xref: /openbmc/linux/mm/memcontrol.c (revision 089a49b6)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
61 
62 #include <asm/uaccess.h>
63 
64 #include <trace/events/vmscan.h>
65 
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
68 
69 #define MEM_CGROUP_RECLAIM_RETRIES	5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71 
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
75 
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
82 
83 #else
84 #define do_swap_account		0
85 #endif
86 
87 
88 static const char * const mem_cgroup_stat_names[] = {
89 	"cache",
90 	"rss",
91 	"rss_huge",
92 	"mapped_file",
93 	"writeback",
94 	"swap",
95 };
96 
97 enum mem_cgroup_events_index {
98 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
99 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
100 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
101 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 	MEM_CGROUP_EVENTS_NSTATS,
103 };
104 
105 static const char * const mem_cgroup_events_names[] = {
106 	"pgpgin",
107 	"pgpgout",
108 	"pgfault",
109 	"pgmajfault",
110 };
111 
112 static const char * const mem_cgroup_lru_names[] = {
113 	"inactive_anon",
114 	"active_anon",
115 	"inactive_file",
116 	"active_file",
117 	"unevictable",
118 };
119 
120 /*
121  * Per memcg event counter is incremented at every pagein/pageout. With THP,
122  * it will be incremated by the number of pages. This counter is used for
123  * for trigger some periodic events. This is straightforward and better
124  * than using jiffies etc. to handle periodic memcg event.
125  */
126 enum mem_cgroup_events_target {
127 	MEM_CGROUP_TARGET_THRESH,
128 	MEM_CGROUP_TARGET_SOFTLIMIT,
129 	MEM_CGROUP_TARGET_NUMAINFO,
130 	MEM_CGROUP_NTARGETS,
131 };
132 #define THRESHOLDS_EVENTS_TARGET 128
133 #define SOFTLIMIT_EVENTS_TARGET 1024
134 #define NUMAINFO_EVENTS_TARGET	1024
135 
136 struct mem_cgroup_stat_cpu {
137 	long count[MEM_CGROUP_STAT_NSTATS];
138 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
139 	unsigned long nr_page_events;
140 	unsigned long targets[MEM_CGROUP_NTARGETS];
141 };
142 
143 struct mem_cgroup_reclaim_iter {
144 	/*
145 	 * last scanned hierarchy member. Valid only if last_dead_count
146 	 * matches memcg->dead_count of the hierarchy root group.
147 	 */
148 	struct mem_cgroup *last_visited;
149 	unsigned long last_dead_count;
150 
151 	/* scan generation, increased every round-trip */
152 	unsigned int generation;
153 };
154 
155 /*
156  * per-zone information in memory controller.
157  */
158 struct mem_cgroup_per_zone {
159 	struct lruvec		lruvec;
160 	unsigned long		lru_size[NR_LRU_LISTS];
161 
162 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
163 
164 	struct rb_node		tree_node;	/* RB tree node */
165 	unsigned long long	usage_in_excess;/* Set to the value by which */
166 						/* the soft limit is exceeded*/
167 	bool			on_tree;
168 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
169 						/* use container_of	   */
170 };
171 
172 struct mem_cgroup_per_node {
173 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
174 };
175 
176 /*
177  * Cgroups above their limits are maintained in a RB-Tree, independent of
178  * their hierarchy representation
179  */
180 
181 struct mem_cgroup_tree_per_zone {
182 	struct rb_root rb_root;
183 	spinlock_t lock;
184 };
185 
186 struct mem_cgroup_tree_per_node {
187 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
188 };
189 
190 struct mem_cgroup_tree {
191 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
192 };
193 
194 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
195 
196 struct mem_cgroup_threshold {
197 	struct eventfd_ctx *eventfd;
198 	u64 threshold;
199 };
200 
201 /* For threshold */
202 struct mem_cgroup_threshold_ary {
203 	/* An array index points to threshold just below or equal to usage. */
204 	int current_threshold;
205 	/* Size of entries[] */
206 	unsigned int size;
207 	/* Array of thresholds */
208 	struct mem_cgroup_threshold entries[0];
209 };
210 
211 struct mem_cgroup_thresholds {
212 	/* Primary thresholds array */
213 	struct mem_cgroup_threshold_ary *primary;
214 	/*
215 	 * Spare threshold array.
216 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
217 	 * It must be able to store at least primary->size - 1 entries.
218 	 */
219 	struct mem_cgroup_threshold_ary *spare;
220 };
221 
222 /* for OOM */
223 struct mem_cgroup_eventfd_list {
224 	struct list_head list;
225 	struct eventfd_ctx *eventfd;
226 };
227 
228 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
229 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
230 
231 /*
232  * The memory controller data structure. The memory controller controls both
233  * page cache and RSS per cgroup. We would eventually like to provide
234  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
235  * to help the administrator determine what knobs to tune.
236  *
237  * TODO: Add a water mark for the memory controller. Reclaim will begin when
238  * we hit the water mark. May be even add a low water mark, such that
239  * no reclaim occurs from a cgroup at it's low water mark, this is
240  * a feature that will be implemented much later in the future.
241  */
242 struct mem_cgroup {
243 	struct cgroup_subsys_state css;
244 	/*
245 	 * the counter to account for memory usage
246 	 */
247 	struct res_counter res;
248 
249 	/* vmpressure notifications */
250 	struct vmpressure vmpressure;
251 
252 	/*
253 	 * the counter to account for mem+swap usage.
254 	 */
255 	struct res_counter memsw;
256 
257 	/*
258 	 * the counter to account for kernel memory usage.
259 	 */
260 	struct res_counter kmem;
261 	/*
262 	 * Should the accounting and control be hierarchical, per subtree?
263 	 */
264 	bool use_hierarchy;
265 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
266 
267 	bool		oom_lock;
268 	atomic_t	under_oom;
269 	atomic_t	oom_wakeups;
270 
271 	int	swappiness;
272 	/* OOM-Killer disable */
273 	int		oom_kill_disable;
274 
275 	/* set when res.limit == memsw.limit */
276 	bool		memsw_is_minimum;
277 
278 	/* protect arrays of thresholds */
279 	struct mutex thresholds_lock;
280 
281 	/* thresholds for memory usage. RCU-protected */
282 	struct mem_cgroup_thresholds thresholds;
283 
284 	/* thresholds for mem+swap usage. RCU-protected */
285 	struct mem_cgroup_thresholds memsw_thresholds;
286 
287 	/* For oom notifier event fd */
288 	struct list_head oom_notify;
289 
290 	/*
291 	 * Should we move charges of a task when a task is moved into this
292 	 * mem_cgroup ? And what type of charges should we move ?
293 	 */
294 	unsigned long move_charge_at_immigrate;
295 	/*
296 	 * set > 0 if pages under this cgroup are moving to other cgroup.
297 	 */
298 	atomic_t	moving_account;
299 	/* taken only while moving_account > 0 */
300 	spinlock_t	move_lock;
301 	/*
302 	 * percpu counter.
303 	 */
304 	struct mem_cgroup_stat_cpu __percpu *stat;
305 	/*
306 	 * used when a cpu is offlined or other synchronizations
307 	 * See mem_cgroup_read_stat().
308 	 */
309 	struct mem_cgroup_stat_cpu nocpu_base;
310 	spinlock_t pcp_counter_lock;
311 
312 	atomic_t	dead_count;
313 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
314 	struct tcp_memcontrol tcp_mem;
315 #endif
316 #if defined(CONFIG_MEMCG_KMEM)
317 	/* analogous to slab_common's slab_caches list. per-memcg */
318 	struct list_head memcg_slab_caches;
319 	/* Not a spinlock, we can take a lot of time walking the list */
320 	struct mutex slab_caches_mutex;
321         /* Index in the kmem_cache->memcg_params->memcg_caches array */
322 	int kmemcg_id;
323 #endif
324 
325 	int last_scanned_node;
326 #if MAX_NUMNODES > 1
327 	nodemask_t	scan_nodes;
328 	atomic_t	numainfo_events;
329 	atomic_t	numainfo_updating;
330 #endif
331 
332 	struct mem_cgroup_per_node *nodeinfo[0];
333 	/* WARNING: nodeinfo must be the last member here */
334 };
335 
336 static size_t memcg_size(void)
337 {
338 	return sizeof(struct mem_cgroup) +
339 		nr_node_ids * sizeof(struct mem_cgroup_per_node);
340 }
341 
342 /* internal only representation about the status of kmem accounting. */
343 enum {
344 	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
345 	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
346 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
347 };
348 
349 /* We account when limit is on, but only after call sites are patched */
350 #define KMEM_ACCOUNTED_MASK \
351 		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
352 
353 #ifdef CONFIG_MEMCG_KMEM
354 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
355 {
356 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
357 }
358 
359 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
360 {
361 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
362 }
363 
364 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
365 {
366 	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
367 }
368 
369 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
370 {
371 	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
372 }
373 
374 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
375 {
376 	/*
377 	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
378 	 * will call css_put() if it sees the memcg is dead.
379 	 */
380 	smp_wmb();
381 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
382 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
383 }
384 
385 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
386 {
387 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
388 				  &memcg->kmem_account_flags);
389 }
390 #endif
391 
392 /* Stuffs for move charges at task migration. */
393 /*
394  * Types of charges to be moved. "move_charge_at_immitgrate" and
395  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
396  */
397 enum move_type {
398 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
399 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
400 	NR_MOVE_TYPE,
401 };
402 
403 /* "mc" and its members are protected by cgroup_mutex */
404 static struct move_charge_struct {
405 	spinlock_t	  lock; /* for from, to */
406 	struct mem_cgroup *from;
407 	struct mem_cgroup *to;
408 	unsigned long immigrate_flags;
409 	unsigned long precharge;
410 	unsigned long moved_charge;
411 	unsigned long moved_swap;
412 	struct task_struct *moving_task;	/* a task moving charges */
413 	wait_queue_head_t waitq;		/* a waitq for other context */
414 } mc = {
415 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
416 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
417 };
418 
419 static bool move_anon(void)
420 {
421 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
422 }
423 
424 static bool move_file(void)
425 {
426 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
427 }
428 
429 /*
430  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
431  * limit reclaim to prevent infinite loops, if they ever occur.
432  */
433 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
434 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
435 
436 enum charge_type {
437 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
438 	MEM_CGROUP_CHARGE_TYPE_ANON,
439 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
440 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
441 	NR_CHARGE_TYPE,
442 };
443 
444 /* for encoding cft->private value on file */
445 enum res_type {
446 	_MEM,
447 	_MEMSWAP,
448 	_OOM_TYPE,
449 	_KMEM,
450 };
451 
452 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
453 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
454 #define MEMFILE_ATTR(val)	((val) & 0xffff)
455 /* Used for OOM nofiier */
456 #define OOM_CONTROL		(0)
457 
458 /*
459  * Reclaim flags for mem_cgroup_hierarchical_reclaim
460  */
461 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
462 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
463 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
464 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
465 
466 /*
467  * The memcg_create_mutex will be held whenever a new cgroup is created.
468  * As a consequence, any change that needs to protect against new child cgroups
469  * appearing has to hold it as well.
470  */
471 static DEFINE_MUTEX(memcg_create_mutex);
472 
473 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
474 {
475 	return s ? container_of(s, struct mem_cgroup, css) : NULL;
476 }
477 
478 /* Some nice accessors for the vmpressure. */
479 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
480 {
481 	if (!memcg)
482 		memcg = root_mem_cgroup;
483 	return &memcg->vmpressure;
484 }
485 
486 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
487 {
488 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
489 }
490 
491 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
492 {
493 	return &mem_cgroup_from_css(css)->vmpressure;
494 }
495 
496 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
497 {
498 	return (memcg == root_mem_cgroup);
499 }
500 
501 /* Writing them here to avoid exposing memcg's inner layout */
502 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
503 
504 void sock_update_memcg(struct sock *sk)
505 {
506 	if (mem_cgroup_sockets_enabled) {
507 		struct mem_cgroup *memcg;
508 		struct cg_proto *cg_proto;
509 
510 		BUG_ON(!sk->sk_prot->proto_cgroup);
511 
512 		/* Socket cloning can throw us here with sk_cgrp already
513 		 * filled. It won't however, necessarily happen from
514 		 * process context. So the test for root memcg given
515 		 * the current task's memcg won't help us in this case.
516 		 *
517 		 * Respecting the original socket's memcg is a better
518 		 * decision in this case.
519 		 */
520 		if (sk->sk_cgrp) {
521 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
522 			css_get(&sk->sk_cgrp->memcg->css);
523 			return;
524 		}
525 
526 		rcu_read_lock();
527 		memcg = mem_cgroup_from_task(current);
528 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
529 		if (!mem_cgroup_is_root(memcg) &&
530 		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
531 			sk->sk_cgrp = cg_proto;
532 		}
533 		rcu_read_unlock();
534 	}
535 }
536 EXPORT_SYMBOL(sock_update_memcg);
537 
538 void sock_release_memcg(struct sock *sk)
539 {
540 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
541 		struct mem_cgroup *memcg;
542 		WARN_ON(!sk->sk_cgrp->memcg);
543 		memcg = sk->sk_cgrp->memcg;
544 		css_put(&sk->sk_cgrp->memcg->css);
545 	}
546 }
547 
548 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
549 {
550 	if (!memcg || mem_cgroup_is_root(memcg))
551 		return NULL;
552 
553 	return &memcg->tcp_mem.cg_proto;
554 }
555 EXPORT_SYMBOL(tcp_proto_cgroup);
556 
557 static void disarm_sock_keys(struct mem_cgroup *memcg)
558 {
559 	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
560 		return;
561 	static_key_slow_dec(&memcg_socket_limit_enabled);
562 }
563 #else
564 static void disarm_sock_keys(struct mem_cgroup *memcg)
565 {
566 }
567 #endif
568 
569 #ifdef CONFIG_MEMCG_KMEM
570 /*
571  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
572  * There are two main reasons for not using the css_id for this:
573  *  1) this works better in sparse environments, where we have a lot of memcgs,
574  *     but only a few kmem-limited. Or also, if we have, for instance, 200
575  *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
576  *     200 entry array for that.
577  *
578  *  2) In order not to violate the cgroup API, we would like to do all memory
579  *     allocation in ->create(). At that point, we haven't yet allocated the
580  *     css_id. Having a separate index prevents us from messing with the cgroup
581  *     core for this
582  *
583  * The current size of the caches array is stored in
584  * memcg_limited_groups_array_size.  It will double each time we have to
585  * increase it.
586  */
587 static DEFINE_IDA(kmem_limited_groups);
588 int memcg_limited_groups_array_size;
589 
590 /*
591  * MIN_SIZE is different than 1, because we would like to avoid going through
592  * the alloc/free process all the time. In a small machine, 4 kmem-limited
593  * cgroups is a reasonable guess. In the future, it could be a parameter or
594  * tunable, but that is strictly not necessary.
595  *
596  * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
597  * this constant directly from cgroup, but it is understandable that this is
598  * better kept as an internal representation in cgroup.c. In any case, the
599  * css_id space is not getting any smaller, and we don't have to necessarily
600  * increase ours as well if it increases.
601  */
602 #define MEMCG_CACHES_MIN_SIZE 4
603 #define MEMCG_CACHES_MAX_SIZE 65535
604 
605 /*
606  * A lot of the calls to the cache allocation functions are expected to be
607  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
608  * conditional to this static branch, we'll have to allow modules that does
609  * kmem_cache_alloc and the such to see this symbol as well
610  */
611 struct static_key memcg_kmem_enabled_key;
612 EXPORT_SYMBOL(memcg_kmem_enabled_key);
613 
614 static void disarm_kmem_keys(struct mem_cgroup *memcg)
615 {
616 	if (memcg_kmem_is_active(memcg)) {
617 		static_key_slow_dec(&memcg_kmem_enabled_key);
618 		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
619 	}
620 	/*
621 	 * This check can't live in kmem destruction function,
622 	 * since the charges will outlive the cgroup
623 	 */
624 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
625 }
626 #else
627 static void disarm_kmem_keys(struct mem_cgroup *memcg)
628 {
629 }
630 #endif /* CONFIG_MEMCG_KMEM */
631 
632 static void disarm_static_keys(struct mem_cgroup *memcg)
633 {
634 	disarm_sock_keys(memcg);
635 	disarm_kmem_keys(memcg);
636 }
637 
638 static void drain_all_stock_async(struct mem_cgroup *memcg);
639 
640 static struct mem_cgroup_per_zone *
641 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
642 {
643 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
644 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
645 }
646 
647 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
648 {
649 	return &memcg->css;
650 }
651 
652 static struct mem_cgroup_per_zone *
653 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
654 {
655 	int nid = page_to_nid(page);
656 	int zid = page_zonenum(page);
657 
658 	return mem_cgroup_zoneinfo(memcg, nid, zid);
659 }
660 
661 static struct mem_cgroup_tree_per_zone *
662 soft_limit_tree_node_zone(int nid, int zid)
663 {
664 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
665 }
666 
667 static struct mem_cgroup_tree_per_zone *
668 soft_limit_tree_from_page(struct page *page)
669 {
670 	int nid = page_to_nid(page);
671 	int zid = page_zonenum(page);
672 
673 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
674 }
675 
676 static void
677 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
678 				struct mem_cgroup_per_zone *mz,
679 				struct mem_cgroup_tree_per_zone *mctz,
680 				unsigned long long new_usage_in_excess)
681 {
682 	struct rb_node **p = &mctz->rb_root.rb_node;
683 	struct rb_node *parent = NULL;
684 	struct mem_cgroup_per_zone *mz_node;
685 
686 	if (mz->on_tree)
687 		return;
688 
689 	mz->usage_in_excess = new_usage_in_excess;
690 	if (!mz->usage_in_excess)
691 		return;
692 	while (*p) {
693 		parent = *p;
694 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
695 					tree_node);
696 		if (mz->usage_in_excess < mz_node->usage_in_excess)
697 			p = &(*p)->rb_left;
698 		/*
699 		 * We can't avoid mem cgroups that are over their soft
700 		 * limit by the same amount
701 		 */
702 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
703 			p = &(*p)->rb_right;
704 	}
705 	rb_link_node(&mz->tree_node, parent, p);
706 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
707 	mz->on_tree = true;
708 }
709 
710 static void
711 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
712 				struct mem_cgroup_per_zone *mz,
713 				struct mem_cgroup_tree_per_zone *mctz)
714 {
715 	if (!mz->on_tree)
716 		return;
717 	rb_erase(&mz->tree_node, &mctz->rb_root);
718 	mz->on_tree = false;
719 }
720 
721 static void
722 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
723 				struct mem_cgroup_per_zone *mz,
724 				struct mem_cgroup_tree_per_zone *mctz)
725 {
726 	spin_lock(&mctz->lock);
727 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
728 	spin_unlock(&mctz->lock);
729 }
730 
731 
732 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
733 {
734 	unsigned long long excess;
735 	struct mem_cgroup_per_zone *mz;
736 	struct mem_cgroup_tree_per_zone *mctz;
737 	int nid = page_to_nid(page);
738 	int zid = page_zonenum(page);
739 	mctz = soft_limit_tree_from_page(page);
740 
741 	/*
742 	 * Necessary to update all ancestors when hierarchy is used.
743 	 * because their event counter is not touched.
744 	 */
745 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
746 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
747 		excess = res_counter_soft_limit_excess(&memcg->res);
748 		/*
749 		 * We have to update the tree if mz is on RB-tree or
750 		 * mem is over its softlimit.
751 		 */
752 		if (excess || mz->on_tree) {
753 			spin_lock(&mctz->lock);
754 			/* if on-tree, remove it */
755 			if (mz->on_tree)
756 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
757 			/*
758 			 * Insert again. mz->usage_in_excess will be updated.
759 			 * If excess is 0, no tree ops.
760 			 */
761 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
762 			spin_unlock(&mctz->lock);
763 		}
764 	}
765 }
766 
767 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
768 {
769 	int node, zone;
770 	struct mem_cgroup_per_zone *mz;
771 	struct mem_cgroup_tree_per_zone *mctz;
772 
773 	for_each_node(node) {
774 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
775 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
776 			mctz = soft_limit_tree_node_zone(node, zone);
777 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
778 		}
779 	}
780 }
781 
782 static struct mem_cgroup_per_zone *
783 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
784 {
785 	struct rb_node *rightmost = NULL;
786 	struct mem_cgroup_per_zone *mz;
787 
788 retry:
789 	mz = NULL;
790 	rightmost = rb_last(&mctz->rb_root);
791 	if (!rightmost)
792 		goto done;		/* Nothing to reclaim from */
793 
794 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
795 	/*
796 	 * Remove the node now but someone else can add it back,
797 	 * we will to add it back at the end of reclaim to its correct
798 	 * position in the tree.
799 	 */
800 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
801 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
802 		!css_tryget(&mz->memcg->css))
803 		goto retry;
804 done:
805 	return mz;
806 }
807 
808 static struct mem_cgroup_per_zone *
809 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
810 {
811 	struct mem_cgroup_per_zone *mz;
812 
813 	spin_lock(&mctz->lock);
814 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
815 	spin_unlock(&mctz->lock);
816 	return mz;
817 }
818 
819 /*
820  * Implementation Note: reading percpu statistics for memcg.
821  *
822  * Both of vmstat[] and percpu_counter has threshold and do periodic
823  * synchronization to implement "quick" read. There are trade-off between
824  * reading cost and precision of value. Then, we may have a chance to implement
825  * a periodic synchronizion of counter in memcg's counter.
826  *
827  * But this _read() function is used for user interface now. The user accounts
828  * memory usage by memory cgroup and he _always_ requires exact value because
829  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
830  * have to visit all online cpus and make sum. So, for now, unnecessary
831  * synchronization is not implemented. (just implemented for cpu hotplug)
832  *
833  * If there are kernel internal actions which can make use of some not-exact
834  * value, and reading all cpu value can be performance bottleneck in some
835  * common workload, threashold and synchonization as vmstat[] should be
836  * implemented.
837  */
838 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
839 				 enum mem_cgroup_stat_index idx)
840 {
841 	long val = 0;
842 	int cpu;
843 
844 	get_online_cpus();
845 	for_each_online_cpu(cpu)
846 		val += per_cpu(memcg->stat->count[idx], cpu);
847 #ifdef CONFIG_HOTPLUG_CPU
848 	spin_lock(&memcg->pcp_counter_lock);
849 	val += memcg->nocpu_base.count[idx];
850 	spin_unlock(&memcg->pcp_counter_lock);
851 #endif
852 	put_online_cpus();
853 	return val;
854 }
855 
856 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
857 					 bool charge)
858 {
859 	int val = (charge) ? 1 : -1;
860 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
861 }
862 
863 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
864 					    enum mem_cgroup_events_index idx)
865 {
866 	unsigned long val = 0;
867 	int cpu;
868 
869 	for_each_online_cpu(cpu)
870 		val += per_cpu(memcg->stat->events[idx], cpu);
871 #ifdef CONFIG_HOTPLUG_CPU
872 	spin_lock(&memcg->pcp_counter_lock);
873 	val += memcg->nocpu_base.events[idx];
874 	spin_unlock(&memcg->pcp_counter_lock);
875 #endif
876 	return val;
877 }
878 
879 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
880 					 struct page *page,
881 					 bool anon, int nr_pages)
882 {
883 	preempt_disable();
884 
885 	/*
886 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
887 	 * counted as CACHE even if it's on ANON LRU.
888 	 */
889 	if (anon)
890 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
891 				nr_pages);
892 	else
893 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
894 				nr_pages);
895 
896 	if (PageTransHuge(page))
897 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
898 				nr_pages);
899 
900 	/* pagein of a big page is an event. So, ignore page size */
901 	if (nr_pages > 0)
902 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
903 	else {
904 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
905 		nr_pages = -nr_pages; /* for event */
906 	}
907 
908 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
909 
910 	preempt_enable();
911 }
912 
913 unsigned long
914 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
915 {
916 	struct mem_cgroup_per_zone *mz;
917 
918 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
919 	return mz->lru_size[lru];
920 }
921 
922 static unsigned long
923 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
924 			unsigned int lru_mask)
925 {
926 	struct mem_cgroup_per_zone *mz;
927 	enum lru_list lru;
928 	unsigned long ret = 0;
929 
930 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
931 
932 	for_each_lru(lru) {
933 		if (BIT(lru) & lru_mask)
934 			ret += mz->lru_size[lru];
935 	}
936 	return ret;
937 }
938 
939 static unsigned long
940 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
941 			int nid, unsigned int lru_mask)
942 {
943 	u64 total = 0;
944 	int zid;
945 
946 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
947 		total += mem_cgroup_zone_nr_lru_pages(memcg,
948 						nid, zid, lru_mask);
949 
950 	return total;
951 }
952 
953 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
954 			unsigned int lru_mask)
955 {
956 	int nid;
957 	u64 total = 0;
958 
959 	for_each_node_state(nid, N_MEMORY)
960 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
961 	return total;
962 }
963 
964 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
965 				       enum mem_cgroup_events_target target)
966 {
967 	unsigned long val, next;
968 
969 	val = __this_cpu_read(memcg->stat->nr_page_events);
970 	next = __this_cpu_read(memcg->stat->targets[target]);
971 	/* from time_after() in jiffies.h */
972 	if ((long)next - (long)val < 0) {
973 		switch (target) {
974 		case MEM_CGROUP_TARGET_THRESH:
975 			next = val + THRESHOLDS_EVENTS_TARGET;
976 			break;
977 		case MEM_CGROUP_TARGET_SOFTLIMIT:
978 			next = val + SOFTLIMIT_EVENTS_TARGET;
979 			break;
980 		case MEM_CGROUP_TARGET_NUMAINFO:
981 			next = val + NUMAINFO_EVENTS_TARGET;
982 			break;
983 		default:
984 			break;
985 		}
986 		__this_cpu_write(memcg->stat->targets[target], next);
987 		return true;
988 	}
989 	return false;
990 }
991 
992 /*
993  * Check events in order.
994  *
995  */
996 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
997 {
998 	preempt_disable();
999 	/* threshold event is triggered in finer grain than soft limit */
1000 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1001 						MEM_CGROUP_TARGET_THRESH))) {
1002 		bool do_softlimit;
1003 		bool do_numainfo __maybe_unused;
1004 
1005 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1006 						MEM_CGROUP_TARGET_SOFTLIMIT);
1007 #if MAX_NUMNODES > 1
1008 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
1009 						MEM_CGROUP_TARGET_NUMAINFO);
1010 #endif
1011 		preempt_enable();
1012 
1013 		mem_cgroup_threshold(memcg);
1014 		if (unlikely(do_softlimit))
1015 			mem_cgroup_update_tree(memcg, page);
1016 #if MAX_NUMNODES > 1
1017 		if (unlikely(do_numainfo))
1018 			atomic_inc(&memcg->numainfo_events);
1019 #endif
1020 	} else
1021 		preempt_enable();
1022 }
1023 
1024 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1025 {
1026 	/*
1027 	 * mm_update_next_owner() may clear mm->owner to NULL
1028 	 * if it races with swapoff, page migration, etc.
1029 	 * So this can be called with p == NULL.
1030 	 */
1031 	if (unlikely(!p))
1032 		return NULL;
1033 
1034 	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1035 }
1036 
1037 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1038 {
1039 	struct mem_cgroup *memcg = NULL;
1040 
1041 	if (!mm)
1042 		return NULL;
1043 	/*
1044 	 * Because we have no locks, mm->owner's may be being moved to other
1045 	 * cgroup. We use css_tryget() here even if this looks
1046 	 * pessimistic (rather than adding locks here).
1047 	 */
1048 	rcu_read_lock();
1049 	do {
1050 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1051 		if (unlikely(!memcg))
1052 			break;
1053 	} while (!css_tryget(&memcg->css));
1054 	rcu_read_unlock();
1055 	return memcg;
1056 }
1057 
1058 /*
1059  * Returns a next (in a pre-order walk) alive memcg (with elevated css
1060  * ref. count) or NULL if the whole root's subtree has been visited.
1061  *
1062  * helper function to be used by mem_cgroup_iter
1063  */
1064 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1065 		struct mem_cgroup *last_visited)
1066 {
1067 	struct cgroup_subsys_state *prev_css, *next_css;
1068 
1069 	prev_css = last_visited ? &last_visited->css : NULL;
1070 skip_node:
1071 	next_css = css_next_descendant_pre(prev_css, &root->css);
1072 
1073 	/*
1074 	 * Even if we found a group we have to make sure it is
1075 	 * alive. css && !memcg means that the groups should be
1076 	 * skipped and we should continue the tree walk.
1077 	 * last_visited css is safe to use because it is
1078 	 * protected by css_get and the tree walk is rcu safe.
1079 	 */
1080 	if (next_css) {
1081 		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1082 
1083 		if (css_tryget(&mem->css))
1084 			return mem;
1085 		else {
1086 			prev_css = next_css;
1087 			goto skip_node;
1088 		}
1089 	}
1090 
1091 	return NULL;
1092 }
1093 
1094 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1095 {
1096 	/*
1097 	 * When a group in the hierarchy below root is destroyed, the
1098 	 * hierarchy iterator can no longer be trusted since it might
1099 	 * have pointed to the destroyed group.  Invalidate it.
1100 	 */
1101 	atomic_inc(&root->dead_count);
1102 }
1103 
1104 static struct mem_cgroup *
1105 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1106 		     struct mem_cgroup *root,
1107 		     int *sequence)
1108 {
1109 	struct mem_cgroup *position = NULL;
1110 	/*
1111 	 * A cgroup destruction happens in two stages: offlining and
1112 	 * release.  They are separated by a RCU grace period.
1113 	 *
1114 	 * If the iterator is valid, we may still race with an
1115 	 * offlining.  The RCU lock ensures the object won't be
1116 	 * released, tryget will fail if we lost the race.
1117 	 */
1118 	*sequence = atomic_read(&root->dead_count);
1119 	if (iter->last_dead_count == *sequence) {
1120 		smp_rmb();
1121 		position = iter->last_visited;
1122 		if (position && !css_tryget(&position->css))
1123 			position = NULL;
1124 	}
1125 	return position;
1126 }
1127 
1128 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1129 				   struct mem_cgroup *last_visited,
1130 				   struct mem_cgroup *new_position,
1131 				   int sequence)
1132 {
1133 	if (last_visited)
1134 		css_put(&last_visited->css);
1135 	/*
1136 	 * We store the sequence count from the time @last_visited was
1137 	 * loaded successfully instead of rereading it here so that we
1138 	 * don't lose destruction events in between.  We could have
1139 	 * raced with the destruction of @new_position after all.
1140 	 */
1141 	iter->last_visited = new_position;
1142 	smp_wmb();
1143 	iter->last_dead_count = sequence;
1144 }
1145 
1146 /**
1147  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1148  * @root: hierarchy root
1149  * @prev: previously returned memcg, NULL on first invocation
1150  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1151  *
1152  * Returns references to children of the hierarchy below @root, or
1153  * @root itself, or %NULL after a full round-trip.
1154  *
1155  * Caller must pass the return value in @prev on subsequent
1156  * invocations for reference counting, or use mem_cgroup_iter_break()
1157  * to cancel a hierarchy walk before the round-trip is complete.
1158  *
1159  * Reclaimers can specify a zone and a priority level in @reclaim to
1160  * divide up the memcgs in the hierarchy among all concurrent
1161  * reclaimers operating on the same zone and priority.
1162  */
1163 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1164 				   struct mem_cgroup *prev,
1165 				   struct mem_cgroup_reclaim_cookie *reclaim)
1166 {
1167 	struct mem_cgroup *memcg = NULL;
1168 	struct mem_cgroup *last_visited = NULL;
1169 
1170 	if (mem_cgroup_disabled())
1171 		return NULL;
1172 
1173 	if (!root)
1174 		root = root_mem_cgroup;
1175 
1176 	if (prev && !reclaim)
1177 		last_visited = prev;
1178 
1179 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1180 		if (prev)
1181 			goto out_css_put;
1182 		return root;
1183 	}
1184 
1185 	rcu_read_lock();
1186 	while (!memcg) {
1187 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1188 		int uninitialized_var(seq);
1189 
1190 		if (reclaim) {
1191 			int nid = zone_to_nid(reclaim->zone);
1192 			int zid = zone_idx(reclaim->zone);
1193 			struct mem_cgroup_per_zone *mz;
1194 
1195 			mz = mem_cgroup_zoneinfo(root, nid, zid);
1196 			iter = &mz->reclaim_iter[reclaim->priority];
1197 			if (prev && reclaim->generation != iter->generation) {
1198 				iter->last_visited = NULL;
1199 				goto out_unlock;
1200 			}
1201 
1202 			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1203 		}
1204 
1205 		memcg = __mem_cgroup_iter_next(root, last_visited);
1206 
1207 		if (reclaim) {
1208 			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1209 
1210 			if (!memcg)
1211 				iter->generation++;
1212 			else if (!prev && memcg)
1213 				reclaim->generation = iter->generation;
1214 		}
1215 
1216 		if (prev && !memcg)
1217 			goto out_unlock;
1218 	}
1219 out_unlock:
1220 	rcu_read_unlock();
1221 out_css_put:
1222 	if (prev && prev != root)
1223 		css_put(&prev->css);
1224 
1225 	return memcg;
1226 }
1227 
1228 /**
1229  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1230  * @root: hierarchy root
1231  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1232  */
1233 void mem_cgroup_iter_break(struct mem_cgroup *root,
1234 			   struct mem_cgroup *prev)
1235 {
1236 	if (!root)
1237 		root = root_mem_cgroup;
1238 	if (prev && prev != root)
1239 		css_put(&prev->css);
1240 }
1241 
1242 /*
1243  * Iteration constructs for visiting all cgroups (under a tree).  If
1244  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1245  * be used for reference counting.
1246  */
1247 #define for_each_mem_cgroup_tree(iter, root)		\
1248 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1249 	     iter != NULL;				\
1250 	     iter = mem_cgroup_iter(root, iter, NULL))
1251 
1252 #define for_each_mem_cgroup(iter)			\
1253 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1254 	     iter != NULL;				\
1255 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1256 
1257 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1258 {
1259 	struct mem_cgroup *memcg;
1260 
1261 	rcu_read_lock();
1262 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1263 	if (unlikely(!memcg))
1264 		goto out;
1265 
1266 	switch (idx) {
1267 	case PGFAULT:
1268 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1269 		break;
1270 	case PGMAJFAULT:
1271 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1272 		break;
1273 	default:
1274 		BUG();
1275 	}
1276 out:
1277 	rcu_read_unlock();
1278 }
1279 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1280 
1281 /**
1282  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1283  * @zone: zone of the wanted lruvec
1284  * @memcg: memcg of the wanted lruvec
1285  *
1286  * Returns the lru list vector holding pages for the given @zone and
1287  * @mem.  This can be the global zone lruvec, if the memory controller
1288  * is disabled.
1289  */
1290 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1291 				      struct mem_cgroup *memcg)
1292 {
1293 	struct mem_cgroup_per_zone *mz;
1294 	struct lruvec *lruvec;
1295 
1296 	if (mem_cgroup_disabled()) {
1297 		lruvec = &zone->lruvec;
1298 		goto out;
1299 	}
1300 
1301 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1302 	lruvec = &mz->lruvec;
1303 out:
1304 	/*
1305 	 * Since a node can be onlined after the mem_cgroup was created,
1306 	 * we have to be prepared to initialize lruvec->zone here;
1307 	 * and if offlined then reonlined, we need to reinitialize it.
1308 	 */
1309 	if (unlikely(lruvec->zone != zone))
1310 		lruvec->zone = zone;
1311 	return lruvec;
1312 }
1313 
1314 /*
1315  * Following LRU functions are allowed to be used without PCG_LOCK.
1316  * Operations are called by routine of global LRU independently from memcg.
1317  * What we have to take care of here is validness of pc->mem_cgroup.
1318  *
1319  * Changes to pc->mem_cgroup happens when
1320  * 1. charge
1321  * 2. moving account
1322  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1323  * It is added to LRU before charge.
1324  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1325  * When moving account, the page is not on LRU. It's isolated.
1326  */
1327 
1328 /**
1329  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1330  * @page: the page
1331  * @zone: zone of the page
1332  */
1333 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1334 {
1335 	struct mem_cgroup_per_zone *mz;
1336 	struct mem_cgroup *memcg;
1337 	struct page_cgroup *pc;
1338 	struct lruvec *lruvec;
1339 
1340 	if (mem_cgroup_disabled()) {
1341 		lruvec = &zone->lruvec;
1342 		goto out;
1343 	}
1344 
1345 	pc = lookup_page_cgroup(page);
1346 	memcg = pc->mem_cgroup;
1347 
1348 	/*
1349 	 * Surreptitiously switch any uncharged offlist page to root:
1350 	 * an uncharged page off lru does nothing to secure
1351 	 * its former mem_cgroup from sudden removal.
1352 	 *
1353 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1354 	 * under page_cgroup lock: between them, they make all uses
1355 	 * of pc->mem_cgroup safe.
1356 	 */
1357 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1358 		pc->mem_cgroup = memcg = root_mem_cgroup;
1359 
1360 	mz = page_cgroup_zoneinfo(memcg, page);
1361 	lruvec = &mz->lruvec;
1362 out:
1363 	/*
1364 	 * Since a node can be onlined after the mem_cgroup was created,
1365 	 * we have to be prepared to initialize lruvec->zone here;
1366 	 * and if offlined then reonlined, we need to reinitialize it.
1367 	 */
1368 	if (unlikely(lruvec->zone != zone))
1369 		lruvec->zone = zone;
1370 	return lruvec;
1371 }
1372 
1373 /**
1374  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1375  * @lruvec: mem_cgroup per zone lru vector
1376  * @lru: index of lru list the page is sitting on
1377  * @nr_pages: positive when adding or negative when removing
1378  *
1379  * This function must be called when a page is added to or removed from an
1380  * lru list.
1381  */
1382 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1383 				int nr_pages)
1384 {
1385 	struct mem_cgroup_per_zone *mz;
1386 	unsigned long *lru_size;
1387 
1388 	if (mem_cgroup_disabled())
1389 		return;
1390 
1391 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1392 	lru_size = mz->lru_size + lru;
1393 	*lru_size += nr_pages;
1394 	VM_BUG_ON((long)(*lru_size) < 0);
1395 }
1396 
1397 /*
1398  * Checks whether given mem is same or in the root_mem_cgroup's
1399  * hierarchy subtree
1400  */
1401 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1402 				  struct mem_cgroup *memcg)
1403 {
1404 	if (root_memcg == memcg)
1405 		return true;
1406 	if (!root_memcg->use_hierarchy || !memcg)
1407 		return false;
1408 	return css_is_ancestor(&memcg->css, &root_memcg->css);
1409 }
1410 
1411 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1412 				       struct mem_cgroup *memcg)
1413 {
1414 	bool ret;
1415 
1416 	rcu_read_lock();
1417 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1418 	rcu_read_unlock();
1419 	return ret;
1420 }
1421 
1422 bool task_in_mem_cgroup(struct task_struct *task,
1423 			const struct mem_cgroup *memcg)
1424 {
1425 	struct mem_cgroup *curr = NULL;
1426 	struct task_struct *p;
1427 	bool ret;
1428 
1429 	p = find_lock_task_mm(task);
1430 	if (p) {
1431 		curr = try_get_mem_cgroup_from_mm(p->mm);
1432 		task_unlock(p);
1433 	} else {
1434 		/*
1435 		 * All threads may have already detached their mm's, but the oom
1436 		 * killer still needs to detect if they have already been oom
1437 		 * killed to prevent needlessly killing additional tasks.
1438 		 */
1439 		rcu_read_lock();
1440 		curr = mem_cgroup_from_task(task);
1441 		if (curr)
1442 			css_get(&curr->css);
1443 		rcu_read_unlock();
1444 	}
1445 	if (!curr)
1446 		return false;
1447 	/*
1448 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1449 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1450 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1451 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1452 	 */
1453 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1454 	css_put(&curr->css);
1455 	return ret;
1456 }
1457 
1458 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1459 {
1460 	unsigned long inactive_ratio;
1461 	unsigned long inactive;
1462 	unsigned long active;
1463 	unsigned long gb;
1464 
1465 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1466 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1467 
1468 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1469 	if (gb)
1470 		inactive_ratio = int_sqrt(10 * gb);
1471 	else
1472 		inactive_ratio = 1;
1473 
1474 	return inactive * inactive_ratio < active;
1475 }
1476 
1477 #define mem_cgroup_from_res_counter(counter, member)	\
1478 	container_of(counter, struct mem_cgroup, member)
1479 
1480 /**
1481  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1482  * @memcg: the memory cgroup
1483  *
1484  * Returns the maximum amount of memory @mem can be charged with, in
1485  * pages.
1486  */
1487 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1488 {
1489 	unsigned long long margin;
1490 
1491 	margin = res_counter_margin(&memcg->res);
1492 	if (do_swap_account)
1493 		margin = min(margin, res_counter_margin(&memcg->memsw));
1494 	return margin >> PAGE_SHIFT;
1495 }
1496 
1497 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1498 {
1499 	/* root ? */
1500 	if (!css_parent(&memcg->css))
1501 		return vm_swappiness;
1502 
1503 	return memcg->swappiness;
1504 }
1505 
1506 /*
1507  * memcg->moving_account is used for checking possibility that some thread is
1508  * calling move_account(). When a thread on CPU-A starts moving pages under
1509  * a memcg, other threads should check memcg->moving_account under
1510  * rcu_read_lock(), like this:
1511  *
1512  *         CPU-A                                    CPU-B
1513  *                                              rcu_read_lock()
1514  *         memcg->moving_account+1              if (memcg->mocing_account)
1515  *                                                   take heavy locks.
1516  *         synchronize_rcu()                    update something.
1517  *                                              rcu_read_unlock()
1518  *         start move here.
1519  */
1520 
1521 /* for quick checking without looking up memcg */
1522 atomic_t memcg_moving __read_mostly;
1523 
1524 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1525 {
1526 	atomic_inc(&memcg_moving);
1527 	atomic_inc(&memcg->moving_account);
1528 	synchronize_rcu();
1529 }
1530 
1531 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1532 {
1533 	/*
1534 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1535 	 * We check NULL in callee rather than caller.
1536 	 */
1537 	if (memcg) {
1538 		atomic_dec(&memcg_moving);
1539 		atomic_dec(&memcg->moving_account);
1540 	}
1541 }
1542 
1543 /*
1544  * 2 routines for checking "mem" is under move_account() or not.
1545  *
1546  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1547  *			  is used for avoiding races in accounting.  If true,
1548  *			  pc->mem_cgroup may be overwritten.
1549  *
1550  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1551  *			  under hierarchy of moving cgroups. This is for
1552  *			  waiting at hith-memory prressure caused by "move".
1553  */
1554 
1555 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1556 {
1557 	VM_BUG_ON(!rcu_read_lock_held());
1558 	return atomic_read(&memcg->moving_account) > 0;
1559 }
1560 
1561 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1562 {
1563 	struct mem_cgroup *from;
1564 	struct mem_cgroup *to;
1565 	bool ret = false;
1566 	/*
1567 	 * Unlike task_move routines, we access mc.to, mc.from not under
1568 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1569 	 */
1570 	spin_lock(&mc.lock);
1571 	from = mc.from;
1572 	to = mc.to;
1573 	if (!from)
1574 		goto unlock;
1575 
1576 	ret = mem_cgroup_same_or_subtree(memcg, from)
1577 		|| mem_cgroup_same_or_subtree(memcg, to);
1578 unlock:
1579 	spin_unlock(&mc.lock);
1580 	return ret;
1581 }
1582 
1583 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1584 {
1585 	if (mc.moving_task && current != mc.moving_task) {
1586 		if (mem_cgroup_under_move(memcg)) {
1587 			DEFINE_WAIT(wait);
1588 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1589 			/* moving charge context might have finished. */
1590 			if (mc.moving_task)
1591 				schedule();
1592 			finish_wait(&mc.waitq, &wait);
1593 			return true;
1594 		}
1595 	}
1596 	return false;
1597 }
1598 
1599 /*
1600  * Take this lock when
1601  * - a code tries to modify page's memcg while it's USED.
1602  * - a code tries to modify page state accounting in a memcg.
1603  * see mem_cgroup_stolen(), too.
1604  */
1605 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1606 				  unsigned long *flags)
1607 {
1608 	spin_lock_irqsave(&memcg->move_lock, *flags);
1609 }
1610 
1611 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1612 				unsigned long *flags)
1613 {
1614 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1615 }
1616 
1617 #define K(x) ((x) << (PAGE_SHIFT-10))
1618 /**
1619  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1620  * @memcg: The memory cgroup that went over limit
1621  * @p: Task that is going to be killed
1622  *
1623  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1624  * enabled
1625  */
1626 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1627 {
1628 	struct cgroup *task_cgrp;
1629 	struct cgroup *mem_cgrp;
1630 	/*
1631 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1632 	 * on the assumption that OOM is serialized for memory controller.
1633 	 * If this assumption is broken, revisit this code.
1634 	 */
1635 	static char memcg_name[PATH_MAX];
1636 	int ret;
1637 	struct mem_cgroup *iter;
1638 	unsigned int i;
1639 
1640 	if (!p)
1641 		return;
1642 
1643 	rcu_read_lock();
1644 
1645 	mem_cgrp = memcg->css.cgroup;
1646 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1647 
1648 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1649 	if (ret < 0) {
1650 		/*
1651 		 * Unfortunately, we are unable to convert to a useful name
1652 		 * But we'll still print out the usage information
1653 		 */
1654 		rcu_read_unlock();
1655 		goto done;
1656 	}
1657 	rcu_read_unlock();
1658 
1659 	pr_info("Task in %s killed", memcg_name);
1660 
1661 	rcu_read_lock();
1662 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1663 	if (ret < 0) {
1664 		rcu_read_unlock();
1665 		goto done;
1666 	}
1667 	rcu_read_unlock();
1668 
1669 	/*
1670 	 * Continues from above, so we don't need an KERN_ level
1671 	 */
1672 	pr_cont(" as a result of limit of %s\n", memcg_name);
1673 done:
1674 
1675 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1676 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1677 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1678 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1679 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1680 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1681 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1682 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1683 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1684 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1685 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1686 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1687 
1688 	for_each_mem_cgroup_tree(iter, memcg) {
1689 		pr_info("Memory cgroup stats");
1690 
1691 		rcu_read_lock();
1692 		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1693 		if (!ret)
1694 			pr_cont(" for %s", memcg_name);
1695 		rcu_read_unlock();
1696 		pr_cont(":");
1697 
1698 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1699 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1700 				continue;
1701 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1702 				K(mem_cgroup_read_stat(iter, i)));
1703 		}
1704 
1705 		for (i = 0; i < NR_LRU_LISTS; i++)
1706 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1707 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1708 
1709 		pr_cont("\n");
1710 	}
1711 }
1712 
1713 /*
1714  * This function returns the number of memcg under hierarchy tree. Returns
1715  * 1(self count) if no children.
1716  */
1717 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1718 {
1719 	int num = 0;
1720 	struct mem_cgroup *iter;
1721 
1722 	for_each_mem_cgroup_tree(iter, memcg)
1723 		num++;
1724 	return num;
1725 }
1726 
1727 /*
1728  * Return the memory (and swap, if configured) limit for a memcg.
1729  */
1730 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1731 {
1732 	u64 limit;
1733 
1734 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1735 
1736 	/*
1737 	 * Do not consider swap space if we cannot swap due to swappiness
1738 	 */
1739 	if (mem_cgroup_swappiness(memcg)) {
1740 		u64 memsw;
1741 
1742 		limit += total_swap_pages << PAGE_SHIFT;
1743 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1744 
1745 		/*
1746 		 * If memsw is finite and limits the amount of swap space
1747 		 * available to this memcg, return that limit.
1748 		 */
1749 		limit = min(limit, memsw);
1750 	}
1751 
1752 	return limit;
1753 }
1754 
1755 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1756 				     int order)
1757 {
1758 	struct mem_cgroup *iter;
1759 	unsigned long chosen_points = 0;
1760 	unsigned long totalpages;
1761 	unsigned int points = 0;
1762 	struct task_struct *chosen = NULL;
1763 
1764 	/*
1765 	 * If current has a pending SIGKILL or is exiting, then automatically
1766 	 * select it.  The goal is to allow it to allocate so that it may
1767 	 * quickly exit and free its memory.
1768 	 */
1769 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1770 		set_thread_flag(TIF_MEMDIE);
1771 		return;
1772 	}
1773 
1774 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1775 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1776 	for_each_mem_cgroup_tree(iter, memcg) {
1777 		struct css_task_iter it;
1778 		struct task_struct *task;
1779 
1780 		css_task_iter_start(&iter->css, &it);
1781 		while ((task = css_task_iter_next(&it))) {
1782 			switch (oom_scan_process_thread(task, totalpages, NULL,
1783 							false)) {
1784 			case OOM_SCAN_SELECT:
1785 				if (chosen)
1786 					put_task_struct(chosen);
1787 				chosen = task;
1788 				chosen_points = ULONG_MAX;
1789 				get_task_struct(chosen);
1790 				/* fall through */
1791 			case OOM_SCAN_CONTINUE:
1792 				continue;
1793 			case OOM_SCAN_ABORT:
1794 				css_task_iter_end(&it);
1795 				mem_cgroup_iter_break(memcg, iter);
1796 				if (chosen)
1797 					put_task_struct(chosen);
1798 				return;
1799 			case OOM_SCAN_OK:
1800 				break;
1801 			};
1802 			points = oom_badness(task, memcg, NULL, totalpages);
1803 			if (points > chosen_points) {
1804 				if (chosen)
1805 					put_task_struct(chosen);
1806 				chosen = task;
1807 				chosen_points = points;
1808 				get_task_struct(chosen);
1809 			}
1810 		}
1811 		css_task_iter_end(&it);
1812 	}
1813 
1814 	if (!chosen)
1815 		return;
1816 	points = chosen_points * 1000 / totalpages;
1817 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1818 			 NULL, "Memory cgroup out of memory");
1819 }
1820 
1821 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1822 					gfp_t gfp_mask,
1823 					unsigned long flags)
1824 {
1825 	unsigned long total = 0;
1826 	bool noswap = false;
1827 	int loop;
1828 
1829 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1830 		noswap = true;
1831 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1832 		noswap = true;
1833 
1834 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1835 		if (loop)
1836 			drain_all_stock_async(memcg);
1837 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1838 		/*
1839 		 * Allow limit shrinkers, which are triggered directly
1840 		 * by userspace, to catch signals and stop reclaim
1841 		 * after minimal progress, regardless of the margin.
1842 		 */
1843 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1844 			break;
1845 		if (mem_cgroup_margin(memcg))
1846 			break;
1847 		/*
1848 		 * If nothing was reclaimed after two attempts, there
1849 		 * may be no reclaimable pages in this hierarchy.
1850 		 */
1851 		if (loop && !total)
1852 			break;
1853 	}
1854 	return total;
1855 }
1856 
1857 /**
1858  * test_mem_cgroup_node_reclaimable
1859  * @memcg: the target memcg
1860  * @nid: the node ID to be checked.
1861  * @noswap : specify true here if the user wants flle only information.
1862  *
1863  * This function returns whether the specified memcg contains any
1864  * reclaimable pages on a node. Returns true if there are any reclaimable
1865  * pages in the node.
1866  */
1867 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1868 		int nid, bool noswap)
1869 {
1870 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1871 		return true;
1872 	if (noswap || !total_swap_pages)
1873 		return false;
1874 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1875 		return true;
1876 	return false;
1877 
1878 }
1879 #if MAX_NUMNODES > 1
1880 
1881 /*
1882  * Always updating the nodemask is not very good - even if we have an empty
1883  * list or the wrong list here, we can start from some node and traverse all
1884  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1885  *
1886  */
1887 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1888 {
1889 	int nid;
1890 	/*
1891 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1892 	 * pagein/pageout changes since the last update.
1893 	 */
1894 	if (!atomic_read(&memcg->numainfo_events))
1895 		return;
1896 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1897 		return;
1898 
1899 	/* make a nodemask where this memcg uses memory from */
1900 	memcg->scan_nodes = node_states[N_MEMORY];
1901 
1902 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1903 
1904 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1905 			node_clear(nid, memcg->scan_nodes);
1906 	}
1907 
1908 	atomic_set(&memcg->numainfo_events, 0);
1909 	atomic_set(&memcg->numainfo_updating, 0);
1910 }
1911 
1912 /*
1913  * Selecting a node where we start reclaim from. Because what we need is just
1914  * reducing usage counter, start from anywhere is O,K. Considering
1915  * memory reclaim from current node, there are pros. and cons.
1916  *
1917  * Freeing memory from current node means freeing memory from a node which
1918  * we'll use or we've used. So, it may make LRU bad. And if several threads
1919  * hit limits, it will see a contention on a node. But freeing from remote
1920  * node means more costs for memory reclaim because of memory latency.
1921  *
1922  * Now, we use round-robin. Better algorithm is welcomed.
1923  */
1924 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1925 {
1926 	int node;
1927 
1928 	mem_cgroup_may_update_nodemask(memcg);
1929 	node = memcg->last_scanned_node;
1930 
1931 	node = next_node(node, memcg->scan_nodes);
1932 	if (node == MAX_NUMNODES)
1933 		node = first_node(memcg->scan_nodes);
1934 	/*
1935 	 * We call this when we hit limit, not when pages are added to LRU.
1936 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1937 	 * memcg is too small and all pages are not on LRU. In that case,
1938 	 * we use curret node.
1939 	 */
1940 	if (unlikely(node == MAX_NUMNODES))
1941 		node = numa_node_id();
1942 
1943 	memcg->last_scanned_node = node;
1944 	return node;
1945 }
1946 
1947 /*
1948  * Check all nodes whether it contains reclaimable pages or not.
1949  * For quick scan, we make use of scan_nodes. This will allow us to skip
1950  * unused nodes. But scan_nodes is lazily updated and may not cotain
1951  * enough new information. We need to do double check.
1952  */
1953 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1954 {
1955 	int nid;
1956 
1957 	/*
1958 	 * quick check...making use of scan_node.
1959 	 * We can skip unused nodes.
1960 	 */
1961 	if (!nodes_empty(memcg->scan_nodes)) {
1962 		for (nid = first_node(memcg->scan_nodes);
1963 		     nid < MAX_NUMNODES;
1964 		     nid = next_node(nid, memcg->scan_nodes)) {
1965 
1966 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1967 				return true;
1968 		}
1969 	}
1970 	/*
1971 	 * Check rest of nodes.
1972 	 */
1973 	for_each_node_state(nid, N_MEMORY) {
1974 		if (node_isset(nid, memcg->scan_nodes))
1975 			continue;
1976 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1977 			return true;
1978 	}
1979 	return false;
1980 }
1981 
1982 #else
1983 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1984 {
1985 	return 0;
1986 }
1987 
1988 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1989 {
1990 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1991 }
1992 #endif
1993 
1994 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1995 				   struct zone *zone,
1996 				   gfp_t gfp_mask,
1997 				   unsigned long *total_scanned)
1998 {
1999 	struct mem_cgroup *victim = NULL;
2000 	int total = 0;
2001 	int loop = 0;
2002 	unsigned long excess;
2003 	unsigned long nr_scanned;
2004 	struct mem_cgroup_reclaim_cookie reclaim = {
2005 		.zone = zone,
2006 		.priority = 0,
2007 	};
2008 
2009 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2010 
2011 	while (1) {
2012 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2013 		if (!victim) {
2014 			loop++;
2015 			if (loop >= 2) {
2016 				/*
2017 				 * If we have not been able to reclaim
2018 				 * anything, it might because there are
2019 				 * no reclaimable pages under this hierarchy
2020 				 */
2021 				if (!total)
2022 					break;
2023 				/*
2024 				 * We want to do more targeted reclaim.
2025 				 * excess >> 2 is not to excessive so as to
2026 				 * reclaim too much, nor too less that we keep
2027 				 * coming back to reclaim from this cgroup
2028 				 */
2029 				if (total >= (excess >> 2) ||
2030 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2031 					break;
2032 			}
2033 			continue;
2034 		}
2035 		if (!mem_cgroup_reclaimable(victim, false))
2036 			continue;
2037 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2038 						     zone, &nr_scanned);
2039 		*total_scanned += nr_scanned;
2040 		if (!res_counter_soft_limit_excess(&root_memcg->res))
2041 			break;
2042 	}
2043 	mem_cgroup_iter_break(root_memcg, victim);
2044 	return total;
2045 }
2046 
2047 static DEFINE_SPINLOCK(memcg_oom_lock);
2048 
2049 /*
2050  * Check OOM-Killer is already running under our hierarchy.
2051  * If someone is running, return false.
2052  */
2053 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2054 {
2055 	struct mem_cgroup *iter, *failed = NULL;
2056 
2057 	spin_lock(&memcg_oom_lock);
2058 
2059 	for_each_mem_cgroup_tree(iter, memcg) {
2060 		if (iter->oom_lock) {
2061 			/*
2062 			 * this subtree of our hierarchy is already locked
2063 			 * so we cannot give a lock.
2064 			 */
2065 			failed = iter;
2066 			mem_cgroup_iter_break(memcg, iter);
2067 			break;
2068 		} else
2069 			iter->oom_lock = true;
2070 	}
2071 
2072 	if (failed) {
2073 		/*
2074 		 * OK, we failed to lock the whole subtree so we have
2075 		 * to clean up what we set up to the failing subtree
2076 		 */
2077 		for_each_mem_cgroup_tree(iter, memcg) {
2078 			if (iter == failed) {
2079 				mem_cgroup_iter_break(memcg, iter);
2080 				break;
2081 			}
2082 			iter->oom_lock = false;
2083 		}
2084 	}
2085 
2086 	spin_unlock(&memcg_oom_lock);
2087 
2088 	return !failed;
2089 }
2090 
2091 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2092 {
2093 	struct mem_cgroup *iter;
2094 
2095 	spin_lock(&memcg_oom_lock);
2096 	for_each_mem_cgroup_tree(iter, memcg)
2097 		iter->oom_lock = false;
2098 	spin_unlock(&memcg_oom_lock);
2099 }
2100 
2101 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2102 {
2103 	struct mem_cgroup *iter;
2104 
2105 	for_each_mem_cgroup_tree(iter, memcg)
2106 		atomic_inc(&iter->under_oom);
2107 }
2108 
2109 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2110 {
2111 	struct mem_cgroup *iter;
2112 
2113 	/*
2114 	 * When a new child is created while the hierarchy is under oom,
2115 	 * mem_cgroup_oom_lock() may not be called. We have to use
2116 	 * atomic_add_unless() here.
2117 	 */
2118 	for_each_mem_cgroup_tree(iter, memcg)
2119 		atomic_add_unless(&iter->under_oom, -1, 0);
2120 }
2121 
2122 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2123 
2124 struct oom_wait_info {
2125 	struct mem_cgroup *memcg;
2126 	wait_queue_t	wait;
2127 };
2128 
2129 static int memcg_oom_wake_function(wait_queue_t *wait,
2130 	unsigned mode, int sync, void *arg)
2131 {
2132 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2133 	struct mem_cgroup *oom_wait_memcg;
2134 	struct oom_wait_info *oom_wait_info;
2135 
2136 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2137 	oom_wait_memcg = oom_wait_info->memcg;
2138 
2139 	/*
2140 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2141 	 * Then we can use css_is_ancestor without taking care of RCU.
2142 	 */
2143 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2144 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2145 		return 0;
2146 	return autoremove_wake_function(wait, mode, sync, arg);
2147 }
2148 
2149 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2150 {
2151 	atomic_inc(&memcg->oom_wakeups);
2152 	/* for filtering, pass "memcg" as argument. */
2153 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2154 }
2155 
2156 static void memcg_oom_recover(struct mem_cgroup *memcg)
2157 {
2158 	if (memcg && atomic_read(&memcg->under_oom))
2159 		memcg_wakeup_oom(memcg);
2160 }
2161 
2162 /*
2163  * try to call OOM killer
2164  */
2165 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2166 {
2167 	bool locked;
2168 	int wakeups;
2169 
2170 	if (!current->memcg_oom.may_oom)
2171 		return;
2172 
2173 	current->memcg_oom.in_memcg_oom = 1;
2174 
2175 	/*
2176 	 * As with any blocking lock, a contender needs to start
2177 	 * listening for wakeups before attempting the trylock,
2178 	 * otherwise it can miss the wakeup from the unlock and sleep
2179 	 * indefinitely.  This is just open-coded because our locking
2180 	 * is so particular to memcg hierarchies.
2181 	 */
2182 	wakeups = atomic_read(&memcg->oom_wakeups);
2183 	mem_cgroup_mark_under_oom(memcg);
2184 
2185 	locked = mem_cgroup_oom_trylock(memcg);
2186 
2187 	if (locked)
2188 		mem_cgroup_oom_notify(memcg);
2189 
2190 	if (locked && !memcg->oom_kill_disable) {
2191 		mem_cgroup_unmark_under_oom(memcg);
2192 		mem_cgroup_out_of_memory(memcg, mask, order);
2193 		mem_cgroup_oom_unlock(memcg);
2194 		/*
2195 		 * There is no guarantee that an OOM-lock contender
2196 		 * sees the wakeups triggered by the OOM kill
2197 		 * uncharges.  Wake any sleepers explicitely.
2198 		 */
2199 		memcg_oom_recover(memcg);
2200 	} else {
2201 		/*
2202 		 * A system call can just return -ENOMEM, but if this
2203 		 * is a page fault and somebody else is handling the
2204 		 * OOM already, we need to sleep on the OOM waitqueue
2205 		 * for this memcg until the situation is resolved.
2206 		 * Which can take some time because it might be
2207 		 * handled by a userspace task.
2208 		 *
2209 		 * However, this is the charge context, which means
2210 		 * that we may sit on a large call stack and hold
2211 		 * various filesystem locks, the mmap_sem etc. and we
2212 		 * don't want the OOM handler to deadlock on them
2213 		 * while we sit here and wait.  Store the current OOM
2214 		 * context in the task_struct, then return -ENOMEM.
2215 		 * At the end of the page fault handler, with the
2216 		 * stack unwound, pagefault_out_of_memory() will check
2217 		 * back with us by calling
2218 		 * mem_cgroup_oom_synchronize(), possibly putting the
2219 		 * task to sleep.
2220 		 */
2221 		current->memcg_oom.oom_locked = locked;
2222 		current->memcg_oom.wakeups = wakeups;
2223 		css_get(&memcg->css);
2224 		current->memcg_oom.wait_on_memcg = memcg;
2225 	}
2226 }
2227 
2228 /**
2229  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2230  *
2231  * This has to be called at the end of a page fault if the the memcg
2232  * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
2233  *
2234  * Memcg supports userspace OOM handling, so failed allocations must
2235  * sleep on a waitqueue until the userspace task resolves the
2236  * situation.  Sleeping directly in the charge context with all kinds
2237  * of locks held is not a good idea, instead we remember an OOM state
2238  * in the task and mem_cgroup_oom_synchronize() has to be called at
2239  * the end of the page fault to put the task to sleep and clean up the
2240  * OOM state.
2241  *
2242  * Returns %true if an ongoing memcg OOM situation was detected and
2243  * finalized, %false otherwise.
2244  */
2245 bool mem_cgroup_oom_synchronize(void)
2246 {
2247 	struct oom_wait_info owait;
2248 	struct mem_cgroup *memcg;
2249 
2250 	/* OOM is global, do not handle */
2251 	if (!current->memcg_oom.in_memcg_oom)
2252 		return false;
2253 
2254 	/*
2255 	 * We invoked the OOM killer but there is a chance that a kill
2256 	 * did not free up any charges.  Everybody else might already
2257 	 * be sleeping, so restart the fault and keep the rampage
2258 	 * going until some charges are released.
2259 	 */
2260 	memcg = current->memcg_oom.wait_on_memcg;
2261 	if (!memcg)
2262 		goto out;
2263 
2264 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2265 		goto out_memcg;
2266 
2267 	owait.memcg = memcg;
2268 	owait.wait.flags = 0;
2269 	owait.wait.func = memcg_oom_wake_function;
2270 	owait.wait.private = current;
2271 	INIT_LIST_HEAD(&owait.wait.task_list);
2272 
2273 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2274 	/* Only sleep if we didn't miss any wakeups since OOM */
2275 	if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
2276 		schedule();
2277 	finish_wait(&memcg_oom_waitq, &owait.wait);
2278 out_memcg:
2279 	mem_cgroup_unmark_under_oom(memcg);
2280 	if (current->memcg_oom.oom_locked) {
2281 		mem_cgroup_oom_unlock(memcg);
2282 		/*
2283 		 * There is no guarantee that an OOM-lock contender
2284 		 * sees the wakeups triggered by the OOM kill
2285 		 * uncharges.  Wake any sleepers explicitely.
2286 		 */
2287 		memcg_oom_recover(memcg);
2288 	}
2289 	css_put(&memcg->css);
2290 	current->memcg_oom.wait_on_memcg = NULL;
2291 out:
2292 	current->memcg_oom.in_memcg_oom = 0;
2293 	return true;
2294 }
2295 
2296 /*
2297  * Currently used to update mapped file statistics, but the routine can be
2298  * generalized to update other statistics as well.
2299  *
2300  * Notes: Race condition
2301  *
2302  * We usually use page_cgroup_lock() for accessing page_cgroup member but
2303  * it tends to be costly. But considering some conditions, we doesn't need
2304  * to do so _always_.
2305  *
2306  * Considering "charge", lock_page_cgroup() is not required because all
2307  * file-stat operations happen after a page is attached to radix-tree. There
2308  * are no race with "charge".
2309  *
2310  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2311  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2312  * if there are race with "uncharge". Statistics itself is properly handled
2313  * by flags.
2314  *
2315  * Considering "move", this is an only case we see a race. To make the race
2316  * small, we check mm->moving_account and detect there are possibility of race
2317  * If there is, we take a lock.
2318  */
2319 
2320 void __mem_cgroup_begin_update_page_stat(struct page *page,
2321 				bool *locked, unsigned long *flags)
2322 {
2323 	struct mem_cgroup *memcg;
2324 	struct page_cgroup *pc;
2325 
2326 	pc = lookup_page_cgroup(page);
2327 again:
2328 	memcg = pc->mem_cgroup;
2329 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2330 		return;
2331 	/*
2332 	 * If this memory cgroup is not under account moving, we don't
2333 	 * need to take move_lock_mem_cgroup(). Because we already hold
2334 	 * rcu_read_lock(), any calls to move_account will be delayed until
2335 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2336 	 */
2337 	if (!mem_cgroup_stolen(memcg))
2338 		return;
2339 
2340 	move_lock_mem_cgroup(memcg, flags);
2341 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2342 		move_unlock_mem_cgroup(memcg, flags);
2343 		goto again;
2344 	}
2345 	*locked = true;
2346 }
2347 
2348 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2349 {
2350 	struct page_cgroup *pc = lookup_page_cgroup(page);
2351 
2352 	/*
2353 	 * It's guaranteed that pc->mem_cgroup never changes while
2354 	 * lock is held because a routine modifies pc->mem_cgroup
2355 	 * should take move_lock_mem_cgroup().
2356 	 */
2357 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2358 }
2359 
2360 void mem_cgroup_update_page_stat(struct page *page,
2361 				 enum mem_cgroup_stat_index idx, int val)
2362 {
2363 	struct mem_cgroup *memcg;
2364 	struct page_cgroup *pc = lookup_page_cgroup(page);
2365 	unsigned long uninitialized_var(flags);
2366 
2367 	if (mem_cgroup_disabled())
2368 		return;
2369 
2370 	VM_BUG_ON(!rcu_read_lock_held());
2371 	memcg = pc->mem_cgroup;
2372 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2373 		return;
2374 
2375 	this_cpu_add(memcg->stat->count[idx], val);
2376 }
2377 
2378 /*
2379  * size of first charge trial. "32" comes from vmscan.c's magic value.
2380  * TODO: maybe necessary to use big numbers in big irons.
2381  */
2382 #define CHARGE_BATCH	32U
2383 struct memcg_stock_pcp {
2384 	struct mem_cgroup *cached; /* this never be root cgroup */
2385 	unsigned int nr_pages;
2386 	struct work_struct work;
2387 	unsigned long flags;
2388 #define FLUSHING_CACHED_CHARGE	0
2389 };
2390 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2391 static DEFINE_MUTEX(percpu_charge_mutex);
2392 
2393 /**
2394  * consume_stock: Try to consume stocked charge on this cpu.
2395  * @memcg: memcg to consume from.
2396  * @nr_pages: how many pages to charge.
2397  *
2398  * The charges will only happen if @memcg matches the current cpu's memcg
2399  * stock, and at least @nr_pages are available in that stock.  Failure to
2400  * service an allocation will refill the stock.
2401  *
2402  * returns true if successful, false otherwise.
2403  */
2404 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2405 {
2406 	struct memcg_stock_pcp *stock;
2407 	bool ret = true;
2408 
2409 	if (nr_pages > CHARGE_BATCH)
2410 		return false;
2411 
2412 	stock = &get_cpu_var(memcg_stock);
2413 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2414 		stock->nr_pages -= nr_pages;
2415 	else /* need to call res_counter_charge */
2416 		ret = false;
2417 	put_cpu_var(memcg_stock);
2418 	return ret;
2419 }
2420 
2421 /*
2422  * Returns stocks cached in percpu to res_counter and reset cached information.
2423  */
2424 static void drain_stock(struct memcg_stock_pcp *stock)
2425 {
2426 	struct mem_cgroup *old = stock->cached;
2427 
2428 	if (stock->nr_pages) {
2429 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2430 
2431 		res_counter_uncharge(&old->res, bytes);
2432 		if (do_swap_account)
2433 			res_counter_uncharge(&old->memsw, bytes);
2434 		stock->nr_pages = 0;
2435 	}
2436 	stock->cached = NULL;
2437 }
2438 
2439 /*
2440  * This must be called under preempt disabled or must be called by
2441  * a thread which is pinned to local cpu.
2442  */
2443 static void drain_local_stock(struct work_struct *dummy)
2444 {
2445 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2446 	drain_stock(stock);
2447 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2448 }
2449 
2450 static void __init memcg_stock_init(void)
2451 {
2452 	int cpu;
2453 
2454 	for_each_possible_cpu(cpu) {
2455 		struct memcg_stock_pcp *stock =
2456 					&per_cpu(memcg_stock, cpu);
2457 		INIT_WORK(&stock->work, drain_local_stock);
2458 	}
2459 }
2460 
2461 /*
2462  * Cache charges(val) which is from res_counter, to local per_cpu area.
2463  * This will be consumed by consume_stock() function, later.
2464  */
2465 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2466 {
2467 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2468 
2469 	if (stock->cached != memcg) { /* reset if necessary */
2470 		drain_stock(stock);
2471 		stock->cached = memcg;
2472 	}
2473 	stock->nr_pages += nr_pages;
2474 	put_cpu_var(memcg_stock);
2475 }
2476 
2477 /*
2478  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2479  * of the hierarchy under it. sync flag says whether we should block
2480  * until the work is done.
2481  */
2482 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2483 {
2484 	int cpu, curcpu;
2485 
2486 	/* Notify other cpus that system-wide "drain" is running */
2487 	get_online_cpus();
2488 	curcpu = get_cpu();
2489 	for_each_online_cpu(cpu) {
2490 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2491 		struct mem_cgroup *memcg;
2492 
2493 		memcg = stock->cached;
2494 		if (!memcg || !stock->nr_pages)
2495 			continue;
2496 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2497 			continue;
2498 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2499 			if (cpu == curcpu)
2500 				drain_local_stock(&stock->work);
2501 			else
2502 				schedule_work_on(cpu, &stock->work);
2503 		}
2504 	}
2505 	put_cpu();
2506 
2507 	if (!sync)
2508 		goto out;
2509 
2510 	for_each_online_cpu(cpu) {
2511 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2512 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2513 			flush_work(&stock->work);
2514 	}
2515 out:
2516 	put_online_cpus();
2517 }
2518 
2519 /*
2520  * Tries to drain stocked charges in other cpus. This function is asynchronous
2521  * and just put a work per cpu for draining localy on each cpu. Caller can
2522  * expects some charges will be back to res_counter later but cannot wait for
2523  * it.
2524  */
2525 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2526 {
2527 	/*
2528 	 * If someone calls draining, avoid adding more kworker runs.
2529 	 */
2530 	if (!mutex_trylock(&percpu_charge_mutex))
2531 		return;
2532 	drain_all_stock(root_memcg, false);
2533 	mutex_unlock(&percpu_charge_mutex);
2534 }
2535 
2536 /* This is a synchronous drain interface. */
2537 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2538 {
2539 	/* called when force_empty is called */
2540 	mutex_lock(&percpu_charge_mutex);
2541 	drain_all_stock(root_memcg, true);
2542 	mutex_unlock(&percpu_charge_mutex);
2543 }
2544 
2545 /*
2546  * This function drains percpu counter value from DEAD cpu and
2547  * move it to local cpu. Note that this function can be preempted.
2548  */
2549 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2550 {
2551 	int i;
2552 
2553 	spin_lock(&memcg->pcp_counter_lock);
2554 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2555 		long x = per_cpu(memcg->stat->count[i], cpu);
2556 
2557 		per_cpu(memcg->stat->count[i], cpu) = 0;
2558 		memcg->nocpu_base.count[i] += x;
2559 	}
2560 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2561 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2562 
2563 		per_cpu(memcg->stat->events[i], cpu) = 0;
2564 		memcg->nocpu_base.events[i] += x;
2565 	}
2566 	spin_unlock(&memcg->pcp_counter_lock);
2567 }
2568 
2569 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2570 					unsigned long action,
2571 					void *hcpu)
2572 {
2573 	int cpu = (unsigned long)hcpu;
2574 	struct memcg_stock_pcp *stock;
2575 	struct mem_cgroup *iter;
2576 
2577 	if (action == CPU_ONLINE)
2578 		return NOTIFY_OK;
2579 
2580 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2581 		return NOTIFY_OK;
2582 
2583 	for_each_mem_cgroup(iter)
2584 		mem_cgroup_drain_pcp_counter(iter, cpu);
2585 
2586 	stock = &per_cpu(memcg_stock, cpu);
2587 	drain_stock(stock);
2588 	return NOTIFY_OK;
2589 }
2590 
2591 
2592 /* See __mem_cgroup_try_charge() for details */
2593 enum {
2594 	CHARGE_OK,		/* success */
2595 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2596 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2597 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2598 };
2599 
2600 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2601 				unsigned int nr_pages, unsigned int min_pages,
2602 				bool invoke_oom)
2603 {
2604 	unsigned long csize = nr_pages * PAGE_SIZE;
2605 	struct mem_cgroup *mem_over_limit;
2606 	struct res_counter *fail_res;
2607 	unsigned long flags = 0;
2608 	int ret;
2609 
2610 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2611 
2612 	if (likely(!ret)) {
2613 		if (!do_swap_account)
2614 			return CHARGE_OK;
2615 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2616 		if (likely(!ret))
2617 			return CHARGE_OK;
2618 
2619 		res_counter_uncharge(&memcg->res, csize);
2620 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2621 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2622 	} else
2623 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2624 	/*
2625 	 * Never reclaim on behalf of optional batching, retry with a
2626 	 * single page instead.
2627 	 */
2628 	if (nr_pages > min_pages)
2629 		return CHARGE_RETRY;
2630 
2631 	if (!(gfp_mask & __GFP_WAIT))
2632 		return CHARGE_WOULDBLOCK;
2633 
2634 	if (gfp_mask & __GFP_NORETRY)
2635 		return CHARGE_NOMEM;
2636 
2637 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2638 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2639 		return CHARGE_RETRY;
2640 	/*
2641 	 * Even though the limit is exceeded at this point, reclaim
2642 	 * may have been able to free some pages.  Retry the charge
2643 	 * before killing the task.
2644 	 *
2645 	 * Only for regular pages, though: huge pages are rather
2646 	 * unlikely to succeed so close to the limit, and we fall back
2647 	 * to regular pages anyway in case of failure.
2648 	 */
2649 	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2650 		return CHARGE_RETRY;
2651 
2652 	/*
2653 	 * At task move, charge accounts can be doubly counted. So, it's
2654 	 * better to wait until the end of task_move if something is going on.
2655 	 */
2656 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2657 		return CHARGE_RETRY;
2658 
2659 	if (invoke_oom)
2660 		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2661 
2662 	return CHARGE_NOMEM;
2663 }
2664 
2665 /*
2666  * __mem_cgroup_try_charge() does
2667  * 1. detect memcg to be charged against from passed *mm and *ptr,
2668  * 2. update res_counter
2669  * 3. call memory reclaim if necessary.
2670  *
2671  * In some special case, if the task is fatal, fatal_signal_pending() or
2672  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2673  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2674  * as possible without any hazards. 2: all pages should have a valid
2675  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2676  * pointer, that is treated as a charge to root_mem_cgroup.
2677  *
2678  * So __mem_cgroup_try_charge() will return
2679  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2680  *  -ENOMEM ...  charge failure because of resource limits.
2681  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2682  *
2683  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2684  * the oom-killer can be invoked.
2685  */
2686 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2687 				   gfp_t gfp_mask,
2688 				   unsigned int nr_pages,
2689 				   struct mem_cgroup **ptr,
2690 				   bool oom)
2691 {
2692 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2693 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2694 	struct mem_cgroup *memcg = NULL;
2695 	int ret;
2696 
2697 	/*
2698 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2699 	 * in system level. So, allow to go ahead dying process in addition to
2700 	 * MEMDIE process.
2701 	 */
2702 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2703 		     || fatal_signal_pending(current)))
2704 		goto bypass;
2705 
2706 	/*
2707 	 * We always charge the cgroup the mm_struct belongs to.
2708 	 * The mm_struct's mem_cgroup changes on task migration if the
2709 	 * thread group leader migrates. It's possible that mm is not
2710 	 * set, if so charge the root memcg (happens for pagecache usage).
2711 	 */
2712 	if (!*ptr && !mm)
2713 		*ptr = root_mem_cgroup;
2714 again:
2715 	if (*ptr) { /* css should be a valid one */
2716 		memcg = *ptr;
2717 		if (mem_cgroup_is_root(memcg))
2718 			goto done;
2719 		if (consume_stock(memcg, nr_pages))
2720 			goto done;
2721 		css_get(&memcg->css);
2722 	} else {
2723 		struct task_struct *p;
2724 
2725 		rcu_read_lock();
2726 		p = rcu_dereference(mm->owner);
2727 		/*
2728 		 * Because we don't have task_lock(), "p" can exit.
2729 		 * In that case, "memcg" can point to root or p can be NULL with
2730 		 * race with swapoff. Then, we have small risk of mis-accouning.
2731 		 * But such kind of mis-account by race always happens because
2732 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2733 		 * small race, here.
2734 		 * (*) swapoff at el will charge against mm-struct not against
2735 		 * task-struct. So, mm->owner can be NULL.
2736 		 */
2737 		memcg = mem_cgroup_from_task(p);
2738 		if (!memcg)
2739 			memcg = root_mem_cgroup;
2740 		if (mem_cgroup_is_root(memcg)) {
2741 			rcu_read_unlock();
2742 			goto done;
2743 		}
2744 		if (consume_stock(memcg, nr_pages)) {
2745 			/*
2746 			 * It seems dagerous to access memcg without css_get().
2747 			 * But considering how consume_stok works, it's not
2748 			 * necessary. If consume_stock success, some charges
2749 			 * from this memcg are cached on this cpu. So, we
2750 			 * don't need to call css_get()/css_tryget() before
2751 			 * calling consume_stock().
2752 			 */
2753 			rcu_read_unlock();
2754 			goto done;
2755 		}
2756 		/* after here, we may be blocked. we need to get refcnt */
2757 		if (!css_tryget(&memcg->css)) {
2758 			rcu_read_unlock();
2759 			goto again;
2760 		}
2761 		rcu_read_unlock();
2762 	}
2763 
2764 	do {
2765 		bool invoke_oom = oom && !nr_oom_retries;
2766 
2767 		/* If killed, bypass charge */
2768 		if (fatal_signal_pending(current)) {
2769 			css_put(&memcg->css);
2770 			goto bypass;
2771 		}
2772 
2773 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2774 					   nr_pages, invoke_oom);
2775 		switch (ret) {
2776 		case CHARGE_OK:
2777 			break;
2778 		case CHARGE_RETRY: /* not in OOM situation but retry */
2779 			batch = nr_pages;
2780 			css_put(&memcg->css);
2781 			memcg = NULL;
2782 			goto again;
2783 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2784 			css_put(&memcg->css);
2785 			goto nomem;
2786 		case CHARGE_NOMEM: /* OOM routine works */
2787 			if (!oom || invoke_oom) {
2788 				css_put(&memcg->css);
2789 				goto nomem;
2790 			}
2791 			nr_oom_retries--;
2792 			break;
2793 		}
2794 	} while (ret != CHARGE_OK);
2795 
2796 	if (batch > nr_pages)
2797 		refill_stock(memcg, batch - nr_pages);
2798 	css_put(&memcg->css);
2799 done:
2800 	*ptr = memcg;
2801 	return 0;
2802 nomem:
2803 	*ptr = NULL;
2804 	return -ENOMEM;
2805 bypass:
2806 	*ptr = root_mem_cgroup;
2807 	return -EINTR;
2808 }
2809 
2810 /*
2811  * Somemtimes we have to undo a charge we got by try_charge().
2812  * This function is for that and do uncharge, put css's refcnt.
2813  * gotten by try_charge().
2814  */
2815 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2816 				       unsigned int nr_pages)
2817 {
2818 	if (!mem_cgroup_is_root(memcg)) {
2819 		unsigned long bytes = nr_pages * PAGE_SIZE;
2820 
2821 		res_counter_uncharge(&memcg->res, bytes);
2822 		if (do_swap_account)
2823 			res_counter_uncharge(&memcg->memsw, bytes);
2824 	}
2825 }
2826 
2827 /*
2828  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2829  * This is useful when moving usage to parent cgroup.
2830  */
2831 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2832 					unsigned int nr_pages)
2833 {
2834 	unsigned long bytes = nr_pages * PAGE_SIZE;
2835 
2836 	if (mem_cgroup_is_root(memcg))
2837 		return;
2838 
2839 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2840 	if (do_swap_account)
2841 		res_counter_uncharge_until(&memcg->memsw,
2842 						memcg->memsw.parent, bytes);
2843 }
2844 
2845 /*
2846  * A helper function to get mem_cgroup from ID. must be called under
2847  * rcu_read_lock().  The caller is responsible for calling css_tryget if
2848  * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2849  * called against removed memcg.)
2850  */
2851 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2852 {
2853 	struct cgroup_subsys_state *css;
2854 
2855 	/* ID 0 is unused ID */
2856 	if (!id)
2857 		return NULL;
2858 	css = css_lookup(&mem_cgroup_subsys, id);
2859 	if (!css)
2860 		return NULL;
2861 	return mem_cgroup_from_css(css);
2862 }
2863 
2864 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2865 {
2866 	struct mem_cgroup *memcg = NULL;
2867 	struct page_cgroup *pc;
2868 	unsigned short id;
2869 	swp_entry_t ent;
2870 
2871 	VM_BUG_ON(!PageLocked(page));
2872 
2873 	pc = lookup_page_cgroup(page);
2874 	lock_page_cgroup(pc);
2875 	if (PageCgroupUsed(pc)) {
2876 		memcg = pc->mem_cgroup;
2877 		if (memcg && !css_tryget(&memcg->css))
2878 			memcg = NULL;
2879 	} else if (PageSwapCache(page)) {
2880 		ent.val = page_private(page);
2881 		id = lookup_swap_cgroup_id(ent);
2882 		rcu_read_lock();
2883 		memcg = mem_cgroup_lookup(id);
2884 		if (memcg && !css_tryget(&memcg->css))
2885 			memcg = NULL;
2886 		rcu_read_unlock();
2887 	}
2888 	unlock_page_cgroup(pc);
2889 	return memcg;
2890 }
2891 
2892 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2893 				       struct page *page,
2894 				       unsigned int nr_pages,
2895 				       enum charge_type ctype,
2896 				       bool lrucare)
2897 {
2898 	struct page_cgroup *pc = lookup_page_cgroup(page);
2899 	struct zone *uninitialized_var(zone);
2900 	struct lruvec *lruvec;
2901 	bool was_on_lru = false;
2902 	bool anon;
2903 
2904 	lock_page_cgroup(pc);
2905 	VM_BUG_ON(PageCgroupUsed(pc));
2906 	/*
2907 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2908 	 * accessed by any other context at this point.
2909 	 */
2910 
2911 	/*
2912 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2913 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2914 	 */
2915 	if (lrucare) {
2916 		zone = page_zone(page);
2917 		spin_lock_irq(&zone->lru_lock);
2918 		if (PageLRU(page)) {
2919 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2920 			ClearPageLRU(page);
2921 			del_page_from_lru_list(page, lruvec, page_lru(page));
2922 			was_on_lru = true;
2923 		}
2924 	}
2925 
2926 	pc->mem_cgroup = memcg;
2927 	/*
2928 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2929 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2930 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2931 	 * before USED bit, we need memory barrier here.
2932 	 * See mem_cgroup_add_lru_list(), etc.
2933 	 */
2934 	smp_wmb();
2935 	SetPageCgroupUsed(pc);
2936 
2937 	if (lrucare) {
2938 		if (was_on_lru) {
2939 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2940 			VM_BUG_ON(PageLRU(page));
2941 			SetPageLRU(page);
2942 			add_page_to_lru_list(page, lruvec, page_lru(page));
2943 		}
2944 		spin_unlock_irq(&zone->lru_lock);
2945 	}
2946 
2947 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2948 		anon = true;
2949 	else
2950 		anon = false;
2951 
2952 	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2953 	unlock_page_cgroup(pc);
2954 
2955 	/*
2956 	 * "charge_statistics" updated event counter. Then, check it.
2957 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2958 	 * if they exceeds softlimit.
2959 	 */
2960 	memcg_check_events(memcg, page);
2961 }
2962 
2963 static DEFINE_MUTEX(set_limit_mutex);
2964 
2965 #ifdef CONFIG_MEMCG_KMEM
2966 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2967 {
2968 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2969 		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2970 }
2971 
2972 /*
2973  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2974  * in the memcg_cache_params struct.
2975  */
2976 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2977 {
2978 	struct kmem_cache *cachep;
2979 
2980 	VM_BUG_ON(p->is_root_cache);
2981 	cachep = p->root_cache;
2982 	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2983 }
2984 
2985 #ifdef CONFIG_SLABINFO
2986 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2987 				    struct cftype *cft, struct seq_file *m)
2988 {
2989 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2990 	struct memcg_cache_params *params;
2991 
2992 	if (!memcg_can_account_kmem(memcg))
2993 		return -EIO;
2994 
2995 	print_slabinfo_header(m);
2996 
2997 	mutex_lock(&memcg->slab_caches_mutex);
2998 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2999 		cache_show(memcg_params_to_cache(params), m);
3000 	mutex_unlock(&memcg->slab_caches_mutex);
3001 
3002 	return 0;
3003 }
3004 #endif
3005 
3006 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3007 {
3008 	struct res_counter *fail_res;
3009 	struct mem_cgroup *_memcg;
3010 	int ret = 0;
3011 	bool may_oom;
3012 
3013 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3014 	if (ret)
3015 		return ret;
3016 
3017 	/*
3018 	 * Conditions under which we can wait for the oom_killer. Those are
3019 	 * the same conditions tested by the core page allocator
3020 	 */
3021 	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
3022 
3023 	_memcg = memcg;
3024 	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3025 				      &_memcg, may_oom);
3026 
3027 	if (ret == -EINTR)  {
3028 		/*
3029 		 * __mem_cgroup_try_charge() chosed to bypass to root due to
3030 		 * OOM kill or fatal signal.  Since our only options are to
3031 		 * either fail the allocation or charge it to this cgroup, do
3032 		 * it as a temporary condition. But we can't fail. From a
3033 		 * kmem/slab perspective, the cache has already been selected,
3034 		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3035 		 * our minds.
3036 		 *
3037 		 * This condition will only trigger if the task entered
3038 		 * memcg_charge_kmem in a sane state, but was OOM-killed during
3039 		 * __mem_cgroup_try_charge() above. Tasks that were already
3040 		 * dying when the allocation triggers should have been already
3041 		 * directed to the root cgroup in memcontrol.h
3042 		 */
3043 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
3044 		if (do_swap_account)
3045 			res_counter_charge_nofail(&memcg->memsw, size,
3046 						  &fail_res);
3047 		ret = 0;
3048 	} else if (ret)
3049 		res_counter_uncharge(&memcg->kmem, size);
3050 
3051 	return ret;
3052 }
3053 
3054 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3055 {
3056 	res_counter_uncharge(&memcg->res, size);
3057 	if (do_swap_account)
3058 		res_counter_uncharge(&memcg->memsw, size);
3059 
3060 	/* Not down to 0 */
3061 	if (res_counter_uncharge(&memcg->kmem, size))
3062 		return;
3063 
3064 	/*
3065 	 * Releases a reference taken in kmem_cgroup_css_offline in case
3066 	 * this last uncharge is racing with the offlining code or it is
3067 	 * outliving the memcg existence.
3068 	 *
3069 	 * The memory barrier imposed by test&clear is paired with the
3070 	 * explicit one in memcg_kmem_mark_dead().
3071 	 */
3072 	if (memcg_kmem_test_and_clear_dead(memcg))
3073 		css_put(&memcg->css);
3074 }
3075 
3076 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3077 {
3078 	if (!memcg)
3079 		return;
3080 
3081 	mutex_lock(&memcg->slab_caches_mutex);
3082 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3083 	mutex_unlock(&memcg->slab_caches_mutex);
3084 }
3085 
3086 /*
3087  * helper for acessing a memcg's index. It will be used as an index in the
3088  * child cache array in kmem_cache, and also to derive its name. This function
3089  * will return -1 when this is not a kmem-limited memcg.
3090  */
3091 int memcg_cache_id(struct mem_cgroup *memcg)
3092 {
3093 	return memcg ? memcg->kmemcg_id : -1;
3094 }
3095 
3096 /*
3097  * This ends up being protected by the set_limit mutex, during normal
3098  * operation, because that is its main call site.
3099  *
3100  * But when we create a new cache, we can call this as well if its parent
3101  * is kmem-limited. That will have to hold set_limit_mutex as well.
3102  */
3103 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3104 {
3105 	int num, ret;
3106 
3107 	num = ida_simple_get(&kmem_limited_groups,
3108 				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3109 	if (num < 0)
3110 		return num;
3111 	/*
3112 	 * After this point, kmem_accounted (that we test atomically in
3113 	 * the beginning of this conditional), is no longer 0. This
3114 	 * guarantees only one process will set the following boolean
3115 	 * to true. We don't need test_and_set because we're protected
3116 	 * by the set_limit_mutex anyway.
3117 	 */
3118 	memcg_kmem_set_activated(memcg);
3119 
3120 	ret = memcg_update_all_caches(num+1);
3121 	if (ret) {
3122 		ida_simple_remove(&kmem_limited_groups, num);
3123 		memcg_kmem_clear_activated(memcg);
3124 		return ret;
3125 	}
3126 
3127 	memcg->kmemcg_id = num;
3128 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3129 	mutex_init(&memcg->slab_caches_mutex);
3130 	return 0;
3131 }
3132 
3133 static size_t memcg_caches_array_size(int num_groups)
3134 {
3135 	ssize_t size;
3136 	if (num_groups <= 0)
3137 		return 0;
3138 
3139 	size = 2 * num_groups;
3140 	if (size < MEMCG_CACHES_MIN_SIZE)
3141 		size = MEMCG_CACHES_MIN_SIZE;
3142 	else if (size > MEMCG_CACHES_MAX_SIZE)
3143 		size = MEMCG_CACHES_MAX_SIZE;
3144 
3145 	return size;
3146 }
3147 
3148 /*
3149  * We should update the current array size iff all caches updates succeed. This
3150  * can only be done from the slab side. The slab mutex needs to be held when
3151  * calling this.
3152  */
3153 void memcg_update_array_size(int num)
3154 {
3155 	if (num > memcg_limited_groups_array_size)
3156 		memcg_limited_groups_array_size = memcg_caches_array_size(num);
3157 }
3158 
3159 static void kmem_cache_destroy_work_func(struct work_struct *w);
3160 
3161 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3162 {
3163 	struct memcg_cache_params *cur_params = s->memcg_params;
3164 
3165 	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3166 
3167 	if (num_groups > memcg_limited_groups_array_size) {
3168 		int i;
3169 		ssize_t size = memcg_caches_array_size(num_groups);
3170 
3171 		size *= sizeof(void *);
3172 		size += offsetof(struct memcg_cache_params, memcg_caches);
3173 
3174 		s->memcg_params = kzalloc(size, GFP_KERNEL);
3175 		if (!s->memcg_params) {
3176 			s->memcg_params = cur_params;
3177 			return -ENOMEM;
3178 		}
3179 
3180 		s->memcg_params->is_root_cache = true;
3181 
3182 		/*
3183 		 * There is the chance it will be bigger than
3184 		 * memcg_limited_groups_array_size, if we failed an allocation
3185 		 * in a cache, in which case all caches updated before it, will
3186 		 * have a bigger array.
3187 		 *
3188 		 * But if that is the case, the data after
3189 		 * memcg_limited_groups_array_size is certainly unused
3190 		 */
3191 		for (i = 0; i < memcg_limited_groups_array_size; i++) {
3192 			if (!cur_params->memcg_caches[i])
3193 				continue;
3194 			s->memcg_params->memcg_caches[i] =
3195 						cur_params->memcg_caches[i];
3196 		}
3197 
3198 		/*
3199 		 * Ideally, we would wait until all caches succeed, and only
3200 		 * then free the old one. But this is not worth the extra
3201 		 * pointer per-cache we'd have to have for this.
3202 		 *
3203 		 * It is not a big deal if some caches are left with a size
3204 		 * bigger than the others. And all updates will reset this
3205 		 * anyway.
3206 		 */
3207 		kfree(cur_params);
3208 	}
3209 	return 0;
3210 }
3211 
3212 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3213 			 struct kmem_cache *root_cache)
3214 {
3215 	size_t size;
3216 
3217 	if (!memcg_kmem_enabled())
3218 		return 0;
3219 
3220 	if (!memcg) {
3221 		size = offsetof(struct memcg_cache_params, memcg_caches);
3222 		size += memcg_limited_groups_array_size * sizeof(void *);
3223 	} else
3224 		size = sizeof(struct memcg_cache_params);
3225 
3226 	s->memcg_params = kzalloc(size, GFP_KERNEL);
3227 	if (!s->memcg_params)
3228 		return -ENOMEM;
3229 
3230 	if (memcg) {
3231 		s->memcg_params->memcg = memcg;
3232 		s->memcg_params->root_cache = root_cache;
3233 		INIT_WORK(&s->memcg_params->destroy,
3234 				kmem_cache_destroy_work_func);
3235 	} else
3236 		s->memcg_params->is_root_cache = true;
3237 
3238 	return 0;
3239 }
3240 
3241 void memcg_release_cache(struct kmem_cache *s)
3242 {
3243 	struct kmem_cache *root;
3244 	struct mem_cgroup *memcg;
3245 	int id;
3246 
3247 	/*
3248 	 * This happens, for instance, when a root cache goes away before we
3249 	 * add any memcg.
3250 	 */
3251 	if (!s->memcg_params)
3252 		return;
3253 
3254 	if (s->memcg_params->is_root_cache)
3255 		goto out;
3256 
3257 	memcg = s->memcg_params->memcg;
3258 	id  = memcg_cache_id(memcg);
3259 
3260 	root = s->memcg_params->root_cache;
3261 	root->memcg_params->memcg_caches[id] = NULL;
3262 
3263 	mutex_lock(&memcg->slab_caches_mutex);
3264 	list_del(&s->memcg_params->list);
3265 	mutex_unlock(&memcg->slab_caches_mutex);
3266 
3267 	css_put(&memcg->css);
3268 out:
3269 	kfree(s->memcg_params);
3270 }
3271 
3272 /*
3273  * During the creation a new cache, we need to disable our accounting mechanism
3274  * altogether. This is true even if we are not creating, but rather just
3275  * enqueing new caches to be created.
3276  *
3277  * This is because that process will trigger allocations; some visible, like
3278  * explicit kmallocs to auxiliary data structures, name strings and internal
3279  * cache structures; some well concealed, like INIT_WORK() that can allocate
3280  * objects during debug.
3281  *
3282  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3283  * to it. This may not be a bounded recursion: since the first cache creation
3284  * failed to complete (waiting on the allocation), we'll just try to create the
3285  * cache again, failing at the same point.
3286  *
3287  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3288  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3289  * inside the following two functions.
3290  */
3291 static inline void memcg_stop_kmem_account(void)
3292 {
3293 	VM_BUG_ON(!current->mm);
3294 	current->memcg_kmem_skip_account++;
3295 }
3296 
3297 static inline void memcg_resume_kmem_account(void)
3298 {
3299 	VM_BUG_ON(!current->mm);
3300 	current->memcg_kmem_skip_account--;
3301 }
3302 
3303 static void kmem_cache_destroy_work_func(struct work_struct *w)
3304 {
3305 	struct kmem_cache *cachep;
3306 	struct memcg_cache_params *p;
3307 
3308 	p = container_of(w, struct memcg_cache_params, destroy);
3309 
3310 	cachep = memcg_params_to_cache(p);
3311 
3312 	/*
3313 	 * If we get down to 0 after shrink, we could delete right away.
3314 	 * However, memcg_release_pages() already puts us back in the workqueue
3315 	 * in that case. If we proceed deleting, we'll get a dangling
3316 	 * reference, and removing the object from the workqueue in that case
3317 	 * is unnecessary complication. We are not a fast path.
3318 	 *
3319 	 * Note that this case is fundamentally different from racing with
3320 	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3321 	 * kmem_cache_shrink, not only we would be reinserting a dead cache
3322 	 * into the queue, but doing so from inside the worker racing to
3323 	 * destroy it.
3324 	 *
3325 	 * So if we aren't down to zero, we'll just schedule a worker and try
3326 	 * again
3327 	 */
3328 	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3329 		kmem_cache_shrink(cachep);
3330 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3331 			return;
3332 	} else
3333 		kmem_cache_destroy(cachep);
3334 }
3335 
3336 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3337 {
3338 	if (!cachep->memcg_params->dead)
3339 		return;
3340 
3341 	/*
3342 	 * There are many ways in which we can get here.
3343 	 *
3344 	 * We can get to a memory-pressure situation while the delayed work is
3345 	 * still pending to run. The vmscan shrinkers can then release all
3346 	 * cache memory and get us to destruction. If this is the case, we'll
3347 	 * be executed twice, which is a bug (the second time will execute over
3348 	 * bogus data). In this case, cancelling the work should be fine.
3349 	 *
3350 	 * But we can also get here from the worker itself, if
3351 	 * kmem_cache_shrink is enough to shake all the remaining objects and
3352 	 * get the page count to 0. In this case, we'll deadlock if we try to
3353 	 * cancel the work (the worker runs with an internal lock held, which
3354 	 * is the same lock we would hold for cancel_work_sync().)
3355 	 *
3356 	 * Since we can't possibly know who got us here, just refrain from
3357 	 * running if there is already work pending
3358 	 */
3359 	if (work_pending(&cachep->memcg_params->destroy))
3360 		return;
3361 	/*
3362 	 * We have to defer the actual destroying to a workqueue, because
3363 	 * we might currently be in a context that cannot sleep.
3364 	 */
3365 	schedule_work(&cachep->memcg_params->destroy);
3366 }
3367 
3368 /*
3369  * This lock protects updaters, not readers. We want readers to be as fast as
3370  * they can, and they will either see NULL or a valid cache value. Our model
3371  * allow them to see NULL, in which case the root memcg will be selected.
3372  *
3373  * We need this lock because multiple allocations to the same cache from a non
3374  * will span more than one worker. Only one of them can create the cache.
3375  */
3376 static DEFINE_MUTEX(memcg_cache_mutex);
3377 
3378 /*
3379  * Called with memcg_cache_mutex held
3380  */
3381 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3382 					 struct kmem_cache *s)
3383 {
3384 	struct kmem_cache *new;
3385 	static char *tmp_name = NULL;
3386 
3387 	lockdep_assert_held(&memcg_cache_mutex);
3388 
3389 	/*
3390 	 * kmem_cache_create_memcg duplicates the given name and
3391 	 * cgroup_name for this name requires RCU context.
3392 	 * This static temporary buffer is used to prevent from
3393 	 * pointless shortliving allocation.
3394 	 */
3395 	if (!tmp_name) {
3396 		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3397 		if (!tmp_name)
3398 			return NULL;
3399 	}
3400 
3401 	rcu_read_lock();
3402 	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3403 			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3404 	rcu_read_unlock();
3405 
3406 	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3407 				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3408 
3409 	if (new)
3410 		new->allocflags |= __GFP_KMEMCG;
3411 
3412 	return new;
3413 }
3414 
3415 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3416 						  struct kmem_cache *cachep)
3417 {
3418 	struct kmem_cache *new_cachep;
3419 	int idx;
3420 
3421 	BUG_ON(!memcg_can_account_kmem(memcg));
3422 
3423 	idx = memcg_cache_id(memcg);
3424 
3425 	mutex_lock(&memcg_cache_mutex);
3426 	new_cachep = cachep->memcg_params->memcg_caches[idx];
3427 	if (new_cachep) {
3428 		css_put(&memcg->css);
3429 		goto out;
3430 	}
3431 
3432 	new_cachep = kmem_cache_dup(memcg, cachep);
3433 	if (new_cachep == NULL) {
3434 		new_cachep = cachep;
3435 		css_put(&memcg->css);
3436 		goto out;
3437 	}
3438 
3439 	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3440 
3441 	cachep->memcg_params->memcg_caches[idx] = new_cachep;
3442 	/*
3443 	 * the readers won't lock, make sure everybody sees the updated value,
3444 	 * so they won't put stuff in the queue again for no reason
3445 	 */
3446 	wmb();
3447 out:
3448 	mutex_unlock(&memcg_cache_mutex);
3449 	return new_cachep;
3450 }
3451 
3452 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3453 {
3454 	struct kmem_cache *c;
3455 	int i;
3456 
3457 	if (!s->memcg_params)
3458 		return;
3459 	if (!s->memcg_params->is_root_cache)
3460 		return;
3461 
3462 	/*
3463 	 * If the cache is being destroyed, we trust that there is no one else
3464 	 * requesting objects from it. Even if there are, the sanity checks in
3465 	 * kmem_cache_destroy should caught this ill-case.
3466 	 *
3467 	 * Still, we don't want anyone else freeing memcg_caches under our
3468 	 * noses, which can happen if a new memcg comes to life. As usual,
3469 	 * we'll take the set_limit_mutex to protect ourselves against this.
3470 	 */
3471 	mutex_lock(&set_limit_mutex);
3472 	for (i = 0; i < memcg_limited_groups_array_size; i++) {
3473 		c = s->memcg_params->memcg_caches[i];
3474 		if (!c)
3475 			continue;
3476 
3477 		/*
3478 		 * We will now manually delete the caches, so to avoid races
3479 		 * we need to cancel all pending destruction workers and
3480 		 * proceed with destruction ourselves.
3481 		 *
3482 		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3483 		 * and that could spawn the workers again: it is likely that
3484 		 * the cache still have active pages until this very moment.
3485 		 * This would lead us back to mem_cgroup_destroy_cache.
3486 		 *
3487 		 * But that will not execute at all if the "dead" flag is not
3488 		 * set, so flip it down to guarantee we are in control.
3489 		 */
3490 		c->memcg_params->dead = false;
3491 		cancel_work_sync(&c->memcg_params->destroy);
3492 		kmem_cache_destroy(c);
3493 	}
3494 	mutex_unlock(&set_limit_mutex);
3495 }
3496 
3497 struct create_work {
3498 	struct mem_cgroup *memcg;
3499 	struct kmem_cache *cachep;
3500 	struct work_struct work;
3501 };
3502 
3503 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3504 {
3505 	struct kmem_cache *cachep;
3506 	struct memcg_cache_params *params;
3507 
3508 	if (!memcg_kmem_is_active(memcg))
3509 		return;
3510 
3511 	mutex_lock(&memcg->slab_caches_mutex);
3512 	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3513 		cachep = memcg_params_to_cache(params);
3514 		cachep->memcg_params->dead = true;
3515 		schedule_work(&cachep->memcg_params->destroy);
3516 	}
3517 	mutex_unlock(&memcg->slab_caches_mutex);
3518 }
3519 
3520 static void memcg_create_cache_work_func(struct work_struct *w)
3521 {
3522 	struct create_work *cw;
3523 
3524 	cw = container_of(w, struct create_work, work);
3525 	memcg_create_kmem_cache(cw->memcg, cw->cachep);
3526 	kfree(cw);
3527 }
3528 
3529 /*
3530  * Enqueue the creation of a per-memcg kmem_cache.
3531  */
3532 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3533 					 struct kmem_cache *cachep)
3534 {
3535 	struct create_work *cw;
3536 
3537 	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3538 	if (cw == NULL) {
3539 		css_put(&memcg->css);
3540 		return;
3541 	}
3542 
3543 	cw->memcg = memcg;
3544 	cw->cachep = cachep;
3545 
3546 	INIT_WORK(&cw->work, memcg_create_cache_work_func);
3547 	schedule_work(&cw->work);
3548 }
3549 
3550 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3551 				       struct kmem_cache *cachep)
3552 {
3553 	/*
3554 	 * We need to stop accounting when we kmalloc, because if the
3555 	 * corresponding kmalloc cache is not yet created, the first allocation
3556 	 * in __memcg_create_cache_enqueue will recurse.
3557 	 *
3558 	 * However, it is better to enclose the whole function. Depending on
3559 	 * the debugging options enabled, INIT_WORK(), for instance, can
3560 	 * trigger an allocation. This too, will make us recurse. Because at
3561 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3562 	 * the safest choice is to do it like this, wrapping the whole function.
3563 	 */
3564 	memcg_stop_kmem_account();
3565 	__memcg_create_cache_enqueue(memcg, cachep);
3566 	memcg_resume_kmem_account();
3567 }
3568 /*
3569  * Return the kmem_cache we're supposed to use for a slab allocation.
3570  * We try to use the current memcg's version of the cache.
3571  *
3572  * If the cache does not exist yet, if we are the first user of it,
3573  * we either create it immediately, if possible, or create it asynchronously
3574  * in a workqueue.
3575  * In the latter case, we will let the current allocation go through with
3576  * the original cache.
3577  *
3578  * Can't be called in interrupt context or from kernel threads.
3579  * This function needs to be called with rcu_read_lock() held.
3580  */
3581 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3582 					  gfp_t gfp)
3583 {
3584 	struct mem_cgroup *memcg;
3585 	int idx;
3586 
3587 	VM_BUG_ON(!cachep->memcg_params);
3588 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3589 
3590 	if (!current->mm || current->memcg_kmem_skip_account)
3591 		return cachep;
3592 
3593 	rcu_read_lock();
3594 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3595 
3596 	if (!memcg_can_account_kmem(memcg))
3597 		goto out;
3598 
3599 	idx = memcg_cache_id(memcg);
3600 
3601 	/*
3602 	 * barrier to mare sure we're always seeing the up to date value.  The
3603 	 * code updating memcg_caches will issue a write barrier to match this.
3604 	 */
3605 	read_barrier_depends();
3606 	if (likely(cachep->memcg_params->memcg_caches[idx])) {
3607 		cachep = cachep->memcg_params->memcg_caches[idx];
3608 		goto out;
3609 	}
3610 
3611 	/* The corresponding put will be done in the workqueue. */
3612 	if (!css_tryget(&memcg->css))
3613 		goto out;
3614 	rcu_read_unlock();
3615 
3616 	/*
3617 	 * If we are in a safe context (can wait, and not in interrupt
3618 	 * context), we could be be predictable and return right away.
3619 	 * This would guarantee that the allocation being performed
3620 	 * already belongs in the new cache.
3621 	 *
3622 	 * However, there are some clashes that can arrive from locking.
3623 	 * For instance, because we acquire the slab_mutex while doing
3624 	 * kmem_cache_dup, this means no further allocation could happen
3625 	 * with the slab_mutex held.
3626 	 *
3627 	 * Also, because cache creation issue get_online_cpus(), this
3628 	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3629 	 * that ends up reversed during cpu hotplug. (cpuset allocates
3630 	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3631 	 * better to defer everything.
3632 	 */
3633 	memcg_create_cache_enqueue(memcg, cachep);
3634 	return cachep;
3635 out:
3636 	rcu_read_unlock();
3637 	return cachep;
3638 }
3639 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3640 
3641 /*
3642  * We need to verify if the allocation against current->mm->owner's memcg is
3643  * possible for the given order. But the page is not allocated yet, so we'll
3644  * need a further commit step to do the final arrangements.
3645  *
3646  * It is possible for the task to switch cgroups in this mean time, so at
3647  * commit time, we can't rely on task conversion any longer.  We'll then use
3648  * the handle argument to return to the caller which cgroup we should commit
3649  * against. We could also return the memcg directly and avoid the pointer
3650  * passing, but a boolean return value gives better semantics considering
3651  * the compiled-out case as well.
3652  *
3653  * Returning true means the allocation is possible.
3654  */
3655 bool
3656 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3657 {
3658 	struct mem_cgroup *memcg;
3659 	int ret;
3660 
3661 	*_memcg = NULL;
3662 
3663 	/*
3664 	 * Disabling accounting is only relevant for some specific memcg
3665 	 * internal allocations. Therefore we would initially not have such
3666 	 * check here, since direct calls to the page allocator that are marked
3667 	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3668 	 * concerned with cache allocations, and by having this test at
3669 	 * memcg_kmem_get_cache, we are already able to relay the allocation to
3670 	 * the root cache and bypass the memcg cache altogether.
3671 	 *
3672 	 * There is one exception, though: the SLUB allocator does not create
3673 	 * large order caches, but rather service large kmallocs directly from
3674 	 * the page allocator. Therefore, the following sequence when backed by
3675 	 * the SLUB allocator:
3676 	 *
3677 	 *	memcg_stop_kmem_account();
3678 	 *	kmalloc(<large_number>)
3679 	 *	memcg_resume_kmem_account();
3680 	 *
3681 	 * would effectively ignore the fact that we should skip accounting,
3682 	 * since it will drive us directly to this function without passing
3683 	 * through the cache selector memcg_kmem_get_cache. Such large
3684 	 * allocations are extremely rare but can happen, for instance, for the
3685 	 * cache arrays. We bring this test here.
3686 	 */
3687 	if (!current->mm || current->memcg_kmem_skip_account)
3688 		return true;
3689 
3690 	memcg = try_get_mem_cgroup_from_mm(current->mm);
3691 
3692 	/*
3693 	 * very rare case described in mem_cgroup_from_task. Unfortunately there
3694 	 * isn't much we can do without complicating this too much, and it would
3695 	 * be gfp-dependent anyway. Just let it go
3696 	 */
3697 	if (unlikely(!memcg))
3698 		return true;
3699 
3700 	if (!memcg_can_account_kmem(memcg)) {
3701 		css_put(&memcg->css);
3702 		return true;
3703 	}
3704 
3705 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3706 	if (!ret)
3707 		*_memcg = memcg;
3708 
3709 	css_put(&memcg->css);
3710 	return (ret == 0);
3711 }
3712 
3713 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3714 			      int order)
3715 {
3716 	struct page_cgroup *pc;
3717 
3718 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3719 
3720 	/* The page allocation failed. Revert */
3721 	if (!page) {
3722 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3723 		return;
3724 	}
3725 
3726 	pc = lookup_page_cgroup(page);
3727 	lock_page_cgroup(pc);
3728 	pc->mem_cgroup = memcg;
3729 	SetPageCgroupUsed(pc);
3730 	unlock_page_cgroup(pc);
3731 }
3732 
3733 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3734 {
3735 	struct mem_cgroup *memcg = NULL;
3736 	struct page_cgroup *pc;
3737 
3738 
3739 	pc = lookup_page_cgroup(page);
3740 	/*
3741 	 * Fast unlocked return. Theoretically might have changed, have to
3742 	 * check again after locking.
3743 	 */
3744 	if (!PageCgroupUsed(pc))
3745 		return;
3746 
3747 	lock_page_cgroup(pc);
3748 	if (PageCgroupUsed(pc)) {
3749 		memcg = pc->mem_cgroup;
3750 		ClearPageCgroupUsed(pc);
3751 	}
3752 	unlock_page_cgroup(pc);
3753 
3754 	/*
3755 	 * We trust that only if there is a memcg associated with the page, it
3756 	 * is a valid allocation
3757 	 */
3758 	if (!memcg)
3759 		return;
3760 
3761 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3762 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3763 }
3764 #else
3765 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3766 {
3767 }
3768 #endif /* CONFIG_MEMCG_KMEM */
3769 
3770 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3771 
3772 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3773 /*
3774  * Because tail pages are not marked as "used", set it. We're under
3775  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3776  * charge/uncharge will be never happen and move_account() is done under
3777  * compound_lock(), so we don't have to take care of races.
3778  */
3779 void mem_cgroup_split_huge_fixup(struct page *head)
3780 {
3781 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3782 	struct page_cgroup *pc;
3783 	struct mem_cgroup *memcg;
3784 	int i;
3785 
3786 	if (mem_cgroup_disabled())
3787 		return;
3788 
3789 	memcg = head_pc->mem_cgroup;
3790 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3791 		pc = head_pc + i;
3792 		pc->mem_cgroup = memcg;
3793 		smp_wmb();/* see __commit_charge() */
3794 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3795 	}
3796 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3797 		       HPAGE_PMD_NR);
3798 }
3799 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3800 
3801 static inline
3802 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3803 					struct mem_cgroup *to,
3804 					unsigned int nr_pages,
3805 					enum mem_cgroup_stat_index idx)
3806 {
3807 	/* Update stat data for mem_cgroup */
3808 	preempt_disable();
3809 	WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
3810 	__this_cpu_add(from->stat->count[idx], -nr_pages);
3811 	__this_cpu_add(to->stat->count[idx], nr_pages);
3812 	preempt_enable();
3813 }
3814 
3815 /**
3816  * mem_cgroup_move_account - move account of the page
3817  * @page: the page
3818  * @nr_pages: number of regular pages (>1 for huge pages)
3819  * @pc:	page_cgroup of the page.
3820  * @from: mem_cgroup which the page is moved from.
3821  * @to:	mem_cgroup which the page is moved to. @from != @to.
3822  *
3823  * The caller must confirm following.
3824  * - page is not on LRU (isolate_page() is useful.)
3825  * - compound_lock is held when nr_pages > 1
3826  *
3827  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3828  * from old cgroup.
3829  */
3830 static int mem_cgroup_move_account(struct page *page,
3831 				   unsigned int nr_pages,
3832 				   struct page_cgroup *pc,
3833 				   struct mem_cgroup *from,
3834 				   struct mem_cgroup *to)
3835 {
3836 	unsigned long flags;
3837 	int ret;
3838 	bool anon = PageAnon(page);
3839 
3840 	VM_BUG_ON(from == to);
3841 	VM_BUG_ON(PageLRU(page));
3842 	/*
3843 	 * The page is isolated from LRU. So, collapse function
3844 	 * will not handle this page. But page splitting can happen.
3845 	 * Do this check under compound_page_lock(). The caller should
3846 	 * hold it.
3847 	 */
3848 	ret = -EBUSY;
3849 	if (nr_pages > 1 && !PageTransHuge(page))
3850 		goto out;
3851 
3852 	lock_page_cgroup(pc);
3853 
3854 	ret = -EINVAL;
3855 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3856 		goto unlock;
3857 
3858 	move_lock_mem_cgroup(from, &flags);
3859 
3860 	if (!anon && page_mapped(page))
3861 		mem_cgroup_move_account_page_stat(from, to, nr_pages,
3862 			MEM_CGROUP_STAT_FILE_MAPPED);
3863 
3864 	if (PageWriteback(page))
3865 		mem_cgroup_move_account_page_stat(from, to, nr_pages,
3866 			MEM_CGROUP_STAT_WRITEBACK);
3867 
3868 	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3869 
3870 	/* caller should have done css_get */
3871 	pc->mem_cgroup = to;
3872 	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3873 	move_unlock_mem_cgroup(from, &flags);
3874 	ret = 0;
3875 unlock:
3876 	unlock_page_cgroup(pc);
3877 	/*
3878 	 * check events
3879 	 */
3880 	memcg_check_events(to, page);
3881 	memcg_check_events(from, page);
3882 out:
3883 	return ret;
3884 }
3885 
3886 /**
3887  * mem_cgroup_move_parent - moves page to the parent group
3888  * @page: the page to move
3889  * @pc: page_cgroup of the page
3890  * @child: page's cgroup
3891  *
3892  * move charges to its parent or the root cgroup if the group has no
3893  * parent (aka use_hierarchy==0).
3894  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3895  * mem_cgroup_move_account fails) the failure is always temporary and
3896  * it signals a race with a page removal/uncharge or migration. In the
3897  * first case the page is on the way out and it will vanish from the LRU
3898  * on the next attempt and the call should be retried later.
3899  * Isolation from the LRU fails only if page has been isolated from
3900  * the LRU since we looked at it and that usually means either global
3901  * reclaim or migration going on. The page will either get back to the
3902  * LRU or vanish.
3903  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3904  * (!PageCgroupUsed) or moved to a different group. The page will
3905  * disappear in the next attempt.
3906  */
3907 static int mem_cgroup_move_parent(struct page *page,
3908 				  struct page_cgroup *pc,
3909 				  struct mem_cgroup *child)
3910 {
3911 	struct mem_cgroup *parent;
3912 	unsigned int nr_pages;
3913 	unsigned long uninitialized_var(flags);
3914 	int ret;
3915 
3916 	VM_BUG_ON(mem_cgroup_is_root(child));
3917 
3918 	ret = -EBUSY;
3919 	if (!get_page_unless_zero(page))
3920 		goto out;
3921 	if (isolate_lru_page(page))
3922 		goto put;
3923 
3924 	nr_pages = hpage_nr_pages(page);
3925 
3926 	parent = parent_mem_cgroup(child);
3927 	/*
3928 	 * If no parent, move charges to root cgroup.
3929 	 */
3930 	if (!parent)
3931 		parent = root_mem_cgroup;
3932 
3933 	if (nr_pages > 1) {
3934 		VM_BUG_ON(!PageTransHuge(page));
3935 		flags = compound_lock_irqsave(page);
3936 	}
3937 
3938 	ret = mem_cgroup_move_account(page, nr_pages,
3939 				pc, child, parent);
3940 	if (!ret)
3941 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3942 
3943 	if (nr_pages > 1)
3944 		compound_unlock_irqrestore(page, flags);
3945 	putback_lru_page(page);
3946 put:
3947 	put_page(page);
3948 out:
3949 	return ret;
3950 }
3951 
3952 /*
3953  * Charge the memory controller for page usage.
3954  * Return
3955  * 0 if the charge was successful
3956  * < 0 if the cgroup is over its limit
3957  */
3958 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3959 				gfp_t gfp_mask, enum charge_type ctype)
3960 {
3961 	struct mem_cgroup *memcg = NULL;
3962 	unsigned int nr_pages = 1;
3963 	bool oom = true;
3964 	int ret;
3965 
3966 	if (PageTransHuge(page)) {
3967 		nr_pages <<= compound_order(page);
3968 		VM_BUG_ON(!PageTransHuge(page));
3969 		/*
3970 		 * Never OOM-kill a process for a huge page.  The
3971 		 * fault handler will fall back to regular pages.
3972 		 */
3973 		oom = false;
3974 	}
3975 
3976 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3977 	if (ret == -ENOMEM)
3978 		return ret;
3979 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3980 	return 0;
3981 }
3982 
3983 int mem_cgroup_newpage_charge(struct page *page,
3984 			      struct mm_struct *mm, gfp_t gfp_mask)
3985 {
3986 	if (mem_cgroup_disabled())
3987 		return 0;
3988 	VM_BUG_ON(page_mapped(page));
3989 	VM_BUG_ON(page->mapping && !PageAnon(page));
3990 	VM_BUG_ON(!mm);
3991 	return mem_cgroup_charge_common(page, mm, gfp_mask,
3992 					MEM_CGROUP_CHARGE_TYPE_ANON);
3993 }
3994 
3995 /*
3996  * While swap-in, try_charge -> commit or cancel, the page is locked.
3997  * And when try_charge() successfully returns, one refcnt to memcg without
3998  * struct page_cgroup is acquired. This refcnt will be consumed by
3999  * "commit()" or removed by "cancel()"
4000  */
4001 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
4002 					  struct page *page,
4003 					  gfp_t mask,
4004 					  struct mem_cgroup **memcgp)
4005 {
4006 	struct mem_cgroup *memcg;
4007 	struct page_cgroup *pc;
4008 	int ret;
4009 
4010 	pc = lookup_page_cgroup(page);
4011 	/*
4012 	 * Every swap fault against a single page tries to charge the
4013 	 * page, bail as early as possible.  shmem_unuse() encounters
4014 	 * already charged pages, too.  The USED bit is protected by
4015 	 * the page lock, which serializes swap cache removal, which
4016 	 * in turn serializes uncharging.
4017 	 */
4018 	if (PageCgroupUsed(pc))
4019 		return 0;
4020 	if (!do_swap_account)
4021 		goto charge_cur_mm;
4022 	memcg = try_get_mem_cgroup_from_page(page);
4023 	if (!memcg)
4024 		goto charge_cur_mm;
4025 	*memcgp = memcg;
4026 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4027 	css_put(&memcg->css);
4028 	if (ret == -EINTR)
4029 		ret = 0;
4030 	return ret;
4031 charge_cur_mm:
4032 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4033 	if (ret == -EINTR)
4034 		ret = 0;
4035 	return ret;
4036 }
4037 
4038 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4039 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4040 {
4041 	*memcgp = NULL;
4042 	if (mem_cgroup_disabled())
4043 		return 0;
4044 	/*
4045 	 * A racing thread's fault, or swapoff, may have already
4046 	 * updated the pte, and even removed page from swap cache: in
4047 	 * those cases unuse_pte()'s pte_same() test will fail; but
4048 	 * there's also a KSM case which does need to charge the page.
4049 	 */
4050 	if (!PageSwapCache(page)) {
4051 		int ret;
4052 
4053 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4054 		if (ret == -EINTR)
4055 			ret = 0;
4056 		return ret;
4057 	}
4058 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4059 }
4060 
4061 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4062 {
4063 	if (mem_cgroup_disabled())
4064 		return;
4065 	if (!memcg)
4066 		return;
4067 	__mem_cgroup_cancel_charge(memcg, 1);
4068 }
4069 
4070 static void
4071 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4072 					enum charge_type ctype)
4073 {
4074 	if (mem_cgroup_disabled())
4075 		return;
4076 	if (!memcg)
4077 		return;
4078 
4079 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4080 	/*
4081 	 * Now swap is on-memory. This means this page may be
4082 	 * counted both as mem and swap....double count.
4083 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4084 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4085 	 * may call delete_from_swap_cache() before reach here.
4086 	 */
4087 	if (do_swap_account && PageSwapCache(page)) {
4088 		swp_entry_t ent = {.val = page_private(page)};
4089 		mem_cgroup_uncharge_swap(ent);
4090 	}
4091 }
4092 
4093 void mem_cgroup_commit_charge_swapin(struct page *page,
4094 				     struct mem_cgroup *memcg)
4095 {
4096 	__mem_cgroup_commit_charge_swapin(page, memcg,
4097 					  MEM_CGROUP_CHARGE_TYPE_ANON);
4098 }
4099 
4100 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4101 				gfp_t gfp_mask)
4102 {
4103 	struct mem_cgroup *memcg = NULL;
4104 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4105 	int ret;
4106 
4107 	if (mem_cgroup_disabled())
4108 		return 0;
4109 	if (PageCompound(page))
4110 		return 0;
4111 
4112 	if (!PageSwapCache(page))
4113 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4114 	else { /* page is swapcache/shmem */
4115 		ret = __mem_cgroup_try_charge_swapin(mm, page,
4116 						     gfp_mask, &memcg);
4117 		if (!ret)
4118 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
4119 	}
4120 	return ret;
4121 }
4122 
4123 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4124 				   unsigned int nr_pages,
4125 				   const enum charge_type ctype)
4126 {
4127 	struct memcg_batch_info *batch = NULL;
4128 	bool uncharge_memsw = true;
4129 
4130 	/* If swapout, usage of swap doesn't decrease */
4131 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4132 		uncharge_memsw = false;
4133 
4134 	batch = &current->memcg_batch;
4135 	/*
4136 	 * In usual, we do css_get() when we remember memcg pointer.
4137 	 * But in this case, we keep res->usage until end of a series of
4138 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
4139 	 */
4140 	if (!batch->memcg)
4141 		batch->memcg = memcg;
4142 	/*
4143 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4144 	 * In those cases, all pages freed continuously can be expected to be in
4145 	 * the same cgroup and we have chance to coalesce uncharges.
4146 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4147 	 * because we want to do uncharge as soon as possible.
4148 	 */
4149 
4150 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4151 		goto direct_uncharge;
4152 
4153 	if (nr_pages > 1)
4154 		goto direct_uncharge;
4155 
4156 	/*
4157 	 * In typical case, batch->memcg == mem. This means we can
4158 	 * merge a series of uncharges to an uncharge of res_counter.
4159 	 * If not, we uncharge res_counter ony by one.
4160 	 */
4161 	if (batch->memcg != memcg)
4162 		goto direct_uncharge;
4163 	/* remember freed charge and uncharge it later */
4164 	batch->nr_pages++;
4165 	if (uncharge_memsw)
4166 		batch->memsw_nr_pages++;
4167 	return;
4168 direct_uncharge:
4169 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4170 	if (uncharge_memsw)
4171 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4172 	if (unlikely(batch->memcg != memcg))
4173 		memcg_oom_recover(memcg);
4174 }
4175 
4176 /*
4177  * uncharge if !page_mapped(page)
4178  */
4179 static struct mem_cgroup *
4180 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4181 			     bool end_migration)
4182 {
4183 	struct mem_cgroup *memcg = NULL;
4184 	unsigned int nr_pages = 1;
4185 	struct page_cgroup *pc;
4186 	bool anon;
4187 
4188 	if (mem_cgroup_disabled())
4189 		return NULL;
4190 
4191 	if (PageTransHuge(page)) {
4192 		nr_pages <<= compound_order(page);
4193 		VM_BUG_ON(!PageTransHuge(page));
4194 	}
4195 	/*
4196 	 * Check if our page_cgroup is valid
4197 	 */
4198 	pc = lookup_page_cgroup(page);
4199 	if (unlikely(!PageCgroupUsed(pc)))
4200 		return NULL;
4201 
4202 	lock_page_cgroup(pc);
4203 
4204 	memcg = pc->mem_cgroup;
4205 
4206 	if (!PageCgroupUsed(pc))
4207 		goto unlock_out;
4208 
4209 	anon = PageAnon(page);
4210 
4211 	switch (ctype) {
4212 	case MEM_CGROUP_CHARGE_TYPE_ANON:
4213 		/*
4214 		 * Generally PageAnon tells if it's the anon statistics to be
4215 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4216 		 * used before page reached the stage of being marked PageAnon.
4217 		 */
4218 		anon = true;
4219 		/* fallthrough */
4220 	case MEM_CGROUP_CHARGE_TYPE_DROP:
4221 		/* See mem_cgroup_prepare_migration() */
4222 		if (page_mapped(page))
4223 			goto unlock_out;
4224 		/*
4225 		 * Pages under migration may not be uncharged.  But
4226 		 * end_migration() /must/ be the one uncharging the
4227 		 * unused post-migration page and so it has to call
4228 		 * here with the migration bit still set.  See the
4229 		 * res_counter handling below.
4230 		 */
4231 		if (!end_migration && PageCgroupMigration(pc))
4232 			goto unlock_out;
4233 		break;
4234 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4235 		if (!PageAnon(page)) {	/* Shared memory */
4236 			if (page->mapping && !page_is_file_cache(page))
4237 				goto unlock_out;
4238 		} else if (page_mapped(page)) /* Anon */
4239 				goto unlock_out;
4240 		break;
4241 	default:
4242 		break;
4243 	}
4244 
4245 	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4246 
4247 	ClearPageCgroupUsed(pc);
4248 	/*
4249 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4250 	 * freed from LRU. This is safe because uncharged page is expected not
4251 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
4252 	 * special functions.
4253 	 */
4254 
4255 	unlock_page_cgroup(pc);
4256 	/*
4257 	 * even after unlock, we have memcg->res.usage here and this memcg
4258 	 * will never be freed, so it's safe to call css_get().
4259 	 */
4260 	memcg_check_events(memcg, page);
4261 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4262 		mem_cgroup_swap_statistics(memcg, true);
4263 		css_get(&memcg->css);
4264 	}
4265 	/*
4266 	 * Migration does not charge the res_counter for the
4267 	 * replacement page, so leave it alone when phasing out the
4268 	 * page that is unused after the migration.
4269 	 */
4270 	if (!end_migration && !mem_cgroup_is_root(memcg))
4271 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4272 
4273 	return memcg;
4274 
4275 unlock_out:
4276 	unlock_page_cgroup(pc);
4277 	return NULL;
4278 }
4279 
4280 void mem_cgroup_uncharge_page(struct page *page)
4281 {
4282 	/* early check. */
4283 	if (page_mapped(page))
4284 		return;
4285 	VM_BUG_ON(page->mapping && !PageAnon(page));
4286 	/*
4287 	 * If the page is in swap cache, uncharge should be deferred
4288 	 * to the swap path, which also properly accounts swap usage
4289 	 * and handles memcg lifetime.
4290 	 *
4291 	 * Note that this check is not stable and reclaim may add the
4292 	 * page to swap cache at any time after this.  However, if the
4293 	 * page is not in swap cache by the time page->mapcount hits
4294 	 * 0, there won't be any page table references to the swap
4295 	 * slot, and reclaim will free it and not actually write the
4296 	 * page to disk.
4297 	 */
4298 	if (PageSwapCache(page))
4299 		return;
4300 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4301 }
4302 
4303 void mem_cgroup_uncharge_cache_page(struct page *page)
4304 {
4305 	VM_BUG_ON(page_mapped(page));
4306 	VM_BUG_ON(page->mapping);
4307 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4308 }
4309 
4310 /*
4311  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4312  * In that cases, pages are freed continuously and we can expect pages
4313  * are in the same memcg. All these calls itself limits the number of
4314  * pages freed at once, then uncharge_start/end() is called properly.
4315  * This may be called prural(2) times in a context,
4316  */
4317 
4318 void mem_cgroup_uncharge_start(void)
4319 {
4320 	current->memcg_batch.do_batch++;
4321 	/* We can do nest. */
4322 	if (current->memcg_batch.do_batch == 1) {
4323 		current->memcg_batch.memcg = NULL;
4324 		current->memcg_batch.nr_pages = 0;
4325 		current->memcg_batch.memsw_nr_pages = 0;
4326 	}
4327 }
4328 
4329 void mem_cgroup_uncharge_end(void)
4330 {
4331 	struct memcg_batch_info *batch = &current->memcg_batch;
4332 
4333 	if (!batch->do_batch)
4334 		return;
4335 
4336 	batch->do_batch--;
4337 	if (batch->do_batch) /* If stacked, do nothing. */
4338 		return;
4339 
4340 	if (!batch->memcg)
4341 		return;
4342 	/*
4343 	 * This "batch->memcg" is valid without any css_get/put etc...
4344 	 * bacause we hide charges behind us.
4345 	 */
4346 	if (batch->nr_pages)
4347 		res_counter_uncharge(&batch->memcg->res,
4348 				     batch->nr_pages * PAGE_SIZE);
4349 	if (batch->memsw_nr_pages)
4350 		res_counter_uncharge(&batch->memcg->memsw,
4351 				     batch->memsw_nr_pages * PAGE_SIZE);
4352 	memcg_oom_recover(batch->memcg);
4353 	/* forget this pointer (for sanity check) */
4354 	batch->memcg = NULL;
4355 }
4356 
4357 #ifdef CONFIG_SWAP
4358 /*
4359  * called after __delete_from_swap_cache() and drop "page" account.
4360  * memcg information is recorded to swap_cgroup of "ent"
4361  */
4362 void
4363 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4364 {
4365 	struct mem_cgroup *memcg;
4366 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4367 
4368 	if (!swapout) /* this was a swap cache but the swap is unused ! */
4369 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4370 
4371 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4372 
4373 	/*
4374 	 * record memcg information,  if swapout && memcg != NULL,
4375 	 * css_get() was called in uncharge().
4376 	 */
4377 	if (do_swap_account && swapout && memcg)
4378 		swap_cgroup_record(ent, css_id(&memcg->css));
4379 }
4380 #endif
4381 
4382 #ifdef CONFIG_MEMCG_SWAP
4383 /*
4384  * called from swap_entry_free(). remove record in swap_cgroup and
4385  * uncharge "memsw" account.
4386  */
4387 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4388 {
4389 	struct mem_cgroup *memcg;
4390 	unsigned short id;
4391 
4392 	if (!do_swap_account)
4393 		return;
4394 
4395 	id = swap_cgroup_record(ent, 0);
4396 	rcu_read_lock();
4397 	memcg = mem_cgroup_lookup(id);
4398 	if (memcg) {
4399 		/*
4400 		 * We uncharge this because swap is freed.
4401 		 * This memcg can be obsolete one. We avoid calling css_tryget
4402 		 */
4403 		if (!mem_cgroup_is_root(memcg))
4404 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4405 		mem_cgroup_swap_statistics(memcg, false);
4406 		css_put(&memcg->css);
4407 	}
4408 	rcu_read_unlock();
4409 }
4410 
4411 /**
4412  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4413  * @entry: swap entry to be moved
4414  * @from:  mem_cgroup which the entry is moved from
4415  * @to:  mem_cgroup which the entry is moved to
4416  *
4417  * It succeeds only when the swap_cgroup's record for this entry is the same
4418  * as the mem_cgroup's id of @from.
4419  *
4420  * Returns 0 on success, -EINVAL on failure.
4421  *
4422  * The caller must have charged to @to, IOW, called res_counter_charge() about
4423  * both res and memsw, and called css_get().
4424  */
4425 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4426 				struct mem_cgroup *from, struct mem_cgroup *to)
4427 {
4428 	unsigned short old_id, new_id;
4429 
4430 	old_id = css_id(&from->css);
4431 	new_id = css_id(&to->css);
4432 
4433 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4434 		mem_cgroup_swap_statistics(from, false);
4435 		mem_cgroup_swap_statistics(to, true);
4436 		/*
4437 		 * This function is only called from task migration context now.
4438 		 * It postpones res_counter and refcount handling till the end
4439 		 * of task migration(mem_cgroup_clear_mc()) for performance
4440 		 * improvement. But we cannot postpone css_get(to)  because if
4441 		 * the process that has been moved to @to does swap-in, the
4442 		 * refcount of @to might be decreased to 0.
4443 		 *
4444 		 * We are in attach() phase, so the cgroup is guaranteed to be
4445 		 * alive, so we can just call css_get().
4446 		 */
4447 		css_get(&to->css);
4448 		return 0;
4449 	}
4450 	return -EINVAL;
4451 }
4452 #else
4453 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4454 				struct mem_cgroup *from, struct mem_cgroup *to)
4455 {
4456 	return -EINVAL;
4457 }
4458 #endif
4459 
4460 /*
4461  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4462  * page belongs to.
4463  */
4464 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4465 				  struct mem_cgroup **memcgp)
4466 {
4467 	struct mem_cgroup *memcg = NULL;
4468 	unsigned int nr_pages = 1;
4469 	struct page_cgroup *pc;
4470 	enum charge_type ctype;
4471 
4472 	*memcgp = NULL;
4473 
4474 	if (mem_cgroup_disabled())
4475 		return;
4476 
4477 	if (PageTransHuge(page))
4478 		nr_pages <<= compound_order(page);
4479 
4480 	pc = lookup_page_cgroup(page);
4481 	lock_page_cgroup(pc);
4482 	if (PageCgroupUsed(pc)) {
4483 		memcg = pc->mem_cgroup;
4484 		css_get(&memcg->css);
4485 		/*
4486 		 * At migrating an anonymous page, its mapcount goes down
4487 		 * to 0 and uncharge() will be called. But, even if it's fully
4488 		 * unmapped, migration may fail and this page has to be
4489 		 * charged again. We set MIGRATION flag here and delay uncharge
4490 		 * until end_migration() is called
4491 		 *
4492 		 * Corner Case Thinking
4493 		 * A)
4494 		 * When the old page was mapped as Anon and it's unmap-and-freed
4495 		 * while migration was ongoing.
4496 		 * If unmap finds the old page, uncharge() of it will be delayed
4497 		 * until end_migration(). If unmap finds a new page, it's
4498 		 * uncharged when it make mapcount to be 1->0. If unmap code
4499 		 * finds swap_migration_entry, the new page will not be mapped
4500 		 * and end_migration() will find it(mapcount==0).
4501 		 *
4502 		 * B)
4503 		 * When the old page was mapped but migraion fails, the kernel
4504 		 * remaps it. A charge for it is kept by MIGRATION flag even
4505 		 * if mapcount goes down to 0. We can do remap successfully
4506 		 * without charging it again.
4507 		 *
4508 		 * C)
4509 		 * The "old" page is under lock_page() until the end of
4510 		 * migration, so, the old page itself will not be swapped-out.
4511 		 * If the new page is swapped out before end_migraton, our
4512 		 * hook to usual swap-out path will catch the event.
4513 		 */
4514 		if (PageAnon(page))
4515 			SetPageCgroupMigration(pc);
4516 	}
4517 	unlock_page_cgroup(pc);
4518 	/*
4519 	 * If the page is not charged at this point,
4520 	 * we return here.
4521 	 */
4522 	if (!memcg)
4523 		return;
4524 
4525 	*memcgp = memcg;
4526 	/*
4527 	 * We charge new page before it's used/mapped. So, even if unlock_page()
4528 	 * is called before end_migration, we can catch all events on this new
4529 	 * page. In the case new page is migrated but not remapped, new page's
4530 	 * mapcount will be finally 0 and we call uncharge in end_migration().
4531 	 */
4532 	if (PageAnon(page))
4533 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4534 	else
4535 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4536 	/*
4537 	 * The page is committed to the memcg, but it's not actually
4538 	 * charged to the res_counter since we plan on replacing the
4539 	 * old one and only one page is going to be left afterwards.
4540 	 */
4541 	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4542 }
4543 
4544 /* remove redundant charge if migration failed*/
4545 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4546 	struct page *oldpage, struct page *newpage, bool migration_ok)
4547 {
4548 	struct page *used, *unused;
4549 	struct page_cgroup *pc;
4550 	bool anon;
4551 
4552 	if (!memcg)
4553 		return;
4554 
4555 	if (!migration_ok) {
4556 		used = oldpage;
4557 		unused = newpage;
4558 	} else {
4559 		used = newpage;
4560 		unused = oldpage;
4561 	}
4562 	anon = PageAnon(used);
4563 	__mem_cgroup_uncharge_common(unused,
4564 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4565 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
4566 				     true);
4567 	css_put(&memcg->css);
4568 	/*
4569 	 * We disallowed uncharge of pages under migration because mapcount
4570 	 * of the page goes down to zero, temporarly.
4571 	 * Clear the flag and check the page should be charged.
4572 	 */
4573 	pc = lookup_page_cgroup(oldpage);
4574 	lock_page_cgroup(pc);
4575 	ClearPageCgroupMigration(pc);
4576 	unlock_page_cgroup(pc);
4577 
4578 	/*
4579 	 * If a page is a file cache, radix-tree replacement is very atomic
4580 	 * and we can skip this check. When it was an Anon page, its mapcount
4581 	 * goes down to 0. But because we added MIGRATION flage, it's not
4582 	 * uncharged yet. There are several case but page->mapcount check
4583 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4584 	 * check. (see prepare_charge() also)
4585 	 */
4586 	if (anon)
4587 		mem_cgroup_uncharge_page(used);
4588 }
4589 
4590 /*
4591  * At replace page cache, newpage is not under any memcg but it's on
4592  * LRU. So, this function doesn't touch res_counter but handles LRU
4593  * in correct way. Both pages are locked so we cannot race with uncharge.
4594  */
4595 void mem_cgroup_replace_page_cache(struct page *oldpage,
4596 				  struct page *newpage)
4597 {
4598 	struct mem_cgroup *memcg = NULL;
4599 	struct page_cgroup *pc;
4600 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4601 
4602 	if (mem_cgroup_disabled())
4603 		return;
4604 
4605 	pc = lookup_page_cgroup(oldpage);
4606 	/* fix accounting on old pages */
4607 	lock_page_cgroup(pc);
4608 	if (PageCgroupUsed(pc)) {
4609 		memcg = pc->mem_cgroup;
4610 		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4611 		ClearPageCgroupUsed(pc);
4612 	}
4613 	unlock_page_cgroup(pc);
4614 
4615 	/*
4616 	 * When called from shmem_replace_page(), in some cases the
4617 	 * oldpage has already been charged, and in some cases not.
4618 	 */
4619 	if (!memcg)
4620 		return;
4621 	/*
4622 	 * Even if newpage->mapping was NULL before starting replacement,
4623 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4624 	 * LRU while we overwrite pc->mem_cgroup.
4625 	 */
4626 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4627 }
4628 
4629 #ifdef CONFIG_DEBUG_VM
4630 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4631 {
4632 	struct page_cgroup *pc;
4633 
4634 	pc = lookup_page_cgroup(page);
4635 	/*
4636 	 * Can be NULL while feeding pages into the page allocator for
4637 	 * the first time, i.e. during boot or memory hotplug;
4638 	 * or when mem_cgroup_disabled().
4639 	 */
4640 	if (likely(pc) && PageCgroupUsed(pc))
4641 		return pc;
4642 	return NULL;
4643 }
4644 
4645 bool mem_cgroup_bad_page_check(struct page *page)
4646 {
4647 	if (mem_cgroup_disabled())
4648 		return false;
4649 
4650 	return lookup_page_cgroup_used(page) != NULL;
4651 }
4652 
4653 void mem_cgroup_print_bad_page(struct page *page)
4654 {
4655 	struct page_cgroup *pc;
4656 
4657 	pc = lookup_page_cgroup_used(page);
4658 	if (pc) {
4659 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4660 			 pc, pc->flags, pc->mem_cgroup);
4661 	}
4662 }
4663 #endif
4664 
4665 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4666 				unsigned long long val)
4667 {
4668 	int retry_count;
4669 	u64 memswlimit, memlimit;
4670 	int ret = 0;
4671 	int children = mem_cgroup_count_children(memcg);
4672 	u64 curusage, oldusage;
4673 	int enlarge;
4674 
4675 	/*
4676 	 * For keeping hierarchical_reclaim simple, how long we should retry
4677 	 * is depends on callers. We set our retry-count to be function
4678 	 * of # of children which we should visit in this loop.
4679 	 */
4680 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4681 
4682 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4683 
4684 	enlarge = 0;
4685 	while (retry_count) {
4686 		if (signal_pending(current)) {
4687 			ret = -EINTR;
4688 			break;
4689 		}
4690 		/*
4691 		 * Rather than hide all in some function, I do this in
4692 		 * open coded manner. You see what this really does.
4693 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4694 		 */
4695 		mutex_lock(&set_limit_mutex);
4696 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4697 		if (memswlimit < val) {
4698 			ret = -EINVAL;
4699 			mutex_unlock(&set_limit_mutex);
4700 			break;
4701 		}
4702 
4703 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4704 		if (memlimit < val)
4705 			enlarge = 1;
4706 
4707 		ret = res_counter_set_limit(&memcg->res, val);
4708 		if (!ret) {
4709 			if (memswlimit == val)
4710 				memcg->memsw_is_minimum = true;
4711 			else
4712 				memcg->memsw_is_minimum = false;
4713 		}
4714 		mutex_unlock(&set_limit_mutex);
4715 
4716 		if (!ret)
4717 			break;
4718 
4719 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4720 				   MEM_CGROUP_RECLAIM_SHRINK);
4721 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4722 		/* Usage is reduced ? */
4723 		if (curusage >= oldusage)
4724 			retry_count--;
4725 		else
4726 			oldusage = curusage;
4727 	}
4728 	if (!ret && enlarge)
4729 		memcg_oom_recover(memcg);
4730 
4731 	return ret;
4732 }
4733 
4734 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4735 					unsigned long long val)
4736 {
4737 	int retry_count;
4738 	u64 memlimit, memswlimit, oldusage, curusage;
4739 	int children = mem_cgroup_count_children(memcg);
4740 	int ret = -EBUSY;
4741 	int enlarge = 0;
4742 
4743 	/* see mem_cgroup_resize_res_limit */
4744 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4745 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4746 	while (retry_count) {
4747 		if (signal_pending(current)) {
4748 			ret = -EINTR;
4749 			break;
4750 		}
4751 		/*
4752 		 * Rather than hide all in some function, I do this in
4753 		 * open coded manner. You see what this really does.
4754 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4755 		 */
4756 		mutex_lock(&set_limit_mutex);
4757 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4758 		if (memlimit > val) {
4759 			ret = -EINVAL;
4760 			mutex_unlock(&set_limit_mutex);
4761 			break;
4762 		}
4763 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4764 		if (memswlimit < val)
4765 			enlarge = 1;
4766 		ret = res_counter_set_limit(&memcg->memsw, val);
4767 		if (!ret) {
4768 			if (memlimit == val)
4769 				memcg->memsw_is_minimum = true;
4770 			else
4771 				memcg->memsw_is_minimum = false;
4772 		}
4773 		mutex_unlock(&set_limit_mutex);
4774 
4775 		if (!ret)
4776 			break;
4777 
4778 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4779 				   MEM_CGROUP_RECLAIM_NOSWAP |
4780 				   MEM_CGROUP_RECLAIM_SHRINK);
4781 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4782 		/* Usage is reduced ? */
4783 		if (curusage >= oldusage)
4784 			retry_count--;
4785 		else
4786 			oldusage = curusage;
4787 	}
4788 	if (!ret && enlarge)
4789 		memcg_oom_recover(memcg);
4790 	return ret;
4791 }
4792 
4793 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4794 					    gfp_t gfp_mask,
4795 					    unsigned long *total_scanned)
4796 {
4797 	unsigned long nr_reclaimed = 0;
4798 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4799 	unsigned long reclaimed;
4800 	int loop = 0;
4801 	struct mem_cgroup_tree_per_zone *mctz;
4802 	unsigned long long excess;
4803 	unsigned long nr_scanned;
4804 
4805 	if (order > 0)
4806 		return 0;
4807 
4808 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4809 	/*
4810 	 * This loop can run a while, specially if mem_cgroup's continuously
4811 	 * keep exceeding their soft limit and putting the system under
4812 	 * pressure
4813 	 */
4814 	do {
4815 		if (next_mz)
4816 			mz = next_mz;
4817 		else
4818 			mz = mem_cgroup_largest_soft_limit_node(mctz);
4819 		if (!mz)
4820 			break;
4821 
4822 		nr_scanned = 0;
4823 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4824 						    gfp_mask, &nr_scanned);
4825 		nr_reclaimed += reclaimed;
4826 		*total_scanned += nr_scanned;
4827 		spin_lock(&mctz->lock);
4828 
4829 		/*
4830 		 * If we failed to reclaim anything from this memory cgroup
4831 		 * it is time to move on to the next cgroup
4832 		 */
4833 		next_mz = NULL;
4834 		if (!reclaimed) {
4835 			do {
4836 				/*
4837 				 * Loop until we find yet another one.
4838 				 *
4839 				 * By the time we get the soft_limit lock
4840 				 * again, someone might have aded the
4841 				 * group back on the RB tree. Iterate to
4842 				 * make sure we get a different mem.
4843 				 * mem_cgroup_largest_soft_limit_node returns
4844 				 * NULL if no other cgroup is present on
4845 				 * the tree
4846 				 */
4847 				next_mz =
4848 				__mem_cgroup_largest_soft_limit_node(mctz);
4849 				if (next_mz == mz)
4850 					css_put(&next_mz->memcg->css);
4851 				else /* next_mz == NULL or other memcg */
4852 					break;
4853 			} while (1);
4854 		}
4855 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4856 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4857 		/*
4858 		 * One school of thought says that we should not add
4859 		 * back the node to the tree if reclaim returns 0.
4860 		 * But our reclaim could return 0, simply because due
4861 		 * to priority we are exposing a smaller subset of
4862 		 * memory to reclaim from. Consider this as a longer
4863 		 * term TODO.
4864 		 */
4865 		/* If excess == 0, no tree ops */
4866 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4867 		spin_unlock(&mctz->lock);
4868 		css_put(&mz->memcg->css);
4869 		loop++;
4870 		/*
4871 		 * Could not reclaim anything and there are no more
4872 		 * mem cgroups to try or we seem to be looping without
4873 		 * reclaiming anything.
4874 		 */
4875 		if (!nr_reclaimed &&
4876 			(next_mz == NULL ||
4877 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4878 			break;
4879 	} while (!nr_reclaimed);
4880 	if (next_mz)
4881 		css_put(&next_mz->memcg->css);
4882 	return nr_reclaimed;
4883 }
4884 
4885 /**
4886  * mem_cgroup_force_empty_list - clears LRU of a group
4887  * @memcg: group to clear
4888  * @node: NUMA node
4889  * @zid: zone id
4890  * @lru: lru to to clear
4891  *
4892  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4893  * reclaim the pages page themselves - pages are moved to the parent (or root)
4894  * group.
4895  */
4896 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4897 				int node, int zid, enum lru_list lru)
4898 {
4899 	struct lruvec *lruvec;
4900 	unsigned long flags;
4901 	struct list_head *list;
4902 	struct page *busy;
4903 	struct zone *zone;
4904 
4905 	zone = &NODE_DATA(node)->node_zones[zid];
4906 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4907 	list = &lruvec->lists[lru];
4908 
4909 	busy = NULL;
4910 	do {
4911 		struct page_cgroup *pc;
4912 		struct page *page;
4913 
4914 		spin_lock_irqsave(&zone->lru_lock, flags);
4915 		if (list_empty(list)) {
4916 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4917 			break;
4918 		}
4919 		page = list_entry(list->prev, struct page, lru);
4920 		if (busy == page) {
4921 			list_move(&page->lru, list);
4922 			busy = NULL;
4923 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4924 			continue;
4925 		}
4926 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4927 
4928 		pc = lookup_page_cgroup(page);
4929 
4930 		if (mem_cgroup_move_parent(page, pc, memcg)) {
4931 			/* found lock contention or "pc" is obsolete. */
4932 			busy = page;
4933 			cond_resched();
4934 		} else
4935 			busy = NULL;
4936 	} while (!list_empty(list));
4937 }
4938 
4939 /*
4940  * make mem_cgroup's charge to be 0 if there is no task by moving
4941  * all the charges and pages to the parent.
4942  * This enables deleting this mem_cgroup.
4943  *
4944  * Caller is responsible for holding css reference on the memcg.
4945  */
4946 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4947 {
4948 	int node, zid;
4949 	u64 usage;
4950 
4951 	do {
4952 		/* This is for making all *used* pages to be on LRU. */
4953 		lru_add_drain_all();
4954 		drain_all_stock_sync(memcg);
4955 		mem_cgroup_start_move(memcg);
4956 		for_each_node_state(node, N_MEMORY) {
4957 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4958 				enum lru_list lru;
4959 				for_each_lru(lru) {
4960 					mem_cgroup_force_empty_list(memcg,
4961 							node, zid, lru);
4962 				}
4963 			}
4964 		}
4965 		mem_cgroup_end_move(memcg);
4966 		memcg_oom_recover(memcg);
4967 		cond_resched();
4968 
4969 		/*
4970 		 * Kernel memory may not necessarily be trackable to a specific
4971 		 * process. So they are not migrated, and therefore we can't
4972 		 * expect their value to drop to 0 here.
4973 		 * Having res filled up with kmem only is enough.
4974 		 *
4975 		 * This is a safety check because mem_cgroup_force_empty_list
4976 		 * could have raced with mem_cgroup_replace_page_cache callers
4977 		 * so the lru seemed empty but the page could have been added
4978 		 * right after the check. RES_USAGE should be safe as we always
4979 		 * charge before adding to the LRU.
4980 		 */
4981 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4982 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
4983 	} while (usage > 0);
4984 }
4985 
4986 /*
4987  * This mainly exists for tests during the setting of set of use_hierarchy.
4988  * Since this is the very setting we are changing, the current hierarchy value
4989  * is meaningless
4990  */
4991 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4992 {
4993 	struct cgroup_subsys_state *pos;
4994 
4995 	/* bounce at first found */
4996 	css_for_each_child(pos, &memcg->css)
4997 		return true;
4998 	return false;
4999 }
5000 
5001 /*
5002  * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
5003  * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
5004  * from mem_cgroup_count_children(), in the sense that we don't really care how
5005  * many children we have; we only need to know if we have any.  It also counts
5006  * any memcg without hierarchy as infertile.
5007  */
5008 static inline bool memcg_has_children(struct mem_cgroup *memcg)
5009 {
5010 	return memcg->use_hierarchy && __memcg_has_children(memcg);
5011 }
5012 
5013 /*
5014  * Reclaims as many pages from the given memcg as possible and moves
5015  * the rest to the parent.
5016  *
5017  * Caller is responsible for holding css reference for memcg.
5018  */
5019 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
5020 {
5021 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5022 	struct cgroup *cgrp = memcg->css.cgroup;
5023 
5024 	/* returns EBUSY if there is a task or if we come here twice. */
5025 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5026 		return -EBUSY;
5027 
5028 	/* we call try-to-free pages for make this cgroup empty */
5029 	lru_add_drain_all();
5030 	/* try to free all pages in this cgroup */
5031 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5032 		int progress;
5033 
5034 		if (signal_pending(current))
5035 			return -EINTR;
5036 
5037 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5038 						false);
5039 		if (!progress) {
5040 			nr_retries--;
5041 			/* maybe some writeback is necessary */
5042 			congestion_wait(BLK_RW_ASYNC, HZ/10);
5043 		}
5044 
5045 	}
5046 	lru_add_drain();
5047 	mem_cgroup_reparent_charges(memcg);
5048 
5049 	return 0;
5050 }
5051 
5052 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5053 					unsigned int event)
5054 {
5055 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5056 
5057 	if (mem_cgroup_is_root(memcg))
5058 		return -EINVAL;
5059 	return mem_cgroup_force_empty(memcg);
5060 }
5061 
5062 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5063 				     struct cftype *cft)
5064 {
5065 	return mem_cgroup_from_css(css)->use_hierarchy;
5066 }
5067 
5068 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5069 				      struct cftype *cft, u64 val)
5070 {
5071 	int retval = 0;
5072 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5073 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5074 
5075 	mutex_lock(&memcg_create_mutex);
5076 
5077 	if (memcg->use_hierarchy == val)
5078 		goto out;
5079 
5080 	/*
5081 	 * If parent's use_hierarchy is set, we can't make any modifications
5082 	 * in the child subtrees. If it is unset, then the change can
5083 	 * occur, provided the current cgroup has no children.
5084 	 *
5085 	 * For the root cgroup, parent_mem is NULL, we allow value to be
5086 	 * set if there are no children.
5087 	 */
5088 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5089 				(val == 1 || val == 0)) {
5090 		if (!__memcg_has_children(memcg))
5091 			memcg->use_hierarchy = val;
5092 		else
5093 			retval = -EBUSY;
5094 	} else
5095 		retval = -EINVAL;
5096 
5097 out:
5098 	mutex_unlock(&memcg_create_mutex);
5099 
5100 	return retval;
5101 }
5102 
5103 
5104 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5105 					       enum mem_cgroup_stat_index idx)
5106 {
5107 	struct mem_cgroup *iter;
5108 	long val = 0;
5109 
5110 	/* Per-cpu values can be negative, use a signed accumulator */
5111 	for_each_mem_cgroup_tree(iter, memcg)
5112 		val += mem_cgroup_read_stat(iter, idx);
5113 
5114 	if (val < 0) /* race ? */
5115 		val = 0;
5116 	return val;
5117 }
5118 
5119 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5120 {
5121 	u64 val;
5122 
5123 	if (!mem_cgroup_is_root(memcg)) {
5124 		if (!swap)
5125 			return res_counter_read_u64(&memcg->res, RES_USAGE);
5126 		else
5127 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5128 	}
5129 
5130 	/*
5131 	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5132 	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5133 	 */
5134 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5135 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5136 
5137 	if (swap)
5138 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5139 
5140 	return val << PAGE_SHIFT;
5141 }
5142 
5143 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5144 			       struct cftype *cft, struct file *file,
5145 			       char __user *buf, size_t nbytes, loff_t *ppos)
5146 {
5147 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5148 	char str[64];
5149 	u64 val;
5150 	int name, len;
5151 	enum res_type type;
5152 
5153 	type = MEMFILE_TYPE(cft->private);
5154 	name = MEMFILE_ATTR(cft->private);
5155 
5156 	switch (type) {
5157 	case _MEM:
5158 		if (name == RES_USAGE)
5159 			val = mem_cgroup_usage(memcg, false);
5160 		else
5161 			val = res_counter_read_u64(&memcg->res, name);
5162 		break;
5163 	case _MEMSWAP:
5164 		if (name == RES_USAGE)
5165 			val = mem_cgroup_usage(memcg, true);
5166 		else
5167 			val = res_counter_read_u64(&memcg->memsw, name);
5168 		break;
5169 	case _KMEM:
5170 		val = res_counter_read_u64(&memcg->kmem, name);
5171 		break;
5172 	default:
5173 		BUG();
5174 	}
5175 
5176 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5177 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5178 }
5179 
5180 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5181 {
5182 	int ret = -EINVAL;
5183 #ifdef CONFIG_MEMCG_KMEM
5184 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5185 	/*
5186 	 * For simplicity, we won't allow this to be disabled.  It also can't
5187 	 * be changed if the cgroup has children already, or if tasks had
5188 	 * already joined.
5189 	 *
5190 	 * If tasks join before we set the limit, a person looking at
5191 	 * kmem.usage_in_bytes will have no way to determine when it took
5192 	 * place, which makes the value quite meaningless.
5193 	 *
5194 	 * After it first became limited, changes in the value of the limit are
5195 	 * of course permitted.
5196 	 */
5197 	mutex_lock(&memcg_create_mutex);
5198 	mutex_lock(&set_limit_mutex);
5199 	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5200 		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5201 			ret = -EBUSY;
5202 			goto out;
5203 		}
5204 		ret = res_counter_set_limit(&memcg->kmem, val);
5205 		VM_BUG_ON(ret);
5206 
5207 		ret = memcg_update_cache_sizes(memcg);
5208 		if (ret) {
5209 			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5210 			goto out;
5211 		}
5212 		static_key_slow_inc(&memcg_kmem_enabled_key);
5213 		/*
5214 		 * setting the active bit after the inc will guarantee no one
5215 		 * starts accounting before all call sites are patched
5216 		 */
5217 		memcg_kmem_set_active(memcg);
5218 	} else
5219 		ret = res_counter_set_limit(&memcg->kmem, val);
5220 out:
5221 	mutex_unlock(&set_limit_mutex);
5222 	mutex_unlock(&memcg_create_mutex);
5223 #endif
5224 	return ret;
5225 }
5226 
5227 #ifdef CONFIG_MEMCG_KMEM
5228 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5229 {
5230 	int ret = 0;
5231 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5232 	if (!parent)
5233 		goto out;
5234 
5235 	memcg->kmem_account_flags = parent->kmem_account_flags;
5236 	/*
5237 	 * When that happen, we need to disable the static branch only on those
5238 	 * memcgs that enabled it. To achieve this, we would be forced to
5239 	 * complicate the code by keeping track of which memcgs were the ones
5240 	 * that actually enabled limits, and which ones got it from its
5241 	 * parents.
5242 	 *
5243 	 * It is a lot simpler just to do static_key_slow_inc() on every child
5244 	 * that is accounted.
5245 	 */
5246 	if (!memcg_kmem_is_active(memcg))
5247 		goto out;
5248 
5249 	/*
5250 	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5251 	 * memcg is active already. If the later initialization fails then the
5252 	 * cgroup core triggers the cleanup so we do not have to do it here.
5253 	 */
5254 	static_key_slow_inc(&memcg_kmem_enabled_key);
5255 
5256 	mutex_lock(&set_limit_mutex);
5257 	memcg_stop_kmem_account();
5258 	ret = memcg_update_cache_sizes(memcg);
5259 	memcg_resume_kmem_account();
5260 	mutex_unlock(&set_limit_mutex);
5261 out:
5262 	return ret;
5263 }
5264 #endif /* CONFIG_MEMCG_KMEM */
5265 
5266 /*
5267  * The user of this function is...
5268  * RES_LIMIT.
5269  */
5270 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5271 			    const char *buffer)
5272 {
5273 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5274 	enum res_type type;
5275 	int name;
5276 	unsigned long long val;
5277 	int ret;
5278 
5279 	type = MEMFILE_TYPE(cft->private);
5280 	name = MEMFILE_ATTR(cft->private);
5281 
5282 	switch (name) {
5283 	case RES_LIMIT:
5284 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5285 			ret = -EINVAL;
5286 			break;
5287 		}
5288 		/* This function does all necessary parse...reuse it */
5289 		ret = res_counter_memparse_write_strategy(buffer, &val);
5290 		if (ret)
5291 			break;
5292 		if (type == _MEM)
5293 			ret = mem_cgroup_resize_limit(memcg, val);
5294 		else if (type == _MEMSWAP)
5295 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5296 		else if (type == _KMEM)
5297 			ret = memcg_update_kmem_limit(css, val);
5298 		else
5299 			return -EINVAL;
5300 		break;
5301 	case RES_SOFT_LIMIT:
5302 		ret = res_counter_memparse_write_strategy(buffer, &val);
5303 		if (ret)
5304 			break;
5305 		/*
5306 		 * For memsw, soft limits are hard to implement in terms
5307 		 * of semantics, for now, we support soft limits for
5308 		 * control without swap
5309 		 */
5310 		if (type == _MEM)
5311 			ret = res_counter_set_soft_limit(&memcg->res, val);
5312 		else
5313 			ret = -EINVAL;
5314 		break;
5315 	default:
5316 		ret = -EINVAL; /* should be BUG() ? */
5317 		break;
5318 	}
5319 	return ret;
5320 }
5321 
5322 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5323 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
5324 {
5325 	unsigned long long min_limit, min_memsw_limit, tmp;
5326 
5327 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5328 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5329 	if (!memcg->use_hierarchy)
5330 		goto out;
5331 
5332 	while (css_parent(&memcg->css)) {
5333 		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5334 		if (!memcg->use_hierarchy)
5335 			break;
5336 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5337 		min_limit = min(min_limit, tmp);
5338 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5339 		min_memsw_limit = min(min_memsw_limit, tmp);
5340 	}
5341 out:
5342 	*mem_limit = min_limit;
5343 	*memsw_limit = min_memsw_limit;
5344 }
5345 
5346 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5347 {
5348 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5349 	int name;
5350 	enum res_type type;
5351 
5352 	type = MEMFILE_TYPE(event);
5353 	name = MEMFILE_ATTR(event);
5354 
5355 	switch (name) {
5356 	case RES_MAX_USAGE:
5357 		if (type == _MEM)
5358 			res_counter_reset_max(&memcg->res);
5359 		else if (type == _MEMSWAP)
5360 			res_counter_reset_max(&memcg->memsw);
5361 		else if (type == _KMEM)
5362 			res_counter_reset_max(&memcg->kmem);
5363 		else
5364 			return -EINVAL;
5365 		break;
5366 	case RES_FAILCNT:
5367 		if (type == _MEM)
5368 			res_counter_reset_failcnt(&memcg->res);
5369 		else if (type == _MEMSWAP)
5370 			res_counter_reset_failcnt(&memcg->memsw);
5371 		else if (type == _KMEM)
5372 			res_counter_reset_failcnt(&memcg->kmem);
5373 		else
5374 			return -EINVAL;
5375 		break;
5376 	}
5377 
5378 	return 0;
5379 }
5380 
5381 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5382 					struct cftype *cft)
5383 {
5384 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5385 }
5386 
5387 #ifdef CONFIG_MMU
5388 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5389 					struct cftype *cft, u64 val)
5390 {
5391 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5392 
5393 	if (val >= (1 << NR_MOVE_TYPE))
5394 		return -EINVAL;
5395 
5396 	/*
5397 	 * No kind of locking is needed in here, because ->can_attach() will
5398 	 * check this value once in the beginning of the process, and then carry
5399 	 * on with stale data. This means that changes to this value will only
5400 	 * affect task migrations starting after the change.
5401 	 */
5402 	memcg->move_charge_at_immigrate = val;
5403 	return 0;
5404 }
5405 #else
5406 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5407 					struct cftype *cft, u64 val)
5408 {
5409 	return -ENOSYS;
5410 }
5411 #endif
5412 
5413 #ifdef CONFIG_NUMA
5414 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5415 				struct cftype *cft, struct seq_file *m)
5416 {
5417 	int nid;
5418 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5419 	unsigned long node_nr;
5420 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5421 
5422 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5423 	seq_printf(m, "total=%lu", total_nr);
5424 	for_each_node_state(nid, N_MEMORY) {
5425 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5426 		seq_printf(m, " N%d=%lu", nid, node_nr);
5427 	}
5428 	seq_putc(m, '\n');
5429 
5430 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5431 	seq_printf(m, "file=%lu", file_nr);
5432 	for_each_node_state(nid, N_MEMORY) {
5433 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5434 				LRU_ALL_FILE);
5435 		seq_printf(m, " N%d=%lu", nid, node_nr);
5436 	}
5437 	seq_putc(m, '\n');
5438 
5439 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5440 	seq_printf(m, "anon=%lu", anon_nr);
5441 	for_each_node_state(nid, N_MEMORY) {
5442 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5443 				LRU_ALL_ANON);
5444 		seq_printf(m, " N%d=%lu", nid, node_nr);
5445 	}
5446 	seq_putc(m, '\n');
5447 
5448 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5449 	seq_printf(m, "unevictable=%lu", unevictable_nr);
5450 	for_each_node_state(nid, N_MEMORY) {
5451 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5452 				BIT(LRU_UNEVICTABLE));
5453 		seq_printf(m, " N%d=%lu", nid, node_nr);
5454 	}
5455 	seq_putc(m, '\n');
5456 	return 0;
5457 }
5458 #endif /* CONFIG_NUMA */
5459 
5460 static inline void mem_cgroup_lru_names_not_uptodate(void)
5461 {
5462 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5463 }
5464 
5465 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5466 				 struct seq_file *m)
5467 {
5468 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5469 	struct mem_cgroup *mi;
5470 	unsigned int i;
5471 
5472 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5473 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5474 			continue;
5475 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5476 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5477 	}
5478 
5479 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5480 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5481 			   mem_cgroup_read_events(memcg, i));
5482 
5483 	for (i = 0; i < NR_LRU_LISTS; i++)
5484 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5485 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5486 
5487 	/* Hierarchical information */
5488 	{
5489 		unsigned long long limit, memsw_limit;
5490 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5491 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5492 		if (do_swap_account)
5493 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
5494 				   memsw_limit);
5495 	}
5496 
5497 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5498 		long long val = 0;
5499 
5500 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5501 			continue;
5502 		for_each_mem_cgroup_tree(mi, memcg)
5503 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5504 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5505 	}
5506 
5507 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5508 		unsigned long long val = 0;
5509 
5510 		for_each_mem_cgroup_tree(mi, memcg)
5511 			val += mem_cgroup_read_events(mi, i);
5512 		seq_printf(m, "total_%s %llu\n",
5513 			   mem_cgroup_events_names[i], val);
5514 	}
5515 
5516 	for (i = 0; i < NR_LRU_LISTS; i++) {
5517 		unsigned long long val = 0;
5518 
5519 		for_each_mem_cgroup_tree(mi, memcg)
5520 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5521 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5522 	}
5523 
5524 #ifdef CONFIG_DEBUG_VM
5525 	{
5526 		int nid, zid;
5527 		struct mem_cgroup_per_zone *mz;
5528 		struct zone_reclaim_stat *rstat;
5529 		unsigned long recent_rotated[2] = {0, 0};
5530 		unsigned long recent_scanned[2] = {0, 0};
5531 
5532 		for_each_online_node(nid)
5533 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5534 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5535 				rstat = &mz->lruvec.reclaim_stat;
5536 
5537 				recent_rotated[0] += rstat->recent_rotated[0];
5538 				recent_rotated[1] += rstat->recent_rotated[1];
5539 				recent_scanned[0] += rstat->recent_scanned[0];
5540 				recent_scanned[1] += rstat->recent_scanned[1];
5541 			}
5542 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5543 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5544 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5545 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5546 	}
5547 #endif
5548 
5549 	return 0;
5550 }
5551 
5552 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5553 				      struct cftype *cft)
5554 {
5555 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5556 
5557 	return mem_cgroup_swappiness(memcg);
5558 }
5559 
5560 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5561 				       struct cftype *cft, u64 val)
5562 {
5563 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5564 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5565 
5566 	if (val > 100 || !parent)
5567 		return -EINVAL;
5568 
5569 	mutex_lock(&memcg_create_mutex);
5570 
5571 	/* If under hierarchy, only empty-root can set this value */
5572 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5573 		mutex_unlock(&memcg_create_mutex);
5574 		return -EINVAL;
5575 	}
5576 
5577 	memcg->swappiness = val;
5578 
5579 	mutex_unlock(&memcg_create_mutex);
5580 
5581 	return 0;
5582 }
5583 
5584 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5585 {
5586 	struct mem_cgroup_threshold_ary *t;
5587 	u64 usage;
5588 	int i;
5589 
5590 	rcu_read_lock();
5591 	if (!swap)
5592 		t = rcu_dereference(memcg->thresholds.primary);
5593 	else
5594 		t = rcu_dereference(memcg->memsw_thresholds.primary);
5595 
5596 	if (!t)
5597 		goto unlock;
5598 
5599 	usage = mem_cgroup_usage(memcg, swap);
5600 
5601 	/*
5602 	 * current_threshold points to threshold just below or equal to usage.
5603 	 * If it's not true, a threshold was crossed after last
5604 	 * call of __mem_cgroup_threshold().
5605 	 */
5606 	i = t->current_threshold;
5607 
5608 	/*
5609 	 * Iterate backward over array of thresholds starting from
5610 	 * current_threshold and check if a threshold is crossed.
5611 	 * If none of thresholds below usage is crossed, we read
5612 	 * only one element of the array here.
5613 	 */
5614 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5615 		eventfd_signal(t->entries[i].eventfd, 1);
5616 
5617 	/* i = current_threshold + 1 */
5618 	i++;
5619 
5620 	/*
5621 	 * Iterate forward over array of thresholds starting from
5622 	 * current_threshold+1 and check if a threshold is crossed.
5623 	 * If none of thresholds above usage is crossed, we read
5624 	 * only one element of the array here.
5625 	 */
5626 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5627 		eventfd_signal(t->entries[i].eventfd, 1);
5628 
5629 	/* Update current_threshold */
5630 	t->current_threshold = i - 1;
5631 unlock:
5632 	rcu_read_unlock();
5633 }
5634 
5635 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5636 {
5637 	while (memcg) {
5638 		__mem_cgroup_threshold(memcg, false);
5639 		if (do_swap_account)
5640 			__mem_cgroup_threshold(memcg, true);
5641 
5642 		memcg = parent_mem_cgroup(memcg);
5643 	}
5644 }
5645 
5646 static int compare_thresholds(const void *a, const void *b)
5647 {
5648 	const struct mem_cgroup_threshold *_a = a;
5649 	const struct mem_cgroup_threshold *_b = b;
5650 
5651 	if (_a->threshold > _b->threshold)
5652 		return 1;
5653 
5654 	if (_a->threshold < _b->threshold)
5655 		return -1;
5656 
5657 	return 0;
5658 }
5659 
5660 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5661 {
5662 	struct mem_cgroup_eventfd_list *ev;
5663 
5664 	list_for_each_entry(ev, &memcg->oom_notify, list)
5665 		eventfd_signal(ev->eventfd, 1);
5666 	return 0;
5667 }
5668 
5669 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5670 {
5671 	struct mem_cgroup *iter;
5672 
5673 	for_each_mem_cgroup_tree(iter, memcg)
5674 		mem_cgroup_oom_notify_cb(iter);
5675 }
5676 
5677 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5678 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5679 {
5680 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5681 	struct mem_cgroup_thresholds *thresholds;
5682 	struct mem_cgroup_threshold_ary *new;
5683 	enum res_type type = MEMFILE_TYPE(cft->private);
5684 	u64 threshold, usage;
5685 	int i, size, ret;
5686 
5687 	ret = res_counter_memparse_write_strategy(args, &threshold);
5688 	if (ret)
5689 		return ret;
5690 
5691 	mutex_lock(&memcg->thresholds_lock);
5692 
5693 	if (type == _MEM)
5694 		thresholds = &memcg->thresholds;
5695 	else if (type == _MEMSWAP)
5696 		thresholds = &memcg->memsw_thresholds;
5697 	else
5698 		BUG();
5699 
5700 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5701 
5702 	/* Check if a threshold crossed before adding a new one */
5703 	if (thresholds->primary)
5704 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5705 
5706 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5707 
5708 	/* Allocate memory for new array of thresholds */
5709 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5710 			GFP_KERNEL);
5711 	if (!new) {
5712 		ret = -ENOMEM;
5713 		goto unlock;
5714 	}
5715 	new->size = size;
5716 
5717 	/* Copy thresholds (if any) to new array */
5718 	if (thresholds->primary) {
5719 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5720 				sizeof(struct mem_cgroup_threshold));
5721 	}
5722 
5723 	/* Add new threshold */
5724 	new->entries[size - 1].eventfd = eventfd;
5725 	new->entries[size - 1].threshold = threshold;
5726 
5727 	/* Sort thresholds. Registering of new threshold isn't time-critical */
5728 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5729 			compare_thresholds, NULL);
5730 
5731 	/* Find current threshold */
5732 	new->current_threshold = -1;
5733 	for (i = 0; i < size; i++) {
5734 		if (new->entries[i].threshold <= usage) {
5735 			/*
5736 			 * new->current_threshold will not be used until
5737 			 * rcu_assign_pointer(), so it's safe to increment
5738 			 * it here.
5739 			 */
5740 			++new->current_threshold;
5741 		} else
5742 			break;
5743 	}
5744 
5745 	/* Free old spare buffer and save old primary buffer as spare */
5746 	kfree(thresholds->spare);
5747 	thresholds->spare = thresholds->primary;
5748 
5749 	rcu_assign_pointer(thresholds->primary, new);
5750 
5751 	/* To be sure that nobody uses thresholds */
5752 	synchronize_rcu();
5753 
5754 unlock:
5755 	mutex_unlock(&memcg->thresholds_lock);
5756 
5757 	return ret;
5758 }
5759 
5760 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5761 	struct cftype *cft, struct eventfd_ctx *eventfd)
5762 {
5763 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5764 	struct mem_cgroup_thresholds *thresholds;
5765 	struct mem_cgroup_threshold_ary *new;
5766 	enum res_type type = MEMFILE_TYPE(cft->private);
5767 	u64 usage;
5768 	int i, j, size;
5769 
5770 	mutex_lock(&memcg->thresholds_lock);
5771 	if (type == _MEM)
5772 		thresholds = &memcg->thresholds;
5773 	else if (type == _MEMSWAP)
5774 		thresholds = &memcg->memsw_thresholds;
5775 	else
5776 		BUG();
5777 
5778 	if (!thresholds->primary)
5779 		goto unlock;
5780 
5781 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5782 
5783 	/* Check if a threshold crossed before removing */
5784 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5785 
5786 	/* Calculate new number of threshold */
5787 	size = 0;
5788 	for (i = 0; i < thresholds->primary->size; i++) {
5789 		if (thresholds->primary->entries[i].eventfd != eventfd)
5790 			size++;
5791 	}
5792 
5793 	new = thresholds->spare;
5794 
5795 	/* Set thresholds array to NULL if we don't have thresholds */
5796 	if (!size) {
5797 		kfree(new);
5798 		new = NULL;
5799 		goto swap_buffers;
5800 	}
5801 
5802 	new->size = size;
5803 
5804 	/* Copy thresholds and find current threshold */
5805 	new->current_threshold = -1;
5806 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5807 		if (thresholds->primary->entries[i].eventfd == eventfd)
5808 			continue;
5809 
5810 		new->entries[j] = thresholds->primary->entries[i];
5811 		if (new->entries[j].threshold <= usage) {
5812 			/*
5813 			 * new->current_threshold will not be used
5814 			 * until rcu_assign_pointer(), so it's safe to increment
5815 			 * it here.
5816 			 */
5817 			++new->current_threshold;
5818 		}
5819 		j++;
5820 	}
5821 
5822 swap_buffers:
5823 	/* Swap primary and spare array */
5824 	thresholds->spare = thresholds->primary;
5825 	/* If all events are unregistered, free the spare array */
5826 	if (!new) {
5827 		kfree(thresholds->spare);
5828 		thresholds->spare = NULL;
5829 	}
5830 
5831 	rcu_assign_pointer(thresholds->primary, new);
5832 
5833 	/* To be sure that nobody uses thresholds */
5834 	synchronize_rcu();
5835 unlock:
5836 	mutex_unlock(&memcg->thresholds_lock);
5837 }
5838 
5839 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5840 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5841 {
5842 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5843 	struct mem_cgroup_eventfd_list *event;
5844 	enum res_type type = MEMFILE_TYPE(cft->private);
5845 
5846 	BUG_ON(type != _OOM_TYPE);
5847 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
5848 	if (!event)
5849 		return -ENOMEM;
5850 
5851 	spin_lock(&memcg_oom_lock);
5852 
5853 	event->eventfd = eventfd;
5854 	list_add(&event->list, &memcg->oom_notify);
5855 
5856 	/* already in OOM ? */
5857 	if (atomic_read(&memcg->under_oom))
5858 		eventfd_signal(eventfd, 1);
5859 	spin_unlock(&memcg_oom_lock);
5860 
5861 	return 0;
5862 }
5863 
5864 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5865 	struct cftype *cft, struct eventfd_ctx *eventfd)
5866 {
5867 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5868 	struct mem_cgroup_eventfd_list *ev, *tmp;
5869 	enum res_type type = MEMFILE_TYPE(cft->private);
5870 
5871 	BUG_ON(type != _OOM_TYPE);
5872 
5873 	spin_lock(&memcg_oom_lock);
5874 
5875 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5876 		if (ev->eventfd == eventfd) {
5877 			list_del(&ev->list);
5878 			kfree(ev);
5879 		}
5880 	}
5881 
5882 	spin_unlock(&memcg_oom_lock);
5883 }
5884 
5885 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5886 	struct cftype *cft,  struct cgroup_map_cb *cb)
5887 {
5888 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5889 
5890 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5891 
5892 	if (atomic_read(&memcg->under_oom))
5893 		cb->fill(cb, "under_oom", 1);
5894 	else
5895 		cb->fill(cb, "under_oom", 0);
5896 	return 0;
5897 }
5898 
5899 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5900 	struct cftype *cft, u64 val)
5901 {
5902 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5903 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5904 
5905 	/* cannot set to root cgroup and only 0 and 1 are allowed */
5906 	if (!parent || !((val == 0) || (val == 1)))
5907 		return -EINVAL;
5908 
5909 	mutex_lock(&memcg_create_mutex);
5910 	/* oom-kill-disable is a flag for subhierarchy. */
5911 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5912 		mutex_unlock(&memcg_create_mutex);
5913 		return -EINVAL;
5914 	}
5915 	memcg->oom_kill_disable = val;
5916 	if (!val)
5917 		memcg_oom_recover(memcg);
5918 	mutex_unlock(&memcg_create_mutex);
5919 	return 0;
5920 }
5921 
5922 #ifdef CONFIG_MEMCG_KMEM
5923 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5924 {
5925 	int ret;
5926 
5927 	memcg->kmemcg_id = -1;
5928 	ret = memcg_propagate_kmem(memcg);
5929 	if (ret)
5930 		return ret;
5931 
5932 	return mem_cgroup_sockets_init(memcg, ss);
5933 }
5934 
5935 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5936 {
5937 	mem_cgroup_sockets_destroy(memcg);
5938 }
5939 
5940 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5941 {
5942 	if (!memcg_kmem_is_active(memcg))
5943 		return;
5944 
5945 	/*
5946 	 * kmem charges can outlive the cgroup. In the case of slab
5947 	 * pages, for instance, a page contain objects from various
5948 	 * processes. As we prevent from taking a reference for every
5949 	 * such allocation we have to be careful when doing uncharge
5950 	 * (see memcg_uncharge_kmem) and here during offlining.
5951 	 *
5952 	 * The idea is that that only the _last_ uncharge which sees
5953 	 * the dead memcg will drop the last reference. An additional
5954 	 * reference is taken here before the group is marked dead
5955 	 * which is then paired with css_put during uncharge resp. here.
5956 	 *
5957 	 * Although this might sound strange as this path is called from
5958 	 * css_offline() when the referencemight have dropped down to 0
5959 	 * and shouldn't be incremented anymore (css_tryget would fail)
5960 	 * we do not have other options because of the kmem allocations
5961 	 * lifetime.
5962 	 */
5963 	css_get(&memcg->css);
5964 
5965 	memcg_kmem_mark_dead(memcg);
5966 
5967 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5968 		return;
5969 
5970 	if (memcg_kmem_test_and_clear_dead(memcg))
5971 		css_put(&memcg->css);
5972 }
5973 #else
5974 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5975 {
5976 	return 0;
5977 }
5978 
5979 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5980 {
5981 }
5982 
5983 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5984 {
5985 }
5986 #endif
5987 
5988 static struct cftype mem_cgroup_files[] = {
5989 	{
5990 		.name = "usage_in_bytes",
5991 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5992 		.read = mem_cgroup_read,
5993 		.register_event = mem_cgroup_usage_register_event,
5994 		.unregister_event = mem_cgroup_usage_unregister_event,
5995 	},
5996 	{
5997 		.name = "max_usage_in_bytes",
5998 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5999 		.trigger = mem_cgroup_reset,
6000 		.read = mem_cgroup_read,
6001 	},
6002 	{
6003 		.name = "limit_in_bytes",
6004 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6005 		.write_string = mem_cgroup_write,
6006 		.read = mem_cgroup_read,
6007 	},
6008 	{
6009 		.name = "soft_limit_in_bytes",
6010 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6011 		.write_string = mem_cgroup_write,
6012 		.read = mem_cgroup_read,
6013 	},
6014 	{
6015 		.name = "failcnt",
6016 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6017 		.trigger = mem_cgroup_reset,
6018 		.read = mem_cgroup_read,
6019 	},
6020 	{
6021 		.name = "stat",
6022 		.read_seq_string = memcg_stat_show,
6023 	},
6024 	{
6025 		.name = "force_empty",
6026 		.trigger = mem_cgroup_force_empty_write,
6027 	},
6028 	{
6029 		.name = "use_hierarchy",
6030 		.flags = CFTYPE_INSANE,
6031 		.write_u64 = mem_cgroup_hierarchy_write,
6032 		.read_u64 = mem_cgroup_hierarchy_read,
6033 	},
6034 	{
6035 		.name = "swappiness",
6036 		.read_u64 = mem_cgroup_swappiness_read,
6037 		.write_u64 = mem_cgroup_swappiness_write,
6038 	},
6039 	{
6040 		.name = "move_charge_at_immigrate",
6041 		.read_u64 = mem_cgroup_move_charge_read,
6042 		.write_u64 = mem_cgroup_move_charge_write,
6043 	},
6044 	{
6045 		.name = "oom_control",
6046 		.read_map = mem_cgroup_oom_control_read,
6047 		.write_u64 = mem_cgroup_oom_control_write,
6048 		.register_event = mem_cgroup_oom_register_event,
6049 		.unregister_event = mem_cgroup_oom_unregister_event,
6050 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6051 	},
6052 	{
6053 		.name = "pressure_level",
6054 		.register_event = vmpressure_register_event,
6055 		.unregister_event = vmpressure_unregister_event,
6056 	},
6057 #ifdef CONFIG_NUMA
6058 	{
6059 		.name = "numa_stat",
6060 		.read_seq_string = memcg_numa_stat_show,
6061 	},
6062 #endif
6063 #ifdef CONFIG_MEMCG_KMEM
6064 	{
6065 		.name = "kmem.limit_in_bytes",
6066 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6067 		.write_string = mem_cgroup_write,
6068 		.read = mem_cgroup_read,
6069 	},
6070 	{
6071 		.name = "kmem.usage_in_bytes",
6072 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6073 		.read = mem_cgroup_read,
6074 	},
6075 	{
6076 		.name = "kmem.failcnt",
6077 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6078 		.trigger = mem_cgroup_reset,
6079 		.read = mem_cgroup_read,
6080 	},
6081 	{
6082 		.name = "kmem.max_usage_in_bytes",
6083 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6084 		.trigger = mem_cgroup_reset,
6085 		.read = mem_cgroup_read,
6086 	},
6087 #ifdef CONFIG_SLABINFO
6088 	{
6089 		.name = "kmem.slabinfo",
6090 		.read_seq_string = mem_cgroup_slabinfo_read,
6091 	},
6092 #endif
6093 #endif
6094 	{ },	/* terminate */
6095 };
6096 
6097 #ifdef CONFIG_MEMCG_SWAP
6098 static struct cftype memsw_cgroup_files[] = {
6099 	{
6100 		.name = "memsw.usage_in_bytes",
6101 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6102 		.read = mem_cgroup_read,
6103 		.register_event = mem_cgroup_usage_register_event,
6104 		.unregister_event = mem_cgroup_usage_unregister_event,
6105 	},
6106 	{
6107 		.name = "memsw.max_usage_in_bytes",
6108 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6109 		.trigger = mem_cgroup_reset,
6110 		.read = mem_cgroup_read,
6111 	},
6112 	{
6113 		.name = "memsw.limit_in_bytes",
6114 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6115 		.write_string = mem_cgroup_write,
6116 		.read = mem_cgroup_read,
6117 	},
6118 	{
6119 		.name = "memsw.failcnt",
6120 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6121 		.trigger = mem_cgroup_reset,
6122 		.read = mem_cgroup_read,
6123 	},
6124 	{ },	/* terminate */
6125 };
6126 #endif
6127 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6128 {
6129 	struct mem_cgroup_per_node *pn;
6130 	struct mem_cgroup_per_zone *mz;
6131 	int zone, tmp = node;
6132 	/*
6133 	 * This routine is called against possible nodes.
6134 	 * But it's BUG to call kmalloc() against offline node.
6135 	 *
6136 	 * TODO: this routine can waste much memory for nodes which will
6137 	 *       never be onlined. It's better to use memory hotplug callback
6138 	 *       function.
6139 	 */
6140 	if (!node_state(node, N_NORMAL_MEMORY))
6141 		tmp = -1;
6142 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6143 	if (!pn)
6144 		return 1;
6145 
6146 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6147 		mz = &pn->zoneinfo[zone];
6148 		lruvec_init(&mz->lruvec);
6149 		mz->usage_in_excess = 0;
6150 		mz->on_tree = false;
6151 		mz->memcg = memcg;
6152 	}
6153 	memcg->nodeinfo[node] = pn;
6154 	return 0;
6155 }
6156 
6157 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6158 {
6159 	kfree(memcg->nodeinfo[node]);
6160 }
6161 
6162 static struct mem_cgroup *mem_cgroup_alloc(void)
6163 {
6164 	struct mem_cgroup *memcg;
6165 	size_t size = memcg_size();
6166 
6167 	/* Can be very big if nr_node_ids is very big */
6168 	if (size < PAGE_SIZE)
6169 		memcg = kzalloc(size, GFP_KERNEL);
6170 	else
6171 		memcg = vzalloc(size);
6172 
6173 	if (!memcg)
6174 		return NULL;
6175 
6176 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6177 	if (!memcg->stat)
6178 		goto out_free;
6179 	spin_lock_init(&memcg->pcp_counter_lock);
6180 	return memcg;
6181 
6182 out_free:
6183 	if (size < PAGE_SIZE)
6184 		kfree(memcg);
6185 	else
6186 		vfree(memcg);
6187 	return NULL;
6188 }
6189 
6190 /*
6191  * At destroying mem_cgroup, references from swap_cgroup can remain.
6192  * (scanning all at force_empty is too costly...)
6193  *
6194  * Instead of clearing all references at force_empty, we remember
6195  * the number of reference from swap_cgroup and free mem_cgroup when
6196  * it goes down to 0.
6197  *
6198  * Removal of cgroup itself succeeds regardless of refs from swap.
6199  */
6200 
6201 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6202 {
6203 	int node;
6204 	size_t size = memcg_size();
6205 
6206 	mem_cgroup_remove_from_trees(memcg);
6207 	free_css_id(&mem_cgroup_subsys, &memcg->css);
6208 
6209 	for_each_node(node)
6210 		free_mem_cgroup_per_zone_info(memcg, node);
6211 
6212 	free_percpu(memcg->stat);
6213 
6214 	/*
6215 	 * We need to make sure that (at least for now), the jump label
6216 	 * destruction code runs outside of the cgroup lock. This is because
6217 	 * get_online_cpus(), which is called from the static_branch update,
6218 	 * can't be called inside the cgroup_lock. cpusets are the ones
6219 	 * enforcing this dependency, so if they ever change, we might as well.
6220 	 *
6221 	 * schedule_work() will guarantee this happens. Be careful if you need
6222 	 * to move this code around, and make sure it is outside
6223 	 * the cgroup_lock.
6224 	 */
6225 	disarm_static_keys(memcg);
6226 	if (size < PAGE_SIZE)
6227 		kfree(memcg);
6228 	else
6229 		vfree(memcg);
6230 }
6231 
6232 /*
6233  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6234  */
6235 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6236 {
6237 	if (!memcg->res.parent)
6238 		return NULL;
6239 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6240 }
6241 EXPORT_SYMBOL(parent_mem_cgroup);
6242 
6243 static void __init mem_cgroup_soft_limit_tree_init(void)
6244 {
6245 	struct mem_cgroup_tree_per_node *rtpn;
6246 	struct mem_cgroup_tree_per_zone *rtpz;
6247 	int tmp, node, zone;
6248 
6249 	for_each_node(node) {
6250 		tmp = node;
6251 		if (!node_state(node, N_NORMAL_MEMORY))
6252 			tmp = -1;
6253 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6254 		BUG_ON(!rtpn);
6255 
6256 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6257 
6258 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6259 			rtpz = &rtpn->rb_tree_per_zone[zone];
6260 			rtpz->rb_root = RB_ROOT;
6261 			spin_lock_init(&rtpz->lock);
6262 		}
6263 	}
6264 }
6265 
6266 static struct cgroup_subsys_state * __ref
6267 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6268 {
6269 	struct mem_cgroup *memcg;
6270 	long error = -ENOMEM;
6271 	int node;
6272 
6273 	memcg = mem_cgroup_alloc();
6274 	if (!memcg)
6275 		return ERR_PTR(error);
6276 
6277 	for_each_node(node)
6278 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6279 			goto free_out;
6280 
6281 	/* root ? */
6282 	if (parent_css == NULL) {
6283 		root_mem_cgroup = memcg;
6284 		res_counter_init(&memcg->res, NULL);
6285 		res_counter_init(&memcg->memsw, NULL);
6286 		res_counter_init(&memcg->kmem, NULL);
6287 	}
6288 
6289 	memcg->last_scanned_node = MAX_NUMNODES;
6290 	INIT_LIST_HEAD(&memcg->oom_notify);
6291 	memcg->move_charge_at_immigrate = 0;
6292 	mutex_init(&memcg->thresholds_lock);
6293 	spin_lock_init(&memcg->move_lock);
6294 	vmpressure_init(&memcg->vmpressure);
6295 
6296 	return &memcg->css;
6297 
6298 free_out:
6299 	__mem_cgroup_free(memcg);
6300 	return ERR_PTR(error);
6301 }
6302 
6303 static int
6304 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6305 {
6306 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6307 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6308 	int error = 0;
6309 
6310 	if (!parent)
6311 		return 0;
6312 
6313 	mutex_lock(&memcg_create_mutex);
6314 
6315 	memcg->use_hierarchy = parent->use_hierarchy;
6316 	memcg->oom_kill_disable = parent->oom_kill_disable;
6317 	memcg->swappiness = mem_cgroup_swappiness(parent);
6318 
6319 	if (parent->use_hierarchy) {
6320 		res_counter_init(&memcg->res, &parent->res);
6321 		res_counter_init(&memcg->memsw, &parent->memsw);
6322 		res_counter_init(&memcg->kmem, &parent->kmem);
6323 
6324 		/*
6325 		 * No need to take a reference to the parent because cgroup
6326 		 * core guarantees its existence.
6327 		 */
6328 	} else {
6329 		res_counter_init(&memcg->res, NULL);
6330 		res_counter_init(&memcg->memsw, NULL);
6331 		res_counter_init(&memcg->kmem, NULL);
6332 		/*
6333 		 * Deeper hierachy with use_hierarchy == false doesn't make
6334 		 * much sense so let cgroup subsystem know about this
6335 		 * unfortunate state in our controller.
6336 		 */
6337 		if (parent != root_mem_cgroup)
6338 			mem_cgroup_subsys.broken_hierarchy = true;
6339 	}
6340 
6341 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6342 	mutex_unlock(&memcg_create_mutex);
6343 	return error;
6344 }
6345 
6346 /*
6347  * Announce all parents that a group from their hierarchy is gone.
6348  */
6349 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6350 {
6351 	struct mem_cgroup *parent = memcg;
6352 
6353 	while ((parent = parent_mem_cgroup(parent)))
6354 		mem_cgroup_iter_invalidate(parent);
6355 
6356 	/*
6357 	 * if the root memcg is not hierarchical we have to check it
6358 	 * explicitely.
6359 	 */
6360 	if (!root_mem_cgroup->use_hierarchy)
6361 		mem_cgroup_iter_invalidate(root_mem_cgroup);
6362 }
6363 
6364 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6365 {
6366 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6367 
6368 	kmem_cgroup_css_offline(memcg);
6369 
6370 	mem_cgroup_invalidate_reclaim_iterators(memcg);
6371 	mem_cgroup_reparent_charges(memcg);
6372 	mem_cgroup_destroy_all_caches(memcg);
6373 	vmpressure_cleanup(&memcg->vmpressure);
6374 }
6375 
6376 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6377 {
6378 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6379 
6380 	memcg_destroy_kmem(memcg);
6381 	__mem_cgroup_free(memcg);
6382 }
6383 
6384 #ifdef CONFIG_MMU
6385 /* Handlers for move charge at task migration. */
6386 #define PRECHARGE_COUNT_AT_ONCE	256
6387 static int mem_cgroup_do_precharge(unsigned long count)
6388 {
6389 	int ret = 0;
6390 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6391 	struct mem_cgroup *memcg = mc.to;
6392 
6393 	if (mem_cgroup_is_root(memcg)) {
6394 		mc.precharge += count;
6395 		/* we don't need css_get for root */
6396 		return ret;
6397 	}
6398 	/* try to charge at once */
6399 	if (count > 1) {
6400 		struct res_counter *dummy;
6401 		/*
6402 		 * "memcg" cannot be under rmdir() because we've already checked
6403 		 * by cgroup_lock_live_cgroup() that it is not removed and we
6404 		 * are still under the same cgroup_mutex. So we can postpone
6405 		 * css_get().
6406 		 */
6407 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6408 			goto one_by_one;
6409 		if (do_swap_account && res_counter_charge(&memcg->memsw,
6410 						PAGE_SIZE * count, &dummy)) {
6411 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6412 			goto one_by_one;
6413 		}
6414 		mc.precharge += count;
6415 		return ret;
6416 	}
6417 one_by_one:
6418 	/* fall back to one by one charge */
6419 	while (count--) {
6420 		if (signal_pending(current)) {
6421 			ret = -EINTR;
6422 			break;
6423 		}
6424 		if (!batch_count--) {
6425 			batch_count = PRECHARGE_COUNT_AT_ONCE;
6426 			cond_resched();
6427 		}
6428 		ret = __mem_cgroup_try_charge(NULL,
6429 					GFP_KERNEL, 1, &memcg, false);
6430 		if (ret)
6431 			/* mem_cgroup_clear_mc() will do uncharge later */
6432 			return ret;
6433 		mc.precharge++;
6434 	}
6435 	return ret;
6436 }
6437 
6438 /**
6439  * get_mctgt_type - get target type of moving charge
6440  * @vma: the vma the pte to be checked belongs
6441  * @addr: the address corresponding to the pte to be checked
6442  * @ptent: the pte to be checked
6443  * @target: the pointer the target page or swap ent will be stored(can be NULL)
6444  *
6445  * Returns
6446  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
6447  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6448  *     move charge. if @target is not NULL, the page is stored in target->page
6449  *     with extra refcnt got(Callers should handle it).
6450  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6451  *     target for charge migration. if @target is not NULL, the entry is stored
6452  *     in target->ent.
6453  *
6454  * Called with pte lock held.
6455  */
6456 union mc_target {
6457 	struct page	*page;
6458 	swp_entry_t	ent;
6459 };
6460 
6461 enum mc_target_type {
6462 	MC_TARGET_NONE = 0,
6463 	MC_TARGET_PAGE,
6464 	MC_TARGET_SWAP,
6465 };
6466 
6467 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6468 						unsigned long addr, pte_t ptent)
6469 {
6470 	struct page *page = vm_normal_page(vma, addr, ptent);
6471 
6472 	if (!page || !page_mapped(page))
6473 		return NULL;
6474 	if (PageAnon(page)) {
6475 		/* we don't move shared anon */
6476 		if (!move_anon())
6477 			return NULL;
6478 	} else if (!move_file())
6479 		/* we ignore mapcount for file pages */
6480 		return NULL;
6481 	if (!get_page_unless_zero(page))
6482 		return NULL;
6483 
6484 	return page;
6485 }
6486 
6487 #ifdef CONFIG_SWAP
6488 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6489 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6490 {
6491 	struct page *page = NULL;
6492 	swp_entry_t ent = pte_to_swp_entry(ptent);
6493 
6494 	if (!move_anon() || non_swap_entry(ent))
6495 		return NULL;
6496 	/*
6497 	 * Because lookup_swap_cache() updates some statistics counter,
6498 	 * we call find_get_page() with swapper_space directly.
6499 	 */
6500 	page = find_get_page(swap_address_space(ent), ent.val);
6501 	if (do_swap_account)
6502 		entry->val = ent.val;
6503 
6504 	return page;
6505 }
6506 #else
6507 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6508 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6509 {
6510 	return NULL;
6511 }
6512 #endif
6513 
6514 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6515 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6516 {
6517 	struct page *page = NULL;
6518 	struct address_space *mapping;
6519 	pgoff_t pgoff;
6520 
6521 	if (!vma->vm_file) /* anonymous vma */
6522 		return NULL;
6523 	if (!move_file())
6524 		return NULL;
6525 
6526 	mapping = vma->vm_file->f_mapping;
6527 	if (pte_none(ptent))
6528 		pgoff = linear_page_index(vma, addr);
6529 	else /* pte_file(ptent) is true */
6530 		pgoff = pte_to_pgoff(ptent);
6531 
6532 	/* page is moved even if it's not RSS of this task(page-faulted). */
6533 	page = find_get_page(mapping, pgoff);
6534 
6535 #ifdef CONFIG_SWAP
6536 	/* shmem/tmpfs may report page out on swap: account for that too. */
6537 	if (radix_tree_exceptional_entry(page)) {
6538 		swp_entry_t swap = radix_to_swp_entry(page);
6539 		if (do_swap_account)
6540 			*entry = swap;
6541 		page = find_get_page(swap_address_space(swap), swap.val);
6542 	}
6543 #endif
6544 	return page;
6545 }
6546 
6547 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6548 		unsigned long addr, pte_t ptent, union mc_target *target)
6549 {
6550 	struct page *page = NULL;
6551 	struct page_cgroup *pc;
6552 	enum mc_target_type ret = MC_TARGET_NONE;
6553 	swp_entry_t ent = { .val = 0 };
6554 
6555 	if (pte_present(ptent))
6556 		page = mc_handle_present_pte(vma, addr, ptent);
6557 	else if (is_swap_pte(ptent))
6558 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6559 	else if (pte_none(ptent) || pte_file(ptent))
6560 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
6561 
6562 	if (!page && !ent.val)
6563 		return ret;
6564 	if (page) {
6565 		pc = lookup_page_cgroup(page);
6566 		/*
6567 		 * Do only loose check w/o page_cgroup lock.
6568 		 * mem_cgroup_move_account() checks the pc is valid or not under
6569 		 * the lock.
6570 		 */
6571 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6572 			ret = MC_TARGET_PAGE;
6573 			if (target)
6574 				target->page = page;
6575 		}
6576 		if (!ret || !target)
6577 			put_page(page);
6578 	}
6579 	/* There is a swap entry and a page doesn't exist or isn't charged */
6580 	if (ent.val && !ret &&
6581 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6582 		ret = MC_TARGET_SWAP;
6583 		if (target)
6584 			target->ent = ent;
6585 	}
6586 	return ret;
6587 }
6588 
6589 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6590 /*
6591  * We don't consider swapping or file mapped pages because THP does not
6592  * support them for now.
6593  * Caller should make sure that pmd_trans_huge(pmd) is true.
6594  */
6595 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6596 		unsigned long addr, pmd_t pmd, union mc_target *target)
6597 {
6598 	struct page *page = NULL;
6599 	struct page_cgroup *pc;
6600 	enum mc_target_type ret = MC_TARGET_NONE;
6601 
6602 	page = pmd_page(pmd);
6603 	VM_BUG_ON(!page || !PageHead(page));
6604 	if (!move_anon())
6605 		return ret;
6606 	pc = lookup_page_cgroup(page);
6607 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6608 		ret = MC_TARGET_PAGE;
6609 		if (target) {
6610 			get_page(page);
6611 			target->page = page;
6612 		}
6613 	}
6614 	return ret;
6615 }
6616 #else
6617 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6618 		unsigned long addr, pmd_t pmd, union mc_target *target)
6619 {
6620 	return MC_TARGET_NONE;
6621 }
6622 #endif
6623 
6624 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6625 					unsigned long addr, unsigned long end,
6626 					struct mm_walk *walk)
6627 {
6628 	struct vm_area_struct *vma = walk->private;
6629 	pte_t *pte;
6630 	spinlock_t *ptl;
6631 
6632 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6633 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6634 			mc.precharge += HPAGE_PMD_NR;
6635 		spin_unlock(&vma->vm_mm->page_table_lock);
6636 		return 0;
6637 	}
6638 
6639 	if (pmd_trans_unstable(pmd))
6640 		return 0;
6641 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6642 	for (; addr != end; pte++, addr += PAGE_SIZE)
6643 		if (get_mctgt_type(vma, addr, *pte, NULL))
6644 			mc.precharge++;	/* increment precharge temporarily */
6645 	pte_unmap_unlock(pte - 1, ptl);
6646 	cond_resched();
6647 
6648 	return 0;
6649 }
6650 
6651 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6652 {
6653 	unsigned long precharge;
6654 	struct vm_area_struct *vma;
6655 
6656 	down_read(&mm->mmap_sem);
6657 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6658 		struct mm_walk mem_cgroup_count_precharge_walk = {
6659 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
6660 			.mm = mm,
6661 			.private = vma,
6662 		};
6663 		if (is_vm_hugetlb_page(vma))
6664 			continue;
6665 		walk_page_range(vma->vm_start, vma->vm_end,
6666 					&mem_cgroup_count_precharge_walk);
6667 	}
6668 	up_read(&mm->mmap_sem);
6669 
6670 	precharge = mc.precharge;
6671 	mc.precharge = 0;
6672 
6673 	return precharge;
6674 }
6675 
6676 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6677 {
6678 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6679 
6680 	VM_BUG_ON(mc.moving_task);
6681 	mc.moving_task = current;
6682 	return mem_cgroup_do_precharge(precharge);
6683 }
6684 
6685 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6686 static void __mem_cgroup_clear_mc(void)
6687 {
6688 	struct mem_cgroup *from = mc.from;
6689 	struct mem_cgroup *to = mc.to;
6690 	int i;
6691 
6692 	/* we must uncharge all the leftover precharges from mc.to */
6693 	if (mc.precharge) {
6694 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
6695 		mc.precharge = 0;
6696 	}
6697 	/*
6698 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6699 	 * we must uncharge here.
6700 	 */
6701 	if (mc.moved_charge) {
6702 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6703 		mc.moved_charge = 0;
6704 	}
6705 	/* we must fixup refcnts and charges */
6706 	if (mc.moved_swap) {
6707 		/* uncharge swap account from the old cgroup */
6708 		if (!mem_cgroup_is_root(mc.from))
6709 			res_counter_uncharge(&mc.from->memsw,
6710 						PAGE_SIZE * mc.moved_swap);
6711 
6712 		for (i = 0; i < mc.moved_swap; i++)
6713 			css_put(&mc.from->css);
6714 
6715 		if (!mem_cgroup_is_root(mc.to)) {
6716 			/*
6717 			 * we charged both to->res and to->memsw, so we should
6718 			 * uncharge to->res.
6719 			 */
6720 			res_counter_uncharge(&mc.to->res,
6721 						PAGE_SIZE * mc.moved_swap);
6722 		}
6723 		/* we've already done css_get(mc.to) */
6724 		mc.moved_swap = 0;
6725 	}
6726 	memcg_oom_recover(from);
6727 	memcg_oom_recover(to);
6728 	wake_up_all(&mc.waitq);
6729 }
6730 
6731 static void mem_cgroup_clear_mc(void)
6732 {
6733 	struct mem_cgroup *from = mc.from;
6734 
6735 	/*
6736 	 * we must clear moving_task before waking up waiters at the end of
6737 	 * task migration.
6738 	 */
6739 	mc.moving_task = NULL;
6740 	__mem_cgroup_clear_mc();
6741 	spin_lock(&mc.lock);
6742 	mc.from = NULL;
6743 	mc.to = NULL;
6744 	spin_unlock(&mc.lock);
6745 	mem_cgroup_end_move(from);
6746 }
6747 
6748 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6749 				 struct cgroup_taskset *tset)
6750 {
6751 	struct task_struct *p = cgroup_taskset_first(tset);
6752 	int ret = 0;
6753 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6754 	unsigned long move_charge_at_immigrate;
6755 
6756 	/*
6757 	 * We are now commited to this value whatever it is. Changes in this
6758 	 * tunable will only affect upcoming migrations, not the current one.
6759 	 * So we need to save it, and keep it going.
6760 	 */
6761 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
6762 	if (move_charge_at_immigrate) {
6763 		struct mm_struct *mm;
6764 		struct mem_cgroup *from = mem_cgroup_from_task(p);
6765 
6766 		VM_BUG_ON(from == memcg);
6767 
6768 		mm = get_task_mm(p);
6769 		if (!mm)
6770 			return 0;
6771 		/* We move charges only when we move a owner of the mm */
6772 		if (mm->owner == p) {
6773 			VM_BUG_ON(mc.from);
6774 			VM_BUG_ON(mc.to);
6775 			VM_BUG_ON(mc.precharge);
6776 			VM_BUG_ON(mc.moved_charge);
6777 			VM_BUG_ON(mc.moved_swap);
6778 			mem_cgroup_start_move(from);
6779 			spin_lock(&mc.lock);
6780 			mc.from = from;
6781 			mc.to = memcg;
6782 			mc.immigrate_flags = move_charge_at_immigrate;
6783 			spin_unlock(&mc.lock);
6784 			/* We set mc.moving_task later */
6785 
6786 			ret = mem_cgroup_precharge_mc(mm);
6787 			if (ret)
6788 				mem_cgroup_clear_mc();
6789 		}
6790 		mmput(mm);
6791 	}
6792 	return ret;
6793 }
6794 
6795 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6796 				     struct cgroup_taskset *tset)
6797 {
6798 	mem_cgroup_clear_mc();
6799 }
6800 
6801 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6802 				unsigned long addr, unsigned long end,
6803 				struct mm_walk *walk)
6804 {
6805 	int ret = 0;
6806 	struct vm_area_struct *vma = walk->private;
6807 	pte_t *pte;
6808 	spinlock_t *ptl;
6809 	enum mc_target_type target_type;
6810 	union mc_target target;
6811 	struct page *page;
6812 	struct page_cgroup *pc;
6813 
6814 	/*
6815 	 * We don't take compound_lock() here but no race with splitting thp
6816 	 * happens because:
6817 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6818 	 *    under splitting, which means there's no concurrent thp split,
6819 	 *  - if another thread runs into split_huge_page() just after we
6820 	 *    entered this if-block, the thread must wait for page table lock
6821 	 *    to be unlocked in __split_huge_page_splitting(), where the main
6822 	 *    part of thp split is not executed yet.
6823 	 */
6824 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6825 		if (mc.precharge < HPAGE_PMD_NR) {
6826 			spin_unlock(&vma->vm_mm->page_table_lock);
6827 			return 0;
6828 		}
6829 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6830 		if (target_type == MC_TARGET_PAGE) {
6831 			page = target.page;
6832 			if (!isolate_lru_page(page)) {
6833 				pc = lookup_page_cgroup(page);
6834 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6835 							pc, mc.from, mc.to)) {
6836 					mc.precharge -= HPAGE_PMD_NR;
6837 					mc.moved_charge += HPAGE_PMD_NR;
6838 				}
6839 				putback_lru_page(page);
6840 			}
6841 			put_page(page);
6842 		}
6843 		spin_unlock(&vma->vm_mm->page_table_lock);
6844 		return 0;
6845 	}
6846 
6847 	if (pmd_trans_unstable(pmd))
6848 		return 0;
6849 retry:
6850 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6851 	for (; addr != end; addr += PAGE_SIZE) {
6852 		pte_t ptent = *(pte++);
6853 		swp_entry_t ent;
6854 
6855 		if (!mc.precharge)
6856 			break;
6857 
6858 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6859 		case MC_TARGET_PAGE:
6860 			page = target.page;
6861 			if (isolate_lru_page(page))
6862 				goto put;
6863 			pc = lookup_page_cgroup(page);
6864 			if (!mem_cgroup_move_account(page, 1, pc,
6865 						     mc.from, mc.to)) {
6866 				mc.precharge--;
6867 				/* we uncharge from mc.from later. */
6868 				mc.moved_charge++;
6869 			}
6870 			putback_lru_page(page);
6871 put:			/* get_mctgt_type() gets the page */
6872 			put_page(page);
6873 			break;
6874 		case MC_TARGET_SWAP:
6875 			ent = target.ent;
6876 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6877 				mc.precharge--;
6878 				/* we fixup refcnts and charges later. */
6879 				mc.moved_swap++;
6880 			}
6881 			break;
6882 		default:
6883 			break;
6884 		}
6885 	}
6886 	pte_unmap_unlock(pte - 1, ptl);
6887 	cond_resched();
6888 
6889 	if (addr != end) {
6890 		/*
6891 		 * We have consumed all precharges we got in can_attach().
6892 		 * We try charge one by one, but don't do any additional
6893 		 * charges to mc.to if we have failed in charge once in attach()
6894 		 * phase.
6895 		 */
6896 		ret = mem_cgroup_do_precharge(1);
6897 		if (!ret)
6898 			goto retry;
6899 	}
6900 
6901 	return ret;
6902 }
6903 
6904 static void mem_cgroup_move_charge(struct mm_struct *mm)
6905 {
6906 	struct vm_area_struct *vma;
6907 
6908 	lru_add_drain_all();
6909 retry:
6910 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6911 		/*
6912 		 * Someone who are holding the mmap_sem might be waiting in
6913 		 * waitq. So we cancel all extra charges, wake up all waiters,
6914 		 * and retry. Because we cancel precharges, we might not be able
6915 		 * to move enough charges, but moving charge is a best-effort
6916 		 * feature anyway, so it wouldn't be a big problem.
6917 		 */
6918 		__mem_cgroup_clear_mc();
6919 		cond_resched();
6920 		goto retry;
6921 	}
6922 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6923 		int ret;
6924 		struct mm_walk mem_cgroup_move_charge_walk = {
6925 			.pmd_entry = mem_cgroup_move_charge_pte_range,
6926 			.mm = mm,
6927 			.private = vma,
6928 		};
6929 		if (is_vm_hugetlb_page(vma))
6930 			continue;
6931 		ret = walk_page_range(vma->vm_start, vma->vm_end,
6932 						&mem_cgroup_move_charge_walk);
6933 		if (ret)
6934 			/*
6935 			 * means we have consumed all precharges and failed in
6936 			 * doing additional charge. Just abandon here.
6937 			 */
6938 			break;
6939 	}
6940 	up_read(&mm->mmap_sem);
6941 }
6942 
6943 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6944 				 struct cgroup_taskset *tset)
6945 {
6946 	struct task_struct *p = cgroup_taskset_first(tset);
6947 	struct mm_struct *mm = get_task_mm(p);
6948 
6949 	if (mm) {
6950 		if (mc.to)
6951 			mem_cgroup_move_charge(mm);
6952 		mmput(mm);
6953 	}
6954 	if (mc.to)
6955 		mem_cgroup_clear_mc();
6956 }
6957 #else	/* !CONFIG_MMU */
6958 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6959 				 struct cgroup_taskset *tset)
6960 {
6961 	return 0;
6962 }
6963 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6964 				     struct cgroup_taskset *tset)
6965 {
6966 }
6967 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6968 				 struct cgroup_taskset *tset)
6969 {
6970 }
6971 #endif
6972 
6973 /*
6974  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6975  * to verify sane_behavior flag on each mount attempt.
6976  */
6977 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6978 {
6979 	/*
6980 	 * use_hierarchy is forced with sane_behavior.  cgroup core
6981 	 * guarantees that @root doesn't have any children, so turning it
6982 	 * on for the root memcg is enough.
6983 	 */
6984 	if (cgroup_sane_behavior(root_css->cgroup))
6985 		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6986 }
6987 
6988 struct cgroup_subsys mem_cgroup_subsys = {
6989 	.name = "memory",
6990 	.subsys_id = mem_cgroup_subsys_id,
6991 	.css_alloc = mem_cgroup_css_alloc,
6992 	.css_online = mem_cgroup_css_online,
6993 	.css_offline = mem_cgroup_css_offline,
6994 	.css_free = mem_cgroup_css_free,
6995 	.can_attach = mem_cgroup_can_attach,
6996 	.cancel_attach = mem_cgroup_cancel_attach,
6997 	.attach = mem_cgroup_move_task,
6998 	.bind = mem_cgroup_bind,
6999 	.base_cftypes = mem_cgroup_files,
7000 	.early_init = 0,
7001 	.use_id = 1,
7002 };
7003 
7004 #ifdef CONFIG_MEMCG_SWAP
7005 static int __init enable_swap_account(char *s)
7006 {
7007 	if (!strcmp(s, "1"))
7008 		really_do_swap_account = 1;
7009 	else if (!strcmp(s, "0"))
7010 		really_do_swap_account = 0;
7011 	return 1;
7012 }
7013 __setup("swapaccount=", enable_swap_account);
7014 
7015 static void __init memsw_file_init(void)
7016 {
7017 	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7018 }
7019 
7020 static void __init enable_swap_cgroup(void)
7021 {
7022 	if (!mem_cgroup_disabled() && really_do_swap_account) {
7023 		do_swap_account = 1;
7024 		memsw_file_init();
7025 	}
7026 }
7027 
7028 #else
7029 static void __init enable_swap_cgroup(void)
7030 {
7031 }
7032 #endif
7033 
7034 /*
7035  * subsys_initcall() for memory controller.
7036  *
7037  * Some parts like hotcpu_notifier() have to be initialized from this context
7038  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7039  * everything that doesn't depend on a specific mem_cgroup structure should
7040  * be initialized from here.
7041  */
7042 static int __init mem_cgroup_init(void)
7043 {
7044 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7045 	enable_swap_cgroup();
7046 	mem_cgroup_soft_limit_tree_init();
7047 	memcg_stock_init();
7048 	return 0;
7049 }
7050 subsys_initcall(mem_cgroup_init);
7051