xref: /openbmc/linux/mm/memcontrol.c (revision 09d62154)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72 
73 #include <linux/uaccess.h>
74 
75 #include <trace/events/vmscan.h>
76 
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79 
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81 
82 #define MEM_CGROUP_RECLAIM_RETRIES	5
83 
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86 
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89 
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account		0
95 #endif
96 
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
99 {
100 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102 
103 static const char *const mem_cgroup_lru_names[] = {
104 	"inactive_anon",
105 	"active_anon",
106 	"inactive_file",
107 	"active_file",
108 	"unevictable",
109 };
110 
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET	1024
114 
115 /*
116  * Cgroups above their limits are maintained in a RB-Tree, independent of
117  * their hierarchy representation
118  */
119 
120 struct mem_cgroup_tree_per_node {
121 	struct rb_root rb_root;
122 	struct rb_node *rb_rightmost;
123 	spinlock_t lock;
124 };
125 
126 struct mem_cgroup_tree {
127 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128 };
129 
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131 
132 /* for OOM */
133 struct mem_cgroup_eventfd_list {
134 	struct list_head list;
135 	struct eventfd_ctx *eventfd;
136 };
137 
138 /*
139  * cgroup_event represents events which userspace want to receive.
140  */
141 struct mem_cgroup_event {
142 	/*
143 	 * memcg which the event belongs to.
144 	 */
145 	struct mem_cgroup *memcg;
146 	/*
147 	 * eventfd to signal userspace about the event.
148 	 */
149 	struct eventfd_ctx *eventfd;
150 	/*
151 	 * Each of these stored in a list by the cgroup.
152 	 */
153 	struct list_head list;
154 	/*
155 	 * register_event() callback will be used to add new userspace
156 	 * waiter for changes related to this event.  Use eventfd_signal()
157 	 * on eventfd to send notification to userspace.
158 	 */
159 	int (*register_event)(struct mem_cgroup *memcg,
160 			      struct eventfd_ctx *eventfd, const char *args);
161 	/*
162 	 * unregister_event() callback will be called when userspace closes
163 	 * the eventfd or on cgroup removing.  This callback must be set,
164 	 * if you want provide notification functionality.
165 	 */
166 	void (*unregister_event)(struct mem_cgroup *memcg,
167 				 struct eventfd_ctx *eventfd);
168 	/*
169 	 * All fields below needed to unregister event when
170 	 * userspace closes eventfd.
171 	 */
172 	poll_table pt;
173 	wait_queue_head_t *wqh;
174 	wait_queue_entry_t wait;
175 	struct work_struct remove;
176 };
177 
178 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180 
181 /* Stuffs for move charges at task migration. */
182 /*
183  * Types of charges to be moved.
184  */
185 #define MOVE_ANON	0x1U
186 #define MOVE_FILE	0x2U
187 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
188 
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct {
191 	spinlock_t	  lock; /* for from, to */
192 	struct mm_struct  *mm;
193 	struct mem_cgroup *from;
194 	struct mem_cgroup *to;
195 	unsigned long flags;
196 	unsigned long precharge;
197 	unsigned long moved_charge;
198 	unsigned long moved_swap;
199 	struct task_struct *moving_task;	/* a task moving charges */
200 	wait_queue_head_t waitq;		/* a waitq for other context */
201 } mc = {
202 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204 };
205 
206 /*
207  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208  * limit reclaim to prevent infinite loops, if they ever occur.
209  */
210 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
211 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
212 
213 enum charge_type {
214 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 	MEM_CGROUP_CHARGE_TYPE_ANON,
216 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
217 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
218 	NR_CHARGE_TYPE,
219 };
220 
221 /* for encoding cft->private value on file */
222 enum res_type {
223 	_MEM,
224 	_MEMSWAP,
225 	_OOM_TYPE,
226 	_KMEM,
227 	_TCP,
228 };
229 
230 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
231 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val)	((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL		(0)
235 
236 /*
237  * Iteration constructs for visiting all cgroups (under a tree).  If
238  * loops are exited prematurely (break), mem_cgroup_iter_break() must
239  * be used for reference counting.
240  */
241 #define for_each_mem_cgroup_tree(iter, root)		\
242 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
243 	     iter != NULL;				\
244 	     iter = mem_cgroup_iter(root, iter, NULL))
245 
246 #define for_each_mem_cgroup(iter)			\
247 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
248 	     iter != NULL;				\
249 	     iter = mem_cgroup_iter(NULL, iter, NULL))
250 
251 /* Some nice accessors for the vmpressure. */
252 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
253 {
254 	if (!memcg)
255 		memcg = root_mem_cgroup;
256 	return &memcg->vmpressure;
257 }
258 
259 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
260 {
261 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
262 }
263 
264 #ifdef CONFIG_MEMCG_KMEM
265 /*
266  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
267  * The main reason for not using cgroup id for this:
268  *  this works better in sparse environments, where we have a lot of memcgs,
269  *  but only a few kmem-limited. Or also, if we have, for instance, 200
270  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
271  *  200 entry array for that.
272  *
273  * The current size of the caches array is stored in memcg_nr_cache_ids. It
274  * will double each time we have to increase it.
275  */
276 static DEFINE_IDA(memcg_cache_ida);
277 int memcg_nr_cache_ids;
278 
279 /* Protects memcg_nr_cache_ids */
280 static DECLARE_RWSEM(memcg_cache_ids_sem);
281 
282 void memcg_get_cache_ids(void)
283 {
284 	down_read(&memcg_cache_ids_sem);
285 }
286 
287 void memcg_put_cache_ids(void)
288 {
289 	up_read(&memcg_cache_ids_sem);
290 }
291 
292 /*
293  * MIN_SIZE is different than 1, because we would like to avoid going through
294  * the alloc/free process all the time. In a small machine, 4 kmem-limited
295  * cgroups is a reasonable guess. In the future, it could be a parameter or
296  * tunable, but that is strictly not necessary.
297  *
298  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
299  * this constant directly from cgroup, but it is understandable that this is
300  * better kept as an internal representation in cgroup.c. In any case, the
301  * cgrp_id space is not getting any smaller, and we don't have to necessarily
302  * increase ours as well if it increases.
303  */
304 #define MEMCG_CACHES_MIN_SIZE 4
305 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
306 
307 /*
308  * A lot of the calls to the cache allocation functions are expected to be
309  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
310  * conditional to this static branch, we'll have to allow modules that does
311  * kmem_cache_alloc and the such to see this symbol as well
312  */
313 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
314 EXPORT_SYMBOL(memcg_kmem_enabled_key);
315 
316 struct workqueue_struct *memcg_kmem_cache_wq;
317 
318 static int memcg_shrinker_map_size;
319 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
320 
321 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
322 {
323 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
324 }
325 
326 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
327 					 int size, int old_size)
328 {
329 	struct memcg_shrinker_map *new, *old;
330 	int nid;
331 
332 	lockdep_assert_held(&memcg_shrinker_map_mutex);
333 
334 	for_each_node(nid) {
335 		old = rcu_dereference_protected(
336 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
337 		/* Not yet online memcg */
338 		if (!old)
339 			return 0;
340 
341 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
342 		if (!new)
343 			return -ENOMEM;
344 
345 		/* Set all old bits, clear all new bits */
346 		memset(new->map, (int)0xff, old_size);
347 		memset((void *)new->map + old_size, 0, size - old_size);
348 
349 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
350 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
351 	}
352 
353 	return 0;
354 }
355 
356 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
357 {
358 	struct mem_cgroup_per_node *pn;
359 	struct memcg_shrinker_map *map;
360 	int nid;
361 
362 	if (mem_cgroup_is_root(memcg))
363 		return;
364 
365 	for_each_node(nid) {
366 		pn = mem_cgroup_nodeinfo(memcg, nid);
367 		map = rcu_dereference_protected(pn->shrinker_map, true);
368 		if (map)
369 			kvfree(map);
370 		rcu_assign_pointer(pn->shrinker_map, NULL);
371 	}
372 }
373 
374 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
375 {
376 	struct memcg_shrinker_map *map;
377 	int nid, size, ret = 0;
378 
379 	if (mem_cgroup_is_root(memcg))
380 		return 0;
381 
382 	mutex_lock(&memcg_shrinker_map_mutex);
383 	size = memcg_shrinker_map_size;
384 	for_each_node(nid) {
385 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
386 		if (!map) {
387 			memcg_free_shrinker_maps(memcg);
388 			ret = -ENOMEM;
389 			break;
390 		}
391 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
392 	}
393 	mutex_unlock(&memcg_shrinker_map_mutex);
394 
395 	return ret;
396 }
397 
398 int memcg_expand_shrinker_maps(int new_id)
399 {
400 	int size, old_size, ret = 0;
401 	struct mem_cgroup *memcg;
402 
403 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
404 	old_size = memcg_shrinker_map_size;
405 	if (size <= old_size)
406 		return 0;
407 
408 	mutex_lock(&memcg_shrinker_map_mutex);
409 	if (!root_mem_cgroup)
410 		goto unlock;
411 
412 	for_each_mem_cgroup(memcg) {
413 		if (mem_cgroup_is_root(memcg))
414 			continue;
415 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
416 		if (ret)
417 			goto unlock;
418 	}
419 unlock:
420 	if (!ret)
421 		memcg_shrinker_map_size = size;
422 	mutex_unlock(&memcg_shrinker_map_mutex);
423 	return ret;
424 }
425 
426 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
427 {
428 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
429 		struct memcg_shrinker_map *map;
430 
431 		rcu_read_lock();
432 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
433 		/* Pairs with smp mb in shrink_slab() */
434 		smp_mb__before_atomic();
435 		set_bit(shrinker_id, map->map);
436 		rcu_read_unlock();
437 	}
438 }
439 
440 #else /* CONFIG_MEMCG_KMEM */
441 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
442 {
443 	return 0;
444 }
445 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
446 #endif /* CONFIG_MEMCG_KMEM */
447 
448 /**
449  * mem_cgroup_css_from_page - css of the memcg associated with a page
450  * @page: page of interest
451  *
452  * If memcg is bound to the default hierarchy, css of the memcg associated
453  * with @page is returned.  The returned css remains associated with @page
454  * until it is released.
455  *
456  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
457  * is returned.
458  */
459 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
460 {
461 	struct mem_cgroup *memcg;
462 
463 	memcg = page->mem_cgroup;
464 
465 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
466 		memcg = root_mem_cgroup;
467 
468 	return &memcg->css;
469 }
470 
471 /**
472  * page_cgroup_ino - return inode number of the memcg a page is charged to
473  * @page: the page
474  *
475  * Look up the closest online ancestor of the memory cgroup @page is charged to
476  * and return its inode number or 0 if @page is not charged to any cgroup. It
477  * is safe to call this function without holding a reference to @page.
478  *
479  * Note, this function is inherently racy, because there is nothing to prevent
480  * the cgroup inode from getting torn down and potentially reallocated a moment
481  * after page_cgroup_ino() returns, so it only should be used by callers that
482  * do not care (such as procfs interfaces).
483  */
484 ino_t page_cgroup_ino(struct page *page)
485 {
486 	struct mem_cgroup *memcg;
487 	unsigned long ino = 0;
488 
489 	rcu_read_lock();
490 	memcg = READ_ONCE(page->mem_cgroup);
491 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
492 		memcg = parent_mem_cgroup(memcg);
493 	if (memcg)
494 		ino = cgroup_ino(memcg->css.cgroup);
495 	rcu_read_unlock();
496 	return ino;
497 }
498 
499 static struct mem_cgroup_per_node *
500 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
501 {
502 	int nid = page_to_nid(page);
503 
504 	return memcg->nodeinfo[nid];
505 }
506 
507 static struct mem_cgroup_tree_per_node *
508 soft_limit_tree_node(int nid)
509 {
510 	return soft_limit_tree.rb_tree_per_node[nid];
511 }
512 
513 static struct mem_cgroup_tree_per_node *
514 soft_limit_tree_from_page(struct page *page)
515 {
516 	int nid = page_to_nid(page);
517 
518 	return soft_limit_tree.rb_tree_per_node[nid];
519 }
520 
521 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
522 					 struct mem_cgroup_tree_per_node *mctz,
523 					 unsigned long new_usage_in_excess)
524 {
525 	struct rb_node **p = &mctz->rb_root.rb_node;
526 	struct rb_node *parent = NULL;
527 	struct mem_cgroup_per_node *mz_node;
528 	bool rightmost = true;
529 
530 	if (mz->on_tree)
531 		return;
532 
533 	mz->usage_in_excess = new_usage_in_excess;
534 	if (!mz->usage_in_excess)
535 		return;
536 	while (*p) {
537 		parent = *p;
538 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
539 					tree_node);
540 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
541 			p = &(*p)->rb_left;
542 			rightmost = false;
543 		}
544 
545 		/*
546 		 * We can't avoid mem cgroups that are over their soft
547 		 * limit by the same amount
548 		 */
549 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
550 			p = &(*p)->rb_right;
551 	}
552 
553 	if (rightmost)
554 		mctz->rb_rightmost = &mz->tree_node;
555 
556 	rb_link_node(&mz->tree_node, parent, p);
557 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 	mz->on_tree = true;
559 }
560 
561 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
562 					 struct mem_cgroup_tree_per_node *mctz)
563 {
564 	if (!mz->on_tree)
565 		return;
566 
567 	if (&mz->tree_node == mctz->rb_rightmost)
568 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
569 
570 	rb_erase(&mz->tree_node, &mctz->rb_root);
571 	mz->on_tree = false;
572 }
573 
574 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
575 				       struct mem_cgroup_tree_per_node *mctz)
576 {
577 	unsigned long flags;
578 
579 	spin_lock_irqsave(&mctz->lock, flags);
580 	__mem_cgroup_remove_exceeded(mz, mctz);
581 	spin_unlock_irqrestore(&mctz->lock, flags);
582 }
583 
584 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
585 {
586 	unsigned long nr_pages = page_counter_read(&memcg->memory);
587 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
588 	unsigned long excess = 0;
589 
590 	if (nr_pages > soft_limit)
591 		excess = nr_pages - soft_limit;
592 
593 	return excess;
594 }
595 
596 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
597 {
598 	unsigned long excess;
599 	struct mem_cgroup_per_node *mz;
600 	struct mem_cgroup_tree_per_node *mctz;
601 
602 	mctz = soft_limit_tree_from_page(page);
603 	if (!mctz)
604 		return;
605 	/*
606 	 * Necessary to update all ancestors when hierarchy is used.
607 	 * because their event counter is not touched.
608 	 */
609 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
610 		mz = mem_cgroup_page_nodeinfo(memcg, page);
611 		excess = soft_limit_excess(memcg);
612 		/*
613 		 * We have to update the tree if mz is on RB-tree or
614 		 * mem is over its softlimit.
615 		 */
616 		if (excess || mz->on_tree) {
617 			unsigned long flags;
618 
619 			spin_lock_irqsave(&mctz->lock, flags);
620 			/* if on-tree, remove it */
621 			if (mz->on_tree)
622 				__mem_cgroup_remove_exceeded(mz, mctz);
623 			/*
624 			 * Insert again. mz->usage_in_excess will be updated.
625 			 * If excess is 0, no tree ops.
626 			 */
627 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
628 			spin_unlock_irqrestore(&mctz->lock, flags);
629 		}
630 	}
631 }
632 
633 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
634 {
635 	struct mem_cgroup_tree_per_node *mctz;
636 	struct mem_cgroup_per_node *mz;
637 	int nid;
638 
639 	for_each_node(nid) {
640 		mz = mem_cgroup_nodeinfo(memcg, nid);
641 		mctz = soft_limit_tree_node(nid);
642 		if (mctz)
643 			mem_cgroup_remove_exceeded(mz, mctz);
644 	}
645 }
646 
647 static struct mem_cgroup_per_node *
648 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
649 {
650 	struct mem_cgroup_per_node *mz;
651 
652 retry:
653 	mz = NULL;
654 	if (!mctz->rb_rightmost)
655 		goto done;		/* Nothing to reclaim from */
656 
657 	mz = rb_entry(mctz->rb_rightmost,
658 		      struct mem_cgroup_per_node, tree_node);
659 	/*
660 	 * Remove the node now but someone else can add it back,
661 	 * we will to add it back at the end of reclaim to its correct
662 	 * position in the tree.
663 	 */
664 	__mem_cgroup_remove_exceeded(mz, mctz);
665 	if (!soft_limit_excess(mz->memcg) ||
666 	    !css_tryget_online(&mz->memcg->css))
667 		goto retry;
668 done:
669 	return mz;
670 }
671 
672 static struct mem_cgroup_per_node *
673 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
674 {
675 	struct mem_cgroup_per_node *mz;
676 
677 	spin_lock_irq(&mctz->lock);
678 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
679 	spin_unlock_irq(&mctz->lock);
680 	return mz;
681 }
682 
683 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
684 				      int event)
685 {
686 	return atomic_long_read(&memcg->events[event]);
687 }
688 
689 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
690 					 struct page *page,
691 					 bool compound, int nr_pages)
692 {
693 	/*
694 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
695 	 * counted as CACHE even if it's on ANON LRU.
696 	 */
697 	if (PageAnon(page))
698 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
699 	else {
700 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
701 		if (PageSwapBacked(page))
702 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
703 	}
704 
705 	if (compound) {
706 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
707 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
708 	}
709 
710 	/* pagein of a big page is an event. So, ignore page size */
711 	if (nr_pages > 0)
712 		__count_memcg_events(memcg, PGPGIN, 1);
713 	else {
714 		__count_memcg_events(memcg, PGPGOUT, 1);
715 		nr_pages = -nr_pages; /* for event */
716 	}
717 
718 	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
719 }
720 
721 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
722 					   int nid, unsigned int lru_mask)
723 {
724 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
725 	unsigned long nr = 0;
726 	enum lru_list lru;
727 
728 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
729 
730 	for_each_lru(lru) {
731 		if (!(BIT(lru) & lru_mask))
732 			continue;
733 		nr += mem_cgroup_get_lru_size(lruvec, lru);
734 	}
735 	return nr;
736 }
737 
738 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
739 			unsigned int lru_mask)
740 {
741 	unsigned long nr = 0;
742 	int nid;
743 
744 	for_each_node_state(nid, N_MEMORY)
745 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
746 	return nr;
747 }
748 
749 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
750 				       enum mem_cgroup_events_target target)
751 {
752 	unsigned long val, next;
753 
754 	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
755 	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
756 	/* from time_after() in jiffies.h */
757 	if ((long)(next - val) < 0) {
758 		switch (target) {
759 		case MEM_CGROUP_TARGET_THRESH:
760 			next = val + THRESHOLDS_EVENTS_TARGET;
761 			break;
762 		case MEM_CGROUP_TARGET_SOFTLIMIT:
763 			next = val + SOFTLIMIT_EVENTS_TARGET;
764 			break;
765 		case MEM_CGROUP_TARGET_NUMAINFO:
766 			next = val + NUMAINFO_EVENTS_TARGET;
767 			break;
768 		default:
769 			break;
770 		}
771 		__this_cpu_write(memcg->stat_cpu->targets[target], next);
772 		return true;
773 	}
774 	return false;
775 }
776 
777 /*
778  * Check events in order.
779  *
780  */
781 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
782 {
783 	/* threshold event is triggered in finer grain than soft limit */
784 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
785 						MEM_CGROUP_TARGET_THRESH))) {
786 		bool do_softlimit;
787 		bool do_numainfo __maybe_unused;
788 
789 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
790 						MEM_CGROUP_TARGET_SOFTLIMIT);
791 #if MAX_NUMNODES > 1
792 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
793 						MEM_CGROUP_TARGET_NUMAINFO);
794 #endif
795 		mem_cgroup_threshold(memcg);
796 		if (unlikely(do_softlimit))
797 			mem_cgroup_update_tree(memcg, page);
798 #if MAX_NUMNODES > 1
799 		if (unlikely(do_numainfo))
800 			atomic_inc(&memcg->numainfo_events);
801 #endif
802 	}
803 }
804 
805 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
806 {
807 	/*
808 	 * mm_update_next_owner() may clear mm->owner to NULL
809 	 * if it races with swapoff, page migration, etc.
810 	 * So this can be called with p == NULL.
811 	 */
812 	if (unlikely(!p))
813 		return NULL;
814 
815 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
816 }
817 EXPORT_SYMBOL(mem_cgroup_from_task);
818 
819 /**
820  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
821  * @mm: mm from which memcg should be extracted. It can be NULL.
822  *
823  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
824  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
825  * returned.
826  */
827 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
828 {
829 	struct mem_cgroup *memcg;
830 
831 	if (mem_cgroup_disabled())
832 		return NULL;
833 
834 	rcu_read_lock();
835 	do {
836 		/*
837 		 * Page cache insertions can happen withou an
838 		 * actual mm context, e.g. during disk probing
839 		 * on boot, loopback IO, acct() writes etc.
840 		 */
841 		if (unlikely(!mm))
842 			memcg = root_mem_cgroup;
843 		else {
844 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
845 			if (unlikely(!memcg))
846 				memcg = root_mem_cgroup;
847 		}
848 	} while (!css_tryget_online(&memcg->css));
849 	rcu_read_unlock();
850 	return memcg;
851 }
852 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
853 
854 /**
855  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
856  * @page: page from which memcg should be extracted.
857  *
858  * Obtain a reference on page->memcg and returns it if successful. Otherwise
859  * root_mem_cgroup is returned.
860  */
861 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
862 {
863 	struct mem_cgroup *memcg = page->mem_cgroup;
864 
865 	if (mem_cgroup_disabled())
866 		return NULL;
867 
868 	rcu_read_lock();
869 	if (!memcg || !css_tryget_online(&memcg->css))
870 		memcg = root_mem_cgroup;
871 	rcu_read_unlock();
872 	return memcg;
873 }
874 EXPORT_SYMBOL(get_mem_cgroup_from_page);
875 
876 /**
877  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
878  */
879 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
880 {
881 	if (unlikely(current->active_memcg)) {
882 		struct mem_cgroup *memcg = root_mem_cgroup;
883 
884 		rcu_read_lock();
885 		if (css_tryget_online(&current->active_memcg->css))
886 			memcg = current->active_memcg;
887 		rcu_read_unlock();
888 		return memcg;
889 	}
890 	return get_mem_cgroup_from_mm(current->mm);
891 }
892 
893 /**
894  * mem_cgroup_iter - iterate over memory cgroup hierarchy
895  * @root: hierarchy root
896  * @prev: previously returned memcg, NULL on first invocation
897  * @reclaim: cookie for shared reclaim walks, NULL for full walks
898  *
899  * Returns references to children of the hierarchy below @root, or
900  * @root itself, or %NULL after a full round-trip.
901  *
902  * Caller must pass the return value in @prev on subsequent
903  * invocations for reference counting, or use mem_cgroup_iter_break()
904  * to cancel a hierarchy walk before the round-trip is complete.
905  *
906  * Reclaimers can specify a node and a priority level in @reclaim to
907  * divide up the memcgs in the hierarchy among all concurrent
908  * reclaimers operating on the same node and priority.
909  */
910 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
911 				   struct mem_cgroup *prev,
912 				   struct mem_cgroup_reclaim_cookie *reclaim)
913 {
914 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
915 	struct cgroup_subsys_state *css = NULL;
916 	struct mem_cgroup *memcg = NULL;
917 	struct mem_cgroup *pos = NULL;
918 
919 	if (mem_cgroup_disabled())
920 		return NULL;
921 
922 	if (!root)
923 		root = root_mem_cgroup;
924 
925 	if (prev && !reclaim)
926 		pos = prev;
927 
928 	if (!root->use_hierarchy && root != root_mem_cgroup) {
929 		if (prev)
930 			goto out;
931 		return root;
932 	}
933 
934 	rcu_read_lock();
935 
936 	if (reclaim) {
937 		struct mem_cgroup_per_node *mz;
938 
939 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
940 		iter = &mz->iter[reclaim->priority];
941 
942 		if (prev && reclaim->generation != iter->generation)
943 			goto out_unlock;
944 
945 		while (1) {
946 			pos = READ_ONCE(iter->position);
947 			if (!pos || css_tryget(&pos->css))
948 				break;
949 			/*
950 			 * css reference reached zero, so iter->position will
951 			 * be cleared by ->css_released. However, we should not
952 			 * rely on this happening soon, because ->css_released
953 			 * is called from a work queue, and by busy-waiting we
954 			 * might block it. So we clear iter->position right
955 			 * away.
956 			 */
957 			(void)cmpxchg(&iter->position, pos, NULL);
958 		}
959 	}
960 
961 	if (pos)
962 		css = &pos->css;
963 
964 	for (;;) {
965 		css = css_next_descendant_pre(css, &root->css);
966 		if (!css) {
967 			/*
968 			 * Reclaimers share the hierarchy walk, and a
969 			 * new one might jump in right at the end of
970 			 * the hierarchy - make sure they see at least
971 			 * one group and restart from the beginning.
972 			 */
973 			if (!prev)
974 				continue;
975 			break;
976 		}
977 
978 		/*
979 		 * Verify the css and acquire a reference.  The root
980 		 * is provided by the caller, so we know it's alive
981 		 * and kicking, and don't take an extra reference.
982 		 */
983 		memcg = mem_cgroup_from_css(css);
984 
985 		if (css == &root->css)
986 			break;
987 
988 		if (css_tryget(css))
989 			break;
990 
991 		memcg = NULL;
992 	}
993 
994 	if (reclaim) {
995 		/*
996 		 * The position could have already been updated by a competing
997 		 * thread, so check that the value hasn't changed since we read
998 		 * it to avoid reclaiming from the same cgroup twice.
999 		 */
1000 		(void)cmpxchg(&iter->position, pos, memcg);
1001 
1002 		if (pos)
1003 			css_put(&pos->css);
1004 
1005 		if (!memcg)
1006 			iter->generation++;
1007 		else if (!prev)
1008 			reclaim->generation = iter->generation;
1009 	}
1010 
1011 out_unlock:
1012 	rcu_read_unlock();
1013 out:
1014 	if (prev && prev != root)
1015 		css_put(&prev->css);
1016 
1017 	return memcg;
1018 }
1019 
1020 /**
1021  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1022  * @root: hierarchy root
1023  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1024  */
1025 void mem_cgroup_iter_break(struct mem_cgroup *root,
1026 			   struct mem_cgroup *prev)
1027 {
1028 	if (!root)
1029 		root = root_mem_cgroup;
1030 	if (prev && prev != root)
1031 		css_put(&prev->css);
1032 }
1033 
1034 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1035 {
1036 	struct mem_cgroup *memcg = dead_memcg;
1037 	struct mem_cgroup_reclaim_iter *iter;
1038 	struct mem_cgroup_per_node *mz;
1039 	int nid;
1040 	int i;
1041 
1042 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1043 		for_each_node(nid) {
1044 			mz = mem_cgroup_nodeinfo(memcg, nid);
1045 			for (i = 0; i <= DEF_PRIORITY; i++) {
1046 				iter = &mz->iter[i];
1047 				cmpxchg(&iter->position,
1048 					dead_memcg, NULL);
1049 			}
1050 		}
1051 	}
1052 }
1053 
1054 /**
1055  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1056  * @memcg: hierarchy root
1057  * @fn: function to call for each task
1058  * @arg: argument passed to @fn
1059  *
1060  * This function iterates over tasks attached to @memcg or to any of its
1061  * descendants and calls @fn for each task. If @fn returns a non-zero
1062  * value, the function breaks the iteration loop and returns the value.
1063  * Otherwise, it will iterate over all tasks and return 0.
1064  *
1065  * This function must not be called for the root memory cgroup.
1066  */
1067 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1068 			  int (*fn)(struct task_struct *, void *), void *arg)
1069 {
1070 	struct mem_cgroup *iter;
1071 	int ret = 0;
1072 
1073 	BUG_ON(memcg == root_mem_cgroup);
1074 
1075 	for_each_mem_cgroup_tree(iter, memcg) {
1076 		struct css_task_iter it;
1077 		struct task_struct *task;
1078 
1079 		css_task_iter_start(&iter->css, 0, &it);
1080 		while (!ret && (task = css_task_iter_next(&it)))
1081 			ret = fn(task, arg);
1082 		css_task_iter_end(&it);
1083 		if (ret) {
1084 			mem_cgroup_iter_break(memcg, iter);
1085 			break;
1086 		}
1087 	}
1088 	return ret;
1089 }
1090 
1091 /**
1092  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1093  * @page: the page
1094  * @pgdat: pgdat of the page
1095  *
1096  * This function is only safe when following the LRU page isolation
1097  * and putback protocol: the LRU lock must be held, and the page must
1098  * either be PageLRU() or the caller must have isolated/allocated it.
1099  */
1100 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1101 {
1102 	struct mem_cgroup_per_node *mz;
1103 	struct mem_cgroup *memcg;
1104 	struct lruvec *lruvec;
1105 
1106 	if (mem_cgroup_disabled()) {
1107 		lruvec = &pgdat->lruvec;
1108 		goto out;
1109 	}
1110 
1111 	memcg = page->mem_cgroup;
1112 	/*
1113 	 * Swapcache readahead pages are added to the LRU - and
1114 	 * possibly migrated - before they are charged.
1115 	 */
1116 	if (!memcg)
1117 		memcg = root_mem_cgroup;
1118 
1119 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1120 	lruvec = &mz->lruvec;
1121 out:
1122 	/*
1123 	 * Since a node can be onlined after the mem_cgroup was created,
1124 	 * we have to be prepared to initialize lruvec->zone here;
1125 	 * and if offlined then reonlined, we need to reinitialize it.
1126 	 */
1127 	if (unlikely(lruvec->pgdat != pgdat))
1128 		lruvec->pgdat = pgdat;
1129 	return lruvec;
1130 }
1131 
1132 /**
1133  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1134  * @lruvec: mem_cgroup per zone lru vector
1135  * @lru: index of lru list the page is sitting on
1136  * @zid: zone id of the accounted pages
1137  * @nr_pages: positive when adding or negative when removing
1138  *
1139  * This function must be called under lru_lock, just before a page is added
1140  * to or just after a page is removed from an lru list (that ordering being
1141  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1142  */
1143 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1144 				int zid, int nr_pages)
1145 {
1146 	struct mem_cgroup_per_node *mz;
1147 	unsigned long *lru_size;
1148 	long size;
1149 
1150 	if (mem_cgroup_disabled())
1151 		return;
1152 
1153 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1154 	lru_size = &mz->lru_zone_size[zid][lru];
1155 
1156 	if (nr_pages < 0)
1157 		*lru_size += nr_pages;
1158 
1159 	size = *lru_size;
1160 	if (WARN_ONCE(size < 0,
1161 		"%s(%p, %d, %d): lru_size %ld\n",
1162 		__func__, lruvec, lru, nr_pages, size)) {
1163 		VM_BUG_ON(1);
1164 		*lru_size = 0;
1165 	}
1166 
1167 	if (nr_pages > 0)
1168 		*lru_size += nr_pages;
1169 }
1170 
1171 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1172 {
1173 	struct mem_cgroup *task_memcg;
1174 	struct task_struct *p;
1175 	bool ret;
1176 
1177 	p = find_lock_task_mm(task);
1178 	if (p) {
1179 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1180 		task_unlock(p);
1181 	} else {
1182 		/*
1183 		 * All threads may have already detached their mm's, but the oom
1184 		 * killer still needs to detect if they have already been oom
1185 		 * killed to prevent needlessly killing additional tasks.
1186 		 */
1187 		rcu_read_lock();
1188 		task_memcg = mem_cgroup_from_task(task);
1189 		css_get(&task_memcg->css);
1190 		rcu_read_unlock();
1191 	}
1192 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1193 	css_put(&task_memcg->css);
1194 	return ret;
1195 }
1196 
1197 /**
1198  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1199  * @memcg: the memory cgroup
1200  *
1201  * Returns the maximum amount of memory @mem can be charged with, in
1202  * pages.
1203  */
1204 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1205 {
1206 	unsigned long margin = 0;
1207 	unsigned long count;
1208 	unsigned long limit;
1209 
1210 	count = page_counter_read(&memcg->memory);
1211 	limit = READ_ONCE(memcg->memory.max);
1212 	if (count < limit)
1213 		margin = limit - count;
1214 
1215 	if (do_memsw_account()) {
1216 		count = page_counter_read(&memcg->memsw);
1217 		limit = READ_ONCE(memcg->memsw.max);
1218 		if (count <= limit)
1219 			margin = min(margin, limit - count);
1220 		else
1221 			margin = 0;
1222 	}
1223 
1224 	return margin;
1225 }
1226 
1227 /*
1228  * A routine for checking "mem" is under move_account() or not.
1229  *
1230  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1231  * moving cgroups. This is for waiting at high-memory pressure
1232  * caused by "move".
1233  */
1234 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1235 {
1236 	struct mem_cgroup *from;
1237 	struct mem_cgroup *to;
1238 	bool ret = false;
1239 	/*
1240 	 * Unlike task_move routines, we access mc.to, mc.from not under
1241 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1242 	 */
1243 	spin_lock(&mc.lock);
1244 	from = mc.from;
1245 	to = mc.to;
1246 	if (!from)
1247 		goto unlock;
1248 
1249 	ret = mem_cgroup_is_descendant(from, memcg) ||
1250 		mem_cgroup_is_descendant(to, memcg);
1251 unlock:
1252 	spin_unlock(&mc.lock);
1253 	return ret;
1254 }
1255 
1256 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1257 {
1258 	if (mc.moving_task && current != mc.moving_task) {
1259 		if (mem_cgroup_under_move(memcg)) {
1260 			DEFINE_WAIT(wait);
1261 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1262 			/* moving charge context might have finished. */
1263 			if (mc.moving_task)
1264 				schedule();
1265 			finish_wait(&mc.waitq, &wait);
1266 			return true;
1267 		}
1268 	}
1269 	return false;
1270 }
1271 
1272 static const unsigned int memcg1_stats[] = {
1273 	MEMCG_CACHE,
1274 	MEMCG_RSS,
1275 	MEMCG_RSS_HUGE,
1276 	NR_SHMEM,
1277 	NR_FILE_MAPPED,
1278 	NR_FILE_DIRTY,
1279 	NR_WRITEBACK,
1280 	MEMCG_SWAP,
1281 };
1282 
1283 static const char *const memcg1_stat_names[] = {
1284 	"cache",
1285 	"rss",
1286 	"rss_huge",
1287 	"shmem",
1288 	"mapped_file",
1289 	"dirty",
1290 	"writeback",
1291 	"swap",
1292 };
1293 
1294 #define K(x) ((x) << (PAGE_SHIFT-10))
1295 /**
1296  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1297  * @memcg: The memory cgroup that went over limit
1298  * @p: Task that is going to be killed
1299  *
1300  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1301  * enabled
1302  */
1303 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1304 {
1305 	struct mem_cgroup *iter;
1306 	unsigned int i;
1307 
1308 	rcu_read_lock();
1309 
1310 	if (p) {
1311 		pr_info("Task in ");
1312 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1313 		pr_cont(" killed as a result of limit of ");
1314 	} else {
1315 		pr_info("Memory limit reached of cgroup ");
1316 	}
1317 
1318 	pr_cont_cgroup_path(memcg->css.cgroup);
1319 	pr_cont("\n");
1320 
1321 	rcu_read_unlock();
1322 
1323 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1324 		K((u64)page_counter_read(&memcg->memory)),
1325 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1326 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1327 		K((u64)page_counter_read(&memcg->memsw)),
1328 		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1329 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1330 		K((u64)page_counter_read(&memcg->kmem)),
1331 		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1332 
1333 	for_each_mem_cgroup_tree(iter, memcg) {
1334 		pr_info("Memory cgroup stats for ");
1335 		pr_cont_cgroup_path(iter->css.cgroup);
1336 		pr_cont(":");
1337 
1338 		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1339 			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1340 				continue;
1341 			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1342 				K(memcg_page_state(iter, memcg1_stats[i])));
1343 		}
1344 
1345 		for (i = 0; i < NR_LRU_LISTS; i++)
1346 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1347 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1348 
1349 		pr_cont("\n");
1350 	}
1351 }
1352 
1353 /*
1354  * Return the memory (and swap, if configured) limit for a memcg.
1355  */
1356 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1357 {
1358 	unsigned long max;
1359 
1360 	max = memcg->memory.max;
1361 	if (mem_cgroup_swappiness(memcg)) {
1362 		unsigned long memsw_max;
1363 		unsigned long swap_max;
1364 
1365 		memsw_max = memcg->memsw.max;
1366 		swap_max = memcg->swap.max;
1367 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1368 		max = min(max + swap_max, memsw_max);
1369 	}
1370 	return max;
1371 }
1372 
1373 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1374 				     int order)
1375 {
1376 	struct oom_control oc = {
1377 		.zonelist = NULL,
1378 		.nodemask = NULL,
1379 		.memcg = memcg,
1380 		.gfp_mask = gfp_mask,
1381 		.order = order,
1382 	};
1383 	bool ret;
1384 
1385 	mutex_lock(&oom_lock);
1386 	ret = out_of_memory(&oc);
1387 	mutex_unlock(&oom_lock);
1388 	return ret;
1389 }
1390 
1391 #if MAX_NUMNODES > 1
1392 
1393 /**
1394  * test_mem_cgroup_node_reclaimable
1395  * @memcg: the target memcg
1396  * @nid: the node ID to be checked.
1397  * @noswap : specify true here if the user wants flle only information.
1398  *
1399  * This function returns whether the specified memcg contains any
1400  * reclaimable pages on a node. Returns true if there are any reclaimable
1401  * pages in the node.
1402  */
1403 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1404 		int nid, bool noswap)
1405 {
1406 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1407 		return true;
1408 	if (noswap || !total_swap_pages)
1409 		return false;
1410 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1411 		return true;
1412 	return false;
1413 
1414 }
1415 
1416 /*
1417  * Always updating the nodemask is not very good - even if we have an empty
1418  * list or the wrong list here, we can start from some node and traverse all
1419  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1420  *
1421  */
1422 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1423 {
1424 	int nid;
1425 	/*
1426 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1427 	 * pagein/pageout changes since the last update.
1428 	 */
1429 	if (!atomic_read(&memcg->numainfo_events))
1430 		return;
1431 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1432 		return;
1433 
1434 	/* make a nodemask where this memcg uses memory from */
1435 	memcg->scan_nodes = node_states[N_MEMORY];
1436 
1437 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1438 
1439 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1440 			node_clear(nid, memcg->scan_nodes);
1441 	}
1442 
1443 	atomic_set(&memcg->numainfo_events, 0);
1444 	atomic_set(&memcg->numainfo_updating, 0);
1445 }
1446 
1447 /*
1448  * Selecting a node where we start reclaim from. Because what we need is just
1449  * reducing usage counter, start from anywhere is O,K. Considering
1450  * memory reclaim from current node, there are pros. and cons.
1451  *
1452  * Freeing memory from current node means freeing memory from a node which
1453  * we'll use or we've used. So, it may make LRU bad. And if several threads
1454  * hit limits, it will see a contention on a node. But freeing from remote
1455  * node means more costs for memory reclaim because of memory latency.
1456  *
1457  * Now, we use round-robin. Better algorithm is welcomed.
1458  */
1459 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1460 {
1461 	int node;
1462 
1463 	mem_cgroup_may_update_nodemask(memcg);
1464 	node = memcg->last_scanned_node;
1465 
1466 	node = next_node_in(node, memcg->scan_nodes);
1467 	/*
1468 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1469 	 * last time it really checked all the LRUs due to rate limiting.
1470 	 * Fallback to the current node in that case for simplicity.
1471 	 */
1472 	if (unlikely(node == MAX_NUMNODES))
1473 		node = numa_node_id();
1474 
1475 	memcg->last_scanned_node = node;
1476 	return node;
1477 }
1478 #else
1479 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1480 {
1481 	return 0;
1482 }
1483 #endif
1484 
1485 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1486 				   pg_data_t *pgdat,
1487 				   gfp_t gfp_mask,
1488 				   unsigned long *total_scanned)
1489 {
1490 	struct mem_cgroup *victim = NULL;
1491 	int total = 0;
1492 	int loop = 0;
1493 	unsigned long excess;
1494 	unsigned long nr_scanned;
1495 	struct mem_cgroup_reclaim_cookie reclaim = {
1496 		.pgdat = pgdat,
1497 		.priority = 0,
1498 	};
1499 
1500 	excess = soft_limit_excess(root_memcg);
1501 
1502 	while (1) {
1503 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1504 		if (!victim) {
1505 			loop++;
1506 			if (loop >= 2) {
1507 				/*
1508 				 * If we have not been able to reclaim
1509 				 * anything, it might because there are
1510 				 * no reclaimable pages under this hierarchy
1511 				 */
1512 				if (!total)
1513 					break;
1514 				/*
1515 				 * We want to do more targeted reclaim.
1516 				 * excess >> 2 is not to excessive so as to
1517 				 * reclaim too much, nor too less that we keep
1518 				 * coming back to reclaim from this cgroup
1519 				 */
1520 				if (total >= (excess >> 2) ||
1521 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1522 					break;
1523 			}
1524 			continue;
1525 		}
1526 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1527 					pgdat, &nr_scanned);
1528 		*total_scanned += nr_scanned;
1529 		if (!soft_limit_excess(root_memcg))
1530 			break;
1531 	}
1532 	mem_cgroup_iter_break(root_memcg, victim);
1533 	return total;
1534 }
1535 
1536 #ifdef CONFIG_LOCKDEP
1537 static struct lockdep_map memcg_oom_lock_dep_map = {
1538 	.name = "memcg_oom_lock",
1539 };
1540 #endif
1541 
1542 static DEFINE_SPINLOCK(memcg_oom_lock);
1543 
1544 /*
1545  * Check OOM-Killer is already running under our hierarchy.
1546  * If someone is running, return false.
1547  */
1548 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1549 {
1550 	struct mem_cgroup *iter, *failed = NULL;
1551 
1552 	spin_lock(&memcg_oom_lock);
1553 
1554 	for_each_mem_cgroup_tree(iter, memcg) {
1555 		if (iter->oom_lock) {
1556 			/*
1557 			 * this subtree of our hierarchy is already locked
1558 			 * so we cannot give a lock.
1559 			 */
1560 			failed = iter;
1561 			mem_cgroup_iter_break(memcg, iter);
1562 			break;
1563 		} else
1564 			iter->oom_lock = true;
1565 	}
1566 
1567 	if (failed) {
1568 		/*
1569 		 * OK, we failed to lock the whole subtree so we have
1570 		 * to clean up what we set up to the failing subtree
1571 		 */
1572 		for_each_mem_cgroup_tree(iter, memcg) {
1573 			if (iter == failed) {
1574 				mem_cgroup_iter_break(memcg, iter);
1575 				break;
1576 			}
1577 			iter->oom_lock = false;
1578 		}
1579 	} else
1580 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1581 
1582 	spin_unlock(&memcg_oom_lock);
1583 
1584 	return !failed;
1585 }
1586 
1587 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1588 {
1589 	struct mem_cgroup *iter;
1590 
1591 	spin_lock(&memcg_oom_lock);
1592 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1593 	for_each_mem_cgroup_tree(iter, memcg)
1594 		iter->oom_lock = false;
1595 	spin_unlock(&memcg_oom_lock);
1596 }
1597 
1598 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1599 {
1600 	struct mem_cgroup *iter;
1601 
1602 	spin_lock(&memcg_oom_lock);
1603 	for_each_mem_cgroup_tree(iter, memcg)
1604 		iter->under_oom++;
1605 	spin_unlock(&memcg_oom_lock);
1606 }
1607 
1608 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1609 {
1610 	struct mem_cgroup *iter;
1611 
1612 	/*
1613 	 * When a new child is created while the hierarchy is under oom,
1614 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1615 	 */
1616 	spin_lock(&memcg_oom_lock);
1617 	for_each_mem_cgroup_tree(iter, memcg)
1618 		if (iter->under_oom > 0)
1619 			iter->under_oom--;
1620 	spin_unlock(&memcg_oom_lock);
1621 }
1622 
1623 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1624 
1625 struct oom_wait_info {
1626 	struct mem_cgroup *memcg;
1627 	wait_queue_entry_t	wait;
1628 };
1629 
1630 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1631 	unsigned mode, int sync, void *arg)
1632 {
1633 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1634 	struct mem_cgroup *oom_wait_memcg;
1635 	struct oom_wait_info *oom_wait_info;
1636 
1637 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1638 	oom_wait_memcg = oom_wait_info->memcg;
1639 
1640 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1641 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1642 		return 0;
1643 	return autoremove_wake_function(wait, mode, sync, arg);
1644 }
1645 
1646 static void memcg_oom_recover(struct mem_cgroup *memcg)
1647 {
1648 	/*
1649 	 * For the following lockless ->under_oom test, the only required
1650 	 * guarantee is that it must see the state asserted by an OOM when
1651 	 * this function is called as a result of userland actions
1652 	 * triggered by the notification of the OOM.  This is trivially
1653 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1654 	 * triggering notification.
1655 	 */
1656 	if (memcg && memcg->under_oom)
1657 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1658 }
1659 
1660 enum oom_status {
1661 	OOM_SUCCESS,
1662 	OOM_FAILED,
1663 	OOM_ASYNC,
1664 	OOM_SKIPPED
1665 };
1666 
1667 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1668 {
1669 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1670 		return OOM_SKIPPED;
1671 
1672 	/*
1673 	 * We are in the middle of the charge context here, so we
1674 	 * don't want to block when potentially sitting on a callstack
1675 	 * that holds all kinds of filesystem and mm locks.
1676 	 *
1677 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1678 	 * handling until the charge can succeed; remember the context and put
1679 	 * the task to sleep at the end of the page fault when all locks are
1680 	 * released.
1681 	 *
1682 	 * On the other hand, in-kernel OOM killer allows for an async victim
1683 	 * memory reclaim (oom_reaper) and that means that we are not solely
1684 	 * relying on the oom victim to make a forward progress and we can
1685 	 * invoke the oom killer here.
1686 	 *
1687 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1688 	 * victim and then we have to bail out from the charge path.
1689 	 */
1690 	if (memcg->oom_kill_disable) {
1691 		if (!current->in_user_fault)
1692 			return OOM_SKIPPED;
1693 		css_get(&memcg->css);
1694 		current->memcg_in_oom = memcg;
1695 		current->memcg_oom_gfp_mask = mask;
1696 		current->memcg_oom_order = order;
1697 
1698 		return OOM_ASYNC;
1699 	}
1700 
1701 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1702 		return OOM_SUCCESS;
1703 
1704 	return OOM_FAILED;
1705 }
1706 
1707 /**
1708  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1709  * @handle: actually kill/wait or just clean up the OOM state
1710  *
1711  * This has to be called at the end of a page fault if the memcg OOM
1712  * handler was enabled.
1713  *
1714  * Memcg supports userspace OOM handling where failed allocations must
1715  * sleep on a waitqueue until the userspace task resolves the
1716  * situation.  Sleeping directly in the charge context with all kinds
1717  * of locks held is not a good idea, instead we remember an OOM state
1718  * in the task and mem_cgroup_oom_synchronize() has to be called at
1719  * the end of the page fault to complete the OOM handling.
1720  *
1721  * Returns %true if an ongoing memcg OOM situation was detected and
1722  * completed, %false otherwise.
1723  */
1724 bool mem_cgroup_oom_synchronize(bool handle)
1725 {
1726 	struct mem_cgroup *memcg = current->memcg_in_oom;
1727 	struct oom_wait_info owait;
1728 	bool locked;
1729 
1730 	/* OOM is global, do not handle */
1731 	if (!memcg)
1732 		return false;
1733 
1734 	if (!handle)
1735 		goto cleanup;
1736 
1737 	owait.memcg = memcg;
1738 	owait.wait.flags = 0;
1739 	owait.wait.func = memcg_oom_wake_function;
1740 	owait.wait.private = current;
1741 	INIT_LIST_HEAD(&owait.wait.entry);
1742 
1743 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1744 	mem_cgroup_mark_under_oom(memcg);
1745 
1746 	locked = mem_cgroup_oom_trylock(memcg);
1747 
1748 	if (locked)
1749 		mem_cgroup_oom_notify(memcg);
1750 
1751 	if (locked && !memcg->oom_kill_disable) {
1752 		mem_cgroup_unmark_under_oom(memcg);
1753 		finish_wait(&memcg_oom_waitq, &owait.wait);
1754 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1755 					 current->memcg_oom_order);
1756 	} else {
1757 		schedule();
1758 		mem_cgroup_unmark_under_oom(memcg);
1759 		finish_wait(&memcg_oom_waitq, &owait.wait);
1760 	}
1761 
1762 	if (locked) {
1763 		mem_cgroup_oom_unlock(memcg);
1764 		/*
1765 		 * There is no guarantee that an OOM-lock contender
1766 		 * sees the wakeups triggered by the OOM kill
1767 		 * uncharges.  Wake any sleepers explicitely.
1768 		 */
1769 		memcg_oom_recover(memcg);
1770 	}
1771 cleanup:
1772 	current->memcg_in_oom = NULL;
1773 	css_put(&memcg->css);
1774 	return true;
1775 }
1776 
1777 /**
1778  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1779  * @victim: task to be killed by the OOM killer
1780  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1781  *
1782  * Returns a pointer to a memory cgroup, which has to be cleaned up
1783  * by killing all belonging OOM-killable tasks.
1784  *
1785  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1786  */
1787 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1788 					    struct mem_cgroup *oom_domain)
1789 {
1790 	struct mem_cgroup *oom_group = NULL;
1791 	struct mem_cgroup *memcg;
1792 
1793 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1794 		return NULL;
1795 
1796 	if (!oom_domain)
1797 		oom_domain = root_mem_cgroup;
1798 
1799 	rcu_read_lock();
1800 
1801 	memcg = mem_cgroup_from_task(victim);
1802 	if (memcg == root_mem_cgroup)
1803 		goto out;
1804 
1805 	/*
1806 	 * Traverse the memory cgroup hierarchy from the victim task's
1807 	 * cgroup up to the OOMing cgroup (or root) to find the
1808 	 * highest-level memory cgroup with oom.group set.
1809 	 */
1810 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1811 		if (memcg->oom_group)
1812 			oom_group = memcg;
1813 
1814 		if (memcg == oom_domain)
1815 			break;
1816 	}
1817 
1818 	if (oom_group)
1819 		css_get(&oom_group->css);
1820 out:
1821 	rcu_read_unlock();
1822 
1823 	return oom_group;
1824 }
1825 
1826 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1827 {
1828 	pr_info("Tasks in ");
1829 	pr_cont_cgroup_path(memcg->css.cgroup);
1830 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1831 }
1832 
1833 /**
1834  * lock_page_memcg - lock a page->mem_cgroup binding
1835  * @page: the page
1836  *
1837  * This function protects unlocked LRU pages from being moved to
1838  * another cgroup.
1839  *
1840  * It ensures lifetime of the returned memcg. Caller is responsible
1841  * for the lifetime of the page; __unlock_page_memcg() is available
1842  * when @page might get freed inside the locked section.
1843  */
1844 struct mem_cgroup *lock_page_memcg(struct page *page)
1845 {
1846 	struct mem_cgroup *memcg;
1847 	unsigned long flags;
1848 
1849 	/*
1850 	 * The RCU lock is held throughout the transaction.  The fast
1851 	 * path can get away without acquiring the memcg->move_lock
1852 	 * because page moving starts with an RCU grace period.
1853 	 *
1854 	 * The RCU lock also protects the memcg from being freed when
1855 	 * the page state that is going to change is the only thing
1856 	 * preventing the page itself from being freed. E.g. writeback
1857 	 * doesn't hold a page reference and relies on PG_writeback to
1858 	 * keep off truncation, migration and so forth.
1859          */
1860 	rcu_read_lock();
1861 
1862 	if (mem_cgroup_disabled())
1863 		return NULL;
1864 again:
1865 	memcg = page->mem_cgroup;
1866 	if (unlikely(!memcg))
1867 		return NULL;
1868 
1869 	if (atomic_read(&memcg->moving_account) <= 0)
1870 		return memcg;
1871 
1872 	spin_lock_irqsave(&memcg->move_lock, flags);
1873 	if (memcg != page->mem_cgroup) {
1874 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1875 		goto again;
1876 	}
1877 
1878 	/*
1879 	 * When charge migration first begins, we can have locked and
1880 	 * unlocked page stat updates happening concurrently.  Track
1881 	 * the task who has the lock for unlock_page_memcg().
1882 	 */
1883 	memcg->move_lock_task = current;
1884 	memcg->move_lock_flags = flags;
1885 
1886 	return memcg;
1887 }
1888 EXPORT_SYMBOL(lock_page_memcg);
1889 
1890 /**
1891  * __unlock_page_memcg - unlock and unpin a memcg
1892  * @memcg: the memcg
1893  *
1894  * Unlock and unpin a memcg returned by lock_page_memcg().
1895  */
1896 void __unlock_page_memcg(struct mem_cgroup *memcg)
1897 {
1898 	if (memcg && memcg->move_lock_task == current) {
1899 		unsigned long flags = memcg->move_lock_flags;
1900 
1901 		memcg->move_lock_task = NULL;
1902 		memcg->move_lock_flags = 0;
1903 
1904 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1905 	}
1906 
1907 	rcu_read_unlock();
1908 }
1909 
1910 /**
1911  * unlock_page_memcg - unlock a page->mem_cgroup binding
1912  * @page: the page
1913  */
1914 void unlock_page_memcg(struct page *page)
1915 {
1916 	__unlock_page_memcg(page->mem_cgroup);
1917 }
1918 EXPORT_SYMBOL(unlock_page_memcg);
1919 
1920 struct memcg_stock_pcp {
1921 	struct mem_cgroup *cached; /* this never be root cgroup */
1922 	unsigned int nr_pages;
1923 	struct work_struct work;
1924 	unsigned long flags;
1925 #define FLUSHING_CACHED_CHARGE	0
1926 };
1927 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1928 static DEFINE_MUTEX(percpu_charge_mutex);
1929 
1930 /**
1931  * consume_stock: Try to consume stocked charge on this cpu.
1932  * @memcg: memcg to consume from.
1933  * @nr_pages: how many pages to charge.
1934  *
1935  * The charges will only happen if @memcg matches the current cpu's memcg
1936  * stock, and at least @nr_pages are available in that stock.  Failure to
1937  * service an allocation will refill the stock.
1938  *
1939  * returns true if successful, false otherwise.
1940  */
1941 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1942 {
1943 	struct memcg_stock_pcp *stock;
1944 	unsigned long flags;
1945 	bool ret = false;
1946 
1947 	if (nr_pages > MEMCG_CHARGE_BATCH)
1948 		return ret;
1949 
1950 	local_irq_save(flags);
1951 
1952 	stock = this_cpu_ptr(&memcg_stock);
1953 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1954 		stock->nr_pages -= nr_pages;
1955 		ret = true;
1956 	}
1957 
1958 	local_irq_restore(flags);
1959 
1960 	return ret;
1961 }
1962 
1963 /*
1964  * Returns stocks cached in percpu and reset cached information.
1965  */
1966 static void drain_stock(struct memcg_stock_pcp *stock)
1967 {
1968 	struct mem_cgroup *old = stock->cached;
1969 
1970 	if (stock->nr_pages) {
1971 		page_counter_uncharge(&old->memory, stock->nr_pages);
1972 		if (do_memsw_account())
1973 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1974 		css_put_many(&old->css, stock->nr_pages);
1975 		stock->nr_pages = 0;
1976 	}
1977 	stock->cached = NULL;
1978 }
1979 
1980 static void drain_local_stock(struct work_struct *dummy)
1981 {
1982 	struct memcg_stock_pcp *stock;
1983 	unsigned long flags;
1984 
1985 	/*
1986 	 * The only protection from memory hotplug vs. drain_stock races is
1987 	 * that we always operate on local CPU stock here with IRQ disabled
1988 	 */
1989 	local_irq_save(flags);
1990 
1991 	stock = this_cpu_ptr(&memcg_stock);
1992 	drain_stock(stock);
1993 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1994 
1995 	local_irq_restore(flags);
1996 }
1997 
1998 /*
1999  * Cache charges(val) to local per_cpu area.
2000  * This will be consumed by consume_stock() function, later.
2001  */
2002 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2003 {
2004 	struct memcg_stock_pcp *stock;
2005 	unsigned long flags;
2006 
2007 	local_irq_save(flags);
2008 
2009 	stock = this_cpu_ptr(&memcg_stock);
2010 	if (stock->cached != memcg) { /* reset if necessary */
2011 		drain_stock(stock);
2012 		stock->cached = memcg;
2013 	}
2014 	stock->nr_pages += nr_pages;
2015 
2016 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2017 		drain_stock(stock);
2018 
2019 	local_irq_restore(flags);
2020 }
2021 
2022 /*
2023  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2024  * of the hierarchy under it.
2025  */
2026 static void drain_all_stock(struct mem_cgroup *root_memcg)
2027 {
2028 	int cpu, curcpu;
2029 
2030 	/* If someone's already draining, avoid adding running more workers. */
2031 	if (!mutex_trylock(&percpu_charge_mutex))
2032 		return;
2033 	/*
2034 	 * Notify other cpus that system-wide "drain" is running
2035 	 * We do not care about races with the cpu hotplug because cpu down
2036 	 * as well as workers from this path always operate on the local
2037 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2038 	 */
2039 	curcpu = get_cpu();
2040 	for_each_online_cpu(cpu) {
2041 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2042 		struct mem_cgroup *memcg;
2043 
2044 		memcg = stock->cached;
2045 		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2046 			continue;
2047 		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2048 			css_put(&memcg->css);
2049 			continue;
2050 		}
2051 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2052 			if (cpu == curcpu)
2053 				drain_local_stock(&stock->work);
2054 			else
2055 				schedule_work_on(cpu, &stock->work);
2056 		}
2057 		css_put(&memcg->css);
2058 	}
2059 	put_cpu();
2060 	mutex_unlock(&percpu_charge_mutex);
2061 }
2062 
2063 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2064 {
2065 	struct memcg_stock_pcp *stock;
2066 	struct mem_cgroup *memcg;
2067 
2068 	stock = &per_cpu(memcg_stock, cpu);
2069 	drain_stock(stock);
2070 
2071 	for_each_mem_cgroup(memcg) {
2072 		int i;
2073 
2074 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2075 			int nid;
2076 			long x;
2077 
2078 			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2079 			if (x)
2080 				atomic_long_add(x, &memcg->stat[i]);
2081 
2082 			if (i >= NR_VM_NODE_STAT_ITEMS)
2083 				continue;
2084 
2085 			for_each_node(nid) {
2086 				struct mem_cgroup_per_node *pn;
2087 
2088 				pn = mem_cgroup_nodeinfo(memcg, nid);
2089 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2090 				if (x)
2091 					atomic_long_add(x, &pn->lruvec_stat[i]);
2092 			}
2093 		}
2094 
2095 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2096 			long x;
2097 
2098 			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2099 			if (x)
2100 				atomic_long_add(x, &memcg->events[i]);
2101 		}
2102 	}
2103 
2104 	return 0;
2105 }
2106 
2107 static void reclaim_high(struct mem_cgroup *memcg,
2108 			 unsigned int nr_pages,
2109 			 gfp_t gfp_mask)
2110 {
2111 	do {
2112 		if (page_counter_read(&memcg->memory) <= memcg->high)
2113 			continue;
2114 		memcg_memory_event(memcg, MEMCG_HIGH);
2115 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2116 	} while ((memcg = parent_mem_cgroup(memcg)));
2117 }
2118 
2119 static void high_work_func(struct work_struct *work)
2120 {
2121 	struct mem_cgroup *memcg;
2122 
2123 	memcg = container_of(work, struct mem_cgroup, high_work);
2124 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2125 }
2126 
2127 /*
2128  * Scheduled by try_charge() to be executed from the userland return path
2129  * and reclaims memory over the high limit.
2130  */
2131 void mem_cgroup_handle_over_high(void)
2132 {
2133 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2134 	struct mem_cgroup *memcg;
2135 
2136 	if (likely(!nr_pages))
2137 		return;
2138 
2139 	memcg = get_mem_cgroup_from_mm(current->mm);
2140 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2141 	css_put(&memcg->css);
2142 	current->memcg_nr_pages_over_high = 0;
2143 }
2144 
2145 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2146 		      unsigned int nr_pages)
2147 {
2148 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2149 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2150 	struct mem_cgroup *mem_over_limit;
2151 	struct page_counter *counter;
2152 	unsigned long nr_reclaimed;
2153 	bool may_swap = true;
2154 	bool drained = false;
2155 	bool oomed = false;
2156 	enum oom_status oom_status;
2157 
2158 	if (mem_cgroup_is_root(memcg))
2159 		return 0;
2160 retry:
2161 	if (consume_stock(memcg, nr_pages))
2162 		return 0;
2163 
2164 	if (!do_memsw_account() ||
2165 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2166 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2167 			goto done_restock;
2168 		if (do_memsw_account())
2169 			page_counter_uncharge(&memcg->memsw, batch);
2170 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2171 	} else {
2172 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2173 		may_swap = false;
2174 	}
2175 
2176 	if (batch > nr_pages) {
2177 		batch = nr_pages;
2178 		goto retry;
2179 	}
2180 
2181 	/*
2182 	 * Unlike in global OOM situations, memcg is not in a physical
2183 	 * memory shortage.  Allow dying and OOM-killed tasks to
2184 	 * bypass the last charges so that they can exit quickly and
2185 	 * free their memory.
2186 	 */
2187 	if (unlikely(tsk_is_oom_victim(current) ||
2188 		     fatal_signal_pending(current) ||
2189 		     current->flags & PF_EXITING))
2190 		goto force;
2191 
2192 	/*
2193 	 * Prevent unbounded recursion when reclaim operations need to
2194 	 * allocate memory. This might exceed the limits temporarily,
2195 	 * but we prefer facilitating memory reclaim and getting back
2196 	 * under the limit over triggering OOM kills in these cases.
2197 	 */
2198 	if (unlikely(current->flags & PF_MEMALLOC))
2199 		goto force;
2200 
2201 	if (unlikely(task_in_memcg_oom(current)))
2202 		goto nomem;
2203 
2204 	if (!gfpflags_allow_blocking(gfp_mask))
2205 		goto nomem;
2206 
2207 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2208 
2209 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2210 						    gfp_mask, may_swap);
2211 
2212 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2213 		goto retry;
2214 
2215 	if (!drained) {
2216 		drain_all_stock(mem_over_limit);
2217 		drained = true;
2218 		goto retry;
2219 	}
2220 
2221 	if (gfp_mask & __GFP_NORETRY)
2222 		goto nomem;
2223 	/*
2224 	 * Even though the limit is exceeded at this point, reclaim
2225 	 * may have been able to free some pages.  Retry the charge
2226 	 * before killing the task.
2227 	 *
2228 	 * Only for regular pages, though: huge pages are rather
2229 	 * unlikely to succeed so close to the limit, and we fall back
2230 	 * to regular pages anyway in case of failure.
2231 	 */
2232 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2233 		goto retry;
2234 	/*
2235 	 * At task move, charge accounts can be doubly counted. So, it's
2236 	 * better to wait until the end of task_move if something is going on.
2237 	 */
2238 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2239 		goto retry;
2240 
2241 	if (nr_retries--)
2242 		goto retry;
2243 
2244 	if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2245 		goto nomem;
2246 
2247 	if (gfp_mask & __GFP_NOFAIL)
2248 		goto force;
2249 
2250 	if (fatal_signal_pending(current))
2251 		goto force;
2252 
2253 	memcg_memory_event(mem_over_limit, MEMCG_OOM);
2254 
2255 	/*
2256 	 * keep retrying as long as the memcg oom killer is able to make
2257 	 * a forward progress or bypass the charge if the oom killer
2258 	 * couldn't make any progress.
2259 	 */
2260 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2261 		       get_order(nr_pages * PAGE_SIZE));
2262 	switch (oom_status) {
2263 	case OOM_SUCCESS:
2264 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2265 		oomed = true;
2266 		goto retry;
2267 	case OOM_FAILED:
2268 		goto force;
2269 	default:
2270 		goto nomem;
2271 	}
2272 nomem:
2273 	if (!(gfp_mask & __GFP_NOFAIL))
2274 		return -ENOMEM;
2275 force:
2276 	/*
2277 	 * The allocation either can't fail or will lead to more memory
2278 	 * being freed very soon.  Allow memory usage go over the limit
2279 	 * temporarily by force charging it.
2280 	 */
2281 	page_counter_charge(&memcg->memory, nr_pages);
2282 	if (do_memsw_account())
2283 		page_counter_charge(&memcg->memsw, nr_pages);
2284 	css_get_many(&memcg->css, nr_pages);
2285 
2286 	return 0;
2287 
2288 done_restock:
2289 	css_get_many(&memcg->css, batch);
2290 	if (batch > nr_pages)
2291 		refill_stock(memcg, batch - nr_pages);
2292 
2293 	/*
2294 	 * If the hierarchy is above the normal consumption range, schedule
2295 	 * reclaim on returning to userland.  We can perform reclaim here
2296 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2297 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2298 	 * not recorded as it most likely matches current's and won't
2299 	 * change in the meantime.  As high limit is checked again before
2300 	 * reclaim, the cost of mismatch is negligible.
2301 	 */
2302 	do {
2303 		if (page_counter_read(&memcg->memory) > memcg->high) {
2304 			/* Don't bother a random interrupted task */
2305 			if (in_interrupt()) {
2306 				schedule_work(&memcg->high_work);
2307 				break;
2308 			}
2309 			current->memcg_nr_pages_over_high += batch;
2310 			set_notify_resume(current);
2311 			break;
2312 		}
2313 	} while ((memcg = parent_mem_cgroup(memcg)));
2314 
2315 	return 0;
2316 }
2317 
2318 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2319 {
2320 	if (mem_cgroup_is_root(memcg))
2321 		return;
2322 
2323 	page_counter_uncharge(&memcg->memory, nr_pages);
2324 	if (do_memsw_account())
2325 		page_counter_uncharge(&memcg->memsw, nr_pages);
2326 
2327 	css_put_many(&memcg->css, nr_pages);
2328 }
2329 
2330 static void lock_page_lru(struct page *page, int *isolated)
2331 {
2332 	struct zone *zone = page_zone(page);
2333 
2334 	spin_lock_irq(zone_lru_lock(zone));
2335 	if (PageLRU(page)) {
2336 		struct lruvec *lruvec;
2337 
2338 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2339 		ClearPageLRU(page);
2340 		del_page_from_lru_list(page, lruvec, page_lru(page));
2341 		*isolated = 1;
2342 	} else
2343 		*isolated = 0;
2344 }
2345 
2346 static void unlock_page_lru(struct page *page, int isolated)
2347 {
2348 	struct zone *zone = page_zone(page);
2349 
2350 	if (isolated) {
2351 		struct lruvec *lruvec;
2352 
2353 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2354 		VM_BUG_ON_PAGE(PageLRU(page), page);
2355 		SetPageLRU(page);
2356 		add_page_to_lru_list(page, lruvec, page_lru(page));
2357 	}
2358 	spin_unlock_irq(zone_lru_lock(zone));
2359 }
2360 
2361 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2362 			  bool lrucare)
2363 {
2364 	int isolated;
2365 
2366 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2367 
2368 	/*
2369 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2370 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2371 	 */
2372 	if (lrucare)
2373 		lock_page_lru(page, &isolated);
2374 
2375 	/*
2376 	 * Nobody should be changing or seriously looking at
2377 	 * page->mem_cgroup at this point:
2378 	 *
2379 	 * - the page is uncharged
2380 	 *
2381 	 * - the page is off-LRU
2382 	 *
2383 	 * - an anonymous fault has exclusive page access, except for
2384 	 *   a locked page table
2385 	 *
2386 	 * - a page cache insertion, a swapin fault, or a migration
2387 	 *   have the page locked
2388 	 */
2389 	page->mem_cgroup = memcg;
2390 
2391 	if (lrucare)
2392 		unlock_page_lru(page, isolated);
2393 }
2394 
2395 #ifdef CONFIG_MEMCG_KMEM
2396 static int memcg_alloc_cache_id(void)
2397 {
2398 	int id, size;
2399 	int err;
2400 
2401 	id = ida_simple_get(&memcg_cache_ida,
2402 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2403 	if (id < 0)
2404 		return id;
2405 
2406 	if (id < memcg_nr_cache_ids)
2407 		return id;
2408 
2409 	/*
2410 	 * There's no space for the new id in memcg_caches arrays,
2411 	 * so we have to grow them.
2412 	 */
2413 	down_write(&memcg_cache_ids_sem);
2414 
2415 	size = 2 * (id + 1);
2416 	if (size < MEMCG_CACHES_MIN_SIZE)
2417 		size = MEMCG_CACHES_MIN_SIZE;
2418 	else if (size > MEMCG_CACHES_MAX_SIZE)
2419 		size = MEMCG_CACHES_MAX_SIZE;
2420 
2421 	err = memcg_update_all_caches(size);
2422 	if (!err)
2423 		err = memcg_update_all_list_lrus(size);
2424 	if (!err)
2425 		memcg_nr_cache_ids = size;
2426 
2427 	up_write(&memcg_cache_ids_sem);
2428 
2429 	if (err) {
2430 		ida_simple_remove(&memcg_cache_ida, id);
2431 		return err;
2432 	}
2433 	return id;
2434 }
2435 
2436 static void memcg_free_cache_id(int id)
2437 {
2438 	ida_simple_remove(&memcg_cache_ida, id);
2439 }
2440 
2441 struct memcg_kmem_cache_create_work {
2442 	struct mem_cgroup *memcg;
2443 	struct kmem_cache *cachep;
2444 	struct work_struct work;
2445 };
2446 
2447 static void memcg_kmem_cache_create_func(struct work_struct *w)
2448 {
2449 	struct memcg_kmem_cache_create_work *cw =
2450 		container_of(w, struct memcg_kmem_cache_create_work, work);
2451 	struct mem_cgroup *memcg = cw->memcg;
2452 	struct kmem_cache *cachep = cw->cachep;
2453 
2454 	memcg_create_kmem_cache(memcg, cachep);
2455 
2456 	css_put(&memcg->css);
2457 	kfree(cw);
2458 }
2459 
2460 /*
2461  * Enqueue the creation of a per-memcg kmem_cache.
2462  */
2463 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2464 					       struct kmem_cache *cachep)
2465 {
2466 	struct memcg_kmem_cache_create_work *cw;
2467 
2468 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2469 	if (!cw)
2470 		return;
2471 
2472 	css_get(&memcg->css);
2473 
2474 	cw->memcg = memcg;
2475 	cw->cachep = cachep;
2476 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2477 
2478 	queue_work(memcg_kmem_cache_wq, &cw->work);
2479 }
2480 
2481 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2482 					     struct kmem_cache *cachep)
2483 {
2484 	/*
2485 	 * We need to stop accounting when we kmalloc, because if the
2486 	 * corresponding kmalloc cache is not yet created, the first allocation
2487 	 * in __memcg_schedule_kmem_cache_create will recurse.
2488 	 *
2489 	 * However, it is better to enclose the whole function. Depending on
2490 	 * the debugging options enabled, INIT_WORK(), for instance, can
2491 	 * trigger an allocation. This too, will make us recurse. Because at
2492 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2493 	 * the safest choice is to do it like this, wrapping the whole function.
2494 	 */
2495 	current->memcg_kmem_skip_account = 1;
2496 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2497 	current->memcg_kmem_skip_account = 0;
2498 }
2499 
2500 static inline bool memcg_kmem_bypass(void)
2501 {
2502 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2503 		return true;
2504 	return false;
2505 }
2506 
2507 /**
2508  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2509  * @cachep: the original global kmem cache
2510  *
2511  * Return the kmem_cache we're supposed to use for a slab allocation.
2512  * We try to use the current memcg's version of the cache.
2513  *
2514  * If the cache does not exist yet, if we are the first user of it, we
2515  * create it asynchronously in a workqueue and let the current allocation
2516  * go through with the original cache.
2517  *
2518  * This function takes a reference to the cache it returns to assure it
2519  * won't get destroyed while we are working with it. Once the caller is
2520  * done with it, memcg_kmem_put_cache() must be called to release the
2521  * reference.
2522  */
2523 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2524 {
2525 	struct mem_cgroup *memcg;
2526 	struct kmem_cache *memcg_cachep;
2527 	int kmemcg_id;
2528 
2529 	VM_BUG_ON(!is_root_cache(cachep));
2530 
2531 	if (memcg_kmem_bypass())
2532 		return cachep;
2533 
2534 	if (current->memcg_kmem_skip_account)
2535 		return cachep;
2536 
2537 	memcg = get_mem_cgroup_from_current();
2538 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2539 	if (kmemcg_id < 0)
2540 		goto out;
2541 
2542 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2543 	if (likely(memcg_cachep))
2544 		return memcg_cachep;
2545 
2546 	/*
2547 	 * If we are in a safe context (can wait, and not in interrupt
2548 	 * context), we could be be predictable and return right away.
2549 	 * This would guarantee that the allocation being performed
2550 	 * already belongs in the new cache.
2551 	 *
2552 	 * However, there are some clashes that can arrive from locking.
2553 	 * For instance, because we acquire the slab_mutex while doing
2554 	 * memcg_create_kmem_cache, this means no further allocation
2555 	 * could happen with the slab_mutex held. So it's better to
2556 	 * defer everything.
2557 	 */
2558 	memcg_schedule_kmem_cache_create(memcg, cachep);
2559 out:
2560 	css_put(&memcg->css);
2561 	return cachep;
2562 }
2563 
2564 /**
2565  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2566  * @cachep: the cache returned by memcg_kmem_get_cache
2567  */
2568 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2569 {
2570 	if (!is_root_cache(cachep))
2571 		css_put(&cachep->memcg_params.memcg->css);
2572 }
2573 
2574 /**
2575  * memcg_kmem_charge_memcg: charge a kmem page
2576  * @page: page to charge
2577  * @gfp: reclaim mode
2578  * @order: allocation order
2579  * @memcg: memory cgroup to charge
2580  *
2581  * Returns 0 on success, an error code on failure.
2582  */
2583 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2584 			    struct mem_cgroup *memcg)
2585 {
2586 	unsigned int nr_pages = 1 << order;
2587 	struct page_counter *counter;
2588 	int ret;
2589 
2590 	ret = try_charge(memcg, gfp, nr_pages);
2591 	if (ret)
2592 		return ret;
2593 
2594 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2595 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2596 		cancel_charge(memcg, nr_pages);
2597 		return -ENOMEM;
2598 	}
2599 
2600 	page->mem_cgroup = memcg;
2601 
2602 	return 0;
2603 }
2604 
2605 /**
2606  * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2607  * @page: page to charge
2608  * @gfp: reclaim mode
2609  * @order: allocation order
2610  *
2611  * Returns 0 on success, an error code on failure.
2612  */
2613 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2614 {
2615 	struct mem_cgroup *memcg;
2616 	int ret = 0;
2617 
2618 	if (memcg_kmem_bypass())
2619 		return 0;
2620 
2621 	memcg = get_mem_cgroup_from_current();
2622 	if (!mem_cgroup_is_root(memcg)) {
2623 		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2624 		if (!ret)
2625 			__SetPageKmemcg(page);
2626 	}
2627 	css_put(&memcg->css);
2628 	return ret;
2629 }
2630 /**
2631  * memcg_kmem_uncharge: uncharge a kmem page
2632  * @page: page to uncharge
2633  * @order: allocation order
2634  */
2635 void memcg_kmem_uncharge(struct page *page, int order)
2636 {
2637 	struct mem_cgroup *memcg = page->mem_cgroup;
2638 	unsigned int nr_pages = 1 << order;
2639 
2640 	if (!memcg)
2641 		return;
2642 
2643 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2644 
2645 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2646 		page_counter_uncharge(&memcg->kmem, nr_pages);
2647 
2648 	page_counter_uncharge(&memcg->memory, nr_pages);
2649 	if (do_memsw_account())
2650 		page_counter_uncharge(&memcg->memsw, nr_pages);
2651 
2652 	page->mem_cgroup = NULL;
2653 
2654 	/* slab pages do not have PageKmemcg flag set */
2655 	if (PageKmemcg(page))
2656 		__ClearPageKmemcg(page);
2657 
2658 	css_put_many(&memcg->css, nr_pages);
2659 }
2660 #endif /* CONFIG_MEMCG_KMEM */
2661 
2662 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2663 
2664 /*
2665  * Because tail pages are not marked as "used", set it. We're under
2666  * zone_lru_lock and migration entries setup in all page mappings.
2667  */
2668 void mem_cgroup_split_huge_fixup(struct page *head)
2669 {
2670 	int i;
2671 
2672 	if (mem_cgroup_disabled())
2673 		return;
2674 
2675 	for (i = 1; i < HPAGE_PMD_NR; i++)
2676 		head[i].mem_cgroup = head->mem_cgroup;
2677 
2678 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2679 }
2680 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2681 
2682 #ifdef CONFIG_MEMCG_SWAP
2683 /**
2684  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2685  * @entry: swap entry to be moved
2686  * @from:  mem_cgroup which the entry is moved from
2687  * @to:  mem_cgroup which the entry is moved to
2688  *
2689  * It succeeds only when the swap_cgroup's record for this entry is the same
2690  * as the mem_cgroup's id of @from.
2691  *
2692  * Returns 0 on success, -EINVAL on failure.
2693  *
2694  * The caller must have charged to @to, IOW, called page_counter_charge() about
2695  * both res and memsw, and called css_get().
2696  */
2697 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2698 				struct mem_cgroup *from, struct mem_cgroup *to)
2699 {
2700 	unsigned short old_id, new_id;
2701 
2702 	old_id = mem_cgroup_id(from);
2703 	new_id = mem_cgroup_id(to);
2704 
2705 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2706 		mod_memcg_state(from, MEMCG_SWAP, -1);
2707 		mod_memcg_state(to, MEMCG_SWAP, 1);
2708 		return 0;
2709 	}
2710 	return -EINVAL;
2711 }
2712 #else
2713 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2714 				struct mem_cgroup *from, struct mem_cgroup *to)
2715 {
2716 	return -EINVAL;
2717 }
2718 #endif
2719 
2720 static DEFINE_MUTEX(memcg_max_mutex);
2721 
2722 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2723 				 unsigned long max, bool memsw)
2724 {
2725 	bool enlarge = false;
2726 	bool drained = false;
2727 	int ret;
2728 	bool limits_invariant;
2729 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2730 
2731 	do {
2732 		if (signal_pending(current)) {
2733 			ret = -EINTR;
2734 			break;
2735 		}
2736 
2737 		mutex_lock(&memcg_max_mutex);
2738 		/*
2739 		 * Make sure that the new limit (memsw or memory limit) doesn't
2740 		 * break our basic invariant rule memory.max <= memsw.max.
2741 		 */
2742 		limits_invariant = memsw ? max >= memcg->memory.max :
2743 					   max <= memcg->memsw.max;
2744 		if (!limits_invariant) {
2745 			mutex_unlock(&memcg_max_mutex);
2746 			ret = -EINVAL;
2747 			break;
2748 		}
2749 		if (max > counter->max)
2750 			enlarge = true;
2751 		ret = page_counter_set_max(counter, max);
2752 		mutex_unlock(&memcg_max_mutex);
2753 
2754 		if (!ret)
2755 			break;
2756 
2757 		if (!drained) {
2758 			drain_all_stock(memcg);
2759 			drained = true;
2760 			continue;
2761 		}
2762 
2763 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
2764 					GFP_KERNEL, !memsw)) {
2765 			ret = -EBUSY;
2766 			break;
2767 		}
2768 	} while (true);
2769 
2770 	if (!ret && enlarge)
2771 		memcg_oom_recover(memcg);
2772 
2773 	return ret;
2774 }
2775 
2776 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2777 					    gfp_t gfp_mask,
2778 					    unsigned long *total_scanned)
2779 {
2780 	unsigned long nr_reclaimed = 0;
2781 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2782 	unsigned long reclaimed;
2783 	int loop = 0;
2784 	struct mem_cgroup_tree_per_node *mctz;
2785 	unsigned long excess;
2786 	unsigned long nr_scanned;
2787 
2788 	if (order > 0)
2789 		return 0;
2790 
2791 	mctz = soft_limit_tree_node(pgdat->node_id);
2792 
2793 	/*
2794 	 * Do not even bother to check the largest node if the root
2795 	 * is empty. Do it lockless to prevent lock bouncing. Races
2796 	 * are acceptable as soft limit is best effort anyway.
2797 	 */
2798 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2799 		return 0;
2800 
2801 	/*
2802 	 * This loop can run a while, specially if mem_cgroup's continuously
2803 	 * keep exceeding their soft limit and putting the system under
2804 	 * pressure
2805 	 */
2806 	do {
2807 		if (next_mz)
2808 			mz = next_mz;
2809 		else
2810 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2811 		if (!mz)
2812 			break;
2813 
2814 		nr_scanned = 0;
2815 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2816 						    gfp_mask, &nr_scanned);
2817 		nr_reclaimed += reclaimed;
2818 		*total_scanned += nr_scanned;
2819 		spin_lock_irq(&mctz->lock);
2820 		__mem_cgroup_remove_exceeded(mz, mctz);
2821 
2822 		/*
2823 		 * If we failed to reclaim anything from this memory cgroup
2824 		 * it is time to move on to the next cgroup
2825 		 */
2826 		next_mz = NULL;
2827 		if (!reclaimed)
2828 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2829 
2830 		excess = soft_limit_excess(mz->memcg);
2831 		/*
2832 		 * One school of thought says that we should not add
2833 		 * back the node to the tree if reclaim returns 0.
2834 		 * But our reclaim could return 0, simply because due
2835 		 * to priority we are exposing a smaller subset of
2836 		 * memory to reclaim from. Consider this as a longer
2837 		 * term TODO.
2838 		 */
2839 		/* If excess == 0, no tree ops */
2840 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2841 		spin_unlock_irq(&mctz->lock);
2842 		css_put(&mz->memcg->css);
2843 		loop++;
2844 		/*
2845 		 * Could not reclaim anything and there are no more
2846 		 * mem cgroups to try or we seem to be looping without
2847 		 * reclaiming anything.
2848 		 */
2849 		if (!nr_reclaimed &&
2850 			(next_mz == NULL ||
2851 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2852 			break;
2853 	} while (!nr_reclaimed);
2854 	if (next_mz)
2855 		css_put(&next_mz->memcg->css);
2856 	return nr_reclaimed;
2857 }
2858 
2859 /*
2860  * Test whether @memcg has children, dead or alive.  Note that this
2861  * function doesn't care whether @memcg has use_hierarchy enabled and
2862  * returns %true if there are child csses according to the cgroup
2863  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2864  */
2865 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2866 {
2867 	bool ret;
2868 
2869 	rcu_read_lock();
2870 	ret = css_next_child(NULL, &memcg->css);
2871 	rcu_read_unlock();
2872 	return ret;
2873 }
2874 
2875 /*
2876  * Reclaims as many pages from the given memcg as possible.
2877  *
2878  * Caller is responsible for holding css reference for memcg.
2879  */
2880 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2881 {
2882 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2883 
2884 	/* we call try-to-free pages for make this cgroup empty */
2885 	lru_add_drain_all();
2886 
2887 	drain_all_stock(memcg);
2888 
2889 	/* try to free all pages in this cgroup */
2890 	while (nr_retries && page_counter_read(&memcg->memory)) {
2891 		int progress;
2892 
2893 		if (signal_pending(current))
2894 			return -EINTR;
2895 
2896 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2897 							GFP_KERNEL, true);
2898 		if (!progress) {
2899 			nr_retries--;
2900 			/* maybe some writeback is necessary */
2901 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2902 		}
2903 
2904 	}
2905 
2906 	return 0;
2907 }
2908 
2909 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2910 					    char *buf, size_t nbytes,
2911 					    loff_t off)
2912 {
2913 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2914 
2915 	if (mem_cgroup_is_root(memcg))
2916 		return -EINVAL;
2917 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2918 }
2919 
2920 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2921 				     struct cftype *cft)
2922 {
2923 	return mem_cgroup_from_css(css)->use_hierarchy;
2924 }
2925 
2926 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2927 				      struct cftype *cft, u64 val)
2928 {
2929 	int retval = 0;
2930 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2931 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2932 
2933 	if (memcg->use_hierarchy == val)
2934 		return 0;
2935 
2936 	/*
2937 	 * If parent's use_hierarchy is set, we can't make any modifications
2938 	 * in the child subtrees. If it is unset, then the change can
2939 	 * occur, provided the current cgroup has no children.
2940 	 *
2941 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2942 	 * set if there are no children.
2943 	 */
2944 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2945 				(val == 1 || val == 0)) {
2946 		if (!memcg_has_children(memcg))
2947 			memcg->use_hierarchy = val;
2948 		else
2949 			retval = -EBUSY;
2950 	} else
2951 		retval = -EINVAL;
2952 
2953 	return retval;
2954 }
2955 
2956 struct accumulated_stats {
2957 	unsigned long stat[MEMCG_NR_STAT];
2958 	unsigned long events[NR_VM_EVENT_ITEMS];
2959 	unsigned long lru_pages[NR_LRU_LISTS];
2960 	const unsigned int *stats_array;
2961 	const unsigned int *events_array;
2962 	int stats_size;
2963 	int events_size;
2964 };
2965 
2966 static void accumulate_memcg_tree(struct mem_cgroup *memcg,
2967 				  struct accumulated_stats *acc)
2968 {
2969 	struct mem_cgroup *mi;
2970 	int i;
2971 
2972 	for_each_mem_cgroup_tree(mi, memcg) {
2973 		for (i = 0; i < acc->stats_size; i++)
2974 			acc->stat[i] += memcg_page_state(mi,
2975 				acc->stats_array ? acc->stats_array[i] : i);
2976 
2977 		for (i = 0; i < acc->events_size; i++)
2978 			acc->events[i] += memcg_sum_events(mi,
2979 				acc->events_array ? acc->events_array[i] : i);
2980 
2981 		for (i = 0; i < NR_LRU_LISTS; i++)
2982 			acc->lru_pages[i] +=
2983 				mem_cgroup_nr_lru_pages(mi, BIT(i));
2984 	}
2985 }
2986 
2987 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2988 {
2989 	unsigned long val = 0;
2990 
2991 	if (mem_cgroup_is_root(memcg)) {
2992 		struct mem_cgroup *iter;
2993 
2994 		for_each_mem_cgroup_tree(iter, memcg) {
2995 			val += memcg_page_state(iter, MEMCG_CACHE);
2996 			val += memcg_page_state(iter, MEMCG_RSS);
2997 			if (swap)
2998 				val += memcg_page_state(iter, MEMCG_SWAP);
2999 		}
3000 	} else {
3001 		if (!swap)
3002 			val = page_counter_read(&memcg->memory);
3003 		else
3004 			val = page_counter_read(&memcg->memsw);
3005 	}
3006 	return val;
3007 }
3008 
3009 enum {
3010 	RES_USAGE,
3011 	RES_LIMIT,
3012 	RES_MAX_USAGE,
3013 	RES_FAILCNT,
3014 	RES_SOFT_LIMIT,
3015 };
3016 
3017 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3018 			       struct cftype *cft)
3019 {
3020 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3021 	struct page_counter *counter;
3022 
3023 	switch (MEMFILE_TYPE(cft->private)) {
3024 	case _MEM:
3025 		counter = &memcg->memory;
3026 		break;
3027 	case _MEMSWAP:
3028 		counter = &memcg->memsw;
3029 		break;
3030 	case _KMEM:
3031 		counter = &memcg->kmem;
3032 		break;
3033 	case _TCP:
3034 		counter = &memcg->tcpmem;
3035 		break;
3036 	default:
3037 		BUG();
3038 	}
3039 
3040 	switch (MEMFILE_ATTR(cft->private)) {
3041 	case RES_USAGE:
3042 		if (counter == &memcg->memory)
3043 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3044 		if (counter == &memcg->memsw)
3045 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3046 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3047 	case RES_LIMIT:
3048 		return (u64)counter->max * PAGE_SIZE;
3049 	case RES_MAX_USAGE:
3050 		return (u64)counter->watermark * PAGE_SIZE;
3051 	case RES_FAILCNT:
3052 		return counter->failcnt;
3053 	case RES_SOFT_LIMIT:
3054 		return (u64)memcg->soft_limit * PAGE_SIZE;
3055 	default:
3056 		BUG();
3057 	}
3058 }
3059 
3060 #ifdef CONFIG_MEMCG_KMEM
3061 static int memcg_online_kmem(struct mem_cgroup *memcg)
3062 {
3063 	int memcg_id;
3064 
3065 	if (cgroup_memory_nokmem)
3066 		return 0;
3067 
3068 	BUG_ON(memcg->kmemcg_id >= 0);
3069 	BUG_ON(memcg->kmem_state);
3070 
3071 	memcg_id = memcg_alloc_cache_id();
3072 	if (memcg_id < 0)
3073 		return memcg_id;
3074 
3075 	static_branch_inc(&memcg_kmem_enabled_key);
3076 	/*
3077 	 * A memory cgroup is considered kmem-online as soon as it gets
3078 	 * kmemcg_id. Setting the id after enabling static branching will
3079 	 * guarantee no one starts accounting before all call sites are
3080 	 * patched.
3081 	 */
3082 	memcg->kmemcg_id = memcg_id;
3083 	memcg->kmem_state = KMEM_ONLINE;
3084 	INIT_LIST_HEAD(&memcg->kmem_caches);
3085 
3086 	return 0;
3087 }
3088 
3089 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3090 {
3091 	struct cgroup_subsys_state *css;
3092 	struct mem_cgroup *parent, *child;
3093 	int kmemcg_id;
3094 
3095 	if (memcg->kmem_state != KMEM_ONLINE)
3096 		return;
3097 	/*
3098 	 * Clear the online state before clearing memcg_caches array
3099 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3100 	 * guarantees that no cache will be created for this cgroup
3101 	 * after we are done (see memcg_create_kmem_cache()).
3102 	 */
3103 	memcg->kmem_state = KMEM_ALLOCATED;
3104 
3105 	memcg_deactivate_kmem_caches(memcg);
3106 
3107 	kmemcg_id = memcg->kmemcg_id;
3108 	BUG_ON(kmemcg_id < 0);
3109 
3110 	parent = parent_mem_cgroup(memcg);
3111 	if (!parent)
3112 		parent = root_mem_cgroup;
3113 
3114 	/*
3115 	 * Change kmemcg_id of this cgroup and all its descendants to the
3116 	 * parent's id, and then move all entries from this cgroup's list_lrus
3117 	 * to ones of the parent. After we have finished, all list_lrus
3118 	 * corresponding to this cgroup are guaranteed to remain empty. The
3119 	 * ordering is imposed by list_lru_node->lock taken by
3120 	 * memcg_drain_all_list_lrus().
3121 	 */
3122 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3123 	css_for_each_descendant_pre(css, &memcg->css) {
3124 		child = mem_cgroup_from_css(css);
3125 		BUG_ON(child->kmemcg_id != kmemcg_id);
3126 		child->kmemcg_id = parent->kmemcg_id;
3127 		if (!memcg->use_hierarchy)
3128 			break;
3129 	}
3130 	rcu_read_unlock();
3131 
3132 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3133 
3134 	memcg_free_cache_id(kmemcg_id);
3135 }
3136 
3137 static void memcg_free_kmem(struct mem_cgroup *memcg)
3138 {
3139 	/* css_alloc() failed, offlining didn't happen */
3140 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3141 		memcg_offline_kmem(memcg);
3142 
3143 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3144 		memcg_destroy_kmem_caches(memcg);
3145 		static_branch_dec(&memcg_kmem_enabled_key);
3146 		WARN_ON(page_counter_read(&memcg->kmem));
3147 	}
3148 }
3149 #else
3150 static int memcg_online_kmem(struct mem_cgroup *memcg)
3151 {
3152 	return 0;
3153 }
3154 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3155 {
3156 }
3157 static void memcg_free_kmem(struct mem_cgroup *memcg)
3158 {
3159 }
3160 #endif /* CONFIG_MEMCG_KMEM */
3161 
3162 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3163 				 unsigned long max)
3164 {
3165 	int ret;
3166 
3167 	mutex_lock(&memcg_max_mutex);
3168 	ret = page_counter_set_max(&memcg->kmem, max);
3169 	mutex_unlock(&memcg_max_mutex);
3170 	return ret;
3171 }
3172 
3173 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3174 {
3175 	int ret;
3176 
3177 	mutex_lock(&memcg_max_mutex);
3178 
3179 	ret = page_counter_set_max(&memcg->tcpmem, max);
3180 	if (ret)
3181 		goto out;
3182 
3183 	if (!memcg->tcpmem_active) {
3184 		/*
3185 		 * The active flag needs to be written after the static_key
3186 		 * update. This is what guarantees that the socket activation
3187 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3188 		 * for details, and note that we don't mark any socket as
3189 		 * belonging to this memcg until that flag is up.
3190 		 *
3191 		 * We need to do this, because static_keys will span multiple
3192 		 * sites, but we can't control their order. If we mark a socket
3193 		 * as accounted, but the accounting functions are not patched in
3194 		 * yet, we'll lose accounting.
3195 		 *
3196 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3197 		 * because when this value change, the code to process it is not
3198 		 * patched in yet.
3199 		 */
3200 		static_branch_inc(&memcg_sockets_enabled_key);
3201 		memcg->tcpmem_active = true;
3202 	}
3203 out:
3204 	mutex_unlock(&memcg_max_mutex);
3205 	return ret;
3206 }
3207 
3208 /*
3209  * The user of this function is...
3210  * RES_LIMIT.
3211  */
3212 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3213 				char *buf, size_t nbytes, loff_t off)
3214 {
3215 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3216 	unsigned long nr_pages;
3217 	int ret;
3218 
3219 	buf = strstrip(buf);
3220 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3221 	if (ret)
3222 		return ret;
3223 
3224 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3225 	case RES_LIMIT:
3226 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3227 			ret = -EINVAL;
3228 			break;
3229 		}
3230 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3231 		case _MEM:
3232 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3233 			break;
3234 		case _MEMSWAP:
3235 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3236 			break;
3237 		case _KMEM:
3238 			ret = memcg_update_kmem_max(memcg, nr_pages);
3239 			break;
3240 		case _TCP:
3241 			ret = memcg_update_tcp_max(memcg, nr_pages);
3242 			break;
3243 		}
3244 		break;
3245 	case RES_SOFT_LIMIT:
3246 		memcg->soft_limit = nr_pages;
3247 		ret = 0;
3248 		break;
3249 	}
3250 	return ret ?: nbytes;
3251 }
3252 
3253 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3254 				size_t nbytes, loff_t off)
3255 {
3256 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3257 	struct page_counter *counter;
3258 
3259 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3260 	case _MEM:
3261 		counter = &memcg->memory;
3262 		break;
3263 	case _MEMSWAP:
3264 		counter = &memcg->memsw;
3265 		break;
3266 	case _KMEM:
3267 		counter = &memcg->kmem;
3268 		break;
3269 	case _TCP:
3270 		counter = &memcg->tcpmem;
3271 		break;
3272 	default:
3273 		BUG();
3274 	}
3275 
3276 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3277 	case RES_MAX_USAGE:
3278 		page_counter_reset_watermark(counter);
3279 		break;
3280 	case RES_FAILCNT:
3281 		counter->failcnt = 0;
3282 		break;
3283 	default:
3284 		BUG();
3285 	}
3286 
3287 	return nbytes;
3288 }
3289 
3290 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3291 					struct cftype *cft)
3292 {
3293 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3294 }
3295 
3296 #ifdef CONFIG_MMU
3297 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3298 					struct cftype *cft, u64 val)
3299 {
3300 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3301 
3302 	if (val & ~MOVE_MASK)
3303 		return -EINVAL;
3304 
3305 	/*
3306 	 * No kind of locking is needed in here, because ->can_attach() will
3307 	 * check this value once in the beginning of the process, and then carry
3308 	 * on with stale data. This means that changes to this value will only
3309 	 * affect task migrations starting after the change.
3310 	 */
3311 	memcg->move_charge_at_immigrate = val;
3312 	return 0;
3313 }
3314 #else
3315 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3316 					struct cftype *cft, u64 val)
3317 {
3318 	return -ENOSYS;
3319 }
3320 #endif
3321 
3322 #ifdef CONFIG_NUMA
3323 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3324 {
3325 	struct numa_stat {
3326 		const char *name;
3327 		unsigned int lru_mask;
3328 	};
3329 
3330 	static const struct numa_stat stats[] = {
3331 		{ "total", LRU_ALL },
3332 		{ "file", LRU_ALL_FILE },
3333 		{ "anon", LRU_ALL_ANON },
3334 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3335 	};
3336 	const struct numa_stat *stat;
3337 	int nid;
3338 	unsigned long nr;
3339 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3340 
3341 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3342 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3343 		seq_printf(m, "%s=%lu", stat->name, nr);
3344 		for_each_node_state(nid, N_MEMORY) {
3345 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3346 							  stat->lru_mask);
3347 			seq_printf(m, " N%d=%lu", nid, nr);
3348 		}
3349 		seq_putc(m, '\n');
3350 	}
3351 
3352 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3353 		struct mem_cgroup *iter;
3354 
3355 		nr = 0;
3356 		for_each_mem_cgroup_tree(iter, memcg)
3357 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3358 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3359 		for_each_node_state(nid, N_MEMORY) {
3360 			nr = 0;
3361 			for_each_mem_cgroup_tree(iter, memcg)
3362 				nr += mem_cgroup_node_nr_lru_pages(
3363 					iter, nid, stat->lru_mask);
3364 			seq_printf(m, " N%d=%lu", nid, nr);
3365 		}
3366 		seq_putc(m, '\n');
3367 	}
3368 
3369 	return 0;
3370 }
3371 #endif /* CONFIG_NUMA */
3372 
3373 /* Universal VM events cgroup1 shows, original sort order */
3374 static const unsigned int memcg1_events[] = {
3375 	PGPGIN,
3376 	PGPGOUT,
3377 	PGFAULT,
3378 	PGMAJFAULT,
3379 };
3380 
3381 static const char *const memcg1_event_names[] = {
3382 	"pgpgin",
3383 	"pgpgout",
3384 	"pgfault",
3385 	"pgmajfault",
3386 };
3387 
3388 static int memcg_stat_show(struct seq_file *m, void *v)
3389 {
3390 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3391 	unsigned long memory, memsw;
3392 	struct mem_cgroup *mi;
3393 	unsigned int i;
3394 	struct accumulated_stats acc;
3395 
3396 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3397 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3398 
3399 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3400 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3401 			continue;
3402 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3403 			   memcg_page_state(memcg, memcg1_stats[i]) *
3404 			   PAGE_SIZE);
3405 	}
3406 
3407 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3408 		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3409 			   memcg_sum_events(memcg, memcg1_events[i]));
3410 
3411 	for (i = 0; i < NR_LRU_LISTS; i++)
3412 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3413 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3414 
3415 	/* Hierarchical information */
3416 	memory = memsw = PAGE_COUNTER_MAX;
3417 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3418 		memory = min(memory, mi->memory.max);
3419 		memsw = min(memsw, mi->memsw.max);
3420 	}
3421 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3422 		   (u64)memory * PAGE_SIZE);
3423 	if (do_memsw_account())
3424 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3425 			   (u64)memsw * PAGE_SIZE);
3426 
3427 	memset(&acc, 0, sizeof(acc));
3428 	acc.stats_size = ARRAY_SIZE(memcg1_stats);
3429 	acc.stats_array = memcg1_stats;
3430 	acc.events_size = ARRAY_SIZE(memcg1_events);
3431 	acc.events_array = memcg1_events;
3432 	accumulate_memcg_tree(memcg, &acc);
3433 
3434 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3435 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3436 			continue;
3437 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3438 			   (u64)acc.stat[i] * PAGE_SIZE);
3439 	}
3440 
3441 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3442 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3443 			   (u64)acc.events[i]);
3444 
3445 	for (i = 0; i < NR_LRU_LISTS; i++)
3446 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3447 			   (u64)acc.lru_pages[i] * PAGE_SIZE);
3448 
3449 #ifdef CONFIG_DEBUG_VM
3450 	{
3451 		pg_data_t *pgdat;
3452 		struct mem_cgroup_per_node *mz;
3453 		struct zone_reclaim_stat *rstat;
3454 		unsigned long recent_rotated[2] = {0, 0};
3455 		unsigned long recent_scanned[2] = {0, 0};
3456 
3457 		for_each_online_pgdat(pgdat) {
3458 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3459 			rstat = &mz->lruvec.reclaim_stat;
3460 
3461 			recent_rotated[0] += rstat->recent_rotated[0];
3462 			recent_rotated[1] += rstat->recent_rotated[1];
3463 			recent_scanned[0] += rstat->recent_scanned[0];
3464 			recent_scanned[1] += rstat->recent_scanned[1];
3465 		}
3466 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3467 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3468 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3469 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3470 	}
3471 #endif
3472 
3473 	return 0;
3474 }
3475 
3476 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3477 				      struct cftype *cft)
3478 {
3479 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3480 
3481 	return mem_cgroup_swappiness(memcg);
3482 }
3483 
3484 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3485 				       struct cftype *cft, u64 val)
3486 {
3487 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3488 
3489 	if (val > 100)
3490 		return -EINVAL;
3491 
3492 	if (css->parent)
3493 		memcg->swappiness = val;
3494 	else
3495 		vm_swappiness = val;
3496 
3497 	return 0;
3498 }
3499 
3500 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3501 {
3502 	struct mem_cgroup_threshold_ary *t;
3503 	unsigned long usage;
3504 	int i;
3505 
3506 	rcu_read_lock();
3507 	if (!swap)
3508 		t = rcu_dereference(memcg->thresholds.primary);
3509 	else
3510 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3511 
3512 	if (!t)
3513 		goto unlock;
3514 
3515 	usage = mem_cgroup_usage(memcg, swap);
3516 
3517 	/*
3518 	 * current_threshold points to threshold just below or equal to usage.
3519 	 * If it's not true, a threshold was crossed after last
3520 	 * call of __mem_cgroup_threshold().
3521 	 */
3522 	i = t->current_threshold;
3523 
3524 	/*
3525 	 * Iterate backward over array of thresholds starting from
3526 	 * current_threshold and check if a threshold is crossed.
3527 	 * If none of thresholds below usage is crossed, we read
3528 	 * only one element of the array here.
3529 	 */
3530 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3531 		eventfd_signal(t->entries[i].eventfd, 1);
3532 
3533 	/* i = current_threshold + 1 */
3534 	i++;
3535 
3536 	/*
3537 	 * Iterate forward over array of thresholds starting from
3538 	 * current_threshold+1 and check if a threshold is crossed.
3539 	 * If none of thresholds above usage is crossed, we read
3540 	 * only one element of the array here.
3541 	 */
3542 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3543 		eventfd_signal(t->entries[i].eventfd, 1);
3544 
3545 	/* Update current_threshold */
3546 	t->current_threshold = i - 1;
3547 unlock:
3548 	rcu_read_unlock();
3549 }
3550 
3551 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3552 {
3553 	while (memcg) {
3554 		__mem_cgroup_threshold(memcg, false);
3555 		if (do_memsw_account())
3556 			__mem_cgroup_threshold(memcg, true);
3557 
3558 		memcg = parent_mem_cgroup(memcg);
3559 	}
3560 }
3561 
3562 static int compare_thresholds(const void *a, const void *b)
3563 {
3564 	const struct mem_cgroup_threshold *_a = a;
3565 	const struct mem_cgroup_threshold *_b = b;
3566 
3567 	if (_a->threshold > _b->threshold)
3568 		return 1;
3569 
3570 	if (_a->threshold < _b->threshold)
3571 		return -1;
3572 
3573 	return 0;
3574 }
3575 
3576 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3577 {
3578 	struct mem_cgroup_eventfd_list *ev;
3579 
3580 	spin_lock(&memcg_oom_lock);
3581 
3582 	list_for_each_entry(ev, &memcg->oom_notify, list)
3583 		eventfd_signal(ev->eventfd, 1);
3584 
3585 	spin_unlock(&memcg_oom_lock);
3586 	return 0;
3587 }
3588 
3589 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3590 {
3591 	struct mem_cgroup *iter;
3592 
3593 	for_each_mem_cgroup_tree(iter, memcg)
3594 		mem_cgroup_oom_notify_cb(iter);
3595 }
3596 
3597 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3598 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3599 {
3600 	struct mem_cgroup_thresholds *thresholds;
3601 	struct mem_cgroup_threshold_ary *new;
3602 	unsigned long threshold;
3603 	unsigned long usage;
3604 	int i, size, ret;
3605 
3606 	ret = page_counter_memparse(args, "-1", &threshold);
3607 	if (ret)
3608 		return ret;
3609 
3610 	mutex_lock(&memcg->thresholds_lock);
3611 
3612 	if (type == _MEM) {
3613 		thresholds = &memcg->thresholds;
3614 		usage = mem_cgroup_usage(memcg, false);
3615 	} else if (type == _MEMSWAP) {
3616 		thresholds = &memcg->memsw_thresholds;
3617 		usage = mem_cgroup_usage(memcg, true);
3618 	} else
3619 		BUG();
3620 
3621 	/* Check if a threshold crossed before adding a new one */
3622 	if (thresholds->primary)
3623 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3624 
3625 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3626 
3627 	/* Allocate memory for new array of thresholds */
3628 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3629 			GFP_KERNEL);
3630 	if (!new) {
3631 		ret = -ENOMEM;
3632 		goto unlock;
3633 	}
3634 	new->size = size;
3635 
3636 	/* Copy thresholds (if any) to new array */
3637 	if (thresholds->primary) {
3638 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3639 				sizeof(struct mem_cgroup_threshold));
3640 	}
3641 
3642 	/* Add new threshold */
3643 	new->entries[size - 1].eventfd = eventfd;
3644 	new->entries[size - 1].threshold = threshold;
3645 
3646 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3647 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3648 			compare_thresholds, NULL);
3649 
3650 	/* Find current threshold */
3651 	new->current_threshold = -1;
3652 	for (i = 0; i < size; i++) {
3653 		if (new->entries[i].threshold <= usage) {
3654 			/*
3655 			 * new->current_threshold will not be used until
3656 			 * rcu_assign_pointer(), so it's safe to increment
3657 			 * it here.
3658 			 */
3659 			++new->current_threshold;
3660 		} else
3661 			break;
3662 	}
3663 
3664 	/* Free old spare buffer and save old primary buffer as spare */
3665 	kfree(thresholds->spare);
3666 	thresholds->spare = thresholds->primary;
3667 
3668 	rcu_assign_pointer(thresholds->primary, new);
3669 
3670 	/* To be sure that nobody uses thresholds */
3671 	synchronize_rcu();
3672 
3673 unlock:
3674 	mutex_unlock(&memcg->thresholds_lock);
3675 
3676 	return ret;
3677 }
3678 
3679 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3680 	struct eventfd_ctx *eventfd, const char *args)
3681 {
3682 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3683 }
3684 
3685 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3686 	struct eventfd_ctx *eventfd, const char *args)
3687 {
3688 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3689 }
3690 
3691 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3692 	struct eventfd_ctx *eventfd, enum res_type type)
3693 {
3694 	struct mem_cgroup_thresholds *thresholds;
3695 	struct mem_cgroup_threshold_ary *new;
3696 	unsigned long usage;
3697 	int i, j, size;
3698 
3699 	mutex_lock(&memcg->thresholds_lock);
3700 
3701 	if (type == _MEM) {
3702 		thresholds = &memcg->thresholds;
3703 		usage = mem_cgroup_usage(memcg, false);
3704 	} else if (type == _MEMSWAP) {
3705 		thresholds = &memcg->memsw_thresholds;
3706 		usage = mem_cgroup_usage(memcg, true);
3707 	} else
3708 		BUG();
3709 
3710 	if (!thresholds->primary)
3711 		goto unlock;
3712 
3713 	/* Check if a threshold crossed before removing */
3714 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3715 
3716 	/* Calculate new number of threshold */
3717 	size = 0;
3718 	for (i = 0; i < thresholds->primary->size; i++) {
3719 		if (thresholds->primary->entries[i].eventfd != eventfd)
3720 			size++;
3721 	}
3722 
3723 	new = thresholds->spare;
3724 
3725 	/* Set thresholds array to NULL if we don't have thresholds */
3726 	if (!size) {
3727 		kfree(new);
3728 		new = NULL;
3729 		goto swap_buffers;
3730 	}
3731 
3732 	new->size = size;
3733 
3734 	/* Copy thresholds and find current threshold */
3735 	new->current_threshold = -1;
3736 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3737 		if (thresholds->primary->entries[i].eventfd == eventfd)
3738 			continue;
3739 
3740 		new->entries[j] = thresholds->primary->entries[i];
3741 		if (new->entries[j].threshold <= usage) {
3742 			/*
3743 			 * new->current_threshold will not be used
3744 			 * until rcu_assign_pointer(), so it's safe to increment
3745 			 * it here.
3746 			 */
3747 			++new->current_threshold;
3748 		}
3749 		j++;
3750 	}
3751 
3752 swap_buffers:
3753 	/* Swap primary and spare array */
3754 	thresholds->spare = thresholds->primary;
3755 
3756 	rcu_assign_pointer(thresholds->primary, new);
3757 
3758 	/* To be sure that nobody uses thresholds */
3759 	synchronize_rcu();
3760 
3761 	/* If all events are unregistered, free the spare array */
3762 	if (!new) {
3763 		kfree(thresholds->spare);
3764 		thresholds->spare = NULL;
3765 	}
3766 unlock:
3767 	mutex_unlock(&memcg->thresholds_lock);
3768 }
3769 
3770 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3771 	struct eventfd_ctx *eventfd)
3772 {
3773 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3774 }
3775 
3776 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3777 	struct eventfd_ctx *eventfd)
3778 {
3779 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3780 }
3781 
3782 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3783 	struct eventfd_ctx *eventfd, const char *args)
3784 {
3785 	struct mem_cgroup_eventfd_list *event;
3786 
3787 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3788 	if (!event)
3789 		return -ENOMEM;
3790 
3791 	spin_lock(&memcg_oom_lock);
3792 
3793 	event->eventfd = eventfd;
3794 	list_add(&event->list, &memcg->oom_notify);
3795 
3796 	/* already in OOM ? */
3797 	if (memcg->under_oom)
3798 		eventfd_signal(eventfd, 1);
3799 	spin_unlock(&memcg_oom_lock);
3800 
3801 	return 0;
3802 }
3803 
3804 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3805 	struct eventfd_ctx *eventfd)
3806 {
3807 	struct mem_cgroup_eventfd_list *ev, *tmp;
3808 
3809 	spin_lock(&memcg_oom_lock);
3810 
3811 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3812 		if (ev->eventfd == eventfd) {
3813 			list_del(&ev->list);
3814 			kfree(ev);
3815 		}
3816 	}
3817 
3818 	spin_unlock(&memcg_oom_lock);
3819 }
3820 
3821 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3822 {
3823 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3824 
3825 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3826 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3827 	seq_printf(sf, "oom_kill %lu\n",
3828 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3829 	return 0;
3830 }
3831 
3832 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3833 	struct cftype *cft, u64 val)
3834 {
3835 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3836 
3837 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3838 	if (!css->parent || !((val == 0) || (val == 1)))
3839 		return -EINVAL;
3840 
3841 	memcg->oom_kill_disable = val;
3842 	if (!val)
3843 		memcg_oom_recover(memcg);
3844 
3845 	return 0;
3846 }
3847 
3848 #ifdef CONFIG_CGROUP_WRITEBACK
3849 
3850 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3851 {
3852 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3853 }
3854 
3855 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3856 {
3857 	wb_domain_exit(&memcg->cgwb_domain);
3858 }
3859 
3860 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3861 {
3862 	wb_domain_size_changed(&memcg->cgwb_domain);
3863 }
3864 
3865 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3866 {
3867 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3868 
3869 	if (!memcg->css.parent)
3870 		return NULL;
3871 
3872 	return &memcg->cgwb_domain;
3873 }
3874 
3875 /**
3876  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3877  * @wb: bdi_writeback in question
3878  * @pfilepages: out parameter for number of file pages
3879  * @pheadroom: out parameter for number of allocatable pages according to memcg
3880  * @pdirty: out parameter for number of dirty pages
3881  * @pwriteback: out parameter for number of pages under writeback
3882  *
3883  * Determine the numbers of file, headroom, dirty, and writeback pages in
3884  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3885  * is a bit more involved.
3886  *
3887  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3888  * headroom is calculated as the lowest headroom of itself and the
3889  * ancestors.  Note that this doesn't consider the actual amount of
3890  * available memory in the system.  The caller should further cap
3891  * *@pheadroom accordingly.
3892  */
3893 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3894 			 unsigned long *pheadroom, unsigned long *pdirty,
3895 			 unsigned long *pwriteback)
3896 {
3897 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3898 	struct mem_cgroup *parent;
3899 
3900 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3901 
3902 	/* this should eventually include NR_UNSTABLE_NFS */
3903 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3904 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3905 						     (1 << LRU_ACTIVE_FILE));
3906 	*pheadroom = PAGE_COUNTER_MAX;
3907 
3908 	while ((parent = parent_mem_cgroup(memcg))) {
3909 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
3910 		unsigned long used = page_counter_read(&memcg->memory);
3911 
3912 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3913 		memcg = parent;
3914 	}
3915 }
3916 
3917 #else	/* CONFIG_CGROUP_WRITEBACK */
3918 
3919 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3920 {
3921 	return 0;
3922 }
3923 
3924 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3925 {
3926 }
3927 
3928 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3929 {
3930 }
3931 
3932 #endif	/* CONFIG_CGROUP_WRITEBACK */
3933 
3934 /*
3935  * DO NOT USE IN NEW FILES.
3936  *
3937  * "cgroup.event_control" implementation.
3938  *
3939  * This is way over-engineered.  It tries to support fully configurable
3940  * events for each user.  Such level of flexibility is completely
3941  * unnecessary especially in the light of the planned unified hierarchy.
3942  *
3943  * Please deprecate this and replace with something simpler if at all
3944  * possible.
3945  */
3946 
3947 /*
3948  * Unregister event and free resources.
3949  *
3950  * Gets called from workqueue.
3951  */
3952 static void memcg_event_remove(struct work_struct *work)
3953 {
3954 	struct mem_cgroup_event *event =
3955 		container_of(work, struct mem_cgroup_event, remove);
3956 	struct mem_cgroup *memcg = event->memcg;
3957 
3958 	remove_wait_queue(event->wqh, &event->wait);
3959 
3960 	event->unregister_event(memcg, event->eventfd);
3961 
3962 	/* Notify userspace the event is going away. */
3963 	eventfd_signal(event->eventfd, 1);
3964 
3965 	eventfd_ctx_put(event->eventfd);
3966 	kfree(event);
3967 	css_put(&memcg->css);
3968 }
3969 
3970 /*
3971  * Gets called on EPOLLHUP on eventfd when user closes it.
3972  *
3973  * Called with wqh->lock held and interrupts disabled.
3974  */
3975 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3976 			    int sync, void *key)
3977 {
3978 	struct mem_cgroup_event *event =
3979 		container_of(wait, struct mem_cgroup_event, wait);
3980 	struct mem_cgroup *memcg = event->memcg;
3981 	__poll_t flags = key_to_poll(key);
3982 
3983 	if (flags & EPOLLHUP) {
3984 		/*
3985 		 * If the event has been detached at cgroup removal, we
3986 		 * can simply return knowing the other side will cleanup
3987 		 * for us.
3988 		 *
3989 		 * We can't race against event freeing since the other
3990 		 * side will require wqh->lock via remove_wait_queue(),
3991 		 * which we hold.
3992 		 */
3993 		spin_lock(&memcg->event_list_lock);
3994 		if (!list_empty(&event->list)) {
3995 			list_del_init(&event->list);
3996 			/*
3997 			 * We are in atomic context, but cgroup_event_remove()
3998 			 * may sleep, so we have to call it in workqueue.
3999 			 */
4000 			schedule_work(&event->remove);
4001 		}
4002 		spin_unlock(&memcg->event_list_lock);
4003 	}
4004 
4005 	return 0;
4006 }
4007 
4008 static void memcg_event_ptable_queue_proc(struct file *file,
4009 		wait_queue_head_t *wqh, poll_table *pt)
4010 {
4011 	struct mem_cgroup_event *event =
4012 		container_of(pt, struct mem_cgroup_event, pt);
4013 
4014 	event->wqh = wqh;
4015 	add_wait_queue(wqh, &event->wait);
4016 }
4017 
4018 /*
4019  * DO NOT USE IN NEW FILES.
4020  *
4021  * Parse input and register new cgroup event handler.
4022  *
4023  * Input must be in format '<event_fd> <control_fd> <args>'.
4024  * Interpretation of args is defined by control file implementation.
4025  */
4026 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4027 					 char *buf, size_t nbytes, loff_t off)
4028 {
4029 	struct cgroup_subsys_state *css = of_css(of);
4030 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4031 	struct mem_cgroup_event *event;
4032 	struct cgroup_subsys_state *cfile_css;
4033 	unsigned int efd, cfd;
4034 	struct fd efile;
4035 	struct fd cfile;
4036 	const char *name;
4037 	char *endp;
4038 	int ret;
4039 
4040 	buf = strstrip(buf);
4041 
4042 	efd = simple_strtoul(buf, &endp, 10);
4043 	if (*endp != ' ')
4044 		return -EINVAL;
4045 	buf = endp + 1;
4046 
4047 	cfd = simple_strtoul(buf, &endp, 10);
4048 	if ((*endp != ' ') && (*endp != '\0'))
4049 		return -EINVAL;
4050 	buf = endp + 1;
4051 
4052 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4053 	if (!event)
4054 		return -ENOMEM;
4055 
4056 	event->memcg = memcg;
4057 	INIT_LIST_HEAD(&event->list);
4058 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4059 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4060 	INIT_WORK(&event->remove, memcg_event_remove);
4061 
4062 	efile = fdget(efd);
4063 	if (!efile.file) {
4064 		ret = -EBADF;
4065 		goto out_kfree;
4066 	}
4067 
4068 	event->eventfd = eventfd_ctx_fileget(efile.file);
4069 	if (IS_ERR(event->eventfd)) {
4070 		ret = PTR_ERR(event->eventfd);
4071 		goto out_put_efile;
4072 	}
4073 
4074 	cfile = fdget(cfd);
4075 	if (!cfile.file) {
4076 		ret = -EBADF;
4077 		goto out_put_eventfd;
4078 	}
4079 
4080 	/* the process need read permission on control file */
4081 	/* AV: shouldn't we check that it's been opened for read instead? */
4082 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4083 	if (ret < 0)
4084 		goto out_put_cfile;
4085 
4086 	/*
4087 	 * Determine the event callbacks and set them in @event.  This used
4088 	 * to be done via struct cftype but cgroup core no longer knows
4089 	 * about these events.  The following is crude but the whole thing
4090 	 * is for compatibility anyway.
4091 	 *
4092 	 * DO NOT ADD NEW FILES.
4093 	 */
4094 	name = cfile.file->f_path.dentry->d_name.name;
4095 
4096 	if (!strcmp(name, "memory.usage_in_bytes")) {
4097 		event->register_event = mem_cgroup_usage_register_event;
4098 		event->unregister_event = mem_cgroup_usage_unregister_event;
4099 	} else if (!strcmp(name, "memory.oom_control")) {
4100 		event->register_event = mem_cgroup_oom_register_event;
4101 		event->unregister_event = mem_cgroup_oom_unregister_event;
4102 	} else if (!strcmp(name, "memory.pressure_level")) {
4103 		event->register_event = vmpressure_register_event;
4104 		event->unregister_event = vmpressure_unregister_event;
4105 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4106 		event->register_event = memsw_cgroup_usage_register_event;
4107 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4108 	} else {
4109 		ret = -EINVAL;
4110 		goto out_put_cfile;
4111 	}
4112 
4113 	/*
4114 	 * Verify @cfile should belong to @css.  Also, remaining events are
4115 	 * automatically removed on cgroup destruction but the removal is
4116 	 * asynchronous, so take an extra ref on @css.
4117 	 */
4118 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4119 					       &memory_cgrp_subsys);
4120 	ret = -EINVAL;
4121 	if (IS_ERR(cfile_css))
4122 		goto out_put_cfile;
4123 	if (cfile_css != css) {
4124 		css_put(cfile_css);
4125 		goto out_put_cfile;
4126 	}
4127 
4128 	ret = event->register_event(memcg, event->eventfd, buf);
4129 	if (ret)
4130 		goto out_put_css;
4131 
4132 	vfs_poll(efile.file, &event->pt);
4133 
4134 	spin_lock(&memcg->event_list_lock);
4135 	list_add(&event->list, &memcg->event_list);
4136 	spin_unlock(&memcg->event_list_lock);
4137 
4138 	fdput(cfile);
4139 	fdput(efile);
4140 
4141 	return nbytes;
4142 
4143 out_put_css:
4144 	css_put(css);
4145 out_put_cfile:
4146 	fdput(cfile);
4147 out_put_eventfd:
4148 	eventfd_ctx_put(event->eventfd);
4149 out_put_efile:
4150 	fdput(efile);
4151 out_kfree:
4152 	kfree(event);
4153 
4154 	return ret;
4155 }
4156 
4157 static struct cftype mem_cgroup_legacy_files[] = {
4158 	{
4159 		.name = "usage_in_bytes",
4160 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4161 		.read_u64 = mem_cgroup_read_u64,
4162 	},
4163 	{
4164 		.name = "max_usage_in_bytes",
4165 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4166 		.write = mem_cgroup_reset,
4167 		.read_u64 = mem_cgroup_read_u64,
4168 	},
4169 	{
4170 		.name = "limit_in_bytes",
4171 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4172 		.write = mem_cgroup_write,
4173 		.read_u64 = mem_cgroup_read_u64,
4174 	},
4175 	{
4176 		.name = "soft_limit_in_bytes",
4177 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4178 		.write = mem_cgroup_write,
4179 		.read_u64 = mem_cgroup_read_u64,
4180 	},
4181 	{
4182 		.name = "failcnt",
4183 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4184 		.write = mem_cgroup_reset,
4185 		.read_u64 = mem_cgroup_read_u64,
4186 	},
4187 	{
4188 		.name = "stat",
4189 		.seq_show = memcg_stat_show,
4190 	},
4191 	{
4192 		.name = "force_empty",
4193 		.write = mem_cgroup_force_empty_write,
4194 	},
4195 	{
4196 		.name = "use_hierarchy",
4197 		.write_u64 = mem_cgroup_hierarchy_write,
4198 		.read_u64 = mem_cgroup_hierarchy_read,
4199 	},
4200 	{
4201 		.name = "cgroup.event_control",		/* XXX: for compat */
4202 		.write = memcg_write_event_control,
4203 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4204 	},
4205 	{
4206 		.name = "swappiness",
4207 		.read_u64 = mem_cgroup_swappiness_read,
4208 		.write_u64 = mem_cgroup_swappiness_write,
4209 	},
4210 	{
4211 		.name = "move_charge_at_immigrate",
4212 		.read_u64 = mem_cgroup_move_charge_read,
4213 		.write_u64 = mem_cgroup_move_charge_write,
4214 	},
4215 	{
4216 		.name = "oom_control",
4217 		.seq_show = mem_cgroup_oom_control_read,
4218 		.write_u64 = mem_cgroup_oom_control_write,
4219 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4220 	},
4221 	{
4222 		.name = "pressure_level",
4223 	},
4224 #ifdef CONFIG_NUMA
4225 	{
4226 		.name = "numa_stat",
4227 		.seq_show = memcg_numa_stat_show,
4228 	},
4229 #endif
4230 	{
4231 		.name = "kmem.limit_in_bytes",
4232 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4233 		.write = mem_cgroup_write,
4234 		.read_u64 = mem_cgroup_read_u64,
4235 	},
4236 	{
4237 		.name = "kmem.usage_in_bytes",
4238 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4239 		.read_u64 = mem_cgroup_read_u64,
4240 	},
4241 	{
4242 		.name = "kmem.failcnt",
4243 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4244 		.write = mem_cgroup_reset,
4245 		.read_u64 = mem_cgroup_read_u64,
4246 	},
4247 	{
4248 		.name = "kmem.max_usage_in_bytes",
4249 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4250 		.write = mem_cgroup_reset,
4251 		.read_u64 = mem_cgroup_read_u64,
4252 	},
4253 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4254 	{
4255 		.name = "kmem.slabinfo",
4256 		.seq_start = memcg_slab_start,
4257 		.seq_next = memcg_slab_next,
4258 		.seq_stop = memcg_slab_stop,
4259 		.seq_show = memcg_slab_show,
4260 	},
4261 #endif
4262 	{
4263 		.name = "kmem.tcp.limit_in_bytes",
4264 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4265 		.write = mem_cgroup_write,
4266 		.read_u64 = mem_cgroup_read_u64,
4267 	},
4268 	{
4269 		.name = "kmem.tcp.usage_in_bytes",
4270 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4271 		.read_u64 = mem_cgroup_read_u64,
4272 	},
4273 	{
4274 		.name = "kmem.tcp.failcnt",
4275 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4276 		.write = mem_cgroup_reset,
4277 		.read_u64 = mem_cgroup_read_u64,
4278 	},
4279 	{
4280 		.name = "kmem.tcp.max_usage_in_bytes",
4281 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4282 		.write = mem_cgroup_reset,
4283 		.read_u64 = mem_cgroup_read_u64,
4284 	},
4285 	{ },	/* terminate */
4286 };
4287 
4288 /*
4289  * Private memory cgroup IDR
4290  *
4291  * Swap-out records and page cache shadow entries need to store memcg
4292  * references in constrained space, so we maintain an ID space that is
4293  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4294  * memory-controlled cgroups to 64k.
4295  *
4296  * However, there usually are many references to the oflline CSS after
4297  * the cgroup has been destroyed, such as page cache or reclaimable
4298  * slab objects, that don't need to hang on to the ID. We want to keep
4299  * those dead CSS from occupying IDs, or we might quickly exhaust the
4300  * relatively small ID space and prevent the creation of new cgroups
4301  * even when there are much fewer than 64k cgroups - possibly none.
4302  *
4303  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4304  * be freed and recycled when it's no longer needed, which is usually
4305  * when the CSS is offlined.
4306  *
4307  * The only exception to that are records of swapped out tmpfs/shmem
4308  * pages that need to be attributed to live ancestors on swapin. But
4309  * those references are manageable from userspace.
4310  */
4311 
4312 static DEFINE_IDR(mem_cgroup_idr);
4313 
4314 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4315 {
4316 	if (memcg->id.id > 0) {
4317 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4318 		memcg->id.id = 0;
4319 	}
4320 }
4321 
4322 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4323 {
4324 	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4325 	atomic_add(n, &memcg->id.ref);
4326 }
4327 
4328 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4329 {
4330 	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4331 	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4332 		mem_cgroup_id_remove(memcg);
4333 
4334 		/* Memcg ID pins CSS */
4335 		css_put(&memcg->css);
4336 	}
4337 }
4338 
4339 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4340 {
4341 	mem_cgroup_id_get_many(memcg, 1);
4342 }
4343 
4344 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4345 {
4346 	mem_cgroup_id_put_many(memcg, 1);
4347 }
4348 
4349 /**
4350  * mem_cgroup_from_id - look up a memcg from a memcg id
4351  * @id: the memcg id to look up
4352  *
4353  * Caller must hold rcu_read_lock().
4354  */
4355 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4356 {
4357 	WARN_ON_ONCE(!rcu_read_lock_held());
4358 	return idr_find(&mem_cgroup_idr, id);
4359 }
4360 
4361 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4362 {
4363 	struct mem_cgroup_per_node *pn;
4364 	int tmp = node;
4365 	/*
4366 	 * This routine is called against possible nodes.
4367 	 * But it's BUG to call kmalloc() against offline node.
4368 	 *
4369 	 * TODO: this routine can waste much memory for nodes which will
4370 	 *       never be onlined. It's better to use memory hotplug callback
4371 	 *       function.
4372 	 */
4373 	if (!node_state(node, N_NORMAL_MEMORY))
4374 		tmp = -1;
4375 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4376 	if (!pn)
4377 		return 1;
4378 
4379 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4380 	if (!pn->lruvec_stat_cpu) {
4381 		kfree(pn);
4382 		return 1;
4383 	}
4384 
4385 	lruvec_init(&pn->lruvec);
4386 	pn->usage_in_excess = 0;
4387 	pn->on_tree = false;
4388 	pn->memcg = memcg;
4389 
4390 	memcg->nodeinfo[node] = pn;
4391 	return 0;
4392 }
4393 
4394 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4395 {
4396 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4397 
4398 	if (!pn)
4399 		return;
4400 
4401 	free_percpu(pn->lruvec_stat_cpu);
4402 	kfree(pn);
4403 }
4404 
4405 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4406 {
4407 	int node;
4408 
4409 	for_each_node(node)
4410 		free_mem_cgroup_per_node_info(memcg, node);
4411 	free_percpu(memcg->stat_cpu);
4412 	kfree(memcg);
4413 }
4414 
4415 static void mem_cgroup_free(struct mem_cgroup *memcg)
4416 {
4417 	memcg_wb_domain_exit(memcg);
4418 	__mem_cgroup_free(memcg);
4419 }
4420 
4421 static struct mem_cgroup *mem_cgroup_alloc(void)
4422 {
4423 	struct mem_cgroup *memcg;
4424 	size_t size;
4425 	int node;
4426 
4427 	size = sizeof(struct mem_cgroup);
4428 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4429 
4430 	memcg = kzalloc(size, GFP_KERNEL);
4431 	if (!memcg)
4432 		return NULL;
4433 
4434 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4435 				 1, MEM_CGROUP_ID_MAX,
4436 				 GFP_KERNEL);
4437 	if (memcg->id.id < 0)
4438 		goto fail;
4439 
4440 	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4441 	if (!memcg->stat_cpu)
4442 		goto fail;
4443 
4444 	for_each_node(node)
4445 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4446 			goto fail;
4447 
4448 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4449 		goto fail;
4450 
4451 	INIT_WORK(&memcg->high_work, high_work_func);
4452 	memcg->last_scanned_node = MAX_NUMNODES;
4453 	INIT_LIST_HEAD(&memcg->oom_notify);
4454 	mutex_init(&memcg->thresholds_lock);
4455 	spin_lock_init(&memcg->move_lock);
4456 	vmpressure_init(&memcg->vmpressure);
4457 	INIT_LIST_HEAD(&memcg->event_list);
4458 	spin_lock_init(&memcg->event_list_lock);
4459 	memcg->socket_pressure = jiffies;
4460 #ifdef CONFIG_MEMCG_KMEM
4461 	memcg->kmemcg_id = -1;
4462 #endif
4463 #ifdef CONFIG_CGROUP_WRITEBACK
4464 	INIT_LIST_HEAD(&memcg->cgwb_list);
4465 #endif
4466 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4467 	return memcg;
4468 fail:
4469 	mem_cgroup_id_remove(memcg);
4470 	__mem_cgroup_free(memcg);
4471 	return NULL;
4472 }
4473 
4474 static struct cgroup_subsys_state * __ref
4475 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4476 {
4477 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4478 	struct mem_cgroup *memcg;
4479 	long error = -ENOMEM;
4480 
4481 	memcg = mem_cgroup_alloc();
4482 	if (!memcg)
4483 		return ERR_PTR(error);
4484 
4485 	memcg->high = PAGE_COUNTER_MAX;
4486 	memcg->soft_limit = PAGE_COUNTER_MAX;
4487 	if (parent) {
4488 		memcg->swappiness = mem_cgroup_swappiness(parent);
4489 		memcg->oom_kill_disable = parent->oom_kill_disable;
4490 	}
4491 	if (parent && parent->use_hierarchy) {
4492 		memcg->use_hierarchy = true;
4493 		page_counter_init(&memcg->memory, &parent->memory);
4494 		page_counter_init(&memcg->swap, &parent->swap);
4495 		page_counter_init(&memcg->memsw, &parent->memsw);
4496 		page_counter_init(&memcg->kmem, &parent->kmem);
4497 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4498 	} else {
4499 		page_counter_init(&memcg->memory, NULL);
4500 		page_counter_init(&memcg->swap, NULL);
4501 		page_counter_init(&memcg->memsw, NULL);
4502 		page_counter_init(&memcg->kmem, NULL);
4503 		page_counter_init(&memcg->tcpmem, NULL);
4504 		/*
4505 		 * Deeper hierachy with use_hierarchy == false doesn't make
4506 		 * much sense so let cgroup subsystem know about this
4507 		 * unfortunate state in our controller.
4508 		 */
4509 		if (parent != root_mem_cgroup)
4510 			memory_cgrp_subsys.broken_hierarchy = true;
4511 	}
4512 
4513 	/* The following stuff does not apply to the root */
4514 	if (!parent) {
4515 		root_mem_cgroup = memcg;
4516 		return &memcg->css;
4517 	}
4518 
4519 	error = memcg_online_kmem(memcg);
4520 	if (error)
4521 		goto fail;
4522 
4523 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4524 		static_branch_inc(&memcg_sockets_enabled_key);
4525 
4526 	return &memcg->css;
4527 fail:
4528 	mem_cgroup_id_remove(memcg);
4529 	mem_cgroup_free(memcg);
4530 	return ERR_PTR(-ENOMEM);
4531 }
4532 
4533 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4534 {
4535 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4536 
4537 	/*
4538 	 * A memcg must be visible for memcg_expand_shrinker_maps()
4539 	 * by the time the maps are allocated. So, we allocate maps
4540 	 * here, when for_each_mem_cgroup() can't skip it.
4541 	 */
4542 	if (memcg_alloc_shrinker_maps(memcg)) {
4543 		mem_cgroup_id_remove(memcg);
4544 		return -ENOMEM;
4545 	}
4546 
4547 	/* Online state pins memcg ID, memcg ID pins CSS */
4548 	atomic_set(&memcg->id.ref, 1);
4549 	css_get(css);
4550 	return 0;
4551 }
4552 
4553 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4554 {
4555 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4556 	struct mem_cgroup_event *event, *tmp;
4557 
4558 	/*
4559 	 * Unregister events and notify userspace.
4560 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4561 	 * directory to avoid race between userspace and kernelspace.
4562 	 */
4563 	spin_lock(&memcg->event_list_lock);
4564 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4565 		list_del_init(&event->list);
4566 		schedule_work(&event->remove);
4567 	}
4568 	spin_unlock(&memcg->event_list_lock);
4569 
4570 	page_counter_set_min(&memcg->memory, 0);
4571 	page_counter_set_low(&memcg->memory, 0);
4572 
4573 	memcg_offline_kmem(memcg);
4574 	wb_memcg_offline(memcg);
4575 
4576 	mem_cgroup_id_put(memcg);
4577 }
4578 
4579 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4580 {
4581 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4582 
4583 	invalidate_reclaim_iterators(memcg);
4584 }
4585 
4586 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4587 {
4588 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4589 
4590 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4591 		static_branch_dec(&memcg_sockets_enabled_key);
4592 
4593 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4594 		static_branch_dec(&memcg_sockets_enabled_key);
4595 
4596 	vmpressure_cleanup(&memcg->vmpressure);
4597 	cancel_work_sync(&memcg->high_work);
4598 	mem_cgroup_remove_from_trees(memcg);
4599 	memcg_free_shrinker_maps(memcg);
4600 	memcg_free_kmem(memcg);
4601 	mem_cgroup_free(memcg);
4602 }
4603 
4604 /**
4605  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4606  * @css: the target css
4607  *
4608  * Reset the states of the mem_cgroup associated with @css.  This is
4609  * invoked when the userland requests disabling on the default hierarchy
4610  * but the memcg is pinned through dependency.  The memcg should stop
4611  * applying policies and should revert to the vanilla state as it may be
4612  * made visible again.
4613  *
4614  * The current implementation only resets the essential configurations.
4615  * This needs to be expanded to cover all the visible parts.
4616  */
4617 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4618 {
4619 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4620 
4621 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4622 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4623 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4624 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4625 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4626 	page_counter_set_min(&memcg->memory, 0);
4627 	page_counter_set_low(&memcg->memory, 0);
4628 	memcg->high = PAGE_COUNTER_MAX;
4629 	memcg->soft_limit = PAGE_COUNTER_MAX;
4630 	memcg_wb_domain_size_changed(memcg);
4631 }
4632 
4633 #ifdef CONFIG_MMU
4634 /* Handlers for move charge at task migration. */
4635 static int mem_cgroup_do_precharge(unsigned long count)
4636 {
4637 	int ret;
4638 
4639 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4640 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4641 	if (!ret) {
4642 		mc.precharge += count;
4643 		return ret;
4644 	}
4645 
4646 	/* Try charges one by one with reclaim, but do not retry */
4647 	while (count--) {
4648 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4649 		if (ret)
4650 			return ret;
4651 		mc.precharge++;
4652 		cond_resched();
4653 	}
4654 	return 0;
4655 }
4656 
4657 union mc_target {
4658 	struct page	*page;
4659 	swp_entry_t	ent;
4660 };
4661 
4662 enum mc_target_type {
4663 	MC_TARGET_NONE = 0,
4664 	MC_TARGET_PAGE,
4665 	MC_TARGET_SWAP,
4666 	MC_TARGET_DEVICE,
4667 };
4668 
4669 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4670 						unsigned long addr, pte_t ptent)
4671 {
4672 	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4673 
4674 	if (!page || !page_mapped(page))
4675 		return NULL;
4676 	if (PageAnon(page)) {
4677 		if (!(mc.flags & MOVE_ANON))
4678 			return NULL;
4679 	} else {
4680 		if (!(mc.flags & MOVE_FILE))
4681 			return NULL;
4682 	}
4683 	if (!get_page_unless_zero(page))
4684 		return NULL;
4685 
4686 	return page;
4687 }
4688 
4689 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4690 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4691 			pte_t ptent, swp_entry_t *entry)
4692 {
4693 	struct page *page = NULL;
4694 	swp_entry_t ent = pte_to_swp_entry(ptent);
4695 
4696 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4697 		return NULL;
4698 
4699 	/*
4700 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4701 	 * a device and because they are not accessible by CPU they are store
4702 	 * as special swap entry in the CPU page table.
4703 	 */
4704 	if (is_device_private_entry(ent)) {
4705 		page = device_private_entry_to_page(ent);
4706 		/*
4707 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4708 		 * a refcount of 1 when free (unlike normal page)
4709 		 */
4710 		if (!page_ref_add_unless(page, 1, 1))
4711 			return NULL;
4712 		return page;
4713 	}
4714 
4715 	/*
4716 	 * Because lookup_swap_cache() updates some statistics counter,
4717 	 * we call find_get_page() with swapper_space directly.
4718 	 */
4719 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4720 	if (do_memsw_account())
4721 		entry->val = ent.val;
4722 
4723 	return page;
4724 }
4725 #else
4726 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4727 			pte_t ptent, swp_entry_t *entry)
4728 {
4729 	return NULL;
4730 }
4731 #endif
4732 
4733 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4734 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4735 {
4736 	struct page *page = NULL;
4737 	struct address_space *mapping;
4738 	pgoff_t pgoff;
4739 
4740 	if (!vma->vm_file) /* anonymous vma */
4741 		return NULL;
4742 	if (!(mc.flags & MOVE_FILE))
4743 		return NULL;
4744 
4745 	mapping = vma->vm_file->f_mapping;
4746 	pgoff = linear_page_index(vma, addr);
4747 
4748 	/* page is moved even if it's not RSS of this task(page-faulted). */
4749 #ifdef CONFIG_SWAP
4750 	/* shmem/tmpfs may report page out on swap: account for that too. */
4751 	if (shmem_mapping(mapping)) {
4752 		page = find_get_entry(mapping, pgoff);
4753 		if (radix_tree_exceptional_entry(page)) {
4754 			swp_entry_t swp = radix_to_swp_entry(page);
4755 			if (do_memsw_account())
4756 				*entry = swp;
4757 			page = find_get_page(swap_address_space(swp),
4758 					     swp_offset(swp));
4759 		}
4760 	} else
4761 		page = find_get_page(mapping, pgoff);
4762 #else
4763 	page = find_get_page(mapping, pgoff);
4764 #endif
4765 	return page;
4766 }
4767 
4768 /**
4769  * mem_cgroup_move_account - move account of the page
4770  * @page: the page
4771  * @compound: charge the page as compound or small page
4772  * @from: mem_cgroup which the page is moved from.
4773  * @to:	mem_cgroup which the page is moved to. @from != @to.
4774  *
4775  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4776  *
4777  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4778  * from old cgroup.
4779  */
4780 static int mem_cgroup_move_account(struct page *page,
4781 				   bool compound,
4782 				   struct mem_cgroup *from,
4783 				   struct mem_cgroup *to)
4784 {
4785 	unsigned long flags;
4786 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4787 	int ret;
4788 	bool anon;
4789 
4790 	VM_BUG_ON(from == to);
4791 	VM_BUG_ON_PAGE(PageLRU(page), page);
4792 	VM_BUG_ON(compound && !PageTransHuge(page));
4793 
4794 	/*
4795 	 * Prevent mem_cgroup_migrate() from looking at
4796 	 * page->mem_cgroup of its source page while we change it.
4797 	 */
4798 	ret = -EBUSY;
4799 	if (!trylock_page(page))
4800 		goto out;
4801 
4802 	ret = -EINVAL;
4803 	if (page->mem_cgroup != from)
4804 		goto out_unlock;
4805 
4806 	anon = PageAnon(page);
4807 
4808 	spin_lock_irqsave(&from->move_lock, flags);
4809 
4810 	if (!anon && page_mapped(page)) {
4811 		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4812 		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4813 	}
4814 
4815 	/*
4816 	 * move_lock grabbed above and caller set from->moving_account, so
4817 	 * mod_memcg_page_state will serialize updates to PageDirty.
4818 	 * So mapping should be stable for dirty pages.
4819 	 */
4820 	if (!anon && PageDirty(page)) {
4821 		struct address_space *mapping = page_mapping(page);
4822 
4823 		if (mapping_cap_account_dirty(mapping)) {
4824 			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4825 			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4826 		}
4827 	}
4828 
4829 	if (PageWriteback(page)) {
4830 		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4831 		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4832 	}
4833 
4834 	/*
4835 	 * It is safe to change page->mem_cgroup here because the page
4836 	 * is referenced, charged, and isolated - we can't race with
4837 	 * uncharging, charging, migration, or LRU putback.
4838 	 */
4839 
4840 	/* caller should have done css_get */
4841 	page->mem_cgroup = to;
4842 	spin_unlock_irqrestore(&from->move_lock, flags);
4843 
4844 	ret = 0;
4845 
4846 	local_irq_disable();
4847 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4848 	memcg_check_events(to, page);
4849 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4850 	memcg_check_events(from, page);
4851 	local_irq_enable();
4852 out_unlock:
4853 	unlock_page(page);
4854 out:
4855 	return ret;
4856 }
4857 
4858 /**
4859  * get_mctgt_type - get target type of moving charge
4860  * @vma: the vma the pte to be checked belongs
4861  * @addr: the address corresponding to the pte to be checked
4862  * @ptent: the pte to be checked
4863  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4864  *
4865  * Returns
4866  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4867  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4868  *     move charge. if @target is not NULL, the page is stored in target->page
4869  *     with extra refcnt got(Callers should handle it).
4870  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4871  *     target for charge migration. if @target is not NULL, the entry is stored
4872  *     in target->ent.
4873  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
4874  *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4875  *     For now we such page is charge like a regular page would be as for all
4876  *     intent and purposes it is just special memory taking the place of a
4877  *     regular page.
4878  *
4879  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4880  *
4881  * Called with pte lock held.
4882  */
4883 
4884 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4885 		unsigned long addr, pte_t ptent, union mc_target *target)
4886 {
4887 	struct page *page = NULL;
4888 	enum mc_target_type ret = MC_TARGET_NONE;
4889 	swp_entry_t ent = { .val = 0 };
4890 
4891 	if (pte_present(ptent))
4892 		page = mc_handle_present_pte(vma, addr, ptent);
4893 	else if (is_swap_pte(ptent))
4894 		page = mc_handle_swap_pte(vma, ptent, &ent);
4895 	else if (pte_none(ptent))
4896 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4897 
4898 	if (!page && !ent.val)
4899 		return ret;
4900 	if (page) {
4901 		/*
4902 		 * Do only loose check w/o serialization.
4903 		 * mem_cgroup_move_account() checks the page is valid or
4904 		 * not under LRU exclusion.
4905 		 */
4906 		if (page->mem_cgroup == mc.from) {
4907 			ret = MC_TARGET_PAGE;
4908 			if (is_device_private_page(page) ||
4909 			    is_device_public_page(page))
4910 				ret = MC_TARGET_DEVICE;
4911 			if (target)
4912 				target->page = page;
4913 		}
4914 		if (!ret || !target)
4915 			put_page(page);
4916 	}
4917 	/*
4918 	 * There is a swap entry and a page doesn't exist or isn't charged.
4919 	 * But we cannot move a tail-page in a THP.
4920 	 */
4921 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4922 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4923 		ret = MC_TARGET_SWAP;
4924 		if (target)
4925 			target->ent = ent;
4926 	}
4927 	return ret;
4928 }
4929 
4930 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4931 /*
4932  * We don't consider PMD mapped swapping or file mapped pages because THP does
4933  * not support them for now.
4934  * Caller should make sure that pmd_trans_huge(pmd) is true.
4935  */
4936 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4937 		unsigned long addr, pmd_t pmd, union mc_target *target)
4938 {
4939 	struct page *page = NULL;
4940 	enum mc_target_type ret = MC_TARGET_NONE;
4941 
4942 	if (unlikely(is_swap_pmd(pmd))) {
4943 		VM_BUG_ON(thp_migration_supported() &&
4944 				  !is_pmd_migration_entry(pmd));
4945 		return ret;
4946 	}
4947 	page = pmd_page(pmd);
4948 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4949 	if (!(mc.flags & MOVE_ANON))
4950 		return ret;
4951 	if (page->mem_cgroup == mc.from) {
4952 		ret = MC_TARGET_PAGE;
4953 		if (target) {
4954 			get_page(page);
4955 			target->page = page;
4956 		}
4957 	}
4958 	return ret;
4959 }
4960 #else
4961 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4962 		unsigned long addr, pmd_t pmd, union mc_target *target)
4963 {
4964 	return MC_TARGET_NONE;
4965 }
4966 #endif
4967 
4968 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4969 					unsigned long addr, unsigned long end,
4970 					struct mm_walk *walk)
4971 {
4972 	struct vm_area_struct *vma = walk->vma;
4973 	pte_t *pte;
4974 	spinlock_t *ptl;
4975 
4976 	ptl = pmd_trans_huge_lock(pmd, vma);
4977 	if (ptl) {
4978 		/*
4979 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
4980 		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4981 		 * MEMORY_DEVICE_PRIVATE but this might change.
4982 		 */
4983 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4984 			mc.precharge += HPAGE_PMD_NR;
4985 		spin_unlock(ptl);
4986 		return 0;
4987 	}
4988 
4989 	if (pmd_trans_unstable(pmd))
4990 		return 0;
4991 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4992 	for (; addr != end; pte++, addr += PAGE_SIZE)
4993 		if (get_mctgt_type(vma, addr, *pte, NULL))
4994 			mc.precharge++;	/* increment precharge temporarily */
4995 	pte_unmap_unlock(pte - 1, ptl);
4996 	cond_resched();
4997 
4998 	return 0;
4999 }
5000 
5001 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5002 {
5003 	unsigned long precharge;
5004 
5005 	struct mm_walk mem_cgroup_count_precharge_walk = {
5006 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
5007 		.mm = mm,
5008 	};
5009 	down_read(&mm->mmap_sem);
5010 	walk_page_range(0, mm->highest_vm_end,
5011 			&mem_cgroup_count_precharge_walk);
5012 	up_read(&mm->mmap_sem);
5013 
5014 	precharge = mc.precharge;
5015 	mc.precharge = 0;
5016 
5017 	return precharge;
5018 }
5019 
5020 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5021 {
5022 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5023 
5024 	VM_BUG_ON(mc.moving_task);
5025 	mc.moving_task = current;
5026 	return mem_cgroup_do_precharge(precharge);
5027 }
5028 
5029 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5030 static void __mem_cgroup_clear_mc(void)
5031 {
5032 	struct mem_cgroup *from = mc.from;
5033 	struct mem_cgroup *to = mc.to;
5034 
5035 	/* we must uncharge all the leftover precharges from mc.to */
5036 	if (mc.precharge) {
5037 		cancel_charge(mc.to, mc.precharge);
5038 		mc.precharge = 0;
5039 	}
5040 	/*
5041 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5042 	 * we must uncharge here.
5043 	 */
5044 	if (mc.moved_charge) {
5045 		cancel_charge(mc.from, mc.moved_charge);
5046 		mc.moved_charge = 0;
5047 	}
5048 	/* we must fixup refcnts and charges */
5049 	if (mc.moved_swap) {
5050 		/* uncharge swap account from the old cgroup */
5051 		if (!mem_cgroup_is_root(mc.from))
5052 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5053 
5054 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5055 
5056 		/*
5057 		 * we charged both to->memory and to->memsw, so we
5058 		 * should uncharge to->memory.
5059 		 */
5060 		if (!mem_cgroup_is_root(mc.to))
5061 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5062 
5063 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5064 		css_put_many(&mc.to->css, mc.moved_swap);
5065 
5066 		mc.moved_swap = 0;
5067 	}
5068 	memcg_oom_recover(from);
5069 	memcg_oom_recover(to);
5070 	wake_up_all(&mc.waitq);
5071 }
5072 
5073 static void mem_cgroup_clear_mc(void)
5074 {
5075 	struct mm_struct *mm = mc.mm;
5076 
5077 	/*
5078 	 * we must clear moving_task before waking up waiters at the end of
5079 	 * task migration.
5080 	 */
5081 	mc.moving_task = NULL;
5082 	__mem_cgroup_clear_mc();
5083 	spin_lock(&mc.lock);
5084 	mc.from = NULL;
5085 	mc.to = NULL;
5086 	mc.mm = NULL;
5087 	spin_unlock(&mc.lock);
5088 
5089 	mmput(mm);
5090 }
5091 
5092 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5093 {
5094 	struct cgroup_subsys_state *css;
5095 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5096 	struct mem_cgroup *from;
5097 	struct task_struct *leader, *p;
5098 	struct mm_struct *mm;
5099 	unsigned long move_flags;
5100 	int ret = 0;
5101 
5102 	/* charge immigration isn't supported on the default hierarchy */
5103 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5104 		return 0;
5105 
5106 	/*
5107 	 * Multi-process migrations only happen on the default hierarchy
5108 	 * where charge immigration is not used.  Perform charge
5109 	 * immigration if @tset contains a leader and whine if there are
5110 	 * multiple.
5111 	 */
5112 	p = NULL;
5113 	cgroup_taskset_for_each_leader(leader, css, tset) {
5114 		WARN_ON_ONCE(p);
5115 		p = leader;
5116 		memcg = mem_cgroup_from_css(css);
5117 	}
5118 	if (!p)
5119 		return 0;
5120 
5121 	/*
5122 	 * We are now commited to this value whatever it is. Changes in this
5123 	 * tunable will only affect upcoming migrations, not the current one.
5124 	 * So we need to save it, and keep it going.
5125 	 */
5126 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5127 	if (!move_flags)
5128 		return 0;
5129 
5130 	from = mem_cgroup_from_task(p);
5131 
5132 	VM_BUG_ON(from == memcg);
5133 
5134 	mm = get_task_mm(p);
5135 	if (!mm)
5136 		return 0;
5137 	/* We move charges only when we move a owner of the mm */
5138 	if (mm->owner == p) {
5139 		VM_BUG_ON(mc.from);
5140 		VM_BUG_ON(mc.to);
5141 		VM_BUG_ON(mc.precharge);
5142 		VM_BUG_ON(mc.moved_charge);
5143 		VM_BUG_ON(mc.moved_swap);
5144 
5145 		spin_lock(&mc.lock);
5146 		mc.mm = mm;
5147 		mc.from = from;
5148 		mc.to = memcg;
5149 		mc.flags = move_flags;
5150 		spin_unlock(&mc.lock);
5151 		/* We set mc.moving_task later */
5152 
5153 		ret = mem_cgroup_precharge_mc(mm);
5154 		if (ret)
5155 			mem_cgroup_clear_mc();
5156 	} else {
5157 		mmput(mm);
5158 	}
5159 	return ret;
5160 }
5161 
5162 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5163 {
5164 	if (mc.to)
5165 		mem_cgroup_clear_mc();
5166 }
5167 
5168 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5169 				unsigned long addr, unsigned long end,
5170 				struct mm_walk *walk)
5171 {
5172 	int ret = 0;
5173 	struct vm_area_struct *vma = walk->vma;
5174 	pte_t *pte;
5175 	spinlock_t *ptl;
5176 	enum mc_target_type target_type;
5177 	union mc_target target;
5178 	struct page *page;
5179 
5180 	ptl = pmd_trans_huge_lock(pmd, vma);
5181 	if (ptl) {
5182 		if (mc.precharge < HPAGE_PMD_NR) {
5183 			spin_unlock(ptl);
5184 			return 0;
5185 		}
5186 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5187 		if (target_type == MC_TARGET_PAGE) {
5188 			page = target.page;
5189 			if (!isolate_lru_page(page)) {
5190 				if (!mem_cgroup_move_account(page, true,
5191 							     mc.from, mc.to)) {
5192 					mc.precharge -= HPAGE_PMD_NR;
5193 					mc.moved_charge += HPAGE_PMD_NR;
5194 				}
5195 				putback_lru_page(page);
5196 			}
5197 			put_page(page);
5198 		} else if (target_type == MC_TARGET_DEVICE) {
5199 			page = target.page;
5200 			if (!mem_cgroup_move_account(page, true,
5201 						     mc.from, mc.to)) {
5202 				mc.precharge -= HPAGE_PMD_NR;
5203 				mc.moved_charge += HPAGE_PMD_NR;
5204 			}
5205 			put_page(page);
5206 		}
5207 		spin_unlock(ptl);
5208 		return 0;
5209 	}
5210 
5211 	if (pmd_trans_unstable(pmd))
5212 		return 0;
5213 retry:
5214 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5215 	for (; addr != end; addr += PAGE_SIZE) {
5216 		pte_t ptent = *(pte++);
5217 		bool device = false;
5218 		swp_entry_t ent;
5219 
5220 		if (!mc.precharge)
5221 			break;
5222 
5223 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5224 		case MC_TARGET_DEVICE:
5225 			device = true;
5226 			/* fall through */
5227 		case MC_TARGET_PAGE:
5228 			page = target.page;
5229 			/*
5230 			 * We can have a part of the split pmd here. Moving it
5231 			 * can be done but it would be too convoluted so simply
5232 			 * ignore such a partial THP and keep it in original
5233 			 * memcg. There should be somebody mapping the head.
5234 			 */
5235 			if (PageTransCompound(page))
5236 				goto put;
5237 			if (!device && isolate_lru_page(page))
5238 				goto put;
5239 			if (!mem_cgroup_move_account(page, false,
5240 						mc.from, mc.to)) {
5241 				mc.precharge--;
5242 				/* we uncharge from mc.from later. */
5243 				mc.moved_charge++;
5244 			}
5245 			if (!device)
5246 				putback_lru_page(page);
5247 put:			/* get_mctgt_type() gets the page */
5248 			put_page(page);
5249 			break;
5250 		case MC_TARGET_SWAP:
5251 			ent = target.ent;
5252 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5253 				mc.precharge--;
5254 				/* we fixup refcnts and charges later. */
5255 				mc.moved_swap++;
5256 			}
5257 			break;
5258 		default:
5259 			break;
5260 		}
5261 	}
5262 	pte_unmap_unlock(pte - 1, ptl);
5263 	cond_resched();
5264 
5265 	if (addr != end) {
5266 		/*
5267 		 * We have consumed all precharges we got in can_attach().
5268 		 * We try charge one by one, but don't do any additional
5269 		 * charges to mc.to if we have failed in charge once in attach()
5270 		 * phase.
5271 		 */
5272 		ret = mem_cgroup_do_precharge(1);
5273 		if (!ret)
5274 			goto retry;
5275 	}
5276 
5277 	return ret;
5278 }
5279 
5280 static void mem_cgroup_move_charge(void)
5281 {
5282 	struct mm_walk mem_cgroup_move_charge_walk = {
5283 		.pmd_entry = mem_cgroup_move_charge_pte_range,
5284 		.mm = mc.mm,
5285 	};
5286 
5287 	lru_add_drain_all();
5288 	/*
5289 	 * Signal lock_page_memcg() to take the memcg's move_lock
5290 	 * while we're moving its pages to another memcg. Then wait
5291 	 * for already started RCU-only updates to finish.
5292 	 */
5293 	atomic_inc(&mc.from->moving_account);
5294 	synchronize_rcu();
5295 retry:
5296 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5297 		/*
5298 		 * Someone who are holding the mmap_sem might be waiting in
5299 		 * waitq. So we cancel all extra charges, wake up all waiters,
5300 		 * and retry. Because we cancel precharges, we might not be able
5301 		 * to move enough charges, but moving charge is a best-effort
5302 		 * feature anyway, so it wouldn't be a big problem.
5303 		 */
5304 		__mem_cgroup_clear_mc();
5305 		cond_resched();
5306 		goto retry;
5307 	}
5308 	/*
5309 	 * When we have consumed all precharges and failed in doing
5310 	 * additional charge, the page walk just aborts.
5311 	 */
5312 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5313 
5314 	up_read(&mc.mm->mmap_sem);
5315 	atomic_dec(&mc.from->moving_account);
5316 }
5317 
5318 static void mem_cgroup_move_task(void)
5319 {
5320 	if (mc.to) {
5321 		mem_cgroup_move_charge();
5322 		mem_cgroup_clear_mc();
5323 	}
5324 }
5325 #else	/* !CONFIG_MMU */
5326 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5327 {
5328 	return 0;
5329 }
5330 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5331 {
5332 }
5333 static void mem_cgroup_move_task(void)
5334 {
5335 }
5336 #endif
5337 
5338 /*
5339  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5340  * to verify whether we're attached to the default hierarchy on each mount
5341  * attempt.
5342  */
5343 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5344 {
5345 	/*
5346 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5347 	 * guarantees that @root doesn't have any children, so turning it
5348 	 * on for the root memcg is enough.
5349 	 */
5350 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5351 		root_mem_cgroup->use_hierarchy = true;
5352 	else
5353 		root_mem_cgroup->use_hierarchy = false;
5354 }
5355 
5356 static u64 memory_current_read(struct cgroup_subsys_state *css,
5357 			       struct cftype *cft)
5358 {
5359 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5360 
5361 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5362 }
5363 
5364 static int memory_min_show(struct seq_file *m, void *v)
5365 {
5366 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5367 	unsigned long min = READ_ONCE(memcg->memory.min);
5368 
5369 	if (min == PAGE_COUNTER_MAX)
5370 		seq_puts(m, "max\n");
5371 	else
5372 		seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5373 
5374 	return 0;
5375 }
5376 
5377 static ssize_t memory_min_write(struct kernfs_open_file *of,
5378 				char *buf, size_t nbytes, loff_t off)
5379 {
5380 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5381 	unsigned long min;
5382 	int err;
5383 
5384 	buf = strstrip(buf);
5385 	err = page_counter_memparse(buf, "max", &min);
5386 	if (err)
5387 		return err;
5388 
5389 	page_counter_set_min(&memcg->memory, min);
5390 
5391 	return nbytes;
5392 }
5393 
5394 static int memory_low_show(struct seq_file *m, void *v)
5395 {
5396 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5397 	unsigned long low = READ_ONCE(memcg->memory.low);
5398 
5399 	if (low == PAGE_COUNTER_MAX)
5400 		seq_puts(m, "max\n");
5401 	else
5402 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5403 
5404 	return 0;
5405 }
5406 
5407 static ssize_t memory_low_write(struct kernfs_open_file *of,
5408 				char *buf, size_t nbytes, loff_t off)
5409 {
5410 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5411 	unsigned long low;
5412 	int err;
5413 
5414 	buf = strstrip(buf);
5415 	err = page_counter_memparse(buf, "max", &low);
5416 	if (err)
5417 		return err;
5418 
5419 	page_counter_set_low(&memcg->memory, low);
5420 
5421 	return nbytes;
5422 }
5423 
5424 static int memory_high_show(struct seq_file *m, void *v)
5425 {
5426 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5427 	unsigned long high = READ_ONCE(memcg->high);
5428 
5429 	if (high == PAGE_COUNTER_MAX)
5430 		seq_puts(m, "max\n");
5431 	else
5432 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5433 
5434 	return 0;
5435 }
5436 
5437 static ssize_t memory_high_write(struct kernfs_open_file *of,
5438 				 char *buf, size_t nbytes, loff_t off)
5439 {
5440 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5441 	unsigned long nr_pages;
5442 	unsigned long high;
5443 	int err;
5444 
5445 	buf = strstrip(buf);
5446 	err = page_counter_memparse(buf, "max", &high);
5447 	if (err)
5448 		return err;
5449 
5450 	memcg->high = high;
5451 
5452 	nr_pages = page_counter_read(&memcg->memory);
5453 	if (nr_pages > high)
5454 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5455 					     GFP_KERNEL, true);
5456 
5457 	memcg_wb_domain_size_changed(memcg);
5458 	return nbytes;
5459 }
5460 
5461 static int memory_max_show(struct seq_file *m, void *v)
5462 {
5463 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5464 	unsigned long max = READ_ONCE(memcg->memory.max);
5465 
5466 	if (max == PAGE_COUNTER_MAX)
5467 		seq_puts(m, "max\n");
5468 	else
5469 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5470 
5471 	return 0;
5472 }
5473 
5474 static ssize_t memory_max_write(struct kernfs_open_file *of,
5475 				char *buf, size_t nbytes, loff_t off)
5476 {
5477 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5478 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5479 	bool drained = false;
5480 	unsigned long max;
5481 	int err;
5482 
5483 	buf = strstrip(buf);
5484 	err = page_counter_memparse(buf, "max", &max);
5485 	if (err)
5486 		return err;
5487 
5488 	xchg(&memcg->memory.max, max);
5489 
5490 	for (;;) {
5491 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5492 
5493 		if (nr_pages <= max)
5494 			break;
5495 
5496 		if (signal_pending(current)) {
5497 			err = -EINTR;
5498 			break;
5499 		}
5500 
5501 		if (!drained) {
5502 			drain_all_stock(memcg);
5503 			drained = true;
5504 			continue;
5505 		}
5506 
5507 		if (nr_reclaims) {
5508 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5509 							  GFP_KERNEL, true))
5510 				nr_reclaims--;
5511 			continue;
5512 		}
5513 
5514 		memcg_memory_event(memcg, MEMCG_OOM);
5515 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5516 			break;
5517 	}
5518 
5519 	memcg_wb_domain_size_changed(memcg);
5520 	return nbytes;
5521 }
5522 
5523 static int memory_events_show(struct seq_file *m, void *v)
5524 {
5525 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5526 
5527 	seq_printf(m, "low %lu\n",
5528 		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5529 	seq_printf(m, "high %lu\n",
5530 		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5531 	seq_printf(m, "max %lu\n",
5532 		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5533 	seq_printf(m, "oom %lu\n",
5534 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5535 	seq_printf(m, "oom_kill %lu\n",
5536 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5537 
5538 	return 0;
5539 }
5540 
5541 static int memory_stat_show(struct seq_file *m, void *v)
5542 {
5543 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5544 	struct accumulated_stats acc;
5545 	int i;
5546 
5547 	/*
5548 	 * Provide statistics on the state of the memory subsystem as
5549 	 * well as cumulative event counters that show past behavior.
5550 	 *
5551 	 * This list is ordered following a combination of these gradients:
5552 	 * 1) generic big picture -> specifics and details
5553 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5554 	 *
5555 	 * Current memory state:
5556 	 */
5557 
5558 	memset(&acc, 0, sizeof(acc));
5559 	acc.stats_size = MEMCG_NR_STAT;
5560 	acc.events_size = NR_VM_EVENT_ITEMS;
5561 	accumulate_memcg_tree(memcg, &acc);
5562 
5563 	seq_printf(m, "anon %llu\n",
5564 		   (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
5565 	seq_printf(m, "file %llu\n",
5566 		   (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
5567 	seq_printf(m, "kernel_stack %llu\n",
5568 		   (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
5569 	seq_printf(m, "slab %llu\n",
5570 		   (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
5571 			 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5572 	seq_printf(m, "sock %llu\n",
5573 		   (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
5574 
5575 	seq_printf(m, "shmem %llu\n",
5576 		   (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
5577 	seq_printf(m, "file_mapped %llu\n",
5578 		   (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
5579 	seq_printf(m, "file_dirty %llu\n",
5580 		   (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
5581 	seq_printf(m, "file_writeback %llu\n",
5582 		   (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
5583 
5584 	for (i = 0; i < NR_LRU_LISTS; i++)
5585 		seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5586 			   (u64)acc.lru_pages[i] * PAGE_SIZE);
5587 
5588 	seq_printf(m, "slab_reclaimable %llu\n",
5589 		   (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5590 	seq_printf(m, "slab_unreclaimable %llu\n",
5591 		   (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5592 
5593 	/* Accumulated memory events */
5594 
5595 	seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
5596 	seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
5597 
5598 	seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
5599 	seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
5600 		   acc.events[PGSCAN_DIRECT]);
5601 	seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
5602 		   acc.events[PGSTEAL_DIRECT]);
5603 	seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
5604 	seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
5605 	seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
5606 	seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
5607 
5608 	seq_printf(m, "workingset_refault %lu\n",
5609 		   acc.stat[WORKINGSET_REFAULT]);
5610 	seq_printf(m, "workingset_activate %lu\n",
5611 		   acc.stat[WORKINGSET_ACTIVATE]);
5612 	seq_printf(m, "workingset_nodereclaim %lu\n",
5613 		   acc.stat[WORKINGSET_NODERECLAIM]);
5614 
5615 	return 0;
5616 }
5617 
5618 static int memory_oom_group_show(struct seq_file *m, void *v)
5619 {
5620 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5621 
5622 	seq_printf(m, "%d\n", memcg->oom_group);
5623 
5624 	return 0;
5625 }
5626 
5627 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5628 				      char *buf, size_t nbytes, loff_t off)
5629 {
5630 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5631 	int ret, oom_group;
5632 
5633 	buf = strstrip(buf);
5634 	if (!buf)
5635 		return -EINVAL;
5636 
5637 	ret = kstrtoint(buf, 0, &oom_group);
5638 	if (ret)
5639 		return ret;
5640 
5641 	if (oom_group != 0 && oom_group != 1)
5642 		return -EINVAL;
5643 
5644 	memcg->oom_group = oom_group;
5645 
5646 	return nbytes;
5647 }
5648 
5649 static struct cftype memory_files[] = {
5650 	{
5651 		.name = "current",
5652 		.flags = CFTYPE_NOT_ON_ROOT,
5653 		.read_u64 = memory_current_read,
5654 	},
5655 	{
5656 		.name = "min",
5657 		.flags = CFTYPE_NOT_ON_ROOT,
5658 		.seq_show = memory_min_show,
5659 		.write = memory_min_write,
5660 	},
5661 	{
5662 		.name = "low",
5663 		.flags = CFTYPE_NOT_ON_ROOT,
5664 		.seq_show = memory_low_show,
5665 		.write = memory_low_write,
5666 	},
5667 	{
5668 		.name = "high",
5669 		.flags = CFTYPE_NOT_ON_ROOT,
5670 		.seq_show = memory_high_show,
5671 		.write = memory_high_write,
5672 	},
5673 	{
5674 		.name = "max",
5675 		.flags = CFTYPE_NOT_ON_ROOT,
5676 		.seq_show = memory_max_show,
5677 		.write = memory_max_write,
5678 	},
5679 	{
5680 		.name = "events",
5681 		.flags = CFTYPE_NOT_ON_ROOT,
5682 		.file_offset = offsetof(struct mem_cgroup, events_file),
5683 		.seq_show = memory_events_show,
5684 	},
5685 	{
5686 		.name = "stat",
5687 		.flags = CFTYPE_NOT_ON_ROOT,
5688 		.seq_show = memory_stat_show,
5689 	},
5690 	{
5691 		.name = "oom.group",
5692 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5693 		.seq_show = memory_oom_group_show,
5694 		.write = memory_oom_group_write,
5695 	},
5696 	{ }	/* terminate */
5697 };
5698 
5699 struct cgroup_subsys memory_cgrp_subsys = {
5700 	.css_alloc = mem_cgroup_css_alloc,
5701 	.css_online = mem_cgroup_css_online,
5702 	.css_offline = mem_cgroup_css_offline,
5703 	.css_released = mem_cgroup_css_released,
5704 	.css_free = mem_cgroup_css_free,
5705 	.css_reset = mem_cgroup_css_reset,
5706 	.can_attach = mem_cgroup_can_attach,
5707 	.cancel_attach = mem_cgroup_cancel_attach,
5708 	.post_attach = mem_cgroup_move_task,
5709 	.bind = mem_cgroup_bind,
5710 	.dfl_cftypes = memory_files,
5711 	.legacy_cftypes = mem_cgroup_legacy_files,
5712 	.early_init = 0,
5713 };
5714 
5715 /**
5716  * mem_cgroup_protected - check if memory consumption is in the normal range
5717  * @root: the top ancestor of the sub-tree being checked
5718  * @memcg: the memory cgroup to check
5719  *
5720  * WARNING: This function is not stateless! It can only be used as part
5721  *          of a top-down tree iteration, not for isolated queries.
5722  *
5723  * Returns one of the following:
5724  *   MEMCG_PROT_NONE: cgroup memory is not protected
5725  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
5726  *     an unprotected supply of reclaimable memory from other cgroups.
5727  *   MEMCG_PROT_MIN: cgroup memory is protected
5728  *
5729  * @root is exclusive; it is never protected when looked at directly
5730  *
5731  * To provide a proper hierarchical behavior, effective memory.min/low values
5732  * are used. Below is the description of how effective memory.low is calculated.
5733  * Effective memory.min values is calculated in the same way.
5734  *
5735  * Effective memory.low is always equal or less than the original memory.low.
5736  * If there is no memory.low overcommittment (which is always true for
5737  * top-level memory cgroups), these two values are equal.
5738  * Otherwise, it's a part of parent's effective memory.low,
5739  * calculated as a cgroup's memory.low usage divided by sum of sibling's
5740  * memory.low usages, where memory.low usage is the size of actually
5741  * protected memory.
5742  *
5743  *                                             low_usage
5744  * elow = min( memory.low, parent->elow * ------------------ ),
5745  *                                        siblings_low_usage
5746  *
5747  *             | memory.current, if memory.current < memory.low
5748  * low_usage = |
5749 	       | 0, otherwise.
5750  *
5751  *
5752  * Such definition of the effective memory.low provides the expected
5753  * hierarchical behavior: parent's memory.low value is limiting
5754  * children, unprotected memory is reclaimed first and cgroups,
5755  * which are not using their guarantee do not affect actual memory
5756  * distribution.
5757  *
5758  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5759  *
5760  *     A      A/memory.low = 2G, A/memory.current = 6G
5761  *    //\\
5762  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
5763  *            C/memory.low = 1G  C/memory.current = 2G
5764  *            D/memory.low = 0   D/memory.current = 2G
5765  *            E/memory.low = 10G E/memory.current = 0
5766  *
5767  * and the memory pressure is applied, the following memory distribution
5768  * is expected (approximately):
5769  *
5770  *     A/memory.current = 2G
5771  *
5772  *     B/memory.current = 1.3G
5773  *     C/memory.current = 0.6G
5774  *     D/memory.current = 0
5775  *     E/memory.current = 0
5776  *
5777  * These calculations require constant tracking of the actual low usages
5778  * (see propagate_protected_usage()), as well as recursive calculation of
5779  * effective memory.low values. But as we do call mem_cgroup_protected()
5780  * path for each memory cgroup top-down from the reclaim,
5781  * it's possible to optimize this part, and save calculated elow
5782  * for next usage. This part is intentionally racy, but it's ok,
5783  * as memory.low is a best-effort mechanism.
5784  */
5785 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5786 						struct mem_cgroup *memcg)
5787 {
5788 	struct mem_cgroup *parent;
5789 	unsigned long emin, parent_emin;
5790 	unsigned long elow, parent_elow;
5791 	unsigned long usage;
5792 
5793 	if (mem_cgroup_disabled())
5794 		return MEMCG_PROT_NONE;
5795 
5796 	if (!root)
5797 		root = root_mem_cgroup;
5798 	if (memcg == root)
5799 		return MEMCG_PROT_NONE;
5800 
5801 	usage = page_counter_read(&memcg->memory);
5802 	if (!usage)
5803 		return MEMCG_PROT_NONE;
5804 
5805 	emin = memcg->memory.min;
5806 	elow = memcg->memory.low;
5807 
5808 	parent = parent_mem_cgroup(memcg);
5809 	/* No parent means a non-hierarchical mode on v1 memcg */
5810 	if (!parent)
5811 		return MEMCG_PROT_NONE;
5812 
5813 	if (parent == root)
5814 		goto exit;
5815 
5816 	parent_emin = READ_ONCE(parent->memory.emin);
5817 	emin = min(emin, parent_emin);
5818 	if (emin && parent_emin) {
5819 		unsigned long min_usage, siblings_min_usage;
5820 
5821 		min_usage = min(usage, memcg->memory.min);
5822 		siblings_min_usage = atomic_long_read(
5823 			&parent->memory.children_min_usage);
5824 
5825 		if (min_usage && siblings_min_usage)
5826 			emin = min(emin, parent_emin * min_usage /
5827 				   siblings_min_usage);
5828 	}
5829 
5830 	parent_elow = READ_ONCE(parent->memory.elow);
5831 	elow = min(elow, parent_elow);
5832 	if (elow && parent_elow) {
5833 		unsigned long low_usage, siblings_low_usage;
5834 
5835 		low_usage = min(usage, memcg->memory.low);
5836 		siblings_low_usage = atomic_long_read(
5837 			&parent->memory.children_low_usage);
5838 
5839 		if (low_usage && siblings_low_usage)
5840 			elow = min(elow, parent_elow * low_usage /
5841 				   siblings_low_usage);
5842 	}
5843 
5844 exit:
5845 	memcg->memory.emin = emin;
5846 	memcg->memory.elow = elow;
5847 
5848 	if (usage <= emin)
5849 		return MEMCG_PROT_MIN;
5850 	else if (usage <= elow)
5851 		return MEMCG_PROT_LOW;
5852 	else
5853 		return MEMCG_PROT_NONE;
5854 }
5855 
5856 /**
5857  * mem_cgroup_try_charge - try charging a page
5858  * @page: page to charge
5859  * @mm: mm context of the victim
5860  * @gfp_mask: reclaim mode
5861  * @memcgp: charged memcg return
5862  * @compound: charge the page as compound or small page
5863  *
5864  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5865  * pages according to @gfp_mask if necessary.
5866  *
5867  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5868  * Otherwise, an error code is returned.
5869  *
5870  * After page->mapping has been set up, the caller must finalize the
5871  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5872  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5873  */
5874 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5875 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5876 			  bool compound)
5877 {
5878 	struct mem_cgroup *memcg = NULL;
5879 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5880 	int ret = 0;
5881 
5882 	if (mem_cgroup_disabled())
5883 		goto out;
5884 
5885 	if (PageSwapCache(page)) {
5886 		/*
5887 		 * Every swap fault against a single page tries to charge the
5888 		 * page, bail as early as possible.  shmem_unuse() encounters
5889 		 * already charged pages, too.  The USED bit is protected by
5890 		 * the page lock, which serializes swap cache removal, which
5891 		 * in turn serializes uncharging.
5892 		 */
5893 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5894 		if (compound_head(page)->mem_cgroup)
5895 			goto out;
5896 
5897 		if (do_swap_account) {
5898 			swp_entry_t ent = { .val = page_private(page), };
5899 			unsigned short id = lookup_swap_cgroup_id(ent);
5900 
5901 			rcu_read_lock();
5902 			memcg = mem_cgroup_from_id(id);
5903 			if (memcg && !css_tryget_online(&memcg->css))
5904 				memcg = NULL;
5905 			rcu_read_unlock();
5906 		}
5907 	}
5908 
5909 	if (!memcg)
5910 		memcg = get_mem_cgroup_from_mm(mm);
5911 
5912 	ret = try_charge(memcg, gfp_mask, nr_pages);
5913 
5914 	css_put(&memcg->css);
5915 out:
5916 	*memcgp = memcg;
5917 	return ret;
5918 }
5919 
5920 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5921 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5922 			  bool compound)
5923 {
5924 	struct mem_cgroup *memcg;
5925 	int ret;
5926 
5927 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5928 	memcg = *memcgp;
5929 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5930 	return ret;
5931 }
5932 
5933 /**
5934  * mem_cgroup_commit_charge - commit a page charge
5935  * @page: page to charge
5936  * @memcg: memcg to charge the page to
5937  * @lrucare: page might be on LRU already
5938  * @compound: charge the page as compound or small page
5939  *
5940  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5941  * after page->mapping has been set up.  This must happen atomically
5942  * as part of the page instantiation, i.e. under the page table lock
5943  * for anonymous pages, under the page lock for page and swap cache.
5944  *
5945  * In addition, the page must not be on the LRU during the commit, to
5946  * prevent racing with task migration.  If it might be, use @lrucare.
5947  *
5948  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5949  */
5950 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5951 			      bool lrucare, bool compound)
5952 {
5953 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5954 
5955 	VM_BUG_ON_PAGE(!page->mapping, page);
5956 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5957 
5958 	if (mem_cgroup_disabled())
5959 		return;
5960 	/*
5961 	 * Swap faults will attempt to charge the same page multiple
5962 	 * times.  But reuse_swap_page() might have removed the page
5963 	 * from swapcache already, so we can't check PageSwapCache().
5964 	 */
5965 	if (!memcg)
5966 		return;
5967 
5968 	commit_charge(page, memcg, lrucare);
5969 
5970 	local_irq_disable();
5971 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5972 	memcg_check_events(memcg, page);
5973 	local_irq_enable();
5974 
5975 	if (do_memsw_account() && PageSwapCache(page)) {
5976 		swp_entry_t entry = { .val = page_private(page) };
5977 		/*
5978 		 * The swap entry might not get freed for a long time,
5979 		 * let's not wait for it.  The page already received a
5980 		 * memory+swap charge, drop the swap entry duplicate.
5981 		 */
5982 		mem_cgroup_uncharge_swap(entry, nr_pages);
5983 	}
5984 }
5985 
5986 /**
5987  * mem_cgroup_cancel_charge - cancel a page charge
5988  * @page: page to charge
5989  * @memcg: memcg to charge the page to
5990  * @compound: charge the page as compound or small page
5991  *
5992  * Cancel a charge transaction started by mem_cgroup_try_charge().
5993  */
5994 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5995 		bool compound)
5996 {
5997 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5998 
5999 	if (mem_cgroup_disabled())
6000 		return;
6001 	/*
6002 	 * Swap faults will attempt to charge the same page multiple
6003 	 * times.  But reuse_swap_page() might have removed the page
6004 	 * from swapcache already, so we can't check PageSwapCache().
6005 	 */
6006 	if (!memcg)
6007 		return;
6008 
6009 	cancel_charge(memcg, nr_pages);
6010 }
6011 
6012 struct uncharge_gather {
6013 	struct mem_cgroup *memcg;
6014 	unsigned long pgpgout;
6015 	unsigned long nr_anon;
6016 	unsigned long nr_file;
6017 	unsigned long nr_kmem;
6018 	unsigned long nr_huge;
6019 	unsigned long nr_shmem;
6020 	struct page *dummy_page;
6021 };
6022 
6023 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6024 {
6025 	memset(ug, 0, sizeof(*ug));
6026 }
6027 
6028 static void uncharge_batch(const struct uncharge_gather *ug)
6029 {
6030 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6031 	unsigned long flags;
6032 
6033 	if (!mem_cgroup_is_root(ug->memcg)) {
6034 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6035 		if (do_memsw_account())
6036 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6037 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6038 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6039 		memcg_oom_recover(ug->memcg);
6040 	}
6041 
6042 	local_irq_save(flags);
6043 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6044 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6045 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6046 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6047 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6048 	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
6049 	memcg_check_events(ug->memcg, ug->dummy_page);
6050 	local_irq_restore(flags);
6051 
6052 	if (!mem_cgroup_is_root(ug->memcg))
6053 		css_put_many(&ug->memcg->css, nr_pages);
6054 }
6055 
6056 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6057 {
6058 	VM_BUG_ON_PAGE(PageLRU(page), page);
6059 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6060 			!PageHWPoison(page) , page);
6061 
6062 	if (!page->mem_cgroup)
6063 		return;
6064 
6065 	/*
6066 	 * Nobody should be changing or seriously looking at
6067 	 * page->mem_cgroup at this point, we have fully
6068 	 * exclusive access to the page.
6069 	 */
6070 
6071 	if (ug->memcg != page->mem_cgroup) {
6072 		if (ug->memcg) {
6073 			uncharge_batch(ug);
6074 			uncharge_gather_clear(ug);
6075 		}
6076 		ug->memcg = page->mem_cgroup;
6077 	}
6078 
6079 	if (!PageKmemcg(page)) {
6080 		unsigned int nr_pages = 1;
6081 
6082 		if (PageTransHuge(page)) {
6083 			nr_pages <<= compound_order(page);
6084 			ug->nr_huge += nr_pages;
6085 		}
6086 		if (PageAnon(page))
6087 			ug->nr_anon += nr_pages;
6088 		else {
6089 			ug->nr_file += nr_pages;
6090 			if (PageSwapBacked(page))
6091 				ug->nr_shmem += nr_pages;
6092 		}
6093 		ug->pgpgout++;
6094 	} else {
6095 		ug->nr_kmem += 1 << compound_order(page);
6096 		__ClearPageKmemcg(page);
6097 	}
6098 
6099 	ug->dummy_page = page;
6100 	page->mem_cgroup = NULL;
6101 }
6102 
6103 static void uncharge_list(struct list_head *page_list)
6104 {
6105 	struct uncharge_gather ug;
6106 	struct list_head *next;
6107 
6108 	uncharge_gather_clear(&ug);
6109 
6110 	/*
6111 	 * Note that the list can be a single page->lru; hence the
6112 	 * do-while loop instead of a simple list_for_each_entry().
6113 	 */
6114 	next = page_list->next;
6115 	do {
6116 		struct page *page;
6117 
6118 		page = list_entry(next, struct page, lru);
6119 		next = page->lru.next;
6120 
6121 		uncharge_page(page, &ug);
6122 	} while (next != page_list);
6123 
6124 	if (ug.memcg)
6125 		uncharge_batch(&ug);
6126 }
6127 
6128 /**
6129  * mem_cgroup_uncharge - uncharge a page
6130  * @page: page to uncharge
6131  *
6132  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6133  * mem_cgroup_commit_charge().
6134  */
6135 void mem_cgroup_uncharge(struct page *page)
6136 {
6137 	struct uncharge_gather ug;
6138 
6139 	if (mem_cgroup_disabled())
6140 		return;
6141 
6142 	/* Don't touch page->lru of any random page, pre-check: */
6143 	if (!page->mem_cgroup)
6144 		return;
6145 
6146 	uncharge_gather_clear(&ug);
6147 	uncharge_page(page, &ug);
6148 	uncharge_batch(&ug);
6149 }
6150 
6151 /**
6152  * mem_cgroup_uncharge_list - uncharge a list of page
6153  * @page_list: list of pages to uncharge
6154  *
6155  * Uncharge a list of pages previously charged with
6156  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6157  */
6158 void mem_cgroup_uncharge_list(struct list_head *page_list)
6159 {
6160 	if (mem_cgroup_disabled())
6161 		return;
6162 
6163 	if (!list_empty(page_list))
6164 		uncharge_list(page_list);
6165 }
6166 
6167 /**
6168  * mem_cgroup_migrate - charge a page's replacement
6169  * @oldpage: currently circulating page
6170  * @newpage: replacement page
6171  *
6172  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6173  * be uncharged upon free.
6174  *
6175  * Both pages must be locked, @newpage->mapping must be set up.
6176  */
6177 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6178 {
6179 	struct mem_cgroup *memcg;
6180 	unsigned int nr_pages;
6181 	bool compound;
6182 	unsigned long flags;
6183 
6184 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6185 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6186 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6187 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6188 		       newpage);
6189 
6190 	if (mem_cgroup_disabled())
6191 		return;
6192 
6193 	/* Page cache replacement: new page already charged? */
6194 	if (newpage->mem_cgroup)
6195 		return;
6196 
6197 	/* Swapcache readahead pages can get replaced before being charged */
6198 	memcg = oldpage->mem_cgroup;
6199 	if (!memcg)
6200 		return;
6201 
6202 	/* Force-charge the new page. The old one will be freed soon */
6203 	compound = PageTransHuge(newpage);
6204 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6205 
6206 	page_counter_charge(&memcg->memory, nr_pages);
6207 	if (do_memsw_account())
6208 		page_counter_charge(&memcg->memsw, nr_pages);
6209 	css_get_many(&memcg->css, nr_pages);
6210 
6211 	commit_charge(newpage, memcg, false);
6212 
6213 	local_irq_save(flags);
6214 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6215 	memcg_check_events(memcg, newpage);
6216 	local_irq_restore(flags);
6217 }
6218 
6219 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6220 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6221 
6222 void mem_cgroup_sk_alloc(struct sock *sk)
6223 {
6224 	struct mem_cgroup *memcg;
6225 
6226 	if (!mem_cgroup_sockets_enabled)
6227 		return;
6228 
6229 	/*
6230 	 * Socket cloning can throw us here with sk_memcg already
6231 	 * filled. It won't however, necessarily happen from
6232 	 * process context. So the test for root memcg given
6233 	 * the current task's memcg won't help us in this case.
6234 	 *
6235 	 * Respecting the original socket's memcg is a better
6236 	 * decision in this case.
6237 	 */
6238 	if (sk->sk_memcg) {
6239 		css_get(&sk->sk_memcg->css);
6240 		return;
6241 	}
6242 
6243 	rcu_read_lock();
6244 	memcg = mem_cgroup_from_task(current);
6245 	if (memcg == root_mem_cgroup)
6246 		goto out;
6247 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6248 		goto out;
6249 	if (css_tryget_online(&memcg->css))
6250 		sk->sk_memcg = memcg;
6251 out:
6252 	rcu_read_unlock();
6253 }
6254 
6255 void mem_cgroup_sk_free(struct sock *sk)
6256 {
6257 	if (sk->sk_memcg)
6258 		css_put(&sk->sk_memcg->css);
6259 }
6260 
6261 /**
6262  * mem_cgroup_charge_skmem - charge socket memory
6263  * @memcg: memcg to charge
6264  * @nr_pages: number of pages to charge
6265  *
6266  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6267  * @memcg's configured limit, %false if the charge had to be forced.
6268  */
6269 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6270 {
6271 	gfp_t gfp_mask = GFP_KERNEL;
6272 
6273 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6274 		struct page_counter *fail;
6275 
6276 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6277 			memcg->tcpmem_pressure = 0;
6278 			return true;
6279 		}
6280 		page_counter_charge(&memcg->tcpmem, nr_pages);
6281 		memcg->tcpmem_pressure = 1;
6282 		return false;
6283 	}
6284 
6285 	/* Don't block in the packet receive path */
6286 	if (in_softirq())
6287 		gfp_mask = GFP_NOWAIT;
6288 
6289 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6290 
6291 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6292 		return true;
6293 
6294 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6295 	return false;
6296 }
6297 
6298 /**
6299  * mem_cgroup_uncharge_skmem - uncharge socket memory
6300  * @memcg: memcg to uncharge
6301  * @nr_pages: number of pages to uncharge
6302  */
6303 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6304 {
6305 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6306 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6307 		return;
6308 	}
6309 
6310 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6311 
6312 	refill_stock(memcg, nr_pages);
6313 }
6314 
6315 static int __init cgroup_memory(char *s)
6316 {
6317 	char *token;
6318 
6319 	while ((token = strsep(&s, ",")) != NULL) {
6320 		if (!*token)
6321 			continue;
6322 		if (!strcmp(token, "nosocket"))
6323 			cgroup_memory_nosocket = true;
6324 		if (!strcmp(token, "nokmem"))
6325 			cgroup_memory_nokmem = true;
6326 	}
6327 	return 0;
6328 }
6329 __setup("cgroup.memory=", cgroup_memory);
6330 
6331 /*
6332  * subsys_initcall() for memory controller.
6333  *
6334  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6335  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6336  * basically everything that doesn't depend on a specific mem_cgroup structure
6337  * should be initialized from here.
6338  */
6339 static int __init mem_cgroup_init(void)
6340 {
6341 	int cpu, node;
6342 
6343 #ifdef CONFIG_MEMCG_KMEM
6344 	/*
6345 	 * Kmem cache creation is mostly done with the slab_mutex held,
6346 	 * so use a workqueue with limited concurrency to avoid stalling
6347 	 * all worker threads in case lots of cgroups are created and
6348 	 * destroyed simultaneously.
6349 	 */
6350 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6351 	BUG_ON(!memcg_kmem_cache_wq);
6352 #endif
6353 
6354 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6355 				  memcg_hotplug_cpu_dead);
6356 
6357 	for_each_possible_cpu(cpu)
6358 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6359 			  drain_local_stock);
6360 
6361 	for_each_node(node) {
6362 		struct mem_cgroup_tree_per_node *rtpn;
6363 
6364 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6365 				    node_online(node) ? node : NUMA_NO_NODE);
6366 
6367 		rtpn->rb_root = RB_ROOT;
6368 		rtpn->rb_rightmost = NULL;
6369 		spin_lock_init(&rtpn->lock);
6370 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6371 	}
6372 
6373 	return 0;
6374 }
6375 subsys_initcall(mem_cgroup_init);
6376 
6377 #ifdef CONFIG_MEMCG_SWAP
6378 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6379 {
6380 	while (!atomic_inc_not_zero(&memcg->id.ref)) {
6381 		/*
6382 		 * The root cgroup cannot be destroyed, so it's refcount must
6383 		 * always be >= 1.
6384 		 */
6385 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6386 			VM_BUG_ON(1);
6387 			break;
6388 		}
6389 		memcg = parent_mem_cgroup(memcg);
6390 		if (!memcg)
6391 			memcg = root_mem_cgroup;
6392 	}
6393 	return memcg;
6394 }
6395 
6396 /**
6397  * mem_cgroup_swapout - transfer a memsw charge to swap
6398  * @page: page whose memsw charge to transfer
6399  * @entry: swap entry to move the charge to
6400  *
6401  * Transfer the memsw charge of @page to @entry.
6402  */
6403 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6404 {
6405 	struct mem_cgroup *memcg, *swap_memcg;
6406 	unsigned int nr_entries;
6407 	unsigned short oldid;
6408 
6409 	VM_BUG_ON_PAGE(PageLRU(page), page);
6410 	VM_BUG_ON_PAGE(page_count(page), page);
6411 
6412 	if (!do_memsw_account())
6413 		return;
6414 
6415 	memcg = page->mem_cgroup;
6416 
6417 	/* Readahead page, never charged */
6418 	if (!memcg)
6419 		return;
6420 
6421 	/*
6422 	 * In case the memcg owning these pages has been offlined and doesn't
6423 	 * have an ID allocated to it anymore, charge the closest online
6424 	 * ancestor for the swap instead and transfer the memory+swap charge.
6425 	 */
6426 	swap_memcg = mem_cgroup_id_get_online(memcg);
6427 	nr_entries = hpage_nr_pages(page);
6428 	/* Get references for the tail pages, too */
6429 	if (nr_entries > 1)
6430 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6431 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6432 				   nr_entries);
6433 	VM_BUG_ON_PAGE(oldid, page);
6434 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6435 
6436 	page->mem_cgroup = NULL;
6437 
6438 	if (!mem_cgroup_is_root(memcg))
6439 		page_counter_uncharge(&memcg->memory, nr_entries);
6440 
6441 	if (memcg != swap_memcg) {
6442 		if (!mem_cgroup_is_root(swap_memcg))
6443 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6444 		page_counter_uncharge(&memcg->memsw, nr_entries);
6445 	}
6446 
6447 	/*
6448 	 * Interrupts should be disabled here because the caller holds the
6449 	 * i_pages lock which is taken with interrupts-off. It is
6450 	 * important here to have the interrupts disabled because it is the
6451 	 * only synchronisation we have for updating the per-CPU variables.
6452 	 */
6453 	VM_BUG_ON(!irqs_disabled());
6454 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6455 				     -nr_entries);
6456 	memcg_check_events(memcg, page);
6457 
6458 	if (!mem_cgroup_is_root(memcg))
6459 		css_put_many(&memcg->css, nr_entries);
6460 }
6461 
6462 /**
6463  * mem_cgroup_try_charge_swap - try charging swap space for a page
6464  * @page: page being added to swap
6465  * @entry: swap entry to charge
6466  *
6467  * Try to charge @page's memcg for the swap space at @entry.
6468  *
6469  * Returns 0 on success, -ENOMEM on failure.
6470  */
6471 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6472 {
6473 	unsigned int nr_pages = hpage_nr_pages(page);
6474 	struct page_counter *counter;
6475 	struct mem_cgroup *memcg;
6476 	unsigned short oldid;
6477 
6478 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6479 		return 0;
6480 
6481 	memcg = page->mem_cgroup;
6482 
6483 	/* Readahead page, never charged */
6484 	if (!memcg)
6485 		return 0;
6486 
6487 	if (!entry.val) {
6488 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6489 		return 0;
6490 	}
6491 
6492 	memcg = mem_cgroup_id_get_online(memcg);
6493 
6494 	if (!mem_cgroup_is_root(memcg) &&
6495 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6496 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6497 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6498 		mem_cgroup_id_put(memcg);
6499 		return -ENOMEM;
6500 	}
6501 
6502 	/* Get references for the tail pages, too */
6503 	if (nr_pages > 1)
6504 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6505 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6506 	VM_BUG_ON_PAGE(oldid, page);
6507 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6508 
6509 	return 0;
6510 }
6511 
6512 /**
6513  * mem_cgroup_uncharge_swap - uncharge swap space
6514  * @entry: swap entry to uncharge
6515  * @nr_pages: the amount of swap space to uncharge
6516  */
6517 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6518 {
6519 	struct mem_cgroup *memcg;
6520 	unsigned short id;
6521 
6522 	if (!do_swap_account)
6523 		return;
6524 
6525 	id = swap_cgroup_record(entry, 0, nr_pages);
6526 	rcu_read_lock();
6527 	memcg = mem_cgroup_from_id(id);
6528 	if (memcg) {
6529 		if (!mem_cgroup_is_root(memcg)) {
6530 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6531 				page_counter_uncharge(&memcg->swap, nr_pages);
6532 			else
6533 				page_counter_uncharge(&memcg->memsw, nr_pages);
6534 		}
6535 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6536 		mem_cgroup_id_put_many(memcg, nr_pages);
6537 	}
6538 	rcu_read_unlock();
6539 }
6540 
6541 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6542 {
6543 	long nr_swap_pages = get_nr_swap_pages();
6544 
6545 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6546 		return nr_swap_pages;
6547 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6548 		nr_swap_pages = min_t(long, nr_swap_pages,
6549 				      READ_ONCE(memcg->swap.max) -
6550 				      page_counter_read(&memcg->swap));
6551 	return nr_swap_pages;
6552 }
6553 
6554 bool mem_cgroup_swap_full(struct page *page)
6555 {
6556 	struct mem_cgroup *memcg;
6557 
6558 	VM_BUG_ON_PAGE(!PageLocked(page), page);
6559 
6560 	if (vm_swap_full())
6561 		return true;
6562 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6563 		return false;
6564 
6565 	memcg = page->mem_cgroup;
6566 	if (!memcg)
6567 		return false;
6568 
6569 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6570 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6571 			return true;
6572 
6573 	return false;
6574 }
6575 
6576 /* for remember boot option*/
6577 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6578 static int really_do_swap_account __initdata = 1;
6579 #else
6580 static int really_do_swap_account __initdata;
6581 #endif
6582 
6583 static int __init enable_swap_account(char *s)
6584 {
6585 	if (!strcmp(s, "1"))
6586 		really_do_swap_account = 1;
6587 	else if (!strcmp(s, "0"))
6588 		really_do_swap_account = 0;
6589 	return 1;
6590 }
6591 __setup("swapaccount=", enable_swap_account);
6592 
6593 static u64 swap_current_read(struct cgroup_subsys_state *css,
6594 			     struct cftype *cft)
6595 {
6596 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6597 
6598 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6599 }
6600 
6601 static int swap_max_show(struct seq_file *m, void *v)
6602 {
6603 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6604 	unsigned long max = READ_ONCE(memcg->swap.max);
6605 
6606 	if (max == PAGE_COUNTER_MAX)
6607 		seq_puts(m, "max\n");
6608 	else
6609 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6610 
6611 	return 0;
6612 }
6613 
6614 static ssize_t swap_max_write(struct kernfs_open_file *of,
6615 			      char *buf, size_t nbytes, loff_t off)
6616 {
6617 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6618 	unsigned long max;
6619 	int err;
6620 
6621 	buf = strstrip(buf);
6622 	err = page_counter_memparse(buf, "max", &max);
6623 	if (err)
6624 		return err;
6625 
6626 	xchg(&memcg->swap.max, max);
6627 
6628 	return nbytes;
6629 }
6630 
6631 static int swap_events_show(struct seq_file *m, void *v)
6632 {
6633 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6634 
6635 	seq_printf(m, "max %lu\n",
6636 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6637 	seq_printf(m, "fail %lu\n",
6638 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6639 
6640 	return 0;
6641 }
6642 
6643 static struct cftype swap_files[] = {
6644 	{
6645 		.name = "swap.current",
6646 		.flags = CFTYPE_NOT_ON_ROOT,
6647 		.read_u64 = swap_current_read,
6648 	},
6649 	{
6650 		.name = "swap.max",
6651 		.flags = CFTYPE_NOT_ON_ROOT,
6652 		.seq_show = swap_max_show,
6653 		.write = swap_max_write,
6654 	},
6655 	{
6656 		.name = "swap.events",
6657 		.flags = CFTYPE_NOT_ON_ROOT,
6658 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
6659 		.seq_show = swap_events_show,
6660 	},
6661 	{ }	/* terminate */
6662 };
6663 
6664 static struct cftype memsw_cgroup_files[] = {
6665 	{
6666 		.name = "memsw.usage_in_bytes",
6667 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6668 		.read_u64 = mem_cgroup_read_u64,
6669 	},
6670 	{
6671 		.name = "memsw.max_usage_in_bytes",
6672 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6673 		.write = mem_cgroup_reset,
6674 		.read_u64 = mem_cgroup_read_u64,
6675 	},
6676 	{
6677 		.name = "memsw.limit_in_bytes",
6678 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6679 		.write = mem_cgroup_write,
6680 		.read_u64 = mem_cgroup_read_u64,
6681 	},
6682 	{
6683 		.name = "memsw.failcnt",
6684 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6685 		.write = mem_cgroup_reset,
6686 		.read_u64 = mem_cgroup_read_u64,
6687 	},
6688 	{ },	/* terminate */
6689 };
6690 
6691 static int __init mem_cgroup_swap_init(void)
6692 {
6693 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6694 		do_swap_account = 1;
6695 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6696 					       swap_files));
6697 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6698 						  memsw_cgroup_files));
6699 	}
6700 	return 0;
6701 }
6702 subsys_initcall(mem_cgroup_swap_init);
6703 
6704 #endif /* CONFIG_MEMCG_SWAP */
6705