xref: /openbmc/linux/mm/memcontrol.c (revision 08720988)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66 
67 #include <linux/uaccess.h>
68 
69 #include <trace/events/vmscan.h>
70 
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73 
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75 
76 #define MEM_CGROUP_RECLAIM_RETRIES	5
77 
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80 
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83 
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
87 #else
88 #define do_swap_account		0
89 #endif
90 
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103 
104 /*
105  * Cgroups above their limits are maintained in a RB-Tree, independent of
106  * their hierarchy representation
107  */
108 
109 struct mem_cgroup_tree_per_node {
110 	struct rb_root rb_root;
111 	struct rb_node *rb_rightmost;
112 	spinlock_t lock;
113 };
114 
115 struct mem_cgroup_tree {
116 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118 
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120 
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 	struct list_head list;
124 	struct eventfd_ctx *eventfd;
125 };
126 
127 /*
128  * cgroup_event represents events which userspace want to receive.
129  */
130 struct mem_cgroup_event {
131 	/*
132 	 * memcg which the event belongs to.
133 	 */
134 	struct mem_cgroup *memcg;
135 	/*
136 	 * eventfd to signal userspace about the event.
137 	 */
138 	struct eventfd_ctx *eventfd;
139 	/*
140 	 * Each of these stored in a list by the cgroup.
141 	 */
142 	struct list_head list;
143 	/*
144 	 * register_event() callback will be used to add new userspace
145 	 * waiter for changes related to this event.  Use eventfd_signal()
146 	 * on eventfd to send notification to userspace.
147 	 */
148 	int (*register_event)(struct mem_cgroup *memcg,
149 			      struct eventfd_ctx *eventfd, const char *args);
150 	/*
151 	 * unregister_event() callback will be called when userspace closes
152 	 * the eventfd or on cgroup removing.  This callback must be set,
153 	 * if you want provide notification functionality.
154 	 */
155 	void (*unregister_event)(struct mem_cgroup *memcg,
156 				 struct eventfd_ctx *eventfd);
157 	/*
158 	 * All fields below needed to unregister event when
159 	 * userspace closes eventfd.
160 	 */
161 	poll_table pt;
162 	wait_queue_head_t *wqh;
163 	wait_queue_entry_t wait;
164 	struct work_struct remove;
165 };
166 
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169 
170 /* Stuffs for move charges at task migration. */
171 /*
172  * Types of charges to be moved.
173  */
174 #define MOVE_ANON	0x1U
175 #define MOVE_FILE	0x2U
176 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
177 
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 	spinlock_t	  lock; /* for from, to */
181 	struct mm_struct  *mm;
182 	struct mem_cgroup *from;
183 	struct mem_cgroup *to;
184 	unsigned long flags;
185 	unsigned long precharge;
186 	unsigned long moved_charge;
187 	unsigned long moved_swap;
188 	struct task_struct *moving_task;	/* a task moving charges */
189 	wait_queue_head_t waitq;		/* a waitq for other context */
190 } mc = {
191 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194 
195 /*
196  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197  * limit reclaim to prevent infinite loops, if they ever occur.
198  */
199 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
200 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
201 
202 enum charge_type {
203 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 	MEM_CGROUP_CHARGE_TYPE_ANON,
205 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
206 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
207 	NR_CHARGE_TYPE,
208 };
209 
210 /* for encoding cft->private value on file */
211 enum res_type {
212 	_MEM,
213 	_MEMSWAP,
214 	_OOM_TYPE,
215 	_KMEM,
216 	_TCP,
217 };
218 
219 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
220 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val)	((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL		(0)
224 
225 /*
226  * Iteration constructs for visiting all cgroups (under a tree).  If
227  * loops are exited prematurely (break), mem_cgroup_iter_break() must
228  * be used for reference counting.
229  */
230 #define for_each_mem_cgroup_tree(iter, root)		\
231 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
232 	     iter != NULL;				\
233 	     iter = mem_cgroup_iter(root, iter, NULL))
234 
235 #define for_each_mem_cgroup(iter)			\
236 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
237 	     iter != NULL;				\
238 	     iter = mem_cgroup_iter(NULL, iter, NULL))
239 
240 static inline bool should_force_charge(void)
241 {
242 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 		(current->flags & PF_EXITING);
244 }
245 
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248 {
249 	if (!memcg)
250 		memcg = root_mem_cgroup;
251 	return &memcg->vmpressure;
252 }
253 
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255 {
256 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257 }
258 
259 #ifdef CONFIG_MEMCG_KMEM
260 /*
261  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262  * The main reason for not using cgroup id for this:
263  *  this works better in sparse environments, where we have a lot of memcgs,
264  *  but only a few kmem-limited. Or also, if we have, for instance, 200
265  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
266  *  200 entry array for that.
267  *
268  * The current size of the caches array is stored in memcg_nr_cache_ids. It
269  * will double each time we have to increase it.
270  */
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
273 
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
276 
277 void memcg_get_cache_ids(void)
278 {
279 	down_read(&memcg_cache_ids_sem);
280 }
281 
282 void memcg_put_cache_ids(void)
283 {
284 	up_read(&memcg_cache_ids_sem);
285 }
286 
287 /*
288  * MIN_SIZE is different than 1, because we would like to avoid going through
289  * the alloc/free process all the time. In a small machine, 4 kmem-limited
290  * cgroups is a reasonable guess. In the future, it could be a parameter or
291  * tunable, but that is strictly not necessary.
292  *
293  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294  * this constant directly from cgroup, but it is understandable that this is
295  * better kept as an internal representation in cgroup.c. In any case, the
296  * cgrp_id space is not getting any smaller, and we don't have to necessarily
297  * increase ours as well if it increases.
298  */
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301 
302 /*
303  * A lot of the calls to the cache allocation functions are expected to be
304  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305  * conditional to this static branch, we'll have to allow modules that does
306  * kmem_cache_alloc and the such to see this symbol as well
307  */
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
310 
311 struct workqueue_struct *memcg_kmem_cache_wq;
312 #endif
313 
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316 
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318 {
319 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320 }
321 
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 					 int size, int old_size)
324 {
325 	struct memcg_shrinker_map *new, *old;
326 	int nid;
327 
328 	lockdep_assert_held(&memcg_shrinker_map_mutex);
329 
330 	for_each_node(nid) {
331 		old = rcu_dereference_protected(
332 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 		/* Not yet online memcg */
334 		if (!old)
335 			return 0;
336 
337 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
338 		if (!new)
339 			return -ENOMEM;
340 
341 		/* Set all old bits, clear all new bits */
342 		memset(new->map, (int)0xff, old_size);
343 		memset((void *)new->map + old_size, 0, size - old_size);
344 
345 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 	}
348 
349 	return 0;
350 }
351 
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353 {
354 	struct mem_cgroup_per_node *pn;
355 	struct memcg_shrinker_map *map;
356 	int nid;
357 
358 	if (mem_cgroup_is_root(memcg))
359 		return;
360 
361 	for_each_node(nid) {
362 		pn = mem_cgroup_nodeinfo(memcg, nid);
363 		map = rcu_dereference_protected(pn->shrinker_map, true);
364 		if (map)
365 			kvfree(map);
366 		rcu_assign_pointer(pn->shrinker_map, NULL);
367 	}
368 }
369 
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371 {
372 	struct memcg_shrinker_map *map;
373 	int nid, size, ret = 0;
374 
375 	if (mem_cgroup_is_root(memcg))
376 		return 0;
377 
378 	mutex_lock(&memcg_shrinker_map_mutex);
379 	size = memcg_shrinker_map_size;
380 	for_each_node(nid) {
381 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
382 		if (!map) {
383 			memcg_free_shrinker_maps(memcg);
384 			ret = -ENOMEM;
385 			break;
386 		}
387 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 	}
389 	mutex_unlock(&memcg_shrinker_map_mutex);
390 
391 	return ret;
392 }
393 
394 int memcg_expand_shrinker_maps(int new_id)
395 {
396 	int size, old_size, ret = 0;
397 	struct mem_cgroup *memcg;
398 
399 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 	old_size = memcg_shrinker_map_size;
401 	if (size <= old_size)
402 		return 0;
403 
404 	mutex_lock(&memcg_shrinker_map_mutex);
405 	if (!root_mem_cgroup)
406 		goto unlock;
407 
408 	for_each_mem_cgroup(memcg) {
409 		if (mem_cgroup_is_root(memcg))
410 			continue;
411 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 		if (ret) {
413 			mem_cgroup_iter_break(NULL, memcg);
414 			goto unlock;
415 		}
416 	}
417 unlock:
418 	if (!ret)
419 		memcg_shrinker_map_size = size;
420 	mutex_unlock(&memcg_shrinker_map_mutex);
421 	return ret;
422 }
423 
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425 {
426 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 		struct memcg_shrinker_map *map;
428 
429 		rcu_read_lock();
430 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 		/* Pairs with smp mb in shrink_slab() */
432 		smp_mb__before_atomic();
433 		set_bit(shrinker_id, map->map);
434 		rcu_read_unlock();
435 	}
436 }
437 
438 /**
439  * mem_cgroup_css_from_page - css of the memcg associated with a page
440  * @page: page of interest
441  *
442  * If memcg is bound to the default hierarchy, css of the memcg associated
443  * with @page is returned.  The returned css remains associated with @page
444  * until it is released.
445  *
446  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447  * is returned.
448  */
449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450 {
451 	struct mem_cgroup *memcg;
452 
453 	memcg = page->mem_cgroup;
454 
455 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 		memcg = root_mem_cgroup;
457 
458 	return &memcg->css;
459 }
460 
461 /**
462  * page_cgroup_ino - return inode number of the memcg a page is charged to
463  * @page: the page
464  *
465  * Look up the closest online ancestor of the memory cgroup @page is charged to
466  * and return its inode number or 0 if @page is not charged to any cgroup. It
467  * is safe to call this function without holding a reference to @page.
468  *
469  * Note, this function is inherently racy, because there is nothing to prevent
470  * the cgroup inode from getting torn down and potentially reallocated a moment
471  * after page_cgroup_ino() returns, so it only should be used by callers that
472  * do not care (such as procfs interfaces).
473  */
474 ino_t page_cgroup_ino(struct page *page)
475 {
476 	struct mem_cgroup *memcg;
477 	unsigned long ino = 0;
478 
479 	rcu_read_lock();
480 	if (PageSlab(page) && !PageTail(page))
481 		memcg = memcg_from_slab_page(page);
482 	else
483 		memcg = READ_ONCE(page->mem_cgroup);
484 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 		memcg = parent_mem_cgroup(memcg);
486 	if (memcg)
487 		ino = cgroup_ino(memcg->css.cgroup);
488 	rcu_read_unlock();
489 	return ino;
490 }
491 
492 static struct mem_cgroup_per_node *
493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
494 {
495 	int nid = page_to_nid(page);
496 
497 	return memcg->nodeinfo[nid];
498 }
499 
500 static struct mem_cgroup_tree_per_node *
501 soft_limit_tree_node(int nid)
502 {
503 	return soft_limit_tree.rb_tree_per_node[nid];
504 }
505 
506 static struct mem_cgroup_tree_per_node *
507 soft_limit_tree_from_page(struct page *page)
508 {
509 	int nid = page_to_nid(page);
510 
511 	return soft_limit_tree.rb_tree_per_node[nid];
512 }
513 
514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 					 struct mem_cgroup_tree_per_node *mctz,
516 					 unsigned long new_usage_in_excess)
517 {
518 	struct rb_node **p = &mctz->rb_root.rb_node;
519 	struct rb_node *parent = NULL;
520 	struct mem_cgroup_per_node *mz_node;
521 	bool rightmost = true;
522 
523 	if (mz->on_tree)
524 		return;
525 
526 	mz->usage_in_excess = new_usage_in_excess;
527 	if (!mz->usage_in_excess)
528 		return;
529 	while (*p) {
530 		parent = *p;
531 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532 					tree_node);
533 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
534 			p = &(*p)->rb_left;
535 			rightmost = false;
536 		}
537 
538 		/*
539 		 * We can't avoid mem cgroups that are over their soft
540 		 * limit by the same amount
541 		 */
542 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 			p = &(*p)->rb_right;
544 	}
545 
546 	if (rightmost)
547 		mctz->rb_rightmost = &mz->tree_node;
548 
549 	rb_link_node(&mz->tree_node, parent, p);
550 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 	mz->on_tree = true;
552 }
553 
554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 					 struct mem_cgroup_tree_per_node *mctz)
556 {
557 	if (!mz->on_tree)
558 		return;
559 
560 	if (&mz->tree_node == mctz->rb_rightmost)
561 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
562 
563 	rb_erase(&mz->tree_node, &mctz->rb_root);
564 	mz->on_tree = false;
565 }
566 
567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 				       struct mem_cgroup_tree_per_node *mctz)
569 {
570 	unsigned long flags;
571 
572 	spin_lock_irqsave(&mctz->lock, flags);
573 	__mem_cgroup_remove_exceeded(mz, mctz);
574 	spin_unlock_irqrestore(&mctz->lock, flags);
575 }
576 
577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578 {
579 	unsigned long nr_pages = page_counter_read(&memcg->memory);
580 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 	unsigned long excess = 0;
582 
583 	if (nr_pages > soft_limit)
584 		excess = nr_pages - soft_limit;
585 
586 	return excess;
587 }
588 
589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590 {
591 	unsigned long excess;
592 	struct mem_cgroup_per_node *mz;
593 	struct mem_cgroup_tree_per_node *mctz;
594 
595 	mctz = soft_limit_tree_from_page(page);
596 	if (!mctz)
597 		return;
598 	/*
599 	 * Necessary to update all ancestors when hierarchy is used.
600 	 * because their event counter is not touched.
601 	 */
602 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603 		mz = mem_cgroup_page_nodeinfo(memcg, page);
604 		excess = soft_limit_excess(memcg);
605 		/*
606 		 * We have to update the tree if mz is on RB-tree or
607 		 * mem is over its softlimit.
608 		 */
609 		if (excess || mz->on_tree) {
610 			unsigned long flags;
611 
612 			spin_lock_irqsave(&mctz->lock, flags);
613 			/* if on-tree, remove it */
614 			if (mz->on_tree)
615 				__mem_cgroup_remove_exceeded(mz, mctz);
616 			/*
617 			 * Insert again. mz->usage_in_excess will be updated.
618 			 * If excess is 0, no tree ops.
619 			 */
620 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
621 			spin_unlock_irqrestore(&mctz->lock, flags);
622 		}
623 	}
624 }
625 
626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627 {
628 	struct mem_cgroup_tree_per_node *mctz;
629 	struct mem_cgroup_per_node *mz;
630 	int nid;
631 
632 	for_each_node(nid) {
633 		mz = mem_cgroup_nodeinfo(memcg, nid);
634 		mctz = soft_limit_tree_node(nid);
635 		if (mctz)
636 			mem_cgroup_remove_exceeded(mz, mctz);
637 	}
638 }
639 
640 static struct mem_cgroup_per_node *
641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
642 {
643 	struct mem_cgroup_per_node *mz;
644 
645 retry:
646 	mz = NULL;
647 	if (!mctz->rb_rightmost)
648 		goto done;		/* Nothing to reclaim from */
649 
650 	mz = rb_entry(mctz->rb_rightmost,
651 		      struct mem_cgroup_per_node, tree_node);
652 	/*
653 	 * Remove the node now but someone else can add it back,
654 	 * we will to add it back at the end of reclaim to its correct
655 	 * position in the tree.
656 	 */
657 	__mem_cgroup_remove_exceeded(mz, mctz);
658 	if (!soft_limit_excess(mz->memcg) ||
659 	    !css_tryget_online(&mz->memcg->css))
660 		goto retry;
661 done:
662 	return mz;
663 }
664 
665 static struct mem_cgroup_per_node *
666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
667 {
668 	struct mem_cgroup_per_node *mz;
669 
670 	spin_lock_irq(&mctz->lock);
671 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
672 	spin_unlock_irq(&mctz->lock);
673 	return mz;
674 }
675 
676 /**
677  * __mod_memcg_state - update cgroup memory statistics
678  * @memcg: the memory cgroup
679  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680  * @val: delta to add to the counter, can be negative
681  */
682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683 {
684 	long x;
685 
686 	if (mem_cgroup_disabled())
687 		return;
688 
689 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 		struct mem_cgroup *mi;
692 
693 		/*
694 		 * Batch local counters to keep them in sync with
695 		 * the hierarchical ones.
696 		 */
697 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 			atomic_long_add(x, &mi->vmstats[idx]);
700 		x = 0;
701 	}
702 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703 }
704 
705 static struct mem_cgroup_per_node *
706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707 {
708 	struct mem_cgroup *parent;
709 
710 	parent = parent_mem_cgroup(pn->memcg);
711 	if (!parent)
712 		return NULL;
713 	return mem_cgroup_nodeinfo(parent, nid);
714 }
715 
716 /**
717  * __mod_lruvec_state - update lruvec memory statistics
718  * @lruvec: the lruvec
719  * @idx: the stat item
720  * @val: delta to add to the counter, can be negative
721  *
722  * The lruvec is the intersection of the NUMA node and a cgroup. This
723  * function updates the all three counters that are affected by a
724  * change of state at this level: per-node, per-cgroup, per-lruvec.
725  */
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 			int val)
728 {
729 	pg_data_t *pgdat = lruvec_pgdat(lruvec);
730 	struct mem_cgroup_per_node *pn;
731 	struct mem_cgroup *memcg;
732 	long x;
733 
734 	/* Update node */
735 	__mod_node_page_state(pgdat, idx, val);
736 
737 	if (mem_cgroup_disabled())
738 		return;
739 
740 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741 	memcg = pn->memcg;
742 
743 	/* Update memcg */
744 	__mod_memcg_state(memcg, idx, val);
745 
746 	/* Update lruvec */
747 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748 
749 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 		struct mem_cgroup_per_node *pi;
752 
753 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 			atomic_long_add(x, &pi->lruvec_stat[idx]);
755 		x = 0;
756 	}
757 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758 }
759 
760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761 {
762 	struct page *page = virt_to_head_page(p);
763 	pg_data_t *pgdat = page_pgdat(page);
764 	struct mem_cgroup *memcg;
765 	struct lruvec *lruvec;
766 
767 	rcu_read_lock();
768 	memcg = memcg_from_slab_page(page);
769 
770 	/* Untracked pages have no memcg, no lruvec. Update only the node */
771 	if (!memcg || memcg == root_mem_cgroup) {
772 		__mod_node_page_state(pgdat, idx, val);
773 	} else {
774 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
775 		__mod_lruvec_state(lruvec, idx, val);
776 	}
777 	rcu_read_unlock();
778 }
779 
780 /**
781  * __count_memcg_events - account VM events in a cgroup
782  * @memcg: the memory cgroup
783  * @idx: the event item
784  * @count: the number of events that occured
785  */
786 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
787 			  unsigned long count)
788 {
789 	unsigned long x;
790 
791 	if (mem_cgroup_disabled())
792 		return;
793 
794 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
795 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
796 		struct mem_cgroup *mi;
797 
798 		/*
799 		 * Batch local counters to keep them in sync with
800 		 * the hierarchical ones.
801 		 */
802 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
803 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
804 			atomic_long_add(x, &mi->vmevents[idx]);
805 		x = 0;
806 	}
807 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
808 }
809 
810 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
811 {
812 	return atomic_long_read(&memcg->vmevents[event]);
813 }
814 
815 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
816 {
817 	long x = 0;
818 	int cpu;
819 
820 	for_each_possible_cpu(cpu)
821 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
822 	return x;
823 }
824 
825 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
826 					 struct page *page,
827 					 bool compound, int nr_pages)
828 {
829 	/*
830 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
831 	 * counted as CACHE even if it's on ANON LRU.
832 	 */
833 	if (PageAnon(page))
834 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
835 	else {
836 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
837 		if (PageSwapBacked(page))
838 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
839 	}
840 
841 	if (compound) {
842 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
843 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
844 	}
845 
846 	/* pagein of a big page is an event. So, ignore page size */
847 	if (nr_pages > 0)
848 		__count_memcg_events(memcg, PGPGIN, 1);
849 	else {
850 		__count_memcg_events(memcg, PGPGOUT, 1);
851 		nr_pages = -nr_pages; /* for event */
852 	}
853 
854 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
855 }
856 
857 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
858 				       enum mem_cgroup_events_target target)
859 {
860 	unsigned long val, next;
861 
862 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
863 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
864 	/* from time_after() in jiffies.h */
865 	if ((long)(next - val) < 0) {
866 		switch (target) {
867 		case MEM_CGROUP_TARGET_THRESH:
868 			next = val + THRESHOLDS_EVENTS_TARGET;
869 			break;
870 		case MEM_CGROUP_TARGET_SOFTLIMIT:
871 			next = val + SOFTLIMIT_EVENTS_TARGET;
872 			break;
873 		default:
874 			break;
875 		}
876 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
877 		return true;
878 	}
879 	return false;
880 }
881 
882 /*
883  * Check events in order.
884  *
885  */
886 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
887 {
888 	/* threshold event is triggered in finer grain than soft limit */
889 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
890 						MEM_CGROUP_TARGET_THRESH))) {
891 		bool do_softlimit;
892 
893 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
894 						MEM_CGROUP_TARGET_SOFTLIMIT);
895 		mem_cgroup_threshold(memcg);
896 		if (unlikely(do_softlimit))
897 			mem_cgroup_update_tree(memcg, page);
898 	}
899 }
900 
901 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
902 {
903 	/*
904 	 * mm_update_next_owner() may clear mm->owner to NULL
905 	 * if it races with swapoff, page migration, etc.
906 	 * So this can be called with p == NULL.
907 	 */
908 	if (unlikely(!p))
909 		return NULL;
910 
911 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
912 }
913 EXPORT_SYMBOL(mem_cgroup_from_task);
914 
915 /**
916  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
917  * @mm: mm from which memcg should be extracted. It can be NULL.
918  *
919  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
920  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
921  * returned.
922  */
923 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
924 {
925 	struct mem_cgroup *memcg;
926 
927 	if (mem_cgroup_disabled())
928 		return NULL;
929 
930 	rcu_read_lock();
931 	do {
932 		/*
933 		 * Page cache insertions can happen withou an
934 		 * actual mm context, e.g. during disk probing
935 		 * on boot, loopback IO, acct() writes etc.
936 		 */
937 		if (unlikely(!mm))
938 			memcg = root_mem_cgroup;
939 		else {
940 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
941 			if (unlikely(!memcg))
942 				memcg = root_mem_cgroup;
943 		}
944 	} while (!css_tryget(&memcg->css));
945 	rcu_read_unlock();
946 	return memcg;
947 }
948 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
949 
950 /**
951  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
952  * @page: page from which memcg should be extracted.
953  *
954  * Obtain a reference on page->memcg and returns it if successful. Otherwise
955  * root_mem_cgroup is returned.
956  */
957 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
958 {
959 	struct mem_cgroup *memcg = page->mem_cgroup;
960 
961 	if (mem_cgroup_disabled())
962 		return NULL;
963 
964 	rcu_read_lock();
965 	if (!memcg || !css_tryget_online(&memcg->css))
966 		memcg = root_mem_cgroup;
967 	rcu_read_unlock();
968 	return memcg;
969 }
970 EXPORT_SYMBOL(get_mem_cgroup_from_page);
971 
972 /**
973  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
974  */
975 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
976 {
977 	if (unlikely(current->active_memcg)) {
978 		struct mem_cgroup *memcg = root_mem_cgroup;
979 
980 		rcu_read_lock();
981 		if (css_tryget_online(&current->active_memcg->css))
982 			memcg = current->active_memcg;
983 		rcu_read_unlock();
984 		return memcg;
985 	}
986 	return get_mem_cgroup_from_mm(current->mm);
987 }
988 
989 /**
990  * mem_cgroup_iter - iterate over memory cgroup hierarchy
991  * @root: hierarchy root
992  * @prev: previously returned memcg, NULL on first invocation
993  * @reclaim: cookie for shared reclaim walks, NULL for full walks
994  *
995  * Returns references to children of the hierarchy below @root, or
996  * @root itself, or %NULL after a full round-trip.
997  *
998  * Caller must pass the return value in @prev on subsequent
999  * invocations for reference counting, or use mem_cgroup_iter_break()
1000  * to cancel a hierarchy walk before the round-trip is complete.
1001  *
1002  * Reclaimers can specify a node and a priority level in @reclaim to
1003  * divide up the memcgs in the hierarchy among all concurrent
1004  * reclaimers operating on the same node and priority.
1005  */
1006 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1007 				   struct mem_cgroup *prev,
1008 				   struct mem_cgroup_reclaim_cookie *reclaim)
1009 {
1010 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1011 	struct cgroup_subsys_state *css = NULL;
1012 	struct mem_cgroup *memcg = NULL;
1013 	struct mem_cgroup *pos = NULL;
1014 
1015 	if (mem_cgroup_disabled())
1016 		return NULL;
1017 
1018 	if (!root)
1019 		root = root_mem_cgroup;
1020 
1021 	if (prev && !reclaim)
1022 		pos = prev;
1023 
1024 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1025 		if (prev)
1026 			goto out;
1027 		return root;
1028 	}
1029 
1030 	rcu_read_lock();
1031 
1032 	if (reclaim) {
1033 		struct mem_cgroup_per_node *mz;
1034 
1035 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1036 		iter = &mz->iter;
1037 
1038 		if (prev && reclaim->generation != iter->generation)
1039 			goto out_unlock;
1040 
1041 		while (1) {
1042 			pos = READ_ONCE(iter->position);
1043 			if (!pos || css_tryget(&pos->css))
1044 				break;
1045 			/*
1046 			 * css reference reached zero, so iter->position will
1047 			 * be cleared by ->css_released. However, we should not
1048 			 * rely on this happening soon, because ->css_released
1049 			 * is called from a work queue, and by busy-waiting we
1050 			 * might block it. So we clear iter->position right
1051 			 * away.
1052 			 */
1053 			(void)cmpxchg(&iter->position, pos, NULL);
1054 		}
1055 	}
1056 
1057 	if (pos)
1058 		css = &pos->css;
1059 
1060 	for (;;) {
1061 		css = css_next_descendant_pre(css, &root->css);
1062 		if (!css) {
1063 			/*
1064 			 * Reclaimers share the hierarchy walk, and a
1065 			 * new one might jump in right at the end of
1066 			 * the hierarchy - make sure they see at least
1067 			 * one group and restart from the beginning.
1068 			 */
1069 			if (!prev)
1070 				continue;
1071 			break;
1072 		}
1073 
1074 		/*
1075 		 * Verify the css and acquire a reference.  The root
1076 		 * is provided by the caller, so we know it's alive
1077 		 * and kicking, and don't take an extra reference.
1078 		 */
1079 		memcg = mem_cgroup_from_css(css);
1080 
1081 		if (css == &root->css)
1082 			break;
1083 
1084 		if (css_tryget(css))
1085 			break;
1086 
1087 		memcg = NULL;
1088 	}
1089 
1090 	if (reclaim) {
1091 		/*
1092 		 * The position could have already been updated by a competing
1093 		 * thread, so check that the value hasn't changed since we read
1094 		 * it to avoid reclaiming from the same cgroup twice.
1095 		 */
1096 		(void)cmpxchg(&iter->position, pos, memcg);
1097 
1098 		if (pos)
1099 			css_put(&pos->css);
1100 
1101 		if (!memcg)
1102 			iter->generation++;
1103 		else if (!prev)
1104 			reclaim->generation = iter->generation;
1105 	}
1106 
1107 out_unlock:
1108 	rcu_read_unlock();
1109 out:
1110 	if (prev && prev != root)
1111 		css_put(&prev->css);
1112 
1113 	return memcg;
1114 }
1115 
1116 /**
1117  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1118  * @root: hierarchy root
1119  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1120  */
1121 void mem_cgroup_iter_break(struct mem_cgroup *root,
1122 			   struct mem_cgroup *prev)
1123 {
1124 	if (!root)
1125 		root = root_mem_cgroup;
1126 	if (prev && prev != root)
1127 		css_put(&prev->css);
1128 }
1129 
1130 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1131 					struct mem_cgroup *dead_memcg)
1132 {
1133 	struct mem_cgroup_reclaim_iter *iter;
1134 	struct mem_cgroup_per_node *mz;
1135 	int nid;
1136 
1137 	for_each_node(nid) {
1138 		mz = mem_cgroup_nodeinfo(from, nid);
1139 		iter = &mz->iter;
1140 		cmpxchg(&iter->position, dead_memcg, NULL);
1141 	}
1142 }
1143 
1144 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1145 {
1146 	struct mem_cgroup *memcg = dead_memcg;
1147 	struct mem_cgroup *last;
1148 
1149 	do {
1150 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1151 		last = memcg;
1152 	} while ((memcg = parent_mem_cgroup(memcg)));
1153 
1154 	/*
1155 	 * When cgruop1 non-hierarchy mode is used,
1156 	 * parent_mem_cgroup() does not walk all the way up to the
1157 	 * cgroup root (root_mem_cgroup). So we have to handle
1158 	 * dead_memcg from cgroup root separately.
1159 	 */
1160 	if (last != root_mem_cgroup)
1161 		__invalidate_reclaim_iterators(root_mem_cgroup,
1162 						dead_memcg);
1163 }
1164 
1165 /**
1166  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1167  * @memcg: hierarchy root
1168  * @fn: function to call for each task
1169  * @arg: argument passed to @fn
1170  *
1171  * This function iterates over tasks attached to @memcg or to any of its
1172  * descendants and calls @fn for each task. If @fn returns a non-zero
1173  * value, the function breaks the iteration loop and returns the value.
1174  * Otherwise, it will iterate over all tasks and return 0.
1175  *
1176  * This function must not be called for the root memory cgroup.
1177  */
1178 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1179 			  int (*fn)(struct task_struct *, void *), void *arg)
1180 {
1181 	struct mem_cgroup *iter;
1182 	int ret = 0;
1183 
1184 	BUG_ON(memcg == root_mem_cgroup);
1185 
1186 	for_each_mem_cgroup_tree(iter, memcg) {
1187 		struct css_task_iter it;
1188 		struct task_struct *task;
1189 
1190 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1191 		while (!ret && (task = css_task_iter_next(&it)))
1192 			ret = fn(task, arg);
1193 		css_task_iter_end(&it);
1194 		if (ret) {
1195 			mem_cgroup_iter_break(memcg, iter);
1196 			break;
1197 		}
1198 	}
1199 	return ret;
1200 }
1201 
1202 /**
1203  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1204  * @page: the page
1205  * @pgdat: pgdat of the page
1206  *
1207  * This function is only safe when following the LRU page isolation
1208  * and putback protocol: the LRU lock must be held, and the page must
1209  * either be PageLRU() or the caller must have isolated/allocated it.
1210  */
1211 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1212 {
1213 	struct mem_cgroup_per_node *mz;
1214 	struct mem_cgroup *memcg;
1215 	struct lruvec *lruvec;
1216 
1217 	if (mem_cgroup_disabled()) {
1218 		lruvec = &pgdat->__lruvec;
1219 		goto out;
1220 	}
1221 
1222 	memcg = page->mem_cgroup;
1223 	/*
1224 	 * Swapcache readahead pages are added to the LRU - and
1225 	 * possibly migrated - before they are charged.
1226 	 */
1227 	if (!memcg)
1228 		memcg = root_mem_cgroup;
1229 
1230 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1231 	lruvec = &mz->lruvec;
1232 out:
1233 	/*
1234 	 * Since a node can be onlined after the mem_cgroup was created,
1235 	 * we have to be prepared to initialize lruvec->zone here;
1236 	 * and if offlined then reonlined, we need to reinitialize it.
1237 	 */
1238 	if (unlikely(lruvec->pgdat != pgdat))
1239 		lruvec->pgdat = pgdat;
1240 	return lruvec;
1241 }
1242 
1243 /**
1244  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1245  * @lruvec: mem_cgroup per zone lru vector
1246  * @lru: index of lru list the page is sitting on
1247  * @zid: zone id of the accounted pages
1248  * @nr_pages: positive when adding or negative when removing
1249  *
1250  * This function must be called under lru_lock, just before a page is added
1251  * to or just after a page is removed from an lru list (that ordering being
1252  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1253  */
1254 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1255 				int zid, int nr_pages)
1256 {
1257 	struct mem_cgroup_per_node *mz;
1258 	unsigned long *lru_size;
1259 	long size;
1260 
1261 	if (mem_cgroup_disabled())
1262 		return;
1263 
1264 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1265 	lru_size = &mz->lru_zone_size[zid][lru];
1266 
1267 	if (nr_pages < 0)
1268 		*lru_size += nr_pages;
1269 
1270 	size = *lru_size;
1271 	if (WARN_ONCE(size < 0,
1272 		"%s(%p, %d, %d): lru_size %ld\n",
1273 		__func__, lruvec, lru, nr_pages, size)) {
1274 		VM_BUG_ON(1);
1275 		*lru_size = 0;
1276 	}
1277 
1278 	if (nr_pages > 0)
1279 		*lru_size += nr_pages;
1280 }
1281 
1282 /**
1283  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1284  * @memcg: the memory cgroup
1285  *
1286  * Returns the maximum amount of memory @mem can be charged with, in
1287  * pages.
1288  */
1289 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1290 {
1291 	unsigned long margin = 0;
1292 	unsigned long count;
1293 	unsigned long limit;
1294 
1295 	count = page_counter_read(&memcg->memory);
1296 	limit = READ_ONCE(memcg->memory.max);
1297 	if (count < limit)
1298 		margin = limit - count;
1299 
1300 	if (do_memsw_account()) {
1301 		count = page_counter_read(&memcg->memsw);
1302 		limit = READ_ONCE(memcg->memsw.max);
1303 		if (count <= limit)
1304 			margin = min(margin, limit - count);
1305 		else
1306 			margin = 0;
1307 	}
1308 
1309 	return margin;
1310 }
1311 
1312 /*
1313  * A routine for checking "mem" is under move_account() or not.
1314  *
1315  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1316  * moving cgroups. This is for waiting at high-memory pressure
1317  * caused by "move".
1318  */
1319 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1320 {
1321 	struct mem_cgroup *from;
1322 	struct mem_cgroup *to;
1323 	bool ret = false;
1324 	/*
1325 	 * Unlike task_move routines, we access mc.to, mc.from not under
1326 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1327 	 */
1328 	spin_lock(&mc.lock);
1329 	from = mc.from;
1330 	to = mc.to;
1331 	if (!from)
1332 		goto unlock;
1333 
1334 	ret = mem_cgroup_is_descendant(from, memcg) ||
1335 		mem_cgroup_is_descendant(to, memcg);
1336 unlock:
1337 	spin_unlock(&mc.lock);
1338 	return ret;
1339 }
1340 
1341 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1342 {
1343 	if (mc.moving_task && current != mc.moving_task) {
1344 		if (mem_cgroup_under_move(memcg)) {
1345 			DEFINE_WAIT(wait);
1346 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1347 			/* moving charge context might have finished. */
1348 			if (mc.moving_task)
1349 				schedule();
1350 			finish_wait(&mc.waitq, &wait);
1351 			return true;
1352 		}
1353 	}
1354 	return false;
1355 }
1356 
1357 static char *memory_stat_format(struct mem_cgroup *memcg)
1358 {
1359 	struct seq_buf s;
1360 	int i;
1361 
1362 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1363 	if (!s.buffer)
1364 		return NULL;
1365 
1366 	/*
1367 	 * Provide statistics on the state of the memory subsystem as
1368 	 * well as cumulative event counters that show past behavior.
1369 	 *
1370 	 * This list is ordered following a combination of these gradients:
1371 	 * 1) generic big picture -> specifics and details
1372 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1373 	 *
1374 	 * Current memory state:
1375 	 */
1376 
1377 	seq_buf_printf(&s, "anon %llu\n",
1378 		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
1379 		       PAGE_SIZE);
1380 	seq_buf_printf(&s, "file %llu\n",
1381 		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1382 		       PAGE_SIZE);
1383 	seq_buf_printf(&s, "kernel_stack %llu\n",
1384 		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1385 		       1024);
1386 	seq_buf_printf(&s, "slab %llu\n",
1387 		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1388 			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1389 		       PAGE_SIZE);
1390 	seq_buf_printf(&s, "sock %llu\n",
1391 		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1392 		       PAGE_SIZE);
1393 
1394 	seq_buf_printf(&s, "shmem %llu\n",
1395 		       (u64)memcg_page_state(memcg, NR_SHMEM) *
1396 		       PAGE_SIZE);
1397 	seq_buf_printf(&s, "file_mapped %llu\n",
1398 		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1399 		       PAGE_SIZE);
1400 	seq_buf_printf(&s, "file_dirty %llu\n",
1401 		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1402 		       PAGE_SIZE);
1403 	seq_buf_printf(&s, "file_writeback %llu\n",
1404 		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1405 		       PAGE_SIZE);
1406 
1407 	/*
1408 	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1409 	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1410 	 * arse because it requires migrating the work out of rmap to a place
1411 	 * where the page->mem_cgroup is set up and stable.
1412 	 */
1413 	seq_buf_printf(&s, "anon_thp %llu\n",
1414 		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1415 		       PAGE_SIZE);
1416 
1417 	for (i = 0; i < NR_LRU_LISTS; i++)
1418 		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1419 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1420 			       PAGE_SIZE);
1421 
1422 	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1423 		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1424 		       PAGE_SIZE);
1425 	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1426 		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1427 		       PAGE_SIZE);
1428 
1429 	/* Accumulated memory events */
1430 
1431 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1432 		       memcg_events(memcg, PGFAULT));
1433 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1434 		       memcg_events(memcg, PGMAJFAULT));
1435 
1436 	seq_buf_printf(&s, "workingset_refault %lu\n",
1437 		       memcg_page_state(memcg, WORKINGSET_REFAULT));
1438 	seq_buf_printf(&s, "workingset_activate %lu\n",
1439 		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1440 	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1441 		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1442 
1443 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1444 		       memcg_events(memcg, PGREFILL));
1445 	seq_buf_printf(&s, "pgscan %lu\n",
1446 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1447 		       memcg_events(memcg, PGSCAN_DIRECT));
1448 	seq_buf_printf(&s, "pgsteal %lu\n",
1449 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1450 		       memcg_events(memcg, PGSTEAL_DIRECT));
1451 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1452 		       memcg_events(memcg, PGACTIVATE));
1453 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1454 		       memcg_events(memcg, PGDEACTIVATE));
1455 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1456 		       memcg_events(memcg, PGLAZYFREE));
1457 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1458 		       memcg_events(memcg, PGLAZYFREED));
1459 
1460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1461 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1462 		       memcg_events(memcg, THP_FAULT_ALLOC));
1463 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1464 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1466 
1467 	/* The above should easily fit into one page */
1468 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1469 
1470 	return s.buffer;
1471 }
1472 
1473 #define K(x) ((x) << (PAGE_SHIFT-10))
1474 /**
1475  * mem_cgroup_print_oom_context: Print OOM information relevant to
1476  * memory controller.
1477  * @memcg: The memory cgroup that went over limit
1478  * @p: Task that is going to be killed
1479  *
1480  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1481  * enabled
1482  */
1483 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1484 {
1485 	rcu_read_lock();
1486 
1487 	if (memcg) {
1488 		pr_cont(",oom_memcg=");
1489 		pr_cont_cgroup_path(memcg->css.cgroup);
1490 	} else
1491 		pr_cont(",global_oom");
1492 	if (p) {
1493 		pr_cont(",task_memcg=");
1494 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1495 	}
1496 	rcu_read_unlock();
1497 }
1498 
1499 /**
1500  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1501  * memory controller.
1502  * @memcg: The memory cgroup that went over limit
1503  */
1504 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1505 {
1506 	char *buf;
1507 
1508 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1509 		K((u64)page_counter_read(&memcg->memory)),
1510 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1511 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1512 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1513 			K((u64)page_counter_read(&memcg->swap)),
1514 			K((u64)memcg->swap.max), memcg->swap.failcnt);
1515 	else {
1516 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1517 			K((u64)page_counter_read(&memcg->memsw)),
1518 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1519 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1520 			K((u64)page_counter_read(&memcg->kmem)),
1521 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1522 	}
1523 
1524 	pr_info("Memory cgroup stats for ");
1525 	pr_cont_cgroup_path(memcg->css.cgroup);
1526 	pr_cont(":");
1527 	buf = memory_stat_format(memcg);
1528 	if (!buf)
1529 		return;
1530 	pr_info("%s", buf);
1531 	kfree(buf);
1532 }
1533 
1534 /*
1535  * Return the memory (and swap, if configured) limit for a memcg.
1536  */
1537 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1538 {
1539 	unsigned long max;
1540 
1541 	max = memcg->memory.max;
1542 	if (mem_cgroup_swappiness(memcg)) {
1543 		unsigned long memsw_max;
1544 		unsigned long swap_max;
1545 
1546 		memsw_max = memcg->memsw.max;
1547 		swap_max = memcg->swap.max;
1548 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1549 		max = min(max + swap_max, memsw_max);
1550 	}
1551 	return max;
1552 }
1553 
1554 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1555 {
1556 	return page_counter_read(&memcg->memory);
1557 }
1558 
1559 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1560 				     int order)
1561 {
1562 	struct oom_control oc = {
1563 		.zonelist = NULL,
1564 		.nodemask = NULL,
1565 		.memcg = memcg,
1566 		.gfp_mask = gfp_mask,
1567 		.order = order,
1568 	};
1569 	bool ret;
1570 
1571 	if (mutex_lock_killable(&oom_lock))
1572 		return true;
1573 	/*
1574 	 * A few threads which were not waiting at mutex_lock_killable() can
1575 	 * fail to bail out. Therefore, check again after holding oom_lock.
1576 	 */
1577 	ret = should_force_charge() || out_of_memory(&oc);
1578 	mutex_unlock(&oom_lock);
1579 	return ret;
1580 }
1581 
1582 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1583 				   pg_data_t *pgdat,
1584 				   gfp_t gfp_mask,
1585 				   unsigned long *total_scanned)
1586 {
1587 	struct mem_cgroup *victim = NULL;
1588 	int total = 0;
1589 	int loop = 0;
1590 	unsigned long excess;
1591 	unsigned long nr_scanned;
1592 	struct mem_cgroup_reclaim_cookie reclaim = {
1593 		.pgdat = pgdat,
1594 	};
1595 
1596 	excess = soft_limit_excess(root_memcg);
1597 
1598 	while (1) {
1599 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1600 		if (!victim) {
1601 			loop++;
1602 			if (loop >= 2) {
1603 				/*
1604 				 * If we have not been able to reclaim
1605 				 * anything, it might because there are
1606 				 * no reclaimable pages under this hierarchy
1607 				 */
1608 				if (!total)
1609 					break;
1610 				/*
1611 				 * We want to do more targeted reclaim.
1612 				 * excess >> 2 is not to excessive so as to
1613 				 * reclaim too much, nor too less that we keep
1614 				 * coming back to reclaim from this cgroup
1615 				 */
1616 				if (total >= (excess >> 2) ||
1617 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1618 					break;
1619 			}
1620 			continue;
1621 		}
1622 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1623 					pgdat, &nr_scanned);
1624 		*total_scanned += nr_scanned;
1625 		if (!soft_limit_excess(root_memcg))
1626 			break;
1627 	}
1628 	mem_cgroup_iter_break(root_memcg, victim);
1629 	return total;
1630 }
1631 
1632 #ifdef CONFIG_LOCKDEP
1633 static struct lockdep_map memcg_oom_lock_dep_map = {
1634 	.name = "memcg_oom_lock",
1635 };
1636 #endif
1637 
1638 static DEFINE_SPINLOCK(memcg_oom_lock);
1639 
1640 /*
1641  * Check OOM-Killer is already running under our hierarchy.
1642  * If someone is running, return false.
1643  */
1644 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1645 {
1646 	struct mem_cgroup *iter, *failed = NULL;
1647 
1648 	spin_lock(&memcg_oom_lock);
1649 
1650 	for_each_mem_cgroup_tree(iter, memcg) {
1651 		if (iter->oom_lock) {
1652 			/*
1653 			 * this subtree of our hierarchy is already locked
1654 			 * so we cannot give a lock.
1655 			 */
1656 			failed = iter;
1657 			mem_cgroup_iter_break(memcg, iter);
1658 			break;
1659 		} else
1660 			iter->oom_lock = true;
1661 	}
1662 
1663 	if (failed) {
1664 		/*
1665 		 * OK, we failed to lock the whole subtree so we have
1666 		 * to clean up what we set up to the failing subtree
1667 		 */
1668 		for_each_mem_cgroup_tree(iter, memcg) {
1669 			if (iter == failed) {
1670 				mem_cgroup_iter_break(memcg, iter);
1671 				break;
1672 			}
1673 			iter->oom_lock = false;
1674 		}
1675 	} else
1676 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1677 
1678 	spin_unlock(&memcg_oom_lock);
1679 
1680 	return !failed;
1681 }
1682 
1683 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1684 {
1685 	struct mem_cgroup *iter;
1686 
1687 	spin_lock(&memcg_oom_lock);
1688 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1689 	for_each_mem_cgroup_tree(iter, memcg)
1690 		iter->oom_lock = false;
1691 	spin_unlock(&memcg_oom_lock);
1692 }
1693 
1694 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1695 {
1696 	struct mem_cgroup *iter;
1697 
1698 	spin_lock(&memcg_oom_lock);
1699 	for_each_mem_cgroup_tree(iter, memcg)
1700 		iter->under_oom++;
1701 	spin_unlock(&memcg_oom_lock);
1702 }
1703 
1704 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1705 {
1706 	struct mem_cgroup *iter;
1707 
1708 	/*
1709 	 * When a new child is created while the hierarchy is under oom,
1710 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1711 	 */
1712 	spin_lock(&memcg_oom_lock);
1713 	for_each_mem_cgroup_tree(iter, memcg)
1714 		if (iter->under_oom > 0)
1715 			iter->under_oom--;
1716 	spin_unlock(&memcg_oom_lock);
1717 }
1718 
1719 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1720 
1721 struct oom_wait_info {
1722 	struct mem_cgroup *memcg;
1723 	wait_queue_entry_t	wait;
1724 };
1725 
1726 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1727 	unsigned mode, int sync, void *arg)
1728 {
1729 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1730 	struct mem_cgroup *oom_wait_memcg;
1731 	struct oom_wait_info *oom_wait_info;
1732 
1733 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1734 	oom_wait_memcg = oom_wait_info->memcg;
1735 
1736 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1737 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1738 		return 0;
1739 	return autoremove_wake_function(wait, mode, sync, arg);
1740 }
1741 
1742 static void memcg_oom_recover(struct mem_cgroup *memcg)
1743 {
1744 	/*
1745 	 * For the following lockless ->under_oom test, the only required
1746 	 * guarantee is that it must see the state asserted by an OOM when
1747 	 * this function is called as a result of userland actions
1748 	 * triggered by the notification of the OOM.  This is trivially
1749 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1750 	 * triggering notification.
1751 	 */
1752 	if (memcg && memcg->under_oom)
1753 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1754 }
1755 
1756 enum oom_status {
1757 	OOM_SUCCESS,
1758 	OOM_FAILED,
1759 	OOM_ASYNC,
1760 	OOM_SKIPPED
1761 };
1762 
1763 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1764 {
1765 	enum oom_status ret;
1766 	bool locked;
1767 
1768 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1769 		return OOM_SKIPPED;
1770 
1771 	memcg_memory_event(memcg, MEMCG_OOM);
1772 
1773 	/*
1774 	 * We are in the middle of the charge context here, so we
1775 	 * don't want to block when potentially sitting on a callstack
1776 	 * that holds all kinds of filesystem and mm locks.
1777 	 *
1778 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1779 	 * handling until the charge can succeed; remember the context and put
1780 	 * the task to sleep at the end of the page fault when all locks are
1781 	 * released.
1782 	 *
1783 	 * On the other hand, in-kernel OOM killer allows for an async victim
1784 	 * memory reclaim (oom_reaper) and that means that we are not solely
1785 	 * relying on the oom victim to make a forward progress and we can
1786 	 * invoke the oom killer here.
1787 	 *
1788 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1789 	 * victim and then we have to bail out from the charge path.
1790 	 */
1791 	if (memcg->oom_kill_disable) {
1792 		if (!current->in_user_fault)
1793 			return OOM_SKIPPED;
1794 		css_get(&memcg->css);
1795 		current->memcg_in_oom = memcg;
1796 		current->memcg_oom_gfp_mask = mask;
1797 		current->memcg_oom_order = order;
1798 
1799 		return OOM_ASYNC;
1800 	}
1801 
1802 	mem_cgroup_mark_under_oom(memcg);
1803 
1804 	locked = mem_cgroup_oom_trylock(memcg);
1805 
1806 	if (locked)
1807 		mem_cgroup_oom_notify(memcg);
1808 
1809 	mem_cgroup_unmark_under_oom(memcg);
1810 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1811 		ret = OOM_SUCCESS;
1812 	else
1813 		ret = OOM_FAILED;
1814 
1815 	if (locked)
1816 		mem_cgroup_oom_unlock(memcg);
1817 
1818 	return ret;
1819 }
1820 
1821 /**
1822  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1823  * @handle: actually kill/wait or just clean up the OOM state
1824  *
1825  * This has to be called at the end of a page fault if the memcg OOM
1826  * handler was enabled.
1827  *
1828  * Memcg supports userspace OOM handling where failed allocations must
1829  * sleep on a waitqueue until the userspace task resolves the
1830  * situation.  Sleeping directly in the charge context with all kinds
1831  * of locks held is not a good idea, instead we remember an OOM state
1832  * in the task and mem_cgroup_oom_synchronize() has to be called at
1833  * the end of the page fault to complete the OOM handling.
1834  *
1835  * Returns %true if an ongoing memcg OOM situation was detected and
1836  * completed, %false otherwise.
1837  */
1838 bool mem_cgroup_oom_synchronize(bool handle)
1839 {
1840 	struct mem_cgroup *memcg = current->memcg_in_oom;
1841 	struct oom_wait_info owait;
1842 	bool locked;
1843 
1844 	/* OOM is global, do not handle */
1845 	if (!memcg)
1846 		return false;
1847 
1848 	if (!handle)
1849 		goto cleanup;
1850 
1851 	owait.memcg = memcg;
1852 	owait.wait.flags = 0;
1853 	owait.wait.func = memcg_oom_wake_function;
1854 	owait.wait.private = current;
1855 	INIT_LIST_HEAD(&owait.wait.entry);
1856 
1857 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1858 	mem_cgroup_mark_under_oom(memcg);
1859 
1860 	locked = mem_cgroup_oom_trylock(memcg);
1861 
1862 	if (locked)
1863 		mem_cgroup_oom_notify(memcg);
1864 
1865 	if (locked && !memcg->oom_kill_disable) {
1866 		mem_cgroup_unmark_under_oom(memcg);
1867 		finish_wait(&memcg_oom_waitq, &owait.wait);
1868 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1869 					 current->memcg_oom_order);
1870 	} else {
1871 		schedule();
1872 		mem_cgroup_unmark_under_oom(memcg);
1873 		finish_wait(&memcg_oom_waitq, &owait.wait);
1874 	}
1875 
1876 	if (locked) {
1877 		mem_cgroup_oom_unlock(memcg);
1878 		/*
1879 		 * There is no guarantee that an OOM-lock contender
1880 		 * sees the wakeups triggered by the OOM kill
1881 		 * uncharges.  Wake any sleepers explicitely.
1882 		 */
1883 		memcg_oom_recover(memcg);
1884 	}
1885 cleanup:
1886 	current->memcg_in_oom = NULL;
1887 	css_put(&memcg->css);
1888 	return true;
1889 }
1890 
1891 /**
1892  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1893  * @victim: task to be killed by the OOM killer
1894  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1895  *
1896  * Returns a pointer to a memory cgroup, which has to be cleaned up
1897  * by killing all belonging OOM-killable tasks.
1898  *
1899  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1900  */
1901 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1902 					    struct mem_cgroup *oom_domain)
1903 {
1904 	struct mem_cgroup *oom_group = NULL;
1905 	struct mem_cgroup *memcg;
1906 
1907 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1908 		return NULL;
1909 
1910 	if (!oom_domain)
1911 		oom_domain = root_mem_cgroup;
1912 
1913 	rcu_read_lock();
1914 
1915 	memcg = mem_cgroup_from_task(victim);
1916 	if (memcg == root_mem_cgroup)
1917 		goto out;
1918 
1919 	/*
1920 	 * Traverse the memory cgroup hierarchy from the victim task's
1921 	 * cgroup up to the OOMing cgroup (or root) to find the
1922 	 * highest-level memory cgroup with oom.group set.
1923 	 */
1924 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1925 		if (memcg->oom_group)
1926 			oom_group = memcg;
1927 
1928 		if (memcg == oom_domain)
1929 			break;
1930 	}
1931 
1932 	if (oom_group)
1933 		css_get(&oom_group->css);
1934 out:
1935 	rcu_read_unlock();
1936 
1937 	return oom_group;
1938 }
1939 
1940 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1941 {
1942 	pr_info("Tasks in ");
1943 	pr_cont_cgroup_path(memcg->css.cgroup);
1944 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1945 }
1946 
1947 /**
1948  * lock_page_memcg - lock a page->mem_cgroup binding
1949  * @page: the page
1950  *
1951  * This function protects unlocked LRU pages from being moved to
1952  * another cgroup.
1953  *
1954  * It ensures lifetime of the returned memcg. Caller is responsible
1955  * for the lifetime of the page; __unlock_page_memcg() is available
1956  * when @page might get freed inside the locked section.
1957  */
1958 struct mem_cgroup *lock_page_memcg(struct page *page)
1959 {
1960 	struct mem_cgroup *memcg;
1961 	unsigned long flags;
1962 
1963 	/*
1964 	 * The RCU lock is held throughout the transaction.  The fast
1965 	 * path can get away without acquiring the memcg->move_lock
1966 	 * because page moving starts with an RCU grace period.
1967 	 *
1968 	 * The RCU lock also protects the memcg from being freed when
1969 	 * the page state that is going to change is the only thing
1970 	 * preventing the page itself from being freed. E.g. writeback
1971 	 * doesn't hold a page reference and relies on PG_writeback to
1972 	 * keep off truncation, migration and so forth.
1973          */
1974 	rcu_read_lock();
1975 
1976 	if (mem_cgroup_disabled())
1977 		return NULL;
1978 again:
1979 	memcg = page->mem_cgroup;
1980 	if (unlikely(!memcg))
1981 		return NULL;
1982 
1983 	if (atomic_read(&memcg->moving_account) <= 0)
1984 		return memcg;
1985 
1986 	spin_lock_irqsave(&memcg->move_lock, flags);
1987 	if (memcg != page->mem_cgroup) {
1988 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1989 		goto again;
1990 	}
1991 
1992 	/*
1993 	 * When charge migration first begins, we can have locked and
1994 	 * unlocked page stat updates happening concurrently.  Track
1995 	 * the task who has the lock for unlock_page_memcg().
1996 	 */
1997 	memcg->move_lock_task = current;
1998 	memcg->move_lock_flags = flags;
1999 
2000 	return memcg;
2001 }
2002 EXPORT_SYMBOL(lock_page_memcg);
2003 
2004 /**
2005  * __unlock_page_memcg - unlock and unpin a memcg
2006  * @memcg: the memcg
2007  *
2008  * Unlock and unpin a memcg returned by lock_page_memcg().
2009  */
2010 void __unlock_page_memcg(struct mem_cgroup *memcg)
2011 {
2012 	if (memcg && memcg->move_lock_task == current) {
2013 		unsigned long flags = memcg->move_lock_flags;
2014 
2015 		memcg->move_lock_task = NULL;
2016 		memcg->move_lock_flags = 0;
2017 
2018 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2019 	}
2020 
2021 	rcu_read_unlock();
2022 }
2023 
2024 /**
2025  * unlock_page_memcg - unlock a page->mem_cgroup binding
2026  * @page: the page
2027  */
2028 void unlock_page_memcg(struct page *page)
2029 {
2030 	__unlock_page_memcg(page->mem_cgroup);
2031 }
2032 EXPORT_SYMBOL(unlock_page_memcg);
2033 
2034 struct memcg_stock_pcp {
2035 	struct mem_cgroup *cached; /* this never be root cgroup */
2036 	unsigned int nr_pages;
2037 	struct work_struct work;
2038 	unsigned long flags;
2039 #define FLUSHING_CACHED_CHARGE	0
2040 };
2041 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2042 static DEFINE_MUTEX(percpu_charge_mutex);
2043 
2044 /**
2045  * consume_stock: Try to consume stocked charge on this cpu.
2046  * @memcg: memcg to consume from.
2047  * @nr_pages: how many pages to charge.
2048  *
2049  * The charges will only happen if @memcg matches the current cpu's memcg
2050  * stock, and at least @nr_pages are available in that stock.  Failure to
2051  * service an allocation will refill the stock.
2052  *
2053  * returns true if successful, false otherwise.
2054  */
2055 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2056 {
2057 	struct memcg_stock_pcp *stock;
2058 	unsigned long flags;
2059 	bool ret = false;
2060 
2061 	if (nr_pages > MEMCG_CHARGE_BATCH)
2062 		return ret;
2063 
2064 	local_irq_save(flags);
2065 
2066 	stock = this_cpu_ptr(&memcg_stock);
2067 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2068 		stock->nr_pages -= nr_pages;
2069 		ret = true;
2070 	}
2071 
2072 	local_irq_restore(flags);
2073 
2074 	return ret;
2075 }
2076 
2077 /*
2078  * Returns stocks cached in percpu and reset cached information.
2079  */
2080 static void drain_stock(struct memcg_stock_pcp *stock)
2081 {
2082 	struct mem_cgroup *old = stock->cached;
2083 
2084 	if (stock->nr_pages) {
2085 		page_counter_uncharge(&old->memory, stock->nr_pages);
2086 		if (do_memsw_account())
2087 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2088 		css_put_many(&old->css, stock->nr_pages);
2089 		stock->nr_pages = 0;
2090 	}
2091 	stock->cached = NULL;
2092 }
2093 
2094 static void drain_local_stock(struct work_struct *dummy)
2095 {
2096 	struct memcg_stock_pcp *stock;
2097 	unsigned long flags;
2098 
2099 	/*
2100 	 * The only protection from memory hotplug vs. drain_stock races is
2101 	 * that we always operate on local CPU stock here with IRQ disabled
2102 	 */
2103 	local_irq_save(flags);
2104 
2105 	stock = this_cpu_ptr(&memcg_stock);
2106 	drain_stock(stock);
2107 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2108 
2109 	local_irq_restore(flags);
2110 }
2111 
2112 /*
2113  * Cache charges(val) to local per_cpu area.
2114  * This will be consumed by consume_stock() function, later.
2115  */
2116 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2117 {
2118 	struct memcg_stock_pcp *stock;
2119 	unsigned long flags;
2120 
2121 	local_irq_save(flags);
2122 
2123 	stock = this_cpu_ptr(&memcg_stock);
2124 	if (stock->cached != memcg) { /* reset if necessary */
2125 		drain_stock(stock);
2126 		stock->cached = memcg;
2127 	}
2128 	stock->nr_pages += nr_pages;
2129 
2130 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2131 		drain_stock(stock);
2132 
2133 	local_irq_restore(flags);
2134 }
2135 
2136 /*
2137  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2138  * of the hierarchy under it.
2139  */
2140 static void drain_all_stock(struct mem_cgroup *root_memcg)
2141 {
2142 	int cpu, curcpu;
2143 
2144 	/* If someone's already draining, avoid adding running more workers. */
2145 	if (!mutex_trylock(&percpu_charge_mutex))
2146 		return;
2147 	/*
2148 	 * Notify other cpus that system-wide "drain" is running
2149 	 * We do not care about races with the cpu hotplug because cpu down
2150 	 * as well as workers from this path always operate on the local
2151 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2152 	 */
2153 	curcpu = get_cpu();
2154 	for_each_online_cpu(cpu) {
2155 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2156 		struct mem_cgroup *memcg;
2157 		bool flush = false;
2158 
2159 		rcu_read_lock();
2160 		memcg = stock->cached;
2161 		if (memcg && stock->nr_pages &&
2162 		    mem_cgroup_is_descendant(memcg, root_memcg))
2163 			flush = true;
2164 		rcu_read_unlock();
2165 
2166 		if (flush &&
2167 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2168 			if (cpu == curcpu)
2169 				drain_local_stock(&stock->work);
2170 			else
2171 				schedule_work_on(cpu, &stock->work);
2172 		}
2173 	}
2174 	put_cpu();
2175 	mutex_unlock(&percpu_charge_mutex);
2176 }
2177 
2178 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2179 {
2180 	struct memcg_stock_pcp *stock;
2181 	struct mem_cgroup *memcg, *mi;
2182 
2183 	stock = &per_cpu(memcg_stock, cpu);
2184 	drain_stock(stock);
2185 
2186 	for_each_mem_cgroup(memcg) {
2187 		int i;
2188 
2189 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2190 			int nid;
2191 			long x;
2192 
2193 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2194 			if (x)
2195 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2196 					atomic_long_add(x, &memcg->vmstats[i]);
2197 
2198 			if (i >= NR_VM_NODE_STAT_ITEMS)
2199 				continue;
2200 
2201 			for_each_node(nid) {
2202 				struct mem_cgroup_per_node *pn;
2203 
2204 				pn = mem_cgroup_nodeinfo(memcg, nid);
2205 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2206 				if (x)
2207 					do {
2208 						atomic_long_add(x, &pn->lruvec_stat[i]);
2209 					} while ((pn = parent_nodeinfo(pn, nid)));
2210 			}
2211 		}
2212 
2213 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2214 			long x;
2215 
2216 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2217 			if (x)
2218 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2219 					atomic_long_add(x, &memcg->vmevents[i]);
2220 		}
2221 	}
2222 
2223 	return 0;
2224 }
2225 
2226 static void reclaim_high(struct mem_cgroup *memcg,
2227 			 unsigned int nr_pages,
2228 			 gfp_t gfp_mask)
2229 {
2230 	do {
2231 		if (page_counter_read(&memcg->memory) <= memcg->high)
2232 			continue;
2233 		memcg_memory_event(memcg, MEMCG_HIGH);
2234 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2235 	} while ((memcg = parent_mem_cgroup(memcg)));
2236 }
2237 
2238 static void high_work_func(struct work_struct *work)
2239 {
2240 	struct mem_cgroup *memcg;
2241 
2242 	memcg = container_of(work, struct mem_cgroup, high_work);
2243 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2244 }
2245 
2246 /*
2247  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2248  * enough to still cause a significant slowdown in most cases, while still
2249  * allowing diagnostics and tracing to proceed without becoming stuck.
2250  */
2251 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2252 
2253 /*
2254  * When calculating the delay, we use these either side of the exponentiation to
2255  * maintain precision and scale to a reasonable number of jiffies (see the table
2256  * below.
2257  *
2258  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2259  *   overage ratio to a delay.
2260  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2261  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2262  *   to produce a reasonable delay curve.
2263  *
2264  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2265  * reasonable delay curve compared to precision-adjusted overage, not
2266  * penalising heavily at first, but still making sure that growth beyond the
2267  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2268  * example, with a high of 100 megabytes:
2269  *
2270  *  +-------+------------------------+
2271  *  | usage | time to allocate in ms |
2272  *  +-------+------------------------+
2273  *  | 100M  |                      0 |
2274  *  | 101M  |                      6 |
2275  *  | 102M  |                     25 |
2276  *  | 103M  |                     57 |
2277  *  | 104M  |                    102 |
2278  *  | 105M  |                    159 |
2279  *  | 106M  |                    230 |
2280  *  | 107M  |                    313 |
2281  *  | 108M  |                    409 |
2282  *  | 109M  |                    518 |
2283  *  | 110M  |                    639 |
2284  *  | 111M  |                    774 |
2285  *  | 112M  |                    921 |
2286  *  | 113M  |                   1081 |
2287  *  | 114M  |                   1254 |
2288  *  | 115M  |                   1439 |
2289  *  | 116M  |                   1638 |
2290  *  | 117M  |                   1849 |
2291  *  | 118M  |                   2000 |
2292  *  | 119M  |                   2000 |
2293  *  | 120M  |                   2000 |
2294  *  +-------+------------------------+
2295  */
2296  #define MEMCG_DELAY_PRECISION_SHIFT 20
2297  #define MEMCG_DELAY_SCALING_SHIFT 14
2298 
2299 /*
2300  * Scheduled by try_charge() to be executed from the userland return path
2301  * and reclaims memory over the high limit.
2302  */
2303 void mem_cgroup_handle_over_high(void)
2304 {
2305 	unsigned long usage, high, clamped_high;
2306 	unsigned long pflags;
2307 	unsigned long penalty_jiffies, overage;
2308 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2309 	struct mem_cgroup *memcg;
2310 
2311 	if (likely(!nr_pages))
2312 		return;
2313 
2314 	memcg = get_mem_cgroup_from_mm(current->mm);
2315 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2316 	current->memcg_nr_pages_over_high = 0;
2317 
2318 	/*
2319 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2320 	 * allocators proactively to slow down excessive growth.
2321 	 *
2322 	 * We use overage compared to memory.high to calculate the number of
2323 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2324 	 * fairly lenient on small overages, and increasingly harsh when the
2325 	 * memcg in question makes it clear that it has no intention of stopping
2326 	 * its crazy behaviour, so we exponentially increase the delay based on
2327 	 * overage amount.
2328 	 */
2329 
2330 	usage = page_counter_read(&memcg->memory);
2331 	high = READ_ONCE(memcg->high);
2332 
2333 	if (usage <= high)
2334 		goto out;
2335 
2336 	/*
2337 	 * Prevent division by 0 in overage calculation by acting as if it was a
2338 	 * threshold of 1 page
2339 	 */
2340 	clamped_high = max(high, 1UL);
2341 
2342 	overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT,
2343 			  clamped_high);
2344 
2345 	penalty_jiffies = ((u64)overage * overage * HZ)
2346 		>> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT);
2347 
2348 	/*
2349 	 * Factor in the task's own contribution to the overage, such that four
2350 	 * N-sized allocations are throttled approximately the same as one
2351 	 * 4N-sized allocation.
2352 	 *
2353 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2354 	 * larger the current charge patch is than that.
2355 	 */
2356 	penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2357 
2358 	/*
2359 	 * Clamp the max delay per usermode return so as to still keep the
2360 	 * application moving forwards and also permit diagnostics, albeit
2361 	 * extremely slowly.
2362 	 */
2363 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2364 
2365 	/*
2366 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2367 	 * that it's not even worth doing, in an attempt to be nice to those who
2368 	 * go only a small amount over their memory.high value and maybe haven't
2369 	 * been aggressively reclaimed enough yet.
2370 	 */
2371 	if (penalty_jiffies <= HZ / 100)
2372 		goto out;
2373 
2374 	/*
2375 	 * If we exit early, we're guaranteed to die (since
2376 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2377 	 * need to account for any ill-begotten jiffies to pay them off later.
2378 	 */
2379 	psi_memstall_enter(&pflags);
2380 	schedule_timeout_killable(penalty_jiffies);
2381 	psi_memstall_leave(&pflags);
2382 
2383 out:
2384 	css_put(&memcg->css);
2385 }
2386 
2387 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2388 		      unsigned int nr_pages)
2389 {
2390 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2391 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2392 	struct mem_cgroup *mem_over_limit;
2393 	struct page_counter *counter;
2394 	unsigned long nr_reclaimed;
2395 	bool may_swap = true;
2396 	bool drained = false;
2397 	enum oom_status oom_status;
2398 
2399 	if (mem_cgroup_is_root(memcg))
2400 		return 0;
2401 retry:
2402 	if (consume_stock(memcg, nr_pages))
2403 		return 0;
2404 
2405 	if (!do_memsw_account() ||
2406 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2407 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2408 			goto done_restock;
2409 		if (do_memsw_account())
2410 			page_counter_uncharge(&memcg->memsw, batch);
2411 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2412 	} else {
2413 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2414 		may_swap = false;
2415 	}
2416 
2417 	if (batch > nr_pages) {
2418 		batch = nr_pages;
2419 		goto retry;
2420 	}
2421 
2422 	/*
2423 	 * Memcg doesn't have a dedicated reserve for atomic
2424 	 * allocations. But like the global atomic pool, we need to
2425 	 * put the burden of reclaim on regular allocation requests
2426 	 * and let these go through as privileged allocations.
2427 	 */
2428 	if (gfp_mask & __GFP_ATOMIC)
2429 		goto force;
2430 
2431 	/*
2432 	 * Unlike in global OOM situations, memcg is not in a physical
2433 	 * memory shortage.  Allow dying and OOM-killed tasks to
2434 	 * bypass the last charges so that they can exit quickly and
2435 	 * free their memory.
2436 	 */
2437 	if (unlikely(should_force_charge()))
2438 		goto force;
2439 
2440 	/*
2441 	 * Prevent unbounded recursion when reclaim operations need to
2442 	 * allocate memory. This might exceed the limits temporarily,
2443 	 * but we prefer facilitating memory reclaim and getting back
2444 	 * under the limit over triggering OOM kills in these cases.
2445 	 */
2446 	if (unlikely(current->flags & PF_MEMALLOC))
2447 		goto force;
2448 
2449 	if (unlikely(task_in_memcg_oom(current)))
2450 		goto nomem;
2451 
2452 	if (!gfpflags_allow_blocking(gfp_mask))
2453 		goto nomem;
2454 
2455 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2456 
2457 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2458 						    gfp_mask, may_swap);
2459 
2460 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2461 		goto retry;
2462 
2463 	if (!drained) {
2464 		drain_all_stock(mem_over_limit);
2465 		drained = true;
2466 		goto retry;
2467 	}
2468 
2469 	if (gfp_mask & __GFP_NORETRY)
2470 		goto nomem;
2471 	/*
2472 	 * Even though the limit is exceeded at this point, reclaim
2473 	 * may have been able to free some pages.  Retry the charge
2474 	 * before killing the task.
2475 	 *
2476 	 * Only for regular pages, though: huge pages are rather
2477 	 * unlikely to succeed so close to the limit, and we fall back
2478 	 * to regular pages anyway in case of failure.
2479 	 */
2480 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2481 		goto retry;
2482 	/*
2483 	 * At task move, charge accounts can be doubly counted. So, it's
2484 	 * better to wait until the end of task_move if something is going on.
2485 	 */
2486 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2487 		goto retry;
2488 
2489 	if (nr_retries--)
2490 		goto retry;
2491 
2492 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2493 		goto nomem;
2494 
2495 	if (gfp_mask & __GFP_NOFAIL)
2496 		goto force;
2497 
2498 	if (fatal_signal_pending(current))
2499 		goto force;
2500 
2501 	/*
2502 	 * keep retrying as long as the memcg oom killer is able to make
2503 	 * a forward progress or bypass the charge if the oom killer
2504 	 * couldn't make any progress.
2505 	 */
2506 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2507 		       get_order(nr_pages * PAGE_SIZE));
2508 	switch (oom_status) {
2509 	case OOM_SUCCESS:
2510 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2511 		goto retry;
2512 	case OOM_FAILED:
2513 		goto force;
2514 	default:
2515 		goto nomem;
2516 	}
2517 nomem:
2518 	if (!(gfp_mask & __GFP_NOFAIL))
2519 		return -ENOMEM;
2520 force:
2521 	/*
2522 	 * The allocation either can't fail or will lead to more memory
2523 	 * being freed very soon.  Allow memory usage go over the limit
2524 	 * temporarily by force charging it.
2525 	 */
2526 	page_counter_charge(&memcg->memory, nr_pages);
2527 	if (do_memsw_account())
2528 		page_counter_charge(&memcg->memsw, nr_pages);
2529 	css_get_many(&memcg->css, nr_pages);
2530 
2531 	return 0;
2532 
2533 done_restock:
2534 	css_get_many(&memcg->css, batch);
2535 	if (batch > nr_pages)
2536 		refill_stock(memcg, batch - nr_pages);
2537 
2538 	/*
2539 	 * If the hierarchy is above the normal consumption range, schedule
2540 	 * reclaim on returning to userland.  We can perform reclaim here
2541 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2542 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2543 	 * not recorded as it most likely matches current's and won't
2544 	 * change in the meantime.  As high limit is checked again before
2545 	 * reclaim, the cost of mismatch is negligible.
2546 	 */
2547 	do {
2548 		if (page_counter_read(&memcg->memory) > memcg->high) {
2549 			/* Don't bother a random interrupted task */
2550 			if (in_interrupt()) {
2551 				schedule_work(&memcg->high_work);
2552 				break;
2553 			}
2554 			current->memcg_nr_pages_over_high += batch;
2555 			set_notify_resume(current);
2556 			break;
2557 		}
2558 	} while ((memcg = parent_mem_cgroup(memcg)));
2559 
2560 	return 0;
2561 }
2562 
2563 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2564 {
2565 	if (mem_cgroup_is_root(memcg))
2566 		return;
2567 
2568 	page_counter_uncharge(&memcg->memory, nr_pages);
2569 	if (do_memsw_account())
2570 		page_counter_uncharge(&memcg->memsw, nr_pages);
2571 
2572 	css_put_many(&memcg->css, nr_pages);
2573 }
2574 
2575 static void lock_page_lru(struct page *page, int *isolated)
2576 {
2577 	pg_data_t *pgdat = page_pgdat(page);
2578 
2579 	spin_lock_irq(&pgdat->lru_lock);
2580 	if (PageLRU(page)) {
2581 		struct lruvec *lruvec;
2582 
2583 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2584 		ClearPageLRU(page);
2585 		del_page_from_lru_list(page, lruvec, page_lru(page));
2586 		*isolated = 1;
2587 	} else
2588 		*isolated = 0;
2589 }
2590 
2591 static void unlock_page_lru(struct page *page, int isolated)
2592 {
2593 	pg_data_t *pgdat = page_pgdat(page);
2594 
2595 	if (isolated) {
2596 		struct lruvec *lruvec;
2597 
2598 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2599 		VM_BUG_ON_PAGE(PageLRU(page), page);
2600 		SetPageLRU(page);
2601 		add_page_to_lru_list(page, lruvec, page_lru(page));
2602 	}
2603 	spin_unlock_irq(&pgdat->lru_lock);
2604 }
2605 
2606 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2607 			  bool lrucare)
2608 {
2609 	int isolated;
2610 
2611 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2612 
2613 	/*
2614 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2615 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2616 	 */
2617 	if (lrucare)
2618 		lock_page_lru(page, &isolated);
2619 
2620 	/*
2621 	 * Nobody should be changing or seriously looking at
2622 	 * page->mem_cgroup at this point:
2623 	 *
2624 	 * - the page is uncharged
2625 	 *
2626 	 * - the page is off-LRU
2627 	 *
2628 	 * - an anonymous fault has exclusive page access, except for
2629 	 *   a locked page table
2630 	 *
2631 	 * - a page cache insertion, a swapin fault, or a migration
2632 	 *   have the page locked
2633 	 */
2634 	page->mem_cgroup = memcg;
2635 
2636 	if (lrucare)
2637 		unlock_page_lru(page, isolated);
2638 }
2639 
2640 #ifdef CONFIG_MEMCG_KMEM
2641 static int memcg_alloc_cache_id(void)
2642 {
2643 	int id, size;
2644 	int err;
2645 
2646 	id = ida_simple_get(&memcg_cache_ida,
2647 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2648 	if (id < 0)
2649 		return id;
2650 
2651 	if (id < memcg_nr_cache_ids)
2652 		return id;
2653 
2654 	/*
2655 	 * There's no space for the new id in memcg_caches arrays,
2656 	 * so we have to grow them.
2657 	 */
2658 	down_write(&memcg_cache_ids_sem);
2659 
2660 	size = 2 * (id + 1);
2661 	if (size < MEMCG_CACHES_MIN_SIZE)
2662 		size = MEMCG_CACHES_MIN_SIZE;
2663 	else if (size > MEMCG_CACHES_MAX_SIZE)
2664 		size = MEMCG_CACHES_MAX_SIZE;
2665 
2666 	err = memcg_update_all_caches(size);
2667 	if (!err)
2668 		err = memcg_update_all_list_lrus(size);
2669 	if (!err)
2670 		memcg_nr_cache_ids = size;
2671 
2672 	up_write(&memcg_cache_ids_sem);
2673 
2674 	if (err) {
2675 		ida_simple_remove(&memcg_cache_ida, id);
2676 		return err;
2677 	}
2678 	return id;
2679 }
2680 
2681 static void memcg_free_cache_id(int id)
2682 {
2683 	ida_simple_remove(&memcg_cache_ida, id);
2684 }
2685 
2686 struct memcg_kmem_cache_create_work {
2687 	struct mem_cgroup *memcg;
2688 	struct kmem_cache *cachep;
2689 	struct work_struct work;
2690 };
2691 
2692 static void memcg_kmem_cache_create_func(struct work_struct *w)
2693 {
2694 	struct memcg_kmem_cache_create_work *cw =
2695 		container_of(w, struct memcg_kmem_cache_create_work, work);
2696 	struct mem_cgroup *memcg = cw->memcg;
2697 	struct kmem_cache *cachep = cw->cachep;
2698 
2699 	memcg_create_kmem_cache(memcg, cachep);
2700 
2701 	css_put(&memcg->css);
2702 	kfree(cw);
2703 }
2704 
2705 /*
2706  * Enqueue the creation of a per-memcg kmem_cache.
2707  */
2708 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2709 					       struct kmem_cache *cachep)
2710 {
2711 	struct memcg_kmem_cache_create_work *cw;
2712 
2713 	if (!css_tryget_online(&memcg->css))
2714 		return;
2715 
2716 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2717 	if (!cw)
2718 		return;
2719 
2720 	cw->memcg = memcg;
2721 	cw->cachep = cachep;
2722 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2723 
2724 	queue_work(memcg_kmem_cache_wq, &cw->work);
2725 }
2726 
2727 static inline bool memcg_kmem_bypass(void)
2728 {
2729 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2730 		return true;
2731 	return false;
2732 }
2733 
2734 /**
2735  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2736  * @cachep: the original global kmem cache
2737  *
2738  * Return the kmem_cache we're supposed to use for a slab allocation.
2739  * We try to use the current memcg's version of the cache.
2740  *
2741  * If the cache does not exist yet, if we are the first user of it, we
2742  * create it asynchronously in a workqueue and let the current allocation
2743  * go through with the original cache.
2744  *
2745  * This function takes a reference to the cache it returns to assure it
2746  * won't get destroyed while we are working with it. Once the caller is
2747  * done with it, memcg_kmem_put_cache() must be called to release the
2748  * reference.
2749  */
2750 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2751 {
2752 	struct mem_cgroup *memcg;
2753 	struct kmem_cache *memcg_cachep;
2754 	struct memcg_cache_array *arr;
2755 	int kmemcg_id;
2756 
2757 	VM_BUG_ON(!is_root_cache(cachep));
2758 
2759 	if (memcg_kmem_bypass())
2760 		return cachep;
2761 
2762 	rcu_read_lock();
2763 
2764 	if (unlikely(current->active_memcg))
2765 		memcg = current->active_memcg;
2766 	else
2767 		memcg = mem_cgroup_from_task(current);
2768 
2769 	if (!memcg || memcg == root_mem_cgroup)
2770 		goto out_unlock;
2771 
2772 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2773 	if (kmemcg_id < 0)
2774 		goto out_unlock;
2775 
2776 	arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2777 
2778 	/*
2779 	 * Make sure we will access the up-to-date value. The code updating
2780 	 * memcg_caches issues a write barrier to match the data dependency
2781 	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2782 	 */
2783 	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2784 
2785 	/*
2786 	 * If we are in a safe context (can wait, and not in interrupt
2787 	 * context), we could be be predictable and return right away.
2788 	 * This would guarantee that the allocation being performed
2789 	 * already belongs in the new cache.
2790 	 *
2791 	 * However, there are some clashes that can arrive from locking.
2792 	 * For instance, because we acquire the slab_mutex while doing
2793 	 * memcg_create_kmem_cache, this means no further allocation
2794 	 * could happen with the slab_mutex held. So it's better to
2795 	 * defer everything.
2796 	 *
2797 	 * If the memcg is dying or memcg_cache is about to be released,
2798 	 * don't bother creating new kmem_caches. Because memcg_cachep
2799 	 * is ZEROed as the fist step of kmem offlining, we don't need
2800 	 * percpu_ref_tryget_live() here. css_tryget_online() check in
2801 	 * memcg_schedule_kmem_cache_create() will prevent us from
2802 	 * creation of a new kmem_cache.
2803 	 */
2804 	if (unlikely(!memcg_cachep))
2805 		memcg_schedule_kmem_cache_create(memcg, cachep);
2806 	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2807 		cachep = memcg_cachep;
2808 out_unlock:
2809 	rcu_read_unlock();
2810 	return cachep;
2811 }
2812 
2813 /**
2814  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2815  * @cachep: the cache returned by memcg_kmem_get_cache
2816  */
2817 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2818 {
2819 	if (!is_root_cache(cachep))
2820 		percpu_ref_put(&cachep->memcg_params.refcnt);
2821 }
2822 
2823 /**
2824  * __memcg_kmem_charge_memcg: charge a kmem page
2825  * @page: page to charge
2826  * @gfp: reclaim mode
2827  * @order: allocation order
2828  * @memcg: memory cgroup to charge
2829  *
2830  * Returns 0 on success, an error code on failure.
2831  */
2832 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2833 			    struct mem_cgroup *memcg)
2834 {
2835 	unsigned int nr_pages = 1 << order;
2836 	struct page_counter *counter;
2837 	int ret;
2838 
2839 	ret = try_charge(memcg, gfp, nr_pages);
2840 	if (ret)
2841 		return ret;
2842 
2843 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2844 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2845 
2846 		/*
2847 		 * Enforce __GFP_NOFAIL allocation because callers are not
2848 		 * prepared to see failures and likely do not have any failure
2849 		 * handling code.
2850 		 */
2851 		if (gfp & __GFP_NOFAIL) {
2852 			page_counter_charge(&memcg->kmem, nr_pages);
2853 			return 0;
2854 		}
2855 		cancel_charge(memcg, nr_pages);
2856 		return -ENOMEM;
2857 	}
2858 	return 0;
2859 }
2860 
2861 /**
2862  * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2863  * @page: page to charge
2864  * @gfp: reclaim mode
2865  * @order: allocation order
2866  *
2867  * Returns 0 on success, an error code on failure.
2868  */
2869 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2870 {
2871 	struct mem_cgroup *memcg;
2872 	int ret = 0;
2873 
2874 	if (memcg_kmem_bypass())
2875 		return 0;
2876 
2877 	memcg = get_mem_cgroup_from_current();
2878 	if (!mem_cgroup_is_root(memcg)) {
2879 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2880 		if (!ret) {
2881 			page->mem_cgroup = memcg;
2882 			__SetPageKmemcg(page);
2883 		}
2884 	}
2885 	css_put(&memcg->css);
2886 	return ret;
2887 }
2888 
2889 /**
2890  * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2891  * @memcg: memcg to uncharge
2892  * @nr_pages: number of pages to uncharge
2893  */
2894 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2895 				 unsigned int nr_pages)
2896 {
2897 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2898 		page_counter_uncharge(&memcg->kmem, nr_pages);
2899 
2900 	page_counter_uncharge(&memcg->memory, nr_pages);
2901 	if (do_memsw_account())
2902 		page_counter_uncharge(&memcg->memsw, nr_pages);
2903 }
2904 /**
2905  * __memcg_kmem_uncharge: uncharge a kmem page
2906  * @page: page to uncharge
2907  * @order: allocation order
2908  */
2909 void __memcg_kmem_uncharge(struct page *page, int order)
2910 {
2911 	struct mem_cgroup *memcg = page->mem_cgroup;
2912 	unsigned int nr_pages = 1 << order;
2913 
2914 	if (!memcg)
2915 		return;
2916 
2917 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2918 	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
2919 	page->mem_cgroup = NULL;
2920 
2921 	/* slab pages do not have PageKmemcg flag set */
2922 	if (PageKmemcg(page))
2923 		__ClearPageKmemcg(page);
2924 
2925 	css_put_many(&memcg->css, nr_pages);
2926 }
2927 #endif /* CONFIG_MEMCG_KMEM */
2928 
2929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2930 
2931 /*
2932  * Because tail pages are not marked as "used", set it. We're under
2933  * pgdat->lru_lock and migration entries setup in all page mappings.
2934  */
2935 void mem_cgroup_split_huge_fixup(struct page *head)
2936 {
2937 	int i;
2938 
2939 	if (mem_cgroup_disabled())
2940 		return;
2941 
2942 	for (i = 1; i < HPAGE_PMD_NR; i++)
2943 		head[i].mem_cgroup = head->mem_cgroup;
2944 
2945 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2946 }
2947 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2948 
2949 #ifdef CONFIG_MEMCG_SWAP
2950 /**
2951  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2952  * @entry: swap entry to be moved
2953  * @from:  mem_cgroup which the entry is moved from
2954  * @to:  mem_cgroup which the entry is moved to
2955  *
2956  * It succeeds only when the swap_cgroup's record for this entry is the same
2957  * as the mem_cgroup's id of @from.
2958  *
2959  * Returns 0 on success, -EINVAL on failure.
2960  *
2961  * The caller must have charged to @to, IOW, called page_counter_charge() about
2962  * both res and memsw, and called css_get().
2963  */
2964 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2965 				struct mem_cgroup *from, struct mem_cgroup *to)
2966 {
2967 	unsigned short old_id, new_id;
2968 
2969 	old_id = mem_cgroup_id(from);
2970 	new_id = mem_cgroup_id(to);
2971 
2972 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2973 		mod_memcg_state(from, MEMCG_SWAP, -1);
2974 		mod_memcg_state(to, MEMCG_SWAP, 1);
2975 		return 0;
2976 	}
2977 	return -EINVAL;
2978 }
2979 #else
2980 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2981 				struct mem_cgroup *from, struct mem_cgroup *to)
2982 {
2983 	return -EINVAL;
2984 }
2985 #endif
2986 
2987 static DEFINE_MUTEX(memcg_max_mutex);
2988 
2989 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2990 				 unsigned long max, bool memsw)
2991 {
2992 	bool enlarge = false;
2993 	bool drained = false;
2994 	int ret;
2995 	bool limits_invariant;
2996 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2997 
2998 	do {
2999 		if (signal_pending(current)) {
3000 			ret = -EINTR;
3001 			break;
3002 		}
3003 
3004 		mutex_lock(&memcg_max_mutex);
3005 		/*
3006 		 * Make sure that the new limit (memsw or memory limit) doesn't
3007 		 * break our basic invariant rule memory.max <= memsw.max.
3008 		 */
3009 		limits_invariant = memsw ? max >= memcg->memory.max :
3010 					   max <= memcg->memsw.max;
3011 		if (!limits_invariant) {
3012 			mutex_unlock(&memcg_max_mutex);
3013 			ret = -EINVAL;
3014 			break;
3015 		}
3016 		if (max > counter->max)
3017 			enlarge = true;
3018 		ret = page_counter_set_max(counter, max);
3019 		mutex_unlock(&memcg_max_mutex);
3020 
3021 		if (!ret)
3022 			break;
3023 
3024 		if (!drained) {
3025 			drain_all_stock(memcg);
3026 			drained = true;
3027 			continue;
3028 		}
3029 
3030 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3031 					GFP_KERNEL, !memsw)) {
3032 			ret = -EBUSY;
3033 			break;
3034 		}
3035 	} while (true);
3036 
3037 	if (!ret && enlarge)
3038 		memcg_oom_recover(memcg);
3039 
3040 	return ret;
3041 }
3042 
3043 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3044 					    gfp_t gfp_mask,
3045 					    unsigned long *total_scanned)
3046 {
3047 	unsigned long nr_reclaimed = 0;
3048 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3049 	unsigned long reclaimed;
3050 	int loop = 0;
3051 	struct mem_cgroup_tree_per_node *mctz;
3052 	unsigned long excess;
3053 	unsigned long nr_scanned;
3054 
3055 	if (order > 0)
3056 		return 0;
3057 
3058 	mctz = soft_limit_tree_node(pgdat->node_id);
3059 
3060 	/*
3061 	 * Do not even bother to check the largest node if the root
3062 	 * is empty. Do it lockless to prevent lock bouncing. Races
3063 	 * are acceptable as soft limit is best effort anyway.
3064 	 */
3065 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3066 		return 0;
3067 
3068 	/*
3069 	 * This loop can run a while, specially if mem_cgroup's continuously
3070 	 * keep exceeding their soft limit and putting the system under
3071 	 * pressure
3072 	 */
3073 	do {
3074 		if (next_mz)
3075 			mz = next_mz;
3076 		else
3077 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3078 		if (!mz)
3079 			break;
3080 
3081 		nr_scanned = 0;
3082 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3083 						    gfp_mask, &nr_scanned);
3084 		nr_reclaimed += reclaimed;
3085 		*total_scanned += nr_scanned;
3086 		spin_lock_irq(&mctz->lock);
3087 		__mem_cgroup_remove_exceeded(mz, mctz);
3088 
3089 		/*
3090 		 * If we failed to reclaim anything from this memory cgroup
3091 		 * it is time to move on to the next cgroup
3092 		 */
3093 		next_mz = NULL;
3094 		if (!reclaimed)
3095 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3096 
3097 		excess = soft_limit_excess(mz->memcg);
3098 		/*
3099 		 * One school of thought says that we should not add
3100 		 * back the node to the tree if reclaim returns 0.
3101 		 * But our reclaim could return 0, simply because due
3102 		 * to priority we are exposing a smaller subset of
3103 		 * memory to reclaim from. Consider this as a longer
3104 		 * term TODO.
3105 		 */
3106 		/* If excess == 0, no tree ops */
3107 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3108 		spin_unlock_irq(&mctz->lock);
3109 		css_put(&mz->memcg->css);
3110 		loop++;
3111 		/*
3112 		 * Could not reclaim anything and there are no more
3113 		 * mem cgroups to try or we seem to be looping without
3114 		 * reclaiming anything.
3115 		 */
3116 		if (!nr_reclaimed &&
3117 			(next_mz == NULL ||
3118 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3119 			break;
3120 	} while (!nr_reclaimed);
3121 	if (next_mz)
3122 		css_put(&next_mz->memcg->css);
3123 	return nr_reclaimed;
3124 }
3125 
3126 /*
3127  * Test whether @memcg has children, dead or alive.  Note that this
3128  * function doesn't care whether @memcg has use_hierarchy enabled and
3129  * returns %true if there are child csses according to the cgroup
3130  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3131  */
3132 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3133 {
3134 	bool ret;
3135 
3136 	rcu_read_lock();
3137 	ret = css_next_child(NULL, &memcg->css);
3138 	rcu_read_unlock();
3139 	return ret;
3140 }
3141 
3142 /*
3143  * Reclaims as many pages from the given memcg as possible.
3144  *
3145  * Caller is responsible for holding css reference for memcg.
3146  */
3147 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3148 {
3149 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3150 
3151 	/* we call try-to-free pages for make this cgroup empty */
3152 	lru_add_drain_all();
3153 
3154 	drain_all_stock(memcg);
3155 
3156 	/* try to free all pages in this cgroup */
3157 	while (nr_retries && page_counter_read(&memcg->memory)) {
3158 		int progress;
3159 
3160 		if (signal_pending(current))
3161 			return -EINTR;
3162 
3163 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3164 							GFP_KERNEL, true);
3165 		if (!progress) {
3166 			nr_retries--;
3167 			/* maybe some writeback is necessary */
3168 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3169 		}
3170 
3171 	}
3172 
3173 	return 0;
3174 }
3175 
3176 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3177 					    char *buf, size_t nbytes,
3178 					    loff_t off)
3179 {
3180 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3181 
3182 	if (mem_cgroup_is_root(memcg))
3183 		return -EINVAL;
3184 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3185 }
3186 
3187 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3188 				     struct cftype *cft)
3189 {
3190 	return mem_cgroup_from_css(css)->use_hierarchy;
3191 }
3192 
3193 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3194 				      struct cftype *cft, u64 val)
3195 {
3196 	int retval = 0;
3197 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3198 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3199 
3200 	if (memcg->use_hierarchy == val)
3201 		return 0;
3202 
3203 	/*
3204 	 * If parent's use_hierarchy is set, we can't make any modifications
3205 	 * in the child subtrees. If it is unset, then the change can
3206 	 * occur, provided the current cgroup has no children.
3207 	 *
3208 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3209 	 * set if there are no children.
3210 	 */
3211 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3212 				(val == 1 || val == 0)) {
3213 		if (!memcg_has_children(memcg))
3214 			memcg->use_hierarchy = val;
3215 		else
3216 			retval = -EBUSY;
3217 	} else
3218 		retval = -EINVAL;
3219 
3220 	return retval;
3221 }
3222 
3223 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3224 {
3225 	unsigned long val;
3226 
3227 	if (mem_cgroup_is_root(memcg)) {
3228 		val = memcg_page_state(memcg, MEMCG_CACHE) +
3229 			memcg_page_state(memcg, MEMCG_RSS);
3230 		if (swap)
3231 			val += memcg_page_state(memcg, MEMCG_SWAP);
3232 	} else {
3233 		if (!swap)
3234 			val = page_counter_read(&memcg->memory);
3235 		else
3236 			val = page_counter_read(&memcg->memsw);
3237 	}
3238 	return val;
3239 }
3240 
3241 enum {
3242 	RES_USAGE,
3243 	RES_LIMIT,
3244 	RES_MAX_USAGE,
3245 	RES_FAILCNT,
3246 	RES_SOFT_LIMIT,
3247 };
3248 
3249 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3250 			       struct cftype *cft)
3251 {
3252 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3253 	struct page_counter *counter;
3254 
3255 	switch (MEMFILE_TYPE(cft->private)) {
3256 	case _MEM:
3257 		counter = &memcg->memory;
3258 		break;
3259 	case _MEMSWAP:
3260 		counter = &memcg->memsw;
3261 		break;
3262 	case _KMEM:
3263 		counter = &memcg->kmem;
3264 		break;
3265 	case _TCP:
3266 		counter = &memcg->tcpmem;
3267 		break;
3268 	default:
3269 		BUG();
3270 	}
3271 
3272 	switch (MEMFILE_ATTR(cft->private)) {
3273 	case RES_USAGE:
3274 		if (counter == &memcg->memory)
3275 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3276 		if (counter == &memcg->memsw)
3277 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3278 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3279 	case RES_LIMIT:
3280 		return (u64)counter->max * PAGE_SIZE;
3281 	case RES_MAX_USAGE:
3282 		return (u64)counter->watermark * PAGE_SIZE;
3283 	case RES_FAILCNT:
3284 		return counter->failcnt;
3285 	case RES_SOFT_LIMIT:
3286 		return (u64)memcg->soft_limit * PAGE_SIZE;
3287 	default:
3288 		BUG();
3289 	}
3290 }
3291 
3292 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3293 {
3294 	unsigned long stat[MEMCG_NR_STAT] = {0};
3295 	struct mem_cgroup *mi;
3296 	int node, cpu, i;
3297 
3298 	for_each_online_cpu(cpu)
3299 		for (i = 0; i < MEMCG_NR_STAT; i++)
3300 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3301 
3302 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3303 		for (i = 0; i < MEMCG_NR_STAT; i++)
3304 			atomic_long_add(stat[i], &mi->vmstats[i]);
3305 
3306 	for_each_node(node) {
3307 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3308 		struct mem_cgroup_per_node *pi;
3309 
3310 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3311 			stat[i] = 0;
3312 
3313 		for_each_online_cpu(cpu)
3314 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3315 				stat[i] += per_cpu(
3316 					pn->lruvec_stat_cpu->count[i], cpu);
3317 
3318 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3319 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3320 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3321 	}
3322 }
3323 
3324 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3325 {
3326 	unsigned long events[NR_VM_EVENT_ITEMS];
3327 	struct mem_cgroup *mi;
3328 	int cpu, i;
3329 
3330 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3331 		events[i] = 0;
3332 
3333 	for_each_online_cpu(cpu)
3334 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3335 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3336 					     cpu);
3337 
3338 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3339 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3340 			atomic_long_add(events[i], &mi->vmevents[i]);
3341 }
3342 
3343 #ifdef CONFIG_MEMCG_KMEM
3344 static int memcg_online_kmem(struct mem_cgroup *memcg)
3345 {
3346 	int memcg_id;
3347 
3348 	if (cgroup_memory_nokmem)
3349 		return 0;
3350 
3351 	BUG_ON(memcg->kmemcg_id >= 0);
3352 	BUG_ON(memcg->kmem_state);
3353 
3354 	memcg_id = memcg_alloc_cache_id();
3355 	if (memcg_id < 0)
3356 		return memcg_id;
3357 
3358 	static_branch_inc(&memcg_kmem_enabled_key);
3359 	/*
3360 	 * A memory cgroup is considered kmem-online as soon as it gets
3361 	 * kmemcg_id. Setting the id after enabling static branching will
3362 	 * guarantee no one starts accounting before all call sites are
3363 	 * patched.
3364 	 */
3365 	memcg->kmemcg_id = memcg_id;
3366 	memcg->kmem_state = KMEM_ONLINE;
3367 	INIT_LIST_HEAD(&memcg->kmem_caches);
3368 
3369 	return 0;
3370 }
3371 
3372 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3373 {
3374 	struct cgroup_subsys_state *css;
3375 	struct mem_cgroup *parent, *child;
3376 	int kmemcg_id;
3377 
3378 	if (memcg->kmem_state != KMEM_ONLINE)
3379 		return;
3380 	/*
3381 	 * Clear the online state before clearing memcg_caches array
3382 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3383 	 * guarantees that no cache will be created for this cgroup
3384 	 * after we are done (see memcg_create_kmem_cache()).
3385 	 */
3386 	memcg->kmem_state = KMEM_ALLOCATED;
3387 
3388 	parent = parent_mem_cgroup(memcg);
3389 	if (!parent)
3390 		parent = root_mem_cgroup;
3391 
3392 	/*
3393 	 * Deactivate and reparent kmem_caches.
3394 	 */
3395 	memcg_deactivate_kmem_caches(memcg, parent);
3396 
3397 	kmemcg_id = memcg->kmemcg_id;
3398 	BUG_ON(kmemcg_id < 0);
3399 
3400 	/*
3401 	 * Change kmemcg_id of this cgroup and all its descendants to the
3402 	 * parent's id, and then move all entries from this cgroup's list_lrus
3403 	 * to ones of the parent. After we have finished, all list_lrus
3404 	 * corresponding to this cgroup are guaranteed to remain empty. The
3405 	 * ordering is imposed by list_lru_node->lock taken by
3406 	 * memcg_drain_all_list_lrus().
3407 	 */
3408 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3409 	css_for_each_descendant_pre(css, &memcg->css) {
3410 		child = mem_cgroup_from_css(css);
3411 		BUG_ON(child->kmemcg_id != kmemcg_id);
3412 		child->kmemcg_id = parent->kmemcg_id;
3413 		if (!memcg->use_hierarchy)
3414 			break;
3415 	}
3416 	rcu_read_unlock();
3417 
3418 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3419 
3420 	memcg_free_cache_id(kmemcg_id);
3421 }
3422 
3423 static void memcg_free_kmem(struct mem_cgroup *memcg)
3424 {
3425 	/* css_alloc() failed, offlining didn't happen */
3426 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3427 		memcg_offline_kmem(memcg);
3428 
3429 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3430 		WARN_ON(!list_empty(&memcg->kmem_caches));
3431 		static_branch_dec(&memcg_kmem_enabled_key);
3432 	}
3433 }
3434 #else
3435 static int memcg_online_kmem(struct mem_cgroup *memcg)
3436 {
3437 	return 0;
3438 }
3439 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3440 {
3441 }
3442 static void memcg_free_kmem(struct mem_cgroup *memcg)
3443 {
3444 }
3445 #endif /* CONFIG_MEMCG_KMEM */
3446 
3447 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3448 				 unsigned long max)
3449 {
3450 	int ret;
3451 
3452 	mutex_lock(&memcg_max_mutex);
3453 	ret = page_counter_set_max(&memcg->kmem, max);
3454 	mutex_unlock(&memcg_max_mutex);
3455 	return ret;
3456 }
3457 
3458 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3459 {
3460 	int ret;
3461 
3462 	mutex_lock(&memcg_max_mutex);
3463 
3464 	ret = page_counter_set_max(&memcg->tcpmem, max);
3465 	if (ret)
3466 		goto out;
3467 
3468 	if (!memcg->tcpmem_active) {
3469 		/*
3470 		 * The active flag needs to be written after the static_key
3471 		 * update. This is what guarantees that the socket activation
3472 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3473 		 * for details, and note that we don't mark any socket as
3474 		 * belonging to this memcg until that flag is up.
3475 		 *
3476 		 * We need to do this, because static_keys will span multiple
3477 		 * sites, but we can't control their order. If we mark a socket
3478 		 * as accounted, but the accounting functions are not patched in
3479 		 * yet, we'll lose accounting.
3480 		 *
3481 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3482 		 * because when this value change, the code to process it is not
3483 		 * patched in yet.
3484 		 */
3485 		static_branch_inc(&memcg_sockets_enabled_key);
3486 		memcg->tcpmem_active = true;
3487 	}
3488 out:
3489 	mutex_unlock(&memcg_max_mutex);
3490 	return ret;
3491 }
3492 
3493 /*
3494  * The user of this function is...
3495  * RES_LIMIT.
3496  */
3497 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3498 				char *buf, size_t nbytes, loff_t off)
3499 {
3500 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3501 	unsigned long nr_pages;
3502 	int ret;
3503 
3504 	buf = strstrip(buf);
3505 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3506 	if (ret)
3507 		return ret;
3508 
3509 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3510 	case RES_LIMIT:
3511 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3512 			ret = -EINVAL;
3513 			break;
3514 		}
3515 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3516 		case _MEM:
3517 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3518 			break;
3519 		case _MEMSWAP:
3520 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3521 			break;
3522 		case _KMEM:
3523 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3524 				     "Please report your usecase to linux-mm@kvack.org if you "
3525 				     "depend on this functionality.\n");
3526 			ret = memcg_update_kmem_max(memcg, nr_pages);
3527 			break;
3528 		case _TCP:
3529 			ret = memcg_update_tcp_max(memcg, nr_pages);
3530 			break;
3531 		}
3532 		break;
3533 	case RES_SOFT_LIMIT:
3534 		memcg->soft_limit = nr_pages;
3535 		ret = 0;
3536 		break;
3537 	}
3538 	return ret ?: nbytes;
3539 }
3540 
3541 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3542 				size_t nbytes, loff_t off)
3543 {
3544 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3545 	struct page_counter *counter;
3546 
3547 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3548 	case _MEM:
3549 		counter = &memcg->memory;
3550 		break;
3551 	case _MEMSWAP:
3552 		counter = &memcg->memsw;
3553 		break;
3554 	case _KMEM:
3555 		counter = &memcg->kmem;
3556 		break;
3557 	case _TCP:
3558 		counter = &memcg->tcpmem;
3559 		break;
3560 	default:
3561 		BUG();
3562 	}
3563 
3564 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3565 	case RES_MAX_USAGE:
3566 		page_counter_reset_watermark(counter);
3567 		break;
3568 	case RES_FAILCNT:
3569 		counter->failcnt = 0;
3570 		break;
3571 	default:
3572 		BUG();
3573 	}
3574 
3575 	return nbytes;
3576 }
3577 
3578 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3579 					struct cftype *cft)
3580 {
3581 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3582 }
3583 
3584 #ifdef CONFIG_MMU
3585 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3586 					struct cftype *cft, u64 val)
3587 {
3588 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3589 
3590 	if (val & ~MOVE_MASK)
3591 		return -EINVAL;
3592 
3593 	/*
3594 	 * No kind of locking is needed in here, because ->can_attach() will
3595 	 * check this value once in the beginning of the process, and then carry
3596 	 * on with stale data. This means that changes to this value will only
3597 	 * affect task migrations starting after the change.
3598 	 */
3599 	memcg->move_charge_at_immigrate = val;
3600 	return 0;
3601 }
3602 #else
3603 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3604 					struct cftype *cft, u64 val)
3605 {
3606 	return -ENOSYS;
3607 }
3608 #endif
3609 
3610 #ifdef CONFIG_NUMA
3611 
3612 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3613 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3614 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3615 
3616 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3617 					   int nid, unsigned int lru_mask)
3618 {
3619 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3620 	unsigned long nr = 0;
3621 	enum lru_list lru;
3622 
3623 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3624 
3625 	for_each_lru(lru) {
3626 		if (!(BIT(lru) & lru_mask))
3627 			continue;
3628 		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3629 	}
3630 	return nr;
3631 }
3632 
3633 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3634 					     unsigned int lru_mask)
3635 {
3636 	unsigned long nr = 0;
3637 	enum lru_list lru;
3638 
3639 	for_each_lru(lru) {
3640 		if (!(BIT(lru) & lru_mask))
3641 			continue;
3642 		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3643 	}
3644 	return nr;
3645 }
3646 
3647 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3648 {
3649 	struct numa_stat {
3650 		const char *name;
3651 		unsigned int lru_mask;
3652 	};
3653 
3654 	static const struct numa_stat stats[] = {
3655 		{ "total", LRU_ALL },
3656 		{ "file", LRU_ALL_FILE },
3657 		{ "anon", LRU_ALL_ANON },
3658 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3659 	};
3660 	const struct numa_stat *stat;
3661 	int nid;
3662 	unsigned long nr;
3663 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3664 
3665 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3666 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3667 		seq_printf(m, "%s=%lu", stat->name, nr);
3668 		for_each_node_state(nid, N_MEMORY) {
3669 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3670 							  stat->lru_mask);
3671 			seq_printf(m, " N%d=%lu", nid, nr);
3672 		}
3673 		seq_putc(m, '\n');
3674 	}
3675 
3676 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3677 		struct mem_cgroup *iter;
3678 
3679 		nr = 0;
3680 		for_each_mem_cgroup_tree(iter, memcg)
3681 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3682 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3683 		for_each_node_state(nid, N_MEMORY) {
3684 			nr = 0;
3685 			for_each_mem_cgroup_tree(iter, memcg)
3686 				nr += mem_cgroup_node_nr_lru_pages(
3687 					iter, nid, stat->lru_mask);
3688 			seq_printf(m, " N%d=%lu", nid, nr);
3689 		}
3690 		seq_putc(m, '\n');
3691 	}
3692 
3693 	return 0;
3694 }
3695 #endif /* CONFIG_NUMA */
3696 
3697 static const unsigned int memcg1_stats[] = {
3698 	MEMCG_CACHE,
3699 	MEMCG_RSS,
3700 	MEMCG_RSS_HUGE,
3701 	NR_SHMEM,
3702 	NR_FILE_MAPPED,
3703 	NR_FILE_DIRTY,
3704 	NR_WRITEBACK,
3705 	MEMCG_SWAP,
3706 };
3707 
3708 static const char *const memcg1_stat_names[] = {
3709 	"cache",
3710 	"rss",
3711 	"rss_huge",
3712 	"shmem",
3713 	"mapped_file",
3714 	"dirty",
3715 	"writeback",
3716 	"swap",
3717 };
3718 
3719 /* Universal VM events cgroup1 shows, original sort order */
3720 static const unsigned int memcg1_events[] = {
3721 	PGPGIN,
3722 	PGPGOUT,
3723 	PGFAULT,
3724 	PGMAJFAULT,
3725 };
3726 
3727 static int memcg_stat_show(struct seq_file *m, void *v)
3728 {
3729 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3730 	unsigned long memory, memsw;
3731 	struct mem_cgroup *mi;
3732 	unsigned int i;
3733 
3734 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3735 
3736 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3737 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3738 			continue;
3739 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3740 			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3741 			   PAGE_SIZE);
3742 	}
3743 
3744 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3745 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3746 			   memcg_events_local(memcg, memcg1_events[i]));
3747 
3748 	for (i = 0; i < NR_LRU_LISTS; i++)
3749 		seq_printf(m, "%s %lu\n", lru_list_name(i),
3750 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3751 			   PAGE_SIZE);
3752 
3753 	/* Hierarchical information */
3754 	memory = memsw = PAGE_COUNTER_MAX;
3755 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3756 		memory = min(memory, mi->memory.max);
3757 		memsw = min(memsw, mi->memsw.max);
3758 	}
3759 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3760 		   (u64)memory * PAGE_SIZE);
3761 	if (do_memsw_account())
3762 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3763 			   (u64)memsw * PAGE_SIZE);
3764 
3765 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3766 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3767 			continue;
3768 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3769 			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3770 			   PAGE_SIZE);
3771 	}
3772 
3773 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3774 		seq_printf(m, "total_%s %llu\n",
3775 			   vm_event_name(memcg1_events[i]),
3776 			   (u64)memcg_events(memcg, memcg1_events[i]));
3777 
3778 	for (i = 0; i < NR_LRU_LISTS; i++)
3779 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3780 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3781 			   PAGE_SIZE);
3782 
3783 #ifdef CONFIG_DEBUG_VM
3784 	{
3785 		pg_data_t *pgdat;
3786 		struct mem_cgroup_per_node *mz;
3787 		struct zone_reclaim_stat *rstat;
3788 		unsigned long recent_rotated[2] = {0, 0};
3789 		unsigned long recent_scanned[2] = {0, 0};
3790 
3791 		for_each_online_pgdat(pgdat) {
3792 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3793 			rstat = &mz->lruvec.reclaim_stat;
3794 
3795 			recent_rotated[0] += rstat->recent_rotated[0];
3796 			recent_rotated[1] += rstat->recent_rotated[1];
3797 			recent_scanned[0] += rstat->recent_scanned[0];
3798 			recent_scanned[1] += rstat->recent_scanned[1];
3799 		}
3800 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3801 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3802 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3803 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3804 	}
3805 #endif
3806 
3807 	return 0;
3808 }
3809 
3810 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3811 				      struct cftype *cft)
3812 {
3813 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3814 
3815 	return mem_cgroup_swappiness(memcg);
3816 }
3817 
3818 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3819 				       struct cftype *cft, u64 val)
3820 {
3821 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3822 
3823 	if (val > 100)
3824 		return -EINVAL;
3825 
3826 	if (css->parent)
3827 		memcg->swappiness = val;
3828 	else
3829 		vm_swappiness = val;
3830 
3831 	return 0;
3832 }
3833 
3834 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3835 {
3836 	struct mem_cgroup_threshold_ary *t;
3837 	unsigned long usage;
3838 	int i;
3839 
3840 	rcu_read_lock();
3841 	if (!swap)
3842 		t = rcu_dereference(memcg->thresholds.primary);
3843 	else
3844 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3845 
3846 	if (!t)
3847 		goto unlock;
3848 
3849 	usage = mem_cgroup_usage(memcg, swap);
3850 
3851 	/*
3852 	 * current_threshold points to threshold just below or equal to usage.
3853 	 * If it's not true, a threshold was crossed after last
3854 	 * call of __mem_cgroup_threshold().
3855 	 */
3856 	i = t->current_threshold;
3857 
3858 	/*
3859 	 * Iterate backward over array of thresholds starting from
3860 	 * current_threshold and check if a threshold is crossed.
3861 	 * If none of thresholds below usage is crossed, we read
3862 	 * only one element of the array here.
3863 	 */
3864 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3865 		eventfd_signal(t->entries[i].eventfd, 1);
3866 
3867 	/* i = current_threshold + 1 */
3868 	i++;
3869 
3870 	/*
3871 	 * Iterate forward over array of thresholds starting from
3872 	 * current_threshold+1 and check if a threshold is crossed.
3873 	 * If none of thresholds above usage is crossed, we read
3874 	 * only one element of the array here.
3875 	 */
3876 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3877 		eventfd_signal(t->entries[i].eventfd, 1);
3878 
3879 	/* Update current_threshold */
3880 	t->current_threshold = i - 1;
3881 unlock:
3882 	rcu_read_unlock();
3883 }
3884 
3885 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3886 {
3887 	while (memcg) {
3888 		__mem_cgroup_threshold(memcg, false);
3889 		if (do_memsw_account())
3890 			__mem_cgroup_threshold(memcg, true);
3891 
3892 		memcg = parent_mem_cgroup(memcg);
3893 	}
3894 }
3895 
3896 static int compare_thresholds(const void *a, const void *b)
3897 {
3898 	const struct mem_cgroup_threshold *_a = a;
3899 	const struct mem_cgroup_threshold *_b = b;
3900 
3901 	if (_a->threshold > _b->threshold)
3902 		return 1;
3903 
3904 	if (_a->threshold < _b->threshold)
3905 		return -1;
3906 
3907 	return 0;
3908 }
3909 
3910 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3911 {
3912 	struct mem_cgroup_eventfd_list *ev;
3913 
3914 	spin_lock(&memcg_oom_lock);
3915 
3916 	list_for_each_entry(ev, &memcg->oom_notify, list)
3917 		eventfd_signal(ev->eventfd, 1);
3918 
3919 	spin_unlock(&memcg_oom_lock);
3920 	return 0;
3921 }
3922 
3923 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3924 {
3925 	struct mem_cgroup *iter;
3926 
3927 	for_each_mem_cgroup_tree(iter, memcg)
3928 		mem_cgroup_oom_notify_cb(iter);
3929 }
3930 
3931 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3932 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3933 {
3934 	struct mem_cgroup_thresholds *thresholds;
3935 	struct mem_cgroup_threshold_ary *new;
3936 	unsigned long threshold;
3937 	unsigned long usage;
3938 	int i, size, ret;
3939 
3940 	ret = page_counter_memparse(args, "-1", &threshold);
3941 	if (ret)
3942 		return ret;
3943 
3944 	mutex_lock(&memcg->thresholds_lock);
3945 
3946 	if (type == _MEM) {
3947 		thresholds = &memcg->thresholds;
3948 		usage = mem_cgroup_usage(memcg, false);
3949 	} else if (type == _MEMSWAP) {
3950 		thresholds = &memcg->memsw_thresholds;
3951 		usage = mem_cgroup_usage(memcg, true);
3952 	} else
3953 		BUG();
3954 
3955 	/* Check if a threshold crossed before adding a new one */
3956 	if (thresholds->primary)
3957 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3958 
3959 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3960 
3961 	/* Allocate memory for new array of thresholds */
3962 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3963 	if (!new) {
3964 		ret = -ENOMEM;
3965 		goto unlock;
3966 	}
3967 	new->size = size;
3968 
3969 	/* Copy thresholds (if any) to new array */
3970 	if (thresholds->primary) {
3971 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3972 				sizeof(struct mem_cgroup_threshold));
3973 	}
3974 
3975 	/* Add new threshold */
3976 	new->entries[size - 1].eventfd = eventfd;
3977 	new->entries[size - 1].threshold = threshold;
3978 
3979 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3980 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3981 			compare_thresholds, NULL);
3982 
3983 	/* Find current threshold */
3984 	new->current_threshold = -1;
3985 	for (i = 0; i < size; i++) {
3986 		if (new->entries[i].threshold <= usage) {
3987 			/*
3988 			 * new->current_threshold will not be used until
3989 			 * rcu_assign_pointer(), so it's safe to increment
3990 			 * it here.
3991 			 */
3992 			++new->current_threshold;
3993 		} else
3994 			break;
3995 	}
3996 
3997 	/* Free old spare buffer and save old primary buffer as spare */
3998 	kfree(thresholds->spare);
3999 	thresholds->spare = thresholds->primary;
4000 
4001 	rcu_assign_pointer(thresholds->primary, new);
4002 
4003 	/* To be sure that nobody uses thresholds */
4004 	synchronize_rcu();
4005 
4006 unlock:
4007 	mutex_unlock(&memcg->thresholds_lock);
4008 
4009 	return ret;
4010 }
4011 
4012 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4013 	struct eventfd_ctx *eventfd, const char *args)
4014 {
4015 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4016 }
4017 
4018 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4019 	struct eventfd_ctx *eventfd, const char *args)
4020 {
4021 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4022 }
4023 
4024 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4025 	struct eventfd_ctx *eventfd, enum res_type type)
4026 {
4027 	struct mem_cgroup_thresholds *thresholds;
4028 	struct mem_cgroup_threshold_ary *new;
4029 	unsigned long usage;
4030 	int i, j, size;
4031 
4032 	mutex_lock(&memcg->thresholds_lock);
4033 
4034 	if (type == _MEM) {
4035 		thresholds = &memcg->thresholds;
4036 		usage = mem_cgroup_usage(memcg, false);
4037 	} else if (type == _MEMSWAP) {
4038 		thresholds = &memcg->memsw_thresholds;
4039 		usage = mem_cgroup_usage(memcg, true);
4040 	} else
4041 		BUG();
4042 
4043 	if (!thresholds->primary)
4044 		goto unlock;
4045 
4046 	/* Check if a threshold crossed before removing */
4047 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4048 
4049 	/* Calculate new number of threshold */
4050 	size = 0;
4051 	for (i = 0; i < thresholds->primary->size; i++) {
4052 		if (thresholds->primary->entries[i].eventfd != eventfd)
4053 			size++;
4054 	}
4055 
4056 	new = thresholds->spare;
4057 
4058 	/* Set thresholds array to NULL if we don't have thresholds */
4059 	if (!size) {
4060 		kfree(new);
4061 		new = NULL;
4062 		goto swap_buffers;
4063 	}
4064 
4065 	new->size = size;
4066 
4067 	/* Copy thresholds and find current threshold */
4068 	new->current_threshold = -1;
4069 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4070 		if (thresholds->primary->entries[i].eventfd == eventfd)
4071 			continue;
4072 
4073 		new->entries[j] = thresholds->primary->entries[i];
4074 		if (new->entries[j].threshold <= usage) {
4075 			/*
4076 			 * new->current_threshold will not be used
4077 			 * until rcu_assign_pointer(), so it's safe to increment
4078 			 * it here.
4079 			 */
4080 			++new->current_threshold;
4081 		}
4082 		j++;
4083 	}
4084 
4085 swap_buffers:
4086 	/* Swap primary and spare array */
4087 	thresholds->spare = thresholds->primary;
4088 
4089 	rcu_assign_pointer(thresholds->primary, new);
4090 
4091 	/* To be sure that nobody uses thresholds */
4092 	synchronize_rcu();
4093 
4094 	/* If all events are unregistered, free the spare array */
4095 	if (!new) {
4096 		kfree(thresholds->spare);
4097 		thresholds->spare = NULL;
4098 	}
4099 unlock:
4100 	mutex_unlock(&memcg->thresholds_lock);
4101 }
4102 
4103 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4104 	struct eventfd_ctx *eventfd)
4105 {
4106 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4107 }
4108 
4109 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4110 	struct eventfd_ctx *eventfd)
4111 {
4112 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4113 }
4114 
4115 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4116 	struct eventfd_ctx *eventfd, const char *args)
4117 {
4118 	struct mem_cgroup_eventfd_list *event;
4119 
4120 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4121 	if (!event)
4122 		return -ENOMEM;
4123 
4124 	spin_lock(&memcg_oom_lock);
4125 
4126 	event->eventfd = eventfd;
4127 	list_add(&event->list, &memcg->oom_notify);
4128 
4129 	/* already in OOM ? */
4130 	if (memcg->under_oom)
4131 		eventfd_signal(eventfd, 1);
4132 	spin_unlock(&memcg_oom_lock);
4133 
4134 	return 0;
4135 }
4136 
4137 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4138 	struct eventfd_ctx *eventfd)
4139 {
4140 	struct mem_cgroup_eventfd_list *ev, *tmp;
4141 
4142 	spin_lock(&memcg_oom_lock);
4143 
4144 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4145 		if (ev->eventfd == eventfd) {
4146 			list_del(&ev->list);
4147 			kfree(ev);
4148 		}
4149 	}
4150 
4151 	spin_unlock(&memcg_oom_lock);
4152 }
4153 
4154 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4155 {
4156 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4157 
4158 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4159 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4160 	seq_printf(sf, "oom_kill %lu\n",
4161 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4162 	return 0;
4163 }
4164 
4165 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4166 	struct cftype *cft, u64 val)
4167 {
4168 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4169 
4170 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4171 	if (!css->parent || !((val == 0) || (val == 1)))
4172 		return -EINVAL;
4173 
4174 	memcg->oom_kill_disable = val;
4175 	if (!val)
4176 		memcg_oom_recover(memcg);
4177 
4178 	return 0;
4179 }
4180 
4181 #ifdef CONFIG_CGROUP_WRITEBACK
4182 
4183 #include <trace/events/writeback.h>
4184 
4185 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4186 {
4187 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4188 }
4189 
4190 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4191 {
4192 	wb_domain_exit(&memcg->cgwb_domain);
4193 }
4194 
4195 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4196 {
4197 	wb_domain_size_changed(&memcg->cgwb_domain);
4198 }
4199 
4200 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4201 {
4202 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4203 
4204 	if (!memcg->css.parent)
4205 		return NULL;
4206 
4207 	return &memcg->cgwb_domain;
4208 }
4209 
4210 /*
4211  * idx can be of type enum memcg_stat_item or node_stat_item.
4212  * Keep in sync with memcg_exact_page().
4213  */
4214 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4215 {
4216 	long x = atomic_long_read(&memcg->vmstats[idx]);
4217 	int cpu;
4218 
4219 	for_each_online_cpu(cpu)
4220 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4221 	if (x < 0)
4222 		x = 0;
4223 	return x;
4224 }
4225 
4226 /**
4227  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4228  * @wb: bdi_writeback in question
4229  * @pfilepages: out parameter for number of file pages
4230  * @pheadroom: out parameter for number of allocatable pages according to memcg
4231  * @pdirty: out parameter for number of dirty pages
4232  * @pwriteback: out parameter for number of pages under writeback
4233  *
4234  * Determine the numbers of file, headroom, dirty, and writeback pages in
4235  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4236  * is a bit more involved.
4237  *
4238  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4239  * headroom is calculated as the lowest headroom of itself and the
4240  * ancestors.  Note that this doesn't consider the actual amount of
4241  * available memory in the system.  The caller should further cap
4242  * *@pheadroom accordingly.
4243  */
4244 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4245 			 unsigned long *pheadroom, unsigned long *pdirty,
4246 			 unsigned long *pwriteback)
4247 {
4248 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4249 	struct mem_cgroup *parent;
4250 
4251 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4252 
4253 	/* this should eventually include NR_UNSTABLE_NFS */
4254 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4255 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4256 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4257 	*pheadroom = PAGE_COUNTER_MAX;
4258 
4259 	while ((parent = parent_mem_cgroup(memcg))) {
4260 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4261 		unsigned long used = page_counter_read(&memcg->memory);
4262 
4263 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4264 		memcg = parent;
4265 	}
4266 }
4267 
4268 /*
4269  * Foreign dirty flushing
4270  *
4271  * There's an inherent mismatch between memcg and writeback.  The former
4272  * trackes ownership per-page while the latter per-inode.  This was a
4273  * deliberate design decision because honoring per-page ownership in the
4274  * writeback path is complicated, may lead to higher CPU and IO overheads
4275  * and deemed unnecessary given that write-sharing an inode across
4276  * different cgroups isn't a common use-case.
4277  *
4278  * Combined with inode majority-writer ownership switching, this works well
4279  * enough in most cases but there are some pathological cases.  For
4280  * example, let's say there are two cgroups A and B which keep writing to
4281  * different but confined parts of the same inode.  B owns the inode and
4282  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4283  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4284  * triggering background writeback.  A will be slowed down without a way to
4285  * make writeback of the dirty pages happen.
4286  *
4287  * Conditions like the above can lead to a cgroup getting repatedly and
4288  * severely throttled after making some progress after each
4289  * dirty_expire_interval while the underyling IO device is almost
4290  * completely idle.
4291  *
4292  * Solving this problem completely requires matching the ownership tracking
4293  * granularities between memcg and writeback in either direction.  However,
4294  * the more egregious behaviors can be avoided by simply remembering the
4295  * most recent foreign dirtying events and initiating remote flushes on
4296  * them when local writeback isn't enough to keep the memory clean enough.
4297  *
4298  * The following two functions implement such mechanism.  When a foreign
4299  * page - a page whose memcg and writeback ownerships don't match - is
4300  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4301  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4302  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4303  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4304  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4305  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4306  * limited to MEMCG_CGWB_FRN_CNT.
4307  *
4308  * The mechanism only remembers IDs and doesn't hold any object references.
4309  * As being wrong occasionally doesn't matter, updates and accesses to the
4310  * records are lockless and racy.
4311  */
4312 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4313 					     struct bdi_writeback *wb)
4314 {
4315 	struct mem_cgroup *memcg = page->mem_cgroup;
4316 	struct memcg_cgwb_frn *frn;
4317 	u64 now = get_jiffies_64();
4318 	u64 oldest_at = now;
4319 	int oldest = -1;
4320 	int i;
4321 
4322 	trace_track_foreign_dirty(page, wb);
4323 
4324 	/*
4325 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4326 	 * using it.  If not replace the oldest one which isn't being
4327 	 * written out.
4328 	 */
4329 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4330 		frn = &memcg->cgwb_frn[i];
4331 		if (frn->bdi_id == wb->bdi->id &&
4332 		    frn->memcg_id == wb->memcg_css->id)
4333 			break;
4334 		if (time_before64(frn->at, oldest_at) &&
4335 		    atomic_read(&frn->done.cnt) == 1) {
4336 			oldest = i;
4337 			oldest_at = frn->at;
4338 		}
4339 	}
4340 
4341 	if (i < MEMCG_CGWB_FRN_CNT) {
4342 		/*
4343 		 * Re-using an existing one.  Update timestamp lazily to
4344 		 * avoid making the cacheline hot.  We want them to be
4345 		 * reasonably up-to-date and significantly shorter than
4346 		 * dirty_expire_interval as that's what expires the record.
4347 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4348 		 */
4349 		unsigned long update_intv =
4350 			min_t(unsigned long, HZ,
4351 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4352 
4353 		if (time_before64(frn->at, now - update_intv))
4354 			frn->at = now;
4355 	} else if (oldest >= 0) {
4356 		/* replace the oldest free one */
4357 		frn = &memcg->cgwb_frn[oldest];
4358 		frn->bdi_id = wb->bdi->id;
4359 		frn->memcg_id = wb->memcg_css->id;
4360 		frn->at = now;
4361 	}
4362 }
4363 
4364 /* issue foreign writeback flushes for recorded foreign dirtying events */
4365 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4366 {
4367 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4368 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4369 	u64 now = jiffies_64;
4370 	int i;
4371 
4372 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4373 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4374 
4375 		/*
4376 		 * If the record is older than dirty_expire_interval,
4377 		 * writeback on it has already started.  No need to kick it
4378 		 * off again.  Also, don't start a new one if there's
4379 		 * already one in flight.
4380 		 */
4381 		if (time_after64(frn->at, now - intv) &&
4382 		    atomic_read(&frn->done.cnt) == 1) {
4383 			frn->at = 0;
4384 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4385 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4386 					       WB_REASON_FOREIGN_FLUSH,
4387 					       &frn->done);
4388 		}
4389 	}
4390 }
4391 
4392 #else	/* CONFIG_CGROUP_WRITEBACK */
4393 
4394 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4395 {
4396 	return 0;
4397 }
4398 
4399 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4400 {
4401 }
4402 
4403 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4404 {
4405 }
4406 
4407 #endif	/* CONFIG_CGROUP_WRITEBACK */
4408 
4409 /*
4410  * DO NOT USE IN NEW FILES.
4411  *
4412  * "cgroup.event_control" implementation.
4413  *
4414  * This is way over-engineered.  It tries to support fully configurable
4415  * events for each user.  Such level of flexibility is completely
4416  * unnecessary especially in the light of the planned unified hierarchy.
4417  *
4418  * Please deprecate this and replace with something simpler if at all
4419  * possible.
4420  */
4421 
4422 /*
4423  * Unregister event and free resources.
4424  *
4425  * Gets called from workqueue.
4426  */
4427 static void memcg_event_remove(struct work_struct *work)
4428 {
4429 	struct mem_cgroup_event *event =
4430 		container_of(work, struct mem_cgroup_event, remove);
4431 	struct mem_cgroup *memcg = event->memcg;
4432 
4433 	remove_wait_queue(event->wqh, &event->wait);
4434 
4435 	event->unregister_event(memcg, event->eventfd);
4436 
4437 	/* Notify userspace the event is going away. */
4438 	eventfd_signal(event->eventfd, 1);
4439 
4440 	eventfd_ctx_put(event->eventfd);
4441 	kfree(event);
4442 	css_put(&memcg->css);
4443 }
4444 
4445 /*
4446  * Gets called on EPOLLHUP on eventfd when user closes it.
4447  *
4448  * Called with wqh->lock held and interrupts disabled.
4449  */
4450 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4451 			    int sync, void *key)
4452 {
4453 	struct mem_cgroup_event *event =
4454 		container_of(wait, struct mem_cgroup_event, wait);
4455 	struct mem_cgroup *memcg = event->memcg;
4456 	__poll_t flags = key_to_poll(key);
4457 
4458 	if (flags & EPOLLHUP) {
4459 		/*
4460 		 * If the event has been detached at cgroup removal, we
4461 		 * can simply return knowing the other side will cleanup
4462 		 * for us.
4463 		 *
4464 		 * We can't race against event freeing since the other
4465 		 * side will require wqh->lock via remove_wait_queue(),
4466 		 * which we hold.
4467 		 */
4468 		spin_lock(&memcg->event_list_lock);
4469 		if (!list_empty(&event->list)) {
4470 			list_del_init(&event->list);
4471 			/*
4472 			 * We are in atomic context, but cgroup_event_remove()
4473 			 * may sleep, so we have to call it in workqueue.
4474 			 */
4475 			schedule_work(&event->remove);
4476 		}
4477 		spin_unlock(&memcg->event_list_lock);
4478 	}
4479 
4480 	return 0;
4481 }
4482 
4483 static void memcg_event_ptable_queue_proc(struct file *file,
4484 		wait_queue_head_t *wqh, poll_table *pt)
4485 {
4486 	struct mem_cgroup_event *event =
4487 		container_of(pt, struct mem_cgroup_event, pt);
4488 
4489 	event->wqh = wqh;
4490 	add_wait_queue(wqh, &event->wait);
4491 }
4492 
4493 /*
4494  * DO NOT USE IN NEW FILES.
4495  *
4496  * Parse input and register new cgroup event handler.
4497  *
4498  * Input must be in format '<event_fd> <control_fd> <args>'.
4499  * Interpretation of args is defined by control file implementation.
4500  */
4501 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4502 					 char *buf, size_t nbytes, loff_t off)
4503 {
4504 	struct cgroup_subsys_state *css = of_css(of);
4505 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4506 	struct mem_cgroup_event *event;
4507 	struct cgroup_subsys_state *cfile_css;
4508 	unsigned int efd, cfd;
4509 	struct fd efile;
4510 	struct fd cfile;
4511 	const char *name;
4512 	char *endp;
4513 	int ret;
4514 
4515 	buf = strstrip(buf);
4516 
4517 	efd = simple_strtoul(buf, &endp, 10);
4518 	if (*endp != ' ')
4519 		return -EINVAL;
4520 	buf = endp + 1;
4521 
4522 	cfd = simple_strtoul(buf, &endp, 10);
4523 	if ((*endp != ' ') && (*endp != '\0'))
4524 		return -EINVAL;
4525 	buf = endp + 1;
4526 
4527 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4528 	if (!event)
4529 		return -ENOMEM;
4530 
4531 	event->memcg = memcg;
4532 	INIT_LIST_HEAD(&event->list);
4533 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4534 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4535 	INIT_WORK(&event->remove, memcg_event_remove);
4536 
4537 	efile = fdget(efd);
4538 	if (!efile.file) {
4539 		ret = -EBADF;
4540 		goto out_kfree;
4541 	}
4542 
4543 	event->eventfd = eventfd_ctx_fileget(efile.file);
4544 	if (IS_ERR(event->eventfd)) {
4545 		ret = PTR_ERR(event->eventfd);
4546 		goto out_put_efile;
4547 	}
4548 
4549 	cfile = fdget(cfd);
4550 	if (!cfile.file) {
4551 		ret = -EBADF;
4552 		goto out_put_eventfd;
4553 	}
4554 
4555 	/* the process need read permission on control file */
4556 	/* AV: shouldn't we check that it's been opened for read instead? */
4557 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4558 	if (ret < 0)
4559 		goto out_put_cfile;
4560 
4561 	/*
4562 	 * Determine the event callbacks and set them in @event.  This used
4563 	 * to be done via struct cftype but cgroup core no longer knows
4564 	 * about these events.  The following is crude but the whole thing
4565 	 * is for compatibility anyway.
4566 	 *
4567 	 * DO NOT ADD NEW FILES.
4568 	 */
4569 	name = cfile.file->f_path.dentry->d_name.name;
4570 
4571 	if (!strcmp(name, "memory.usage_in_bytes")) {
4572 		event->register_event = mem_cgroup_usage_register_event;
4573 		event->unregister_event = mem_cgroup_usage_unregister_event;
4574 	} else if (!strcmp(name, "memory.oom_control")) {
4575 		event->register_event = mem_cgroup_oom_register_event;
4576 		event->unregister_event = mem_cgroup_oom_unregister_event;
4577 	} else if (!strcmp(name, "memory.pressure_level")) {
4578 		event->register_event = vmpressure_register_event;
4579 		event->unregister_event = vmpressure_unregister_event;
4580 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4581 		event->register_event = memsw_cgroup_usage_register_event;
4582 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4583 	} else {
4584 		ret = -EINVAL;
4585 		goto out_put_cfile;
4586 	}
4587 
4588 	/*
4589 	 * Verify @cfile should belong to @css.  Also, remaining events are
4590 	 * automatically removed on cgroup destruction but the removal is
4591 	 * asynchronous, so take an extra ref on @css.
4592 	 */
4593 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4594 					       &memory_cgrp_subsys);
4595 	ret = -EINVAL;
4596 	if (IS_ERR(cfile_css))
4597 		goto out_put_cfile;
4598 	if (cfile_css != css) {
4599 		css_put(cfile_css);
4600 		goto out_put_cfile;
4601 	}
4602 
4603 	ret = event->register_event(memcg, event->eventfd, buf);
4604 	if (ret)
4605 		goto out_put_css;
4606 
4607 	vfs_poll(efile.file, &event->pt);
4608 
4609 	spin_lock(&memcg->event_list_lock);
4610 	list_add(&event->list, &memcg->event_list);
4611 	spin_unlock(&memcg->event_list_lock);
4612 
4613 	fdput(cfile);
4614 	fdput(efile);
4615 
4616 	return nbytes;
4617 
4618 out_put_css:
4619 	css_put(css);
4620 out_put_cfile:
4621 	fdput(cfile);
4622 out_put_eventfd:
4623 	eventfd_ctx_put(event->eventfd);
4624 out_put_efile:
4625 	fdput(efile);
4626 out_kfree:
4627 	kfree(event);
4628 
4629 	return ret;
4630 }
4631 
4632 static struct cftype mem_cgroup_legacy_files[] = {
4633 	{
4634 		.name = "usage_in_bytes",
4635 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4636 		.read_u64 = mem_cgroup_read_u64,
4637 	},
4638 	{
4639 		.name = "max_usage_in_bytes",
4640 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4641 		.write = mem_cgroup_reset,
4642 		.read_u64 = mem_cgroup_read_u64,
4643 	},
4644 	{
4645 		.name = "limit_in_bytes",
4646 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4647 		.write = mem_cgroup_write,
4648 		.read_u64 = mem_cgroup_read_u64,
4649 	},
4650 	{
4651 		.name = "soft_limit_in_bytes",
4652 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4653 		.write = mem_cgroup_write,
4654 		.read_u64 = mem_cgroup_read_u64,
4655 	},
4656 	{
4657 		.name = "failcnt",
4658 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4659 		.write = mem_cgroup_reset,
4660 		.read_u64 = mem_cgroup_read_u64,
4661 	},
4662 	{
4663 		.name = "stat",
4664 		.seq_show = memcg_stat_show,
4665 	},
4666 	{
4667 		.name = "force_empty",
4668 		.write = mem_cgroup_force_empty_write,
4669 	},
4670 	{
4671 		.name = "use_hierarchy",
4672 		.write_u64 = mem_cgroup_hierarchy_write,
4673 		.read_u64 = mem_cgroup_hierarchy_read,
4674 	},
4675 	{
4676 		.name = "cgroup.event_control",		/* XXX: for compat */
4677 		.write = memcg_write_event_control,
4678 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4679 	},
4680 	{
4681 		.name = "swappiness",
4682 		.read_u64 = mem_cgroup_swappiness_read,
4683 		.write_u64 = mem_cgroup_swappiness_write,
4684 	},
4685 	{
4686 		.name = "move_charge_at_immigrate",
4687 		.read_u64 = mem_cgroup_move_charge_read,
4688 		.write_u64 = mem_cgroup_move_charge_write,
4689 	},
4690 	{
4691 		.name = "oom_control",
4692 		.seq_show = mem_cgroup_oom_control_read,
4693 		.write_u64 = mem_cgroup_oom_control_write,
4694 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4695 	},
4696 	{
4697 		.name = "pressure_level",
4698 	},
4699 #ifdef CONFIG_NUMA
4700 	{
4701 		.name = "numa_stat",
4702 		.seq_show = memcg_numa_stat_show,
4703 	},
4704 #endif
4705 	{
4706 		.name = "kmem.limit_in_bytes",
4707 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4708 		.write = mem_cgroup_write,
4709 		.read_u64 = mem_cgroup_read_u64,
4710 	},
4711 	{
4712 		.name = "kmem.usage_in_bytes",
4713 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4714 		.read_u64 = mem_cgroup_read_u64,
4715 	},
4716 	{
4717 		.name = "kmem.failcnt",
4718 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4719 		.write = mem_cgroup_reset,
4720 		.read_u64 = mem_cgroup_read_u64,
4721 	},
4722 	{
4723 		.name = "kmem.max_usage_in_bytes",
4724 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4725 		.write = mem_cgroup_reset,
4726 		.read_u64 = mem_cgroup_read_u64,
4727 	},
4728 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4729 	{
4730 		.name = "kmem.slabinfo",
4731 		.seq_start = memcg_slab_start,
4732 		.seq_next = memcg_slab_next,
4733 		.seq_stop = memcg_slab_stop,
4734 		.seq_show = memcg_slab_show,
4735 	},
4736 #endif
4737 	{
4738 		.name = "kmem.tcp.limit_in_bytes",
4739 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4740 		.write = mem_cgroup_write,
4741 		.read_u64 = mem_cgroup_read_u64,
4742 	},
4743 	{
4744 		.name = "kmem.tcp.usage_in_bytes",
4745 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4746 		.read_u64 = mem_cgroup_read_u64,
4747 	},
4748 	{
4749 		.name = "kmem.tcp.failcnt",
4750 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4751 		.write = mem_cgroup_reset,
4752 		.read_u64 = mem_cgroup_read_u64,
4753 	},
4754 	{
4755 		.name = "kmem.tcp.max_usage_in_bytes",
4756 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4757 		.write = mem_cgroup_reset,
4758 		.read_u64 = mem_cgroup_read_u64,
4759 	},
4760 	{ },	/* terminate */
4761 };
4762 
4763 /*
4764  * Private memory cgroup IDR
4765  *
4766  * Swap-out records and page cache shadow entries need to store memcg
4767  * references in constrained space, so we maintain an ID space that is
4768  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4769  * memory-controlled cgroups to 64k.
4770  *
4771  * However, there usually are many references to the oflline CSS after
4772  * the cgroup has been destroyed, such as page cache or reclaimable
4773  * slab objects, that don't need to hang on to the ID. We want to keep
4774  * those dead CSS from occupying IDs, or we might quickly exhaust the
4775  * relatively small ID space and prevent the creation of new cgroups
4776  * even when there are much fewer than 64k cgroups - possibly none.
4777  *
4778  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4779  * be freed and recycled when it's no longer needed, which is usually
4780  * when the CSS is offlined.
4781  *
4782  * The only exception to that are records of swapped out tmpfs/shmem
4783  * pages that need to be attributed to live ancestors on swapin. But
4784  * those references are manageable from userspace.
4785  */
4786 
4787 static DEFINE_IDR(mem_cgroup_idr);
4788 
4789 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4790 {
4791 	if (memcg->id.id > 0) {
4792 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4793 		memcg->id.id = 0;
4794 	}
4795 }
4796 
4797 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4798 {
4799 	refcount_add(n, &memcg->id.ref);
4800 }
4801 
4802 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4803 {
4804 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4805 		mem_cgroup_id_remove(memcg);
4806 
4807 		/* Memcg ID pins CSS */
4808 		css_put(&memcg->css);
4809 	}
4810 }
4811 
4812 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4813 {
4814 	mem_cgroup_id_put_many(memcg, 1);
4815 }
4816 
4817 /**
4818  * mem_cgroup_from_id - look up a memcg from a memcg id
4819  * @id: the memcg id to look up
4820  *
4821  * Caller must hold rcu_read_lock().
4822  */
4823 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4824 {
4825 	WARN_ON_ONCE(!rcu_read_lock_held());
4826 	return idr_find(&mem_cgroup_idr, id);
4827 }
4828 
4829 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4830 {
4831 	struct mem_cgroup_per_node *pn;
4832 	int tmp = node;
4833 	/*
4834 	 * This routine is called against possible nodes.
4835 	 * But it's BUG to call kmalloc() against offline node.
4836 	 *
4837 	 * TODO: this routine can waste much memory for nodes which will
4838 	 *       never be onlined. It's better to use memory hotplug callback
4839 	 *       function.
4840 	 */
4841 	if (!node_state(node, N_NORMAL_MEMORY))
4842 		tmp = -1;
4843 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4844 	if (!pn)
4845 		return 1;
4846 
4847 	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4848 	if (!pn->lruvec_stat_local) {
4849 		kfree(pn);
4850 		return 1;
4851 	}
4852 
4853 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4854 	if (!pn->lruvec_stat_cpu) {
4855 		free_percpu(pn->lruvec_stat_local);
4856 		kfree(pn);
4857 		return 1;
4858 	}
4859 
4860 	lruvec_init(&pn->lruvec);
4861 	pn->usage_in_excess = 0;
4862 	pn->on_tree = false;
4863 	pn->memcg = memcg;
4864 
4865 	memcg->nodeinfo[node] = pn;
4866 	return 0;
4867 }
4868 
4869 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4870 {
4871 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4872 
4873 	if (!pn)
4874 		return;
4875 
4876 	free_percpu(pn->lruvec_stat_cpu);
4877 	free_percpu(pn->lruvec_stat_local);
4878 	kfree(pn);
4879 }
4880 
4881 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4882 {
4883 	int node;
4884 
4885 	for_each_node(node)
4886 		free_mem_cgroup_per_node_info(memcg, node);
4887 	free_percpu(memcg->vmstats_percpu);
4888 	free_percpu(memcg->vmstats_local);
4889 	kfree(memcg);
4890 }
4891 
4892 static void mem_cgroup_free(struct mem_cgroup *memcg)
4893 {
4894 	memcg_wb_domain_exit(memcg);
4895 	/*
4896 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
4897 	 * on parent's and all ancestor levels.
4898 	 */
4899 	memcg_flush_percpu_vmstats(memcg);
4900 	memcg_flush_percpu_vmevents(memcg);
4901 	__mem_cgroup_free(memcg);
4902 }
4903 
4904 static struct mem_cgroup *mem_cgroup_alloc(void)
4905 {
4906 	struct mem_cgroup *memcg;
4907 	unsigned int size;
4908 	int node;
4909 	int __maybe_unused i;
4910 
4911 	size = sizeof(struct mem_cgroup);
4912 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4913 
4914 	memcg = kzalloc(size, GFP_KERNEL);
4915 	if (!memcg)
4916 		return NULL;
4917 
4918 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4919 				 1, MEM_CGROUP_ID_MAX,
4920 				 GFP_KERNEL);
4921 	if (memcg->id.id < 0)
4922 		goto fail;
4923 
4924 	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4925 	if (!memcg->vmstats_local)
4926 		goto fail;
4927 
4928 	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4929 	if (!memcg->vmstats_percpu)
4930 		goto fail;
4931 
4932 	for_each_node(node)
4933 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4934 			goto fail;
4935 
4936 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4937 		goto fail;
4938 
4939 	INIT_WORK(&memcg->high_work, high_work_func);
4940 	INIT_LIST_HEAD(&memcg->oom_notify);
4941 	mutex_init(&memcg->thresholds_lock);
4942 	spin_lock_init(&memcg->move_lock);
4943 	vmpressure_init(&memcg->vmpressure);
4944 	INIT_LIST_HEAD(&memcg->event_list);
4945 	spin_lock_init(&memcg->event_list_lock);
4946 	memcg->socket_pressure = jiffies;
4947 #ifdef CONFIG_MEMCG_KMEM
4948 	memcg->kmemcg_id = -1;
4949 #endif
4950 #ifdef CONFIG_CGROUP_WRITEBACK
4951 	INIT_LIST_HEAD(&memcg->cgwb_list);
4952 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
4953 		memcg->cgwb_frn[i].done =
4954 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
4955 #endif
4956 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4957 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
4958 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
4959 	memcg->deferred_split_queue.split_queue_len = 0;
4960 #endif
4961 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4962 	return memcg;
4963 fail:
4964 	mem_cgroup_id_remove(memcg);
4965 	__mem_cgroup_free(memcg);
4966 	return NULL;
4967 }
4968 
4969 static struct cgroup_subsys_state * __ref
4970 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4971 {
4972 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4973 	struct mem_cgroup *memcg;
4974 	long error = -ENOMEM;
4975 
4976 	memcg = mem_cgroup_alloc();
4977 	if (!memcg)
4978 		return ERR_PTR(error);
4979 
4980 	memcg->high = PAGE_COUNTER_MAX;
4981 	memcg->soft_limit = PAGE_COUNTER_MAX;
4982 	if (parent) {
4983 		memcg->swappiness = mem_cgroup_swappiness(parent);
4984 		memcg->oom_kill_disable = parent->oom_kill_disable;
4985 	}
4986 	if (parent && parent->use_hierarchy) {
4987 		memcg->use_hierarchy = true;
4988 		page_counter_init(&memcg->memory, &parent->memory);
4989 		page_counter_init(&memcg->swap, &parent->swap);
4990 		page_counter_init(&memcg->memsw, &parent->memsw);
4991 		page_counter_init(&memcg->kmem, &parent->kmem);
4992 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4993 	} else {
4994 		page_counter_init(&memcg->memory, NULL);
4995 		page_counter_init(&memcg->swap, NULL);
4996 		page_counter_init(&memcg->memsw, NULL);
4997 		page_counter_init(&memcg->kmem, NULL);
4998 		page_counter_init(&memcg->tcpmem, NULL);
4999 		/*
5000 		 * Deeper hierachy with use_hierarchy == false doesn't make
5001 		 * much sense so let cgroup subsystem know about this
5002 		 * unfortunate state in our controller.
5003 		 */
5004 		if (parent != root_mem_cgroup)
5005 			memory_cgrp_subsys.broken_hierarchy = true;
5006 	}
5007 
5008 	/* The following stuff does not apply to the root */
5009 	if (!parent) {
5010 #ifdef CONFIG_MEMCG_KMEM
5011 		INIT_LIST_HEAD(&memcg->kmem_caches);
5012 #endif
5013 		root_mem_cgroup = memcg;
5014 		return &memcg->css;
5015 	}
5016 
5017 	error = memcg_online_kmem(memcg);
5018 	if (error)
5019 		goto fail;
5020 
5021 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5022 		static_branch_inc(&memcg_sockets_enabled_key);
5023 
5024 	return &memcg->css;
5025 fail:
5026 	mem_cgroup_id_remove(memcg);
5027 	mem_cgroup_free(memcg);
5028 	return ERR_PTR(-ENOMEM);
5029 }
5030 
5031 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5032 {
5033 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5034 
5035 	/*
5036 	 * A memcg must be visible for memcg_expand_shrinker_maps()
5037 	 * by the time the maps are allocated. So, we allocate maps
5038 	 * here, when for_each_mem_cgroup() can't skip it.
5039 	 */
5040 	if (memcg_alloc_shrinker_maps(memcg)) {
5041 		mem_cgroup_id_remove(memcg);
5042 		return -ENOMEM;
5043 	}
5044 
5045 	/* Online state pins memcg ID, memcg ID pins CSS */
5046 	refcount_set(&memcg->id.ref, 1);
5047 	css_get(css);
5048 	return 0;
5049 }
5050 
5051 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5052 {
5053 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5054 	struct mem_cgroup_event *event, *tmp;
5055 
5056 	/*
5057 	 * Unregister events and notify userspace.
5058 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5059 	 * directory to avoid race between userspace and kernelspace.
5060 	 */
5061 	spin_lock(&memcg->event_list_lock);
5062 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5063 		list_del_init(&event->list);
5064 		schedule_work(&event->remove);
5065 	}
5066 	spin_unlock(&memcg->event_list_lock);
5067 
5068 	page_counter_set_min(&memcg->memory, 0);
5069 	page_counter_set_low(&memcg->memory, 0);
5070 
5071 	memcg_offline_kmem(memcg);
5072 	wb_memcg_offline(memcg);
5073 
5074 	drain_all_stock(memcg);
5075 
5076 	mem_cgroup_id_put(memcg);
5077 }
5078 
5079 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5080 {
5081 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5082 
5083 	invalidate_reclaim_iterators(memcg);
5084 }
5085 
5086 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5087 {
5088 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5089 	int __maybe_unused i;
5090 
5091 #ifdef CONFIG_CGROUP_WRITEBACK
5092 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5093 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5094 #endif
5095 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5096 		static_branch_dec(&memcg_sockets_enabled_key);
5097 
5098 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5099 		static_branch_dec(&memcg_sockets_enabled_key);
5100 
5101 	vmpressure_cleanup(&memcg->vmpressure);
5102 	cancel_work_sync(&memcg->high_work);
5103 	mem_cgroup_remove_from_trees(memcg);
5104 	memcg_free_shrinker_maps(memcg);
5105 	memcg_free_kmem(memcg);
5106 	mem_cgroup_free(memcg);
5107 }
5108 
5109 /**
5110  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5111  * @css: the target css
5112  *
5113  * Reset the states of the mem_cgroup associated with @css.  This is
5114  * invoked when the userland requests disabling on the default hierarchy
5115  * but the memcg is pinned through dependency.  The memcg should stop
5116  * applying policies and should revert to the vanilla state as it may be
5117  * made visible again.
5118  *
5119  * The current implementation only resets the essential configurations.
5120  * This needs to be expanded to cover all the visible parts.
5121  */
5122 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5123 {
5124 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5125 
5126 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5127 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5128 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5129 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5130 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5131 	page_counter_set_min(&memcg->memory, 0);
5132 	page_counter_set_low(&memcg->memory, 0);
5133 	memcg->high = PAGE_COUNTER_MAX;
5134 	memcg->soft_limit = PAGE_COUNTER_MAX;
5135 	memcg_wb_domain_size_changed(memcg);
5136 }
5137 
5138 #ifdef CONFIG_MMU
5139 /* Handlers for move charge at task migration. */
5140 static int mem_cgroup_do_precharge(unsigned long count)
5141 {
5142 	int ret;
5143 
5144 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5145 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5146 	if (!ret) {
5147 		mc.precharge += count;
5148 		return ret;
5149 	}
5150 
5151 	/* Try charges one by one with reclaim, but do not retry */
5152 	while (count--) {
5153 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5154 		if (ret)
5155 			return ret;
5156 		mc.precharge++;
5157 		cond_resched();
5158 	}
5159 	return 0;
5160 }
5161 
5162 union mc_target {
5163 	struct page	*page;
5164 	swp_entry_t	ent;
5165 };
5166 
5167 enum mc_target_type {
5168 	MC_TARGET_NONE = 0,
5169 	MC_TARGET_PAGE,
5170 	MC_TARGET_SWAP,
5171 	MC_TARGET_DEVICE,
5172 };
5173 
5174 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5175 						unsigned long addr, pte_t ptent)
5176 {
5177 	struct page *page = vm_normal_page(vma, addr, ptent);
5178 
5179 	if (!page || !page_mapped(page))
5180 		return NULL;
5181 	if (PageAnon(page)) {
5182 		if (!(mc.flags & MOVE_ANON))
5183 			return NULL;
5184 	} else {
5185 		if (!(mc.flags & MOVE_FILE))
5186 			return NULL;
5187 	}
5188 	if (!get_page_unless_zero(page))
5189 		return NULL;
5190 
5191 	return page;
5192 }
5193 
5194 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5195 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5196 			pte_t ptent, swp_entry_t *entry)
5197 {
5198 	struct page *page = NULL;
5199 	swp_entry_t ent = pte_to_swp_entry(ptent);
5200 
5201 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5202 		return NULL;
5203 
5204 	/*
5205 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5206 	 * a device and because they are not accessible by CPU they are store
5207 	 * as special swap entry in the CPU page table.
5208 	 */
5209 	if (is_device_private_entry(ent)) {
5210 		page = device_private_entry_to_page(ent);
5211 		/*
5212 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5213 		 * a refcount of 1 when free (unlike normal page)
5214 		 */
5215 		if (!page_ref_add_unless(page, 1, 1))
5216 			return NULL;
5217 		return page;
5218 	}
5219 
5220 	/*
5221 	 * Because lookup_swap_cache() updates some statistics counter,
5222 	 * we call find_get_page() with swapper_space directly.
5223 	 */
5224 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5225 	if (do_memsw_account())
5226 		entry->val = ent.val;
5227 
5228 	return page;
5229 }
5230 #else
5231 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5232 			pte_t ptent, swp_entry_t *entry)
5233 {
5234 	return NULL;
5235 }
5236 #endif
5237 
5238 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5239 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5240 {
5241 	struct page *page = NULL;
5242 	struct address_space *mapping;
5243 	pgoff_t pgoff;
5244 
5245 	if (!vma->vm_file) /* anonymous vma */
5246 		return NULL;
5247 	if (!(mc.flags & MOVE_FILE))
5248 		return NULL;
5249 
5250 	mapping = vma->vm_file->f_mapping;
5251 	pgoff = linear_page_index(vma, addr);
5252 
5253 	/* page is moved even if it's not RSS of this task(page-faulted). */
5254 #ifdef CONFIG_SWAP
5255 	/* shmem/tmpfs may report page out on swap: account for that too. */
5256 	if (shmem_mapping(mapping)) {
5257 		page = find_get_entry(mapping, pgoff);
5258 		if (xa_is_value(page)) {
5259 			swp_entry_t swp = radix_to_swp_entry(page);
5260 			if (do_memsw_account())
5261 				*entry = swp;
5262 			page = find_get_page(swap_address_space(swp),
5263 					     swp_offset(swp));
5264 		}
5265 	} else
5266 		page = find_get_page(mapping, pgoff);
5267 #else
5268 	page = find_get_page(mapping, pgoff);
5269 #endif
5270 	return page;
5271 }
5272 
5273 /**
5274  * mem_cgroup_move_account - move account of the page
5275  * @page: the page
5276  * @compound: charge the page as compound or small page
5277  * @from: mem_cgroup which the page is moved from.
5278  * @to:	mem_cgroup which the page is moved to. @from != @to.
5279  *
5280  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5281  *
5282  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5283  * from old cgroup.
5284  */
5285 static int mem_cgroup_move_account(struct page *page,
5286 				   bool compound,
5287 				   struct mem_cgroup *from,
5288 				   struct mem_cgroup *to)
5289 {
5290 	struct lruvec *from_vec, *to_vec;
5291 	struct pglist_data *pgdat;
5292 	unsigned long flags;
5293 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5294 	int ret;
5295 	bool anon;
5296 
5297 	VM_BUG_ON(from == to);
5298 	VM_BUG_ON_PAGE(PageLRU(page), page);
5299 	VM_BUG_ON(compound && !PageTransHuge(page));
5300 
5301 	/*
5302 	 * Prevent mem_cgroup_migrate() from looking at
5303 	 * page->mem_cgroup of its source page while we change it.
5304 	 */
5305 	ret = -EBUSY;
5306 	if (!trylock_page(page))
5307 		goto out;
5308 
5309 	ret = -EINVAL;
5310 	if (page->mem_cgroup != from)
5311 		goto out_unlock;
5312 
5313 	anon = PageAnon(page);
5314 
5315 	pgdat = page_pgdat(page);
5316 	from_vec = mem_cgroup_lruvec(from, pgdat);
5317 	to_vec = mem_cgroup_lruvec(to, pgdat);
5318 
5319 	spin_lock_irqsave(&from->move_lock, flags);
5320 
5321 	if (!anon && page_mapped(page)) {
5322 		__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5323 		__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5324 	}
5325 
5326 	/*
5327 	 * move_lock grabbed above and caller set from->moving_account, so
5328 	 * mod_memcg_page_state will serialize updates to PageDirty.
5329 	 * So mapping should be stable for dirty pages.
5330 	 */
5331 	if (!anon && PageDirty(page)) {
5332 		struct address_space *mapping = page_mapping(page);
5333 
5334 		if (mapping_cap_account_dirty(mapping)) {
5335 			__mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5336 			__mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5337 		}
5338 	}
5339 
5340 	if (PageWriteback(page)) {
5341 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5342 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5343 	}
5344 
5345 	/*
5346 	 * It is safe to change page->mem_cgroup here because the page
5347 	 * is referenced, charged, and isolated - we can't race with
5348 	 * uncharging, charging, migration, or LRU putback.
5349 	 */
5350 
5351 	/* caller should have done css_get */
5352 	page->mem_cgroup = to;
5353 
5354 	spin_unlock_irqrestore(&from->move_lock, flags);
5355 
5356 	ret = 0;
5357 
5358 	local_irq_disable();
5359 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5360 	memcg_check_events(to, page);
5361 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5362 	memcg_check_events(from, page);
5363 	local_irq_enable();
5364 out_unlock:
5365 	unlock_page(page);
5366 out:
5367 	return ret;
5368 }
5369 
5370 /**
5371  * get_mctgt_type - get target type of moving charge
5372  * @vma: the vma the pte to be checked belongs
5373  * @addr: the address corresponding to the pte to be checked
5374  * @ptent: the pte to be checked
5375  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5376  *
5377  * Returns
5378  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5379  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5380  *     move charge. if @target is not NULL, the page is stored in target->page
5381  *     with extra refcnt got(Callers should handle it).
5382  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5383  *     target for charge migration. if @target is not NULL, the entry is stored
5384  *     in target->ent.
5385  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5386  *     (so ZONE_DEVICE page and thus not on the lru).
5387  *     For now we such page is charge like a regular page would be as for all
5388  *     intent and purposes it is just special memory taking the place of a
5389  *     regular page.
5390  *
5391  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5392  *
5393  * Called with pte lock held.
5394  */
5395 
5396 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5397 		unsigned long addr, pte_t ptent, union mc_target *target)
5398 {
5399 	struct page *page = NULL;
5400 	enum mc_target_type ret = MC_TARGET_NONE;
5401 	swp_entry_t ent = { .val = 0 };
5402 
5403 	if (pte_present(ptent))
5404 		page = mc_handle_present_pte(vma, addr, ptent);
5405 	else if (is_swap_pte(ptent))
5406 		page = mc_handle_swap_pte(vma, ptent, &ent);
5407 	else if (pte_none(ptent))
5408 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5409 
5410 	if (!page && !ent.val)
5411 		return ret;
5412 	if (page) {
5413 		/*
5414 		 * Do only loose check w/o serialization.
5415 		 * mem_cgroup_move_account() checks the page is valid or
5416 		 * not under LRU exclusion.
5417 		 */
5418 		if (page->mem_cgroup == mc.from) {
5419 			ret = MC_TARGET_PAGE;
5420 			if (is_device_private_page(page))
5421 				ret = MC_TARGET_DEVICE;
5422 			if (target)
5423 				target->page = page;
5424 		}
5425 		if (!ret || !target)
5426 			put_page(page);
5427 	}
5428 	/*
5429 	 * There is a swap entry and a page doesn't exist or isn't charged.
5430 	 * But we cannot move a tail-page in a THP.
5431 	 */
5432 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5433 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5434 		ret = MC_TARGET_SWAP;
5435 		if (target)
5436 			target->ent = ent;
5437 	}
5438 	return ret;
5439 }
5440 
5441 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5442 /*
5443  * We don't consider PMD mapped swapping or file mapped pages because THP does
5444  * not support them for now.
5445  * Caller should make sure that pmd_trans_huge(pmd) is true.
5446  */
5447 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5448 		unsigned long addr, pmd_t pmd, union mc_target *target)
5449 {
5450 	struct page *page = NULL;
5451 	enum mc_target_type ret = MC_TARGET_NONE;
5452 
5453 	if (unlikely(is_swap_pmd(pmd))) {
5454 		VM_BUG_ON(thp_migration_supported() &&
5455 				  !is_pmd_migration_entry(pmd));
5456 		return ret;
5457 	}
5458 	page = pmd_page(pmd);
5459 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5460 	if (!(mc.flags & MOVE_ANON))
5461 		return ret;
5462 	if (page->mem_cgroup == mc.from) {
5463 		ret = MC_TARGET_PAGE;
5464 		if (target) {
5465 			get_page(page);
5466 			target->page = page;
5467 		}
5468 	}
5469 	return ret;
5470 }
5471 #else
5472 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5473 		unsigned long addr, pmd_t pmd, union mc_target *target)
5474 {
5475 	return MC_TARGET_NONE;
5476 }
5477 #endif
5478 
5479 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5480 					unsigned long addr, unsigned long end,
5481 					struct mm_walk *walk)
5482 {
5483 	struct vm_area_struct *vma = walk->vma;
5484 	pte_t *pte;
5485 	spinlock_t *ptl;
5486 
5487 	ptl = pmd_trans_huge_lock(pmd, vma);
5488 	if (ptl) {
5489 		/*
5490 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5491 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5492 		 * this might change.
5493 		 */
5494 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5495 			mc.precharge += HPAGE_PMD_NR;
5496 		spin_unlock(ptl);
5497 		return 0;
5498 	}
5499 
5500 	if (pmd_trans_unstable(pmd))
5501 		return 0;
5502 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5503 	for (; addr != end; pte++, addr += PAGE_SIZE)
5504 		if (get_mctgt_type(vma, addr, *pte, NULL))
5505 			mc.precharge++;	/* increment precharge temporarily */
5506 	pte_unmap_unlock(pte - 1, ptl);
5507 	cond_resched();
5508 
5509 	return 0;
5510 }
5511 
5512 static const struct mm_walk_ops precharge_walk_ops = {
5513 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5514 };
5515 
5516 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5517 {
5518 	unsigned long precharge;
5519 
5520 	down_read(&mm->mmap_sem);
5521 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5522 	up_read(&mm->mmap_sem);
5523 
5524 	precharge = mc.precharge;
5525 	mc.precharge = 0;
5526 
5527 	return precharge;
5528 }
5529 
5530 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5531 {
5532 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5533 
5534 	VM_BUG_ON(mc.moving_task);
5535 	mc.moving_task = current;
5536 	return mem_cgroup_do_precharge(precharge);
5537 }
5538 
5539 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5540 static void __mem_cgroup_clear_mc(void)
5541 {
5542 	struct mem_cgroup *from = mc.from;
5543 	struct mem_cgroup *to = mc.to;
5544 
5545 	/* we must uncharge all the leftover precharges from mc.to */
5546 	if (mc.precharge) {
5547 		cancel_charge(mc.to, mc.precharge);
5548 		mc.precharge = 0;
5549 	}
5550 	/*
5551 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5552 	 * we must uncharge here.
5553 	 */
5554 	if (mc.moved_charge) {
5555 		cancel_charge(mc.from, mc.moved_charge);
5556 		mc.moved_charge = 0;
5557 	}
5558 	/* we must fixup refcnts and charges */
5559 	if (mc.moved_swap) {
5560 		/* uncharge swap account from the old cgroup */
5561 		if (!mem_cgroup_is_root(mc.from))
5562 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5563 
5564 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5565 
5566 		/*
5567 		 * we charged both to->memory and to->memsw, so we
5568 		 * should uncharge to->memory.
5569 		 */
5570 		if (!mem_cgroup_is_root(mc.to))
5571 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5572 
5573 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5574 		css_put_many(&mc.to->css, mc.moved_swap);
5575 
5576 		mc.moved_swap = 0;
5577 	}
5578 	memcg_oom_recover(from);
5579 	memcg_oom_recover(to);
5580 	wake_up_all(&mc.waitq);
5581 }
5582 
5583 static void mem_cgroup_clear_mc(void)
5584 {
5585 	struct mm_struct *mm = mc.mm;
5586 
5587 	/*
5588 	 * we must clear moving_task before waking up waiters at the end of
5589 	 * task migration.
5590 	 */
5591 	mc.moving_task = NULL;
5592 	__mem_cgroup_clear_mc();
5593 	spin_lock(&mc.lock);
5594 	mc.from = NULL;
5595 	mc.to = NULL;
5596 	mc.mm = NULL;
5597 	spin_unlock(&mc.lock);
5598 
5599 	mmput(mm);
5600 }
5601 
5602 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5603 {
5604 	struct cgroup_subsys_state *css;
5605 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5606 	struct mem_cgroup *from;
5607 	struct task_struct *leader, *p;
5608 	struct mm_struct *mm;
5609 	unsigned long move_flags;
5610 	int ret = 0;
5611 
5612 	/* charge immigration isn't supported on the default hierarchy */
5613 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5614 		return 0;
5615 
5616 	/*
5617 	 * Multi-process migrations only happen on the default hierarchy
5618 	 * where charge immigration is not used.  Perform charge
5619 	 * immigration if @tset contains a leader and whine if there are
5620 	 * multiple.
5621 	 */
5622 	p = NULL;
5623 	cgroup_taskset_for_each_leader(leader, css, tset) {
5624 		WARN_ON_ONCE(p);
5625 		p = leader;
5626 		memcg = mem_cgroup_from_css(css);
5627 	}
5628 	if (!p)
5629 		return 0;
5630 
5631 	/*
5632 	 * We are now commited to this value whatever it is. Changes in this
5633 	 * tunable will only affect upcoming migrations, not the current one.
5634 	 * So we need to save it, and keep it going.
5635 	 */
5636 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5637 	if (!move_flags)
5638 		return 0;
5639 
5640 	from = mem_cgroup_from_task(p);
5641 
5642 	VM_BUG_ON(from == memcg);
5643 
5644 	mm = get_task_mm(p);
5645 	if (!mm)
5646 		return 0;
5647 	/* We move charges only when we move a owner of the mm */
5648 	if (mm->owner == p) {
5649 		VM_BUG_ON(mc.from);
5650 		VM_BUG_ON(mc.to);
5651 		VM_BUG_ON(mc.precharge);
5652 		VM_BUG_ON(mc.moved_charge);
5653 		VM_BUG_ON(mc.moved_swap);
5654 
5655 		spin_lock(&mc.lock);
5656 		mc.mm = mm;
5657 		mc.from = from;
5658 		mc.to = memcg;
5659 		mc.flags = move_flags;
5660 		spin_unlock(&mc.lock);
5661 		/* We set mc.moving_task later */
5662 
5663 		ret = mem_cgroup_precharge_mc(mm);
5664 		if (ret)
5665 			mem_cgroup_clear_mc();
5666 	} else {
5667 		mmput(mm);
5668 	}
5669 	return ret;
5670 }
5671 
5672 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5673 {
5674 	if (mc.to)
5675 		mem_cgroup_clear_mc();
5676 }
5677 
5678 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5679 				unsigned long addr, unsigned long end,
5680 				struct mm_walk *walk)
5681 {
5682 	int ret = 0;
5683 	struct vm_area_struct *vma = walk->vma;
5684 	pte_t *pte;
5685 	spinlock_t *ptl;
5686 	enum mc_target_type target_type;
5687 	union mc_target target;
5688 	struct page *page;
5689 
5690 	ptl = pmd_trans_huge_lock(pmd, vma);
5691 	if (ptl) {
5692 		if (mc.precharge < HPAGE_PMD_NR) {
5693 			spin_unlock(ptl);
5694 			return 0;
5695 		}
5696 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5697 		if (target_type == MC_TARGET_PAGE) {
5698 			page = target.page;
5699 			if (!isolate_lru_page(page)) {
5700 				if (!mem_cgroup_move_account(page, true,
5701 							     mc.from, mc.to)) {
5702 					mc.precharge -= HPAGE_PMD_NR;
5703 					mc.moved_charge += HPAGE_PMD_NR;
5704 				}
5705 				putback_lru_page(page);
5706 			}
5707 			put_page(page);
5708 		} else if (target_type == MC_TARGET_DEVICE) {
5709 			page = target.page;
5710 			if (!mem_cgroup_move_account(page, true,
5711 						     mc.from, mc.to)) {
5712 				mc.precharge -= HPAGE_PMD_NR;
5713 				mc.moved_charge += HPAGE_PMD_NR;
5714 			}
5715 			put_page(page);
5716 		}
5717 		spin_unlock(ptl);
5718 		return 0;
5719 	}
5720 
5721 	if (pmd_trans_unstable(pmd))
5722 		return 0;
5723 retry:
5724 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5725 	for (; addr != end; addr += PAGE_SIZE) {
5726 		pte_t ptent = *(pte++);
5727 		bool device = false;
5728 		swp_entry_t ent;
5729 
5730 		if (!mc.precharge)
5731 			break;
5732 
5733 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5734 		case MC_TARGET_DEVICE:
5735 			device = true;
5736 			/* fall through */
5737 		case MC_TARGET_PAGE:
5738 			page = target.page;
5739 			/*
5740 			 * We can have a part of the split pmd here. Moving it
5741 			 * can be done but it would be too convoluted so simply
5742 			 * ignore such a partial THP and keep it in original
5743 			 * memcg. There should be somebody mapping the head.
5744 			 */
5745 			if (PageTransCompound(page))
5746 				goto put;
5747 			if (!device && isolate_lru_page(page))
5748 				goto put;
5749 			if (!mem_cgroup_move_account(page, false,
5750 						mc.from, mc.to)) {
5751 				mc.precharge--;
5752 				/* we uncharge from mc.from later. */
5753 				mc.moved_charge++;
5754 			}
5755 			if (!device)
5756 				putback_lru_page(page);
5757 put:			/* get_mctgt_type() gets the page */
5758 			put_page(page);
5759 			break;
5760 		case MC_TARGET_SWAP:
5761 			ent = target.ent;
5762 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5763 				mc.precharge--;
5764 				/* we fixup refcnts and charges later. */
5765 				mc.moved_swap++;
5766 			}
5767 			break;
5768 		default:
5769 			break;
5770 		}
5771 	}
5772 	pte_unmap_unlock(pte - 1, ptl);
5773 	cond_resched();
5774 
5775 	if (addr != end) {
5776 		/*
5777 		 * We have consumed all precharges we got in can_attach().
5778 		 * We try charge one by one, but don't do any additional
5779 		 * charges to mc.to if we have failed in charge once in attach()
5780 		 * phase.
5781 		 */
5782 		ret = mem_cgroup_do_precharge(1);
5783 		if (!ret)
5784 			goto retry;
5785 	}
5786 
5787 	return ret;
5788 }
5789 
5790 static const struct mm_walk_ops charge_walk_ops = {
5791 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
5792 };
5793 
5794 static void mem_cgroup_move_charge(void)
5795 {
5796 	lru_add_drain_all();
5797 	/*
5798 	 * Signal lock_page_memcg() to take the memcg's move_lock
5799 	 * while we're moving its pages to another memcg. Then wait
5800 	 * for already started RCU-only updates to finish.
5801 	 */
5802 	atomic_inc(&mc.from->moving_account);
5803 	synchronize_rcu();
5804 retry:
5805 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5806 		/*
5807 		 * Someone who are holding the mmap_sem might be waiting in
5808 		 * waitq. So we cancel all extra charges, wake up all waiters,
5809 		 * and retry. Because we cancel precharges, we might not be able
5810 		 * to move enough charges, but moving charge is a best-effort
5811 		 * feature anyway, so it wouldn't be a big problem.
5812 		 */
5813 		__mem_cgroup_clear_mc();
5814 		cond_resched();
5815 		goto retry;
5816 	}
5817 	/*
5818 	 * When we have consumed all precharges and failed in doing
5819 	 * additional charge, the page walk just aborts.
5820 	 */
5821 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5822 			NULL);
5823 
5824 	up_read(&mc.mm->mmap_sem);
5825 	atomic_dec(&mc.from->moving_account);
5826 }
5827 
5828 static void mem_cgroup_move_task(void)
5829 {
5830 	if (mc.to) {
5831 		mem_cgroup_move_charge();
5832 		mem_cgroup_clear_mc();
5833 	}
5834 }
5835 #else	/* !CONFIG_MMU */
5836 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5837 {
5838 	return 0;
5839 }
5840 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5841 {
5842 }
5843 static void mem_cgroup_move_task(void)
5844 {
5845 }
5846 #endif
5847 
5848 /*
5849  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5850  * to verify whether we're attached to the default hierarchy on each mount
5851  * attempt.
5852  */
5853 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5854 {
5855 	/*
5856 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5857 	 * guarantees that @root doesn't have any children, so turning it
5858 	 * on for the root memcg is enough.
5859 	 */
5860 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5861 		root_mem_cgroup->use_hierarchy = true;
5862 	else
5863 		root_mem_cgroup->use_hierarchy = false;
5864 }
5865 
5866 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5867 {
5868 	if (value == PAGE_COUNTER_MAX)
5869 		seq_puts(m, "max\n");
5870 	else
5871 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5872 
5873 	return 0;
5874 }
5875 
5876 static u64 memory_current_read(struct cgroup_subsys_state *css,
5877 			       struct cftype *cft)
5878 {
5879 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5880 
5881 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5882 }
5883 
5884 static int memory_min_show(struct seq_file *m, void *v)
5885 {
5886 	return seq_puts_memcg_tunable(m,
5887 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5888 }
5889 
5890 static ssize_t memory_min_write(struct kernfs_open_file *of,
5891 				char *buf, size_t nbytes, loff_t off)
5892 {
5893 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5894 	unsigned long min;
5895 	int err;
5896 
5897 	buf = strstrip(buf);
5898 	err = page_counter_memparse(buf, "max", &min);
5899 	if (err)
5900 		return err;
5901 
5902 	page_counter_set_min(&memcg->memory, min);
5903 
5904 	return nbytes;
5905 }
5906 
5907 static int memory_low_show(struct seq_file *m, void *v)
5908 {
5909 	return seq_puts_memcg_tunable(m,
5910 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5911 }
5912 
5913 static ssize_t memory_low_write(struct kernfs_open_file *of,
5914 				char *buf, size_t nbytes, loff_t off)
5915 {
5916 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5917 	unsigned long low;
5918 	int err;
5919 
5920 	buf = strstrip(buf);
5921 	err = page_counter_memparse(buf, "max", &low);
5922 	if (err)
5923 		return err;
5924 
5925 	page_counter_set_low(&memcg->memory, low);
5926 
5927 	return nbytes;
5928 }
5929 
5930 static int memory_high_show(struct seq_file *m, void *v)
5931 {
5932 	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5933 }
5934 
5935 static ssize_t memory_high_write(struct kernfs_open_file *of,
5936 				 char *buf, size_t nbytes, loff_t off)
5937 {
5938 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5939 	unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5940 	bool drained = false;
5941 	unsigned long high;
5942 	int err;
5943 
5944 	buf = strstrip(buf);
5945 	err = page_counter_memparse(buf, "max", &high);
5946 	if (err)
5947 		return err;
5948 
5949 	memcg->high = high;
5950 
5951 	for (;;) {
5952 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5953 		unsigned long reclaimed;
5954 
5955 		if (nr_pages <= high)
5956 			break;
5957 
5958 		if (signal_pending(current))
5959 			break;
5960 
5961 		if (!drained) {
5962 			drain_all_stock(memcg);
5963 			drained = true;
5964 			continue;
5965 		}
5966 
5967 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5968 							 GFP_KERNEL, true);
5969 
5970 		if (!reclaimed && !nr_retries--)
5971 			break;
5972 	}
5973 
5974 	return nbytes;
5975 }
5976 
5977 static int memory_max_show(struct seq_file *m, void *v)
5978 {
5979 	return seq_puts_memcg_tunable(m,
5980 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5981 }
5982 
5983 static ssize_t memory_max_write(struct kernfs_open_file *of,
5984 				char *buf, size_t nbytes, loff_t off)
5985 {
5986 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5987 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5988 	bool drained = false;
5989 	unsigned long max;
5990 	int err;
5991 
5992 	buf = strstrip(buf);
5993 	err = page_counter_memparse(buf, "max", &max);
5994 	if (err)
5995 		return err;
5996 
5997 	xchg(&memcg->memory.max, max);
5998 
5999 	for (;;) {
6000 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6001 
6002 		if (nr_pages <= max)
6003 			break;
6004 
6005 		if (signal_pending(current))
6006 			break;
6007 
6008 		if (!drained) {
6009 			drain_all_stock(memcg);
6010 			drained = true;
6011 			continue;
6012 		}
6013 
6014 		if (nr_reclaims) {
6015 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6016 							  GFP_KERNEL, true))
6017 				nr_reclaims--;
6018 			continue;
6019 		}
6020 
6021 		memcg_memory_event(memcg, MEMCG_OOM);
6022 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6023 			break;
6024 	}
6025 
6026 	memcg_wb_domain_size_changed(memcg);
6027 	return nbytes;
6028 }
6029 
6030 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6031 {
6032 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6033 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6034 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6035 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6036 	seq_printf(m, "oom_kill %lu\n",
6037 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6038 }
6039 
6040 static int memory_events_show(struct seq_file *m, void *v)
6041 {
6042 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6043 
6044 	__memory_events_show(m, memcg->memory_events);
6045 	return 0;
6046 }
6047 
6048 static int memory_events_local_show(struct seq_file *m, void *v)
6049 {
6050 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6051 
6052 	__memory_events_show(m, memcg->memory_events_local);
6053 	return 0;
6054 }
6055 
6056 static int memory_stat_show(struct seq_file *m, void *v)
6057 {
6058 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6059 	char *buf;
6060 
6061 	buf = memory_stat_format(memcg);
6062 	if (!buf)
6063 		return -ENOMEM;
6064 	seq_puts(m, buf);
6065 	kfree(buf);
6066 	return 0;
6067 }
6068 
6069 static int memory_oom_group_show(struct seq_file *m, void *v)
6070 {
6071 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6072 
6073 	seq_printf(m, "%d\n", memcg->oom_group);
6074 
6075 	return 0;
6076 }
6077 
6078 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6079 				      char *buf, size_t nbytes, loff_t off)
6080 {
6081 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6082 	int ret, oom_group;
6083 
6084 	buf = strstrip(buf);
6085 	if (!buf)
6086 		return -EINVAL;
6087 
6088 	ret = kstrtoint(buf, 0, &oom_group);
6089 	if (ret)
6090 		return ret;
6091 
6092 	if (oom_group != 0 && oom_group != 1)
6093 		return -EINVAL;
6094 
6095 	memcg->oom_group = oom_group;
6096 
6097 	return nbytes;
6098 }
6099 
6100 static struct cftype memory_files[] = {
6101 	{
6102 		.name = "current",
6103 		.flags = CFTYPE_NOT_ON_ROOT,
6104 		.read_u64 = memory_current_read,
6105 	},
6106 	{
6107 		.name = "min",
6108 		.flags = CFTYPE_NOT_ON_ROOT,
6109 		.seq_show = memory_min_show,
6110 		.write = memory_min_write,
6111 	},
6112 	{
6113 		.name = "low",
6114 		.flags = CFTYPE_NOT_ON_ROOT,
6115 		.seq_show = memory_low_show,
6116 		.write = memory_low_write,
6117 	},
6118 	{
6119 		.name = "high",
6120 		.flags = CFTYPE_NOT_ON_ROOT,
6121 		.seq_show = memory_high_show,
6122 		.write = memory_high_write,
6123 	},
6124 	{
6125 		.name = "max",
6126 		.flags = CFTYPE_NOT_ON_ROOT,
6127 		.seq_show = memory_max_show,
6128 		.write = memory_max_write,
6129 	},
6130 	{
6131 		.name = "events",
6132 		.flags = CFTYPE_NOT_ON_ROOT,
6133 		.file_offset = offsetof(struct mem_cgroup, events_file),
6134 		.seq_show = memory_events_show,
6135 	},
6136 	{
6137 		.name = "events.local",
6138 		.flags = CFTYPE_NOT_ON_ROOT,
6139 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6140 		.seq_show = memory_events_local_show,
6141 	},
6142 	{
6143 		.name = "stat",
6144 		.flags = CFTYPE_NOT_ON_ROOT,
6145 		.seq_show = memory_stat_show,
6146 	},
6147 	{
6148 		.name = "oom.group",
6149 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6150 		.seq_show = memory_oom_group_show,
6151 		.write = memory_oom_group_write,
6152 	},
6153 	{ }	/* terminate */
6154 };
6155 
6156 struct cgroup_subsys memory_cgrp_subsys = {
6157 	.css_alloc = mem_cgroup_css_alloc,
6158 	.css_online = mem_cgroup_css_online,
6159 	.css_offline = mem_cgroup_css_offline,
6160 	.css_released = mem_cgroup_css_released,
6161 	.css_free = mem_cgroup_css_free,
6162 	.css_reset = mem_cgroup_css_reset,
6163 	.can_attach = mem_cgroup_can_attach,
6164 	.cancel_attach = mem_cgroup_cancel_attach,
6165 	.post_attach = mem_cgroup_move_task,
6166 	.bind = mem_cgroup_bind,
6167 	.dfl_cftypes = memory_files,
6168 	.legacy_cftypes = mem_cgroup_legacy_files,
6169 	.early_init = 0,
6170 };
6171 
6172 /**
6173  * mem_cgroup_protected - check if memory consumption is in the normal range
6174  * @root: the top ancestor of the sub-tree being checked
6175  * @memcg: the memory cgroup to check
6176  *
6177  * WARNING: This function is not stateless! It can only be used as part
6178  *          of a top-down tree iteration, not for isolated queries.
6179  *
6180  * Returns one of the following:
6181  *   MEMCG_PROT_NONE: cgroup memory is not protected
6182  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
6183  *     an unprotected supply of reclaimable memory from other cgroups.
6184  *   MEMCG_PROT_MIN: cgroup memory is protected
6185  *
6186  * @root is exclusive; it is never protected when looked at directly
6187  *
6188  * To provide a proper hierarchical behavior, effective memory.min/low values
6189  * are used. Below is the description of how effective memory.low is calculated.
6190  * Effective memory.min values is calculated in the same way.
6191  *
6192  * Effective memory.low is always equal or less than the original memory.low.
6193  * If there is no memory.low overcommittment (which is always true for
6194  * top-level memory cgroups), these two values are equal.
6195  * Otherwise, it's a part of parent's effective memory.low,
6196  * calculated as a cgroup's memory.low usage divided by sum of sibling's
6197  * memory.low usages, where memory.low usage is the size of actually
6198  * protected memory.
6199  *
6200  *                                             low_usage
6201  * elow = min( memory.low, parent->elow * ------------------ ),
6202  *                                        siblings_low_usage
6203  *
6204  *             | memory.current, if memory.current < memory.low
6205  * low_usage = |
6206  *	       | 0, otherwise.
6207  *
6208  *
6209  * Such definition of the effective memory.low provides the expected
6210  * hierarchical behavior: parent's memory.low value is limiting
6211  * children, unprotected memory is reclaimed first and cgroups,
6212  * which are not using their guarantee do not affect actual memory
6213  * distribution.
6214  *
6215  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6216  *
6217  *     A      A/memory.low = 2G, A/memory.current = 6G
6218  *    //\\
6219  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
6220  *            C/memory.low = 1G  C/memory.current = 2G
6221  *            D/memory.low = 0   D/memory.current = 2G
6222  *            E/memory.low = 10G E/memory.current = 0
6223  *
6224  * and the memory pressure is applied, the following memory distribution
6225  * is expected (approximately):
6226  *
6227  *     A/memory.current = 2G
6228  *
6229  *     B/memory.current = 1.3G
6230  *     C/memory.current = 0.6G
6231  *     D/memory.current = 0
6232  *     E/memory.current = 0
6233  *
6234  * These calculations require constant tracking of the actual low usages
6235  * (see propagate_protected_usage()), as well as recursive calculation of
6236  * effective memory.low values. But as we do call mem_cgroup_protected()
6237  * path for each memory cgroup top-down from the reclaim,
6238  * it's possible to optimize this part, and save calculated elow
6239  * for next usage. This part is intentionally racy, but it's ok,
6240  * as memory.low is a best-effort mechanism.
6241  */
6242 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6243 						struct mem_cgroup *memcg)
6244 {
6245 	struct mem_cgroup *parent;
6246 	unsigned long emin, parent_emin;
6247 	unsigned long elow, parent_elow;
6248 	unsigned long usage;
6249 
6250 	if (mem_cgroup_disabled())
6251 		return MEMCG_PROT_NONE;
6252 
6253 	if (!root)
6254 		root = root_mem_cgroup;
6255 	if (memcg == root)
6256 		return MEMCG_PROT_NONE;
6257 
6258 	usage = page_counter_read(&memcg->memory);
6259 	if (!usage)
6260 		return MEMCG_PROT_NONE;
6261 
6262 	emin = memcg->memory.min;
6263 	elow = memcg->memory.low;
6264 
6265 	parent = parent_mem_cgroup(memcg);
6266 	/* No parent means a non-hierarchical mode on v1 memcg */
6267 	if (!parent)
6268 		return MEMCG_PROT_NONE;
6269 
6270 	if (parent == root)
6271 		goto exit;
6272 
6273 	parent_emin = READ_ONCE(parent->memory.emin);
6274 	emin = min(emin, parent_emin);
6275 	if (emin && parent_emin) {
6276 		unsigned long min_usage, siblings_min_usage;
6277 
6278 		min_usage = min(usage, memcg->memory.min);
6279 		siblings_min_usage = atomic_long_read(
6280 			&parent->memory.children_min_usage);
6281 
6282 		if (min_usage && siblings_min_usage)
6283 			emin = min(emin, parent_emin * min_usage /
6284 				   siblings_min_usage);
6285 	}
6286 
6287 	parent_elow = READ_ONCE(parent->memory.elow);
6288 	elow = min(elow, parent_elow);
6289 	if (elow && parent_elow) {
6290 		unsigned long low_usage, siblings_low_usage;
6291 
6292 		low_usage = min(usage, memcg->memory.low);
6293 		siblings_low_usage = atomic_long_read(
6294 			&parent->memory.children_low_usage);
6295 
6296 		if (low_usage && siblings_low_usage)
6297 			elow = min(elow, parent_elow * low_usage /
6298 				   siblings_low_usage);
6299 	}
6300 
6301 exit:
6302 	memcg->memory.emin = emin;
6303 	memcg->memory.elow = elow;
6304 
6305 	if (usage <= emin)
6306 		return MEMCG_PROT_MIN;
6307 	else if (usage <= elow)
6308 		return MEMCG_PROT_LOW;
6309 	else
6310 		return MEMCG_PROT_NONE;
6311 }
6312 
6313 /**
6314  * mem_cgroup_try_charge - try charging a page
6315  * @page: page to charge
6316  * @mm: mm context of the victim
6317  * @gfp_mask: reclaim mode
6318  * @memcgp: charged memcg return
6319  * @compound: charge the page as compound or small page
6320  *
6321  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6322  * pages according to @gfp_mask if necessary.
6323  *
6324  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6325  * Otherwise, an error code is returned.
6326  *
6327  * After page->mapping has been set up, the caller must finalize the
6328  * charge with mem_cgroup_commit_charge().  Or abort the transaction
6329  * with mem_cgroup_cancel_charge() in case page instantiation fails.
6330  */
6331 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6332 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6333 			  bool compound)
6334 {
6335 	struct mem_cgroup *memcg = NULL;
6336 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6337 	int ret = 0;
6338 
6339 	if (mem_cgroup_disabled())
6340 		goto out;
6341 
6342 	if (PageSwapCache(page)) {
6343 		/*
6344 		 * Every swap fault against a single page tries to charge the
6345 		 * page, bail as early as possible.  shmem_unuse() encounters
6346 		 * already charged pages, too.  The USED bit is protected by
6347 		 * the page lock, which serializes swap cache removal, which
6348 		 * in turn serializes uncharging.
6349 		 */
6350 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6351 		if (compound_head(page)->mem_cgroup)
6352 			goto out;
6353 
6354 		if (do_swap_account) {
6355 			swp_entry_t ent = { .val = page_private(page), };
6356 			unsigned short id = lookup_swap_cgroup_id(ent);
6357 
6358 			rcu_read_lock();
6359 			memcg = mem_cgroup_from_id(id);
6360 			if (memcg && !css_tryget_online(&memcg->css))
6361 				memcg = NULL;
6362 			rcu_read_unlock();
6363 		}
6364 	}
6365 
6366 	if (!memcg)
6367 		memcg = get_mem_cgroup_from_mm(mm);
6368 
6369 	ret = try_charge(memcg, gfp_mask, nr_pages);
6370 
6371 	css_put(&memcg->css);
6372 out:
6373 	*memcgp = memcg;
6374 	return ret;
6375 }
6376 
6377 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6378 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6379 			  bool compound)
6380 {
6381 	struct mem_cgroup *memcg;
6382 	int ret;
6383 
6384 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6385 	memcg = *memcgp;
6386 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6387 	return ret;
6388 }
6389 
6390 /**
6391  * mem_cgroup_commit_charge - commit a page charge
6392  * @page: page to charge
6393  * @memcg: memcg to charge the page to
6394  * @lrucare: page might be on LRU already
6395  * @compound: charge the page as compound or small page
6396  *
6397  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6398  * after page->mapping has been set up.  This must happen atomically
6399  * as part of the page instantiation, i.e. under the page table lock
6400  * for anonymous pages, under the page lock for page and swap cache.
6401  *
6402  * In addition, the page must not be on the LRU during the commit, to
6403  * prevent racing with task migration.  If it might be, use @lrucare.
6404  *
6405  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6406  */
6407 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6408 			      bool lrucare, bool compound)
6409 {
6410 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6411 
6412 	VM_BUG_ON_PAGE(!page->mapping, page);
6413 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6414 
6415 	if (mem_cgroup_disabled())
6416 		return;
6417 	/*
6418 	 * Swap faults will attempt to charge the same page multiple
6419 	 * times.  But reuse_swap_page() might have removed the page
6420 	 * from swapcache already, so we can't check PageSwapCache().
6421 	 */
6422 	if (!memcg)
6423 		return;
6424 
6425 	commit_charge(page, memcg, lrucare);
6426 
6427 	local_irq_disable();
6428 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6429 	memcg_check_events(memcg, page);
6430 	local_irq_enable();
6431 
6432 	if (do_memsw_account() && PageSwapCache(page)) {
6433 		swp_entry_t entry = { .val = page_private(page) };
6434 		/*
6435 		 * The swap entry might not get freed for a long time,
6436 		 * let's not wait for it.  The page already received a
6437 		 * memory+swap charge, drop the swap entry duplicate.
6438 		 */
6439 		mem_cgroup_uncharge_swap(entry, nr_pages);
6440 	}
6441 }
6442 
6443 /**
6444  * mem_cgroup_cancel_charge - cancel a page charge
6445  * @page: page to charge
6446  * @memcg: memcg to charge the page to
6447  * @compound: charge the page as compound or small page
6448  *
6449  * Cancel a charge transaction started by mem_cgroup_try_charge().
6450  */
6451 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6452 		bool compound)
6453 {
6454 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6455 
6456 	if (mem_cgroup_disabled())
6457 		return;
6458 	/*
6459 	 * Swap faults will attempt to charge the same page multiple
6460 	 * times.  But reuse_swap_page() might have removed the page
6461 	 * from swapcache already, so we can't check PageSwapCache().
6462 	 */
6463 	if (!memcg)
6464 		return;
6465 
6466 	cancel_charge(memcg, nr_pages);
6467 }
6468 
6469 struct uncharge_gather {
6470 	struct mem_cgroup *memcg;
6471 	unsigned long pgpgout;
6472 	unsigned long nr_anon;
6473 	unsigned long nr_file;
6474 	unsigned long nr_kmem;
6475 	unsigned long nr_huge;
6476 	unsigned long nr_shmem;
6477 	struct page *dummy_page;
6478 };
6479 
6480 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6481 {
6482 	memset(ug, 0, sizeof(*ug));
6483 }
6484 
6485 static void uncharge_batch(const struct uncharge_gather *ug)
6486 {
6487 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6488 	unsigned long flags;
6489 
6490 	if (!mem_cgroup_is_root(ug->memcg)) {
6491 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6492 		if (do_memsw_account())
6493 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6494 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6495 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6496 		memcg_oom_recover(ug->memcg);
6497 	}
6498 
6499 	local_irq_save(flags);
6500 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6501 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6502 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6503 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6504 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6505 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6506 	memcg_check_events(ug->memcg, ug->dummy_page);
6507 	local_irq_restore(flags);
6508 
6509 	if (!mem_cgroup_is_root(ug->memcg))
6510 		css_put_many(&ug->memcg->css, nr_pages);
6511 }
6512 
6513 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6514 {
6515 	VM_BUG_ON_PAGE(PageLRU(page), page);
6516 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6517 			!PageHWPoison(page) , page);
6518 
6519 	if (!page->mem_cgroup)
6520 		return;
6521 
6522 	/*
6523 	 * Nobody should be changing or seriously looking at
6524 	 * page->mem_cgroup at this point, we have fully
6525 	 * exclusive access to the page.
6526 	 */
6527 
6528 	if (ug->memcg != page->mem_cgroup) {
6529 		if (ug->memcg) {
6530 			uncharge_batch(ug);
6531 			uncharge_gather_clear(ug);
6532 		}
6533 		ug->memcg = page->mem_cgroup;
6534 	}
6535 
6536 	if (!PageKmemcg(page)) {
6537 		unsigned int nr_pages = 1;
6538 
6539 		if (PageTransHuge(page)) {
6540 			nr_pages = compound_nr(page);
6541 			ug->nr_huge += nr_pages;
6542 		}
6543 		if (PageAnon(page))
6544 			ug->nr_anon += nr_pages;
6545 		else {
6546 			ug->nr_file += nr_pages;
6547 			if (PageSwapBacked(page))
6548 				ug->nr_shmem += nr_pages;
6549 		}
6550 		ug->pgpgout++;
6551 	} else {
6552 		ug->nr_kmem += compound_nr(page);
6553 		__ClearPageKmemcg(page);
6554 	}
6555 
6556 	ug->dummy_page = page;
6557 	page->mem_cgroup = NULL;
6558 }
6559 
6560 static void uncharge_list(struct list_head *page_list)
6561 {
6562 	struct uncharge_gather ug;
6563 	struct list_head *next;
6564 
6565 	uncharge_gather_clear(&ug);
6566 
6567 	/*
6568 	 * Note that the list can be a single page->lru; hence the
6569 	 * do-while loop instead of a simple list_for_each_entry().
6570 	 */
6571 	next = page_list->next;
6572 	do {
6573 		struct page *page;
6574 
6575 		page = list_entry(next, struct page, lru);
6576 		next = page->lru.next;
6577 
6578 		uncharge_page(page, &ug);
6579 	} while (next != page_list);
6580 
6581 	if (ug.memcg)
6582 		uncharge_batch(&ug);
6583 }
6584 
6585 /**
6586  * mem_cgroup_uncharge - uncharge a page
6587  * @page: page to uncharge
6588  *
6589  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6590  * mem_cgroup_commit_charge().
6591  */
6592 void mem_cgroup_uncharge(struct page *page)
6593 {
6594 	struct uncharge_gather ug;
6595 
6596 	if (mem_cgroup_disabled())
6597 		return;
6598 
6599 	/* Don't touch page->lru of any random page, pre-check: */
6600 	if (!page->mem_cgroup)
6601 		return;
6602 
6603 	uncharge_gather_clear(&ug);
6604 	uncharge_page(page, &ug);
6605 	uncharge_batch(&ug);
6606 }
6607 
6608 /**
6609  * mem_cgroup_uncharge_list - uncharge a list of page
6610  * @page_list: list of pages to uncharge
6611  *
6612  * Uncharge a list of pages previously charged with
6613  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6614  */
6615 void mem_cgroup_uncharge_list(struct list_head *page_list)
6616 {
6617 	if (mem_cgroup_disabled())
6618 		return;
6619 
6620 	if (!list_empty(page_list))
6621 		uncharge_list(page_list);
6622 }
6623 
6624 /**
6625  * mem_cgroup_migrate - charge a page's replacement
6626  * @oldpage: currently circulating page
6627  * @newpage: replacement page
6628  *
6629  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6630  * be uncharged upon free.
6631  *
6632  * Both pages must be locked, @newpage->mapping must be set up.
6633  */
6634 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6635 {
6636 	struct mem_cgroup *memcg;
6637 	unsigned int nr_pages;
6638 	unsigned long flags;
6639 
6640 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6641 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6642 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6643 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6644 		       newpage);
6645 
6646 	if (mem_cgroup_disabled())
6647 		return;
6648 
6649 	/* Page cache replacement: new page already charged? */
6650 	if (newpage->mem_cgroup)
6651 		return;
6652 
6653 	/* Swapcache readahead pages can get replaced before being charged */
6654 	memcg = oldpage->mem_cgroup;
6655 	if (!memcg)
6656 		return;
6657 
6658 	/* Force-charge the new page. The old one will be freed soon */
6659 	nr_pages = hpage_nr_pages(newpage);
6660 
6661 	page_counter_charge(&memcg->memory, nr_pages);
6662 	if (do_memsw_account())
6663 		page_counter_charge(&memcg->memsw, nr_pages);
6664 	css_get_many(&memcg->css, nr_pages);
6665 
6666 	commit_charge(newpage, memcg, false);
6667 
6668 	local_irq_save(flags);
6669 	mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6670 			nr_pages);
6671 	memcg_check_events(memcg, newpage);
6672 	local_irq_restore(flags);
6673 }
6674 
6675 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6676 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6677 
6678 void mem_cgroup_sk_alloc(struct sock *sk)
6679 {
6680 	struct mem_cgroup *memcg;
6681 
6682 	if (!mem_cgroup_sockets_enabled)
6683 		return;
6684 
6685 	/*
6686 	 * Socket cloning can throw us here with sk_memcg already
6687 	 * filled. It won't however, necessarily happen from
6688 	 * process context. So the test for root memcg given
6689 	 * the current task's memcg won't help us in this case.
6690 	 *
6691 	 * Respecting the original socket's memcg is a better
6692 	 * decision in this case.
6693 	 */
6694 	if (sk->sk_memcg) {
6695 		css_get(&sk->sk_memcg->css);
6696 		return;
6697 	}
6698 
6699 	rcu_read_lock();
6700 	memcg = mem_cgroup_from_task(current);
6701 	if (memcg == root_mem_cgroup)
6702 		goto out;
6703 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6704 		goto out;
6705 	if (css_tryget_online(&memcg->css))
6706 		sk->sk_memcg = memcg;
6707 out:
6708 	rcu_read_unlock();
6709 }
6710 
6711 void mem_cgroup_sk_free(struct sock *sk)
6712 {
6713 	if (sk->sk_memcg)
6714 		css_put(&sk->sk_memcg->css);
6715 }
6716 
6717 /**
6718  * mem_cgroup_charge_skmem - charge socket memory
6719  * @memcg: memcg to charge
6720  * @nr_pages: number of pages to charge
6721  *
6722  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6723  * @memcg's configured limit, %false if the charge had to be forced.
6724  */
6725 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6726 {
6727 	gfp_t gfp_mask = GFP_KERNEL;
6728 
6729 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6730 		struct page_counter *fail;
6731 
6732 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6733 			memcg->tcpmem_pressure = 0;
6734 			return true;
6735 		}
6736 		page_counter_charge(&memcg->tcpmem, nr_pages);
6737 		memcg->tcpmem_pressure = 1;
6738 		return false;
6739 	}
6740 
6741 	/* Don't block in the packet receive path */
6742 	if (in_softirq())
6743 		gfp_mask = GFP_NOWAIT;
6744 
6745 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6746 
6747 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6748 		return true;
6749 
6750 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6751 	return false;
6752 }
6753 
6754 /**
6755  * mem_cgroup_uncharge_skmem - uncharge socket memory
6756  * @memcg: memcg to uncharge
6757  * @nr_pages: number of pages to uncharge
6758  */
6759 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6760 {
6761 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6762 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6763 		return;
6764 	}
6765 
6766 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6767 
6768 	refill_stock(memcg, nr_pages);
6769 }
6770 
6771 static int __init cgroup_memory(char *s)
6772 {
6773 	char *token;
6774 
6775 	while ((token = strsep(&s, ",")) != NULL) {
6776 		if (!*token)
6777 			continue;
6778 		if (!strcmp(token, "nosocket"))
6779 			cgroup_memory_nosocket = true;
6780 		if (!strcmp(token, "nokmem"))
6781 			cgroup_memory_nokmem = true;
6782 	}
6783 	return 0;
6784 }
6785 __setup("cgroup.memory=", cgroup_memory);
6786 
6787 /*
6788  * subsys_initcall() for memory controller.
6789  *
6790  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6791  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6792  * basically everything that doesn't depend on a specific mem_cgroup structure
6793  * should be initialized from here.
6794  */
6795 static int __init mem_cgroup_init(void)
6796 {
6797 	int cpu, node;
6798 
6799 #ifdef CONFIG_MEMCG_KMEM
6800 	/*
6801 	 * Kmem cache creation is mostly done with the slab_mutex held,
6802 	 * so use a workqueue with limited concurrency to avoid stalling
6803 	 * all worker threads in case lots of cgroups are created and
6804 	 * destroyed simultaneously.
6805 	 */
6806 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6807 	BUG_ON(!memcg_kmem_cache_wq);
6808 #endif
6809 
6810 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6811 				  memcg_hotplug_cpu_dead);
6812 
6813 	for_each_possible_cpu(cpu)
6814 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6815 			  drain_local_stock);
6816 
6817 	for_each_node(node) {
6818 		struct mem_cgroup_tree_per_node *rtpn;
6819 
6820 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6821 				    node_online(node) ? node : NUMA_NO_NODE);
6822 
6823 		rtpn->rb_root = RB_ROOT;
6824 		rtpn->rb_rightmost = NULL;
6825 		spin_lock_init(&rtpn->lock);
6826 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6827 	}
6828 
6829 	return 0;
6830 }
6831 subsys_initcall(mem_cgroup_init);
6832 
6833 #ifdef CONFIG_MEMCG_SWAP
6834 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6835 {
6836 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6837 		/*
6838 		 * The root cgroup cannot be destroyed, so it's refcount must
6839 		 * always be >= 1.
6840 		 */
6841 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6842 			VM_BUG_ON(1);
6843 			break;
6844 		}
6845 		memcg = parent_mem_cgroup(memcg);
6846 		if (!memcg)
6847 			memcg = root_mem_cgroup;
6848 	}
6849 	return memcg;
6850 }
6851 
6852 /**
6853  * mem_cgroup_swapout - transfer a memsw charge to swap
6854  * @page: page whose memsw charge to transfer
6855  * @entry: swap entry to move the charge to
6856  *
6857  * Transfer the memsw charge of @page to @entry.
6858  */
6859 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6860 {
6861 	struct mem_cgroup *memcg, *swap_memcg;
6862 	unsigned int nr_entries;
6863 	unsigned short oldid;
6864 
6865 	VM_BUG_ON_PAGE(PageLRU(page), page);
6866 	VM_BUG_ON_PAGE(page_count(page), page);
6867 
6868 	if (!do_memsw_account())
6869 		return;
6870 
6871 	memcg = page->mem_cgroup;
6872 
6873 	/* Readahead page, never charged */
6874 	if (!memcg)
6875 		return;
6876 
6877 	/*
6878 	 * In case the memcg owning these pages has been offlined and doesn't
6879 	 * have an ID allocated to it anymore, charge the closest online
6880 	 * ancestor for the swap instead and transfer the memory+swap charge.
6881 	 */
6882 	swap_memcg = mem_cgroup_id_get_online(memcg);
6883 	nr_entries = hpage_nr_pages(page);
6884 	/* Get references for the tail pages, too */
6885 	if (nr_entries > 1)
6886 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6887 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6888 				   nr_entries);
6889 	VM_BUG_ON_PAGE(oldid, page);
6890 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6891 
6892 	page->mem_cgroup = NULL;
6893 
6894 	if (!mem_cgroup_is_root(memcg))
6895 		page_counter_uncharge(&memcg->memory, nr_entries);
6896 
6897 	if (memcg != swap_memcg) {
6898 		if (!mem_cgroup_is_root(swap_memcg))
6899 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6900 		page_counter_uncharge(&memcg->memsw, nr_entries);
6901 	}
6902 
6903 	/*
6904 	 * Interrupts should be disabled here because the caller holds the
6905 	 * i_pages lock which is taken with interrupts-off. It is
6906 	 * important here to have the interrupts disabled because it is the
6907 	 * only synchronisation we have for updating the per-CPU variables.
6908 	 */
6909 	VM_BUG_ON(!irqs_disabled());
6910 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6911 				     -nr_entries);
6912 	memcg_check_events(memcg, page);
6913 
6914 	if (!mem_cgroup_is_root(memcg))
6915 		css_put_many(&memcg->css, nr_entries);
6916 }
6917 
6918 /**
6919  * mem_cgroup_try_charge_swap - try charging swap space for a page
6920  * @page: page being added to swap
6921  * @entry: swap entry to charge
6922  *
6923  * Try to charge @page's memcg for the swap space at @entry.
6924  *
6925  * Returns 0 on success, -ENOMEM on failure.
6926  */
6927 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6928 {
6929 	unsigned int nr_pages = hpage_nr_pages(page);
6930 	struct page_counter *counter;
6931 	struct mem_cgroup *memcg;
6932 	unsigned short oldid;
6933 
6934 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6935 		return 0;
6936 
6937 	memcg = page->mem_cgroup;
6938 
6939 	/* Readahead page, never charged */
6940 	if (!memcg)
6941 		return 0;
6942 
6943 	if (!entry.val) {
6944 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6945 		return 0;
6946 	}
6947 
6948 	memcg = mem_cgroup_id_get_online(memcg);
6949 
6950 	if (!mem_cgroup_is_root(memcg) &&
6951 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6952 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6953 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6954 		mem_cgroup_id_put(memcg);
6955 		return -ENOMEM;
6956 	}
6957 
6958 	/* Get references for the tail pages, too */
6959 	if (nr_pages > 1)
6960 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6961 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6962 	VM_BUG_ON_PAGE(oldid, page);
6963 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6964 
6965 	return 0;
6966 }
6967 
6968 /**
6969  * mem_cgroup_uncharge_swap - uncharge swap space
6970  * @entry: swap entry to uncharge
6971  * @nr_pages: the amount of swap space to uncharge
6972  */
6973 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6974 {
6975 	struct mem_cgroup *memcg;
6976 	unsigned short id;
6977 
6978 	if (!do_swap_account)
6979 		return;
6980 
6981 	id = swap_cgroup_record(entry, 0, nr_pages);
6982 	rcu_read_lock();
6983 	memcg = mem_cgroup_from_id(id);
6984 	if (memcg) {
6985 		if (!mem_cgroup_is_root(memcg)) {
6986 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6987 				page_counter_uncharge(&memcg->swap, nr_pages);
6988 			else
6989 				page_counter_uncharge(&memcg->memsw, nr_pages);
6990 		}
6991 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6992 		mem_cgroup_id_put_many(memcg, nr_pages);
6993 	}
6994 	rcu_read_unlock();
6995 }
6996 
6997 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6998 {
6999 	long nr_swap_pages = get_nr_swap_pages();
7000 
7001 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7002 		return nr_swap_pages;
7003 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7004 		nr_swap_pages = min_t(long, nr_swap_pages,
7005 				      READ_ONCE(memcg->swap.max) -
7006 				      page_counter_read(&memcg->swap));
7007 	return nr_swap_pages;
7008 }
7009 
7010 bool mem_cgroup_swap_full(struct page *page)
7011 {
7012 	struct mem_cgroup *memcg;
7013 
7014 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7015 
7016 	if (vm_swap_full())
7017 		return true;
7018 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7019 		return false;
7020 
7021 	memcg = page->mem_cgroup;
7022 	if (!memcg)
7023 		return false;
7024 
7025 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7026 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7027 			return true;
7028 
7029 	return false;
7030 }
7031 
7032 /* for remember boot option*/
7033 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7034 static int really_do_swap_account __initdata = 1;
7035 #else
7036 static int really_do_swap_account __initdata;
7037 #endif
7038 
7039 static int __init enable_swap_account(char *s)
7040 {
7041 	if (!strcmp(s, "1"))
7042 		really_do_swap_account = 1;
7043 	else if (!strcmp(s, "0"))
7044 		really_do_swap_account = 0;
7045 	return 1;
7046 }
7047 __setup("swapaccount=", enable_swap_account);
7048 
7049 static u64 swap_current_read(struct cgroup_subsys_state *css,
7050 			     struct cftype *cft)
7051 {
7052 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7053 
7054 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7055 }
7056 
7057 static int swap_max_show(struct seq_file *m, void *v)
7058 {
7059 	return seq_puts_memcg_tunable(m,
7060 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7061 }
7062 
7063 static ssize_t swap_max_write(struct kernfs_open_file *of,
7064 			      char *buf, size_t nbytes, loff_t off)
7065 {
7066 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7067 	unsigned long max;
7068 	int err;
7069 
7070 	buf = strstrip(buf);
7071 	err = page_counter_memparse(buf, "max", &max);
7072 	if (err)
7073 		return err;
7074 
7075 	xchg(&memcg->swap.max, max);
7076 
7077 	return nbytes;
7078 }
7079 
7080 static int swap_events_show(struct seq_file *m, void *v)
7081 {
7082 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7083 
7084 	seq_printf(m, "max %lu\n",
7085 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7086 	seq_printf(m, "fail %lu\n",
7087 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7088 
7089 	return 0;
7090 }
7091 
7092 static struct cftype swap_files[] = {
7093 	{
7094 		.name = "swap.current",
7095 		.flags = CFTYPE_NOT_ON_ROOT,
7096 		.read_u64 = swap_current_read,
7097 	},
7098 	{
7099 		.name = "swap.max",
7100 		.flags = CFTYPE_NOT_ON_ROOT,
7101 		.seq_show = swap_max_show,
7102 		.write = swap_max_write,
7103 	},
7104 	{
7105 		.name = "swap.events",
7106 		.flags = CFTYPE_NOT_ON_ROOT,
7107 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7108 		.seq_show = swap_events_show,
7109 	},
7110 	{ }	/* terminate */
7111 };
7112 
7113 static struct cftype memsw_cgroup_files[] = {
7114 	{
7115 		.name = "memsw.usage_in_bytes",
7116 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7117 		.read_u64 = mem_cgroup_read_u64,
7118 	},
7119 	{
7120 		.name = "memsw.max_usage_in_bytes",
7121 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7122 		.write = mem_cgroup_reset,
7123 		.read_u64 = mem_cgroup_read_u64,
7124 	},
7125 	{
7126 		.name = "memsw.limit_in_bytes",
7127 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7128 		.write = mem_cgroup_write,
7129 		.read_u64 = mem_cgroup_read_u64,
7130 	},
7131 	{
7132 		.name = "memsw.failcnt",
7133 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7134 		.write = mem_cgroup_reset,
7135 		.read_u64 = mem_cgroup_read_u64,
7136 	},
7137 	{ },	/* terminate */
7138 };
7139 
7140 static int __init mem_cgroup_swap_init(void)
7141 {
7142 	if (!mem_cgroup_disabled() && really_do_swap_account) {
7143 		do_swap_account = 1;
7144 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7145 					       swap_files));
7146 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7147 						  memsw_cgroup_files));
7148 	}
7149 	return 0;
7150 }
7151 subsys_initcall(mem_cgroup_swap_init);
7152 
7153 #endif /* CONFIG_MEMCG_SWAP */
7154