1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/pagewalk.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include <linux/psi.h> 61 #include <linux/seq_buf.h> 62 #include "internal.h" 63 #include <net/sock.h> 64 #include <net/ip.h> 65 #include "slab.h" 66 67 #include <linux/uaccess.h> 68 69 #include <trace/events/vmscan.h> 70 71 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 72 EXPORT_SYMBOL(memory_cgrp_subsys); 73 74 struct mem_cgroup *root_mem_cgroup __read_mostly; 75 76 /* Active memory cgroup to use from an interrupt context */ 77 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 78 79 /* Socket memory accounting disabled? */ 80 static bool cgroup_memory_nosocket; 81 82 /* Kernel memory accounting disabled? */ 83 static bool cgroup_memory_nokmem; 84 85 /* Whether the swap controller is active */ 86 #ifdef CONFIG_MEMCG_SWAP 87 bool cgroup_memory_noswap __read_mostly; 88 #else 89 #define cgroup_memory_noswap 1 90 #endif 91 92 #ifdef CONFIG_CGROUP_WRITEBACK 93 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 94 #endif 95 96 /* Whether legacy memory+swap accounting is active */ 97 static bool do_memsw_account(void) 98 { 99 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap; 100 } 101 102 #define THRESHOLDS_EVENTS_TARGET 128 103 #define SOFTLIMIT_EVENTS_TARGET 1024 104 105 /* 106 * Cgroups above their limits are maintained in a RB-Tree, independent of 107 * their hierarchy representation 108 */ 109 110 struct mem_cgroup_tree_per_node { 111 struct rb_root rb_root; 112 struct rb_node *rb_rightmost; 113 spinlock_t lock; 114 }; 115 116 struct mem_cgroup_tree { 117 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 118 }; 119 120 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 121 122 /* for OOM */ 123 struct mem_cgroup_eventfd_list { 124 struct list_head list; 125 struct eventfd_ctx *eventfd; 126 }; 127 128 /* 129 * cgroup_event represents events which userspace want to receive. 130 */ 131 struct mem_cgroup_event { 132 /* 133 * memcg which the event belongs to. 134 */ 135 struct mem_cgroup *memcg; 136 /* 137 * eventfd to signal userspace about the event. 138 */ 139 struct eventfd_ctx *eventfd; 140 /* 141 * Each of these stored in a list by the cgroup. 142 */ 143 struct list_head list; 144 /* 145 * register_event() callback will be used to add new userspace 146 * waiter for changes related to this event. Use eventfd_signal() 147 * on eventfd to send notification to userspace. 148 */ 149 int (*register_event)(struct mem_cgroup *memcg, 150 struct eventfd_ctx *eventfd, const char *args); 151 /* 152 * unregister_event() callback will be called when userspace closes 153 * the eventfd or on cgroup removing. This callback must be set, 154 * if you want provide notification functionality. 155 */ 156 void (*unregister_event)(struct mem_cgroup *memcg, 157 struct eventfd_ctx *eventfd); 158 /* 159 * All fields below needed to unregister event when 160 * userspace closes eventfd. 161 */ 162 poll_table pt; 163 wait_queue_head_t *wqh; 164 wait_queue_entry_t wait; 165 struct work_struct remove; 166 }; 167 168 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 169 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 170 171 /* Stuffs for move charges at task migration. */ 172 /* 173 * Types of charges to be moved. 174 */ 175 #define MOVE_ANON 0x1U 176 #define MOVE_FILE 0x2U 177 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 178 179 /* "mc" and its members are protected by cgroup_mutex */ 180 static struct move_charge_struct { 181 spinlock_t lock; /* for from, to */ 182 struct mm_struct *mm; 183 struct mem_cgroup *from; 184 struct mem_cgroup *to; 185 unsigned long flags; 186 unsigned long precharge; 187 unsigned long moved_charge; 188 unsigned long moved_swap; 189 struct task_struct *moving_task; /* a task moving charges */ 190 wait_queue_head_t waitq; /* a waitq for other context */ 191 } mc = { 192 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 193 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 194 }; 195 196 /* 197 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 198 * limit reclaim to prevent infinite loops, if they ever occur. 199 */ 200 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 201 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 202 203 /* for encoding cft->private value on file */ 204 enum res_type { 205 _MEM, 206 _MEMSWAP, 207 _OOM_TYPE, 208 _KMEM, 209 _TCP, 210 }; 211 212 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 213 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 214 #define MEMFILE_ATTR(val) ((val) & 0xffff) 215 /* Used for OOM nofiier */ 216 #define OOM_CONTROL (0) 217 218 /* 219 * Iteration constructs for visiting all cgroups (under a tree). If 220 * loops are exited prematurely (break), mem_cgroup_iter_break() must 221 * be used for reference counting. 222 */ 223 #define for_each_mem_cgroup_tree(iter, root) \ 224 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 225 iter != NULL; \ 226 iter = mem_cgroup_iter(root, iter, NULL)) 227 228 #define for_each_mem_cgroup(iter) \ 229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 230 iter != NULL; \ 231 iter = mem_cgroup_iter(NULL, iter, NULL)) 232 233 static inline bool should_force_charge(void) 234 { 235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 236 (current->flags & PF_EXITING); 237 } 238 239 /* Some nice accessors for the vmpressure. */ 240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 241 { 242 if (!memcg) 243 memcg = root_mem_cgroup; 244 return &memcg->vmpressure; 245 } 246 247 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 248 { 249 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 250 } 251 252 #ifdef CONFIG_MEMCG_KMEM 253 extern spinlock_t css_set_lock; 254 255 static void obj_cgroup_release(struct percpu_ref *ref) 256 { 257 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 258 struct mem_cgroup *memcg; 259 unsigned int nr_bytes; 260 unsigned int nr_pages; 261 unsigned long flags; 262 263 /* 264 * At this point all allocated objects are freed, and 265 * objcg->nr_charged_bytes can't have an arbitrary byte value. 266 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 267 * 268 * The following sequence can lead to it: 269 * 1) CPU0: objcg == stock->cached_objcg 270 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 271 * PAGE_SIZE bytes are charged 272 * 3) CPU1: a process from another memcg is allocating something, 273 * the stock if flushed, 274 * objcg->nr_charged_bytes = PAGE_SIZE - 92 275 * 5) CPU0: we do release this object, 276 * 92 bytes are added to stock->nr_bytes 277 * 6) CPU0: stock is flushed, 278 * 92 bytes are added to objcg->nr_charged_bytes 279 * 280 * In the result, nr_charged_bytes == PAGE_SIZE. 281 * This page will be uncharged in obj_cgroup_release(). 282 */ 283 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 284 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 285 nr_pages = nr_bytes >> PAGE_SHIFT; 286 287 spin_lock_irqsave(&css_set_lock, flags); 288 memcg = obj_cgroup_memcg(objcg); 289 if (nr_pages) 290 __memcg_kmem_uncharge(memcg, nr_pages); 291 list_del(&objcg->list); 292 mem_cgroup_put(memcg); 293 spin_unlock_irqrestore(&css_set_lock, flags); 294 295 percpu_ref_exit(ref); 296 kfree_rcu(objcg, rcu); 297 } 298 299 static struct obj_cgroup *obj_cgroup_alloc(void) 300 { 301 struct obj_cgroup *objcg; 302 int ret; 303 304 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 305 if (!objcg) 306 return NULL; 307 308 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 309 GFP_KERNEL); 310 if (ret) { 311 kfree(objcg); 312 return NULL; 313 } 314 INIT_LIST_HEAD(&objcg->list); 315 return objcg; 316 } 317 318 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 319 struct mem_cgroup *parent) 320 { 321 struct obj_cgroup *objcg, *iter; 322 323 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 324 325 spin_lock_irq(&css_set_lock); 326 327 /* Move active objcg to the parent's list */ 328 xchg(&objcg->memcg, parent); 329 css_get(&parent->css); 330 list_add(&objcg->list, &parent->objcg_list); 331 332 /* Move already reparented objcgs to the parent's list */ 333 list_for_each_entry(iter, &memcg->objcg_list, list) { 334 css_get(&parent->css); 335 xchg(&iter->memcg, parent); 336 css_put(&memcg->css); 337 } 338 list_splice(&memcg->objcg_list, &parent->objcg_list); 339 340 spin_unlock_irq(&css_set_lock); 341 342 percpu_ref_kill(&objcg->refcnt); 343 } 344 345 /* 346 * This will be used as a shrinker list's index. 347 * The main reason for not using cgroup id for this: 348 * this works better in sparse environments, where we have a lot of memcgs, 349 * but only a few kmem-limited. Or also, if we have, for instance, 200 350 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 351 * 200 entry array for that. 352 * 353 * The current size of the caches array is stored in memcg_nr_cache_ids. It 354 * will double each time we have to increase it. 355 */ 356 static DEFINE_IDA(memcg_cache_ida); 357 int memcg_nr_cache_ids; 358 359 /* Protects memcg_nr_cache_ids */ 360 static DECLARE_RWSEM(memcg_cache_ids_sem); 361 362 void memcg_get_cache_ids(void) 363 { 364 down_read(&memcg_cache_ids_sem); 365 } 366 367 void memcg_put_cache_ids(void) 368 { 369 up_read(&memcg_cache_ids_sem); 370 } 371 372 /* 373 * MIN_SIZE is different than 1, because we would like to avoid going through 374 * the alloc/free process all the time. In a small machine, 4 kmem-limited 375 * cgroups is a reasonable guess. In the future, it could be a parameter or 376 * tunable, but that is strictly not necessary. 377 * 378 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 379 * this constant directly from cgroup, but it is understandable that this is 380 * better kept as an internal representation in cgroup.c. In any case, the 381 * cgrp_id space is not getting any smaller, and we don't have to necessarily 382 * increase ours as well if it increases. 383 */ 384 #define MEMCG_CACHES_MIN_SIZE 4 385 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 386 387 /* 388 * A lot of the calls to the cache allocation functions are expected to be 389 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 390 * conditional to this static branch, we'll have to allow modules that does 391 * kmem_cache_alloc and the such to see this symbol as well 392 */ 393 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 394 EXPORT_SYMBOL(memcg_kmem_enabled_key); 395 #endif 396 397 static int memcg_shrinker_map_size; 398 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 399 400 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 401 { 402 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 403 } 404 405 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 406 int size, int old_size) 407 { 408 struct memcg_shrinker_map *new, *old; 409 int nid; 410 411 lockdep_assert_held(&memcg_shrinker_map_mutex); 412 413 for_each_node(nid) { 414 old = rcu_dereference_protected( 415 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 416 /* Not yet online memcg */ 417 if (!old) 418 return 0; 419 420 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 421 if (!new) 422 return -ENOMEM; 423 424 /* Set all old bits, clear all new bits */ 425 memset(new->map, (int)0xff, old_size); 426 memset((void *)new->map + old_size, 0, size - old_size); 427 428 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 429 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 430 } 431 432 return 0; 433 } 434 435 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 436 { 437 struct mem_cgroup_per_node *pn; 438 struct memcg_shrinker_map *map; 439 int nid; 440 441 if (mem_cgroup_is_root(memcg)) 442 return; 443 444 for_each_node(nid) { 445 pn = mem_cgroup_nodeinfo(memcg, nid); 446 map = rcu_dereference_protected(pn->shrinker_map, true); 447 if (map) 448 kvfree(map); 449 rcu_assign_pointer(pn->shrinker_map, NULL); 450 } 451 } 452 453 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 454 { 455 struct memcg_shrinker_map *map; 456 int nid, size, ret = 0; 457 458 if (mem_cgroup_is_root(memcg)) 459 return 0; 460 461 mutex_lock(&memcg_shrinker_map_mutex); 462 size = memcg_shrinker_map_size; 463 for_each_node(nid) { 464 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid); 465 if (!map) { 466 memcg_free_shrinker_maps(memcg); 467 ret = -ENOMEM; 468 break; 469 } 470 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 471 } 472 mutex_unlock(&memcg_shrinker_map_mutex); 473 474 return ret; 475 } 476 477 int memcg_expand_shrinker_maps(int new_id) 478 { 479 int size, old_size, ret = 0; 480 struct mem_cgroup *memcg; 481 482 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 483 old_size = memcg_shrinker_map_size; 484 if (size <= old_size) 485 return 0; 486 487 mutex_lock(&memcg_shrinker_map_mutex); 488 if (!root_mem_cgroup) 489 goto unlock; 490 491 for_each_mem_cgroup(memcg) { 492 if (mem_cgroup_is_root(memcg)) 493 continue; 494 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 495 if (ret) { 496 mem_cgroup_iter_break(NULL, memcg); 497 goto unlock; 498 } 499 } 500 unlock: 501 if (!ret) 502 memcg_shrinker_map_size = size; 503 mutex_unlock(&memcg_shrinker_map_mutex); 504 return ret; 505 } 506 507 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 508 { 509 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 510 struct memcg_shrinker_map *map; 511 512 rcu_read_lock(); 513 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 514 /* Pairs with smp mb in shrink_slab() */ 515 smp_mb__before_atomic(); 516 set_bit(shrinker_id, map->map); 517 rcu_read_unlock(); 518 } 519 } 520 521 /** 522 * mem_cgroup_css_from_page - css of the memcg associated with a page 523 * @page: page of interest 524 * 525 * If memcg is bound to the default hierarchy, css of the memcg associated 526 * with @page is returned. The returned css remains associated with @page 527 * until it is released. 528 * 529 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 530 * is returned. 531 */ 532 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 533 { 534 struct mem_cgroup *memcg; 535 536 memcg = page->mem_cgroup; 537 538 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 539 memcg = root_mem_cgroup; 540 541 return &memcg->css; 542 } 543 544 /** 545 * page_cgroup_ino - return inode number of the memcg a page is charged to 546 * @page: the page 547 * 548 * Look up the closest online ancestor of the memory cgroup @page is charged to 549 * and return its inode number or 0 if @page is not charged to any cgroup. It 550 * is safe to call this function without holding a reference to @page. 551 * 552 * Note, this function is inherently racy, because there is nothing to prevent 553 * the cgroup inode from getting torn down and potentially reallocated a moment 554 * after page_cgroup_ino() returns, so it only should be used by callers that 555 * do not care (such as procfs interfaces). 556 */ 557 ino_t page_cgroup_ino(struct page *page) 558 { 559 struct mem_cgroup *memcg; 560 unsigned long ino = 0; 561 562 rcu_read_lock(); 563 memcg = page->mem_cgroup; 564 565 /* 566 * The lowest bit set means that memcg isn't a valid 567 * memcg pointer, but a obj_cgroups pointer. 568 * In this case the page is shared and doesn't belong 569 * to any specific memory cgroup. 570 */ 571 if ((unsigned long) memcg & 0x1UL) 572 memcg = NULL; 573 574 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 575 memcg = parent_mem_cgroup(memcg); 576 if (memcg) 577 ino = cgroup_ino(memcg->css.cgroup); 578 rcu_read_unlock(); 579 return ino; 580 } 581 582 static struct mem_cgroup_per_node * 583 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 584 { 585 int nid = page_to_nid(page); 586 587 return memcg->nodeinfo[nid]; 588 } 589 590 static struct mem_cgroup_tree_per_node * 591 soft_limit_tree_node(int nid) 592 { 593 return soft_limit_tree.rb_tree_per_node[nid]; 594 } 595 596 static struct mem_cgroup_tree_per_node * 597 soft_limit_tree_from_page(struct page *page) 598 { 599 int nid = page_to_nid(page); 600 601 return soft_limit_tree.rb_tree_per_node[nid]; 602 } 603 604 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 605 struct mem_cgroup_tree_per_node *mctz, 606 unsigned long new_usage_in_excess) 607 { 608 struct rb_node **p = &mctz->rb_root.rb_node; 609 struct rb_node *parent = NULL; 610 struct mem_cgroup_per_node *mz_node; 611 bool rightmost = true; 612 613 if (mz->on_tree) 614 return; 615 616 mz->usage_in_excess = new_usage_in_excess; 617 if (!mz->usage_in_excess) 618 return; 619 while (*p) { 620 parent = *p; 621 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 622 tree_node); 623 if (mz->usage_in_excess < mz_node->usage_in_excess) { 624 p = &(*p)->rb_left; 625 rightmost = false; 626 } 627 628 /* 629 * We can't avoid mem cgroups that are over their soft 630 * limit by the same amount 631 */ 632 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 633 p = &(*p)->rb_right; 634 } 635 636 if (rightmost) 637 mctz->rb_rightmost = &mz->tree_node; 638 639 rb_link_node(&mz->tree_node, parent, p); 640 rb_insert_color(&mz->tree_node, &mctz->rb_root); 641 mz->on_tree = true; 642 } 643 644 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 645 struct mem_cgroup_tree_per_node *mctz) 646 { 647 if (!mz->on_tree) 648 return; 649 650 if (&mz->tree_node == mctz->rb_rightmost) 651 mctz->rb_rightmost = rb_prev(&mz->tree_node); 652 653 rb_erase(&mz->tree_node, &mctz->rb_root); 654 mz->on_tree = false; 655 } 656 657 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 658 struct mem_cgroup_tree_per_node *mctz) 659 { 660 unsigned long flags; 661 662 spin_lock_irqsave(&mctz->lock, flags); 663 __mem_cgroup_remove_exceeded(mz, mctz); 664 spin_unlock_irqrestore(&mctz->lock, flags); 665 } 666 667 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 668 { 669 unsigned long nr_pages = page_counter_read(&memcg->memory); 670 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 671 unsigned long excess = 0; 672 673 if (nr_pages > soft_limit) 674 excess = nr_pages - soft_limit; 675 676 return excess; 677 } 678 679 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 680 { 681 unsigned long excess; 682 struct mem_cgroup_per_node *mz; 683 struct mem_cgroup_tree_per_node *mctz; 684 685 mctz = soft_limit_tree_from_page(page); 686 if (!mctz) 687 return; 688 /* 689 * Necessary to update all ancestors when hierarchy is used. 690 * because their event counter is not touched. 691 */ 692 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 693 mz = mem_cgroup_page_nodeinfo(memcg, page); 694 excess = soft_limit_excess(memcg); 695 /* 696 * We have to update the tree if mz is on RB-tree or 697 * mem is over its softlimit. 698 */ 699 if (excess || mz->on_tree) { 700 unsigned long flags; 701 702 spin_lock_irqsave(&mctz->lock, flags); 703 /* if on-tree, remove it */ 704 if (mz->on_tree) 705 __mem_cgroup_remove_exceeded(mz, mctz); 706 /* 707 * Insert again. mz->usage_in_excess will be updated. 708 * If excess is 0, no tree ops. 709 */ 710 __mem_cgroup_insert_exceeded(mz, mctz, excess); 711 spin_unlock_irqrestore(&mctz->lock, flags); 712 } 713 } 714 } 715 716 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 717 { 718 struct mem_cgroup_tree_per_node *mctz; 719 struct mem_cgroup_per_node *mz; 720 int nid; 721 722 for_each_node(nid) { 723 mz = mem_cgroup_nodeinfo(memcg, nid); 724 mctz = soft_limit_tree_node(nid); 725 if (mctz) 726 mem_cgroup_remove_exceeded(mz, mctz); 727 } 728 } 729 730 static struct mem_cgroup_per_node * 731 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 732 { 733 struct mem_cgroup_per_node *mz; 734 735 retry: 736 mz = NULL; 737 if (!mctz->rb_rightmost) 738 goto done; /* Nothing to reclaim from */ 739 740 mz = rb_entry(mctz->rb_rightmost, 741 struct mem_cgroup_per_node, tree_node); 742 /* 743 * Remove the node now but someone else can add it back, 744 * we will to add it back at the end of reclaim to its correct 745 * position in the tree. 746 */ 747 __mem_cgroup_remove_exceeded(mz, mctz); 748 if (!soft_limit_excess(mz->memcg) || 749 !css_tryget(&mz->memcg->css)) 750 goto retry; 751 done: 752 return mz; 753 } 754 755 static struct mem_cgroup_per_node * 756 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 757 { 758 struct mem_cgroup_per_node *mz; 759 760 spin_lock_irq(&mctz->lock); 761 mz = __mem_cgroup_largest_soft_limit_node(mctz); 762 spin_unlock_irq(&mctz->lock); 763 return mz; 764 } 765 766 /** 767 * __mod_memcg_state - update cgroup memory statistics 768 * @memcg: the memory cgroup 769 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 770 * @val: delta to add to the counter, can be negative 771 */ 772 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 773 { 774 long x, threshold = MEMCG_CHARGE_BATCH; 775 776 if (mem_cgroup_disabled()) 777 return; 778 779 if (memcg_stat_item_in_bytes(idx)) 780 threshold <<= PAGE_SHIFT; 781 782 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 783 if (unlikely(abs(x) > threshold)) { 784 struct mem_cgroup *mi; 785 786 /* 787 * Batch local counters to keep them in sync with 788 * the hierarchical ones. 789 */ 790 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 791 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 792 atomic_long_add(x, &mi->vmstats[idx]); 793 x = 0; 794 } 795 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 796 } 797 798 static struct mem_cgroup_per_node * 799 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 800 { 801 struct mem_cgroup *parent; 802 803 parent = parent_mem_cgroup(pn->memcg); 804 if (!parent) 805 return NULL; 806 return mem_cgroup_nodeinfo(parent, nid); 807 } 808 809 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 810 int val) 811 { 812 struct mem_cgroup_per_node *pn; 813 struct mem_cgroup *memcg; 814 long x, threshold = MEMCG_CHARGE_BATCH; 815 816 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 817 memcg = pn->memcg; 818 819 /* Update memcg */ 820 __mod_memcg_state(memcg, idx, val); 821 822 /* Update lruvec */ 823 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 824 825 if (vmstat_item_in_bytes(idx)) 826 threshold <<= PAGE_SHIFT; 827 828 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 829 if (unlikely(abs(x) > threshold)) { 830 pg_data_t *pgdat = lruvec_pgdat(lruvec); 831 struct mem_cgroup_per_node *pi; 832 833 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 834 atomic_long_add(x, &pi->lruvec_stat[idx]); 835 x = 0; 836 } 837 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 838 } 839 840 /** 841 * __mod_lruvec_state - update lruvec memory statistics 842 * @lruvec: the lruvec 843 * @idx: the stat item 844 * @val: delta to add to the counter, can be negative 845 * 846 * The lruvec is the intersection of the NUMA node and a cgroup. This 847 * function updates the all three counters that are affected by a 848 * change of state at this level: per-node, per-cgroup, per-lruvec. 849 */ 850 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 851 int val) 852 { 853 /* Update node */ 854 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 855 856 /* Update memcg and lruvec */ 857 if (!mem_cgroup_disabled()) 858 __mod_memcg_lruvec_state(lruvec, idx, val); 859 } 860 861 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) 862 { 863 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 864 struct mem_cgroup *memcg; 865 struct lruvec *lruvec; 866 867 rcu_read_lock(); 868 memcg = mem_cgroup_from_obj(p); 869 870 /* 871 * Untracked pages have no memcg, no lruvec. Update only the 872 * node. If we reparent the slab objects to the root memcg, 873 * when we free the slab object, we need to update the per-memcg 874 * vmstats to keep it correct for the root memcg. 875 */ 876 if (!memcg) { 877 __mod_node_page_state(pgdat, idx, val); 878 } else { 879 lruvec = mem_cgroup_lruvec(memcg, pgdat); 880 __mod_lruvec_state(lruvec, idx, val); 881 } 882 rcu_read_unlock(); 883 } 884 885 void mod_memcg_obj_state(void *p, int idx, int val) 886 { 887 struct mem_cgroup *memcg; 888 889 rcu_read_lock(); 890 memcg = mem_cgroup_from_obj(p); 891 if (memcg) 892 mod_memcg_state(memcg, idx, val); 893 rcu_read_unlock(); 894 } 895 896 /** 897 * __count_memcg_events - account VM events in a cgroup 898 * @memcg: the memory cgroup 899 * @idx: the event item 900 * @count: the number of events that occured 901 */ 902 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 903 unsigned long count) 904 { 905 unsigned long x; 906 907 if (mem_cgroup_disabled()) 908 return; 909 910 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 911 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 912 struct mem_cgroup *mi; 913 914 /* 915 * Batch local counters to keep them in sync with 916 * the hierarchical ones. 917 */ 918 __this_cpu_add(memcg->vmstats_local->events[idx], x); 919 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 920 atomic_long_add(x, &mi->vmevents[idx]); 921 x = 0; 922 } 923 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 924 } 925 926 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 927 { 928 return atomic_long_read(&memcg->vmevents[event]); 929 } 930 931 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 932 { 933 long x = 0; 934 int cpu; 935 936 for_each_possible_cpu(cpu) 937 x += per_cpu(memcg->vmstats_local->events[event], cpu); 938 return x; 939 } 940 941 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 942 struct page *page, 943 int nr_pages) 944 { 945 /* pagein of a big page is an event. So, ignore page size */ 946 if (nr_pages > 0) 947 __count_memcg_events(memcg, PGPGIN, 1); 948 else { 949 __count_memcg_events(memcg, PGPGOUT, 1); 950 nr_pages = -nr_pages; /* for event */ 951 } 952 953 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 954 } 955 956 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 957 enum mem_cgroup_events_target target) 958 { 959 unsigned long val, next; 960 961 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 962 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 963 /* from time_after() in jiffies.h */ 964 if ((long)(next - val) < 0) { 965 switch (target) { 966 case MEM_CGROUP_TARGET_THRESH: 967 next = val + THRESHOLDS_EVENTS_TARGET; 968 break; 969 case MEM_CGROUP_TARGET_SOFTLIMIT: 970 next = val + SOFTLIMIT_EVENTS_TARGET; 971 break; 972 default: 973 break; 974 } 975 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 976 return true; 977 } 978 return false; 979 } 980 981 /* 982 * Check events in order. 983 * 984 */ 985 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 986 { 987 /* threshold event is triggered in finer grain than soft limit */ 988 if (unlikely(mem_cgroup_event_ratelimit(memcg, 989 MEM_CGROUP_TARGET_THRESH))) { 990 bool do_softlimit; 991 992 do_softlimit = mem_cgroup_event_ratelimit(memcg, 993 MEM_CGROUP_TARGET_SOFTLIMIT); 994 mem_cgroup_threshold(memcg); 995 if (unlikely(do_softlimit)) 996 mem_cgroup_update_tree(memcg, page); 997 } 998 } 999 1000 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1001 { 1002 /* 1003 * mm_update_next_owner() may clear mm->owner to NULL 1004 * if it races with swapoff, page migration, etc. 1005 * So this can be called with p == NULL. 1006 */ 1007 if (unlikely(!p)) 1008 return NULL; 1009 1010 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 1011 } 1012 EXPORT_SYMBOL(mem_cgroup_from_task); 1013 1014 /** 1015 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 1016 * @mm: mm from which memcg should be extracted. It can be NULL. 1017 * 1018 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 1019 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 1020 * returned. 1021 */ 1022 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1023 { 1024 struct mem_cgroup *memcg; 1025 1026 if (mem_cgroup_disabled()) 1027 return NULL; 1028 1029 rcu_read_lock(); 1030 do { 1031 /* 1032 * Page cache insertions can happen withou an 1033 * actual mm context, e.g. during disk probing 1034 * on boot, loopback IO, acct() writes etc. 1035 */ 1036 if (unlikely(!mm)) 1037 memcg = root_mem_cgroup; 1038 else { 1039 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1040 if (unlikely(!memcg)) 1041 memcg = root_mem_cgroup; 1042 } 1043 } while (!css_tryget(&memcg->css)); 1044 rcu_read_unlock(); 1045 return memcg; 1046 } 1047 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 1048 1049 /** 1050 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 1051 * @page: page from which memcg should be extracted. 1052 * 1053 * Obtain a reference on page->memcg and returns it if successful. Otherwise 1054 * root_mem_cgroup is returned. 1055 */ 1056 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 1057 { 1058 struct mem_cgroup *memcg = page->mem_cgroup; 1059 1060 if (mem_cgroup_disabled()) 1061 return NULL; 1062 1063 rcu_read_lock(); 1064 /* Page should not get uncharged and freed memcg under us. */ 1065 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 1066 memcg = root_mem_cgroup; 1067 rcu_read_unlock(); 1068 return memcg; 1069 } 1070 EXPORT_SYMBOL(get_mem_cgroup_from_page); 1071 1072 static __always_inline struct mem_cgroup *active_memcg(void) 1073 { 1074 if (in_interrupt()) 1075 return this_cpu_read(int_active_memcg); 1076 else 1077 return current->active_memcg; 1078 } 1079 1080 static __always_inline struct mem_cgroup *get_active_memcg(void) 1081 { 1082 struct mem_cgroup *memcg; 1083 1084 rcu_read_lock(); 1085 memcg = active_memcg(); 1086 if (memcg) { 1087 /* current->active_memcg must hold a ref. */ 1088 if (WARN_ON_ONCE(!css_tryget(&memcg->css))) 1089 memcg = root_mem_cgroup; 1090 else 1091 memcg = current->active_memcg; 1092 } 1093 rcu_read_unlock(); 1094 1095 return memcg; 1096 } 1097 1098 static __always_inline bool memcg_kmem_bypass(void) 1099 { 1100 /* Allow remote memcg charging from any context. */ 1101 if (unlikely(active_memcg())) 1102 return false; 1103 1104 /* Memcg to charge can't be determined. */ 1105 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 1106 return true; 1107 1108 return false; 1109 } 1110 1111 /** 1112 * If active memcg is set, do not fallback to current->mm->memcg. 1113 */ 1114 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 1115 { 1116 if (memcg_kmem_bypass()) 1117 return NULL; 1118 1119 if (unlikely(active_memcg())) 1120 return get_active_memcg(); 1121 1122 return get_mem_cgroup_from_mm(current->mm); 1123 } 1124 1125 /** 1126 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1127 * @root: hierarchy root 1128 * @prev: previously returned memcg, NULL on first invocation 1129 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1130 * 1131 * Returns references to children of the hierarchy below @root, or 1132 * @root itself, or %NULL after a full round-trip. 1133 * 1134 * Caller must pass the return value in @prev on subsequent 1135 * invocations for reference counting, or use mem_cgroup_iter_break() 1136 * to cancel a hierarchy walk before the round-trip is complete. 1137 * 1138 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1139 * in the hierarchy among all concurrent reclaimers operating on the 1140 * same node. 1141 */ 1142 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1143 struct mem_cgroup *prev, 1144 struct mem_cgroup_reclaim_cookie *reclaim) 1145 { 1146 struct mem_cgroup_reclaim_iter *iter; 1147 struct cgroup_subsys_state *css = NULL; 1148 struct mem_cgroup *memcg = NULL; 1149 struct mem_cgroup *pos = NULL; 1150 1151 if (mem_cgroup_disabled()) 1152 return NULL; 1153 1154 if (!root) 1155 root = root_mem_cgroup; 1156 1157 if (prev && !reclaim) 1158 pos = prev; 1159 1160 if (!root->use_hierarchy && root != root_mem_cgroup) { 1161 if (prev) 1162 goto out; 1163 return root; 1164 } 1165 1166 rcu_read_lock(); 1167 1168 if (reclaim) { 1169 struct mem_cgroup_per_node *mz; 1170 1171 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1172 iter = &mz->iter; 1173 1174 if (prev && reclaim->generation != iter->generation) 1175 goto out_unlock; 1176 1177 while (1) { 1178 pos = READ_ONCE(iter->position); 1179 if (!pos || css_tryget(&pos->css)) 1180 break; 1181 /* 1182 * css reference reached zero, so iter->position will 1183 * be cleared by ->css_released. However, we should not 1184 * rely on this happening soon, because ->css_released 1185 * is called from a work queue, and by busy-waiting we 1186 * might block it. So we clear iter->position right 1187 * away. 1188 */ 1189 (void)cmpxchg(&iter->position, pos, NULL); 1190 } 1191 } 1192 1193 if (pos) 1194 css = &pos->css; 1195 1196 for (;;) { 1197 css = css_next_descendant_pre(css, &root->css); 1198 if (!css) { 1199 /* 1200 * Reclaimers share the hierarchy walk, and a 1201 * new one might jump in right at the end of 1202 * the hierarchy - make sure they see at least 1203 * one group and restart from the beginning. 1204 */ 1205 if (!prev) 1206 continue; 1207 break; 1208 } 1209 1210 /* 1211 * Verify the css and acquire a reference. The root 1212 * is provided by the caller, so we know it's alive 1213 * and kicking, and don't take an extra reference. 1214 */ 1215 memcg = mem_cgroup_from_css(css); 1216 1217 if (css == &root->css) 1218 break; 1219 1220 if (css_tryget(css)) 1221 break; 1222 1223 memcg = NULL; 1224 } 1225 1226 if (reclaim) { 1227 /* 1228 * The position could have already been updated by a competing 1229 * thread, so check that the value hasn't changed since we read 1230 * it to avoid reclaiming from the same cgroup twice. 1231 */ 1232 (void)cmpxchg(&iter->position, pos, memcg); 1233 1234 if (pos) 1235 css_put(&pos->css); 1236 1237 if (!memcg) 1238 iter->generation++; 1239 else if (!prev) 1240 reclaim->generation = iter->generation; 1241 } 1242 1243 out_unlock: 1244 rcu_read_unlock(); 1245 out: 1246 if (prev && prev != root) 1247 css_put(&prev->css); 1248 1249 return memcg; 1250 } 1251 1252 /** 1253 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1254 * @root: hierarchy root 1255 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1256 */ 1257 void mem_cgroup_iter_break(struct mem_cgroup *root, 1258 struct mem_cgroup *prev) 1259 { 1260 if (!root) 1261 root = root_mem_cgroup; 1262 if (prev && prev != root) 1263 css_put(&prev->css); 1264 } 1265 1266 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1267 struct mem_cgroup *dead_memcg) 1268 { 1269 struct mem_cgroup_reclaim_iter *iter; 1270 struct mem_cgroup_per_node *mz; 1271 int nid; 1272 1273 for_each_node(nid) { 1274 mz = mem_cgroup_nodeinfo(from, nid); 1275 iter = &mz->iter; 1276 cmpxchg(&iter->position, dead_memcg, NULL); 1277 } 1278 } 1279 1280 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1281 { 1282 struct mem_cgroup *memcg = dead_memcg; 1283 struct mem_cgroup *last; 1284 1285 do { 1286 __invalidate_reclaim_iterators(memcg, dead_memcg); 1287 last = memcg; 1288 } while ((memcg = parent_mem_cgroup(memcg))); 1289 1290 /* 1291 * When cgruop1 non-hierarchy mode is used, 1292 * parent_mem_cgroup() does not walk all the way up to the 1293 * cgroup root (root_mem_cgroup). So we have to handle 1294 * dead_memcg from cgroup root separately. 1295 */ 1296 if (last != root_mem_cgroup) 1297 __invalidate_reclaim_iterators(root_mem_cgroup, 1298 dead_memcg); 1299 } 1300 1301 /** 1302 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1303 * @memcg: hierarchy root 1304 * @fn: function to call for each task 1305 * @arg: argument passed to @fn 1306 * 1307 * This function iterates over tasks attached to @memcg or to any of its 1308 * descendants and calls @fn for each task. If @fn returns a non-zero 1309 * value, the function breaks the iteration loop and returns the value. 1310 * Otherwise, it will iterate over all tasks and return 0. 1311 * 1312 * This function must not be called for the root memory cgroup. 1313 */ 1314 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1315 int (*fn)(struct task_struct *, void *), void *arg) 1316 { 1317 struct mem_cgroup *iter; 1318 int ret = 0; 1319 1320 BUG_ON(memcg == root_mem_cgroup); 1321 1322 for_each_mem_cgroup_tree(iter, memcg) { 1323 struct css_task_iter it; 1324 struct task_struct *task; 1325 1326 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1327 while (!ret && (task = css_task_iter_next(&it))) 1328 ret = fn(task, arg); 1329 css_task_iter_end(&it); 1330 if (ret) { 1331 mem_cgroup_iter_break(memcg, iter); 1332 break; 1333 } 1334 } 1335 return ret; 1336 } 1337 1338 /** 1339 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1340 * @page: the page 1341 * @pgdat: pgdat of the page 1342 * 1343 * This function relies on page->mem_cgroup being stable - see the 1344 * access rules in commit_charge(). 1345 */ 1346 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1347 { 1348 struct mem_cgroup_per_node *mz; 1349 struct mem_cgroup *memcg; 1350 struct lruvec *lruvec; 1351 1352 if (mem_cgroup_disabled()) { 1353 lruvec = &pgdat->__lruvec; 1354 goto out; 1355 } 1356 1357 memcg = page->mem_cgroup; 1358 /* 1359 * Swapcache readahead pages are added to the LRU - and 1360 * possibly migrated - before they are charged. 1361 */ 1362 if (!memcg) 1363 memcg = root_mem_cgroup; 1364 1365 mz = mem_cgroup_page_nodeinfo(memcg, page); 1366 lruvec = &mz->lruvec; 1367 out: 1368 /* 1369 * Since a node can be onlined after the mem_cgroup was created, 1370 * we have to be prepared to initialize lruvec->zone here; 1371 * and if offlined then reonlined, we need to reinitialize it. 1372 */ 1373 if (unlikely(lruvec->pgdat != pgdat)) 1374 lruvec->pgdat = pgdat; 1375 return lruvec; 1376 } 1377 1378 /** 1379 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1380 * @lruvec: mem_cgroup per zone lru vector 1381 * @lru: index of lru list the page is sitting on 1382 * @zid: zone id of the accounted pages 1383 * @nr_pages: positive when adding or negative when removing 1384 * 1385 * This function must be called under lru_lock, just before a page is added 1386 * to or just after a page is removed from an lru list (that ordering being 1387 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1388 */ 1389 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1390 int zid, int nr_pages) 1391 { 1392 struct mem_cgroup_per_node *mz; 1393 unsigned long *lru_size; 1394 long size; 1395 1396 if (mem_cgroup_disabled()) 1397 return; 1398 1399 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1400 lru_size = &mz->lru_zone_size[zid][lru]; 1401 1402 if (nr_pages < 0) 1403 *lru_size += nr_pages; 1404 1405 size = *lru_size; 1406 if (WARN_ONCE(size < 0, 1407 "%s(%p, %d, %d): lru_size %ld\n", 1408 __func__, lruvec, lru, nr_pages, size)) { 1409 VM_BUG_ON(1); 1410 *lru_size = 0; 1411 } 1412 1413 if (nr_pages > 0) 1414 *lru_size += nr_pages; 1415 } 1416 1417 /** 1418 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1419 * @memcg: the memory cgroup 1420 * 1421 * Returns the maximum amount of memory @mem can be charged with, in 1422 * pages. 1423 */ 1424 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1425 { 1426 unsigned long margin = 0; 1427 unsigned long count; 1428 unsigned long limit; 1429 1430 count = page_counter_read(&memcg->memory); 1431 limit = READ_ONCE(memcg->memory.max); 1432 if (count < limit) 1433 margin = limit - count; 1434 1435 if (do_memsw_account()) { 1436 count = page_counter_read(&memcg->memsw); 1437 limit = READ_ONCE(memcg->memsw.max); 1438 if (count < limit) 1439 margin = min(margin, limit - count); 1440 else 1441 margin = 0; 1442 } 1443 1444 return margin; 1445 } 1446 1447 /* 1448 * A routine for checking "mem" is under move_account() or not. 1449 * 1450 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1451 * moving cgroups. This is for waiting at high-memory pressure 1452 * caused by "move". 1453 */ 1454 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1455 { 1456 struct mem_cgroup *from; 1457 struct mem_cgroup *to; 1458 bool ret = false; 1459 /* 1460 * Unlike task_move routines, we access mc.to, mc.from not under 1461 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1462 */ 1463 spin_lock(&mc.lock); 1464 from = mc.from; 1465 to = mc.to; 1466 if (!from) 1467 goto unlock; 1468 1469 ret = mem_cgroup_is_descendant(from, memcg) || 1470 mem_cgroup_is_descendant(to, memcg); 1471 unlock: 1472 spin_unlock(&mc.lock); 1473 return ret; 1474 } 1475 1476 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1477 { 1478 if (mc.moving_task && current != mc.moving_task) { 1479 if (mem_cgroup_under_move(memcg)) { 1480 DEFINE_WAIT(wait); 1481 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1482 /* moving charge context might have finished. */ 1483 if (mc.moving_task) 1484 schedule(); 1485 finish_wait(&mc.waitq, &wait); 1486 return true; 1487 } 1488 } 1489 return false; 1490 } 1491 1492 struct memory_stat { 1493 const char *name; 1494 unsigned int ratio; 1495 unsigned int idx; 1496 }; 1497 1498 static struct memory_stat memory_stats[] = { 1499 { "anon", PAGE_SIZE, NR_ANON_MAPPED }, 1500 { "file", PAGE_SIZE, NR_FILE_PAGES }, 1501 { "kernel_stack", 1024, NR_KERNEL_STACK_KB }, 1502 { "percpu", 1, MEMCG_PERCPU_B }, 1503 { "sock", PAGE_SIZE, MEMCG_SOCK }, 1504 { "shmem", PAGE_SIZE, NR_SHMEM }, 1505 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED }, 1506 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY }, 1507 { "file_writeback", PAGE_SIZE, NR_WRITEBACK }, 1508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1509 /* 1510 * The ratio will be initialized in memory_stats_init(). Because 1511 * on some architectures, the macro of HPAGE_PMD_SIZE is not 1512 * constant(e.g. powerpc). 1513 */ 1514 { "anon_thp", 0, NR_ANON_THPS }, 1515 #endif 1516 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON }, 1517 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON }, 1518 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE }, 1519 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE }, 1520 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE }, 1521 1522 /* 1523 * Note: The slab_reclaimable and slab_unreclaimable must be 1524 * together and slab_reclaimable must be in front. 1525 */ 1526 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B }, 1527 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B }, 1528 1529 /* The memory events */ 1530 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON }, 1531 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE }, 1532 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON }, 1533 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE }, 1534 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON }, 1535 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE }, 1536 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM }, 1537 }; 1538 1539 static int __init memory_stats_init(void) 1540 { 1541 int i; 1542 1543 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1544 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1545 if (memory_stats[i].idx == NR_ANON_THPS) 1546 memory_stats[i].ratio = HPAGE_PMD_SIZE; 1547 #endif 1548 VM_BUG_ON(!memory_stats[i].ratio); 1549 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT); 1550 } 1551 1552 return 0; 1553 } 1554 pure_initcall(memory_stats_init); 1555 1556 static char *memory_stat_format(struct mem_cgroup *memcg) 1557 { 1558 struct seq_buf s; 1559 int i; 1560 1561 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1562 if (!s.buffer) 1563 return NULL; 1564 1565 /* 1566 * Provide statistics on the state of the memory subsystem as 1567 * well as cumulative event counters that show past behavior. 1568 * 1569 * This list is ordered following a combination of these gradients: 1570 * 1) generic big picture -> specifics and details 1571 * 2) reflecting userspace activity -> reflecting kernel heuristics 1572 * 1573 * Current memory state: 1574 */ 1575 1576 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1577 u64 size; 1578 1579 size = memcg_page_state(memcg, memory_stats[i].idx); 1580 size *= memory_stats[i].ratio; 1581 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1582 1583 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1584 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) + 1585 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B); 1586 seq_buf_printf(&s, "slab %llu\n", size); 1587 } 1588 } 1589 1590 /* Accumulated memory events */ 1591 1592 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1593 memcg_events(memcg, PGFAULT)); 1594 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1595 memcg_events(memcg, PGMAJFAULT)); 1596 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1597 memcg_events(memcg, PGREFILL)); 1598 seq_buf_printf(&s, "pgscan %lu\n", 1599 memcg_events(memcg, PGSCAN_KSWAPD) + 1600 memcg_events(memcg, PGSCAN_DIRECT)); 1601 seq_buf_printf(&s, "pgsteal %lu\n", 1602 memcg_events(memcg, PGSTEAL_KSWAPD) + 1603 memcg_events(memcg, PGSTEAL_DIRECT)); 1604 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1605 memcg_events(memcg, PGACTIVATE)); 1606 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1607 memcg_events(memcg, PGDEACTIVATE)); 1608 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1609 memcg_events(memcg, PGLAZYFREE)); 1610 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1611 memcg_events(memcg, PGLAZYFREED)); 1612 1613 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1614 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1615 memcg_events(memcg, THP_FAULT_ALLOC)); 1616 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1617 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1618 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1619 1620 /* The above should easily fit into one page */ 1621 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1622 1623 return s.buffer; 1624 } 1625 1626 #define K(x) ((x) << (PAGE_SHIFT-10)) 1627 /** 1628 * mem_cgroup_print_oom_context: Print OOM information relevant to 1629 * memory controller. 1630 * @memcg: The memory cgroup that went over limit 1631 * @p: Task that is going to be killed 1632 * 1633 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1634 * enabled 1635 */ 1636 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1637 { 1638 rcu_read_lock(); 1639 1640 if (memcg) { 1641 pr_cont(",oom_memcg="); 1642 pr_cont_cgroup_path(memcg->css.cgroup); 1643 } else 1644 pr_cont(",global_oom"); 1645 if (p) { 1646 pr_cont(",task_memcg="); 1647 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1648 } 1649 rcu_read_unlock(); 1650 } 1651 1652 /** 1653 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1654 * memory controller. 1655 * @memcg: The memory cgroup that went over limit 1656 */ 1657 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1658 { 1659 char *buf; 1660 1661 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1662 K((u64)page_counter_read(&memcg->memory)), 1663 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1664 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1665 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1666 K((u64)page_counter_read(&memcg->swap)), 1667 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1668 else { 1669 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1670 K((u64)page_counter_read(&memcg->memsw)), 1671 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1672 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1673 K((u64)page_counter_read(&memcg->kmem)), 1674 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1675 } 1676 1677 pr_info("Memory cgroup stats for "); 1678 pr_cont_cgroup_path(memcg->css.cgroup); 1679 pr_cont(":"); 1680 buf = memory_stat_format(memcg); 1681 if (!buf) 1682 return; 1683 pr_info("%s", buf); 1684 kfree(buf); 1685 } 1686 1687 /* 1688 * Return the memory (and swap, if configured) limit for a memcg. 1689 */ 1690 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1691 { 1692 unsigned long max = READ_ONCE(memcg->memory.max); 1693 1694 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 1695 if (mem_cgroup_swappiness(memcg)) 1696 max += min(READ_ONCE(memcg->swap.max), 1697 (unsigned long)total_swap_pages); 1698 } else { /* v1 */ 1699 if (mem_cgroup_swappiness(memcg)) { 1700 /* Calculate swap excess capacity from memsw limit */ 1701 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1702 1703 max += min(swap, (unsigned long)total_swap_pages); 1704 } 1705 } 1706 return max; 1707 } 1708 1709 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1710 { 1711 return page_counter_read(&memcg->memory); 1712 } 1713 1714 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1715 int order) 1716 { 1717 struct oom_control oc = { 1718 .zonelist = NULL, 1719 .nodemask = NULL, 1720 .memcg = memcg, 1721 .gfp_mask = gfp_mask, 1722 .order = order, 1723 }; 1724 bool ret = true; 1725 1726 if (mutex_lock_killable(&oom_lock)) 1727 return true; 1728 1729 if (mem_cgroup_margin(memcg) >= (1 << order)) 1730 goto unlock; 1731 1732 /* 1733 * A few threads which were not waiting at mutex_lock_killable() can 1734 * fail to bail out. Therefore, check again after holding oom_lock. 1735 */ 1736 ret = should_force_charge() || out_of_memory(&oc); 1737 1738 unlock: 1739 mutex_unlock(&oom_lock); 1740 return ret; 1741 } 1742 1743 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1744 pg_data_t *pgdat, 1745 gfp_t gfp_mask, 1746 unsigned long *total_scanned) 1747 { 1748 struct mem_cgroup *victim = NULL; 1749 int total = 0; 1750 int loop = 0; 1751 unsigned long excess; 1752 unsigned long nr_scanned; 1753 struct mem_cgroup_reclaim_cookie reclaim = { 1754 .pgdat = pgdat, 1755 }; 1756 1757 excess = soft_limit_excess(root_memcg); 1758 1759 while (1) { 1760 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1761 if (!victim) { 1762 loop++; 1763 if (loop >= 2) { 1764 /* 1765 * If we have not been able to reclaim 1766 * anything, it might because there are 1767 * no reclaimable pages under this hierarchy 1768 */ 1769 if (!total) 1770 break; 1771 /* 1772 * We want to do more targeted reclaim. 1773 * excess >> 2 is not to excessive so as to 1774 * reclaim too much, nor too less that we keep 1775 * coming back to reclaim from this cgroup 1776 */ 1777 if (total >= (excess >> 2) || 1778 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1779 break; 1780 } 1781 continue; 1782 } 1783 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1784 pgdat, &nr_scanned); 1785 *total_scanned += nr_scanned; 1786 if (!soft_limit_excess(root_memcg)) 1787 break; 1788 } 1789 mem_cgroup_iter_break(root_memcg, victim); 1790 return total; 1791 } 1792 1793 #ifdef CONFIG_LOCKDEP 1794 static struct lockdep_map memcg_oom_lock_dep_map = { 1795 .name = "memcg_oom_lock", 1796 }; 1797 #endif 1798 1799 static DEFINE_SPINLOCK(memcg_oom_lock); 1800 1801 /* 1802 * Check OOM-Killer is already running under our hierarchy. 1803 * If someone is running, return false. 1804 */ 1805 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1806 { 1807 struct mem_cgroup *iter, *failed = NULL; 1808 1809 spin_lock(&memcg_oom_lock); 1810 1811 for_each_mem_cgroup_tree(iter, memcg) { 1812 if (iter->oom_lock) { 1813 /* 1814 * this subtree of our hierarchy is already locked 1815 * so we cannot give a lock. 1816 */ 1817 failed = iter; 1818 mem_cgroup_iter_break(memcg, iter); 1819 break; 1820 } else 1821 iter->oom_lock = true; 1822 } 1823 1824 if (failed) { 1825 /* 1826 * OK, we failed to lock the whole subtree so we have 1827 * to clean up what we set up to the failing subtree 1828 */ 1829 for_each_mem_cgroup_tree(iter, memcg) { 1830 if (iter == failed) { 1831 mem_cgroup_iter_break(memcg, iter); 1832 break; 1833 } 1834 iter->oom_lock = false; 1835 } 1836 } else 1837 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1838 1839 spin_unlock(&memcg_oom_lock); 1840 1841 return !failed; 1842 } 1843 1844 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1845 { 1846 struct mem_cgroup *iter; 1847 1848 spin_lock(&memcg_oom_lock); 1849 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1850 for_each_mem_cgroup_tree(iter, memcg) 1851 iter->oom_lock = false; 1852 spin_unlock(&memcg_oom_lock); 1853 } 1854 1855 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1856 { 1857 struct mem_cgroup *iter; 1858 1859 spin_lock(&memcg_oom_lock); 1860 for_each_mem_cgroup_tree(iter, memcg) 1861 iter->under_oom++; 1862 spin_unlock(&memcg_oom_lock); 1863 } 1864 1865 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1866 { 1867 struct mem_cgroup *iter; 1868 1869 /* 1870 * Be careful about under_oom underflows becase a child memcg 1871 * could have been added after mem_cgroup_mark_under_oom. 1872 */ 1873 spin_lock(&memcg_oom_lock); 1874 for_each_mem_cgroup_tree(iter, memcg) 1875 if (iter->under_oom > 0) 1876 iter->under_oom--; 1877 spin_unlock(&memcg_oom_lock); 1878 } 1879 1880 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1881 1882 struct oom_wait_info { 1883 struct mem_cgroup *memcg; 1884 wait_queue_entry_t wait; 1885 }; 1886 1887 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1888 unsigned mode, int sync, void *arg) 1889 { 1890 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1891 struct mem_cgroup *oom_wait_memcg; 1892 struct oom_wait_info *oom_wait_info; 1893 1894 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1895 oom_wait_memcg = oom_wait_info->memcg; 1896 1897 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1898 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1899 return 0; 1900 return autoremove_wake_function(wait, mode, sync, arg); 1901 } 1902 1903 static void memcg_oom_recover(struct mem_cgroup *memcg) 1904 { 1905 /* 1906 * For the following lockless ->under_oom test, the only required 1907 * guarantee is that it must see the state asserted by an OOM when 1908 * this function is called as a result of userland actions 1909 * triggered by the notification of the OOM. This is trivially 1910 * achieved by invoking mem_cgroup_mark_under_oom() before 1911 * triggering notification. 1912 */ 1913 if (memcg && memcg->under_oom) 1914 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1915 } 1916 1917 enum oom_status { 1918 OOM_SUCCESS, 1919 OOM_FAILED, 1920 OOM_ASYNC, 1921 OOM_SKIPPED 1922 }; 1923 1924 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1925 { 1926 enum oom_status ret; 1927 bool locked; 1928 1929 if (order > PAGE_ALLOC_COSTLY_ORDER) 1930 return OOM_SKIPPED; 1931 1932 memcg_memory_event(memcg, MEMCG_OOM); 1933 1934 /* 1935 * We are in the middle of the charge context here, so we 1936 * don't want to block when potentially sitting on a callstack 1937 * that holds all kinds of filesystem and mm locks. 1938 * 1939 * cgroup1 allows disabling the OOM killer and waiting for outside 1940 * handling until the charge can succeed; remember the context and put 1941 * the task to sleep at the end of the page fault when all locks are 1942 * released. 1943 * 1944 * On the other hand, in-kernel OOM killer allows for an async victim 1945 * memory reclaim (oom_reaper) and that means that we are not solely 1946 * relying on the oom victim to make a forward progress and we can 1947 * invoke the oom killer here. 1948 * 1949 * Please note that mem_cgroup_out_of_memory might fail to find a 1950 * victim and then we have to bail out from the charge path. 1951 */ 1952 if (memcg->oom_kill_disable) { 1953 if (!current->in_user_fault) 1954 return OOM_SKIPPED; 1955 css_get(&memcg->css); 1956 current->memcg_in_oom = memcg; 1957 current->memcg_oom_gfp_mask = mask; 1958 current->memcg_oom_order = order; 1959 1960 return OOM_ASYNC; 1961 } 1962 1963 mem_cgroup_mark_under_oom(memcg); 1964 1965 locked = mem_cgroup_oom_trylock(memcg); 1966 1967 if (locked) 1968 mem_cgroup_oom_notify(memcg); 1969 1970 mem_cgroup_unmark_under_oom(memcg); 1971 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1972 ret = OOM_SUCCESS; 1973 else 1974 ret = OOM_FAILED; 1975 1976 if (locked) 1977 mem_cgroup_oom_unlock(memcg); 1978 1979 return ret; 1980 } 1981 1982 /** 1983 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1984 * @handle: actually kill/wait or just clean up the OOM state 1985 * 1986 * This has to be called at the end of a page fault if the memcg OOM 1987 * handler was enabled. 1988 * 1989 * Memcg supports userspace OOM handling where failed allocations must 1990 * sleep on a waitqueue until the userspace task resolves the 1991 * situation. Sleeping directly in the charge context with all kinds 1992 * of locks held is not a good idea, instead we remember an OOM state 1993 * in the task and mem_cgroup_oom_synchronize() has to be called at 1994 * the end of the page fault to complete the OOM handling. 1995 * 1996 * Returns %true if an ongoing memcg OOM situation was detected and 1997 * completed, %false otherwise. 1998 */ 1999 bool mem_cgroup_oom_synchronize(bool handle) 2000 { 2001 struct mem_cgroup *memcg = current->memcg_in_oom; 2002 struct oom_wait_info owait; 2003 bool locked; 2004 2005 /* OOM is global, do not handle */ 2006 if (!memcg) 2007 return false; 2008 2009 if (!handle) 2010 goto cleanup; 2011 2012 owait.memcg = memcg; 2013 owait.wait.flags = 0; 2014 owait.wait.func = memcg_oom_wake_function; 2015 owait.wait.private = current; 2016 INIT_LIST_HEAD(&owait.wait.entry); 2017 2018 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2019 mem_cgroup_mark_under_oom(memcg); 2020 2021 locked = mem_cgroup_oom_trylock(memcg); 2022 2023 if (locked) 2024 mem_cgroup_oom_notify(memcg); 2025 2026 if (locked && !memcg->oom_kill_disable) { 2027 mem_cgroup_unmark_under_oom(memcg); 2028 finish_wait(&memcg_oom_waitq, &owait.wait); 2029 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 2030 current->memcg_oom_order); 2031 } else { 2032 schedule(); 2033 mem_cgroup_unmark_under_oom(memcg); 2034 finish_wait(&memcg_oom_waitq, &owait.wait); 2035 } 2036 2037 if (locked) { 2038 mem_cgroup_oom_unlock(memcg); 2039 /* 2040 * There is no guarantee that an OOM-lock contender 2041 * sees the wakeups triggered by the OOM kill 2042 * uncharges. Wake any sleepers explicitely. 2043 */ 2044 memcg_oom_recover(memcg); 2045 } 2046 cleanup: 2047 current->memcg_in_oom = NULL; 2048 css_put(&memcg->css); 2049 return true; 2050 } 2051 2052 /** 2053 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2054 * @victim: task to be killed by the OOM killer 2055 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2056 * 2057 * Returns a pointer to a memory cgroup, which has to be cleaned up 2058 * by killing all belonging OOM-killable tasks. 2059 * 2060 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2061 */ 2062 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2063 struct mem_cgroup *oom_domain) 2064 { 2065 struct mem_cgroup *oom_group = NULL; 2066 struct mem_cgroup *memcg; 2067 2068 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2069 return NULL; 2070 2071 if (!oom_domain) 2072 oom_domain = root_mem_cgroup; 2073 2074 rcu_read_lock(); 2075 2076 memcg = mem_cgroup_from_task(victim); 2077 if (memcg == root_mem_cgroup) 2078 goto out; 2079 2080 /* 2081 * If the victim task has been asynchronously moved to a different 2082 * memory cgroup, we might end up killing tasks outside oom_domain. 2083 * In this case it's better to ignore memory.group.oom. 2084 */ 2085 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 2086 goto out; 2087 2088 /* 2089 * Traverse the memory cgroup hierarchy from the victim task's 2090 * cgroup up to the OOMing cgroup (or root) to find the 2091 * highest-level memory cgroup with oom.group set. 2092 */ 2093 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2094 if (memcg->oom_group) 2095 oom_group = memcg; 2096 2097 if (memcg == oom_domain) 2098 break; 2099 } 2100 2101 if (oom_group) 2102 css_get(&oom_group->css); 2103 out: 2104 rcu_read_unlock(); 2105 2106 return oom_group; 2107 } 2108 2109 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2110 { 2111 pr_info("Tasks in "); 2112 pr_cont_cgroup_path(memcg->css.cgroup); 2113 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2114 } 2115 2116 /** 2117 * lock_page_memcg - lock a page->mem_cgroup binding 2118 * @page: the page 2119 * 2120 * This function protects unlocked LRU pages from being moved to 2121 * another cgroup. 2122 * 2123 * It ensures lifetime of the returned memcg. Caller is responsible 2124 * for the lifetime of the page; __unlock_page_memcg() is available 2125 * when @page might get freed inside the locked section. 2126 */ 2127 struct mem_cgroup *lock_page_memcg(struct page *page) 2128 { 2129 struct page *head = compound_head(page); /* rmap on tail pages */ 2130 struct mem_cgroup *memcg; 2131 unsigned long flags; 2132 2133 /* 2134 * The RCU lock is held throughout the transaction. The fast 2135 * path can get away without acquiring the memcg->move_lock 2136 * because page moving starts with an RCU grace period. 2137 * 2138 * The RCU lock also protects the memcg from being freed when 2139 * the page state that is going to change is the only thing 2140 * preventing the page itself from being freed. E.g. writeback 2141 * doesn't hold a page reference and relies on PG_writeback to 2142 * keep off truncation, migration and so forth. 2143 */ 2144 rcu_read_lock(); 2145 2146 if (mem_cgroup_disabled()) 2147 return NULL; 2148 again: 2149 memcg = head->mem_cgroup; 2150 if (unlikely(!memcg)) 2151 return NULL; 2152 2153 if (atomic_read(&memcg->moving_account) <= 0) 2154 return memcg; 2155 2156 spin_lock_irqsave(&memcg->move_lock, flags); 2157 if (memcg != head->mem_cgroup) { 2158 spin_unlock_irqrestore(&memcg->move_lock, flags); 2159 goto again; 2160 } 2161 2162 /* 2163 * When charge migration first begins, we can have locked and 2164 * unlocked page stat updates happening concurrently. Track 2165 * the task who has the lock for unlock_page_memcg(). 2166 */ 2167 memcg->move_lock_task = current; 2168 memcg->move_lock_flags = flags; 2169 2170 return memcg; 2171 } 2172 EXPORT_SYMBOL(lock_page_memcg); 2173 2174 /** 2175 * __unlock_page_memcg - unlock and unpin a memcg 2176 * @memcg: the memcg 2177 * 2178 * Unlock and unpin a memcg returned by lock_page_memcg(). 2179 */ 2180 void __unlock_page_memcg(struct mem_cgroup *memcg) 2181 { 2182 if (memcg && memcg->move_lock_task == current) { 2183 unsigned long flags = memcg->move_lock_flags; 2184 2185 memcg->move_lock_task = NULL; 2186 memcg->move_lock_flags = 0; 2187 2188 spin_unlock_irqrestore(&memcg->move_lock, flags); 2189 } 2190 2191 rcu_read_unlock(); 2192 } 2193 2194 /** 2195 * unlock_page_memcg - unlock a page->mem_cgroup binding 2196 * @page: the page 2197 */ 2198 void unlock_page_memcg(struct page *page) 2199 { 2200 struct page *head = compound_head(page); 2201 2202 __unlock_page_memcg(head->mem_cgroup); 2203 } 2204 EXPORT_SYMBOL(unlock_page_memcg); 2205 2206 struct memcg_stock_pcp { 2207 struct mem_cgroup *cached; /* this never be root cgroup */ 2208 unsigned int nr_pages; 2209 2210 #ifdef CONFIG_MEMCG_KMEM 2211 struct obj_cgroup *cached_objcg; 2212 unsigned int nr_bytes; 2213 #endif 2214 2215 struct work_struct work; 2216 unsigned long flags; 2217 #define FLUSHING_CACHED_CHARGE 0 2218 }; 2219 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2220 static DEFINE_MUTEX(percpu_charge_mutex); 2221 2222 #ifdef CONFIG_MEMCG_KMEM 2223 static void drain_obj_stock(struct memcg_stock_pcp *stock); 2224 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2225 struct mem_cgroup *root_memcg); 2226 2227 #else 2228 static inline void drain_obj_stock(struct memcg_stock_pcp *stock) 2229 { 2230 } 2231 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2232 struct mem_cgroup *root_memcg) 2233 { 2234 return false; 2235 } 2236 #endif 2237 2238 /** 2239 * consume_stock: Try to consume stocked charge on this cpu. 2240 * @memcg: memcg to consume from. 2241 * @nr_pages: how many pages to charge. 2242 * 2243 * The charges will only happen if @memcg matches the current cpu's memcg 2244 * stock, and at least @nr_pages are available in that stock. Failure to 2245 * service an allocation will refill the stock. 2246 * 2247 * returns true if successful, false otherwise. 2248 */ 2249 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2250 { 2251 struct memcg_stock_pcp *stock; 2252 unsigned long flags; 2253 bool ret = false; 2254 2255 if (nr_pages > MEMCG_CHARGE_BATCH) 2256 return ret; 2257 2258 local_irq_save(flags); 2259 2260 stock = this_cpu_ptr(&memcg_stock); 2261 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2262 stock->nr_pages -= nr_pages; 2263 ret = true; 2264 } 2265 2266 local_irq_restore(flags); 2267 2268 return ret; 2269 } 2270 2271 /* 2272 * Returns stocks cached in percpu and reset cached information. 2273 */ 2274 static void drain_stock(struct memcg_stock_pcp *stock) 2275 { 2276 struct mem_cgroup *old = stock->cached; 2277 2278 if (!old) 2279 return; 2280 2281 if (stock->nr_pages) { 2282 page_counter_uncharge(&old->memory, stock->nr_pages); 2283 if (do_memsw_account()) 2284 page_counter_uncharge(&old->memsw, stock->nr_pages); 2285 stock->nr_pages = 0; 2286 } 2287 2288 css_put(&old->css); 2289 stock->cached = NULL; 2290 } 2291 2292 static void drain_local_stock(struct work_struct *dummy) 2293 { 2294 struct memcg_stock_pcp *stock; 2295 unsigned long flags; 2296 2297 /* 2298 * The only protection from memory hotplug vs. drain_stock races is 2299 * that we always operate on local CPU stock here with IRQ disabled 2300 */ 2301 local_irq_save(flags); 2302 2303 stock = this_cpu_ptr(&memcg_stock); 2304 drain_obj_stock(stock); 2305 drain_stock(stock); 2306 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2307 2308 local_irq_restore(flags); 2309 } 2310 2311 /* 2312 * Cache charges(val) to local per_cpu area. 2313 * This will be consumed by consume_stock() function, later. 2314 */ 2315 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2316 { 2317 struct memcg_stock_pcp *stock; 2318 unsigned long flags; 2319 2320 local_irq_save(flags); 2321 2322 stock = this_cpu_ptr(&memcg_stock); 2323 if (stock->cached != memcg) { /* reset if necessary */ 2324 drain_stock(stock); 2325 css_get(&memcg->css); 2326 stock->cached = memcg; 2327 } 2328 stock->nr_pages += nr_pages; 2329 2330 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2331 drain_stock(stock); 2332 2333 local_irq_restore(flags); 2334 } 2335 2336 /* 2337 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2338 * of the hierarchy under it. 2339 */ 2340 static void drain_all_stock(struct mem_cgroup *root_memcg) 2341 { 2342 int cpu, curcpu; 2343 2344 /* If someone's already draining, avoid adding running more workers. */ 2345 if (!mutex_trylock(&percpu_charge_mutex)) 2346 return; 2347 /* 2348 * Notify other cpus that system-wide "drain" is running 2349 * We do not care about races with the cpu hotplug because cpu down 2350 * as well as workers from this path always operate on the local 2351 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2352 */ 2353 curcpu = get_cpu(); 2354 for_each_online_cpu(cpu) { 2355 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2356 struct mem_cgroup *memcg; 2357 bool flush = false; 2358 2359 rcu_read_lock(); 2360 memcg = stock->cached; 2361 if (memcg && stock->nr_pages && 2362 mem_cgroup_is_descendant(memcg, root_memcg)) 2363 flush = true; 2364 if (obj_stock_flush_required(stock, root_memcg)) 2365 flush = true; 2366 rcu_read_unlock(); 2367 2368 if (flush && 2369 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2370 if (cpu == curcpu) 2371 drain_local_stock(&stock->work); 2372 else 2373 schedule_work_on(cpu, &stock->work); 2374 } 2375 } 2376 put_cpu(); 2377 mutex_unlock(&percpu_charge_mutex); 2378 } 2379 2380 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2381 { 2382 struct memcg_stock_pcp *stock; 2383 struct mem_cgroup *memcg, *mi; 2384 2385 stock = &per_cpu(memcg_stock, cpu); 2386 drain_stock(stock); 2387 2388 for_each_mem_cgroup(memcg) { 2389 int i; 2390 2391 for (i = 0; i < MEMCG_NR_STAT; i++) { 2392 int nid; 2393 long x; 2394 2395 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2396 if (x) 2397 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2398 atomic_long_add(x, &memcg->vmstats[i]); 2399 2400 if (i >= NR_VM_NODE_STAT_ITEMS) 2401 continue; 2402 2403 for_each_node(nid) { 2404 struct mem_cgroup_per_node *pn; 2405 2406 pn = mem_cgroup_nodeinfo(memcg, nid); 2407 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2408 if (x) 2409 do { 2410 atomic_long_add(x, &pn->lruvec_stat[i]); 2411 } while ((pn = parent_nodeinfo(pn, nid))); 2412 } 2413 } 2414 2415 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2416 long x; 2417 2418 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2419 if (x) 2420 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2421 atomic_long_add(x, &memcg->vmevents[i]); 2422 } 2423 } 2424 2425 return 0; 2426 } 2427 2428 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2429 unsigned int nr_pages, 2430 gfp_t gfp_mask) 2431 { 2432 unsigned long nr_reclaimed = 0; 2433 2434 do { 2435 unsigned long pflags; 2436 2437 if (page_counter_read(&memcg->memory) <= 2438 READ_ONCE(memcg->memory.high)) 2439 continue; 2440 2441 memcg_memory_event(memcg, MEMCG_HIGH); 2442 2443 psi_memstall_enter(&pflags); 2444 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2445 gfp_mask, true); 2446 psi_memstall_leave(&pflags); 2447 } while ((memcg = parent_mem_cgroup(memcg)) && 2448 !mem_cgroup_is_root(memcg)); 2449 2450 return nr_reclaimed; 2451 } 2452 2453 static void high_work_func(struct work_struct *work) 2454 { 2455 struct mem_cgroup *memcg; 2456 2457 memcg = container_of(work, struct mem_cgroup, high_work); 2458 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2459 } 2460 2461 /* 2462 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2463 * enough to still cause a significant slowdown in most cases, while still 2464 * allowing diagnostics and tracing to proceed without becoming stuck. 2465 */ 2466 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2467 2468 /* 2469 * When calculating the delay, we use these either side of the exponentiation to 2470 * maintain precision and scale to a reasonable number of jiffies (see the table 2471 * below. 2472 * 2473 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2474 * overage ratio to a delay. 2475 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2476 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2477 * to produce a reasonable delay curve. 2478 * 2479 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2480 * reasonable delay curve compared to precision-adjusted overage, not 2481 * penalising heavily at first, but still making sure that growth beyond the 2482 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2483 * example, with a high of 100 megabytes: 2484 * 2485 * +-------+------------------------+ 2486 * | usage | time to allocate in ms | 2487 * +-------+------------------------+ 2488 * | 100M | 0 | 2489 * | 101M | 6 | 2490 * | 102M | 25 | 2491 * | 103M | 57 | 2492 * | 104M | 102 | 2493 * | 105M | 159 | 2494 * | 106M | 230 | 2495 * | 107M | 313 | 2496 * | 108M | 409 | 2497 * | 109M | 518 | 2498 * | 110M | 639 | 2499 * | 111M | 774 | 2500 * | 112M | 921 | 2501 * | 113M | 1081 | 2502 * | 114M | 1254 | 2503 * | 115M | 1439 | 2504 * | 116M | 1638 | 2505 * | 117M | 1849 | 2506 * | 118M | 2000 | 2507 * | 119M | 2000 | 2508 * | 120M | 2000 | 2509 * +-------+------------------------+ 2510 */ 2511 #define MEMCG_DELAY_PRECISION_SHIFT 20 2512 #define MEMCG_DELAY_SCALING_SHIFT 14 2513 2514 static u64 calculate_overage(unsigned long usage, unsigned long high) 2515 { 2516 u64 overage; 2517 2518 if (usage <= high) 2519 return 0; 2520 2521 /* 2522 * Prevent division by 0 in overage calculation by acting as if 2523 * it was a threshold of 1 page 2524 */ 2525 high = max(high, 1UL); 2526 2527 overage = usage - high; 2528 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2529 return div64_u64(overage, high); 2530 } 2531 2532 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2533 { 2534 u64 overage, max_overage = 0; 2535 2536 do { 2537 overage = calculate_overage(page_counter_read(&memcg->memory), 2538 READ_ONCE(memcg->memory.high)); 2539 max_overage = max(overage, max_overage); 2540 } while ((memcg = parent_mem_cgroup(memcg)) && 2541 !mem_cgroup_is_root(memcg)); 2542 2543 return max_overage; 2544 } 2545 2546 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2547 { 2548 u64 overage, max_overage = 0; 2549 2550 do { 2551 overage = calculate_overage(page_counter_read(&memcg->swap), 2552 READ_ONCE(memcg->swap.high)); 2553 if (overage) 2554 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2555 max_overage = max(overage, max_overage); 2556 } while ((memcg = parent_mem_cgroup(memcg)) && 2557 !mem_cgroup_is_root(memcg)); 2558 2559 return max_overage; 2560 } 2561 2562 /* 2563 * Get the number of jiffies that we should penalise a mischievous cgroup which 2564 * is exceeding its memory.high by checking both it and its ancestors. 2565 */ 2566 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2567 unsigned int nr_pages, 2568 u64 max_overage) 2569 { 2570 unsigned long penalty_jiffies; 2571 2572 if (!max_overage) 2573 return 0; 2574 2575 /* 2576 * We use overage compared to memory.high to calculate the number of 2577 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2578 * fairly lenient on small overages, and increasingly harsh when the 2579 * memcg in question makes it clear that it has no intention of stopping 2580 * its crazy behaviour, so we exponentially increase the delay based on 2581 * overage amount. 2582 */ 2583 penalty_jiffies = max_overage * max_overage * HZ; 2584 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2585 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2586 2587 /* 2588 * Factor in the task's own contribution to the overage, such that four 2589 * N-sized allocations are throttled approximately the same as one 2590 * 4N-sized allocation. 2591 * 2592 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2593 * larger the current charge patch is than that. 2594 */ 2595 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2596 } 2597 2598 /* 2599 * Scheduled by try_charge() to be executed from the userland return path 2600 * and reclaims memory over the high limit. 2601 */ 2602 void mem_cgroup_handle_over_high(void) 2603 { 2604 unsigned long penalty_jiffies; 2605 unsigned long pflags; 2606 unsigned long nr_reclaimed; 2607 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2608 int nr_retries = MAX_RECLAIM_RETRIES; 2609 struct mem_cgroup *memcg; 2610 bool in_retry = false; 2611 2612 if (likely(!nr_pages)) 2613 return; 2614 2615 memcg = get_mem_cgroup_from_mm(current->mm); 2616 current->memcg_nr_pages_over_high = 0; 2617 2618 retry_reclaim: 2619 /* 2620 * The allocating task should reclaim at least the batch size, but for 2621 * subsequent retries we only want to do what's necessary to prevent oom 2622 * or breaching resource isolation. 2623 * 2624 * This is distinct from memory.max or page allocator behaviour because 2625 * memory.high is currently batched, whereas memory.max and the page 2626 * allocator run every time an allocation is made. 2627 */ 2628 nr_reclaimed = reclaim_high(memcg, 2629 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2630 GFP_KERNEL); 2631 2632 /* 2633 * memory.high is breached and reclaim is unable to keep up. Throttle 2634 * allocators proactively to slow down excessive growth. 2635 */ 2636 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2637 mem_find_max_overage(memcg)); 2638 2639 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2640 swap_find_max_overage(memcg)); 2641 2642 /* 2643 * Clamp the max delay per usermode return so as to still keep the 2644 * application moving forwards and also permit diagnostics, albeit 2645 * extremely slowly. 2646 */ 2647 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2648 2649 /* 2650 * Don't sleep if the amount of jiffies this memcg owes us is so low 2651 * that it's not even worth doing, in an attempt to be nice to those who 2652 * go only a small amount over their memory.high value and maybe haven't 2653 * been aggressively reclaimed enough yet. 2654 */ 2655 if (penalty_jiffies <= HZ / 100) 2656 goto out; 2657 2658 /* 2659 * If reclaim is making forward progress but we're still over 2660 * memory.high, we want to encourage that rather than doing allocator 2661 * throttling. 2662 */ 2663 if (nr_reclaimed || nr_retries--) { 2664 in_retry = true; 2665 goto retry_reclaim; 2666 } 2667 2668 /* 2669 * If we exit early, we're guaranteed to die (since 2670 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2671 * need to account for any ill-begotten jiffies to pay them off later. 2672 */ 2673 psi_memstall_enter(&pflags); 2674 schedule_timeout_killable(penalty_jiffies); 2675 psi_memstall_leave(&pflags); 2676 2677 out: 2678 css_put(&memcg->css); 2679 } 2680 2681 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2682 unsigned int nr_pages) 2683 { 2684 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2685 int nr_retries = MAX_RECLAIM_RETRIES; 2686 struct mem_cgroup *mem_over_limit; 2687 struct page_counter *counter; 2688 enum oom_status oom_status; 2689 unsigned long nr_reclaimed; 2690 bool may_swap = true; 2691 bool drained = false; 2692 unsigned long pflags; 2693 2694 if (mem_cgroup_is_root(memcg)) 2695 return 0; 2696 retry: 2697 if (consume_stock(memcg, nr_pages)) 2698 return 0; 2699 2700 if (!do_memsw_account() || 2701 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2702 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2703 goto done_restock; 2704 if (do_memsw_account()) 2705 page_counter_uncharge(&memcg->memsw, batch); 2706 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2707 } else { 2708 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2709 may_swap = false; 2710 } 2711 2712 if (batch > nr_pages) { 2713 batch = nr_pages; 2714 goto retry; 2715 } 2716 2717 /* 2718 * Memcg doesn't have a dedicated reserve for atomic 2719 * allocations. But like the global atomic pool, we need to 2720 * put the burden of reclaim on regular allocation requests 2721 * and let these go through as privileged allocations. 2722 */ 2723 if (gfp_mask & __GFP_ATOMIC) 2724 goto force; 2725 2726 /* 2727 * Unlike in global OOM situations, memcg is not in a physical 2728 * memory shortage. Allow dying and OOM-killed tasks to 2729 * bypass the last charges so that they can exit quickly and 2730 * free their memory. 2731 */ 2732 if (unlikely(should_force_charge())) 2733 goto force; 2734 2735 /* 2736 * Prevent unbounded recursion when reclaim operations need to 2737 * allocate memory. This might exceed the limits temporarily, 2738 * but we prefer facilitating memory reclaim and getting back 2739 * under the limit over triggering OOM kills in these cases. 2740 */ 2741 if (unlikely(current->flags & PF_MEMALLOC)) 2742 goto force; 2743 2744 if (unlikely(task_in_memcg_oom(current))) 2745 goto nomem; 2746 2747 if (!gfpflags_allow_blocking(gfp_mask)) 2748 goto nomem; 2749 2750 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2751 2752 psi_memstall_enter(&pflags); 2753 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2754 gfp_mask, may_swap); 2755 psi_memstall_leave(&pflags); 2756 2757 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2758 goto retry; 2759 2760 if (!drained) { 2761 drain_all_stock(mem_over_limit); 2762 drained = true; 2763 goto retry; 2764 } 2765 2766 if (gfp_mask & __GFP_NORETRY) 2767 goto nomem; 2768 /* 2769 * Even though the limit is exceeded at this point, reclaim 2770 * may have been able to free some pages. Retry the charge 2771 * before killing the task. 2772 * 2773 * Only for regular pages, though: huge pages are rather 2774 * unlikely to succeed so close to the limit, and we fall back 2775 * to regular pages anyway in case of failure. 2776 */ 2777 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2778 goto retry; 2779 /* 2780 * At task move, charge accounts can be doubly counted. So, it's 2781 * better to wait until the end of task_move if something is going on. 2782 */ 2783 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2784 goto retry; 2785 2786 if (nr_retries--) 2787 goto retry; 2788 2789 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2790 goto nomem; 2791 2792 if (gfp_mask & __GFP_NOFAIL) 2793 goto force; 2794 2795 if (fatal_signal_pending(current)) 2796 goto force; 2797 2798 /* 2799 * keep retrying as long as the memcg oom killer is able to make 2800 * a forward progress or bypass the charge if the oom killer 2801 * couldn't make any progress. 2802 */ 2803 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2804 get_order(nr_pages * PAGE_SIZE)); 2805 switch (oom_status) { 2806 case OOM_SUCCESS: 2807 nr_retries = MAX_RECLAIM_RETRIES; 2808 goto retry; 2809 case OOM_FAILED: 2810 goto force; 2811 default: 2812 goto nomem; 2813 } 2814 nomem: 2815 if (!(gfp_mask & __GFP_NOFAIL)) 2816 return -ENOMEM; 2817 force: 2818 /* 2819 * The allocation either can't fail or will lead to more memory 2820 * being freed very soon. Allow memory usage go over the limit 2821 * temporarily by force charging it. 2822 */ 2823 page_counter_charge(&memcg->memory, nr_pages); 2824 if (do_memsw_account()) 2825 page_counter_charge(&memcg->memsw, nr_pages); 2826 2827 return 0; 2828 2829 done_restock: 2830 if (batch > nr_pages) 2831 refill_stock(memcg, batch - nr_pages); 2832 2833 /* 2834 * If the hierarchy is above the normal consumption range, schedule 2835 * reclaim on returning to userland. We can perform reclaim here 2836 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2837 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2838 * not recorded as it most likely matches current's and won't 2839 * change in the meantime. As high limit is checked again before 2840 * reclaim, the cost of mismatch is negligible. 2841 */ 2842 do { 2843 bool mem_high, swap_high; 2844 2845 mem_high = page_counter_read(&memcg->memory) > 2846 READ_ONCE(memcg->memory.high); 2847 swap_high = page_counter_read(&memcg->swap) > 2848 READ_ONCE(memcg->swap.high); 2849 2850 /* Don't bother a random interrupted task */ 2851 if (in_interrupt()) { 2852 if (mem_high) { 2853 schedule_work(&memcg->high_work); 2854 break; 2855 } 2856 continue; 2857 } 2858 2859 if (mem_high || swap_high) { 2860 /* 2861 * The allocating tasks in this cgroup will need to do 2862 * reclaim or be throttled to prevent further growth 2863 * of the memory or swap footprints. 2864 * 2865 * Target some best-effort fairness between the tasks, 2866 * and distribute reclaim work and delay penalties 2867 * based on how much each task is actually allocating. 2868 */ 2869 current->memcg_nr_pages_over_high += batch; 2870 set_notify_resume(current); 2871 break; 2872 } 2873 } while ((memcg = parent_mem_cgroup(memcg))); 2874 2875 return 0; 2876 } 2877 2878 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU) 2879 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2880 { 2881 if (mem_cgroup_is_root(memcg)) 2882 return; 2883 2884 page_counter_uncharge(&memcg->memory, nr_pages); 2885 if (do_memsw_account()) 2886 page_counter_uncharge(&memcg->memsw, nr_pages); 2887 } 2888 #endif 2889 2890 static void commit_charge(struct page *page, struct mem_cgroup *memcg) 2891 { 2892 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2893 /* 2894 * Any of the following ensures page->mem_cgroup stability: 2895 * 2896 * - the page lock 2897 * - LRU isolation 2898 * - lock_page_memcg() 2899 * - exclusive reference 2900 */ 2901 page->mem_cgroup = memcg; 2902 } 2903 2904 #ifdef CONFIG_MEMCG_KMEM 2905 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, 2906 gfp_t gfp) 2907 { 2908 unsigned int objects = objs_per_slab_page(s, page); 2909 void *vec; 2910 2911 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2912 page_to_nid(page)); 2913 if (!vec) 2914 return -ENOMEM; 2915 2916 if (cmpxchg(&page->obj_cgroups, NULL, 2917 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL))) 2918 kfree(vec); 2919 else 2920 kmemleak_not_leak(vec); 2921 2922 return 0; 2923 } 2924 2925 /* 2926 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2927 * 2928 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2929 * cgroup_mutex, etc. 2930 */ 2931 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2932 { 2933 struct page *page; 2934 2935 if (mem_cgroup_disabled()) 2936 return NULL; 2937 2938 page = virt_to_head_page(p); 2939 2940 /* 2941 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer 2942 * or a pointer to obj_cgroup vector. In the latter case the lowest 2943 * bit of the pointer is set. 2944 * The page->mem_cgroup pointer can be asynchronously changed 2945 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed 2946 * from a valid memcg pointer to objcg vector or back. 2947 */ 2948 if (!page->mem_cgroup) 2949 return NULL; 2950 2951 /* 2952 * Slab objects are accounted individually, not per-page. 2953 * Memcg membership data for each individual object is saved in 2954 * the page->obj_cgroups. 2955 */ 2956 if (page_has_obj_cgroups(page)) { 2957 struct obj_cgroup *objcg; 2958 unsigned int off; 2959 2960 off = obj_to_index(page->slab_cache, page, p); 2961 objcg = page_obj_cgroups(page)[off]; 2962 if (objcg) 2963 return obj_cgroup_memcg(objcg); 2964 2965 return NULL; 2966 } 2967 2968 /* All other pages use page->mem_cgroup */ 2969 return page->mem_cgroup; 2970 } 2971 2972 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 2973 { 2974 struct obj_cgroup *objcg = NULL; 2975 struct mem_cgroup *memcg; 2976 2977 if (memcg_kmem_bypass()) 2978 return NULL; 2979 2980 rcu_read_lock(); 2981 if (unlikely(active_memcg())) 2982 memcg = active_memcg(); 2983 else 2984 memcg = mem_cgroup_from_task(current); 2985 2986 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 2987 objcg = rcu_dereference(memcg->objcg); 2988 if (objcg && obj_cgroup_tryget(objcg)) 2989 break; 2990 } 2991 rcu_read_unlock(); 2992 2993 return objcg; 2994 } 2995 2996 static int memcg_alloc_cache_id(void) 2997 { 2998 int id, size; 2999 int err; 3000 3001 id = ida_simple_get(&memcg_cache_ida, 3002 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 3003 if (id < 0) 3004 return id; 3005 3006 if (id < memcg_nr_cache_ids) 3007 return id; 3008 3009 /* 3010 * There's no space for the new id in memcg_caches arrays, 3011 * so we have to grow them. 3012 */ 3013 down_write(&memcg_cache_ids_sem); 3014 3015 size = 2 * (id + 1); 3016 if (size < MEMCG_CACHES_MIN_SIZE) 3017 size = MEMCG_CACHES_MIN_SIZE; 3018 else if (size > MEMCG_CACHES_MAX_SIZE) 3019 size = MEMCG_CACHES_MAX_SIZE; 3020 3021 err = memcg_update_all_list_lrus(size); 3022 if (!err) 3023 memcg_nr_cache_ids = size; 3024 3025 up_write(&memcg_cache_ids_sem); 3026 3027 if (err) { 3028 ida_simple_remove(&memcg_cache_ida, id); 3029 return err; 3030 } 3031 return id; 3032 } 3033 3034 static void memcg_free_cache_id(int id) 3035 { 3036 ida_simple_remove(&memcg_cache_ida, id); 3037 } 3038 3039 /** 3040 * __memcg_kmem_charge: charge a number of kernel pages to a memcg 3041 * @memcg: memory cgroup to charge 3042 * @gfp: reclaim mode 3043 * @nr_pages: number of pages to charge 3044 * 3045 * Returns 0 on success, an error code on failure. 3046 */ 3047 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 3048 unsigned int nr_pages) 3049 { 3050 struct page_counter *counter; 3051 int ret; 3052 3053 ret = try_charge(memcg, gfp, nr_pages); 3054 if (ret) 3055 return ret; 3056 3057 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 3058 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 3059 3060 /* 3061 * Enforce __GFP_NOFAIL allocation because callers are not 3062 * prepared to see failures and likely do not have any failure 3063 * handling code. 3064 */ 3065 if (gfp & __GFP_NOFAIL) { 3066 page_counter_charge(&memcg->kmem, nr_pages); 3067 return 0; 3068 } 3069 cancel_charge(memcg, nr_pages); 3070 return -ENOMEM; 3071 } 3072 return 0; 3073 } 3074 3075 /** 3076 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg 3077 * @memcg: memcg to uncharge 3078 * @nr_pages: number of pages to uncharge 3079 */ 3080 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 3081 { 3082 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 3083 page_counter_uncharge(&memcg->kmem, nr_pages); 3084 3085 page_counter_uncharge(&memcg->memory, nr_pages); 3086 if (do_memsw_account()) 3087 page_counter_uncharge(&memcg->memsw, nr_pages); 3088 } 3089 3090 /** 3091 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3092 * @page: page to charge 3093 * @gfp: reclaim mode 3094 * @order: allocation order 3095 * 3096 * Returns 0 on success, an error code on failure. 3097 */ 3098 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3099 { 3100 struct mem_cgroup *memcg; 3101 int ret = 0; 3102 3103 memcg = get_mem_cgroup_from_current(); 3104 if (memcg && !mem_cgroup_is_root(memcg)) { 3105 ret = __memcg_kmem_charge(memcg, gfp, 1 << order); 3106 if (!ret) { 3107 page->mem_cgroup = memcg; 3108 __SetPageKmemcg(page); 3109 return 0; 3110 } 3111 css_put(&memcg->css); 3112 } 3113 return ret; 3114 } 3115 3116 /** 3117 * __memcg_kmem_uncharge_page: uncharge a kmem page 3118 * @page: page to uncharge 3119 * @order: allocation order 3120 */ 3121 void __memcg_kmem_uncharge_page(struct page *page, int order) 3122 { 3123 struct mem_cgroup *memcg = page->mem_cgroup; 3124 unsigned int nr_pages = 1 << order; 3125 3126 if (!memcg) 3127 return; 3128 3129 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 3130 __memcg_kmem_uncharge(memcg, nr_pages); 3131 page->mem_cgroup = NULL; 3132 css_put(&memcg->css); 3133 3134 /* slab pages do not have PageKmemcg flag set */ 3135 if (PageKmemcg(page)) 3136 __ClearPageKmemcg(page); 3137 } 3138 3139 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3140 { 3141 struct memcg_stock_pcp *stock; 3142 unsigned long flags; 3143 bool ret = false; 3144 3145 local_irq_save(flags); 3146 3147 stock = this_cpu_ptr(&memcg_stock); 3148 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3149 stock->nr_bytes -= nr_bytes; 3150 ret = true; 3151 } 3152 3153 local_irq_restore(flags); 3154 3155 return ret; 3156 } 3157 3158 static void drain_obj_stock(struct memcg_stock_pcp *stock) 3159 { 3160 struct obj_cgroup *old = stock->cached_objcg; 3161 3162 if (!old) 3163 return; 3164 3165 if (stock->nr_bytes) { 3166 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3167 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3168 3169 if (nr_pages) { 3170 rcu_read_lock(); 3171 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages); 3172 rcu_read_unlock(); 3173 } 3174 3175 /* 3176 * The leftover is flushed to the centralized per-memcg value. 3177 * On the next attempt to refill obj stock it will be moved 3178 * to a per-cpu stock (probably, on an other CPU), see 3179 * refill_obj_stock(). 3180 * 3181 * How often it's flushed is a trade-off between the memory 3182 * limit enforcement accuracy and potential CPU contention, 3183 * so it might be changed in the future. 3184 */ 3185 atomic_add(nr_bytes, &old->nr_charged_bytes); 3186 stock->nr_bytes = 0; 3187 } 3188 3189 obj_cgroup_put(old); 3190 stock->cached_objcg = NULL; 3191 } 3192 3193 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3194 struct mem_cgroup *root_memcg) 3195 { 3196 struct mem_cgroup *memcg; 3197 3198 if (stock->cached_objcg) { 3199 memcg = obj_cgroup_memcg(stock->cached_objcg); 3200 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3201 return true; 3202 } 3203 3204 return false; 3205 } 3206 3207 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3208 { 3209 struct memcg_stock_pcp *stock; 3210 unsigned long flags; 3211 3212 local_irq_save(flags); 3213 3214 stock = this_cpu_ptr(&memcg_stock); 3215 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3216 drain_obj_stock(stock); 3217 obj_cgroup_get(objcg); 3218 stock->cached_objcg = objcg; 3219 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0); 3220 } 3221 stock->nr_bytes += nr_bytes; 3222 3223 if (stock->nr_bytes > PAGE_SIZE) 3224 drain_obj_stock(stock); 3225 3226 local_irq_restore(flags); 3227 } 3228 3229 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3230 { 3231 struct mem_cgroup *memcg; 3232 unsigned int nr_pages, nr_bytes; 3233 int ret; 3234 3235 if (consume_obj_stock(objcg, size)) 3236 return 0; 3237 3238 /* 3239 * In theory, memcg->nr_charged_bytes can have enough 3240 * pre-charged bytes to satisfy the allocation. However, 3241 * flushing memcg->nr_charged_bytes requires two atomic 3242 * operations, and memcg->nr_charged_bytes can't be big, 3243 * so it's better to ignore it and try grab some new pages. 3244 * memcg->nr_charged_bytes will be flushed in 3245 * refill_obj_stock(), called from this function or 3246 * independently later. 3247 */ 3248 rcu_read_lock(); 3249 memcg = obj_cgroup_memcg(objcg); 3250 css_get(&memcg->css); 3251 rcu_read_unlock(); 3252 3253 nr_pages = size >> PAGE_SHIFT; 3254 nr_bytes = size & (PAGE_SIZE - 1); 3255 3256 if (nr_bytes) 3257 nr_pages += 1; 3258 3259 ret = __memcg_kmem_charge(memcg, gfp, nr_pages); 3260 if (!ret && nr_bytes) 3261 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes); 3262 3263 css_put(&memcg->css); 3264 return ret; 3265 } 3266 3267 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3268 { 3269 refill_obj_stock(objcg, size); 3270 } 3271 3272 #endif /* CONFIG_MEMCG_KMEM */ 3273 3274 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3275 3276 /* 3277 * Because tail pages are not marked as "used", set it. We're under 3278 * pgdat->lru_lock and migration entries setup in all page mappings. 3279 */ 3280 void mem_cgroup_split_huge_fixup(struct page *head) 3281 { 3282 struct mem_cgroup *memcg = head->mem_cgroup; 3283 int i; 3284 3285 if (mem_cgroup_disabled()) 3286 return; 3287 3288 for (i = 1; i < HPAGE_PMD_NR; i++) { 3289 css_get(&memcg->css); 3290 head[i].mem_cgroup = memcg; 3291 } 3292 } 3293 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3294 3295 #ifdef CONFIG_MEMCG_SWAP 3296 /** 3297 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3298 * @entry: swap entry to be moved 3299 * @from: mem_cgroup which the entry is moved from 3300 * @to: mem_cgroup which the entry is moved to 3301 * 3302 * It succeeds only when the swap_cgroup's record for this entry is the same 3303 * as the mem_cgroup's id of @from. 3304 * 3305 * Returns 0 on success, -EINVAL on failure. 3306 * 3307 * The caller must have charged to @to, IOW, called page_counter_charge() about 3308 * both res and memsw, and called css_get(). 3309 */ 3310 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3311 struct mem_cgroup *from, struct mem_cgroup *to) 3312 { 3313 unsigned short old_id, new_id; 3314 3315 old_id = mem_cgroup_id(from); 3316 new_id = mem_cgroup_id(to); 3317 3318 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3319 mod_memcg_state(from, MEMCG_SWAP, -1); 3320 mod_memcg_state(to, MEMCG_SWAP, 1); 3321 return 0; 3322 } 3323 return -EINVAL; 3324 } 3325 #else 3326 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3327 struct mem_cgroup *from, struct mem_cgroup *to) 3328 { 3329 return -EINVAL; 3330 } 3331 #endif 3332 3333 static DEFINE_MUTEX(memcg_max_mutex); 3334 3335 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3336 unsigned long max, bool memsw) 3337 { 3338 bool enlarge = false; 3339 bool drained = false; 3340 int ret; 3341 bool limits_invariant; 3342 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3343 3344 do { 3345 if (signal_pending(current)) { 3346 ret = -EINTR; 3347 break; 3348 } 3349 3350 mutex_lock(&memcg_max_mutex); 3351 /* 3352 * Make sure that the new limit (memsw or memory limit) doesn't 3353 * break our basic invariant rule memory.max <= memsw.max. 3354 */ 3355 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3356 max <= memcg->memsw.max; 3357 if (!limits_invariant) { 3358 mutex_unlock(&memcg_max_mutex); 3359 ret = -EINVAL; 3360 break; 3361 } 3362 if (max > counter->max) 3363 enlarge = true; 3364 ret = page_counter_set_max(counter, max); 3365 mutex_unlock(&memcg_max_mutex); 3366 3367 if (!ret) 3368 break; 3369 3370 if (!drained) { 3371 drain_all_stock(memcg); 3372 drained = true; 3373 continue; 3374 } 3375 3376 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3377 GFP_KERNEL, !memsw)) { 3378 ret = -EBUSY; 3379 break; 3380 } 3381 } while (true); 3382 3383 if (!ret && enlarge) 3384 memcg_oom_recover(memcg); 3385 3386 return ret; 3387 } 3388 3389 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3390 gfp_t gfp_mask, 3391 unsigned long *total_scanned) 3392 { 3393 unsigned long nr_reclaimed = 0; 3394 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3395 unsigned long reclaimed; 3396 int loop = 0; 3397 struct mem_cgroup_tree_per_node *mctz; 3398 unsigned long excess; 3399 unsigned long nr_scanned; 3400 3401 if (order > 0) 3402 return 0; 3403 3404 mctz = soft_limit_tree_node(pgdat->node_id); 3405 3406 /* 3407 * Do not even bother to check the largest node if the root 3408 * is empty. Do it lockless to prevent lock bouncing. Races 3409 * are acceptable as soft limit is best effort anyway. 3410 */ 3411 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3412 return 0; 3413 3414 /* 3415 * This loop can run a while, specially if mem_cgroup's continuously 3416 * keep exceeding their soft limit and putting the system under 3417 * pressure 3418 */ 3419 do { 3420 if (next_mz) 3421 mz = next_mz; 3422 else 3423 mz = mem_cgroup_largest_soft_limit_node(mctz); 3424 if (!mz) 3425 break; 3426 3427 nr_scanned = 0; 3428 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3429 gfp_mask, &nr_scanned); 3430 nr_reclaimed += reclaimed; 3431 *total_scanned += nr_scanned; 3432 spin_lock_irq(&mctz->lock); 3433 __mem_cgroup_remove_exceeded(mz, mctz); 3434 3435 /* 3436 * If we failed to reclaim anything from this memory cgroup 3437 * it is time to move on to the next cgroup 3438 */ 3439 next_mz = NULL; 3440 if (!reclaimed) 3441 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3442 3443 excess = soft_limit_excess(mz->memcg); 3444 /* 3445 * One school of thought says that we should not add 3446 * back the node to the tree if reclaim returns 0. 3447 * But our reclaim could return 0, simply because due 3448 * to priority we are exposing a smaller subset of 3449 * memory to reclaim from. Consider this as a longer 3450 * term TODO. 3451 */ 3452 /* If excess == 0, no tree ops */ 3453 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3454 spin_unlock_irq(&mctz->lock); 3455 css_put(&mz->memcg->css); 3456 loop++; 3457 /* 3458 * Could not reclaim anything and there are no more 3459 * mem cgroups to try or we seem to be looping without 3460 * reclaiming anything. 3461 */ 3462 if (!nr_reclaimed && 3463 (next_mz == NULL || 3464 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3465 break; 3466 } while (!nr_reclaimed); 3467 if (next_mz) 3468 css_put(&next_mz->memcg->css); 3469 return nr_reclaimed; 3470 } 3471 3472 /* 3473 * Test whether @memcg has children, dead or alive. Note that this 3474 * function doesn't care whether @memcg has use_hierarchy enabled and 3475 * returns %true if there are child csses according to the cgroup 3476 * hierarchy. Testing use_hierarchy is the caller's responsibility. 3477 */ 3478 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3479 { 3480 bool ret; 3481 3482 rcu_read_lock(); 3483 ret = css_next_child(NULL, &memcg->css); 3484 rcu_read_unlock(); 3485 return ret; 3486 } 3487 3488 /* 3489 * Reclaims as many pages from the given memcg as possible. 3490 * 3491 * Caller is responsible for holding css reference for memcg. 3492 */ 3493 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3494 { 3495 int nr_retries = MAX_RECLAIM_RETRIES; 3496 3497 /* we call try-to-free pages for make this cgroup empty */ 3498 lru_add_drain_all(); 3499 3500 drain_all_stock(memcg); 3501 3502 /* try to free all pages in this cgroup */ 3503 while (nr_retries && page_counter_read(&memcg->memory)) { 3504 int progress; 3505 3506 if (signal_pending(current)) 3507 return -EINTR; 3508 3509 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3510 GFP_KERNEL, true); 3511 if (!progress) { 3512 nr_retries--; 3513 /* maybe some writeback is necessary */ 3514 congestion_wait(BLK_RW_ASYNC, HZ/10); 3515 } 3516 3517 } 3518 3519 return 0; 3520 } 3521 3522 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3523 char *buf, size_t nbytes, 3524 loff_t off) 3525 { 3526 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3527 3528 if (mem_cgroup_is_root(memcg)) 3529 return -EINVAL; 3530 return mem_cgroup_force_empty(memcg) ?: nbytes; 3531 } 3532 3533 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3534 struct cftype *cft) 3535 { 3536 return mem_cgroup_from_css(css)->use_hierarchy; 3537 } 3538 3539 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3540 struct cftype *cft, u64 val) 3541 { 3542 int retval = 0; 3543 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3544 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3545 3546 if (memcg->use_hierarchy == val) 3547 return 0; 3548 3549 /* 3550 * If parent's use_hierarchy is set, we can't make any modifications 3551 * in the child subtrees. If it is unset, then the change can 3552 * occur, provided the current cgroup has no children. 3553 * 3554 * For the root cgroup, parent_mem is NULL, we allow value to be 3555 * set if there are no children. 3556 */ 3557 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3558 (val == 1 || val == 0)) { 3559 if (!memcg_has_children(memcg)) 3560 memcg->use_hierarchy = val; 3561 else 3562 retval = -EBUSY; 3563 } else 3564 retval = -EINVAL; 3565 3566 return retval; 3567 } 3568 3569 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3570 { 3571 unsigned long val; 3572 3573 if (mem_cgroup_is_root(memcg)) { 3574 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3575 memcg_page_state(memcg, NR_ANON_MAPPED); 3576 if (swap) 3577 val += memcg_page_state(memcg, MEMCG_SWAP); 3578 } else { 3579 if (!swap) 3580 val = page_counter_read(&memcg->memory); 3581 else 3582 val = page_counter_read(&memcg->memsw); 3583 } 3584 return val; 3585 } 3586 3587 enum { 3588 RES_USAGE, 3589 RES_LIMIT, 3590 RES_MAX_USAGE, 3591 RES_FAILCNT, 3592 RES_SOFT_LIMIT, 3593 }; 3594 3595 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3596 struct cftype *cft) 3597 { 3598 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3599 struct page_counter *counter; 3600 3601 switch (MEMFILE_TYPE(cft->private)) { 3602 case _MEM: 3603 counter = &memcg->memory; 3604 break; 3605 case _MEMSWAP: 3606 counter = &memcg->memsw; 3607 break; 3608 case _KMEM: 3609 counter = &memcg->kmem; 3610 break; 3611 case _TCP: 3612 counter = &memcg->tcpmem; 3613 break; 3614 default: 3615 BUG(); 3616 } 3617 3618 switch (MEMFILE_ATTR(cft->private)) { 3619 case RES_USAGE: 3620 if (counter == &memcg->memory) 3621 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3622 if (counter == &memcg->memsw) 3623 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3624 return (u64)page_counter_read(counter) * PAGE_SIZE; 3625 case RES_LIMIT: 3626 return (u64)counter->max * PAGE_SIZE; 3627 case RES_MAX_USAGE: 3628 return (u64)counter->watermark * PAGE_SIZE; 3629 case RES_FAILCNT: 3630 return counter->failcnt; 3631 case RES_SOFT_LIMIT: 3632 return (u64)memcg->soft_limit * PAGE_SIZE; 3633 default: 3634 BUG(); 3635 } 3636 } 3637 3638 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg) 3639 { 3640 unsigned long stat[MEMCG_NR_STAT] = {0}; 3641 struct mem_cgroup *mi; 3642 int node, cpu, i; 3643 3644 for_each_online_cpu(cpu) 3645 for (i = 0; i < MEMCG_NR_STAT; i++) 3646 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); 3647 3648 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3649 for (i = 0; i < MEMCG_NR_STAT; i++) 3650 atomic_long_add(stat[i], &mi->vmstats[i]); 3651 3652 for_each_node(node) { 3653 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3654 struct mem_cgroup_per_node *pi; 3655 3656 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3657 stat[i] = 0; 3658 3659 for_each_online_cpu(cpu) 3660 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3661 stat[i] += per_cpu( 3662 pn->lruvec_stat_cpu->count[i], cpu); 3663 3664 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3665 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3666 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3667 } 3668 } 3669 3670 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3671 { 3672 unsigned long events[NR_VM_EVENT_ITEMS]; 3673 struct mem_cgroup *mi; 3674 int cpu, i; 3675 3676 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3677 events[i] = 0; 3678 3679 for_each_online_cpu(cpu) 3680 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3681 events[i] += per_cpu(memcg->vmstats_percpu->events[i], 3682 cpu); 3683 3684 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3685 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3686 atomic_long_add(events[i], &mi->vmevents[i]); 3687 } 3688 3689 #ifdef CONFIG_MEMCG_KMEM 3690 static int memcg_online_kmem(struct mem_cgroup *memcg) 3691 { 3692 struct obj_cgroup *objcg; 3693 int memcg_id; 3694 3695 if (cgroup_memory_nokmem) 3696 return 0; 3697 3698 BUG_ON(memcg->kmemcg_id >= 0); 3699 BUG_ON(memcg->kmem_state); 3700 3701 memcg_id = memcg_alloc_cache_id(); 3702 if (memcg_id < 0) 3703 return memcg_id; 3704 3705 objcg = obj_cgroup_alloc(); 3706 if (!objcg) { 3707 memcg_free_cache_id(memcg_id); 3708 return -ENOMEM; 3709 } 3710 objcg->memcg = memcg; 3711 rcu_assign_pointer(memcg->objcg, objcg); 3712 3713 static_branch_enable(&memcg_kmem_enabled_key); 3714 3715 /* 3716 * A memory cgroup is considered kmem-online as soon as it gets 3717 * kmemcg_id. Setting the id after enabling static branching will 3718 * guarantee no one starts accounting before all call sites are 3719 * patched. 3720 */ 3721 memcg->kmemcg_id = memcg_id; 3722 memcg->kmem_state = KMEM_ONLINE; 3723 3724 return 0; 3725 } 3726 3727 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3728 { 3729 struct cgroup_subsys_state *css; 3730 struct mem_cgroup *parent, *child; 3731 int kmemcg_id; 3732 3733 if (memcg->kmem_state != KMEM_ONLINE) 3734 return; 3735 3736 memcg->kmem_state = KMEM_ALLOCATED; 3737 3738 parent = parent_mem_cgroup(memcg); 3739 if (!parent) 3740 parent = root_mem_cgroup; 3741 3742 memcg_reparent_objcgs(memcg, parent); 3743 3744 kmemcg_id = memcg->kmemcg_id; 3745 BUG_ON(kmemcg_id < 0); 3746 3747 /* 3748 * Change kmemcg_id of this cgroup and all its descendants to the 3749 * parent's id, and then move all entries from this cgroup's list_lrus 3750 * to ones of the parent. After we have finished, all list_lrus 3751 * corresponding to this cgroup are guaranteed to remain empty. The 3752 * ordering is imposed by list_lru_node->lock taken by 3753 * memcg_drain_all_list_lrus(). 3754 */ 3755 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3756 css_for_each_descendant_pre(css, &memcg->css) { 3757 child = mem_cgroup_from_css(css); 3758 BUG_ON(child->kmemcg_id != kmemcg_id); 3759 child->kmemcg_id = parent->kmemcg_id; 3760 if (!memcg->use_hierarchy) 3761 break; 3762 } 3763 rcu_read_unlock(); 3764 3765 memcg_drain_all_list_lrus(kmemcg_id, parent); 3766 3767 memcg_free_cache_id(kmemcg_id); 3768 } 3769 3770 static void memcg_free_kmem(struct mem_cgroup *memcg) 3771 { 3772 /* css_alloc() failed, offlining didn't happen */ 3773 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3774 memcg_offline_kmem(memcg); 3775 } 3776 #else 3777 static int memcg_online_kmem(struct mem_cgroup *memcg) 3778 { 3779 return 0; 3780 } 3781 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3782 { 3783 } 3784 static void memcg_free_kmem(struct mem_cgroup *memcg) 3785 { 3786 } 3787 #endif /* CONFIG_MEMCG_KMEM */ 3788 3789 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3790 unsigned long max) 3791 { 3792 int ret; 3793 3794 mutex_lock(&memcg_max_mutex); 3795 ret = page_counter_set_max(&memcg->kmem, max); 3796 mutex_unlock(&memcg_max_mutex); 3797 return ret; 3798 } 3799 3800 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3801 { 3802 int ret; 3803 3804 mutex_lock(&memcg_max_mutex); 3805 3806 ret = page_counter_set_max(&memcg->tcpmem, max); 3807 if (ret) 3808 goto out; 3809 3810 if (!memcg->tcpmem_active) { 3811 /* 3812 * The active flag needs to be written after the static_key 3813 * update. This is what guarantees that the socket activation 3814 * function is the last one to run. See mem_cgroup_sk_alloc() 3815 * for details, and note that we don't mark any socket as 3816 * belonging to this memcg until that flag is up. 3817 * 3818 * We need to do this, because static_keys will span multiple 3819 * sites, but we can't control their order. If we mark a socket 3820 * as accounted, but the accounting functions are not patched in 3821 * yet, we'll lose accounting. 3822 * 3823 * We never race with the readers in mem_cgroup_sk_alloc(), 3824 * because when this value change, the code to process it is not 3825 * patched in yet. 3826 */ 3827 static_branch_inc(&memcg_sockets_enabled_key); 3828 memcg->tcpmem_active = true; 3829 } 3830 out: 3831 mutex_unlock(&memcg_max_mutex); 3832 return ret; 3833 } 3834 3835 /* 3836 * The user of this function is... 3837 * RES_LIMIT. 3838 */ 3839 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3840 char *buf, size_t nbytes, loff_t off) 3841 { 3842 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3843 unsigned long nr_pages; 3844 int ret; 3845 3846 buf = strstrip(buf); 3847 ret = page_counter_memparse(buf, "-1", &nr_pages); 3848 if (ret) 3849 return ret; 3850 3851 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3852 case RES_LIMIT: 3853 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3854 ret = -EINVAL; 3855 break; 3856 } 3857 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3858 case _MEM: 3859 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3860 break; 3861 case _MEMSWAP: 3862 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3863 break; 3864 case _KMEM: 3865 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3866 "Please report your usecase to linux-mm@kvack.org if you " 3867 "depend on this functionality.\n"); 3868 ret = memcg_update_kmem_max(memcg, nr_pages); 3869 break; 3870 case _TCP: 3871 ret = memcg_update_tcp_max(memcg, nr_pages); 3872 break; 3873 } 3874 break; 3875 case RES_SOFT_LIMIT: 3876 memcg->soft_limit = nr_pages; 3877 ret = 0; 3878 break; 3879 } 3880 return ret ?: nbytes; 3881 } 3882 3883 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3884 size_t nbytes, loff_t off) 3885 { 3886 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3887 struct page_counter *counter; 3888 3889 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3890 case _MEM: 3891 counter = &memcg->memory; 3892 break; 3893 case _MEMSWAP: 3894 counter = &memcg->memsw; 3895 break; 3896 case _KMEM: 3897 counter = &memcg->kmem; 3898 break; 3899 case _TCP: 3900 counter = &memcg->tcpmem; 3901 break; 3902 default: 3903 BUG(); 3904 } 3905 3906 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3907 case RES_MAX_USAGE: 3908 page_counter_reset_watermark(counter); 3909 break; 3910 case RES_FAILCNT: 3911 counter->failcnt = 0; 3912 break; 3913 default: 3914 BUG(); 3915 } 3916 3917 return nbytes; 3918 } 3919 3920 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3921 struct cftype *cft) 3922 { 3923 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3924 } 3925 3926 #ifdef CONFIG_MMU 3927 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3928 struct cftype *cft, u64 val) 3929 { 3930 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3931 3932 if (val & ~MOVE_MASK) 3933 return -EINVAL; 3934 3935 /* 3936 * No kind of locking is needed in here, because ->can_attach() will 3937 * check this value once in the beginning of the process, and then carry 3938 * on with stale data. This means that changes to this value will only 3939 * affect task migrations starting after the change. 3940 */ 3941 memcg->move_charge_at_immigrate = val; 3942 return 0; 3943 } 3944 #else 3945 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3946 struct cftype *cft, u64 val) 3947 { 3948 return -ENOSYS; 3949 } 3950 #endif 3951 3952 #ifdef CONFIG_NUMA 3953 3954 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3955 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3956 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3957 3958 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3959 int nid, unsigned int lru_mask, bool tree) 3960 { 3961 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3962 unsigned long nr = 0; 3963 enum lru_list lru; 3964 3965 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3966 3967 for_each_lru(lru) { 3968 if (!(BIT(lru) & lru_mask)) 3969 continue; 3970 if (tree) 3971 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3972 else 3973 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3974 } 3975 return nr; 3976 } 3977 3978 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3979 unsigned int lru_mask, 3980 bool tree) 3981 { 3982 unsigned long nr = 0; 3983 enum lru_list lru; 3984 3985 for_each_lru(lru) { 3986 if (!(BIT(lru) & lru_mask)) 3987 continue; 3988 if (tree) 3989 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3990 else 3991 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3992 } 3993 return nr; 3994 } 3995 3996 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3997 { 3998 struct numa_stat { 3999 const char *name; 4000 unsigned int lru_mask; 4001 }; 4002 4003 static const struct numa_stat stats[] = { 4004 { "total", LRU_ALL }, 4005 { "file", LRU_ALL_FILE }, 4006 { "anon", LRU_ALL_ANON }, 4007 { "unevictable", BIT(LRU_UNEVICTABLE) }, 4008 }; 4009 const struct numa_stat *stat; 4010 int nid; 4011 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4012 4013 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4014 seq_printf(m, "%s=%lu", stat->name, 4015 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4016 false)); 4017 for_each_node_state(nid, N_MEMORY) 4018 seq_printf(m, " N%d=%lu", nid, 4019 mem_cgroup_node_nr_lru_pages(memcg, nid, 4020 stat->lru_mask, false)); 4021 seq_putc(m, '\n'); 4022 } 4023 4024 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4025 4026 seq_printf(m, "hierarchical_%s=%lu", stat->name, 4027 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4028 true)); 4029 for_each_node_state(nid, N_MEMORY) 4030 seq_printf(m, " N%d=%lu", nid, 4031 mem_cgroup_node_nr_lru_pages(memcg, nid, 4032 stat->lru_mask, true)); 4033 seq_putc(m, '\n'); 4034 } 4035 4036 return 0; 4037 } 4038 #endif /* CONFIG_NUMA */ 4039 4040 static const unsigned int memcg1_stats[] = { 4041 NR_FILE_PAGES, 4042 NR_ANON_MAPPED, 4043 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4044 NR_ANON_THPS, 4045 #endif 4046 NR_SHMEM, 4047 NR_FILE_MAPPED, 4048 NR_FILE_DIRTY, 4049 NR_WRITEBACK, 4050 MEMCG_SWAP, 4051 }; 4052 4053 static const char *const memcg1_stat_names[] = { 4054 "cache", 4055 "rss", 4056 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4057 "rss_huge", 4058 #endif 4059 "shmem", 4060 "mapped_file", 4061 "dirty", 4062 "writeback", 4063 "swap", 4064 }; 4065 4066 /* Universal VM events cgroup1 shows, original sort order */ 4067 static const unsigned int memcg1_events[] = { 4068 PGPGIN, 4069 PGPGOUT, 4070 PGFAULT, 4071 PGMAJFAULT, 4072 }; 4073 4074 static int memcg_stat_show(struct seq_file *m, void *v) 4075 { 4076 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4077 unsigned long memory, memsw; 4078 struct mem_cgroup *mi; 4079 unsigned int i; 4080 4081 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4082 4083 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4084 unsigned long nr; 4085 4086 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4087 continue; 4088 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 4089 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4090 if (memcg1_stats[i] == NR_ANON_THPS) 4091 nr *= HPAGE_PMD_NR; 4092 #endif 4093 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE); 4094 } 4095 4096 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4097 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 4098 memcg_events_local(memcg, memcg1_events[i])); 4099 4100 for (i = 0; i < NR_LRU_LISTS; i++) 4101 seq_printf(m, "%s %lu\n", lru_list_name(i), 4102 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4103 PAGE_SIZE); 4104 4105 /* Hierarchical information */ 4106 memory = memsw = PAGE_COUNTER_MAX; 4107 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4108 memory = min(memory, READ_ONCE(mi->memory.max)); 4109 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4110 } 4111 seq_printf(m, "hierarchical_memory_limit %llu\n", 4112 (u64)memory * PAGE_SIZE); 4113 if (do_memsw_account()) 4114 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4115 (u64)memsw * PAGE_SIZE); 4116 4117 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4118 unsigned long nr; 4119 4120 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4121 continue; 4122 nr = memcg_page_state(memcg, memcg1_stats[i]); 4123 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4124 if (memcg1_stats[i] == NR_ANON_THPS) 4125 nr *= HPAGE_PMD_NR; 4126 #endif 4127 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4128 (u64)nr * PAGE_SIZE); 4129 } 4130 4131 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4132 seq_printf(m, "total_%s %llu\n", 4133 vm_event_name(memcg1_events[i]), 4134 (u64)memcg_events(memcg, memcg1_events[i])); 4135 4136 for (i = 0; i < NR_LRU_LISTS; i++) 4137 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4138 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4139 PAGE_SIZE); 4140 4141 #ifdef CONFIG_DEBUG_VM 4142 { 4143 pg_data_t *pgdat; 4144 struct mem_cgroup_per_node *mz; 4145 unsigned long anon_cost = 0; 4146 unsigned long file_cost = 0; 4147 4148 for_each_online_pgdat(pgdat) { 4149 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 4150 4151 anon_cost += mz->lruvec.anon_cost; 4152 file_cost += mz->lruvec.file_cost; 4153 } 4154 seq_printf(m, "anon_cost %lu\n", anon_cost); 4155 seq_printf(m, "file_cost %lu\n", file_cost); 4156 } 4157 #endif 4158 4159 return 0; 4160 } 4161 4162 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4163 struct cftype *cft) 4164 { 4165 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4166 4167 return mem_cgroup_swappiness(memcg); 4168 } 4169 4170 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4171 struct cftype *cft, u64 val) 4172 { 4173 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4174 4175 if (val > 100) 4176 return -EINVAL; 4177 4178 if (css->parent) 4179 memcg->swappiness = val; 4180 else 4181 vm_swappiness = val; 4182 4183 return 0; 4184 } 4185 4186 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4187 { 4188 struct mem_cgroup_threshold_ary *t; 4189 unsigned long usage; 4190 int i; 4191 4192 rcu_read_lock(); 4193 if (!swap) 4194 t = rcu_dereference(memcg->thresholds.primary); 4195 else 4196 t = rcu_dereference(memcg->memsw_thresholds.primary); 4197 4198 if (!t) 4199 goto unlock; 4200 4201 usage = mem_cgroup_usage(memcg, swap); 4202 4203 /* 4204 * current_threshold points to threshold just below or equal to usage. 4205 * If it's not true, a threshold was crossed after last 4206 * call of __mem_cgroup_threshold(). 4207 */ 4208 i = t->current_threshold; 4209 4210 /* 4211 * Iterate backward over array of thresholds starting from 4212 * current_threshold and check if a threshold is crossed. 4213 * If none of thresholds below usage is crossed, we read 4214 * only one element of the array here. 4215 */ 4216 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4217 eventfd_signal(t->entries[i].eventfd, 1); 4218 4219 /* i = current_threshold + 1 */ 4220 i++; 4221 4222 /* 4223 * Iterate forward over array of thresholds starting from 4224 * current_threshold+1 and check if a threshold is crossed. 4225 * If none of thresholds above usage is crossed, we read 4226 * only one element of the array here. 4227 */ 4228 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4229 eventfd_signal(t->entries[i].eventfd, 1); 4230 4231 /* Update current_threshold */ 4232 t->current_threshold = i - 1; 4233 unlock: 4234 rcu_read_unlock(); 4235 } 4236 4237 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4238 { 4239 while (memcg) { 4240 __mem_cgroup_threshold(memcg, false); 4241 if (do_memsw_account()) 4242 __mem_cgroup_threshold(memcg, true); 4243 4244 memcg = parent_mem_cgroup(memcg); 4245 } 4246 } 4247 4248 static int compare_thresholds(const void *a, const void *b) 4249 { 4250 const struct mem_cgroup_threshold *_a = a; 4251 const struct mem_cgroup_threshold *_b = b; 4252 4253 if (_a->threshold > _b->threshold) 4254 return 1; 4255 4256 if (_a->threshold < _b->threshold) 4257 return -1; 4258 4259 return 0; 4260 } 4261 4262 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4263 { 4264 struct mem_cgroup_eventfd_list *ev; 4265 4266 spin_lock(&memcg_oom_lock); 4267 4268 list_for_each_entry(ev, &memcg->oom_notify, list) 4269 eventfd_signal(ev->eventfd, 1); 4270 4271 spin_unlock(&memcg_oom_lock); 4272 return 0; 4273 } 4274 4275 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4276 { 4277 struct mem_cgroup *iter; 4278 4279 for_each_mem_cgroup_tree(iter, memcg) 4280 mem_cgroup_oom_notify_cb(iter); 4281 } 4282 4283 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4284 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4285 { 4286 struct mem_cgroup_thresholds *thresholds; 4287 struct mem_cgroup_threshold_ary *new; 4288 unsigned long threshold; 4289 unsigned long usage; 4290 int i, size, ret; 4291 4292 ret = page_counter_memparse(args, "-1", &threshold); 4293 if (ret) 4294 return ret; 4295 4296 mutex_lock(&memcg->thresholds_lock); 4297 4298 if (type == _MEM) { 4299 thresholds = &memcg->thresholds; 4300 usage = mem_cgroup_usage(memcg, false); 4301 } else if (type == _MEMSWAP) { 4302 thresholds = &memcg->memsw_thresholds; 4303 usage = mem_cgroup_usage(memcg, true); 4304 } else 4305 BUG(); 4306 4307 /* Check if a threshold crossed before adding a new one */ 4308 if (thresholds->primary) 4309 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4310 4311 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4312 4313 /* Allocate memory for new array of thresholds */ 4314 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4315 if (!new) { 4316 ret = -ENOMEM; 4317 goto unlock; 4318 } 4319 new->size = size; 4320 4321 /* Copy thresholds (if any) to new array */ 4322 if (thresholds->primary) 4323 memcpy(new->entries, thresholds->primary->entries, 4324 flex_array_size(new, entries, size - 1)); 4325 4326 /* Add new threshold */ 4327 new->entries[size - 1].eventfd = eventfd; 4328 new->entries[size - 1].threshold = threshold; 4329 4330 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4331 sort(new->entries, size, sizeof(*new->entries), 4332 compare_thresholds, NULL); 4333 4334 /* Find current threshold */ 4335 new->current_threshold = -1; 4336 for (i = 0; i < size; i++) { 4337 if (new->entries[i].threshold <= usage) { 4338 /* 4339 * new->current_threshold will not be used until 4340 * rcu_assign_pointer(), so it's safe to increment 4341 * it here. 4342 */ 4343 ++new->current_threshold; 4344 } else 4345 break; 4346 } 4347 4348 /* Free old spare buffer and save old primary buffer as spare */ 4349 kfree(thresholds->spare); 4350 thresholds->spare = thresholds->primary; 4351 4352 rcu_assign_pointer(thresholds->primary, new); 4353 4354 /* To be sure that nobody uses thresholds */ 4355 synchronize_rcu(); 4356 4357 unlock: 4358 mutex_unlock(&memcg->thresholds_lock); 4359 4360 return ret; 4361 } 4362 4363 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4364 struct eventfd_ctx *eventfd, const char *args) 4365 { 4366 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4367 } 4368 4369 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4370 struct eventfd_ctx *eventfd, const char *args) 4371 { 4372 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4373 } 4374 4375 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4376 struct eventfd_ctx *eventfd, enum res_type type) 4377 { 4378 struct mem_cgroup_thresholds *thresholds; 4379 struct mem_cgroup_threshold_ary *new; 4380 unsigned long usage; 4381 int i, j, size, entries; 4382 4383 mutex_lock(&memcg->thresholds_lock); 4384 4385 if (type == _MEM) { 4386 thresholds = &memcg->thresholds; 4387 usage = mem_cgroup_usage(memcg, false); 4388 } else if (type == _MEMSWAP) { 4389 thresholds = &memcg->memsw_thresholds; 4390 usage = mem_cgroup_usage(memcg, true); 4391 } else 4392 BUG(); 4393 4394 if (!thresholds->primary) 4395 goto unlock; 4396 4397 /* Check if a threshold crossed before removing */ 4398 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4399 4400 /* Calculate new number of threshold */ 4401 size = entries = 0; 4402 for (i = 0; i < thresholds->primary->size; i++) { 4403 if (thresholds->primary->entries[i].eventfd != eventfd) 4404 size++; 4405 else 4406 entries++; 4407 } 4408 4409 new = thresholds->spare; 4410 4411 /* If no items related to eventfd have been cleared, nothing to do */ 4412 if (!entries) 4413 goto unlock; 4414 4415 /* Set thresholds array to NULL if we don't have thresholds */ 4416 if (!size) { 4417 kfree(new); 4418 new = NULL; 4419 goto swap_buffers; 4420 } 4421 4422 new->size = size; 4423 4424 /* Copy thresholds and find current threshold */ 4425 new->current_threshold = -1; 4426 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4427 if (thresholds->primary->entries[i].eventfd == eventfd) 4428 continue; 4429 4430 new->entries[j] = thresholds->primary->entries[i]; 4431 if (new->entries[j].threshold <= usage) { 4432 /* 4433 * new->current_threshold will not be used 4434 * until rcu_assign_pointer(), so it's safe to increment 4435 * it here. 4436 */ 4437 ++new->current_threshold; 4438 } 4439 j++; 4440 } 4441 4442 swap_buffers: 4443 /* Swap primary and spare array */ 4444 thresholds->spare = thresholds->primary; 4445 4446 rcu_assign_pointer(thresholds->primary, new); 4447 4448 /* To be sure that nobody uses thresholds */ 4449 synchronize_rcu(); 4450 4451 /* If all events are unregistered, free the spare array */ 4452 if (!new) { 4453 kfree(thresholds->spare); 4454 thresholds->spare = NULL; 4455 } 4456 unlock: 4457 mutex_unlock(&memcg->thresholds_lock); 4458 } 4459 4460 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4461 struct eventfd_ctx *eventfd) 4462 { 4463 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4464 } 4465 4466 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4467 struct eventfd_ctx *eventfd) 4468 { 4469 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4470 } 4471 4472 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4473 struct eventfd_ctx *eventfd, const char *args) 4474 { 4475 struct mem_cgroup_eventfd_list *event; 4476 4477 event = kmalloc(sizeof(*event), GFP_KERNEL); 4478 if (!event) 4479 return -ENOMEM; 4480 4481 spin_lock(&memcg_oom_lock); 4482 4483 event->eventfd = eventfd; 4484 list_add(&event->list, &memcg->oom_notify); 4485 4486 /* already in OOM ? */ 4487 if (memcg->under_oom) 4488 eventfd_signal(eventfd, 1); 4489 spin_unlock(&memcg_oom_lock); 4490 4491 return 0; 4492 } 4493 4494 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4495 struct eventfd_ctx *eventfd) 4496 { 4497 struct mem_cgroup_eventfd_list *ev, *tmp; 4498 4499 spin_lock(&memcg_oom_lock); 4500 4501 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4502 if (ev->eventfd == eventfd) { 4503 list_del(&ev->list); 4504 kfree(ev); 4505 } 4506 } 4507 4508 spin_unlock(&memcg_oom_lock); 4509 } 4510 4511 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4512 { 4513 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4514 4515 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4516 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4517 seq_printf(sf, "oom_kill %lu\n", 4518 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4519 return 0; 4520 } 4521 4522 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4523 struct cftype *cft, u64 val) 4524 { 4525 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4526 4527 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4528 if (!css->parent || !((val == 0) || (val == 1))) 4529 return -EINVAL; 4530 4531 memcg->oom_kill_disable = val; 4532 if (!val) 4533 memcg_oom_recover(memcg); 4534 4535 return 0; 4536 } 4537 4538 #ifdef CONFIG_CGROUP_WRITEBACK 4539 4540 #include <trace/events/writeback.h> 4541 4542 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4543 { 4544 return wb_domain_init(&memcg->cgwb_domain, gfp); 4545 } 4546 4547 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4548 { 4549 wb_domain_exit(&memcg->cgwb_domain); 4550 } 4551 4552 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4553 { 4554 wb_domain_size_changed(&memcg->cgwb_domain); 4555 } 4556 4557 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4558 { 4559 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4560 4561 if (!memcg->css.parent) 4562 return NULL; 4563 4564 return &memcg->cgwb_domain; 4565 } 4566 4567 /* 4568 * idx can be of type enum memcg_stat_item or node_stat_item. 4569 * Keep in sync with memcg_exact_page(). 4570 */ 4571 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4572 { 4573 long x = atomic_long_read(&memcg->vmstats[idx]); 4574 int cpu; 4575 4576 for_each_online_cpu(cpu) 4577 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4578 if (x < 0) 4579 x = 0; 4580 return x; 4581 } 4582 4583 /** 4584 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4585 * @wb: bdi_writeback in question 4586 * @pfilepages: out parameter for number of file pages 4587 * @pheadroom: out parameter for number of allocatable pages according to memcg 4588 * @pdirty: out parameter for number of dirty pages 4589 * @pwriteback: out parameter for number of pages under writeback 4590 * 4591 * Determine the numbers of file, headroom, dirty, and writeback pages in 4592 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4593 * is a bit more involved. 4594 * 4595 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4596 * headroom is calculated as the lowest headroom of itself and the 4597 * ancestors. Note that this doesn't consider the actual amount of 4598 * available memory in the system. The caller should further cap 4599 * *@pheadroom accordingly. 4600 */ 4601 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4602 unsigned long *pheadroom, unsigned long *pdirty, 4603 unsigned long *pwriteback) 4604 { 4605 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4606 struct mem_cgroup *parent; 4607 4608 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4609 4610 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4611 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4612 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4613 *pheadroom = PAGE_COUNTER_MAX; 4614 4615 while ((parent = parent_mem_cgroup(memcg))) { 4616 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4617 READ_ONCE(memcg->memory.high)); 4618 unsigned long used = page_counter_read(&memcg->memory); 4619 4620 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4621 memcg = parent; 4622 } 4623 } 4624 4625 /* 4626 * Foreign dirty flushing 4627 * 4628 * There's an inherent mismatch between memcg and writeback. The former 4629 * trackes ownership per-page while the latter per-inode. This was a 4630 * deliberate design decision because honoring per-page ownership in the 4631 * writeback path is complicated, may lead to higher CPU and IO overheads 4632 * and deemed unnecessary given that write-sharing an inode across 4633 * different cgroups isn't a common use-case. 4634 * 4635 * Combined with inode majority-writer ownership switching, this works well 4636 * enough in most cases but there are some pathological cases. For 4637 * example, let's say there are two cgroups A and B which keep writing to 4638 * different but confined parts of the same inode. B owns the inode and 4639 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4640 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4641 * triggering background writeback. A will be slowed down without a way to 4642 * make writeback of the dirty pages happen. 4643 * 4644 * Conditions like the above can lead to a cgroup getting repatedly and 4645 * severely throttled after making some progress after each 4646 * dirty_expire_interval while the underyling IO device is almost 4647 * completely idle. 4648 * 4649 * Solving this problem completely requires matching the ownership tracking 4650 * granularities between memcg and writeback in either direction. However, 4651 * the more egregious behaviors can be avoided by simply remembering the 4652 * most recent foreign dirtying events and initiating remote flushes on 4653 * them when local writeback isn't enough to keep the memory clean enough. 4654 * 4655 * The following two functions implement such mechanism. When a foreign 4656 * page - a page whose memcg and writeback ownerships don't match - is 4657 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4658 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4659 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4660 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4661 * foreign bdi_writebacks which haven't expired. Both the numbers of 4662 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4663 * limited to MEMCG_CGWB_FRN_CNT. 4664 * 4665 * The mechanism only remembers IDs and doesn't hold any object references. 4666 * As being wrong occasionally doesn't matter, updates and accesses to the 4667 * records are lockless and racy. 4668 */ 4669 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4670 struct bdi_writeback *wb) 4671 { 4672 struct mem_cgroup *memcg = page->mem_cgroup; 4673 struct memcg_cgwb_frn *frn; 4674 u64 now = get_jiffies_64(); 4675 u64 oldest_at = now; 4676 int oldest = -1; 4677 int i; 4678 4679 trace_track_foreign_dirty(page, wb); 4680 4681 /* 4682 * Pick the slot to use. If there is already a slot for @wb, keep 4683 * using it. If not replace the oldest one which isn't being 4684 * written out. 4685 */ 4686 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4687 frn = &memcg->cgwb_frn[i]; 4688 if (frn->bdi_id == wb->bdi->id && 4689 frn->memcg_id == wb->memcg_css->id) 4690 break; 4691 if (time_before64(frn->at, oldest_at) && 4692 atomic_read(&frn->done.cnt) == 1) { 4693 oldest = i; 4694 oldest_at = frn->at; 4695 } 4696 } 4697 4698 if (i < MEMCG_CGWB_FRN_CNT) { 4699 /* 4700 * Re-using an existing one. Update timestamp lazily to 4701 * avoid making the cacheline hot. We want them to be 4702 * reasonably up-to-date and significantly shorter than 4703 * dirty_expire_interval as that's what expires the record. 4704 * Use the shorter of 1s and dirty_expire_interval / 8. 4705 */ 4706 unsigned long update_intv = 4707 min_t(unsigned long, HZ, 4708 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4709 4710 if (time_before64(frn->at, now - update_intv)) 4711 frn->at = now; 4712 } else if (oldest >= 0) { 4713 /* replace the oldest free one */ 4714 frn = &memcg->cgwb_frn[oldest]; 4715 frn->bdi_id = wb->bdi->id; 4716 frn->memcg_id = wb->memcg_css->id; 4717 frn->at = now; 4718 } 4719 } 4720 4721 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4722 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4723 { 4724 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4725 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4726 u64 now = jiffies_64; 4727 int i; 4728 4729 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4730 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4731 4732 /* 4733 * If the record is older than dirty_expire_interval, 4734 * writeback on it has already started. No need to kick it 4735 * off again. Also, don't start a new one if there's 4736 * already one in flight. 4737 */ 4738 if (time_after64(frn->at, now - intv) && 4739 atomic_read(&frn->done.cnt) == 1) { 4740 frn->at = 0; 4741 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4742 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0, 4743 WB_REASON_FOREIGN_FLUSH, 4744 &frn->done); 4745 } 4746 } 4747 } 4748 4749 #else /* CONFIG_CGROUP_WRITEBACK */ 4750 4751 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4752 { 4753 return 0; 4754 } 4755 4756 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4757 { 4758 } 4759 4760 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4761 { 4762 } 4763 4764 #endif /* CONFIG_CGROUP_WRITEBACK */ 4765 4766 /* 4767 * DO NOT USE IN NEW FILES. 4768 * 4769 * "cgroup.event_control" implementation. 4770 * 4771 * This is way over-engineered. It tries to support fully configurable 4772 * events for each user. Such level of flexibility is completely 4773 * unnecessary especially in the light of the planned unified hierarchy. 4774 * 4775 * Please deprecate this and replace with something simpler if at all 4776 * possible. 4777 */ 4778 4779 /* 4780 * Unregister event and free resources. 4781 * 4782 * Gets called from workqueue. 4783 */ 4784 static void memcg_event_remove(struct work_struct *work) 4785 { 4786 struct mem_cgroup_event *event = 4787 container_of(work, struct mem_cgroup_event, remove); 4788 struct mem_cgroup *memcg = event->memcg; 4789 4790 remove_wait_queue(event->wqh, &event->wait); 4791 4792 event->unregister_event(memcg, event->eventfd); 4793 4794 /* Notify userspace the event is going away. */ 4795 eventfd_signal(event->eventfd, 1); 4796 4797 eventfd_ctx_put(event->eventfd); 4798 kfree(event); 4799 css_put(&memcg->css); 4800 } 4801 4802 /* 4803 * Gets called on EPOLLHUP on eventfd when user closes it. 4804 * 4805 * Called with wqh->lock held and interrupts disabled. 4806 */ 4807 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4808 int sync, void *key) 4809 { 4810 struct mem_cgroup_event *event = 4811 container_of(wait, struct mem_cgroup_event, wait); 4812 struct mem_cgroup *memcg = event->memcg; 4813 __poll_t flags = key_to_poll(key); 4814 4815 if (flags & EPOLLHUP) { 4816 /* 4817 * If the event has been detached at cgroup removal, we 4818 * can simply return knowing the other side will cleanup 4819 * for us. 4820 * 4821 * We can't race against event freeing since the other 4822 * side will require wqh->lock via remove_wait_queue(), 4823 * which we hold. 4824 */ 4825 spin_lock(&memcg->event_list_lock); 4826 if (!list_empty(&event->list)) { 4827 list_del_init(&event->list); 4828 /* 4829 * We are in atomic context, but cgroup_event_remove() 4830 * may sleep, so we have to call it in workqueue. 4831 */ 4832 schedule_work(&event->remove); 4833 } 4834 spin_unlock(&memcg->event_list_lock); 4835 } 4836 4837 return 0; 4838 } 4839 4840 static void memcg_event_ptable_queue_proc(struct file *file, 4841 wait_queue_head_t *wqh, poll_table *pt) 4842 { 4843 struct mem_cgroup_event *event = 4844 container_of(pt, struct mem_cgroup_event, pt); 4845 4846 event->wqh = wqh; 4847 add_wait_queue(wqh, &event->wait); 4848 } 4849 4850 /* 4851 * DO NOT USE IN NEW FILES. 4852 * 4853 * Parse input and register new cgroup event handler. 4854 * 4855 * Input must be in format '<event_fd> <control_fd> <args>'. 4856 * Interpretation of args is defined by control file implementation. 4857 */ 4858 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4859 char *buf, size_t nbytes, loff_t off) 4860 { 4861 struct cgroup_subsys_state *css = of_css(of); 4862 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4863 struct mem_cgroup_event *event; 4864 struct cgroup_subsys_state *cfile_css; 4865 unsigned int efd, cfd; 4866 struct fd efile; 4867 struct fd cfile; 4868 const char *name; 4869 char *endp; 4870 int ret; 4871 4872 buf = strstrip(buf); 4873 4874 efd = simple_strtoul(buf, &endp, 10); 4875 if (*endp != ' ') 4876 return -EINVAL; 4877 buf = endp + 1; 4878 4879 cfd = simple_strtoul(buf, &endp, 10); 4880 if ((*endp != ' ') && (*endp != '\0')) 4881 return -EINVAL; 4882 buf = endp + 1; 4883 4884 event = kzalloc(sizeof(*event), GFP_KERNEL); 4885 if (!event) 4886 return -ENOMEM; 4887 4888 event->memcg = memcg; 4889 INIT_LIST_HEAD(&event->list); 4890 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4891 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4892 INIT_WORK(&event->remove, memcg_event_remove); 4893 4894 efile = fdget(efd); 4895 if (!efile.file) { 4896 ret = -EBADF; 4897 goto out_kfree; 4898 } 4899 4900 event->eventfd = eventfd_ctx_fileget(efile.file); 4901 if (IS_ERR(event->eventfd)) { 4902 ret = PTR_ERR(event->eventfd); 4903 goto out_put_efile; 4904 } 4905 4906 cfile = fdget(cfd); 4907 if (!cfile.file) { 4908 ret = -EBADF; 4909 goto out_put_eventfd; 4910 } 4911 4912 /* the process need read permission on control file */ 4913 /* AV: shouldn't we check that it's been opened for read instead? */ 4914 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4915 if (ret < 0) 4916 goto out_put_cfile; 4917 4918 /* 4919 * Determine the event callbacks and set them in @event. This used 4920 * to be done via struct cftype but cgroup core no longer knows 4921 * about these events. The following is crude but the whole thing 4922 * is for compatibility anyway. 4923 * 4924 * DO NOT ADD NEW FILES. 4925 */ 4926 name = cfile.file->f_path.dentry->d_name.name; 4927 4928 if (!strcmp(name, "memory.usage_in_bytes")) { 4929 event->register_event = mem_cgroup_usage_register_event; 4930 event->unregister_event = mem_cgroup_usage_unregister_event; 4931 } else if (!strcmp(name, "memory.oom_control")) { 4932 event->register_event = mem_cgroup_oom_register_event; 4933 event->unregister_event = mem_cgroup_oom_unregister_event; 4934 } else if (!strcmp(name, "memory.pressure_level")) { 4935 event->register_event = vmpressure_register_event; 4936 event->unregister_event = vmpressure_unregister_event; 4937 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4938 event->register_event = memsw_cgroup_usage_register_event; 4939 event->unregister_event = memsw_cgroup_usage_unregister_event; 4940 } else { 4941 ret = -EINVAL; 4942 goto out_put_cfile; 4943 } 4944 4945 /* 4946 * Verify @cfile should belong to @css. Also, remaining events are 4947 * automatically removed on cgroup destruction but the removal is 4948 * asynchronous, so take an extra ref on @css. 4949 */ 4950 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4951 &memory_cgrp_subsys); 4952 ret = -EINVAL; 4953 if (IS_ERR(cfile_css)) 4954 goto out_put_cfile; 4955 if (cfile_css != css) { 4956 css_put(cfile_css); 4957 goto out_put_cfile; 4958 } 4959 4960 ret = event->register_event(memcg, event->eventfd, buf); 4961 if (ret) 4962 goto out_put_css; 4963 4964 vfs_poll(efile.file, &event->pt); 4965 4966 spin_lock(&memcg->event_list_lock); 4967 list_add(&event->list, &memcg->event_list); 4968 spin_unlock(&memcg->event_list_lock); 4969 4970 fdput(cfile); 4971 fdput(efile); 4972 4973 return nbytes; 4974 4975 out_put_css: 4976 css_put(css); 4977 out_put_cfile: 4978 fdput(cfile); 4979 out_put_eventfd: 4980 eventfd_ctx_put(event->eventfd); 4981 out_put_efile: 4982 fdput(efile); 4983 out_kfree: 4984 kfree(event); 4985 4986 return ret; 4987 } 4988 4989 static struct cftype mem_cgroup_legacy_files[] = { 4990 { 4991 .name = "usage_in_bytes", 4992 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4993 .read_u64 = mem_cgroup_read_u64, 4994 }, 4995 { 4996 .name = "max_usage_in_bytes", 4997 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4998 .write = mem_cgroup_reset, 4999 .read_u64 = mem_cgroup_read_u64, 5000 }, 5001 { 5002 .name = "limit_in_bytes", 5003 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5004 .write = mem_cgroup_write, 5005 .read_u64 = mem_cgroup_read_u64, 5006 }, 5007 { 5008 .name = "soft_limit_in_bytes", 5009 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5010 .write = mem_cgroup_write, 5011 .read_u64 = mem_cgroup_read_u64, 5012 }, 5013 { 5014 .name = "failcnt", 5015 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5016 .write = mem_cgroup_reset, 5017 .read_u64 = mem_cgroup_read_u64, 5018 }, 5019 { 5020 .name = "stat", 5021 .seq_show = memcg_stat_show, 5022 }, 5023 { 5024 .name = "force_empty", 5025 .write = mem_cgroup_force_empty_write, 5026 }, 5027 { 5028 .name = "use_hierarchy", 5029 .write_u64 = mem_cgroup_hierarchy_write, 5030 .read_u64 = mem_cgroup_hierarchy_read, 5031 }, 5032 { 5033 .name = "cgroup.event_control", /* XXX: for compat */ 5034 .write = memcg_write_event_control, 5035 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 5036 }, 5037 { 5038 .name = "swappiness", 5039 .read_u64 = mem_cgroup_swappiness_read, 5040 .write_u64 = mem_cgroup_swappiness_write, 5041 }, 5042 { 5043 .name = "move_charge_at_immigrate", 5044 .read_u64 = mem_cgroup_move_charge_read, 5045 .write_u64 = mem_cgroup_move_charge_write, 5046 }, 5047 { 5048 .name = "oom_control", 5049 .seq_show = mem_cgroup_oom_control_read, 5050 .write_u64 = mem_cgroup_oom_control_write, 5051 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 5052 }, 5053 { 5054 .name = "pressure_level", 5055 }, 5056 #ifdef CONFIG_NUMA 5057 { 5058 .name = "numa_stat", 5059 .seq_show = memcg_numa_stat_show, 5060 }, 5061 #endif 5062 { 5063 .name = "kmem.limit_in_bytes", 5064 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5065 .write = mem_cgroup_write, 5066 .read_u64 = mem_cgroup_read_u64, 5067 }, 5068 { 5069 .name = "kmem.usage_in_bytes", 5070 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5071 .read_u64 = mem_cgroup_read_u64, 5072 }, 5073 { 5074 .name = "kmem.failcnt", 5075 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5076 .write = mem_cgroup_reset, 5077 .read_u64 = mem_cgroup_read_u64, 5078 }, 5079 { 5080 .name = "kmem.max_usage_in_bytes", 5081 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5082 .write = mem_cgroup_reset, 5083 .read_u64 = mem_cgroup_read_u64, 5084 }, 5085 #if defined(CONFIG_MEMCG_KMEM) && \ 5086 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 5087 { 5088 .name = "kmem.slabinfo", 5089 .seq_show = memcg_slab_show, 5090 }, 5091 #endif 5092 { 5093 .name = "kmem.tcp.limit_in_bytes", 5094 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5095 .write = mem_cgroup_write, 5096 .read_u64 = mem_cgroup_read_u64, 5097 }, 5098 { 5099 .name = "kmem.tcp.usage_in_bytes", 5100 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5101 .read_u64 = mem_cgroup_read_u64, 5102 }, 5103 { 5104 .name = "kmem.tcp.failcnt", 5105 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5106 .write = mem_cgroup_reset, 5107 .read_u64 = mem_cgroup_read_u64, 5108 }, 5109 { 5110 .name = "kmem.tcp.max_usage_in_bytes", 5111 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5112 .write = mem_cgroup_reset, 5113 .read_u64 = mem_cgroup_read_u64, 5114 }, 5115 { }, /* terminate */ 5116 }; 5117 5118 /* 5119 * Private memory cgroup IDR 5120 * 5121 * Swap-out records and page cache shadow entries need to store memcg 5122 * references in constrained space, so we maintain an ID space that is 5123 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5124 * memory-controlled cgroups to 64k. 5125 * 5126 * However, there usually are many references to the offline CSS after 5127 * the cgroup has been destroyed, such as page cache or reclaimable 5128 * slab objects, that don't need to hang on to the ID. We want to keep 5129 * those dead CSS from occupying IDs, or we might quickly exhaust the 5130 * relatively small ID space and prevent the creation of new cgroups 5131 * even when there are much fewer than 64k cgroups - possibly none. 5132 * 5133 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5134 * be freed and recycled when it's no longer needed, which is usually 5135 * when the CSS is offlined. 5136 * 5137 * The only exception to that are records of swapped out tmpfs/shmem 5138 * pages that need to be attributed to live ancestors on swapin. But 5139 * those references are manageable from userspace. 5140 */ 5141 5142 static DEFINE_IDR(mem_cgroup_idr); 5143 5144 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5145 { 5146 if (memcg->id.id > 0) { 5147 idr_remove(&mem_cgroup_idr, memcg->id.id); 5148 memcg->id.id = 0; 5149 } 5150 } 5151 5152 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5153 unsigned int n) 5154 { 5155 refcount_add(n, &memcg->id.ref); 5156 } 5157 5158 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5159 { 5160 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5161 mem_cgroup_id_remove(memcg); 5162 5163 /* Memcg ID pins CSS */ 5164 css_put(&memcg->css); 5165 } 5166 } 5167 5168 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5169 { 5170 mem_cgroup_id_put_many(memcg, 1); 5171 } 5172 5173 /** 5174 * mem_cgroup_from_id - look up a memcg from a memcg id 5175 * @id: the memcg id to look up 5176 * 5177 * Caller must hold rcu_read_lock(). 5178 */ 5179 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5180 { 5181 WARN_ON_ONCE(!rcu_read_lock_held()); 5182 return idr_find(&mem_cgroup_idr, id); 5183 } 5184 5185 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5186 { 5187 struct mem_cgroup_per_node *pn; 5188 int tmp = node; 5189 /* 5190 * This routine is called against possible nodes. 5191 * But it's BUG to call kmalloc() against offline node. 5192 * 5193 * TODO: this routine can waste much memory for nodes which will 5194 * never be onlined. It's better to use memory hotplug callback 5195 * function. 5196 */ 5197 if (!node_state(node, N_NORMAL_MEMORY)) 5198 tmp = -1; 5199 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 5200 if (!pn) 5201 return 1; 5202 5203 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat, 5204 GFP_KERNEL_ACCOUNT); 5205 if (!pn->lruvec_stat_local) { 5206 kfree(pn); 5207 return 1; 5208 } 5209 5210 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat, 5211 GFP_KERNEL_ACCOUNT); 5212 if (!pn->lruvec_stat_cpu) { 5213 free_percpu(pn->lruvec_stat_local); 5214 kfree(pn); 5215 return 1; 5216 } 5217 5218 lruvec_init(&pn->lruvec); 5219 pn->usage_in_excess = 0; 5220 pn->on_tree = false; 5221 pn->memcg = memcg; 5222 5223 memcg->nodeinfo[node] = pn; 5224 return 0; 5225 } 5226 5227 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5228 { 5229 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5230 5231 if (!pn) 5232 return; 5233 5234 free_percpu(pn->lruvec_stat_cpu); 5235 free_percpu(pn->lruvec_stat_local); 5236 kfree(pn); 5237 } 5238 5239 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5240 { 5241 int node; 5242 5243 for_each_node(node) 5244 free_mem_cgroup_per_node_info(memcg, node); 5245 free_percpu(memcg->vmstats_percpu); 5246 free_percpu(memcg->vmstats_local); 5247 kfree(memcg); 5248 } 5249 5250 static void mem_cgroup_free(struct mem_cgroup *memcg) 5251 { 5252 memcg_wb_domain_exit(memcg); 5253 /* 5254 * Flush percpu vmstats and vmevents to guarantee the value correctness 5255 * on parent's and all ancestor levels. 5256 */ 5257 memcg_flush_percpu_vmstats(memcg); 5258 memcg_flush_percpu_vmevents(memcg); 5259 __mem_cgroup_free(memcg); 5260 } 5261 5262 static struct mem_cgroup *mem_cgroup_alloc(void) 5263 { 5264 struct mem_cgroup *memcg; 5265 unsigned int size; 5266 int node; 5267 int __maybe_unused i; 5268 long error = -ENOMEM; 5269 5270 size = sizeof(struct mem_cgroup); 5271 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 5272 5273 memcg = kzalloc(size, GFP_KERNEL); 5274 if (!memcg) 5275 return ERR_PTR(error); 5276 5277 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5278 1, MEM_CGROUP_ID_MAX, 5279 GFP_KERNEL); 5280 if (memcg->id.id < 0) { 5281 error = memcg->id.id; 5282 goto fail; 5283 } 5284 5285 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5286 GFP_KERNEL_ACCOUNT); 5287 if (!memcg->vmstats_local) 5288 goto fail; 5289 5290 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5291 GFP_KERNEL_ACCOUNT); 5292 if (!memcg->vmstats_percpu) 5293 goto fail; 5294 5295 for_each_node(node) 5296 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5297 goto fail; 5298 5299 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5300 goto fail; 5301 5302 INIT_WORK(&memcg->high_work, high_work_func); 5303 INIT_LIST_HEAD(&memcg->oom_notify); 5304 mutex_init(&memcg->thresholds_lock); 5305 spin_lock_init(&memcg->move_lock); 5306 vmpressure_init(&memcg->vmpressure); 5307 INIT_LIST_HEAD(&memcg->event_list); 5308 spin_lock_init(&memcg->event_list_lock); 5309 memcg->socket_pressure = jiffies; 5310 #ifdef CONFIG_MEMCG_KMEM 5311 memcg->kmemcg_id = -1; 5312 INIT_LIST_HEAD(&memcg->objcg_list); 5313 #endif 5314 #ifdef CONFIG_CGROUP_WRITEBACK 5315 INIT_LIST_HEAD(&memcg->cgwb_list); 5316 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5317 memcg->cgwb_frn[i].done = 5318 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5319 #endif 5320 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5321 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5322 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5323 memcg->deferred_split_queue.split_queue_len = 0; 5324 #endif 5325 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5326 return memcg; 5327 fail: 5328 mem_cgroup_id_remove(memcg); 5329 __mem_cgroup_free(memcg); 5330 return ERR_PTR(error); 5331 } 5332 5333 static struct cgroup_subsys_state * __ref 5334 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5335 { 5336 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5337 struct mem_cgroup *memcg, *old_memcg; 5338 long error = -ENOMEM; 5339 5340 old_memcg = set_active_memcg(parent); 5341 memcg = mem_cgroup_alloc(); 5342 set_active_memcg(old_memcg); 5343 if (IS_ERR(memcg)) 5344 return ERR_CAST(memcg); 5345 5346 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5347 memcg->soft_limit = PAGE_COUNTER_MAX; 5348 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5349 if (parent) { 5350 memcg->swappiness = mem_cgroup_swappiness(parent); 5351 memcg->oom_kill_disable = parent->oom_kill_disable; 5352 } 5353 if (!parent) { 5354 page_counter_init(&memcg->memory, NULL); 5355 page_counter_init(&memcg->swap, NULL); 5356 page_counter_init(&memcg->kmem, NULL); 5357 page_counter_init(&memcg->tcpmem, NULL); 5358 } else if (parent->use_hierarchy) { 5359 memcg->use_hierarchy = true; 5360 page_counter_init(&memcg->memory, &parent->memory); 5361 page_counter_init(&memcg->swap, &parent->swap); 5362 page_counter_init(&memcg->kmem, &parent->kmem); 5363 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5364 } else { 5365 page_counter_init(&memcg->memory, &root_mem_cgroup->memory); 5366 page_counter_init(&memcg->swap, &root_mem_cgroup->swap); 5367 page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem); 5368 page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem); 5369 /* 5370 * Deeper hierachy with use_hierarchy == false doesn't make 5371 * much sense so let cgroup subsystem know about this 5372 * unfortunate state in our controller. 5373 */ 5374 if (parent != root_mem_cgroup) 5375 memory_cgrp_subsys.broken_hierarchy = true; 5376 } 5377 5378 /* The following stuff does not apply to the root */ 5379 if (!parent) { 5380 root_mem_cgroup = memcg; 5381 return &memcg->css; 5382 } 5383 5384 error = memcg_online_kmem(memcg); 5385 if (error) 5386 goto fail; 5387 5388 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5389 static_branch_inc(&memcg_sockets_enabled_key); 5390 5391 return &memcg->css; 5392 fail: 5393 mem_cgroup_id_remove(memcg); 5394 mem_cgroup_free(memcg); 5395 return ERR_PTR(error); 5396 } 5397 5398 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5399 { 5400 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5401 5402 /* 5403 * A memcg must be visible for memcg_expand_shrinker_maps() 5404 * by the time the maps are allocated. So, we allocate maps 5405 * here, when for_each_mem_cgroup() can't skip it. 5406 */ 5407 if (memcg_alloc_shrinker_maps(memcg)) { 5408 mem_cgroup_id_remove(memcg); 5409 return -ENOMEM; 5410 } 5411 5412 /* Online state pins memcg ID, memcg ID pins CSS */ 5413 refcount_set(&memcg->id.ref, 1); 5414 css_get(css); 5415 return 0; 5416 } 5417 5418 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5419 { 5420 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5421 struct mem_cgroup_event *event, *tmp; 5422 5423 /* 5424 * Unregister events and notify userspace. 5425 * Notify userspace about cgroup removing only after rmdir of cgroup 5426 * directory to avoid race between userspace and kernelspace. 5427 */ 5428 spin_lock(&memcg->event_list_lock); 5429 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5430 list_del_init(&event->list); 5431 schedule_work(&event->remove); 5432 } 5433 spin_unlock(&memcg->event_list_lock); 5434 5435 page_counter_set_min(&memcg->memory, 0); 5436 page_counter_set_low(&memcg->memory, 0); 5437 5438 memcg_offline_kmem(memcg); 5439 wb_memcg_offline(memcg); 5440 5441 drain_all_stock(memcg); 5442 5443 mem_cgroup_id_put(memcg); 5444 } 5445 5446 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5447 { 5448 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5449 5450 invalidate_reclaim_iterators(memcg); 5451 } 5452 5453 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5454 { 5455 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5456 int __maybe_unused i; 5457 5458 #ifdef CONFIG_CGROUP_WRITEBACK 5459 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5460 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5461 #endif 5462 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5463 static_branch_dec(&memcg_sockets_enabled_key); 5464 5465 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5466 static_branch_dec(&memcg_sockets_enabled_key); 5467 5468 vmpressure_cleanup(&memcg->vmpressure); 5469 cancel_work_sync(&memcg->high_work); 5470 mem_cgroup_remove_from_trees(memcg); 5471 memcg_free_shrinker_maps(memcg); 5472 memcg_free_kmem(memcg); 5473 mem_cgroup_free(memcg); 5474 } 5475 5476 /** 5477 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5478 * @css: the target css 5479 * 5480 * Reset the states of the mem_cgroup associated with @css. This is 5481 * invoked when the userland requests disabling on the default hierarchy 5482 * but the memcg is pinned through dependency. The memcg should stop 5483 * applying policies and should revert to the vanilla state as it may be 5484 * made visible again. 5485 * 5486 * The current implementation only resets the essential configurations. 5487 * This needs to be expanded to cover all the visible parts. 5488 */ 5489 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5490 { 5491 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5492 5493 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5494 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5495 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5496 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5497 page_counter_set_min(&memcg->memory, 0); 5498 page_counter_set_low(&memcg->memory, 0); 5499 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5500 memcg->soft_limit = PAGE_COUNTER_MAX; 5501 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5502 memcg_wb_domain_size_changed(memcg); 5503 } 5504 5505 #ifdef CONFIG_MMU 5506 /* Handlers for move charge at task migration. */ 5507 static int mem_cgroup_do_precharge(unsigned long count) 5508 { 5509 int ret; 5510 5511 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5512 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5513 if (!ret) { 5514 mc.precharge += count; 5515 return ret; 5516 } 5517 5518 /* Try charges one by one with reclaim, but do not retry */ 5519 while (count--) { 5520 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5521 if (ret) 5522 return ret; 5523 mc.precharge++; 5524 cond_resched(); 5525 } 5526 return 0; 5527 } 5528 5529 union mc_target { 5530 struct page *page; 5531 swp_entry_t ent; 5532 }; 5533 5534 enum mc_target_type { 5535 MC_TARGET_NONE = 0, 5536 MC_TARGET_PAGE, 5537 MC_TARGET_SWAP, 5538 MC_TARGET_DEVICE, 5539 }; 5540 5541 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5542 unsigned long addr, pte_t ptent) 5543 { 5544 struct page *page = vm_normal_page(vma, addr, ptent); 5545 5546 if (!page || !page_mapped(page)) 5547 return NULL; 5548 if (PageAnon(page)) { 5549 if (!(mc.flags & MOVE_ANON)) 5550 return NULL; 5551 } else { 5552 if (!(mc.flags & MOVE_FILE)) 5553 return NULL; 5554 } 5555 if (!get_page_unless_zero(page)) 5556 return NULL; 5557 5558 return page; 5559 } 5560 5561 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5562 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5563 pte_t ptent, swp_entry_t *entry) 5564 { 5565 struct page *page = NULL; 5566 swp_entry_t ent = pte_to_swp_entry(ptent); 5567 5568 if (!(mc.flags & MOVE_ANON)) 5569 return NULL; 5570 5571 /* 5572 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5573 * a device and because they are not accessible by CPU they are store 5574 * as special swap entry in the CPU page table. 5575 */ 5576 if (is_device_private_entry(ent)) { 5577 page = device_private_entry_to_page(ent); 5578 /* 5579 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5580 * a refcount of 1 when free (unlike normal page) 5581 */ 5582 if (!page_ref_add_unless(page, 1, 1)) 5583 return NULL; 5584 return page; 5585 } 5586 5587 if (non_swap_entry(ent)) 5588 return NULL; 5589 5590 /* 5591 * Because lookup_swap_cache() updates some statistics counter, 5592 * we call find_get_page() with swapper_space directly. 5593 */ 5594 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5595 entry->val = ent.val; 5596 5597 return page; 5598 } 5599 #else 5600 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5601 pte_t ptent, swp_entry_t *entry) 5602 { 5603 return NULL; 5604 } 5605 #endif 5606 5607 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5608 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5609 { 5610 if (!vma->vm_file) /* anonymous vma */ 5611 return NULL; 5612 if (!(mc.flags & MOVE_FILE)) 5613 return NULL; 5614 5615 /* page is moved even if it's not RSS of this task(page-faulted). */ 5616 /* shmem/tmpfs may report page out on swap: account for that too. */ 5617 return find_get_incore_page(vma->vm_file->f_mapping, 5618 linear_page_index(vma, addr)); 5619 } 5620 5621 /** 5622 * mem_cgroup_move_account - move account of the page 5623 * @page: the page 5624 * @compound: charge the page as compound or small page 5625 * @from: mem_cgroup which the page is moved from. 5626 * @to: mem_cgroup which the page is moved to. @from != @to. 5627 * 5628 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5629 * 5630 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5631 * from old cgroup. 5632 */ 5633 static int mem_cgroup_move_account(struct page *page, 5634 bool compound, 5635 struct mem_cgroup *from, 5636 struct mem_cgroup *to) 5637 { 5638 struct lruvec *from_vec, *to_vec; 5639 struct pglist_data *pgdat; 5640 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1; 5641 int ret; 5642 5643 VM_BUG_ON(from == to); 5644 VM_BUG_ON_PAGE(PageLRU(page), page); 5645 VM_BUG_ON(compound && !PageTransHuge(page)); 5646 5647 /* 5648 * Prevent mem_cgroup_migrate() from looking at 5649 * page->mem_cgroup of its source page while we change it. 5650 */ 5651 ret = -EBUSY; 5652 if (!trylock_page(page)) 5653 goto out; 5654 5655 ret = -EINVAL; 5656 if (page->mem_cgroup != from) 5657 goto out_unlock; 5658 5659 pgdat = page_pgdat(page); 5660 from_vec = mem_cgroup_lruvec(from, pgdat); 5661 to_vec = mem_cgroup_lruvec(to, pgdat); 5662 5663 lock_page_memcg(page); 5664 5665 if (PageAnon(page)) { 5666 if (page_mapped(page)) { 5667 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5668 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5669 if (PageTransHuge(page)) { 5670 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5671 -nr_pages); 5672 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5673 nr_pages); 5674 } 5675 5676 } 5677 } else { 5678 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5679 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5680 5681 if (PageSwapBacked(page)) { 5682 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5683 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5684 } 5685 5686 if (page_mapped(page)) { 5687 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5688 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5689 } 5690 5691 if (PageDirty(page)) { 5692 struct address_space *mapping = page_mapping(page); 5693 5694 if (mapping_can_writeback(mapping)) { 5695 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5696 -nr_pages); 5697 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5698 nr_pages); 5699 } 5700 } 5701 } 5702 5703 if (PageWriteback(page)) { 5704 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5705 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5706 } 5707 5708 /* 5709 * All state has been migrated, let's switch to the new memcg. 5710 * 5711 * It is safe to change page->mem_cgroup here because the page 5712 * is referenced, charged, isolated, and locked: we can't race 5713 * with (un)charging, migration, LRU putback, or anything else 5714 * that would rely on a stable page->mem_cgroup. 5715 * 5716 * Note that lock_page_memcg is a memcg lock, not a page lock, 5717 * to save space. As soon as we switch page->mem_cgroup to a 5718 * new memcg that isn't locked, the above state can change 5719 * concurrently again. Make sure we're truly done with it. 5720 */ 5721 smp_mb(); 5722 5723 css_get(&to->css); 5724 css_put(&from->css); 5725 5726 page->mem_cgroup = to; 5727 5728 __unlock_page_memcg(from); 5729 5730 ret = 0; 5731 5732 local_irq_disable(); 5733 mem_cgroup_charge_statistics(to, page, nr_pages); 5734 memcg_check_events(to, page); 5735 mem_cgroup_charge_statistics(from, page, -nr_pages); 5736 memcg_check_events(from, page); 5737 local_irq_enable(); 5738 out_unlock: 5739 unlock_page(page); 5740 out: 5741 return ret; 5742 } 5743 5744 /** 5745 * get_mctgt_type - get target type of moving charge 5746 * @vma: the vma the pte to be checked belongs 5747 * @addr: the address corresponding to the pte to be checked 5748 * @ptent: the pte to be checked 5749 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5750 * 5751 * Returns 5752 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5753 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5754 * move charge. if @target is not NULL, the page is stored in target->page 5755 * with extra refcnt got(Callers should handle it). 5756 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5757 * target for charge migration. if @target is not NULL, the entry is stored 5758 * in target->ent. 5759 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5760 * (so ZONE_DEVICE page and thus not on the lru). 5761 * For now we such page is charge like a regular page would be as for all 5762 * intent and purposes it is just special memory taking the place of a 5763 * regular page. 5764 * 5765 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5766 * 5767 * Called with pte lock held. 5768 */ 5769 5770 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5771 unsigned long addr, pte_t ptent, union mc_target *target) 5772 { 5773 struct page *page = NULL; 5774 enum mc_target_type ret = MC_TARGET_NONE; 5775 swp_entry_t ent = { .val = 0 }; 5776 5777 if (pte_present(ptent)) 5778 page = mc_handle_present_pte(vma, addr, ptent); 5779 else if (is_swap_pte(ptent)) 5780 page = mc_handle_swap_pte(vma, ptent, &ent); 5781 else if (pte_none(ptent)) 5782 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5783 5784 if (!page && !ent.val) 5785 return ret; 5786 if (page) { 5787 /* 5788 * Do only loose check w/o serialization. 5789 * mem_cgroup_move_account() checks the page is valid or 5790 * not under LRU exclusion. 5791 */ 5792 if (page->mem_cgroup == mc.from) { 5793 ret = MC_TARGET_PAGE; 5794 if (is_device_private_page(page)) 5795 ret = MC_TARGET_DEVICE; 5796 if (target) 5797 target->page = page; 5798 } 5799 if (!ret || !target) 5800 put_page(page); 5801 } 5802 /* 5803 * There is a swap entry and a page doesn't exist or isn't charged. 5804 * But we cannot move a tail-page in a THP. 5805 */ 5806 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5807 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5808 ret = MC_TARGET_SWAP; 5809 if (target) 5810 target->ent = ent; 5811 } 5812 return ret; 5813 } 5814 5815 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5816 /* 5817 * We don't consider PMD mapped swapping or file mapped pages because THP does 5818 * not support them for now. 5819 * Caller should make sure that pmd_trans_huge(pmd) is true. 5820 */ 5821 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5822 unsigned long addr, pmd_t pmd, union mc_target *target) 5823 { 5824 struct page *page = NULL; 5825 enum mc_target_type ret = MC_TARGET_NONE; 5826 5827 if (unlikely(is_swap_pmd(pmd))) { 5828 VM_BUG_ON(thp_migration_supported() && 5829 !is_pmd_migration_entry(pmd)); 5830 return ret; 5831 } 5832 page = pmd_page(pmd); 5833 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5834 if (!(mc.flags & MOVE_ANON)) 5835 return ret; 5836 if (page->mem_cgroup == mc.from) { 5837 ret = MC_TARGET_PAGE; 5838 if (target) { 5839 get_page(page); 5840 target->page = page; 5841 } 5842 } 5843 return ret; 5844 } 5845 #else 5846 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5847 unsigned long addr, pmd_t pmd, union mc_target *target) 5848 { 5849 return MC_TARGET_NONE; 5850 } 5851 #endif 5852 5853 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5854 unsigned long addr, unsigned long end, 5855 struct mm_walk *walk) 5856 { 5857 struct vm_area_struct *vma = walk->vma; 5858 pte_t *pte; 5859 spinlock_t *ptl; 5860 5861 ptl = pmd_trans_huge_lock(pmd, vma); 5862 if (ptl) { 5863 /* 5864 * Note their can not be MC_TARGET_DEVICE for now as we do not 5865 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5866 * this might change. 5867 */ 5868 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5869 mc.precharge += HPAGE_PMD_NR; 5870 spin_unlock(ptl); 5871 return 0; 5872 } 5873 5874 if (pmd_trans_unstable(pmd)) 5875 return 0; 5876 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5877 for (; addr != end; pte++, addr += PAGE_SIZE) 5878 if (get_mctgt_type(vma, addr, *pte, NULL)) 5879 mc.precharge++; /* increment precharge temporarily */ 5880 pte_unmap_unlock(pte - 1, ptl); 5881 cond_resched(); 5882 5883 return 0; 5884 } 5885 5886 static const struct mm_walk_ops precharge_walk_ops = { 5887 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5888 }; 5889 5890 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5891 { 5892 unsigned long precharge; 5893 5894 mmap_read_lock(mm); 5895 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5896 mmap_read_unlock(mm); 5897 5898 precharge = mc.precharge; 5899 mc.precharge = 0; 5900 5901 return precharge; 5902 } 5903 5904 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5905 { 5906 unsigned long precharge = mem_cgroup_count_precharge(mm); 5907 5908 VM_BUG_ON(mc.moving_task); 5909 mc.moving_task = current; 5910 return mem_cgroup_do_precharge(precharge); 5911 } 5912 5913 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5914 static void __mem_cgroup_clear_mc(void) 5915 { 5916 struct mem_cgroup *from = mc.from; 5917 struct mem_cgroup *to = mc.to; 5918 5919 /* we must uncharge all the leftover precharges from mc.to */ 5920 if (mc.precharge) { 5921 cancel_charge(mc.to, mc.precharge); 5922 mc.precharge = 0; 5923 } 5924 /* 5925 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5926 * we must uncharge here. 5927 */ 5928 if (mc.moved_charge) { 5929 cancel_charge(mc.from, mc.moved_charge); 5930 mc.moved_charge = 0; 5931 } 5932 /* we must fixup refcnts and charges */ 5933 if (mc.moved_swap) { 5934 /* uncharge swap account from the old cgroup */ 5935 if (!mem_cgroup_is_root(mc.from)) 5936 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5937 5938 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5939 5940 /* 5941 * we charged both to->memory and to->memsw, so we 5942 * should uncharge to->memory. 5943 */ 5944 if (!mem_cgroup_is_root(mc.to)) 5945 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5946 5947 mc.moved_swap = 0; 5948 } 5949 memcg_oom_recover(from); 5950 memcg_oom_recover(to); 5951 wake_up_all(&mc.waitq); 5952 } 5953 5954 static void mem_cgroup_clear_mc(void) 5955 { 5956 struct mm_struct *mm = mc.mm; 5957 5958 /* 5959 * we must clear moving_task before waking up waiters at the end of 5960 * task migration. 5961 */ 5962 mc.moving_task = NULL; 5963 __mem_cgroup_clear_mc(); 5964 spin_lock(&mc.lock); 5965 mc.from = NULL; 5966 mc.to = NULL; 5967 mc.mm = NULL; 5968 spin_unlock(&mc.lock); 5969 5970 mmput(mm); 5971 } 5972 5973 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5974 { 5975 struct cgroup_subsys_state *css; 5976 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5977 struct mem_cgroup *from; 5978 struct task_struct *leader, *p; 5979 struct mm_struct *mm; 5980 unsigned long move_flags; 5981 int ret = 0; 5982 5983 /* charge immigration isn't supported on the default hierarchy */ 5984 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5985 return 0; 5986 5987 /* 5988 * Multi-process migrations only happen on the default hierarchy 5989 * where charge immigration is not used. Perform charge 5990 * immigration if @tset contains a leader and whine if there are 5991 * multiple. 5992 */ 5993 p = NULL; 5994 cgroup_taskset_for_each_leader(leader, css, tset) { 5995 WARN_ON_ONCE(p); 5996 p = leader; 5997 memcg = mem_cgroup_from_css(css); 5998 } 5999 if (!p) 6000 return 0; 6001 6002 /* 6003 * We are now commited to this value whatever it is. Changes in this 6004 * tunable will only affect upcoming migrations, not the current one. 6005 * So we need to save it, and keep it going. 6006 */ 6007 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 6008 if (!move_flags) 6009 return 0; 6010 6011 from = mem_cgroup_from_task(p); 6012 6013 VM_BUG_ON(from == memcg); 6014 6015 mm = get_task_mm(p); 6016 if (!mm) 6017 return 0; 6018 /* We move charges only when we move a owner of the mm */ 6019 if (mm->owner == p) { 6020 VM_BUG_ON(mc.from); 6021 VM_BUG_ON(mc.to); 6022 VM_BUG_ON(mc.precharge); 6023 VM_BUG_ON(mc.moved_charge); 6024 VM_BUG_ON(mc.moved_swap); 6025 6026 spin_lock(&mc.lock); 6027 mc.mm = mm; 6028 mc.from = from; 6029 mc.to = memcg; 6030 mc.flags = move_flags; 6031 spin_unlock(&mc.lock); 6032 /* We set mc.moving_task later */ 6033 6034 ret = mem_cgroup_precharge_mc(mm); 6035 if (ret) 6036 mem_cgroup_clear_mc(); 6037 } else { 6038 mmput(mm); 6039 } 6040 return ret; 6041 } 6042 6043 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6044 { 6045 if (mc.to) 6046 mem_cgroup_clear_mc(); 6047 } 6048 6049 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6050 unsigned long addr, unsigned long end, 6051 struct mm_walk *walk) 6052 { 6053 int ret = 0; 6054 struct vm_area_struct *vma = walk->vma; 6055 pte_t *pte; 6056 spinlock_t *ptl; 6057 enum mc_target_type target_type; 6058 union mc_target target; 6059 struct page *page; 6060 6061 ptl = pmd_trans_huge_lock(pmd, vma); 6062 if (ptl) { 6063 if (mc.precharge < HPAGE_PMD_NR) { 6064 spin_unlock(ptl); 6065 return 0; 6066 } 6067 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6068 if (target_type == MC_TARGET_PAGE) { 6069 page = target.page; 6070 if (!isolate_lru_page(page)) { 6071 if (!mem_cgroup_move_account(page, true, 6072 mc.from, mc.to)) { 6073 mc.precharge -= HPAGE_PMD_NR; 6074 mc.moved_charge += HPAGE_PMD_NR; 6075 } 6076 putback_lru_page(page); 6077 } 6078 put_page(page); 6079 } else if (target_type == MC_TARGET_DEVICE) { 6080 page = target.page; 6081 if (!mem_cgroup_move_account(page, true, 6082 mc.from, mc.to)) { 6083 mc.precharge -= HPAGE_PMD_NR; 6084 mc.moved_charge += HPAGE_PMD_NR; 6085 } 6086 put_page(page); 6087 } 6088 spin_unlock(ptl); 6089 return 0; 6090 } 6091 6092 if (pmd_trans_unstable(pmd)) 6093 return 0; 6094 retry: 6095 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6096 for (; addr != end; addr += PAGE_SIZE) { 6097 pte_t ptent = *(pte++); 6098 bool device = false; 6099 swp_entry_t ent; 6100 6101 if (!mc.precharge) 6102 break; 6103 6104 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6105 case MC_TARGET_DEVICE: 6106 device = true; 6107 fallthrough; 6108 case MC_TARGET_PAGE: 6109 page = target.page; 6110 /* 6111 * We can have a part of the split pmd here. Moving it 6112 * can be done but it would be too convoluted so simply 6113 * ignore such a partial THP and keep it in original 6114 * memcg. There should be somebody mapping the head. 6115 */ 6116 if (PageTransCompound(page)) 6117 goto put; 6118 if (!device && isolate_lru_page(page)) 6119 goto put; 6120 if (!mem_cgroup_move_account(page, false, 6121 mc.from, mc.to)) { 6122 mc.precharge--; 6123 /* we uncharge from mc.from later. */ 6124 mc.moved_charge++; 6125 } 6126 if (!device) 6127 putback_lru_page(page); 6128 put: /* get_mctgt_type() gets the page */ 6129 put_page(page); 6130 break; 6131 case MC_TARGET_SWAP: 6132 ent = target.ent; 6133 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6134 mc.precharge--; 6135 mem_cgroup_id_get_many(mc.to, 1); 6136 /* we fixup other refcnts and charges later. */ 6137 mc.moved_swap++; 6138 } 6139 break; 6140 default: 6141 break; 6142 } 6143 } 6144 pte_unmap_unlock(pte - 1, ptl); 6145 cond_resched(); 6146 6147 if (addr != end) { 6148 /* 6149 * We have consumed all precharges we got in can_attach(). 6150 * We try charge one by one, but don't do any additional 6151 * charges to mc.to if we have failed in charge once in attach() 6152 * phase. 6153 */ 6154 ret = mem_cgroup_do_precharge(1); 6155 if (!ret) 6156 goto retry; 6157 } 6158 6159 return ret; 6160 } 6161 6162 static const struct mm_walk_ops charge_walk_ops = { 6163 .pmd_entry = mem_cgroup_move_charge_pte_range, 6164 }; 6165 6166 static void mem_cgroup_move_charge(void) 6167 { 6168 lru_add_drain_all(); 6169 /* 6170 * Signal lock_page_memcg() to take the memcg's move_lock 6171 * while we're moving its pages to another memcg. Then wait 6172 * for already started RCU-only updates to finish. 6173 */ 6174 atomic_inc(&mc.from->moving_account); 6175 synchronize_rcu(); 6176 retry: 6177 if (unlikely(!mmap_read_trylock(mc.mm))) { 6178 /* 6179 * Someone who are holding the mmap_lock might be waiting in 6180 * waitq. So we cancel all extra charges, wake up all waiters, 6181 * and retry. Because we cancel precharges, we might not be able 6182 * to move enough charges, but moving charge is a best-effort 6183 * feature anyway, so it wouldn't be a big problem. 6184 */ 6185 __mem_cgroup_clear_mc(); 6186 cond_resched(); 6187 goto retry; 6188 } 6189 /* 6190 * When we have consumed all precharges and failed in doing 6191 * additional charge, the page walk just aborts. 6192 */ 6193 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 6194 NULL); 6195 6196 mmap_read_unlock(mc.mm); 6197 atomic_dec(&mc.from->moving_account); 6198 } 6199 6200 static void mem_cgroup_move_task(void) 6201 { 6202 if (mc.to) { 6203 mem_cgroup_move_charge(); 6204 mem_cgroup_clear_mc(); 6205 } 6206 } 6207 #else /* !CONFIG_MMU */ 6208 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6209 { 6210 return 0; 6211 } 6212 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6213 { 6214 } 6215 static void mem_cgroup_move_task(void) 6216 { 6217 } 6218 #endif 6219 6220 /* 6221 * Cgroup retains root cgroups across [un]mount cycles making it necessary 6222 * to verify whether we're attached to the default hierarchy on each mount 6223 * attempt. 6224 */ 6225 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 6226 { 6227 /* 6228 * use_hierarchy is forced on the default hierarchy. cgroup core 6229 * guarantees that @root doesn't have any children, so turning it 6230 * on for the root memcg is enough. 6231 */ 6232 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6233 root_mem_cgroup->use_hierarchy = true; 6234 else 6235 root_mem_cgroup->use_hierarchy = false; 6236 } 6237 6238 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6239 { 6240 if (value == PAGE_COUNTER_MAX) 6241 seq_puts(m, "max\n"); 6242 else 6243 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6244 6245 return 0; 6246 } 6247 6248 static u64 memory_current_read(struct cgroup_subsys_state *css, 6249 struct cftype *cft) 6250 { 6251 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6252 6253 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6254 } 6255 6256 static int memory_min_show(struct seq_file *m, void *v) 6257 { 6258 return seq_puts_memcg_tunable(m, 6259 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6260 } 6261 6262 static ssize_t memory_min_write(struct kernfs_open_file *of, 6263 char *buf, size_t nbytes, loff_t off) 6264 { 6265 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6266 unsigned long min; 6267 int err; 6268 6269 buf = strstrip(buf); 6270 err = page_counter_memparse(buf, "max", &min); 6271 if (err) 6272 return err; 6273 6274 page_counter_set_min(&memcg->memory, min); 6275 6276 return nbytes; 6277 } 6278 6279 static int memory_low_show(struct seq_file *m, void *v) 6280 { 6281 return seq_puts_memcg_tunable(m, 6282 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6283 } 6284 6285 static ssize_t memory_low_write(struct kernfs_open_file *of, 6286 char *buf, size_t nbytes, loff_t off) 6287 { 6288 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6289 unsigned long low; 6290 int err; 6291 6292 buf = strstrip(buf); 6293 err = page_counter_memparse(buf, "max", &low); 6294 if (err) 6295 return err; 6296 6297 page_counter_set_low(&memcg->memory, low); 6298 6299 return nbytes; 6300 } 6301 6302 static int memory_high_show(struct seq_file *m, void *v) 6303 { 6304 return seq_puts_memcg_tunable(m, 6305 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6306 } 6307 6308 static ssize_t memory_high_write(struct kernfs_open_file *of, 6309 char *buf, size_t nbytes, loff_t off) 6310 { 6311 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6312 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6313 bool drained = false; 6314 unsigned long high; 6315 int err; 6316 6317 buf = strstrip(buf); 6318 err = page_counter_memparse(buf, "max", &high); 6319 if (err) 6320 return err; 6321 6322 for (;;) { 6323 unsigned long nr_pages = page_counter_read(&memcg->memory); 6324 unsigned long reclaimed; 6325 6326 if (nr_pages <= high) 6327 break; 6328 6329 if (signal_pending(current)) 6330 break; 6331 6332 if (!drained) { 6333 drain_all_stock(memcg); 6334 drained = true; 6335 continue; 6336 } 6337 6338 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6339 GFP_KERNEL, true); 6340 6341 if (!reclaimed && !nr_retries--) 6342 break; 6343 } 6344 6345 page_counter_set_high(&memcg->memory, high); 6346 6347 memcg_wb_domain_size_changed(memcg); 6348 6349 return nbytes; 6350 } 6351 6352 static int memory_max_show(struct seq_file *m, void *v) 6353 { 6354 return seq_puts_memcg_tunable(m, 6355 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6356 } 6357 6358 static ssize_t memory_max_write(struct kernfs_open_file *of, 6359 char *buf, size_t nbytes, loff_t off) 6360 { 6361 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6362 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6363 bool drained = false; 6364 unsigned long max; 6365 int err; 6366 6367 buf = strstrip(buf); 6368 err = page_counter_memparse(buf, "max", &max); 6369 if (err) 6370 return err; 6371 6372 xchg(&memcg->memory.max, max); 6373 6374 for (;;) { 6375 unsigned long nr_pages = page_counter_read(&memcg->memory); 6376 6377 if (nr_pages <= max) 6378 break; 6379 6380 if (signal_pending(current)) 6381 break; 6382 6383 if (!drained) { 6384 drain_all_stock(memcg); 6385 drained = true; 6386 continue; 6387 } 6388 6389 if (nr_reclaims) { 6390 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6391 GFP_KERNEL, true)) 6392 nr_reclaims--; 6393 continue; 6394 } 6395 6396 memcg_memory_event(memcg, MEMCG_OOM); 6397 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6398 break; 6399 } 6400 6401 memcg_wb_domain_size_changed(memcg); 6402 return nbytes; 6403 } 6404 6405 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6406 { 6407 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6408 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6409 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6410 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6411 seq_printf(m, "oom_kill %lu\n", 6412 atomic_long_read(&events[MEMCG_OOM_KILL])); 6413 } 6414 6415 static int memory_events_show(struct seq_file *m, void *v) 6416 { 6417 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6418 6419 __memory_events_show(m, memcg->memory_events); 6420 return 0; 6421 } 6422 6423 static int memory_events_local_show(struct seq_file *m, void *v) 6424 { 6425 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6426 6427 __memory_events_show(m, memcg->memory_events_local); 6428 return 0; 6429 } 6430 6431 static int memory_stat_show(struct seq_file *m, void *v) 6432 { 6433 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6434 char *buf; 6435 6436 buf = memory_stat_format(memcg); 6437 if (!buf) 6438 return -ENOMEM; 6439 seq_puts(m, buf); 6440 kfree(buf); 6441 return 0; 6442 } 6443 6444 #ifdef CONFIG_NUMA 6445 static int memory_numa_stat_show(struct seq_file *m, void *v) 6446 { 6447 int i; 6448 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6449 6450 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6451 int nid; 6452 6453 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6454 continue; 6455 6456 seq_printf(m, "%s", memory_stats[i].name); 6457 for_each_node_state(nid, N_MEMORY) { 6458 u64 size; 6459 struct lruvec *lruvec; 6460 6461 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6462 size = lruvec_page_state(lruvec, memory_stats[i].idx); 6463 size *= memory_stats[i].ratio; 6464 seq_printf(m, " N%d=%llu", nid, size); 6465 } 6466 seq_putc(m, '\n'); 6467 } 6468 6469 return 0; 6470 } 6471 #endif 6472 6473 static int memory_oom_group_show(struct seq_file *m, void *v) 6474 { 6475 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6476 6477 seq_printf(m, "%d\n", memcg->oom_group); 6478 6479 return 0; 6480 } 6481 6482 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6483 char *buf, size_t nbytes, loff_t off) 6484 { 6485 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6486 int ret, oom_group; 6487 6488 buf = strstrip(buf); 6489 if (!buf) 6490 return -EINVAL; 6491 6492 ret = kstrtoint(buf, 0, &oom_group); 6493 if (ret) 6494 return ret; 6495 6496 if (oom_group != 0 && oom_group != 1) 6497 return -EINVAL; 6498 6499 memcg->oom_group = oom_group; 6500 6501 return nbytes; 6502 } 6503 6504 static struct cftype memory_files[] = { 6505 { 6506 .name = "current", 6507 .flags = CFTYPE_NOT_ON_ROOT, 6508 .read_u64 = memory_current_read, 6509 }, 6510 { 6511 .name = "min", 6512 .flags = CFTYPE_NOT_ON_ROOT, 6513 .seq_show = memory_min_show, 6514 .write = memory_min_write, 6515 }, 6516 { 6517 .name = "low", 6518 .flags = CFTYPE_NOT_ON_ROOT, 6519 .seq_show = memory_low_show, 6520 .write = memory_low_write, 6521 }, 6522 { 6523 .name = "high", 6524 .flags = CFTYPE_NOT_ON_ROOT, 6525 .seq_show = memory_high_show, 6526 .write = memory_high_write, 6527 }, 6528 { 6529 .name = "max", 6530 .flags = CFTYPE_NOT_ON_ROOT, 6531 .seq_show = memory_max_show, 6532 .write = memory_max_write, 6533 }, 6534 { 6535 .name = "events", 6536 .flags = CFTYPE_NOT_ON_ROOT, 6537 .file_offset = offsetof(struct mem_cgroup, events_file), 6538 .seq_show = memory_events_show, 6539 }, 6540 { 6541 .name = "events.local", 6542 .flags = CFTYPE_NOT_ON_ROOT, 6543 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6544 .seq_show = memory_events_local_show, 6545 }, 6546 { 6547 .name = "stat", 6548 .seq_show = memory_stat_show, 6549 }, 6550 #ifdef CONFIG_NUMA 6551 { 6552 .name = "numa_stat", 6553 .seq_show = memory_numa_stat_show, 6554 }, 6555 #endif 6556 { 6557 .name = "oom.group", 6558 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6559 .seq_show = memory_oom_group_show, 6560 .write = memory_oom_group_write, 6561 }, 6562 { } /* terminate */ 6563 }; 6564 6565 struct cgroup_subsys memory_cgrp_subsys = { 6566 .css_alloc = mem_cgroup_css_alloc, 6567 .css_online = mem_cgroup_css_online, 6568 .css_offline = mem_cgroup_css_offline, 6569 .css_released = mem_cgroup_css_released, 6570 .css_free = mem_cgroup_css_free, 6571 .css_reset = mem_cgroup_css_reset, 6572 .can_attach = mem_cgroup_can_attach, 6573 .cancel_attach = mem_cgroup_cancel_attach, 6574 .post_attach = mem_cgroup_move_task, 6575 .bind = mem_cgroup_bind, 6576 .dfl_cftypes = memory_files, 6577 .legacy_cftypes = mem_cgroup_legacy_files, 6578 .early_init = 0, 6579 }; 6580 6581 /* 6582 * This function calculates an individual cgroup's effective 6583 * protection which is derived from its own memory.min/low, its 6584 * parent's and siblings' settings, as well as the actual memory 6585 * distribution in the tree. 6586 * 6587 * The following rules apply to the effective protection values: 6588 * 6589 * 1. At the first level of reclaim, effective protection is equal to 6590 * the declared protection in memory.min and memory.low. 6591 * 6592 * 2. To enable safe delegation of the protection configuration, at 6593 * subsequent levels the effective protection is capped to the 6594 * parent's effective protection. 6595 * 6596 * 3. To make complex and dynamic subtrees easier to configure, the 6597 * user is allowed to overcommit the declared protection at a given 6598 * level. If that is the case, the parent's effective protection is 6599 * distributed to the children in proportion to how much protection 6600 * they have declared and how much of it they are utilizing. 6601 * 6602 * This makes distribution proportional, but also work-conserving: 6603 * if one cgroup claims much more protection than it uses memory, 6604 * the unused remainder is available to its siblings. 6605 * 6606 * 4. Conversely, when the declared protection is undercommitted at a 6607 * given level, the distribution of the larger parental protection 6608 * budget is NOT proportional. A cgroup's protection from a sibling 6609 * is capped to its own memory.min/low setting. 6610 * 6611 * 5. However, to allow protecting recursive subtrees from each other 6612 * without having to declare each individual cgroup's fixed share 6613 * of the ancestor's claim to protection, any unutilized - 6614 * "floating" - protection from up the tree is distributed in 6615 * proportion to each cgroup's *usage*. This makes the protection 6616 * neutral wrt sibling cgroups and lets them compete freely over 6617 * the shared parental protection budget, but it protects the 6618 * subtree as a whole from neighboring subtrees. 6619 * 6620 * Note that 4. and 5. are not in conflict: 4. is about protecting 6621 * against immediate siblings whereas 5. is about protecting against 6622 * neighboring subtrees. 6623 */ 6624 static unsigned long effective_protection(unsigned long usage, 6625 unsigned long parent_usage, 6626 unsigned long setting, 6627 unsigned long parent_effective, 6628 unsigned long siblings_protected) 6629 { 6630 unsigned long protected; 6631 unsigned long ep; 6632 6633 protected = min(usage, setting); 6634 /* 6635 * If all cgroups at this level combined claim and use more 6636 * protection then what the parent affords them, distribute 6637 * shares in proportion to utilization. 6638 * 6639 * We are using actual utilization rather than the statically 6640 * claimed protection in order to be work-conserving: claimed 6641 * but unused protection is available to siblings that would 6642 * otherwise get a smaller chunk than what they claimed. 6643 */ 6644 if (siblings_protected > parent_effective) 6645 return protected * parent_effective / siblings_protected; 6646 6647 /* 6648 * Ok, utilized protection of all children is within what the 6649 * parent affords them, so we know whatever this child claims 6650 * and utilizes is effectively protected. 6651 * 6652 * If there is unprotected usage beyond this value, reclaim 6653 * will apply pressure in proportion to that amount. 6654 * 6655 * If there is unutilized protection, the cgroup will be fully 6656 * shielded from reclaim, but we do return a smaller value for 6657 * protection than what the group could enjoy in theory. This 6658 * is okay. With the overcommit distribution above, effective 6659 * protection is always dependent on how memory is actually 6660 * consumed among the siblings anyway. 6661 */ 6662 ep = protected; 6663 6664 /* 6665 * If the children aren't claiming (all of) the protection 6666 * afforded to them by the parent, distribute the remainder in 6667 * proportion to the (unprotected) memory of each cgroup. That 6668 * way, cgroups that aren't explicitly prioritized wrt each 6669 * other compete freely over the allowance, but they are 6670 * collectively protected from neighboring trees. 6671 * 6672 * We're using unprotected memory for the weight so that if 6673 * some cgroups DO claim explicit protection, we don't protect 6674 * the same bytes twice. 6675 * 6676 * Check both usage and parent_usage against the respective 6677 * protected values. One should imply the other, but they 6678 * aren't read atomically - make sure the division is sane. 6679 */ 6680 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6681 return ep; 6682 if (parent_effective > siblings_protected && 6683 parent_usage > siblings_protected && 6684 usage > protected) { 6685 unsigned long unclaimed; 6686 6687 unclaimed = parent_effective - siblings_protected; 6688 unclaimed *= usage - protected; 6689 unclaimed /= parent_usage - siblings_protected; 6690 6691 ep += unclaimed; 6692 } 6693 6694 return ep; 6695 } 6696 6697 /** 6698 * mem_cgroup_protected - check if memory consumption is in the normal range 6699 * @root: the top ancestor of the sub-tree being checked 6700 * @memcg: the memory cgroup to check 6701 * 6702 * WARNING: This function is not stateless! It can only be used as part 6703 * of a top-down tree iteration, not for isolated queries. 6704 */ 6705 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6706 struct mem_cgroup *memcg) 6707 { 6708 unsigned long usage, parent_usage; 6709 struct mem_cgroup *parent; 6710 6711 if (mem_cgroup_disabled()) 6712 return; 6713 6714 if (!root) 6715 root = root_mem_cgroup; 6716 6717 /* 6718 * Effective values of the reclaim targets are ignored so they 6719 * can be stale. Have a look at mem_cgroup_protection for more 6720 * details. 6721 * TODO: calculation should be more robust so that we do not need 6722 * that special casing. 6723 */ 6724 if (memcg == root) 6725 return; 6726 6727 usage = page_counter_read(&memcg->memory); 6728 if (!usage) 6729 return; 6730 6731 parent = parent_mem_cgroup(memcg); 6732 /* No parent means a non-hierarchical mode on v1 memcg */ 6733 if (!parent) 6734 return; 6735 6736 if (parent == root) { 6737 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6738 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6739 return; 6740 } 6741 6742 parent_usage = page_counter_read(&parent->memory); 6743 6744 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6745 READ_ONCE(memcg->memory.min), 6746 READ_ONCE(parent->memory.emin), 6747 atomic_long_read(&parent->memory.children_min_usage))); 6748 6749 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6750 READ_ONCE(memcg->memory.low), 6751 READ_ONCE(parent->memory.elow), 6752 atomic_long_read(&parent->memory.children_low_usage))); 6753 } 6754 6755 /** 6756 * mem_cgroup_charge - charge a newly allocated page to a cgroup 6757 * @page: page to charge 6758 * @mm: mm context of the victim 6759 * @gfp_mask: reclaim mode 6760 * 6761 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6762 * pages according to @gfp_mask if necessary. 6763 * 6764 * Returns 0 on success. Otherwise, an error code is returned. 6765 */ 6766 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) 6767 { 6768 unsigned int nr_pages = thp_nr_pages(page); 6769 struct mem_cgroup *memcg = NULL; 6770 int ret = 0; 6771 6772 if (mem_cgroup_disabled()) 6773 goto out; 6774 6775 if (PageSwapCache(page)) { 6776 swp_entry_t ent = { .val = page_private(page), }; 6777 unsigned short id; 6778 6779 /* 6780 * Every swap fault against a single page tries to charge the 6781 * page, bail as early as possible. shmem_unuse() encounters 6782 * already charged pages, too. page->mem_cgroup is protected 6783 * by the page lock, which serializes swap cache removal, which 6784 * in turn serializes uncharging. 6785 */ 6786 VM_BUG_ON_PAGE(!PageLocked(page), page); 6787 if (compound_head(page)->mem_cgroup) 6788 goto out; 6789 6790 id = lookup_swap_cgroup_id(ent); 6791 rcu_read_lock(); 6792 memcg = mem_cgroup_from_id(id); 6793 if (memcg && !css_tryget_online(&memcg->css)) 6794 memcg = NULL; 6795 rcu_read_unlock(); 6796 } 6797 6798 if (!memcg) 6799 memcg = get_mem_cgroup_from_mm(mm); 6800 6801 ret = try_charge(memcg, gfp_mask, nr_pages); 6802 if (ret) 6803 goto out_put; 6804 6805 css_get(&memcg->css); 6806 commit_charge(page, memcg); 6807 6808 local_irq_disable(); 6809 mem_cgroup_charge_statistics(memcg, page, nr_pages); 6810 memcg_check_events(memcg, page); 6811 local_irq_enable(); 6812 6813 if (PageSwapCache(page)) { 6814 swp_entry_t entry = { .val = page_private(page) }; 6815 /* 6816 * The swap entry might not get freed for a long time, 6817 * let's not wait for it. The page already received a 6818 * memory+swap charge, drop the swap entry duplicate. 6819 */ 6820 mem_cgroup_uncharge_swap(entry, nr_pages); 6821 } 6822 6823 out_put: 6824 css_put(&memcg->css); 6825 out: 6826 return ret; 6827 } 6828 6829 struct uncharge_gather { 6830 struct mem_cgroup *memcg; 6831 unsigned long nr_pages; 6832 unsigned long pgpgout; 6833 unsigned long nr_kmem; 6834 struct page *dummy_page; 6835 }; 6836 6837 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6838 { 6839 memset(ug, 0, sizeof(*ug)); 6840 } 6841 6842 static void uncharge_batch(const struct uncharge_gather *ug) 6843 { 6844 unsigned long flags; 6845 6846 if (!mem_cgroup_is_root(ug->memcg)) { 6847 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages); 6848 if (do_memsw_account()) 6849 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages); 6850 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6851 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6852 memcg_oom_recover(ug->memcg); 6853 } 6854 6855 local_irq_save(flags); 6856 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6857 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages); 6858 memcg_check_events(ug->memcg, ug->dummy_page); 6859 local_irq_restore(flags); 6860 6861 /* drop reference from uncharge_page */ 6862 css_put(&ug->memcg->css); 6863 } 6864 6865 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6866 { 6867 unsigned long nr_pages; 6868 6869 VM_BUG_ON_PAGE(PageLRU(page), page); 6870 6871 if (!page->mem_cgroup) 6872 return; 6873 6874 /* 6875 * Nobody should be changing or seriously looking at 6876 * page->mem_cgroup at this point, we have fully 6877 * exclusive access to the page. 6878 */ 6879 6880 if (ug->memcg != page->mem_cgroup) { 6881 if (ug->memcg) { 6882 uncharge_batch(ug); 6883 uncharge_gather_clear(ug); 6884 } 6885 ug->memcg = page->mem_cgroup; 6886 6887 /* pairs with css_put in uncharge_batch */ 6888 css_get(&ug->memcg->css); 6889 } 6890 6891 nr_pages = compound_nr(page); 6892 ug->nr_pages += nr_pages; 6893 6894 if (!PageKmemcg(page)) { 6895 ug->pgpgout++; 6896 } else { 6897 ug->nr_kmem += nr_pages; 6898 __ClearPageKmemcg(page); 6899 } 6900 6901 ug->dummy_page = page; 6902 page->mem_cgroup = NULL; 6903 css_put(&ug->memcg->css); 6904 } 6905 6906 static void uncharge_list(struct list_head *page_list) 6907 { 6908 struct uncharge_gather ug; 6909 struct list_head *next; 6910 6911 uncharge_gather_clear(&ug); 6912 6913 /* 6914 * Note that the list can be a single page->lru; hence the 6915 * do-while loop instead of a simple list_for_each_entry(). 6916 */ 6917 next = page_list->next; 6918 do { 6919 struct page *page; 6920 6921 page = list_entry(next, struct page, lru); 6922 next = page->lru.next; 6923 6924 uncharge_page(page, &ug); 6925 } while (next != page_list); 6926 6927 if (ug.memcg) 6928 uncharge_batch(&ug); 6929 } 6930 6931 /** 6932 * mem_cgroup_uncharge - uncharge a page 6933 * @page: page to uncharge 6934 * 6935 * Uncharge a page previously charged with mem_cgroup_charge(). 6936 */ 6937 void mem_cgroup_uncharge(struct page *page) 6938 { 6939 struct uncharge_gather ug; 6940 6941 if (mem_cgroup_disabled()) 6942 return; 6943 6944 /* Don't touch page->lru of any random page, pre-check: */ 6945 if (!page->mem_cgroup) 6946 return; 6947 6948 uncharge_gather_clear(&ug); 6949 uncharge_page(page, &ug); 6950 uncharge_batch(&ug); 6951 } 6952 6953 /** 6954 * mem_cgroup_uncharge_list - uncharge a list of page 6955 * @page_list: list of pages to uncharge 6956 * 6957 * Uncharge a list of pages previously charged with 6958 * mem_cgroup_charge(). 6959 */ 6960 void mem_cgroup_uncharge_list(struct list_head *page_list) 6961 { 6962 if (mem_cgroup_disabled()) 6963 return; 6964 6965 if (!list_empty(page_list)) 6966 uncharge_list(page_list); 6967 } 6968 6969 /** 6970 * mem_cgroup_migrate - charge a page's replacement 6971 * @oldpage: currently circulating page 6972 * @newpage: replacement page 6973 * 6974 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6975 * be uncharged upon free. 6976 * 6977 * Both pages must be locked, @newpage->mapping must be set up. 6978 */ 6979 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6980 { 6981 struct mem_cgroup *memcg; 6982 unsigned int nr_pages; 6983 unsigned long flags; 6984 6985 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6986 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6987 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6988 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6989 newpage); 6990 6991 if (mem_cgroup_disabled()) 6992 return; 6993 6994 /* Page cache replacement: new page already charged? */ 6995 if (newpage->mem_cgroup) 6996 return; 6997 6998 /* Swapcache readahead pages can get replaced before being charged */ 6999 memcg = oldpage->mem_cgroup; 7000 if (!memcg) 7001 return; 7002 7003 /* Force-charge the new page. The old one will be freed soon */ 7004 nr_pages = thp_nr_pages(newpage); 7005 7006 page_counter_charge(&memcg->memory, nr_pages); 7007 if (do_memsw_account()) 7008 page_counter_charge(&memcg->memsw, nr_pages); 7009 7010 css_get(&memcg->css); 7011 commit_charge(newpage, memcg); 7012 7013 local_irq_save(flags); 7014 mem_cgroup_charge_statistics(memcg, newpage, nr_pages); 7015 memcg_check_events(memcg, newpage); 7016 local_irq_restore(flags); 7017 } 7018 7019 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 7020 EXPORT_SYMBOL(memcg_sockets_enabled_key); 7021 7022 void mem_cgroup_sk_alloc(struct sock *sk) 7023 { 7024 struct mem_cgroup *memcg; 7025 7026 if (!mem_cgroup_sockets_enabled) 7027 return; 7028 7029 /* Do not associate the sock with unrelated interrupted task's memcg. */ 7030 if (in_interrupt()) 7031 return; 7032 7033 rcu_read_lock(); 7034 memcg = mem_cgroup_from_task(current); 7035 if (memcg == root_mem_cgroup) 7036 goto out; 7037 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 7038 goto out; 7039 if (css_tryget(&memcg->css)) 7040 sk->sk_memcg = memcg; 7041 out: 7042 rcu_read_unlock(); 7043 } 7044 7045 void mem_cgroup_sk_free(struct sock *sk) 7046 { 7047 if (sk->sk_memcg) 7048 css_put(&sk->sk_memcg->css); 7049 } 7050 7051 /** 7052 * mem_cgroup_charge_skmem - charge socket memory 7053 * @memcg: memcg to charge 7054 * @nr_pages: number of pages to charge 7055 * 7056 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7057 * @memcg's configured limit, %false if the charge had to be forced. 7058 */ 7059 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7060 { 7061 gfp_t gfp_mask = GFP_KERNEL; 7062 7063 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7064 struct page_counter *fail; 7065 7066 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7067 memcg->tcpmem_pressure = 0; 7068 return true; 7069 } 7070 page_counter_charge(&memcg->tcpmem, nr_pages); 7071 memcg->tcpmem_pressure = 1; 7072 return false; 7073 } 7074 7075 /* Don't block in the packet receive path */ 7076 if (in_softirq()) 7077 gfp_mask = GFP_NOWAIT; 7078 7079 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7080 7081 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 7082 return true; 7083 7084 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 7085 return false; 7086 } 7087 7088 /** 7089 * mem_cgroup_uncharge_skmem - uncharge socket memory 7090 * @memcg: memcg to uncharge 7091 * @nr_pages: number of pages to uncharge 7092 */ 7093 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7094 { 7095 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7096 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7097 return; 7098 } 7099 7100 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7101 7102 refill_stock(memcg, nr_pages); 7103 } 7104 7105 static int __init cgroup_memory(char *s) 7106 { 7107 char *token; 7108 7109 while ((token = strsep(&s, ",")) != NULL) { 7110 if (!*token) 7111 continue; 7112 if (!strcmp(token, "nosocket")) 7113 cgroup_memory_nosocket = true; 7114 if (!strcmp(token, "nokmem")) 7115 cgroup_memory_nokmem = true; 7116 } 7117 return 0; 7118 } 7119 __setup("cgroup.memory=", cgroup_memory); 7120 7121 /* 7122 * subsys_initcall() for memory controller. 7123 * 7124 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7125 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7126 * basically everything that doesn't depend on a specific mem_cgroup structure 7127 * should be initialized from here. 7128 */ 7129 static int __init mem_cgroup_init(void) 7130 { 7131 int cpu, node; 7132 7133 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7134 memcg_hotplug_cpu_dead); 7135 7136 for_each_possible_cpu(cpu) 7137 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7138 drain_local_stock); 7139 7140 for_each_node(node) { 7141 struct mem_cgroup_tree_per_node *rtpn; 7142 7143 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7144 node_online(node) ? node : NUMA_NO_NODE); 7145 7146 rtpn->rb_root = RB_ROOT; 7147 rtpn->rb_rightmost = NULL; 7148 spin_lock_init(&rtpn->lock); 7149 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7150 } 7151 7152 return 0; 7153 } 7154 subsys_initcall(mem_cgroup_init); 7155 7156 #ifdef CONFIG_MEMCG_SWAP 7157 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7158 { 7159 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7160 /* 7161 * The root cgroup cannot be destroyed, so it's refcount must 7162 * always be >= 1. 7163 */ 7164 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 7165 VM_BUG_ON(1); 7166 break; 7167 } 7168 memcg = parent_mem_cgroup(memcg); 7169 if (!memcg) 7170 memcg = root_mem_cgroup; 7171 } 7172 return memcg; 7173 } 7174 7175 /** 7176 * mem_cgroup_swapout - transfer a memsw charge to swap 7177 * @page: page whose memsw charge to transfer 7178 * @entry: swap entry to move the charge to 7179 * 7180 * Transfer the memsw charge of @page to @entry. 7181 */ 7182 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 7183 { 7184 struct mem_cgroup *memcg, *swap_memcg; 7185 unsigned int nr_entries; 7186 unsigned short oldid; 7187 7188 VM_BUG_ON_PAGE(PageLRU(page), page); 7189 VM_BUG_ON_PAGE(page_count(page), page); 7190 7191 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7192 return; 7193 7194 memcg = page->mem_cgroup; 7195 7196 /* Readahead page, never charged */ 7197 if (!memcg) 7198 return; 7199 7200 /* 7201 * In case the memcg owning these pages has been offlined and doesn't 7202 * have an ID allocated to it anymore, charge the closest online 7203 * ancestor for the swap instead and transfer the memory+swap charge. 7204 */ 7205 swap_memcg = mem_cgroup_id_get_online(memcg); 7206 nr_entries = thp_nr_pages(page); 7207 /* Get references for the tail pages, too */ 7208 if (nr_entries > 1) 7209 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7210 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7211 nr_entries); 7212 VM_BUG_ON_PAGE(oldid, page); 7213 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7214 7215 page->mem_cgroup = NULL; 7216 7217 if (!mem_cgroup_is_root(memcg)) 7218 page_counter_uncharge(&memcg->memory, nr_entries); 7219 7220 if (!cgroup_memory_noswap && memcg != swap_memcg) { 7221 if (!mem_cgroup_is_root(swap_memcg)) 7222 page_counter_charge(&swap_memcg->memsw, nr_entries); 7223 page_counter_uncharge(&memcg->memsw, nr_entries); 7224 } 7225 7226 /* 7227 * Interrupts should be disabled here because the caller holds the 7228 * i_pages lock which is taken with interrupts-off. It is 7229 * important here to have the interrupts disabled because it is the 7230 * only synchronisation we have for updating the per-CPU variables. 7231 */ 7232 VM_BUG_ON(!irqs_disabled()); 7233 mem_cgroup_charge_statistics(memcg, page, -nr_entries); 7234 memcg_check_events(memcg, page); 7235 7236 css_put(&memcg->css); 7237 } 7238 7239 /** 7240 * mem_cgroup_try_charge_swap - try charging swap space for a page 7241 * @page: page being added to swap 7242 * @entry: swap entry to charge 7243 * 7244 * Try to charge @page's memcg for the swap space at @entry. 7245 * 7246 * Returns 0 on success, -ENOMEM on failure. 7247 */ 7248 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 7249 { 7250 unsigned int nr_pages = thp_nr_pages(page); 7251 struct page_counter *counter; 7252 struct mem_cgroup *memcg; 7253 unsigned short oldid; 7254 7255 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7256 return 0; 7257 7258 memcg = page->mem_cgroup; 7259 7260 /* Readahead page, never charged */ 7261 if (!memcg) 7262 return 0; 7263 7264 if (!entry.val) { 7265 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7266 return 0; 7267 } 7268 7269 memcg = mem_cgroup_id_get_online(memcg); 7270 7271 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) && 7272 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7273 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7274 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7275 mem_cgroup_id_put(memcg); 7276 return -ENOMEM; 7277 } 7278 7279 /* Get references for the tail pages, too */ 7280 if (nr_pages > 1) 7281 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7282 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7283 VM_BUG_ON_PAGE(oldid, page); 7284 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7285 7286 return 0; 7287 } 7288 7289 /** 7290 * mem_cgroup_uncharge_swap - uncharge swap space 7291 * @entry: swap entry to uncharge 7292 * @nr_pages: the amount of swap space to uncharge 7293 */ 7294 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7295 { 7296 struct mem_cgroup *memcg; 7297 unsigned short id; 7298 7299 id = swap_cgroup_record(entry, 0, nr_pages); 7300 rcu_read_lock(); 7301 memcg = mem_cgroup_from_id(id); 7302 if (memcg) { 7303 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) { 7304 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7305 page_counter_uncharge(&memcg->swap, nr_pages); 7306 else 7307 page_counter_uncharge(&memcg->memsw, nr_pages); 7308 } 7309 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7310 mem_cgroup_id_put_many(memcg, nr_pages); 7311 } 7312 rcu_read_unlock(); 7313 } 7314 7315 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7316 { 7317 long nr_swap_pages = get_nr_swap_pages(); 7318 7319 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7320 return nr_swap_pages; 7321 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7322 nr_swap_pages = min_t(long, nr_swap_pages, 7323 READ_ONCE(memcg->swap.max) - 7324 page_counter_read(&memcg->swap)); 7325 return nr_swap_pages; 7326 } 7327 7328 bool mem_cgroup_swap_full(struct page *page) 7329 { 7330 struct mem_cgroup *memcg; 7331 7332 VM_BUG_ON_PAGE(!PageLocked(page), page); 7333 7334 if (vm_swap_full()) 7335 return true; 7336 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7337 return false; 7338 7339 memcg = page->mem_cgroup; 7340 if (!memcg) 7341 return false; 7342 7343 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 7344 unsigned long usage = page_counter_read(&memcg->swap); 7345 7346 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7347 usage * 2 >= READ_ONCE(memcg->swap.max)) 7348 return true; 7349 } 7350 7351 return false; 7352 } 7353 7354 static int __init setup_swap_account(char *s) 7355 { 7356 if (!strcmp(s, "1")) 7357 cgroup_memory_noswap = 0; 7358 else if (!strcmp(s, "0")) 7359 cgroup_memory_noswap = 1; 7360 return 1; 7361 } 7362 __setup("swapaccount=", setup_swap_account); 7363 7364 static u64 swap_current_read(struct cgroup_subsys_state *css, 7365 struct cftype *cft) 7366 { 7367 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7368 7369 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7370 } 7371 7372 static int swap_high_show(struct seq_file *m, void *v) 7373 { 7374 return seq_puts_memcg_tunable(m, 7375 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7376 } 7377 7378 static ssize_t swap_high_write(struct kernfs_open_file *of, 7379 char *buf, size_t nbytes, loff_t off) 7380 { 7381 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7382 unsigned long high; 7383 int err; 7384 7385 buf = strstrip(buf); 7386 err = page_counter_memparse(buf, "max", &high); 7387 if (err) 7388 return err; 7389 7390 page_counter_set_high(&memcg->swap, high); 7391 7392 return nbytes; 7393 } 7394 7395 static int swap_max_show(struct seq_file *m, void *v) 7396 { 7397 return seq_puts_memcg_tunable(m, 7398 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7399 } 7400 7401 static ssize_t swap_max_write(struct kernfs_open_file *of, 7402 char *buf, size_t nbytes, loff_t off) 7403 { 7404 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7405 unsigned long max; 7406 int err; 7407 7408 buf = strstrip(buf); 7409 err = page_counter_memparse(buf, "max", &max); 7410 if (err) 7411 return err; 7412 7413 xchg(&memcg->swap.max, max); 7414 7415 return nbytes; 7416 } 7417 7418 static int swap_events_show(struct seq_file *m, void *v) 7419 { 7420 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7421 7422 seq_printf(m, "high %lu\n", 7423 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7424 seq_printf(m, "max %lu\n", 7425 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7426 seq_printf(m, "fail %lu\n", 7427 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7428 7429 return 0; 7430 } 7431 7432 static struct cftype swap_files[] = { 7433 { 7434 .name = "swap.current", 7435 .flags = CFTYPE_NOT_ON_ROOT, 7436 .read_u64 = swap_current_read, 7437 }, 7438 { 7439 .name = "swap.high", 7440 .flags = CFTYPE_NOT_ON_ROOT, 7441 .seq_show = swap_high_show, 7442 .write = swap_high_write, 7443 }, 7444 { 7445 .name = "swap.max", 7446 .flags = CFTYPE_NOT_ON_ROOT, 7447 .seq_show = swap_max_show, 7448 .write = swap_max_write, 7449 }, 7450 { 7451 .name = "swap.events", 7452 .flags = CFTYPE_NOT_ON_ROOT, 7453 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7454 .seq_show = swap_events_show, 7455 }, 7456 { } /* terminate */ 7457 }; 7458 7459 static struct cftype memsw_files[] = { 7460 { 7461 .name = "memsw.usage_in_bytes", 7462 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7463 .read_u64 = mem_cgroup_read_u64, 7464 }, 7465 { 7466 .name = "memsw.max_usage_in_bytes", 7467 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7468 .write = mem_cgroup_reset, 7469 .read_u64 = mem_cgroup_read_u64, 7470 }, 7471 { 7472 .name = "memsw.limit_in_bytes", 7473 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7474 .write = mem_cgroup_write, 7475 .read_u64 = mem_cgroup_read_u64, 7476 }, 7477 { 7478 .name = "memsw.failcnt", 7479 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7480 .write = mem_cgroup_reset, 7481 .read_u64 = mem_cgroup_read_u64, 7482 }, 7483 { }, /* terminate */ 7484 }; 7485 7486 /* 7487 * If mem_cgroup_swap_init() is implemented as a subsys_initcall() 7488 * instead of a core_initcall(), this could mean cgroup_memory_noswap still 7489 * remains set to false even when memcg is disabled via "cgroup_disable=memory" 7490 * boot parameter. This may result in premature OOPS inside 7491 * mem_cgroup_get_nr_swap_pages() function in corner cases. 7492 */ 7493 static int __init mem_cgroup_swap_init(void) 7494 { 7495 /* No memory control -> no swap control */ 7496 if (mem_cgroup_disabled()) 7497 cgroup_memory_noswap = true; 7498 7499 if (cgroup_memory_noswap) 7500 return 0; 7501 7502 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7503 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7504 7505 return 0; 7506 } 7507 core_initcall(mem_cgroup_swap_init); 7508 7509 #endif /* CONFIG_MEMCG_SWAP */ 7510