064 {
6065 	if (mc.to) {
6066 		mem_cgroup_move_charge();
6067 		mem_cgroup_clear_mc();
6068 	}
6069 }
6070 #else	/* !CONFIG_MMU */
6071 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6072 {
6073 	return 0;
6074 }
6075 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6076 {
6077 }
6078 static void mem_cgroup_move_task(void)
6079 {
6080 }
6081 #endif
6082 
6083 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6084 {
6085 	if (value == PAGE_COUNTER_MAX)
6086 		seq_puts(m, "max\n");
6087 	else
6088 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6089 
6090 	return 0;
6091 }
6092 
6093 static u64 memory_current_read(struct cgroup_subsys_state *css,
6094 			       struct cftype *cft)
6095 {
6096 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6097 
6098 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6099 }
6100 
6101 static int memory_min_show(struct seq_file *m, void *v)
6102 {
6103 	return seq_puts_memcg_tunable(m,
6104 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6105 }
6106 
6107 static ssize_t memory_min_write(struct kernfs_open_file *of,
6108 				char *buf, size_t nbytes, loff_t off)
6109 {
6110 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6111 	unsigned long min;
6112 	int err;
6113 
6114 	buf = strstrip(buf);
6115 	err = page_counter_memparse(buf, "max", &min);
6116 	if (err)
6117 		return err;
6118 
6119 	page_counter_set_min(&memcg->memory, min);
6120 
6121 	return nbytes;
6122 }
6123 
6124 static int memory_low_show(struct seq_file *m, void *v)
6125 {
6126 	return seq_puts_memcg_tunable(m,
6127 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6128 }
6129 
6130 static ssize_t memory_low_write(struct kernfs_open_file *of,
6131 				char *buf, size_t nbytes, loff_t off)
6132 {
6133 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6134 	unsigned long low;
6135 	int err;
6136 
6137 	buf = strstrip(buf);
6138 	err = page_counter_memparse(buf, "max", &low);
6139 	if (err)
6140 		return err;
6141 
6142 	page_counter_set_low(&memcg->memory, low);
6143 
6144 	return nbytes;
6145 }
6146 
6147 static int memory_high_show(struct seq_file *m, void *v)
6148 {
6149 	return seq_puts_memcg_tunable(m,
6150 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6151 }
6152 
6153 static ssize_t memory_high_write(struct kernfs_open_file *of,
6154 				 char *buf, size_t nbytes, loff_t off)
6155 {
6156 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6157 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6158 	bool drained = false;
6159 	unsigned long high;
6160 	int err;
6161 
6162 	buf = strstrip(buf);
6163 	err = page_counter_memparse(buf, "max", &high);
6164 	if (err)
6165 		return err;
6166 
6167 	page_counter_set_high(&memcg->memory, high);
6168 
6169 	for (;;) {
6170 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6171 		unsigned long reclaimed;
6172 
6173 		if (nr_pages <= high)
6174 			break;
6175 
6176 		if (signal_pending(current))
6177 			break;
6178 
6179 		if (!drained) {
6180 			drain_all_stock(memcg);
6181 			drained = true;
6182 			continue;
6183 		}
6184 
6185 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6186 							 GFP_KERNEL, true);
6187 
6188 		if (!reclaimed && !nr_retries--)
6189 			break;
6190 	}
6191 
6192 	memcg_wb_domain_size_changed(memcg);
6193 	return nbytes;
6194 }
6195 
6196 static int memory_max_show(struct seq_file *m, void *v)
6197 {
6198 	return seq_puts_memcg_tunable(m,
6199 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6200 }
6201 
6202 static ssize_t memory_max_write(struct kernfs_open_file *of,
6203 				char *buf, size_t nbytes, loff_t off)
6204 {
6205 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6206 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6207 	bool drained = false;
6208 	unsigned long max;
6209 	int err;
6210 
6211 	buf = strstrip(buf);
6212 	err = page_counter_memparse(buf, "max", &max);
6213 	if (err)
6214 		return err;
6215 
6216 	xchg(&memcg->memory.max, max);
6217 
6218 	for (;;) {
6219 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6220 
6221 		if (nr_pages <= max)
6222 			break;
6223 
6224 		if (signal_pending(current))
6225 			break;
6226 
6227 		if (!drained) {
6228 			drain_all_stock(memcg);
6229 			drained = true;
6230 			continue;
6231 		}
6232 
6233 		if (nr_reclaims) {
6234 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6235 							  GFP_KERNEL, true))
6236 				nr_reclaims--;
6237 			continue;
6238 		}
6239 
6240 		memcg_memory_event(memcg, MEMCG_OOM);
6241 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6242 			break;
6243 	}
6244 
6245 	memcg_wb_domain_size_changed(memcg);
6246 	return nbytes;
6247 }
6248 
6249 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6250 {
6251 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6252 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6253 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6254 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6255 	seq_printf(m, "oom_kill %lu\n",
6256 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6257 	seq_printf(m, "oom_group_kill %lu\n",
6258 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6259 }
6260 
6261 static int memory_events_show(struct seq_file *m, void *v)
6262 {
6263 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6264 
6265 	__memory_events_show(m, memcg->memory_events);
6266 	return 0;
6267 }
6268 
6269 static int memory_events_local_show(struct seq_file *m, void *v)
6270 {
6271 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6272 
6273 	__memory_events_show(m, memcg->memory_events_local);
6274 	return 0;
6275 }
6276 
6277 static int memory_stat_show(struct seq_file *m, void *v)
6278 {
6279 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6280 	char *buf;
6281 
6282 	buf = memory_stat_format(memcg);
6283 	if (!buf)
6284 		return -ENOMEM;
6285 	seq_puts(m, buf);
6286 	kfree(buf);
6287 	return 0;
6288 }
6289 
6290 #ifdef CONFIG_NUMA
6291 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6292 						     int item)
6293 {
6294 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6295 }
6296 
6297 static int memory_numa_stat_show(struct seq_file *m, void *v)
6298 {
6299 	int i;
6300 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6301 
6302 	mem_cgroup_flush_stats();
6303 
6304 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6305 		int nid;
6306 
6307 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6308 			continue;
6309 
6310 		seq_printf(m, "%s", memory_stats[i].name);
6311 		for_each_node_state(nid, N_MEMORY) {
6312 			u64 size;
6313 			struct lruvec *lruvec;
6314 
6315 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6316 			size = lruvec_page_state_output(lruvec,
6317 							memory_stats[i].idx);
6318 			seq_printf(m, " N%d=%llu", nid, size);
6319 		}
6320 		seq_putc(m, '\n');
6321 	}
6322 
6323 	return 0;
6324 }
6325 #endif
6326 
6327 static int memory_oom_group_show(struct seq_file *m, void *v)
6328 {
6329 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6330 
6331 	seq_printf(m, "%d\n", memcg->oom_group);
6332 
6333 	return 0;
6334 }
6335 
6336 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6337 				      char *buf, size_t nbytes, loff_t off)
6338 {
6339 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6340 	int ret, oom_group;
6341 
6342 	buf = strstrip(buf);
6343 	if (!buf)
6344 		return -EINVAL;
6345 
6346 	ret = kstrtoint(buf, 0, &oom_group);
6347 	if (ret)
6348 		return ret;
6349 
6350 	if (oom_group != 0 && oom_group != 1)
6351 		return -EINVAL;
6352 
6353 	memcg->oom_group = oom_group;
6354 
6355 	return nbytes;
6356 }
6357 
6358 static struct cftype memory_files[] = {
6359 	{
6360 		.name = "current",
6361 		.flags = CFTYPE_NOT_ON_ROOT,
6362 		.read_u64 = memory_current_read,
6363 	},
6364 	{
6365 		.name = "min",
6366 		.flags = CFTYPE_NOT_ON_ROOT,
6367 		.seq_show = memory_min_show,
6368 		.write = memory_min_write,
6369 	},
6370 	{
6371 		.name = "low",
6372 		.flags = CFTYPE_NOT_ON_ROOT,
6373 		.seq_show = memory_low_show,
6374 		.write = memory_low_write,
6375 	},
6376 	{
6377 		.name = "high",
6378 		.flags = CFTYPE_NOT_ON_ROOT,
6379 		.seq_show = memory_high_show,
6380 		.write = memory_high_write,
6381 	},
6382 	{
6383 		.name = "max",
6384 		.flags = CFTYPE_NOT_ON_ROOT,
6385 		.seq_show = memory_max_show,
6386 		.write = memory_max_write,
6387 	},
6388 	{
6389 		.name = "events",
6390 		.flags = CFTYPE_NOT_ON_ROOT,
6391 		.file_offset = offsetof(struct mem_cgroup, events_file),
6392 		.seq_show = memory_events_show,
6393 	},
6394 	{
6395 		.name = "events.local",
6396 		.flags = CFTYPE_NOT_ON_ROOT,
6397 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6398 		.seq_show = memory_events_local_show,
6399 	},
6400 	{
6401 		.name = "stat",
6402 		.seq_show = memory_stat_show,
6403 	},
6404 #ifdef CONFIG_NUMA
6405 	{
6406 		.name = "numa_stat",
6407 		.seq_show = memory_numa_stat_show,
6408 	},
6409 #endif
6410 	{
6411 		.name = "oom.group",
6412 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6413 		.seq_show = memory_oom_group_show,
6414 		.write = memory_oom_group_write,
6415 	},
6416 	{ }	/* terminate */
6417 };
6418 
6419 struct cgroup_subsys memory_cgrp_subsys = {
6420 	.css_alloc = mem_cgroup_css_alloc,
6421 	.css_online = mem_cgroup_css_online,
6422 	.css_offline = mem_cgroup_css_offline,
6423 	.css_released = mem_cgroup_css_released,
6424 	.css_free = mem_cgroup_css_free,
6425 	.css_reset = mem_cgroup_css_reset,
6426 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6427 	.can_attach = mem_cgroup_can_attach,
6428 	.cancel_attach = mem_cgroup_cancel_attach,
6429 	.post_attach = mem_cgroup_move_task,
6430 	.dfl_cftypes = memory_files,
6431 	.legacy_cftypes = mem_cgroup_legacy_files,
6432 	.early_init = 0,
6433 };
6434 
6435 /*
6436  * This function calculates an individual cgroup's effective
6437  * protection which is derived from its own memory.min/low, its
6438  * parent's and siblings' settings, as well as the actual memory
6439  * distribution in the tree.
6440  *
6441  * The following rules apply to the effective protection values:
6442  *
6443  * 1. At the first level of reclaim, effective protection is equal to
6444  *    the declared protection in memory.min and memory.low.
6445  *
6446  * 2. To enable safe delegation of the protection configuration, at
6447  *    subsequent levels the effective protection is capped to the
6448  *    parent's effective protection.
6449  *
6450  * 3. To make complex and dynamic subtrees easier to configure, the
6451  *    user is allowed to overcommit the declared protection at a given
6452  *    level. If that is the case, the parent's effective protection is
6453  *    distributed to the children in proportion to how much protection
6454  *    they have declared and how much of it they are utilizing.
6455  *
6456  *    This makes distribution proportional, but also work-conserving:
6457  *    if one cgroup claims much more protection than it uses memory,
6458  *    the unused remainder is available to its siblings.
6459  *
6460  * 4. Conversely, when the declared protection is undercommitted at a
6461  *    given level, the distribution of the larger parental protection
6462  *    budget is NOT proportional. A cgroup's protection from a sibling
6463  *    is capped to its own memory.min/low setting.
6464  *
6465  * 5. However, to allow protecting recursive subtrees from each other
6466  *    without having to declare each individual cgroup's fixed share
6467  *    of the ancestor's claim to protection, any unutilized -
6468  *    "floating" - protection from up the tree is distributed in
6469  *    proportion to each cgroup's *usage*. This makes the protection
6470  *    neutral wrt sibling cgroups and lets them compete freely over
6471  *    the shared parental protection budget, but it protects the
6472  *    subtree as a whole from neighboring subtrees.
6473  *
6474  * Note that 4. and 5. are not in conflict: 4. is about protecting
6475  * against immediate siblings whereas 5. is about protecting against
6476  * neighboring subtrees.
6477  */
6478 static unsigned long effective_protection(unsigned long usage,
6479 					  unsigned long parent_usage,
6480 					  unsigned long setting,
6481 					  unsigned long parent_effective,
6482 					  unsigned long siblings_protected)
6483 {
6484 	unsigned long protected;
6485 	unsigned long ep;
6486 
6487 	protected = min(usage, setting);
6488 	/*
6489 	 * If all cgroups at this level combined claim and use more
6490 	 * protection then what the parent affords them, distribute
6491 	 * shares in proportion to utilization.
6492 	 *
6493 	 * We are using actual utilization rather than the statically
6494 	 * claimed protection in order to be work-conserving: claimed
6495 	 * but unused protection is available to siblings that would
6496 	 * otherwise get a smaller chunk than what they claimed.
6497 	 */
6498 	if (siblings_protected > parent_effective)
6499 		return protected * parent_effective / siblings_protected;
6500 
6501 	/*
6502 	 * Ok, utilized protection of all children is within what the
6503 	 * parent affords them, so we know whatever this child claims
6504 	 * and utilizes is effectively protected.
6505 	 *
6506 	 * If there is unprotected usage beyond this value, reclaim
6507 	 * will apply pressure in proportion to that amount.
6508 	 *
6509 	 * If there is unutilized protection, the cgroup will be fully
6510 	 * shielded from reclaim, but we do return a smaller value for
6511 	 * protection than what the group could enjoy in theory. This
6512 	 * is okay. With the overcommit distribution above, effective
6513 	 * protection is always dependent on how memory is actually
6514 	 * consumed among the siblings anyway.
6515 	 */
6516 	ep = protected;
6517 
6518 	/*
6519 	 * If the children aren't claiming (all of) the protection
6520 	 * afforded to them by the parent, distribute the remainder in
6521 	 * proportion to the (unprotected) memory of each cgroup. That
6522 	 * way, cgroups that aren't explicitly prioritized wrt each
6523 	 * other compete freely over the allowance, but they are
6524 	 * collectively protected from neighboring trees.
6525 	 *
6526 	 * We're using unprotected memory for the weight so that if
6527 	 * some cgroups DO claim explicit protection, we don't protect
6528 	 * the same bytes twice.
6529 	 *
6530 	 * Check both usage and parent_usage against the respective
6531 	 * protected values. One should imply the other, but they
6532 	 * aren't read atomically - make sure the division is sane.
6533 	 */
6534 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6535 		return ep;
6536 	if (parent_effective > siblings_protected &&
6537 	    parent_usage > siblings_protected &&
6538 	    usage > protected) {
6539 		unsigned long unclaimed;
6540 
6541 		unclaimed = parent_effective - siblings_protected;
6542 		unclaimed *= usage - protected;
6543 		unclaimed /= parent_usage - siblings_protected;
6544 
6545 		ep += unclaimed;
6546 	}
6547 
6548 	return ep;
6549 }
6550 
6551 /**
6552  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6553  * @root: the top ancestor of the sub-tree being checked
6554  * @memcg: the memory cgroup to check
6555  *
6556  * WARNING: This function is not stateless! It can only be used as part
6557  *          of a top-down tree iteration, not for isolated queries.
6558  */
6559 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6560 				     struct mem_cgroup *memcg)
6561 {
6562 	unsigned long usage, parent_usage;
6563 	struct mem_cgroup *parent;
6564 
6565 	if (mem_cgroup_disabled())
6566 		return;
6567 
6568 	if (!root)
6569 		root = root_mem_cgroup;
6570 
6571 	/*
6572 	 * Effective values of the reclaim targets are ignored so they
6573 	 * can be stale. Have a look at mem_cgroup_protection for more
6574 	 * details.
6575 	 * TODO: calculation should be more robust so that we do not need
6576 	 * that special casing.
6577 	 */
6578 	if (memcg == root)
6579 		return;
6580 
6581 	usage = page_counter_read(&memcg->memory);
6582 	if (!usage)
6583 		return;
6584 
6585 	parent = parent_mem_cgroup(memcg);
6586 	/* No parent means a non-hierarchical mode on v1 memcg */
6587 	if (!parent)
6588 		return;
6589 
6590 	if (parent == root) {
6591 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6592 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6593 		return;
6594 	}
6595 
6596 	parent_usage = page_counter_read(&parent->memory);
6597 
6598 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6599 			READ_ONCE(memcg->memory.min),
6600 			READ_ONCE(parent->memory.emin),
6601 			atomic_long_read(&parent->memory.children_min_usage)));
6602 
6603 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6604 			READ_ONCE(memcg->memory.low),
6605 			READ_ONCE(parent->memory.elow),
6606 			atomic_long_read(&parent->memory.children_low_usage)));
6607 }
6608 
6609 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6610 			gfp_t gfp)
6611 {
6612 	long nr_pages = folio_nr_pages(folio);
6613 	int ret;
6614 
6615 	ret = try_charge(memcg, gfp, nr_pages);
6616 	if (ret)
6617 		goto out;
6618 
6619 	css_get(&memcg->css);
6620 	commit_charge(folio, memcg);
6621 
6622 	local_irq_disable();
6623 	mem_cgroup_charge_statistics(memcg, nr_pages);
6624 	memcg_check_events(memcg, folio_nid(folio));
6625 	local_irq_enable();
6626 out:
6627 	return ret;
6628 }
6629 
6630 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6631 {
6632 	struct mem_cgroup *memcg;
6633 	int ret;
6634 
6635 	memcg = get_mem_cgroup_from_mm(mm);
6636 	ret = charge_memcg(folio, memcg, gfp);
6637 	css_put(&memcg->css);
6638 
6639 	return ret;
6640 }
6641 
6642 /**
6643  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6644  * @page: page to charge
6645  * @mm: mm context of the victim
6646  * @gfp: reclaim mode
6647  * @entry: swap entry for which the page is allocated
6648  *
6649  * This function charges a page allocated for swapin. Please call this before
6650  * adding the page to the swapcache.
6651  *
6652  * Returns 0 on success. Otherwise, an error code is returned.
6653  */
6654 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6655 				  gfp_t gfp, swp_entry_t entry)
6656 {
6657 	struct folio *folio = page_folio(page);
6658 	struct mem_cgroup *memcg;
6659 	unsigned short id;
6660 	int ret;
6661 
6662 	if (mem_cgroup_disabled())
6663 		return 0;
6664 
6665 	id = lookup_swap_cgroup_id(entry);
6666 	rcu_read_lock();
6667 	memcg = mem_cgroup_from_id(id);
6668 	if (!memcg || !css_tryget_online(&memcg->css))
6669 		memcg = get_mem_cgroup_from_mm(mm);
6670 	rcu_read_unlock();
6671 
6672 	ret = charge_memcg(folio, memcg, gfp);
6673 
6674 	css_put(&memcg->css);
6675 	return ret;
6676 }
6677 
6678 /*
6679  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6680  * @entry: swap entry for which the page is charged
6681  *
6682  * Call this function after successfully adding the charged page to swapcache.
6683  *
6684  * Note: This function assumes the page for which swap slot is being uncharged
6685  * is order 0 page.
6686  */
6687 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6688 {
6689 	/*
6690 	 * Cgroup1's unified memory+swap counter has been charged with the
6691 	 * new swapcache page, finish the transfer by uncharging the swap
6692 	 * slot. The swap slot would also get uncharged when it dies, but
6693 	 * it can stick around indefinitely and we'd count the page twice
6694 	 * the entire time.
6695 	 *
6696 	 * Cgroup2 has separate resource counters for memory and swap,
6697 	 * so this is a non-issue here. Memory and swap charge lifetimes
6698 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6699 	 * page to memory here, and uncharge swap when the slot is freed.
6700 	 */
6701 	if (!mem_cgroup_disabled() && do_memsw_account()) {
6702 		/*
6703 		 * The swap entry might not get freed for a long time,
6704 		 * let's not wait for it.  The page already received a
6705 		 * memory+swap charge, drop the swap entry duplicate.
6706 		 */
6707 		mem_cgroup_uncharge_swap(entry, 1);
6708 	}
6709 }
6710 
6711 struct uncharge_gather {
6712 	struct mem_cgroup *memcg;
6713 	unsigned long nr_memory;
6714 	unsigned long pgpgout;
6715 	unsigned long nr_kmem;
6716 	int nid;
6717 };
6718 
6719 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6720 {
6721 	memset(ug, 0, sizeof(*ug));
6722 }
6723 
6724 static void uncharge_batch(const struct uncharge_gather *ug)
6725 {
6726 	unsigned long flags;
6727 
6728 	if (ug->nr_memory) {
6729 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6730 		if (do_memsw_account())
6731 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6732 		if (ug->nr_kmem)
6733 			memcg_account_kmem(ug->memcg, -ug->nr_kmem);
6734 		memcg_oom_recover(ug->memcg);
6735 	}
6736 
6737 	local_irq_save(flags);
6738 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6739 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6740 	memcg_check_events(ug->memcg, ug->nid);
6741 	local_irq_restore(flags);
6742 
6743 	/* drop reference from uncharge_folio */
6744 	css_put(&ug->memcg->css);
6745 }
6746 
6747 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6748 {
6749 	long nr_pages;
6750 	struct mem_cgroup *memcg;
6751 	struct obj_cgroup *objcg;
6752 
6753 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6754 
6755 	/*
6756 	 * Nobody should be changing or seriously looking at
6757 	 * folio memcg or objcg at this point, we have fully
6758 	 * exclusive access to the folio.
6759 	 */
6760 	if (folio_memcg_kmem(folio)) {
6761 		objcg = __folio_objcg(folio);
6762 		/*
6763 		 * This get matches the put at the end of the function and
6764 		 * kmem pages do not hold memcg references anymore.
6765 		 */
6766 		memcg = get_mem_cgroup_from_objcg(objcg);
6767 	} else {
6768 		memcg = __folio_memcg(folio);
6769 	}
6770 
6771 	if (!memcg)
6772 		return;
6773 
6774 	if (ug->memcg != memcg) {
6775 		if (ug->memcg) {
6776 			uncharge_batch(ug);
6777 			uncharge_gather_clear(ug);
6778 		}
6779 		ug->memcg = memcg;
6780 		ug->nid = folio_nid(folio);
6781 
6782 		/* pairs with css_put in uncharge_batch */
6783 		css_get(&memcg->css);
6784 	}
6785 
6786 	nr_pages = folio_nr_pages(folio);
6787 
6788 	if (folio_memcg_kmem(folio)) {
6789 		ug->nr_memory += nr_pages;
6790 		ug->nr_kmem += nr_pages;
6791 
6792 		folio->memcg_data = 0;
6793 		obj_cgroup_put(objcg);
6794 	} else {
6795 		/* LRU pages aren't accounted at the root level */
6796 		if (!mem_cgroup_is_root(memcg))
6797 			ug->nr_memory += nr_pages;
6798 		ug->pgpgout++;
6799 
6800 		folio->memcg_data = 0;
6801 	}
6802 
6803 	css_put(&memcg->css);
6804 }
6805 
6806 void __mem_cgroup_uncharge(struct folio *folio)
6807 {
6808 	struct uncharge_gather ug;
6809 
6810 	/* Don't touch folio->lru of any random page, pre-check: */
6811 	if (!folio_memcg(folio))
6812 		return;
6813 
6814 	uncharge_gather_clear(&ug);
6815 	uncharge_folio(folio, &ug);
6816 	uncharge_batch(&ug);
6817 }
6818 
6819 /**
6820  * __mem_cgroup_uncharge_list - uncharge a list of page
6821  * @page_list: list of pages to uncharge
6822  *
6823  * Uncharge a list of pages previously charged with
6824  * __mem_cgroup_charge().
6825  */
6826 void __mem_cgroup_uncharge_list(struct list_head *page_list)
6827 {
6828 	struct uncharge_gather ug;
6829 	struct folio *folio;
6830 
6831 	uncharge_gather_clear(&ug);
6832 	list_for_each_entry(folio, page_list, lru)
6833 		uncharge_folio(folio, &ug);
6834 	if (ug.memcg)
6835 		uncharge_batch(&ug);
6836 }
6837 
6838 /**
6839  * mem_cgroup_migrate - Charge a folio's replacement.
6840  * @old: Currently circulating folio.
6841  * @new: Replacement folio.
6842  *
6843  * Charge @new as a replacement folio for @old. @old will
6844  * be uncharged upon free.
6845  *
6846  * Both folios must be locked, @new->mapping must be set up.
6847  */
6848 void mem_cgroup_migrate(struct folio *old, struct folio *new)
6849 {
6850 	struct mem_cgroup *memcg;
6851 	long nr_pages = folio_nr_pages(new);
6852 	unsigned long flags;
6853 
6854 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
6855 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
6856 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
6857 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
6858 
6859 	if (mem_cgroup_disabled())
6860 		return;
6861 
6862 	/* Page cache replacement: new folio already charged? */
6863 	if (folio_memcg(new))
6864 		return;
6865 
6866 	memcg = folio_memcg(old);
6867 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
6868 	if (!memcg)
6869 		return;
6870 
6871 	/* Force-charge the new page. The old one will be freed soon */
6872 	if (!mem_cgroup_is_root(memcg)) {
6873 		page_counter_charge(&memcg->memory, nr_pages);
6874 		if (do_memsw_account())
6875 			page_counter_charge(&memcg->memsw, nr_pages);
6876 	}
6877 
6878 	css_get(&memcg->css);
6879 	commit_charge(new, memcg);
6880 
6881 	local_irq_save(flags);
6882 	mem_cgroup_charge_statistics(memcg, nr_pages);
6883 	memcg_check_events(memcg, folio_nid(new));
6884 	local_irq_restore(flags);
6885 }
6886 
6887 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6888 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6889 
6890 void mem_cgroup_sk_alloc(struct sock *sk)
6891 {
6892 	struct mem_cgroup *memcg;
6893 
6894 	if (!mem_cgroup_sockets_enabled)
6895 		return;
6896 
6897 	/* Do not associate the sock with unrelated interrupted task's memcg. */
6898 	if (!in_task())
6899 		return;
6900 
6901 	rcu_read_lock();
6902 	memcg = mem_cgroup_from_task(current);
6903 	if (memcg == root_mem_cgroup)
6904 		goto out;
6905 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6906 		goto out;
6907 	if (css_tryget(&memcg->css))
6908 		sk->sk_memcg = memcg;
6909 out:
6910 	rcu_read_unlock();
6911 }
6912 
6913 void mem_cgroup_sk_free(struct sock *sk)
6914 {
6915 	if (sk->sk_memcg)
6916 		css_put(&sk->sk_memcg->css);
6917 }
6918 
6919 /**
6920  * mem_cgroup_charge_skmem - charge socket memory
6921  * @memcg: memcg to charge
6922  * @nr_pages: number of pages to charge
6923  * @gfp_mask: reclaim mode
6924  *
6925  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6926  * @memcg's configured limit, %false if it doesn't.
6927  */
6928 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
6929 			     gfp_t gfp_mask)
6930 {
6931 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6932 		struct page_counter *fail;
6933 
6934 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6935 			memcg->tcpmem_pressure = 0;
6936 			return true;
6937 		}
6938 		memcg->tcpmem_pressure = 1;
6939 		if (gfp_mask & __GFP_NOFAIL) {
6940 			page_counter_charge(&memcg->tcpmem, nr_pages);
6941 			return true;
6942 		}
6943 		return false;
6944 	}
6945 
6946 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
6947 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6948 		return true;
6949 	}
6950 
6951 	return false;
6952 }
6953 
6954 /**
6955  * mem_cgroup_uncharge_skmem - uncharge socket memory
6956  * @memcg: memcg to uncharge
6957  * @nr_pages: number of pages to uncharge
6958  */
6959 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6960 {
6961 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6962 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6963 		return;
6964 	}
6965 
6966 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6967 
6968 	refill_stock(memcg, nr_pages);
6969 }
6970 
6971 static int __init cgroup_memory(char *s)
6972 {
6973 	char *token;
6974 
6975 	while ((token = strsep(&s, ",")) != NULL) {
6976 		if (!*token)
6977 			continue;
6978 		if (!strcmp(token, "nosocket"))
6979 			cgroup_memory_nosocket = true;
6980 		if (!strcmp(token, "nokmem"))
6981 			cgroup_memory_nokmem = true;
6982 	}
6983 	return 1;
6984 }
6985 __setup("cgroup.memory=", cgroup_memory);
6986 
6987 /*
6988  * subsys_initcall() for memory controller.
6989  *
6990  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6991  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6992  * basically everything that doesn't depend on a specific mem_cgroup structure
6993  * should be initialized from here.
6994  */
6995 static int __init mem_cgroup_init(void)
6996 {
6997 	int cpu, node;
6998 
6999 	/*
7000 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7001 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7002 	 * to work fine, we should make sure that the overfill threshold can't
7003 	 * exceed S32_MAX / PAGE_SIZE.
7004 	 */
7005 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7006 
7007 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7008 				  memcg_hotplug_cpu_dead);
7009 
7010 	for_each_possible_cpu(cpu)
7011 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7012 			  drain_local_stock);
7013 
7014 	for_each_node(node) {
7015 		struct mem_cgroup_tree_per_node *rtpn;
7016 
7017 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7018 				    node_online(node) ? node : NUMA_NO_NODE);
7019 
7020 		rtpn->rb_root = RB_ROOT;
7021 		rtpn->rb_rightmost = NULL;
7022 		spin_lock_init(&rtpn->lock);
7023 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7024 	}
7025 
7026 	return 0;
7027 }
7028 subsys_initcall(mem_cgroup_init);
7029 
7030 #ifdef CONFIG_MEMCG_SWAP
7031 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7032 {
7033 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7034 		/*
7035 		 * The root cgroup cannot be destroyed, so it's refcount must
7036 		 * always be >= 1.
7037 		 */
7038 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7039 			VM_BUG_ON(1);
7040 			break;
7041 		}
7042 		memcg = parent_mem_cgroup(memcg);
7043 		if (!memcg)
7044 			memcg = root_mem_cgroup;
7045 	}
7046 	return memcg;
7047 }
7048 
7049 /**
7050  * mem_cgroup_swapout - transfer a memsw charge to swap
7051  * @folio: folio whose memsw charge to transfer
7052  * @entry: swap entry to move the charge to
7053  *
7054  * Transfer the memsw charge of @folio to @entry.
7055  */
7056 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7057 {
7058 	struct mem_cgroup *memcg, *swap_memcg;
7059 	unsigned int nr_entries;
7060 	unsigned short oldid;
7061 
7062 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7063 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7064 
7065 	if (mem_cgroup_disabled())
7066 		return;
7067 
7068 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7069 		return;
7070 
7071 	memcg = folio_memcg(folio);
7072 
7073 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7074 	if (!memcg)
7075 		return;
7076 
7077 	/*
7078 	 * In case the memcg owning these pages has been offlined and doesn't
7079 	 * have an ID allocated to it anymore, charge the closest online
7080 	 * ancestor for the swap instead and transfer the memory+swap charge.
7081 	 */
7082 	swap_memcg = mem_cgroup_id_get_online(memcg);
7083 	nr_entries = folio_nr_pages(folio);
7084 	/* Get references for the tail pages, too */
7085 	if (nr_entries > 1)
7086 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7087 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7088 				   nr_entries);
7089 	VM_BUG_ON_FOLIO(oldid, folio);
7090 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7091 
7092 	folio->memcg_data = 0;
7093 
7094 	if (!mem_cgroup_is_root(memcg))
7095 		page_counter_uncharge(&memcg->memory, nr_entries);
7096 
7097 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7098 		if (!mem_cgroup_is_root(swap_memcg))
7099 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7100 		page_counter_uncharge(&memcg->memsw, nr_entries);
7101 	}
7102 
7103 	/*
7104 	 * Interrupts should be disabled here because the caller holds the
7105 	 * i_pages lock which is taken with interrupts-off. It is
7106 	 * important here to have the interrupts disabled because it is the
7107 	 * only synchronisation we have for updating the per-CPU variables.
7108 	 */
7109 	memcg_stats_lock();
7110 	mem_cgroup_charge_statistics(memcg, -nr_entries);
7111 	memcg_stats_unlock();
7112 	memcg_check_events(memcg, folio_nid(folio));
7113 
7114 	css_put(&memcg->css);
7115 }
7116 
7117 /**
7118  * __mem_cgroup_try_charge_swap - try charging swap space for a page
7119  * @page: page being added to swap
7120  * @entry: swap entry to charge
7121  *
7122  * Try to charge @page's memcg for the swap space at @entry.
7123  *
7124  * Returns 0 on success, -ENOMEM on failure.
7125  */
7126 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7127 {
7128 	unsigned int nr_pages = thp_nr_pages(page);
7129 	struct page_counter *counter;
7130 	struct mem_cgroup *memcg;
7131 	unsigned short oldid;
7132 
7133 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7134 		return 0;
7135 
7136 	memcg = page_memcg(page);
7137 
7138 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7139 	if (!memcg)
7140 		return 0;
7141 
7142 	if (!entry.val) {
7143 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7144 		return 0;
7145 	}
7146 
7147 	memcg = mem_cgroup_id_get_online(memcg);
7148 
7149 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7150 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7151 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7152 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7153 		mem_cgroup_id_put(memcg);
7154 		return -ENOMEM;
7155 	}
7156 
7157 	/* Get references for the tail pages, too */
7158 	if (nr_pages > 1)
7159 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7160 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7161 	VM_BUG_ON_PAGE(oldid, page);
7162 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7163 
7164 	return 0;
7165 }
7166 
7167 /**
7168  * __mem_cgroup_uncharge_swap - uncharge swap space
7169  * @entry: swap entry to uncharge
7170  * @nr_pages: the amount of swap space to uncharge
7171  */
7172 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7173 {
7174 	struct mem_cgroup *memcg;
7175 	unsigned short id;
7176 
7177 	id = swap_cgroup_record(entry, 0, nr_pages);
7178 	rcu_read_lock();
7179 	memcg = mem_cgroup_from_id(id);
7180 	if (memcg) {
7181 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7182 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7183 				page_counter_uncharge(&memcg->swap, nr_pages);
7184 			else
7185 				page_counter_uncharge(&memcg->memsw, nr_pages);
7186 		}
7187 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7188 		mem_cgroup_id_put_many(memcg, nr_pages);
7189 	}
7190 	rcu_read_unlock();
7191 }
7192 
7193 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7194 {
7195 	long nr_swap_pages = get_nr_swap_pages();
7196 
7197 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7198 		return nr_swap_pages;
7199 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7200 		nr_swap_pages = min_t(long, nr_swap_pages,
7201 				      READ_ONCE(memcg->swap.max) -
7202 				      page_counter_read(&memcg->swap));
7203 	return nr_swap_pages;
7204 }
7205 
7206 bool mem_cgroup_swap_full(struct page *page)
7207 {
7208 	struct mem_cgroup *memcg;
7209 
7210 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7211 
7212 	if (vm_swap_full())
7213 		return true;
7214 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7215 		return false;
7216 
7217 	memcg = page_memcg(page);
7218 	if (!memcg)
7219 		return false;
7220 
7221 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7222 		unsigned long usage = page_counter_read(&memcg->swap);
7223 
7224 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7225 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7226 			return true;
7227 	}
7228 
7229 	return false;
7230 }
7231 
7232 static int __init setup_swap_account(char *s)
7233 {
7234 	if (!strcmp(s, "1"))
7235 		cgroup_memory_noswap = false;
7236 	else if (!strcmp(s, "0"))
7237 		cgroup_memory_noswap = true;
7238 	return 1;
7239 }
7240 __setup("swapaccount=", setup_swap_account);
7241 
7242 static u64 swap_current_read(struct cgroup_subsys_state *css,
7243 			     struct cftype *cft)
7244 {
7245 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7246 
7247 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7248 }
7249 
7250 static int swap_high_show(struct seq_file *m, void *v)
7251 {
7252 	return seq_puts_memcg_tunable(m,
7253 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7254 }
7255 
7256 static ssize_t swap_high_write(struct kernfs_open_file *of,
7257 			       char *buf, size_t nbytes, loff_t off)
7258 {
7259 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7260 	unsigned long high;
7261 	int err;
7262 
7263 	buf = strstrip(buf);
7264 	err = page_counter_memparse(buf, "max", &high);
7265 	if (err)
7266 		return err;
7267 
7268 	page_counter_set_high(&memcg->swap, high);
7269 
7270 	return nbytes;
7271 }
7272 
7273 static int swap_max_show(struct seq_file *m, void *v)
7274 {
7275 	return seq_puts_memcg_tunable(m,
7276 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7277 }
7278 
7279 static ssize_t swap_max_write(struct kernfs_open_file *of,
7280 			      char *buf, size_t nbytes, loff_t off)
7281 {
7282 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7283 	unsigned long max;
7284 	int err;
7285 
7286 	buf = strstrip(buf);
7287 	err = page_counter_memparse(buf, "max", &max);
7288 	if (err)
7289 		return err;
7290 
7291 	xchg(&memcg->swap.max, max);
7292 
7293 	return nbytes;
7294 }
7295 
7296 static int swap_events_show(struct seq_file *m, void *v)
7297 {
7298 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7299 
7300 	seq_printf(m, "high %lu\n",
7301 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7302 	seq_printf(m, "max %lu\n",
7303 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7304 	seq_printf(m, "fail %lu\n",
7305 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7306 
7307 	return 0;
7308 }
7309 
7310 static struct cftype swap_files[] = {
7311 	{
7312 		.name = "swap.current",
7313 		.flags = CFTYPE_NOT_ON_ROOT,
7314 		.read_u64 = swap_current_read,
7315 	},
7316 	{
7317 		.name = "swap.high",
7318 		.flags = CFTYPE_NOT_ON_ROOT,
7319 		.seq_show = swap_high_show,
7320 		.write = swap_high_write,
7321 	},
7322 	{
7323 		.name = "swap.max",
7324 		.flags = CFTYPE_NOT_ON_ROOT,
7325 		.seq_show = swap_max_show,
7326 		.write = swap_max_write,
7327 	},
7328 	{
7329 		.name = "swap.events",
7330 		.flags = CFTYPE_NOT_ON_ROOT,
7331 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7332 		.seq_show = swap_events_show,
7333 	},
7334 	{ }	/* terminate */
7335 };
7336 
7337 static struct cftype memsw_files[] = {
7338 	{
7339 		.name = "memsw.usage_in_bytes",
7340 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7341 		.read_u64 = mem_cgroup_read_u64,
7342 	},
7343 	{
7344 		.name = "memsw.max_usage_in_bytes",
7345 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7346 		.write = mem_cgroup_reset,
7347 		.read_u64 = mem_cgroup_read_u64,
7348 	},
7349 	{
7350 		.name = "memsw.limit_in_bytes",
7351 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7352 		.write = mem_cgroup_write,
7353 		.read_u64 = mem_cgroup_read_u64,
7354 	},
7355 	{
7356 		.name = "memsw.failcnt",
7357 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7358 		.write = mem_cgroup_reset,
7359 		.read_u64 = mem_cgroup_read_u64,
7360 	},
7361 	{ },	/* terminate */
7362 };
7363 
7364 /*
7365  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7366  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7367  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7368  * boot parameter. This may result in premature OOPS inside
7369  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7370  */
7371 static int __init mem_cgroup_swap_init(void)
7372 {
7373 	/* No memory control -> no swap control */
7374 	if (mem_cgroup_disabled())
7375 		cgroup_memory_noswap = true;
7376 
7377 	if (cgroup_memory_noswap)
7378 		return 0;
7379 
7380 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7381 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7382 
7383 	return 0;
7384 }
7385 core_initcall(mem_cgroup_swap_init);
7386 
7387 #endif /* CONFIG_MEMCG_SWAP */
7388