1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 */ 23 24 #include <linux/res_counter.h> 25 #include <linux/memcontrol.h> 26 #include <linux/cgroup.h> 27 #include <linux/mm.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagemap.h> 30 #include <linux/smp.h> 31 #include <linux/page-flags.h> 32 #include <linux/backing-dev.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/rcupdate.h> 35 #include <linux/limits.h> 36 #include <linux/export.h> 37 #include <linux/mutex.h> 38 #include <linux/rbtree.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swapops.h> 42 #include <linux/spinlock.h> 43 #include <linux/eventfd.h> 44 #include <linux/sort.h> 45 #include <linux/fs.h> 46 #include <linux/seq_file.h> 47 #include <linux/vmalloc.h> 48 #include <linux/mm_inline.h> 49 #include <linux/page_cgroup.h> 50 #include <linux/cpu.h> 51 #include <linux/oom.h> 52 #include "internal.h" 53 #include <net/sock.h> 54 #include <net/ip.h> 55 #include <net/tcp_memcontrol.h> 56 57 #include <asm/uaccess.h> 58 59 #include <trace/events/vmscan.h> 60 61 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 62 #define MEM_CGROUP_RECLAIM_RETRIES 5 63 static struct mem_cgroup *root_mem_cgroup __read_mostly; 64 65 #ifdef CONFIG_MEMCG_SWAP 66 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 67 int do_swap_account __read_mostly; 68 69 /* for remember boot option*/ 70 #ifdef CONFIG_MEMCG_SWAP_ENABLED 71 static int really_do_swap_account __initdata = 1; 72 #else 73 static int really_do_swap_account __initdata = 0; 74 #endif 75 76 #else 77 #define do_swap_account 0 78 #endif 79 80 81 /* 82 * Statistics for memory cgroup. 83 */ 84 enum mem_cgroup_stat_index { 85 /* 86 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 87 */ 88 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 89 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 90 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 91 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 92 MEM_CGROUP_STAT_NSTATS, 93 }; 94 95 static const char * const mem_cgroup_stat_names[] = { 96 "cache", 97 "rss", 98 "mapped_file", 99 "swap", 100 }; 101 102 enum mem_cgroup_events_index { 103 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 104 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 105 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 106 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 107 MEM_CGROUP_EVENTS_NSTATS, 108 }; 109 110 static const char * const mem_cgroup_events_names[] = { 111 "pgpgin", 112 "pgpgout", 113 "pgfault", 114 "pgmajfault", 115 }; 116 117 /* 118 * Per memcg event counter is incremented at every pagein/pageout. With THP, 119 * it will be incremated by the number of pages. This counter is used for 120 * for trigger some periodic events. This is straightforward and better 121 * than using jiffies etc. to handle periodic memcg event. 122 */ 123 enum mem_cgroup_events_target { 124 MEM_CGROUP_TARGET_THRESH, 125 MEM_CGROUP_TARGET_SOFTLIMIT, 126 MEM_CGROUP_TARGET_NUMAINFO, 127 MEM_CGROUP_NTARGETS, 128 }; 129 #define THRESHOLDS_EVENTS_TARGET 128 130 #define SOFTLIMIT_EVENTS_TARGET 1024 131 #define NUMAINFO_EVENTS_TARGET 1024 132 133 struct mem_cgroup_stat_cpu { 134 long count[MEM_CGROUP_STAT_NSTATS]; 135 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 136 unsigned long nr_page_events; 137 unsigned long targets[MEM_CGROUP_NTARGETS]; 138 }; 139 140 struct mem_cgroup_reclaim_iter { 141 /* css_id of the last scanned hierarchy member */ 142 int position; 143 /* scan generation, increased every round-trip */ 144 unsigned int generation; 145 }; 146 147 /* 148 * per-zone information in memory controller. 149 */ 150 struct mem_cgroup_per_zone { 151 struct lruvec lruvec; 152 unsigned long lru_size[NR_LRU_LISTS]; 153 154 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 155 156 struct rb_node tree_node; /* RB tree node */ 157 unsigned long long usage_in_excess;/* Set to the value by which */ 158 /* the soft limit is exceeded*/ 159 bool on_tree; 160 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 161 /* use container_of */ 162 }; 163 164 struct mem_cgroup_per_node { 165 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 166 }; 167 168 struct mem_cgroup_lru_info { 169 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 170 }; 171 172 /* 173 * Cgroups above their limits are maintained in a RB-Tree, independent of 174 * their hierarchy representation 175 */ 176 177 struct mem_cgroup_tree_per_zone { 178 struct rb_root rb_root; 179 spinlock_t lock; 180 }; 181 182 struct mem_cgroup_tree_per_node { 183 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 184 }; 185 186 struct mem_cgroup_tree { 187 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 188 }; 189 190 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 191 192 struct mem_cgroup_threshold { 193 struct eventfd_ctx *eventfd; 194 u64 threshold; 195 }; 196 197 /* For threshold */ 198 struct mem_cgroup_threshold_ary { 199 /* An array index points to threshold just below or equal to usage. */ 200 int current_threshold; 201 /* Size of entries[] */ 202 unsigned int size; 203 /* Array of thresholds */ 204 struct mem_cgroup_threshold entries[0]; 205 }; 206 207 struct mem_cgroup_thresholds { 208 /* Primary thresholds array */ 209 struct mem_cgroup_threshold_ary *primary; 210 /* 211 * Spare threshold array. 212 * This is needed to make mem_cgroup_unregister_event() "never fail". 213 * It must be able to store at least primary->size - 1 entries. 214 */ 215 struct mem_cgroup_threshold_ary *spare; 216 }; 217 218 /* for OOM */ 219 struct mem_cgroup_eventfd_list { 220 struct list_head list; 221 struct eventfd_ctx *eventfd; 222 }; 223 224 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 225 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 226 227 /* 228 * The memory controller data structure. The memory controller controls both 229 * page cache and RSS per cgroup. We would eventually like to provide 230 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 231 * to help the administrator determine what knobs to tune. 232 * 233 * TODO: Add a water mark for the memory controller. Reclaim will begin when 234 * we hit the water mark. May be even add a low water mark, such that 235 * no reclaim occurs from a cgroup at it's low water mark, this is 236 * a feature that will be implemented much later in the future. 237 */ 238 struct mem_cgroup { 239 struct cgroup_subsys_state css; 240 /* 241 * the counter to account for memory usage 242 */ 243 struct res_counter res; 244 245 union { 246 /* 247 * the counter to account for mem+swap usage. 248 */ 249 struct res_counter memsw; 250 251 /* 252 * rcu_freeing is used only when freeing struct mem_cgroup, 253 * so put it into a union to avoid wasting more memory. 254 * It must be disjoint from the css field. It could be 255 * in a union with the res field, but res plays a much 256 * larger part in mem_cgroup life than memsw, and might 257 * be of interest, even at time of free, when debugging. 258 * So share rcu_head with the less interesting memsw. 259 */ 260 struct rcu_head rcu_freeing; 261 /* 262 * We also need some space for a worker in deferred freeing. 263 * By the time we call it, rcu_freeing is no longer in use. 264 */ 265 struct work_struct work_freeing; 266 }; 267 268 /* 269 * Per cgroup active and inactive list, similar to the 270 * per zone LRU lists. 271 */ 272 struct mem_cgroup_lru_info info; 273 int last_scanned_node; 274 #if MAX_NUMNODES > 1 275 nodemask_t scan_nodes; 276 atomic_t numainfo_events; 277 atomic_t numainfo_updating; 278 #endif 279 /* 280 * Should the accounting and control be hierarchical, per subtree? 281 */ 282 bool use_hierarchy; 283 284 bool oom_lock; 285 atomic_t under_oom; 286 287 atomic_t refcnt; 288 289 int swappiness; 290 /* OOM-Killer disable */ 291 int oom_kill_disable; 292 293 /* set when res.limit == memsw.limit */ 294 bool memsw_is_minimum; 295 296 /* protect arrays of thresholds */ 297 struct mutex thresholds_lock; 298 299 /* thresholds for memory usage. RCU-protected */ 300 struct mem_cgroup_thresholds thresholds; 301 302 /* thresholds for mem+swap usage. RCU-protected */ 303 struct mem_cgroup_thresholds memsw_thresholds; 304 305 /* For oom notifier event fd */ 306 struct list_head oom_notify; 307 308 /* 309 * Should we move charges of a task when a task is moved into this 310 * mem_cgroup ? And what type of charges should we move ? 311 */ 312 unsigned long move_charge_at_immigrate; 313 /* 314 * set > 0 if pages under this cgroup are moving to other cgroup. 315 */ 316 atomic_t moving_account; 317 /* taken only while moving_account > 0 */ 318 spinlock_t move_lock; 319 /* 320 * percpu counter. 321 */ 322 struct mem_cgroup_stat_cpu __percpu *stat; 323 /* 324 * used when a cpu is offlined or other synchronizations 325 * See mem_cgroup_read_stat(). 326 */ 327 struct mem_cgroup_stat_cpu nocpu_base; 328 spinlock_t pcp_counter_lock; 329 330 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 331 struct tcp_memcontrol tcp_mem; 332 #endif 333 }; 334 335 /* Stuffs for move charges at task migration. */ 336 /* 337 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a 338 * left-shifted bitmap of these types. 339 */ 340 enum move_type { 341 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 342 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 343 NR_MOVE_TYPE, 344 }; 345 346 /* "mc" and its members are protected by cgroup_mutex */ 347 static struct move_charge_struct { 348 spinlock_t lock; /* for from, to */ 349 struct mem_cgroup *from; 350 struct mem_cgroup *to; 351 unsigned long precharge; 352 unsigned long moved_charge; 353 unsigned long moved_swap; 354 struct task_struct *moving_task; /* a task moving charges */ 355 wait_queue_head_t waitq; /* a waitq for other context */ 356 } mc = { 357 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 358 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 359 }; 360 361 static bool move_anon(void) 362 { 363 return test_bit(MOVE_CHARGE_TYPE_ANON, 364 &mc.to->move_charge_at_immigrate); 365 } 366 367 static bool move_file(void) 368 { 369 return test_bit(MOVE_CHARGE_TYPE_FILE, 370 &mc.to->move_charge_at_immigrate); 371 } 372 373 /* 374 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 375 * limit reclaim to prevent infinite loops, if they ever occur. 376 */ 377 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 378 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 379 380 enum charge_type { 381 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 382 MEM_CGROUP_CHARGE_TYPE_ANON, 383 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 384 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 385 NR_CHARGE_TYPE, 386 }; 387 388 /* for encoding cft->private value on file */ 389 #define _MEM (0) 390 #define _MEMSWAP (1) 391 #define _OOM_TYPE (2) 392 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 393 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 394 #define MEMFILE_ATTR(val) ((val) & 0xffff) 395 /* Used for OOM nofiier */ 396 #define OOM_CONTROL (0) 397 398 /* 399 * Reclaim flags for mem_cgroup_hierarchical_reclaim 400 */ 401 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 402 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 403 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 404 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 405 406 static void mem_cgroup_get(struct mem_cgroup *memcg); 407 static void mem_cgroup_put(struct mem_cgroup *memcg); 408 409 static inline 410 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 411 { 412 return container_of(s, struct mem_cgroup, css); 413 } 414 415 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 416 { 417 return (memcg == root_mem_cgroup); 418 } 419 420 /* Writing them here to avoid exposing memcg's inner layout */ 421 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 422 423 void sock_update_memcg(struct sock *sk) 424 { 425 if (mem_cgroup_sockets_enabled) { 426 struct mem_cgroup *memcg; 427 struct cg_proto *cg_proto; 428 429 BUG_ON(!sk->sk_prot->proto_cgroup); 430 431 /* Socket cloning can throw us here with sk_cgrp already 432 * filled. It won't however, necessarily happen from 433 * process context. So the test for root memcg given 434 * the current task's memcg won't help us in this case. 435 * 436 * Respecting the original socket's memcg is a better 437 * decision in this case. 438 */ 439 if (sk->sk_cgrp) { 440 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 441 mem_cgroup_get(sk->sk_cgrp->memcg); 442 return; 443 } 444 445 rcu_read_lock(); 446 memcg = mem_cgroup_from_task(current); 447 cg_proto = sk->sk_prot->proto_cgroup(memcg); 448 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) { 449 mem_cgroup_get(memcg); 450 sk->sk_cgrp = cg_proto; 451 } 452 rcu_read_unlock(); 453 } 454 } 455 EXPORT_SYMBOL(sock_update_memcg); 456 457 void sock_release_memcg(struct sock *sk) 458 { 459 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 460 struct mem_cgroup *memcg; 461 WARN_ON(!sk->sk_cgrp->memcg); 462 memcg = sk->sk_cgrp->memcg; 463 mem_cgroup_put(memcg); 464 } 465 } 466 467 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 468 { 469 if (!memcg || mem_cgroup_is_root(memcg)) 470 return NULL; 471 472 return &memcg->tcp_mem.cg_proto; 473 } 474 EXPORT_SYMBOL(tcp_proto_cgroup); 475 476 static void disarm_sock_keys(struct mem_cgroup *memcg) 477 { 478 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) 479 return; 480 static_key_slow_dec(&memcg_socket_limit_enabled); 481 } 482 #else 483 static void disarm_sock_keys(struct mem_cgroup *memcg) 484 { 485 } 486 #endif 487 488 static void drain_all_stock_async(struct mem_cgroup *memcg); 489 490 static struct mem_cgroup_per_zone * 491 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 492 { 493 return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; 494 } 495 496 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 497 { 498 return &memcg->css; 499 } 500 501 static struct mem_cgroup_per_zone * 502 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 503 { 504 int nid = page_to_nid(page); 505 int zid = page_zonenum(page); 506 507 return mem_cgroup_zoneinfo(memcg, nid, zid); 508 } 509 510 static struct mem_cgroup_tree_per_zone * 511 soft_limit_tree_node_zone(int nid, int zid) 512 { 513 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 514 } 515 516 static struct mem_cgroup_tree_per_zone * 517 soft_limit_tree_from_page(struct page *page) 518 { 519 int nid = page_to_nid(page); 520 int zid = page_zonenum(page); 521 522 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 523 } 524 525 static void 526 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 527 struct mem_cgroup_per_zone *mz, 528 struct mem_cgroup_tree_per_zone *mctz, 529 unsigned long long new_usage_in_excess) 530 { 531 struct rb_node **p = &mctz->rb_root.rb_node; 532 struct rb_node *parent = NULL; 533 struct mem_cgroup_per_zone *mz_node; 534 535 if (mz->on_tree) 536 return; 537 538 mz->usage_in_excess = new_usage_in_excess; 539 if (!mz->usage_in_excess) 540 return; 541 while (*p) { 542 parent = *p; 543 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 544 tree_node); 545 if (mz->usage_in_excess < mz_node->usage_in_excess) 546 p = &(*p)->rb_left; 547 /* 548 * We can't avoid mem cgroups that are over their soft 549 * limit by the same amount 550 */ 551 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 552 p = &(*p)->rb_right; 553 } 554 rb_link_node(&mz->tree_node, parent, p); 555 rb_insert_color(&mz->tree_node, &mctz->rb_root); 556 mz->on_tree = true; 557 } 558 559 static void 560 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 561 struct mem_cgroup_per_zone *mz, 562 struct mem_cgroup_tree_per_zone *mctz) 563 { 564 if (!mz->on_tree) 565 return; 566 rb_erase(&mz->tree_node, &mctz->rb_root); 567 mz->on_tree = false; 568 } 569 570 static void 571 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 572 struct mem_cgroup_per_zone *mz, 573 struct mem_cgroup_tree_per_zone *mctz) 574 { 575 spin_lock(&mctz->lock); 576 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 577 spin_unlock(&mctz->lock); 578 } 579 580 581 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 582 { 583 unsigned long long excess; 584 struct mem_cgroup_per_zone *mz; 585 struct mem_cgroup_tree_per_zone *mctz; 586 int nid = page_to_nid(page); 587 int zid = page_zonenum(page); 588 mctz = soft_limit_tree_from_page(page); 589 590 /* 591 * Necessary to update all ancestors when hierarchy is used. 592 * because their event counter is not touched. 593 */ 594 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 595 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 596 excess = res_counter_soft_limit_excess(&memcg->res); 597 /* 598 * We have to update the tree if mz is on RB-tree or 599 * mem is over its softlimit. 600 */ 601 if (excess || mz->on_tree) { 602 spin_lock(&mctz->lock); 603 /* if on-tree, remove it */ 604 if (mz->on_tree) 605 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 606 /* 607 * Insert again. mz->usage_in_excess will be updated. 608 * If excess is 0, no tree ops. 609 */ 610 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 611 spin_unlock(&mctz->lock); 612 } 613 } 614 } 615 616 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 617 { 618 int node, zone; 619 struct mem_cgroup_per_zone *mz; 620 struct mem_cgroup_tree_per_zone *mctz; 621 622 for_each_node(node) { 623 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 624 mz = mem_cgroup_zoneinfo(memcg, node, zone); 625 mctz = soft_limit_tree_node_zone(node, zone); 626 mem_cgroup_remove_exceeded(memcg, mz, mctz); 627 } 628 } 629 } 630 631 static struct mem_cgroup_per_zone * 632 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 633 { 634 struct rb_node *rightmost = NULL; 635 struct mem_cgroup_per_zone *mz; 636 637 retry: 638 mz = NULL; 639 rightmost = rb_last(&mctz->rb_root); 640 if (!rightmost) 641 goto done; /* Nothing to reclaim from */ 642 643 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 644 /* 645 * Remove the node now but someone else can add it back, 646 * we will to add it back at the end of reclaim to its correct 647 * position in the tree. 648 */ 649 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 650 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 651 !css_tryget(&mz->memcg->css)) 652 goto retry; 653 done: 654 return mz; 655 } 656 657 static struct mem_cgroup_per_zone * 658 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 659 { 660 struct mem_cgroup_per_zone *mz; 661 662 spin_lock(&mctz->lock); 663 mz = __mem_cgroup_largest_soft_limit_node(mctz); 664 spin_unlock(&mctz->lock); 665 return mz; 666 } 667 668 /* 669 * Implementation Note: reading percpu statistics for memcg. 670 * 671 * Both of vmstat[] and percpu_counter has threshold and do periodic 672 * synchronization to implement "quick" read. There are trade-off between 673 * reading cost and precision of value. Then, we may have a chance to implement 674 * a periodic synchronizion of counter in memcg's counter. 675 * 676 * But this _read() function is used for user interface now. The user accounts 677 * memory usage by memory cgroup and he _always_ requires exact value because 678 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 679 * have to visit all online cpus and make sum. So, for now, unnecessary 680 * synchronization is not implemented. (just implemented for cpu hotplug) 681 * 682 * If there are kernel internal actions which can make use of some not-exact 683 * value, and reading all cpu value can be performance bottleneck in some 684 * common workload, threashold and synchonization as vmstat[] should be 685 * implemented. 686 */ 687 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 688 enum mem_cgroup_stat_index idx) 689 { 690 long val = 0; 691 int cpu; 692 693 get_online_cpus(); 694 for_each_online_cpu(cpu) 695 val += per_cpu(memcg->stat->count[idx], cpu); 696 #ifdef CONFIG_HOTPLUG_CPU 697 spin_lock(&memcg->pcp_counter_lock); 698 val += memcg->nocpu_base.count[idx]; 699 spin_unlock(&memcg->pcp_counter_lock); 700 #endif 701 put_online_cpus(); 702 return val; 703 } 704 705 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 706 bool charge) 707 { 708 int val = (charge) ? 1 : -1; 709 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 710 } 711 712 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 713 enum mem_cgroup_events_index idx) 714 { 715 unsigned long val = 0; 716 int cpu; 717 718 for_each_online_cpu(cpu) 719 val += per_cpu(memcg->stat->events[idx], cpu); 720 #ifdef CONFIG_HOTPLUG_CPU 721 spin_lock(&memcg->pcp_counter_lock); 722 val += memcg->nocpu_base.events[idx]; 723 spin_unlock(&memcg->pcp_counter_lock); 724 #endif 725 return val; 726 } 727 728 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 729 bool anon, int nr_pages) 730 { 731 preempt_disable(); 732 733 /* 734 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 735 * counted as CACHE even if it's on ANON LRU. 736 */ 737 if (anon) 738 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 739 nr_pages); 740 else 741 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 742 nr_pages); 743 744 /* pagein of a big page is an event. So, ignore page size */ 745 if (nr_pages > 0) 746 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 747 else { 748 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 749 nr_pages = -nr_pages; /* for event */ 750 } 751 752 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 753 754 preempt_enable(); 755 } 756 757 unsigned long 758 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 759 { 760 struct mem_cgroup_per_zone *mz; 761 762 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 763 return mz->lru_size[lru]; 764 } 765 766 static unsigned long 767 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 768 unsigned int lru_mask) 769 { 770 struct mem_cgroup_per_zone *mz; 771 enum lru_list lru; 772 unsigned long ret = 0; 773 774 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 775 776 for_each_lru(lru) { 777 if (BIT(lru) & lru_mask) 778 ret += mz->lru_size[lru]; 779 } 780 return ret; 781 } 782 783 static unsigned long 784 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 785 int nid, unsigned int lru_mask) 786 { 787 u64 total = 0; 788 int zid; 789 790 for (zid = 0; zid < MAX_NR_ZONES; zid++) 791 total += mem_cgroup_zone_nr_lru_pages(memcg, 792 nid, zid, lru_mask); 793 794 return total; 795 } 796 797 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 798 unsigned int lru_mask) 799 { 800 int nid; 801 u64 total = 0; 802 803 for_each_node_state(nid, N_HIGH_MEMORY) 804 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 805 return total; 806 } 807 808 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 809 enum mem_cgroup_events_target target) 810 { 811 unsigned long val, next; 812 813 val = __this_cpu_read(memcg->stat->nr_page_events); 814 next = __this_cpu_read(memcg->stat->targets[target]); 815 /* from time_after() in jiffies.h */ 816 if ((long)next - (long)val < 0) { 817 switch (target) { 818 case MEM_CGROUP_TARGET_THRESH: 819 next = val + THRESHOLDS_EVENTS_TARGET; 820 break; 821 case MEM_CGROUP_TARGET_SOFTLIMIT: 822 next = val + SOFTLIMIT_EVENTS_TARGET; 823 break; 824 case MEM_CGROUP_TARGET_NUMAINFO: 825 next = val + NUMAINFO_EVENTS_TARGET; 826 break; 827 default: 828 break; 829 } 830 __this_cpu_write(memcg->stat->targets[target], next); 831 return true; 832 } 833 return false; 834 } 835 836 /* 837 * Check events in order. 838 * 839 */ 840 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 841 { 842 preempt_disable(); 843 /* threshold event is triggered in finer grain than soft limit */ 844 if (unlikely(mem_cgroup_event_ratelimit(memcg, 845 MEM_CGROUP_TARGET_THRESH))) { 846 bool do_softlimit; 847 bool do_numainfo __maybe_unused; 848 849 do_softlimit = mem_cgroup_event_ratelimit(memcg, 850 MEM_CGROUP_TARGET_SOFTLIMIT); 851 #if MAX_NUMNODES > 1 852 do_numainfo = mem_cgroup_event_ratelimit(memcg, 853 MEM_CGROUP_TARGET_NUMAINFO); 854 #endif 855 preempt_enable(); 856 857 mem_cgroup_threshold(memcg); 858 if (unlikely(do_softlimit)) 859 mem_cgroup_update_tree(memcg, page); 860 #if MAX_NUMNODES > 1 861 if (unlikely(do_numainfo)) 862 atomic_inc(&memcg->numainfo_events); 863 #endif 864 } else 865 preempt_enable(); 866 } 867 868 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 869 { 870 return mem_cgroup_from_css( 871 cgroup_subsys_state(cont, mem_cgroup_subsys_id)); 872 } 873 874 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 875 { 876 /* 877 * mm_update_next_owner() may clear mm->owner to NULL 878 * if it races with swapoff, page migration, etc. 879 * So this can be called with p == NULL. 880 */ 881 if (unlikely(!p)) 882 return NULL; 883 884 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id)); 885 } 886 887 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 888 { 889 struct mem_cgroup *memcg = NULL; 890 891 if (!mm) 892 return NULL; 893 /* 894 * Because we have no locks, mm->owner's may be being moved to other 895 * cgroup. We use css_tryget() here even if this looks 896 * pessimistic (rather than adding locks here). 897 */ 898 rcu_read_lock(); 899 do { 900 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 901 if (unlikely(!memcg)) 902 break; 903 } while (!css_tryget(&memcg->css)); 904 rcu_read_unlock(); 905 return memcg; 906 } 907 908 /** 909 * mem_cgroup_iter - iterate over memory cgroup hierarchy 910 * @root: hierarchy root 911 * @prev: previously returned memcg, NULL on first invocation 912 * @reclaim: cookie for shared reclaim walks, NULL for full walks 913 * 914 * Returns references to children of the hierarchy below @root, or 915 * @root itself, or %NULL after a full round-trip. 916 * 917 * Caller must pass the return value in @prev on subsequent 918 * invocations for reference counting, or use mem_cgroup_iter_break() 919 * to cancel a hierarchy walk before the round-trip is complete. 920 * 921 * Reclaimers can specify a zone and a priority level in @reclaim to 922 * divide up the memcgs in the hierarchy among all concurrent 923 * reclaimers operating on the same zone and priority. 924 */ 925 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 926 struct mem_cgroup *prev, 927 struct mem_cgroup_reclaim_cookie *reclaim) 928 { 929 struct mem_cgroup *memcg = NULL; 930 int id = 0; 931 932 if (mem_cgroup_disabled()) 933 return NULL; 934 935 if (!root) 936 root = root_mem_cgroup; 937 938 if (prev && !reclaim) 939 id = css_id(&prev->css); 940 941 if (prev && prev != root) 942 css_put(&prev->css); 943 944 if (!root->use_hierarchy && root != root_mem_cgroup) { 945 if (prev) 946 return NULL; 947 return root; 948 } 949 950 while (!memcg) { 951 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 952 struct cgroup_subsys_state *css; 953 954 if (reclaim) { 955 int nid = zone_to_nid(reclaim->zone); 956 int zid = zone_idx(reclaim->zone); 957 struct mem_cgroup_per_zone *mz; 958 959 mz = mem_cgroup_zoneinfo(root, nid, zid); 960 iter = &mz->reclaim_iter[reclaim->priority]; 961 if (prev && reclaim->generation != iter->generation) 962 return NULL; 963 id = iter->position; 964 } 965 966 rcu_read_lock(); 967 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id); 968 if (css) { 969 if (css == &root->css || css_tryget(css)) 970 memcg = mem_cgroup_from_css(css); 971 } else 972 id = 0; 973 rcu_read_unlock(); 974 975 if (reclaim) { 976 iter->position = id; 977 if (!css) 978 iter->generation++; 979 else if (!prev && memcg) 980 reclaim->generation = iter->generation; 981 } 982 983 if (prev && !css) 984 return NULL; 985 } 986 return memcg; 987 } 988 989 /** 990 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 991 * @root: hierarchy root 992 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 993 */ 994 void mem_cgroup_iter_break(struct mem_cgroup *root, 995 struct mem_cgroup *prev) 996 { 997 if (!root) 998 root = root_mem_cgroup; 999 if (prev && prev != root) 1000 css_put(&prev->css); 1001 } 1002 1003 /* 1004 * Iteration constructs for visiting all cgroups (under a tree). If 1005 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1006 * be used for reference counting. 1007 */ 1008 #define for_each_mem_cgroup_tree(iter, root) \ 1009 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1010 iter != NULL; \ 1011 iter = mem_cgroup_iter(root, iter, NULL)) 1012 1013 #define for_each_mem_cgroup(iter) \ 1014 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1015 iter != NULL; \ 1016 iter = mem_cgroup_iter(NULL, iter, NULL)) 1017 1018 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1019 { 1020 struct mem_cgroup *memcg; 1021 1022 if (!mm) 1023 return; 1024 1025 rcu_read_lock(); 1026 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1027 if (unlikely(!memcg)) 1028 goto out; 1029 1030 switch (idx) { 1031 case PGFAULT: 1032 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1033 break; 1034 case PGMAJFAULT: 1035 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1036 break; 1037 default: 1038 BUG(); 1039 } 1040 out: 1041 rcu_read_unlock(); 1042 } 1043 EXPORT_SYMBOL(mem_cgroup_count_vm_event); 1044 1045 /** 1046 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1047 * @zone: zone of the wanted lruvec 1048 * @memcg: memcg of the wanted lruvec 1049 * 1050 * Returns the lru list vector holding pages for the given @zone and 1051 * @mem. This can be the global zone lruvec, if the memory controller 1052 * is disabled. 1053 */ 1054 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1055 struct mem_cgroup *memcg) 1056 { 1057 struct mem_cgroup_per_zone *mz; 1058 struct lruvec *lruvec; 1059 1060 if (mem_cgroup_disabled()) { 1061 lruvec = &zone->lruvec; 1062 goto out; 1063 } 1064 1065 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1066 lruvec = &mz->lruvec; 1067 out: 1068 /* 1069 * Since a node can be onlined after the mem_cgroup was created, 1070 * we have to be prepared to initialize lruvec->zone here; 1071 * and if offlined then reonlined, we need to reinitialize it. 1072 */ 1073 if (unlikely(lruvec->zone != zone)) 1074 lruvec->zone = zone; 1075 return lruvec; 1076 } 1077 1078 /* 1079 * Following LRU functions are allowed to be used without PCG_LOCK. 1080 * Operations are called by routine of global LRU independently from memcg. 1081 * What we have to take care of here is validness of pc->mem_cgroup. 1082 * 1083 * Changes to pc->mem_cgroup happens when 1084 * 1. charge 1085 * 2. moving account 1086 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1087 * It is added to LRU before charge. 1088 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1089 * When moving account, the page is not on LRU. It's isolated. 1090 */ 1091 1092 /** 1093 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1094 * @page: the page 1095 * @zone: zone of the page 1096 */ 1097 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1098 { 1099 struct mem_cgroup_per_zone *mz; 1100 struct mem_cgroup *memcg; 1101 struct page_cgroup *pc; 1102 struct lruvec *lruvec; 1103 1104 if (mem_cgroup_disabled()) { 1105 lruvec = &zone->lruvec; 1106 goto out; 1107 } 1108 1109 pc = lookup_page_cgroup(page); 1110 memcg = pc->mem_cgroup; 1111 1112 /* 1113 * Surreptitiously switch any uncharged offlist page to root: 1114 * an uncharged page off lru does nothing to secure 1115 * its former mem_cgroup from sudden removal. 1116 * 1117 * Our caller holds lru_lock, and PageCgroupUsed is updated 1118 * under page_cgroup lock: between them, they make all uses 1119 * of pc->mem_cgroup safe. 1120 */ 1121 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1122 pc->mem_cgroup = memcg = root_mem_cgroup; 1123 1124 mz = page_cgroup_zoneinfo(memcg, page); 1125 lruvec = &mz->lruvec; 1126 out: 1127 /* 1128 * Since a node can be onlined after the mem_cgroup was created, 1129 * we have to be prepared to initialize lruvec->zone here; 1130 * and if offlined then reonlined, we need to reinitialize it. 1131 */ 1132 if (unlikely(lruvec->zone != zone)) 1133 lruvec->zone = zone; 1134 return lruvec; 1135 } 1136 1137 /** 1138 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1139 * @lruvec: mem_cgroup per zone lru vector 1140 * @lru: index of lru list the page is sitting on 1141 * @nr_pages: positive when adding or negative when removing 1142 * 1143 * This function must be called when a page is added to or removed from an 1144 * lru list. 1145 */ 1146 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1147 int nr_pages) 1148 { 1149 struct mem_cgroup_per_zone *mz; 1150 unsigned long *lru_size; 1151 1152 if (mem_cgroup_disabled()) 1153 return; 1154 1155 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1156 lru_size = mz->lru_size + lru; 1157 *lru_size += nr_pages; 1158 VM_BUG_ON((long)(*lru_size) < 0); 1159 } 1160 1161 /* 1162 * Checks whether given mem is same or in the root_mem_cgroup's 1163 * hierarchy subtree 1164 */ 1165 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1166 struct mem_cgroup *memcg) 1167 { 1168 if (root_memcg == memcg) 1169 return true; 1170 if (!root_memcg->use_hierarchy || !memcg) 1171 return false; 1172 return css_is_ancestor(&memcg->css, &root_memcg->css); 1173 } 1174 1175 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1176 struct mem_cgroup *memcg) 1177 { 1178 bool ret; 1179 1180 rcu_read_lock(); 1181 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1182 rcu_read_unlock(); 1183 return ret; 1184 } 1185 1186 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) 1187 { 1188 int ret; 1189 struct mem_cgroup *curr = NULL; 1190 struct task_struct *p; 1191 1192 p = find_lock_task_mm(task); 1193 if (p) { 1194 curr = try_get_mem_cgroup_from_mm(p->mm); 1195 task_unlock(p); 1196 } else { 1197 /* 1198 * All threads may have already detached their mm's, but the oom 1199 * killer still needs to detect if they have already been oom 1200 * killed to prevent needlessly killing additional tasks. 1201 */ 1202 task_lock(task); 1203 curr = mem_cgroup_from_task(task); 1204 if (curr) 1205 css_get(&curr->css); 1206 task_unlock(task); 1207 } 1208 if (!curr) 1209 return 0; 1210 /* 1211 * We should check use_hierarchy of "memcg" not "curr". Because checking 1212 * use_hierarchy of "curr" here make this function true if hierarchy is 1213 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1214 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1215 */ 1216 ret = mem_cgroup_same_or_subtree(memcg, curr); 1217 css_put(&curr->css); 1218 return ret; 1219 } 1220 1221 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1222 { 1223 unsigned long inactive_ratio; 1224 unsigned long inactive; 1225 unsigned long active; 1226 unsigned long gb; 1227 1228 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1229 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1230 1231 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1232 if (gb) 1233 inactive_ratio = int_sqrt(10 * gb); 1234 else 1235 inactive_ratio = 1; 1236 1237 return inactive * inactive_ratio < active; 1238 } 1239 1240 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec) 1241 { 1242 unsigned long active; 1243 unsigned long inactive; 1244 1245 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE); 1246 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE); 1247 1248 return (active > inactive); 1249 } 1250 1251 #define mem_cgroup_from_res_counter(counter, member) \ 1252 container_of(counter, struct mem_cgroup, member) 1253 1254 /** 1255 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1256 * @memcg: the memory cgroup 1257 * 1258 * Returns the maximum amount of memory @mem can be charged with, in 1259 * pages. 1260 */ 1261 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1262 { 1263 unsigned long long margin; 1264 1265 margin = res_counter_margin(&memcg->res); 1266 if (do_swap_account) 1267 margin = min(margin, res_counter_margin(&memcg->memsw)); 1268 return margin >> PAGE_SHIFT; 1269 } 1270 1271 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1272 { 1273 struct cgroup *cgrp = memcg->css.cgroup; 1274 1275 /* root ? */ 1276 if (cgrp->parent == NULL) 1277 return vm_swappiness; 1278 1279 return memcg->swappiness; 1280 } 1281 1282 /* 1283 * memcg->moving_account is used for checking possibility that some thread is 1284 * calling move_account(). When a thread on CPU-A starts moving pages under 1285 * a memcg, other threads should check memcg->moving_account under 1286 * rcu_read_lock(), like this: 1287 * 1288 * CPU-A CPU-B 1289 * rcu_read_lock() 1290 * memcg->moving_account+1 if (memcg->mocing_account) 1291 * take heavy locks. 1292 * synchronize_rcu() update something. 1293 * rcu_read_unlock() 1294 * start move here. 1295 */ 1296 1297 /* for quick checking without looking up memcg */ 1298 atomic_t memcg_moving __read_mostly; 1299 1300 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1301 { 1302 atomic_inc(&memcg_moving); 1303 atomic_inc(&memcg->moving_account); 1304 synchronize_rcu(); 1305 } 1306 1307 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1308 { 1309 /* 1310 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1311 * We check NULL in callee rather than caller. 1312 */ 1313 if (memcg) { 1314 atomic_dec(&memcg_moving); 1315 atomic_dec(&memcg->moving_account); 1316 } 1317 } 1318 1319 /* 1320 * 2 routines for checking "mem" is under move_account() or not. 1321 * 1322 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1323 * is used for avoiding races in accounting. If true, 1324 * pc->mem_cgroup may be overwritten. 1325 * 1326 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1327 * under hierarchy of moving cgroups. This is for 1328 * waiting at hith-memory prressure caused by "move". 1329 */ 1330 1331 static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1332 { 1333 VM_BUG_ON(!rcu_read_lock_held()); 1334 return atomic_read(&memcg->moving_account) > 0; 1335 } 1336 1337 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1338 { 1339 struct mem_cgroup *from; 1340 struct mem_cgroup *to; 1341 bool ret = false; 1342 /* 1343 * Unlike task_move routines, we access mc.to, mc.from not under 1344 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1345 */ 1346 spin_lock(&mc.lock); 1347 from = mc.from; 1348 to = mc.to; 1349 if (!from) 1350 goto unlock; 1351 1352 ret = mem_cgroup_same_or_subtree(memcg, from) 1353 || mem_cgroup_same_or_subtree(memcg, to); 1354 unlock: 1355 spin_unlock(&mc.lock); 1356 return ret; 1357 } 1358 1359 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1360 { 1361 if (mc.moving_task && current != mc.moving_task) { 1362 if (mem_cgroup_under_move(memcg)) { 1363 DEFINE_WAIT(wait); 1364 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1365 /* moving charge context might have finished. */ 1366 if (mc.moving_task) 1367 schedule(); 1368 finish_wait(&mc.waitq, &wait); 1369 return true; 1370 } 1371 } 1372 return false; 1373 } 1374 1375 /* 1376 * Take this lock when 1377 * - a code tries to modify page's memcg while it's USED. 1378 * - a code tries to modify page state accounting in a memcg. 1379 * see mem_cgroup_stolen(), too. 1380 */ 1381 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1382 unsigned long *flags) 1383 { 1384 spin_lock_irqsave(&memcg->move_lock, *flags); 1385 } 1386 1387 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1388 unsigned long *flags) 1389 { 1390 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1391 } 1392 1393 /** 1394 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. 1395 * @memcg: The memory cgroup that went over limit 1396 * @p: Task that is going to be killed 1397 * 1398 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1399 * enabled 1400 */ 1401 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1402 { 1403 struct cgroup *task_cgrp; 1404 struct cgroup *mem_cgrp; 1405 /* 1406 * Need a buffer in BSS, can't rely on allocations. The code relies 1407 * on the assumption that OOM is serialized for memory controller. 1408 * If this assumption is broken, revisit this code. 1409 */ 1410 static char memcg_name[PATH_MAX]; 1411 int ret; 1412 1413 if (!memcg || !p) 1414 return; 1415 1416 rcu_read_lock(); 1417 1418 mem_cgrp = memcg->css.cgroup; 1419 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1420 1421 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1422 if (ret < 0) { 1423 /* 1424 * Unfortunately, we are unable to convert to a useful name 1425 * But we'll still print out the usage information 1426 */ 1427 rcu_read_unlock(); 1428 goto done; 1429 } 1430 rcu_read_unlock(); 1431 1432 printk(KERN_INFO "Task in %s killed", memcg_name); 1433 1434 rcu_read_lock(); 1435 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1436 if (ret < 0) { 1437 rcu_read_unlock(); 1438 goto done; 1439 } 1440 rcu_read_unlock(); 1441 1442 /* 1443 * Continues from above, so we don't need an KERN_ level 1444 */ 1445 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 1446 done: 1447 1448 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 1449 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1450 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1451 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1452 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 1453 "failcnt %llu\n", 1454 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1455 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1456 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1457 } 1458 1459 /* 1460 * This function returns the number of memcg under hierarchy tree. Returns 1461 * 1(self count) if no children. 1462 */ 1463 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1464 { 1465 int num = 0; 1466 struct mem_cgroup *iter; 1467 1468 for_each_mem_cgroup_tree(iter, memcg) 1469 num++; 1470 return num; 1471 } 1472 1473 /* 1474 * Return the memory (and swap, if configured) limit for a memcg. 1475 */ 1476 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1477 { 1478 u64 limit; 1479 1480 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1481 1482 /* 1483 * Do not consider swap space if we cannot swap due to swappiness 1484 */ 1485 if (mem_cgroup_swappiness(memcg)) { 1486 u64 memsw; 1487 1488 limit += total_swap_pages << PAGE_SHIFT; 1489 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1490 1491 /* 1492 * If memsw is finite and limits the amount of swap space 1493 * available to this memcg, return that limit. 1494 */ 1495 limit = min(limit, memsw); 1496 } 1497 1498 return limit; 1499 } 1500 1501 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1502 int order) 1503 { 1504 struct mem_cgroup *iter; 1505 unsigned long chosen_points = 0; 1506 unsigned long totalpages; 1507 unsigned int points = 0; 1508 struct task_struct *chosen = NULL; 1509 1510 /* 1511 * If current has a pending SIGKILL, then automatically select it. The 1512 * goal is to allow it to allocate so that it may quickly exit and free 1513 * its memory. 1514 */ 1515 if (fatal_signal_pending(current)) { 1516 set_thread_flag(TIF_MEMDIE); 1517 return; 1518 } 1519 1520 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1521 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1522 for_each_mem_cgroup_tree(iter, memcg) { 1523 struct cgroup *cgroup = iter->css.cgroup; 1524 struct cgroup_iter it; 1525 struct task_struct *task; 1526 1527 cgroup_iter_start(cgroup, &it); 1528 while ((task = cgroup_iter_next(cgroup, &it))) { 1529 switch (oom_scan_process_thread(task, totalpages, NULL, 1530 false)) { 1531 case OOM_SCAN_SELECT: 1532 if (chosen) 1533 put_task_struct(chosen); 1534 chosen = task; 1535 chosen_points = ULONG_MAX; 1536 get_task_struct(chosen); 1537 /* fall through */ 1538 case OOM_SCAN_CONTINUE: 1539 continue; 1540 case OOM_SCAN_ABORT: 1541 cgroup_iter_end(cgroup, &it); 1542 mem_cgroup_iter_break(memcg, iter); 1543 if (chosen) 1544 put_task_struct(chosen); 1545 return; 1546 case OOM_SCAN_OK: 1547 break; 1548 }; 1549 points = oom_badness(task, memcg, NULL, totalpages); 1550 if (points > chosen_points) { 1551 if (chosen) 1552 put_task_struct(chosen); 1553 chosen = task; 1554 chosen_points = points; 1555 get_task_struct(chosen); 1556 } 1557 } 1558 cgroup_iter_end(cgroup, &it); 1559 } 1560 1561 if (!chosen) 1562 return; 1563 points = chosen_points * 1000 / totalpages; 1564 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1565 NULL, "Memory cgroup out of memory"); 1566 } 1567 1568 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1569 gfp_t gfp_mask, 1570 unsigned long flags) 1571 { 1572 unsigned long total = 0; 1573 bool noswap = false; 1574 int loop; 1575 1576 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1577 noswap = true; 1578 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1579 noswap = true; 1580 1581 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1582 if (loop) 1583 drain_all_stock_async(memcg); 1584 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1585 /* 1586 * Allow limit shrinkers, which are triggered directly 1587 * by userspace, to catch signals and stop reclaim 1588 * after minimal progress, regardless of the margin. 1589 */ 1590 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1591 break; 1592 if (mem_cgroup_margin(memcg)) 1593 break; 1594 /* 1595 * If nothing was reclaimed after two attempts, there 1596 * may be no reclaimable pages in this hierarchy. 1597 */ 1598 if (loop && !total) 1599 break; 1600 } 1601 return total; 1602 } 1603 1604 /** 1605 * test_mem_cgroup_node_reclaimable 1606 * @memcg: the target memcg 1607 * @nid: the node ID to be checked. 1608 * @noswap : specify true here if the user wants flle only information. 1609 * 1610 * This function returns whether the specified memcg contains any 1611 * reclaimable pages on a node. Returns true if there are any reclaimable 1612 * pages in the node. 1613 */ 1614 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1615 int nid, bool noswap) 1616 { 1617 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1618 return true; 1619 if (noswap || !total_swap_pages) 1620 return false; 1621 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1622 return true; 1623 return false; 1624 1625 } 1626 #if MAX_NUMNODES > 1 1627 1628 /* 1629 * Always updating the nodemask is not very good - even if we have an empty 1630 * list or the wrong list here, we can start from some node and traverse all 1631 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1632 * 1633 */ 1634 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1635 { 1636 int nid; 1637 /* 1638 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1639 * pagein/pageout changes since the last update. 1640 */ 1641 if (!atomic_read(&memcg->numainfo_events)) 1642 return; 1643 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1644 return; 1645 1646 /* make a nodemask where this memcg uses memory from */ 1647 memcg->scan_nodes = node_states[N_HIGH_MEMORY]; 1648 1649 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) { 1650 1651 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1652 node_clear(nid, memcg->scan_nodes); 1653 } 1654 1655 atomic_set(&memcg->numainfo_events, 0); 1656 atomic_set(&memcg->numainfo_updating, 0); 1657 } 1658 1659 /* 1660 * Selecting a node where we start reclaim from. Because what we need is just 1661 * reducing usage counter, start from anywhere is O,K. Considering 1662 * memory reclaim from current node, there are pros. and cons. 1663 * 1664 * Freeing memory from current node means freeing memory from a node which 1665 * we'll use or we've used. So, it may make LRU bad. And if several threads 1666 * hit limits, it will see a contention on a node. But freeing from remote 1667 * node means more costs for memory reclaim because of memory latency. 1668 * 1669 * Now, we use round-robin. Better algorithm is welcomed. 1670 */ 1671 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1672 { 1673 int node; 1674 1675 mem_cgroup_may_update_nodemask(memcg); 1676 node = memcg->last_scanned_node; 1677 1678 node = next_node(node, memcg->scan_nodes); 1679 if (node == MAX_NUMNODES) 1680 node = first_node(memcg->scan_nodes); 1681 /* 1682 * We call this when we hit limit, not when pages are added to LRU. 1683 * No LRU may hold pages because all pages are UNEVICTABLE or 1684 * memcg is too small and all pages are not on LRU. In that case, 1685 * we use curret node. 1686 */ 1687 if (unlikely(node == MAX_NUMNODES)) 1688 node = numa_node_id(); 1689 1690 memcg->last_scanned_node = node; 1691 return node; 1692 } 1693 1694 /* 1695 * Check all nodes whether it contains reclaimable pages or not. 1696 * For quick scan, we make use of scan_nodes. This will allow us to skip 1697 * unused nodes. But scan_nodes is lazily updated and may not cotain 1698 * enough new information. We need to do double check. 1699 */ 1700 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1701 { 1702 int nid; 1703 1704 /* 1705 * quick check...making use of scan_node. 1706 * We can skip unused nodes. 1707 */ 1708 if (!nodes_empty(memcg->scan_nodes)) { 1709 for (nid = first_node(memcg->scan_nodes); 1710 nid < MAX_NUMNODES; 1711 nid = next_node(nid, memcg->scan_nodes)) { 1712 1713 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1714 return true; 1715 } 1716 } 1717 /* 1718 * Check rest of nodes. 1719 */ 1720 for_each_node_state(nid, N_HIGH_MEMORY) { 1721 if (node_isset(nid, memcg->scan_nodes)) 1722 continue; 1723 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1724 return true; 1725 } 1726 return false; 1727 } 1728 1729 #else 1730 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1731 { 1732 return 0; 1733 } 1734 1735 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1736 { 1737 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 1738 } 1739 #endif 1740 1741 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1742 struct zone *zone, 1743 gfp_t gfp_mask, 1744 unsigned long *total_scanned) 1745 { 1746 struct mem_cgroup *victim = NULL; 1747 int total = 0; 1748 int loop = 0; 1749 unsigned long excess; 1750 unsigned long nr_scanned; 1751 struct mem_cgroup_reclaim_cookie reclaim = { 1752 .zone = zone, 1753 .priority = 0, 1754 }; 1755 1756 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 1757 1758 while (1) { 1759 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1760 if (!victim) { 1761 loop++; 1762 if (loop >= 2) { 1763 /* 1764 * If we have not been able to reclaim 1765 * anything, it might because there are 1766 * no reclaimable pages under this hierarchy 1767 */ 1768 if (!total) 1769 break; 1770 /* 1771 * We want to do more targeted reclaim. 1772 * excess >> 2 is not to excessive so as to 1773 * reclaim too much, nor too less that we keep 1774 * coming back to reclaim from this cgroup 1775 */ 1776 if (total >= (excess >> 2) || 1777 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1778 break; 1779 } 1780 continue; 1781 } 1782 if (!mem_cgroup_reclaimable(victim, false)) 1783 continue; 1784 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1785 zone, &nr_scanned); 1786 *total_scanned += nr_scanned; 1787 if (!res_counter_soft_limit_excess(&root_memcg->res)) 1788 break; 1789 } 1790 mem_cgroup_iter_break(root_memcg, victim); 1791 return total; 1792 } 1793 1794 /* 1795 * Check OOM-Killer is already running under our hierarchy. 1796 * If someone is running, return false. 1797 * Has to be called with memcg_oom_lock 1798 */ 1799 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) 1800 { 1801 struct mem_cgroup *iter, *failed = NULL; 1802 1803 for_each_mem_cgroup_tree(iter, memcg) { 1804 if (iter->oom_lock) { 1805 /* 1806 * this subtree of our hierarchy is already locked 1807 * so we cannot give a lock. 1808 */ 1809 failed = iter; 1810 mem_cgroup_iter_break(memcg, iter); 1811 break; 1812 } else 1813 iter->oom_lock = true; 1814 } 1815 1816 if (!failed) 1817 return true; 1818 1819 /* 1820 * OK, we failed to lock the whole subtree so we have to clean up 1821 * what we set up to the failing subtree 1822 */ 1823 for_each_mem_cgroup_tree(iter, memcg) { 1824 if (iter == failed) { 1825 mem_cgroup_iter_break(memcg, iter); 1826 break; 1827 } 1828 iter->oom_lock = false; 1829 } 1830 return false; 1831 } 1832 1833 /* 1834 * Has to be called with memcg_oom_lock 1835 */ 1836 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1837 { 1838 struct mem_cgroup *iter; 1839 1840 for_each_mem_cgroup_tree(iter, memcg) 1841 iter->oom_lock = false; 1842 return 0; 1843 } 1844 1845 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1846 { 1847 struct mem_cgroup *iter; 1848 1849 for_each_mem_cgroup_tree(iter, memcg) 1850 atomic_inc(&iter->under_oom); 1851 } 1852 1853 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1854 { 1855 struct mem_cgroup *iter; 1856 1857 /* 1858 * When a new child is created while the hierarchy is under oom, 1859 * mem_cgroup_oom_lock() may not be called. We have to use 1860 * atomic_add_unless() here. 1861 */ 1862 for_each_mem_cgroup_tree(iter, memcg) 1863 atomic_add_unless(&iter->under_oom, -1, 0); 1864 } 1865 1866 static DEFINE_SPINLOCK(memcg_oom_lock); 1867 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1868 1869 struct oom_wait_info { 1870 struct mem_cgroup *memcg; 1871 wait_queue_t wait; 1872 }; 1873 1874 static int memcg_oom_wake_function(wait_queue_t *wait, 1875 unsigned mode, int sync, void *arg) 1876 { 1877 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1878 struct mem_cgroup *oom_wait_memcg; 1879 struct oom_wait_info *oom_wait_info; 1880 1881 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1882 oom_wait_memcg = oom_wait_info->memcg; 1883 1884 /* 1885 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 1886 * Then we can use css_is_ancestor without taking care of RCU. 1887 */ 1888 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 1889 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 1890 return 0; 1891 return autoremove_wake_function(wait, mode, sync, arg); 1892 } 1893 1894 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 1895 { 1896 /* for filtering, pass "memcg" as argument. */ 1897 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1898 } 1899 1900 static void memcg_oom_recover(struct mem_cgroup *memcg) 1901 { 1902 if (memcg && atomic_read(&memcg->under_oom)) 1903 memcg_wakeup_oom(memcg); 1904 } 1905 1906 /* 1907 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 1908 */ 1909 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, 1910 int order) 1911 { 1912 struct oom_wait_info owait; 1913 bool locked, need_to_kill; 1914 1915 owait.memcg = memcg; 1916 owait.wait.flags = 0; 1917 owait.wait.func = memcg_oom_wake_function; 1918 owait.wait.private = current; 1919 INIT_LIST_HEAD(&owait.wait.task_list); 1920 need_to_kill = true; 1921 mem_cgroup_mark_under_oom(memcg); 1922 1923 /* At first, try to OOM lock hierarchy under memcg.*/ 1924 spin_lock(&memcg_oom_lock); 1925 locked = mem_cgroup_oom_lock(memcg); 1926 /* 1927 * Even if signal_pending(), we can't quit charge() loop without 1928 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 1929 * under OOM is always welcomed, use TASK_KILLABLE here. 1930 */ 1931 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1932 if (!locked || memcg->oom_kill_disable) 1933 need_to_kill = false; 1934 if (locked) 1935 mem_cgroup_oom_notify(memcg); 1936 spin_unlock(&memcg_oom_lock); 1937 1938 if (need_to_kill) { 1939 finish_wait(&memcg_oom_waitq, &owait.wait); 1940 mem_cgroup_out_of_memory(memcg, mask, order); 1941 } else { 1942 schedule(); 1943 finish_wait(&memcg_oom_waitq, &owait.wait); 1944 } 1945 spin_lock(&memcg_oom_lock); 1946 if (locked) 1947 mem_cgroup_oom_unlock(memcg); 1948 memcg_wakeup_oom(memcg); 1949 spin_unlock(&memcg_oom_lock); 1950 1951 mem_cgroup_unmark_under_oom(memcg); 1952 1953 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 1954 return false; 1955 /* Give chance to dying process */ 1956 schedule_timeout_uninterruptible(1); 1957 return true; 1958 } 1959 1960 /* 1961 * Currently used to update mapped file statistics, but the routine can be 1962 * generalized to update other statistics as well. 1963 * 1964 * Notes: Race condition 1965 * 1966 * We usually use page_cgroup_lock() for accessing page_cgroup member but 1967 * it tends to be costly. But considering some conditions, we doesn't need 1968 * to do so _always_. 1969 * 1970 * Considering "charge", lock_page_cgroup() is not required because all 1971 * file-stat operations happen after a page is attached to radix-tree. There 1972 * are no race with "charge". 1973 * 1974 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 1975 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 1976 * if there are race with "uncharge". Statistics itself is properly handled 1977 * by flags. 1978 * 1979 * Considering "move", this is an only case we see a race. To make the race 1980 * small, we check mm->moving_account and detect there are possibility of race 1981 * If there is, we take a lock. 1982 */ 1983 1984 void __mem_cgroup_begin_update_page_stat(struct page *page, 1985 bool *locked, unsigned long *flags) 1986 { 1987 struct mem_cgroup *memcg; 1988 struct page_cgroup *pc; 1989 1990 pc = lookup_page_cgroup(page); 1991 again: 1992 memcg = pc->mem_cgroup; 1993 if (unlikely(!memcg || !PageCgroupUsed(pc))) 1994 return; 1995 /* 1996 * If this memory cgroup is not under account moving, we don't 1997 * need to take move_lock_mem_cgroup(). Because we already hold 1998 * rcu_read_lock(), any calls to move_account will be delayed until 1999 * rcu_read_unlock() if mem_cgroup_stolen() == true. 2000 */ 2001 if (!mem_cgroup_stolen(memcg)) 2002 return; 2003 2004 move_lock_mem_cgroup(memcg, flags); 2005 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 2006 move_unlock_mem_cgroup(memcg, flags); 2007 goto again; 2008 } 2009 *locked = true; 2010 } 2011 2012 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 2013 { 2014 struct page_cgroup *pc = lookup_page_cgroup(page); 2015 2016 /* 2017 * It's guaranteed that pc->mem_cgroup never changes while 2018 * lock is held because a routine modifies pc->mem_cgroup 2019 * should take move_lock_mem_cgroup(). 2020 */ 2021 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 2022 } 2023 2024 void mem_cgroup_update_page_stat(struct page *page, 2025 enum mem_cgroup_page_stat_item idx, int val) 2026 { 2027 struct mem_cgroup *memcg; 2028 struct page_cgroup *pc = lookup_page_cgroup(page); 2029 unsigned long uninitialized_var(flags); 2030 2031 if (mem_cgroup_disabled()) 2032 return; 2033 2034 memcg = pc->mem_cgroup; 2035 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2036 return; 2037 2038 switch (idx) { 2039 case MEMCG_NR_FILE_MAPPED: 2040 idx = MEM_CGROUP_STAT_FILE_MAPPED; 2041 break; 2042 default: 2043 BUG(); 2044 } 2045 2046 this_cpu_add(memcg->stat->count[idx], val); 2047 } 2048 2049 /* 2050 * size of first charge trial. "32" comes from vmscan.c's magic value. 2051 * TODO: maybe necessary to use big numbers in big irons. 2052 */ 2053 #define CHARGE_BATCH 32U 2054 struct memcg_stock_pcp { 2055 struct mem_cgroup *cached; /* this never be root cgroup */ 2056 unsigned int nr_pages; 2057 struct work_struct work; 2058 unsigned long flags; 2059 #define FLUSHING_CACHED_CHARGE 0 2060 }; 2061 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2062 static DEFINE_MUTEX(percpu_charge_mutex); 2063 2064 /* 2065 * Try to consume stocked charge on this cpu. If success, one page is consumed 2066 * from local stock and true is returned. If the stock is 0 or charges from a 2067 * cgroup which is not current target, returns false. This stock will be 2068 * refilled. 2069 */ 2070 static bool consume_stock(struct mem_cgroup *memcg) 2071 { 2072 struct memcg_stock_pcp *stock; 2073 bool ret = true; 2074 2075 stock = &get_cpu_var(memcg_stock); 2076 if (memcg == stock->cached && stock->nr_pages) 2077 stock->nr_pages--; 2078 else /* need to call res_counter_charge */ 2079 ret = false; 2080 put_cpu_var(memcg_stock); 2081 return ret; 2082 } 2083 2084 /* 2085 * Returns stocks cached in percpu to res_counter and reset cached information. 2086 */ 2087 static void drain_stock(struct memcg_stock_pcp *stock) 2088 { 2089 struct mem_cgroup *old = stock->cached; 2090 2091 if (stock->nr_pages) { 2092 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2093 2094 res_counter_uncharge(&old->res, bytes); 2095 if (do_swap_account) 2096 res_counter_uncharge(&old->memsw, bytes); 2097 stock->nr_pages = 0; 2098 } 2099 stock->cached = NULL; 2100 } 2101 2102 /* 2103 * This must be called under preempt disabled or must be called by 2104 * a thread which is pinned to local cpu. 2105 */ 2106 static void drain_local_stock(struct work_struct *dummy) 2107 { 2108 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2109 drain_stock(stock); 2110 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2111 } 2112 2113 /* 2114 * Cache charges(val) which is from res_counter, to local per_cpu area. 2115 * This will be consumed by consume_stock() function, later. 2116 */ 2117 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2118 { 2119 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2120 2121 if (stock->cached != memcg) { /* reset if necessary */ 2122 drain_stock(stock); 2123 stock->cached = memcg; 2124 } 2125 stock->nr_pages += nr_pages; 2126 put_cpu_var(memcg_stock); 2127 } 2128 2129 /* 2130 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2131 * of the hierarchy under it. sync flag says whether we should block 2132 * until the work is done. 2133 */ 2134 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2135 { 2136 int cpu, curcpu; 2137 2138 /* Notify other cpus that system-wide "drain" is running */ 2139 get_online_cpus(); 2140 curcpu = get_cpu(); 2141 for_each_online_cpu(cpu) { 2142 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2143 struct mem_cgroup *memcg; 2144 2145 memcg = stock->cached; 2146 if (!memcg || !stock->nr_pages) 2147 continue; 2148 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2149 continue; 2150 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2151 if (cpu == curcpu) 2152 drain_local_stock(&stock->work); 2153 else 2154 schedule_work_on(cpu, &stock->work); 2155 } 2156 } 2157 put_cpu(); 2158 2159 if (!sync) 2160 goto out; 2161 2162 for_each_online_cpu(cpu) { 2163 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2164 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2165 flush_work(&stock->work); 2166 } 2167 out: 2168 put_online_cpus(); 2169 } 2170 2171 /* 2172 * Tries to drain stocked charges in other cpus. This function is asynchronous 2173 * and just put a work per cpu for draining localy on each cpu. Caller can 2174 * expects some charges will be back to res_counter later but cannot wait for 2175 * it. 2176 */ 2177 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2178 { 2179 /* 2180 * If someone calls draining, avoid adding more kworker runs. 2181 */ 2182 if (!mutex_trylock(&percpu_charge_mutex)) 2183 return; 2184 drain_all_stock(root_memcg, false); 2185 mutex_unlock(&percpu_charge_mutex); 2186 } 2187 2188 /* This is a synchronous drain interface. */ 2189 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2190 { 2191 /* called when force_empty is called */ 2192 mutex_lock(&percpu_charge_mutex); 2193 drain_all_stock(root_memcg, true); 2194 mutex_unlock(&percpu_charge_mutex); 2195 } 2196 2197 /* 2198 * This function drains percpu counter value from DEAD cpu and 2199 * move it to local cpu. Note that this function can be preempted. 2200 */ 2201 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2202 { 2203 int i; 2204 2205 spin_lock(&memcg->pcp_counter_lock); 2206 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2207 long x = per_cpu(memcg->stat->count[i], cpu); 2208 2209 per_cpu(memcg->stat->count[i], cpu) = 0; 2210 memcg->nocpu_base.count[i] += x; 2211 } 2212 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2213 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2214 2215 per_cpu(memcg->stat->events[i], cpu) = 0; 2216 memcg->nocpu_base.events[i] += x; 2217 } 2218 spin_unlock(&memcg->pcp_counter_lock); 2219 } 2220 2221 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, 2222 unsigned long action, 2223 void *hcpu) 2224 { 2225 int cpu = (unsigned long)hcpu; 2226 struct memcg_stock_pcp *stock; 2227 struct mem_cgroup *iter; 2228 2229 if (action == CPU_ONLINE) 2230 return NOTIFY_OK; 2231 2232 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2233 return NOTIFY_OK; 2234 2235 for_each_mem_cgroup(iter) 2236 mem_cgroup_drain_pcp_counter(iter, cpu); 2237 2238 stock = &per_cpu(memcg_stock, cpu); 2239 drain_stock(stock); 2240 return NOTIFY_OK; 2241 } 2242 2243 2244 /* See __mem_cgroup_try_charge() for details */ 2245 enum { 2246 CHARGE_OK, /* success */ 2247 CHARGE_RETRY, /* need to retry but retry is not bad */ 2248 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2249 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2250 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 2251 }; 2252 2253 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2254 unsigned int nr_pages, bool oom_check) 2255 { 2256 unsigned long csize = nr_pages * PAGE_SIZE; 2257 struct mem_cgroup *mem_over_limit; 2258 struct res_counter *fail_res; 2259 unsigned long flags = 0; 2260 int ret; 2261 2262 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2263 2264 if (likely(!ret)) { 2265 if (!do_swap_account) 2266 return CHARGE_OK; 2267 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2268 if (likely(!ret)) 2269 return CHARGE_OK; 2270 2271 res_counter_uncharge(&memcg->res, csize); 2272 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2273 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2274 } else 2275 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2276 /* 2277 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch 2278 * of regular pages (CHARGE_BATCH), or a single regular page (1). 2279 * 2280 * Never reclaim on behalf of optional batching, retry with a 2281 * single page instead. 2282 */ 2283 if (nr_pages == CHARGE_BATCH) 2284 return CHARGE_RETRY; 2285 2286 if (!(gfp_mask & __GFP_WAIT)) 2287 return CHARGE_WOULDBLOCK; 2288 2289 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2290 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2291 return CHARGE_RETRY; 2292 /* 2293 * Even though the limit is exceeded at this point, reclaim 2294 * may have been able to free some pages. Retry the charge 2295 * before killing the task. 2296 * 2297 * Only for regular pages, though: huge pages are rather 2298 * unlikely to succeed so close to the limit, and we fall back 2299 * to regular pages anyway in case of failure. 2300 */ 2301 if (nr_pages == 1 && ret) 2302 return CHARGE_RETRY; 2303 2304 /* 2305 * At task move, charge accounts can be doubly counted. So, it's 2306 * better to wait until the end of task_move if something is going on. 2307 */ 2308 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2309 return CHARGE_RETRY; 2310 2311 /* If we don't need to call oom-killer at el, return immediately */ 2312 if (!oom_check) 2313 return CHARGE_NOMEM; 2314 /* check OOM */ 2315 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) 2316 return CHARGE_OOM_DIE; 2317 2318 return CHARGE_RETRY; 2319 } 2320 2321 /* 2322 * __mem_cgroup_try_charge() does 2323 * 1. detect memcg to be charged against from passed *mm and *ptr, 2324 * 2. update res_counter 2325 * 3. call memory reclaim if necessary. 2326 * 2327 * In some special case, if the task is fatal, fatal_signal_pending() or 2328 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2329 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2330 * as possible without any hazards. 2: all pages should have a valid 2331 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2332 * pointer, that is treated as a charge to root_mem_cgroup. 2333 * 2334 * So __mem_cgroup_try_charge() will return 2335 * 0 ... on success, filling *ptr with a valid memcg pointer. 2336 * -ENOMEM ... charge failure because of resource limits. 2337 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2338 * 2339 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2340 * the oom-killer can be invoked. 2341 */ 2342 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2343 gfp_t gfp_mask, 2344 unsigned int nr_pages, 2345 struct mem_cgroup **ptr, 2346 bool oom) 2347 { 2348 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2349 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2350 struct mem_cgroup *memcg = NULL; 2351 int ret; 2352 2353 /* 2354 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2355 * in system level. So, allow to go ahead dying process in addition to 2356 * MEMDIE process. 2357 */ 2358 if (unlikely(test_thread_flag(TIF_MEMDIE) 2359 || fatal_signal_pending(current))) 2360 goto bypass; 2361 2362 /* 2363 * We always charge the cgroup the mm_struct belongs to. 2364 * The mm_struct's mem_cgroup changes on task migration if the 2365 * thread group leader migrates. It's possible that mm is not 2366 * set, if so charge the root memcg (happens for pagecache usage). 2367 */ 2368 if (!*ptr && !mm) 2369 *ptr = root_mem_cgroup; 2370 again: 2371 if (*ptr) { /* css should be a valid one */ 2372 memcg = *ptr; 2373 VM_BUG_ON(css_is_removed(&memcg->css)); 2374 if (mem_cgroup_is_root(memcg)) 2375 goto done; 2376 if (nr_pages == 1 && consume_stock(memcg)) 2377 goto done; 2378 css_get(&memcg->css); 2379 } else { 2380 struct task_struct *p; 2381 2382 rcu_read_lock(); 2383 p = rcu_dereference(mm->owner); 2384 /* 2385 * Because we don't have task_lock(), "p" can exit. 2386 * In that case, "memcg" can point to root or p can be NULL with 2387 * race with swapoff. Then, we have small risk of mis-accouning. 2388 * But such kind of mis-account by race always happens because 2389 * we don't have cgroup_mutex(). It's overkill and we allo that 2390 * small race, here. 2391 * (*) swapoff at el will charge against mm-struct not against 2392 * task-struct. So, mm->owner can be NULL. 2393 */ 2394 memcg = mem_cgroup_from_task(p); 2395 if (!memcg) 2396 memcg = root_mem_cgroup; 2397 if (mem_cgroup_is_root(memcg)) { 2398 rcu_read_unlock(); 2399 goto done; 2400 } 2401 if (nr_pages == 1 && consume_stock(memcg)) { 2402 /* 2403 * It seems dagerous to access memcg without css_get(). 2404 * But considering how consume_stok works, it's not 2405 * necessary. If consume_stock success, some charges 2406 * from this memcg are cached on this cpu. So, we 2407 * don't need to call css_get()/css_tryget() before 2408 * calling consume_stock(). 2409 */ 2410 rcu_read_unlock(); 2411 goto done; 2412 } 2413 /* after here, we may be blocked. we need to get refcnt */ 2414 if (!css_tryget(&memcg->css)) { 2415 rcu_read_unlock(); 2416 goto again; 2417 } 2418 rcu_read_unlock(); 2419 } 2420 2421 do { 2422 bool oom_check; 2423 2424 /* If killed, bypass charge */ 2425 if (fatal_signal_pending(current)) { 2426 css_put(&memcg->css); 2427 goto bypass; 2428 } 2429 2430 oom_check = false; 2431 if (oom && !nr_oom_retries) { 2432 oom_check = true; 2433 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2434 } 2435 2436 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check); 2437 switch (ret) { 2438 case CHARGE_OK: 2439 break; 2440 case CHARGE_RETRY: /* not in OOM situation but retry */ 2441 batch = nr_pages; 2442 css_put(&memcg->css); 2443 memcg = NULL; 2444 goto again; 2445 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2446 css_put(&memcg->css); 2447 goto nomem; 2448 case CHARGE_NOMEM: /* OOM routine works */ 2449 if (!oom) { 2450 css_put(&memcg->css); 2451 goto nomem; 2452 } 2453 /* If oom, we never return -ENOMEM */ 2454 nr_oom_retries--; 2455 break; 2456 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2457 css_put(&memcg->css); 2458 goto bypass; 2459 } 2460 } while (ret != CHARGE_OK); 2461 2462 if (batch > nr_pages) 2463 refill_stock(memcg, batch - nr_pages); 2464 css_put(&memcg->css); 2465 done: 2466 *ptr = memcg; 2467 return 0; 2468 nomem: 2469 *ptr = NULL; 2470 return -ENOMEM; 2471 bypass: 2472 *ptr = root_mem_cgroup; 2473 return -EINTR; 2474 } 2475 2476 /* 2477 * Somemtimes we have to undo a charge we got by try_charge(). 2478 * This function is for that and do uncharge, put css's refcnt. 2479 * gotten by try_charge(). 2480 */ 2481 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2482 unsigned int nr_pages) 2483 { 2484 if (!mem_cgroup_is_root(memcg)) { 2485 unsigned long bytes = nr_pages * PAGE_SIZE; 2486 2487 res_counter_uncharge(&memcg->res, bytes); 2488 if (do_swap_account) 2489 res_counter_uncharge(&memcg->memsw, bytes); 2490 } 2491 } 2492 2493 /* 2494 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2495 * This is useful when moving usage to parent cgroup. 2496 */ 2497 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2498 unsigned int nr_pages) 2499 { 2500 unsigned long bytes = nr_pages * PAGE_SIZE; 2501 2502 if (mem_cgroup_is_root(memcg)) 2503 return; 2504 2505 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2506 if (do_swap_account) 2507 res_counter_uncharge_until(&memcg->memsw, 2508 memcg->memsw.parent, bytes); 2509 } 2510 2511 /* 2512 * A helper function to get mem_cgroup from ID. must be called under 2513 * rcu_read_lock(). The caller must check css_is_removed() or some if 2514 * it's concern. (dropping refcnt from swap can be called against removed 2515 * memcg.) 2516 */ 2517 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2518 { 2519 struct cgroup_subsys_state *css; 2520 2521 /* ID 0 is unused ID */ 2522 if (!id) 2523 return NULL; 2524 css = css_lookup(&mem_cgroup_subsys, id); 2525 if (!css) 2526 return NULL; 2527 return mem_cgroup_from_css(css); 2528 } 2529 2530 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2531 { 2532 struct mem_cgroup *memcg = NULL; 2533 struct page_cgroup *pc; 2534 unsigned short id; 2535 swp_entry_t ent; 2536 2537 VM_BUG_ON(!PageLocked(page)); 2538 2539 pc = lookup_page_cgroup(page); 2540 lock_page_cgroup(pc); 2541 if (PageCgroupUsed(pc)) { 2542 memcg = pc->mem_cgroup; 2543 if (memcg && !css_tryget(&memcg->css)) 2544 memcg = NULL; 2545 } else if (PageSwapCache(page)) { 2546 ent.val = page_private(page); 2547 id = lookup_swap_cgroup_id(ent); 2548 rcu_read_lock(); 2549 memcg = mem_cgroup_lookup(id); 2550 if (memcg && !css_tryget(&memcg->css)) 2551 memcg = NULL; 2552 rcu_read_unlock(); 2553 } 2554 unlock_page_cgroup(pc); 2555 return memcg; 2556 } 2557 2558 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2559 struct page *page, 2560 unsigned int nr_pages, 2561 enum charge_type ctype, 2562 bool lrucare) 2563 { 2564 struct page_cgroup *pc = lookup_page_cgroup(page); 2565 struct zone *uninitialized_var(zone); 2566 struct lruvec *lruvec; 2567 bool was_on_lru = false; 2568 bool anon; 2569 2570 lock_page_cgroup(pc); 2571 VM_BUG_ON(PageCgroupUsed(pc)); 2572 /* 2573 * we don't need page_cgroup_lock about tail pages, becase they are not 2574 * accessed by any other context at this point. 2575 */ 2576 2577 /* 2578 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2579 * may already be on some other mem_cgroup's LRU. Take care of it. 2580 */ 2581 if (lrucare) { 2582 zone = page_zone(page); 2583 spin_lock_irq(&zone->lru_lock); 2584 if (PageLRU(page)) { 2585 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2586 ClearPageLRU(page); 2587 del_page_from_lru_list(page, lruvec, page_lru(page)); 2588 was_on_lru = true; 2589 } 2590 } 2591 2592 pc->mem_cgroup = memcg; 2593 /* 2594 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2595 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2596 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2597 * before USED bit, we need memory barrier here. 2598 * See mem_cgroup_add_lru_list(), etc. 2599 */ 2600 smp_wmb(); 2601 SetPageCgroupUsed(pc); 2602 2603 if (lrucare) { 2604 if (was_on_lru) { 2605 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2606 VM_BUG_ON(PageLRU(page)); 2607 SetPageLRU(page); 2608 add_page_to_lru_list(page, lruvec, page_lru(page)); 2609 } 2610 spin_unlock_irq(&zone->lru_lock); 2611 } 2612 2613 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2614 anon = true; 2615 else 2616 anon = false; 2617 2618 mem_cgroup_charge_statistics(memcg, anon, nr_pages); 2619 unlock_page_cgroup(pc); 2620 2621 /* 2622 * "charge_statistics" updated event counter. Then, check it. 2623 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2624 * if they exceeds softlimit. 2625 */ 2626 memcg_check_events(memcg, page); 2627 } 2628 2629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2630 2631 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 2632 /* 2633 * Because tail pages are not marked as "used", set it. We're under 2634 * zone->lru_lock, 'splitting on pmd' and compound_lock. 2635 * charge/uncharge will be never happen and move_account() is done under 2636 * compound_lock(), so we don't have to take care of races. 2637 */ 2638 void mem_cgroup_split_huge_fixup(struct page *head) 2639 { 2640 struct page_cgroup *head_pc = lookup_page_cgroup(head); 2641 struct page_cgroup *pc; 2642 int i; 2643 2644 if (mem_cgroup_disabled()) 2645 return; 2646 for (i = 1; i < HPAGE_PMD_NR; i++) { 2647 pc = head_pc + i; 2648 pc->mem_cgroup = head_pc->mem_cgroup; 2649 smp_wmb();/* see __commit_charge() */ 2650 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 2651 } 2652 } 2653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2654 2655 /** 2656 * mem_cgroup_move_account - move account of the page 2657 * @page: the page 2658 * @nr_pages: number of regular pages (>1 for huge pages) 2659 * @pc: page_cgroup of the page. 2660 * @from: mem_cgroup which the page is moved from. 2661 * @to: mem_cgroup which the page is moved to. @from != @to. 2662 * 2663 * The caller must confirm following. 2664 * - page is not on LRU (isolate_page() is useful.) 2665 * - compound_lock is held when nr_pages > 1 2666 * 2667 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 2668 * from old cgroup. 2669 */ 2670 static int mem_cgroup_move_account(struct page *page, 2671 unsigned int nr_pages, 2672 struct page_cgroup *pc, 2673 struct mem_cgroup *from, 2674 struct mem_cgroup *to) 2675 { 2676 unsigned long flags; 2677 int ret; 2678 bool anon = PageAnon(page); 2679 2680 VM_BUG_ON(from == to); 2681 VM_BUG_ON(PageLRU(page)); 2682 /* 2683 * The page is isolated from LRU. So, collapse function 2684 * will not handle this page. But page splitting can happen. 2685 * Do this check under compound_page_lock(). The caller should 2686 * hold it. 2687 */ 2688 ret = -EBUSY; 2689 if (nr_pages > 1 && !PageTransHuge(page)) 2690 goto out; 2691 2692 lock_page_cgroup(pc); 2693 2694 ret = -EINVAL; 2695 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 2696 goto unlock; 2697 2698 move_lock_mem_cgroup(from, &flags); 2699 2700 if (!anon && page_mapped(page)) { 2701 /* Update mapped_file data for mem_cgroup */ 2702 preempt_disable(); 2703 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2704 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2705 preempt_enable(); 2706 } 2707 mem_cgroup_charge_statistics(from, anon, -nr_pages); 2708 2709 /* caller should have done css_get */ 2710 pc->mem_cgroup = to; 2711 mem_cgroup_charge_statistics(to, anon, nr_pages); 2712 /* 2713 * We charges against "to" which may not have any tasks. Then, "to" 2714 * can be under rmdir(). But in current implementation, caller of 2715 * this function is just force_empty() and move charge, so it's 2716 * guaranteed that "to" is never removed. So, we don't check rmdir 2717 * status here. 2718 */ 2719 move_unlock_mem_cgroup(from, &flags); 2720 ret = 0; 2721 unlock: 2722 unlock_page_cgroup(pc); 2723 /* 2724 * check events 2725 */ 2726 memcg_check_events(to, page); 2727 memcg_check_events(from, page); 2728 out: 2729 return ret; 2730 } 2731 2732 /* 2733 * move charges to its parent. 2734 */ 2735 2736 static int mem_cgroup_move_parent(struct page *page, 2737 struct page_cgroup *pc, 2738 struct mem_cgroup *child) 2739 { 2740 struct mem_cgroup *parent; 2741 unsigned int nr_pages; 2742 unsigned long uninitialized_var(flags); 2743 int ret; 2744 2745 /* Is ROOT ? */ 2746 if (mem_cgroup_is_root(child)) 2747 return -EINVAL; 2748 2749 ret = -EBUSY; 2750 if (!get_page_unless_zero(page)) 2751 goto out; 2752 if (isolate_lru_page(page)) 2753 goto put; 2754 2755 nr_pages = hpage_nr_pages(page); 2756 2757 parent = parent_mem_cgroup(child); 2758 /* 2759 * If no parent, move charges to root cgroup. 2760 */ 2761 if (!parent) 2762 parent = root_mem_cgroup; 2763 2764 if (nr_pages > 1) 2765 flags = compound_lock_irqsave(page); 2766 2767 ret = mem_cgroup_move_account(page, nr_pages, 2768 pc, child, parent); 2769 if (!ret) 2770 __mem_cgroup_cancel_local_charge(child, nr_pages); 2771 2772 if (nr_pages > 1) 2773 compound_unlock_irqrestore(page, flags); 2774 putback_lru_page(page); 2775 put: 2776 put_page(page); 2777 out: 2778 return ret; 2779 } 2780 2781 /* 2782 * Charge the memory controller for page usage. 2783 * Return 2784 * 0 if the charge was successful 2785 * < 0 if the cgroup is over its limit 2786 */ 2787 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 2788 gfp_t gfp_mask, enum charge_type ctype) 2789 { 2790 struct mem_cgroup *memcg = NULL; 2791 unsigned int nr_pages = 1; 2792 bool oom = true; 2793 int ret; 2794 2795 if (PageTransHuge(page)) { 2796 nr_pages <<= compound_order(page); 2797 VM_BUG_ON(!PageTransHuge(page)); 2798 /* 2799 * Never OOM-kill a process for a huge page. The 2800 * fault handler will fall back to regular pages. 2801 */ 2802 oom = false; 2803 } 2804 2805 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 2806 if (ret == -ENOMEM) 2807 return ret; 2808 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); 2809 return 0; 2810 } 2811 2812 int mem_cgroup_newpage_charge(struct page *page, 2813 struct mm_struct *mm, gfp_t gfp_mask) 2814 { 2815 if (mem_cgroup_disabled()) 2816 return 0; 2817 VM_BUG_ON(page_mapped(page)); 2818 VM_BUG_ON(page->mapping && !PageAnon(page)); 2819 VM_BUG_ON(!mm); 2820 return mem_cgroup_charge_common(page, mm, gfp_mask, 2821 MEM_CGROUP_CHARGE_TYPE_ANON); 2822 } 2823 2824 /* 2825 * While swap-in, try_charge -> commit or cancel, the page is locked. 2826 * And when try_charge() successfully returns, one refcnt to memcg without 2827 * struct page_cgroup is acquired. This refcnt will be consumed by 2828 * "commit()" or removed by "cancel()" 2829 */ 2830 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, 2831 struct page *page, 2832 gfp_t mask, 2833 struct mem_cgroup **memcgp) 2834 { 2835 struct mem_cgroup *memcg; 2836 struct page_cgroup *pc; 2837 int ret; 2838 2839 pc = lookup_page_cgroup(page); 2840 /* 2841 * Every swap fault against a single page tries to charge the 2842 * page, bail as early as possible. shmem_unuse() encounters 2843 * already charged pages, too. The USED bit is protected by 2844 * the page lock, which serializes swap cache removal, which 2845 * in turn serializes uncharging. 2846 */ 2847 if (PageCgroupUsed(pc)) 2848 return 0; 2849 if (!do_swap_account) 2850 goto charge_cur_mm; 2851 memcg = try_get_mem_cgroup_from_page(page); 2852 if (!memcg) 2853 goto charge_cur_mm; 2854 *memcgp = memcg; 2855 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 2856 css_put(&memcg->css); 2857 if (ret == -EINTR) 2858 ret = 0; 2859 return ret; 2860 charge_cur_mm: 2861 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 2862 if (ret == -EINTR) 2863 ret = 0; 2864 return ret; 2865 } 2866 2867 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, 2868 gfp_t gfp_mask, struct mem_cgroup **memcgp) 2869 { 2870 *memcgp = NULL; 2871 if (mem_cgroup_disabled()) 2872 return 0; 2873 /* 2874 * A racing thread's fault, or swapoff, may have already 2875 * updated the pte, and even removed page from swap cache: in 2876 * those cases unuse_pte()'s pte_same() test will fail; but 2877 * there's also a KSM case which does need to charge the page. 2878 */ 2879 if (!PageSwapCache(page)) { 2880 int ret; 2881 2882 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); 2883 if (ret == -EINTR) 2884 ret = 0; 2885 return ret; 2886 } 2887 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); 2888 } 2889 2890 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 2891 { 2892 if (mem_cgroup_disabled()) 2893 return; 2894 if (!memcg) 2895 return; 2896 __mem_cgroup_cancel_charge(memcg, 1); 2897 } 2898 2899 static void 2900 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 2901 enum charge_type ctype) 2902 { 2903 if (mem_cgroup_disabled()) 2904 return; 2905 if (!memcg) 2906 return; 2907 cgroup_exclude_rmdir(&memcg->css); 2908 2909 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 2910 /* 2911 * Now swap is on-memory. This means this page may be 2912 * counted both as mem and swap....double count. 2913 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 2914 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 2915 * may call delete_from_swap_cache() before reach here. 2916 */ 2917 if (do_swap_account && PageSwapCache(page)) { 2918 swp_entry_t ent = {.val = page_private(page)}; 2919 mem_cgroup_uncharge_swap(ent); 2920 } 2921 /* 2922 * At swapin, we may charge account against cgroup which has no tasks. 2923 * So, rmdir()->pre_destroy() can be called while we do this charge. 2924 * In that case, we need to call pre_destroy() again. check it here. 2925 */ 2926 cgroup_release_and_wakeup_rmdir(&memcg->css); 2927 } 2928 2929 void mem_cgroup_commit_charge_swapin(struct page *page, 2930 struct mem_cgroup *memcg) 2931 { 2932 __mem_cgroup_commit_charge_swapin(page, memcg, 2933 MEM_CGROUP_CHARGE_TYPE_ANON); 2934 } 2935 2936 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 2937 gfp_t gfp_mask) 2938 { 2939 struct mem_cgroup *memcg = NULL; 2940 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 2941 int ret; 2942 2943 if (mem_cgroup_disabled()) 2944 return 0; 2945 if (PageCompound(page)) 2946 return 0; 2947 2948 if (!PageSwapCache(page)) 2949 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 2950 else { /* page is swapcache/shmem */ 2951 ret = __mem_cgroup_try_charge_swapin(mm, page, 2952 gfp_mask, &memcg); 2953 if (!ret) 2954 __mem_cgroup_commit_charge_swapin(page, memcg, type); 2955 } 2956 return ret; 2957 } 2958 2959 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 2960 unsigned int nr_pages, 2961 const enum charge_type ctype) 2962 { 2963 struct memcg_batch_info *batch = NULL; 2964 bool uncharge_memsw = true; 2965 2966 /* If swapout, usage of swap doesn't decrease */ 2967 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 2968 uncharge_memsw = false; 2969 2970 batch = ¤t->memcg_batch; 2971 /* 2972 * In usual, we do css_get() when we remember memcg pointer. 2973 * But in this case, we keep res->usage until end of a series of 2974 * uncharges. Then, it's ok to ignore memcg's refcnt. 2975 */ 2976 if (!batch->memcg) 2977 batch->memcg = memcg; 2978 /* 2979 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 2980 * In those cases, all pages freed continuously can be expected to be in 2981 * the same cgroup and we have chance to coalesce uncharges. 2982 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 2983 * because we want to do uncharge as soon as possible. 2984 */ 2985 2986 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 2987 goto direct_uncharge; 2988 2989 if (nr_pages > 1) 2990 goto direct_uncharge; 2991 2992 /* 2993 * In typical case, batch->memcg == mem. This means we can 2994 * merge a series of uncharges to an uncharge of res_counter. 2995 * If not, we uncharge res_counter ony by one. 2996 */ 2997 if (batch->memcg != memcg) 2998 goto direct_uncharge; 2999 /* remember freed charge and uncharge it later */ 3000 batch->nr_pages++; 3001 if (uncharge_memsw) 3002 batch->memsw_nr_pages++; 3003 return; 3004 direct_uncharge: 3005 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 3006 if (uncharge_memsw) 3007 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 3008 if (unlikely(batch->memcg != memcg)) 3009 memcg_oom_recover(memcg); 3010 } 3011 3012 /* 3013 * uncharge if !page_mapped(page) 3014 */ 3015 static struct mem_cgroup * 3016 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 3017 bool end_migration) 3018 { 3019 struct mem_cgroup *memcg = NULL; 3020 unsigned int nr_pages = 1; 3021 struct page_cgroup *pc; 3022 bool anon; 3023 3024 if (mem_cgroup_disabled()) 3025 return NULL; 3026 3027 VM_BUG_ON(PageSwapCache(page)); 3028 3029 if (PageTransHuge(page)) { 3030 nr_pages <<= compound_order(page); 3031 VM_BUG_ON(!PageTransHuge(page)); 3032 } 3033 /* 3034 * Check if our page_cgroup is valid 3035 */ 3036 pc = lookup_page_cgroup(page); 3037 if (unlikely(!PageCgroupUsed(pc))) 3038 return NULL; 3039 3040 lock_page_cgroup(pc); 3041 3042 memcg = pc->mem_cgroup; 3043 3044 if (!PageCgroupUsed(pc)) 3045 goto unlock_out; 3046 3047 anon = PageAnon(page); 3048 3049 switch (ctype) { 3050 case MEM_CGROUP_CHARGE_TYPE_ANON: 3051 /* 3052 * Generally PageAnon tells if it's the anon statistics to be 3053 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 3054 * used before page reached the stage of being marked PageAnon. 3055 */ 3056 anon = true; 3057 /* fallthrough */ 3058 case MEM_CGROUP_CHARGE_TYPE_DROP: 3059 /* See mem_cgroup_prepare_migration() */ 3060 if (page_mapped(page)) 3061 goto unlock_out; 3062 /* 3063 * Pages under migration may not be uncharged. But 3064 * end_migration() /must/ be the one uncharging the 3065 * unused post-migration page and so it has to call 3066 * here with the migration bit still set. See the 3067 * res_counter handling below. 3068 */ 3069 if (!end_migration && PageCgroupMigration(pc)) 3070 goto unlock_out; 3071 break; 3072 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 3073 if (!PageAnon(page)) { /* Shared memory */ 3074 if (page->mapping && !page_is_file_cache(page)) 3075 goto unlock_out; 3076 } else if (page_mapped(page)) /* Anon */ 3077 goto unlock_out; 3078 break; 3079 default: 3080 break; 3081 } 3082 3083 mem_cgroup_charge_statistics(memcg, anon, -nr_pages); 3084 3085 ClearPageCgroupUsed(pc); 3086 /* 3087 * pc->mem_cgroup is not cleared here. It will be accessed when it's 3088 * freed from LRU. This is safe because uncharged page is expected not 3089 * to be reused (freed soon). Exception is SwapCache, it's handled by 3090 * special functions. 3091 */ 3092 3093 unlock_page_cgroup(pc); 3094 /* 3095 * even after unlock, we have memcg->res.usage here and this memcg 3096 * will never be freed. 3097 */ 3098 memcg_check_events(memcg, page); 3099 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 3100 mem_cgroup_swap_statistics(memcg, true); 3101 mem_cgroup_get(memcg); 3102 } 3103 /* 3104 * Migration does not charge the res_counter for the 3105 * replacement page, so leave it alone when phasing out the 3106 * page that is unused after the migration. 3107 */ 3108 if (!end_migration && !mem_cgroup_is_root(memcg)) 3109 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 3110 3111 return memcg; 3112 3113 unlock_out: 3114 unlock_page_cgroup(pc); 3115 return NULL; 3116 } 3117 3118 void mem_cgroup_uncharge_page(struct page *page) 3119 { 3120 /* early check. */ 3121 if (page_mapped(page)) 3122 return; 3123 VM_BUG_ON(page->mapping && !PageAnon(page)); 3124 if (PageSwapCache(page)) 3125 return; 3126 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 3127 } 3128 3129 void mem_cgroup_uncharge_cache_page(struct page *page) 3130 { 3131 VM_BUG_ON(page_mapped(page)); 3132 VM_BUG_ON(page->mapping); 3133 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 3134 } 3135 3136 /* 3137 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 3138 * In that cases, pages are freed continuously and we can expect pages 3139 * are in the same memcg. All these calls itself limits the number of 3140 * pages freed at once, then uncharge_start/end() is called properly. 3141 * This may be called prural(2) times in a context, 3142 */ 3143 3144 void mem_cgroup_uncharge_start(void) 3145 { 3146 current->memcg_batch.do_batch++; 3147 /* We can do nest. */ 3148 if (current->memcg_batch.do_batch == 1) { 3149 current->memcg_batch.memcg = NULL; 3150 current->memcg_batch.nr_pages = 0; 3151 current->memcg_batch.memsw_nr_pages = 0; 3152 } 3153 } 3154 3155 void mem_cgroup_uncharge_end(void) 3156 { 3157 struct memcg_batch_info *batch = ¤t->memcg_batch; 3158 3159 if (!batch->do_batch) 3160 return; 3161 3162 batch->do_batch--; 3163 if (batch->do_batch) /* If stacked, do nothing. */ 3164 return; 3165 3166 if (!batch->memcg) 3167 return; 3168 /* 3169 * This "batch->memcg" is valid without any css_get/put etc... 3170 * bacause we hide charges behind us. 3171 */ 3172 if (batch->nr_pages) 3173 res_counter_uncharge(&batch->memcg->res, 3174 batch->nr_pages * PAGE_SIZE); 3175 if (batch->memsw_nr_pages) 3176 res_counter_uncharge(&batch->memcg->memsw, 3177 batch->memsw_nr_pages * PAGE_SIZE); 3178 memcg_oom_recover(batch->memcg); 3179 /* forget this pointer (for sanity check) */ 3180 batch->memcg = NULL; 3181 } 3182 3183 #ifdef CONFIG_SWAP 3184 /* 3185 * called after __delete_from_swap_cache() and drop "page" account. 3186 * memcg information is recorded to swap_cgroup of "ent" 3187 */ 3188 void 3189 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 3190 { 3191 struct mem_cgroup *memcg; 3192 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 3193 3194 if (!swapout) /* this was a swap cache but the swap is unused ! */ 3195 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 3196 3197 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 3198 3199 /* 3200 * record memcg information, if swapout && memcg != NULL, 3201 * mem_cgroup_get() was called in uncharge(). 3202 */ 3203 if (do_swap_account && swapout && memcg) 3204 swap_cgroup_record(ent, css_id(&memcg->css)); 3205 } 3206 #endif 3207 3208 #ifdef CONFIG_MEMCG_SWAP 3209 /* 3210 * called from swap_entry_free(). remove record in swap_cgroup and 3211 * uncharge "memsw" account. 3212 */ 3213 void mem_cgroup_uncharge_swap(swp_entry_t ent) 3214 { 3215 struct mem_cgroup *memcg; 3216 unsigned short id; 3217 3218 if (!do_swap_account) 3219 return; 3220 3221 id = swap_cgroup_record(ent, 0); 3222 rcu_read_lock(); 3223 memcg = mem_cgroup_lookup(id); 3224 if (memcg) { 3225 /* 3226 * We uncharge this because swap is freed. 3227 * This memcg can be obsolete one. We avoid calling css_tryget 3228 */ 3229 if (!mem_cgroup_is_root(memcg)) 3230 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 3231 mem_cgroup_swap_statistics(memcg, false); 3232 mem_cgroup_put(memcg); 3233 } 3234 rcu_read_unlock(); 3235 } 3236 3237 /** 3238 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3239 * @entry: swap entry to be moved 3240 * @from: mem_cgroup which the entry is moved from 3241 * @to: mem_cgroup which the entry is moved to 3242 * 3243 * It succeeds only when the swap_cgroup's record for this entry is the same 3244 * as the mem_cgroup's id of @from. 3245 * 3246 * Returns 0 on success, -EINVAL on failure. 3247 * 3248 * The caller must have charged to @to, IOW, called res_counter_charge() about 3249 * both res and memsw, and called css_get(). 3250 */ 3251 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3252 struct mem_cgroup *from, struct mem_cgroup *to) 3253 { 3254 unsigned short old_id, new_id; 3255 3256 old_id = css_id(&from->css); 3257 new_id = css_id(&to->css); 3258 3259 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3260 mem_cgroup_swap_statistics(from, false); 3261 mem_cgroup_swap_statistics(to, true); 3262 /* 3263 * This function is only called from task migration context now. 3264 * It postpones res_counter and refcount handling till the end 3265 * of task migration(mem_cgroup_clear_mc()) for performance 3266 * improvement. But we cannot postpone mem_cgroup_get(to) 3267 * because if the process that has been moved to @to does 3268 * swap-in, the refcount of @to might be decreased to 0. 3269 */ 3270 mem_cgroup_get(to); 3271 return 0; 3272 } 3273 return -EINVAL; 3274 } 3275 #else 3276 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3277 struct mem_cgroup *from, struct mem_cgroup *to) 3278 { 3279 return -EINVAL; 3280 } 3281 #endif 3282 3283 /* 3284 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 3285 * page belongs to. 3286 */ 3287 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 3288 struct mem_cgroup **memcgp) 3289 { 3290 struct mem_cgroup *memcg = NULL; 3291 struct page_cgroup *pc; 3292 enum charge_type ctype; 3293 3294 *memcgp = NULL; 3295 3296 VM_BUG_ON(PageTransHuge(page)); 3297 if (mem_cgroup_disabled()) 3298 return; 3299 3300 pc = lookup_page_cgroup(page); 3301 lock_page_cgroup(pc); 3302 if (PageCgroupUsed(pc)) { 3303 memcg = pc->mem_cgroup; 3304 css_get(&memcg->css); 3305 /* 3306 * At migrating an anonymous page, its mapcount goes down 3307 * to 0 and uncharge() will be called. But, even if it's fully 3308 * unmapped, migration may fail and this page has to be 3309 * charged again. We set MIGRATION flag here and delay uncharge 3310 * until end_migration() is called 3311 * 3312 * Corner Case Thinking 3313 * A) 3314 * When the old page was mapped as Anon and it's unmap-and-freed 3315 * while migration was ongoing. 3316 * If unmap finds the old page, uncharge() of it will be delayed 3317 * until end_migration(). If unmap finds a new page, it's 3318 * uncharged when it make mapcount to be 1->0. If unmap code 3319 * finds swap_migration_entry, the new page will not be mapped 3320 * and end_migration() will find it(mapcount==0). 3321 * 3322 * B) 3323 * When the old page was mapped but migraion fails, the kernel 3324 * remaps it. A charge for it is kept by MIGRATION flag even 3325 * if mapcount goes down to 0. We can do remap successfully 3326 * without charging it again. 3327 * 3328 * C) 3329 * The "old" page is under lock_page() until the end of 3330 * migration, so, the old page itself will not be swapped-out. 3331 * If the new page is swapped out before end_migraton, our 3332 * hook to usual swap-out path will catch the event. 3333 */ 3334 if (PageAnon(page)) 3335 SetPageCgroupMigration(pc); 3336 } 3337 unlock_page_cgroup(pc); 3338 /* 3339 * If the page is not charged at this point, 3340 * we return here. 3341 */ 3342 if (!memcg) 3343 return; 3344 3345 *memcgp = memcg; 3346 /* 3347 * We charge new page before it's used/mapped. So, even if unlock_page() 3348 * is called before end_migration, we can catch all events on this new 3349 * page. In the case new page is migrated but not remapped, new page's 3350 * mapcount will be finally 0 and we call uncharge in end_migration(). 3351 */ 3352 if (PageAnon(page)) 3353 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 3354 else 3355 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 3356 /* 3357 * The page is committed to the memcg, but it's not actually 3358 * charged to the res_counter since we plan on replacing the 3359 * old one and only one page is going to be left afterwards. 3360 */ 3361 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false); 3362 } 3363 3364 /* remove redundant charge if migration failed*/ 3365 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 3366 struct page *oldpage, struct page *newpage, bool migration_ok) 3367 { 3368 struct page *used, *unused; 3369 struct page_cgroup *pc; 3370 bool anon; 3371 3372 if (!memcg) 3373 return; 3374 /* blocks rmdir() */ 3375 cgroup_exclude_rmdir(&memcg->css); 3376 if (!migration_ok) { 3377 used = oldpage; 3378 unused = newpage; 3379 } else { 3380 used = newpage; 3381 unused = oldpage; 3382 } 3383 anon = PageAnon(used); 3384 __mem_cgroup_uncharge_common(unused, 3385 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 3386 : MEM_CGROUP_CHARGE_TYPE_CACHE, 3387 true); 3388 css_put(&memcg->css); 3389 /* 3390 * We disallowed uncharge of pages under migration because mapcount 3391 * of the page goes down to zero, temporarly. 3392 * Clear the flag and check the page should be charged. 3393 */ 3394 pc = lookup_page_cgroup(oldpage); 3395 lock_page_cgroup(pc); 3396 ClearPageCgroupMigration(pc); 3397 unlock_page_cgroup(pc); 3398 3399 /* 3400 * If a page is a file cache, radix-tree replacement is very atomic 3401 * and we can skip this check. When it was an Anon page, its mapcount 3402 * goes down to 0. But because we added MIGRATION flage, it's not 3403 * uncharged yet. There are several case but page->mapcount check 3404 * and USED bit check in mem_cgroup_uncharge_page() will do enough 3405 * check. (see prepare_charge() also) 3406 */ 3407 if (anon) 3408 mem_cgroup_uncharge_page(used); 3409 /* 3410 * At migration, we may charge account against cgroup which has no 3411 * tasks. 3412 * So, rmdir()->pre_destroy() can be called while we do this charge. 3413 * In that case, we need to call pre_destroy() again. check it here. 3414 */ 3415 cgroup_release_and_wakeup_rmdir(&memcg->css); 3416 } 3417 3418 /* 3419 * At replace page cache, newpage is not under any memcg but it's on 3420 * LRU. So, this function doesn't touch res_counter but handles LRU 3421 * in correct way. Both pages are locked so we cannot race with uncharge. 3422 */ 3423 void mem_cgroup_replace_page_cache(struct page *oldpage, 3424 struct page *newpage) 3425 { 3426 struct mem_cgroup *memcg = NULL; 3427 struct page_cgroup *pc; 3428 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 3429 3430 if (mem_cgroup_disabled()) 3431 return; 3432 3433 pc = lookup_page_cgroup(oldpage); 3434 /* fix accounting on old pages */ 3435 lock_page_cgroup(pc); 3436 if (PageCgroupUsed(pc)) { 3437 memcg = pc->mem_cgroup; 3438 mem_cgroup_charge_statistics(memcg, false, -1); 3439 ClearPageCgroupUsed(pc); 3440 } 3441 unlock_page_cgroup(pc); 3442 3443 /* 3444 * When called from shmem_replace_page(), in some cases the 3445 * oldpage has already been charged, and in some cases not. 3446 */ 3447 if (!memcg) 3448 return; 3449 /* 3450 * Even if newpage->mapping was NULL before starting replacement, 3451 * the newpage may be on LRU(or pagevec for LRU) already. We lock 3452 * LRU while we overwrite pc->mem_cgroup. 3453 */ 3454 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 3455 } 3456 3457 #ifdef CONFIG_DEBUG_VM 3458 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 3459 { 3460 struct page_cgroup *pc; 3461 3462 pc = lookup_page_cgroup(page); 3463 /* 3464 * Can be NULL while feeding pages into the page allocator for 3465 * the first time, i.e. during boot or memory hotplug; 3466 * or when mem_cgroup_disabled(). 3467 */ 3468 if (likely(pc) && PageCgroupUsed(pc)) 3469 return pc; 3470 return NULL; 3471 } 3472 3473 bool mem_cgroup_bad_page_check(struct page *page) 3474 { 3475 if (mem_cgroup_disabled()) 3476 return false; 3477 3478 return lookup_page_cgroup_used(page) != NULL; 3479 } 3480 3481 void mem_cgroup_print_bad_page(struct page *page) 3482 { 3483 struct page_cgroup *pc; 3484 3485 pc = lookup_page_cgroup_used(page); 3486 if (pc) { 3487 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 3488 pc, pc->flags, pc->mem_cgroup); 3489 } 3490 } 3491 #endif 3492 3493 static DEFINE_MUTEX(set_limit_mutex); 3494 3495 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 3496 unsigned long long val) 3497 { 3498 int retry_count; 3499 u64 memswlimit, memlimit; 3500 int ret = 0; 3501 int children = mem_cgroup_count_children(memcg); 3502 u64 curusage, oldusage; 3503 int enlarge; 3504 3505 /* 3506 * For keeping hierarchical_reclaim simple, how long we should retry 3507 * is depends on callers. We set our retry-count to be function 3508 * of # of children which we should visit in this loop. 3509 */ 3510 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 3511 3512 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3513 3514 enlarge = 0; 3515 while (retry_count) { 3516 if (signal_pending(current)) { 3517 ret = -EINTR; 3518 break; 3519 } 3520 /* 3521 * Rather than hide all in some function, I do this in 3522 * open coded manner. You see what this really does. 3523 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 3524 */ 3525 mutex_lock(&set_limit_mutex); 3526 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3527 if (memswlimit < val) { 3528 ret = -EINVAL; 3529 mutex_unlock(&set_limit_mutex); 3530 break; 3531 } 3532 3533 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3534 if (memlimit < val) 3535 enlarge = 1; 3536 3537 ret = res_counter_set_limit(&memcg->res, val); 3538 if (!ret) { 3539 if (memswlimit == val) 3540 memcg->memsw_is_minimum = true; 3541 else 3542 memcg->memsw_is_minimum = false; 3543 } 3544 mutex_unlock(&set_limit_mutex); 3545 3546 if (!ret) 3547 break; 3548 3549 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3550 MEM_CGROUP_RECLAIM_SHRINK); 3551 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3552 /* Usage is reduced ? */ 3553 if (curusage >= oldusage) 3554 retry_count--; 3555 else 3556 oldusage = curusage; 3557 } 3558 if (!ret && enlarge) 3559 memcg_oom_recover(memcg); 3560 3561 return ret; 3562 } 3563 3564 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 3565 unsigned long long val) 3566 { 3567 int retry_count; 3568 u64 memlimit, memswlimit, oldusage, curusage; 3569 int children = mem_cgroup_count_children(memcg); 3570 int ret = -EBUSY; 3571 int enlarge = 0; 3572 3573 /* see mem_cgroup_resize_res_limit */ 3574 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 3575 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3576 while (retry_count) { 3577 if (signal_pending(current)) { 3578 ret = -EINTR; 3579 break; 3580 } 3581 /* 3582 * Rather than hide all in some function, I do this in 3583 * open coded manner. You see what this really does. 3584 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 3585 */ 3586 mutex_lock(&set_limit_mutex); 3587 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3588 if (memlimit > val) { 3589 ret = -EINVAL; 3590 mutex_unlock(&set_limit_mutex); 3591 break; 3592 } 3593 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3594 if (memswlimit < val) 3595 enlarge = 1; 3596 ret = res_counter_set_limit(&memcg->memsw, val); 3597 if (!ret) { 3598 if (memlimit == val) 3599 memcg->memsw_is_minimum = true; 3600 else 3601 memcg->memsw_is_minimum = false; 3602 } 3603 mutex_unlock(&set_limit_mutex); 3604 3605 if (!ret) 3606 break; 3607 3608 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3609 MEM_CGROUP_RECLAIM_NOSWAP | 3610 MEM_CGROUP_RECLAIM_SHRINK); 3611 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3612 /* Usage is reduced ? */ 3613 if (curusage >= oldusage) 3614 retry_count--; 3615 else 3616 oldusage = curusage; 3617 } 3618 if (!ret && enlarge) 3619 memcg_oom_recover(memcg); 3620 return ret; 3621 } 3622 3623 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 3624 gfp_t gfp_mask, 3625 unsigned long *total_scanned) 3626 { 3627 unsigned long nr_reclaimed = 0; 3628 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 3629 unsigned long reclaimed; 3630 int loop = 0; 3631 struct mem_cgroup_tree_per_zone *mctz; 3632 unsigned long long excess; 3633 unsigned long nr_scanned; 3634 3635 if (order > 0) 3636 return 0; 3637 3638 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 3639 /* 3640 * This loop can run a while, specially if mem_cgroup's continuously 3641 * keep exceeding their soft limit and putting the system under 3642 * pressure 3643 */ 3644 do { 3645 if (next_mz) 3646 mz = next_mz; 3647 else 3648 mz = mem_cgroup_largest_soft_limit_node(mctz); 3649 if (!mz) 3650 break; 3651 3652 nr_scanned = 0; 3653 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 3654 gfp_mask, &nr_scanned); 3655 nr_reclaimed += reclaimed; 3656 *total_scanned += nr_scanned; 3657 spin_lock(&mctz->lock); 3658 3659 /* 3660 * If we failed to reclaim anything from this memory cgroup 3661 * it is time to move on to the next cgroup 3662 */ 3663 next_mz = NULL; 3664 if (!reclaimed) { 3665 do { 3666 /* 3667 * Loop until we find yet another one. 3668 * 3669 * By the time we get the soft_limit lock 3670 * again, someone might have aded the 3671 * group back on the RB tree. Iterate to 3672 * make sure we get a different mem. 3673 * mem_cgroup_largest_soft_limit_node returns 3674 * NULL if no other cgroup is present on 3675 * the tree 3676 */ 3677 next_mz = 3678 __mem_cgroup_largest_soft_limit_node(mctz); 3679 if (next_mz == mz) 3680 css_put(&next_mz->memcg->css); 3681 else /* next_mz == NULL or other memcg */ 3682 break; 3683 } while (1); 3684 } 3685 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 3686 excess = res_counter_soft_limit_excess(&mz->memcg->res); 3687 /* 3688 * One school of thought says that we should not add 3689 * back the node to the tree if reclaim returns 0. 3690 * But our reclaim could return 0, simply because due 3691 * to priority we are exposing a smaller subset of 3692 * memory to reclaim from. Consider this as a longer 3693 * term TODO. 3694 */ 3695 /* If excess == 0, no tree ops */ 3696 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); 3697 spin_unlock(&mctz->lock); 3698 css_put(&mz->memcg->css); 3699 loop++; 3700 /* 3701 * Could not reclaim anything and there are no more 3702 * mem cgroups to try or we seem to be looping without 3703 * reclaiming anything. 3704 */ 3705 if (!nr_reclaimed && 3706 (next_mz == NULL || 3707 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3708 break; 3709 } while (!nr_reclaimed); 3710 if (next_mz) 3711 css_put(&next_mz->memcg->css); 3712 return nr_reclaimed; 3713 } 3714 3715 /* 3716 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 3717 * reclaim the pages page themselves - it just removes the page_cgroups. 3718 * Returns true if some page_cgroups were not freed, indicating that the caller 3719 * must retry this operation. 3720 */ 3721 static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 3722 int node, int zid, enum lru_list lru) 3723 { 3724 struct lruvec *lruvec; 3725 unsigned long flags, loop; 3726 struct list_head *list; 3727 struct page *busy; 3728 struct zone *zone; 3729 3730 zone = &NODE_DATA(node)->node_zones[zid]; 3731 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 3732 list = &lruvec->lists[lru]; 3733 3734 loop = mem_cgroup_get_lru_size(lruvec, lru); 3735 /* give some margin against EBUSY etc...*/ 3736 loop += 256; 3737 busy = NULL; 3738 while (loop--) { 3739 struct page_cgroup *pc; 3740 struct page *page; 3741 3742 spin_lock_irqsave(&zone->lru_lock, flags); 3743 if (list_empty(list)) { 3744 spin_unlock_irqrestore(&zone->lru_lock, flags); 3745 break; 3746 } 3747 page = list_entry(list->prev, struct page, lru); 3748 if (busy == page) { 3749 list_move(&page->lru, list); 3750 busy = NULL; 3751 spin_unlock_irqrestore(&zone->lru_lock, flags); 3752 continue; 3753 } 3754 spin_unlock_irqrestore(&zone->lru_lock, flags); 3755 3756 pc = lookup_page_cgroup(page); 3757 3758 if (mem_cgroup_move_parent(page, pc, memcg)) { 3759 /* found lock contention or "pc" is obsolete. */ 3760 busy = page; 3761 cond_resched(); 3762 } else 3763 busy = NULL; 3764 } 3765 return !list_empty(list); 3766 } 3767 3768 /* 3769 * make mem_cgroup's charge to be 0 if there is no task. 3770 * This enables deleting this mem_cgroup. 3771 */ 3772 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all) 3773 { 3774 int ret; 3775 int node, zid, shrink; 3776 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3777 struct cgroup *cgrp = memcg->css.cgroup; 3778 3779 css_get(&memcg->css); 3780 3781 shrink = 0; 3782 /* should free all ? */ 3783 if (free_all) 3784 goto try_to_free; 3785 move_account: 3786 do { 3787 ret = -EBUSY; 3788 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 3789 goto out; 3790 /* This is for making all *used* pages to be on LRU. */ 3791 lru_add_drain_all(); 3792 drain_all_stock_sync(memcg); 3793 ret = 0; 3794 mem_cgroup_start_move(memcg); 3795 for_each_node_state(node, N_HIGH_MEMORY) { 3796 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { 3797 enum lru_list lru; 3798 for_each_lru(lru) { 3799 ret = mem_cgroup_force_empty_list(memcg, 3800 node, zid, lru); 3801 if (ret) 3802 break; 3803 } 3804 } 3805 if (ret) 3806 break; 3807 } 3808 mem_cgroup_end_move(memcg); 3809 memcg_oom_recover(memcg); 3810 cond_resched(); 3811 /* "ret" should also be checked to ensure all lists are empty. */ 3812 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret); 3813 out: 3814 css_put(&memcg->css); 3815 return ret; 3816 3817 try_to_free: 3818 /* returns EBUSY if there is a task or if we come here twice. */ 3819 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { 3820 ret = -EBUSY; 3821 goto out; 3822 } 3823 /* we call try-to-free pages for make this cgroup empty */ 3824 lru_add_drain_all(); 3825 /* try to free all pages in this cgroup */ 3826 shrink = 1; 3827 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 3828 int progress; 3829 3830 if (signal_pending(current)) { 3831 ret = -EINTR; 3832 goto out; 3833 } 3834 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 3835 false); 3836 if (!progress) { 3837 nr_retries--; 3838 /* maybe some writeback is necessary */ 3839 congestion_wait(BLK_RW_ASYNC, HZ/10); 3840 } 3841 3842 } 3843 lru_add_drain(); 3844 /* try move_account...there may be some *locked* pages. */ 3845 goto move_account; 3846 } 3847 3848 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 3849 { 3850 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); 3851 } 3852 3853 3854 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 3855 { 3856 return mem_cgroup_from_cont(cont)->use_hierarchy; 3857 } 3858 3859 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 3860 u64 val) 3861 { 3862 int retval = 0; 3863 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3864 struct cgroup *parent = cont->parent; 3865 struct mem_cgroup *parent_memcg = NULL; 3866 3867 if (parent) 3868 parent_memcg = mem_cgroup_from_cont(parent); 3869 3870 cgroup_lock(); 3871 3872 if (memcg->use_hierarchy == val) 3873 goto out; 3874 3875 /* 3876 * If parent's use_hierarchy is set, we can't make any modifications 3877 * in the child subtrees. If it is unset, then the change can 3878 * occur, provided the current cgroup has no children. 3879 * 3880 * For the root cgroup, parent_mem is NULL, we allow value to be 3881 * set if there are no children. 3882 */ 3883 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3884 (val == 1 || val == 0)) { 3885 if (list_empty(&cont->children)) 3886 memcg->use_hierarchy = val; 3887 else 3888 retval = -EBUSY; 3889 } else 3890 retval = -EINVAL; 3891 3892 out: 3893 cgroup_unlock(); 3894 3895 return retval; 3896 } 3897 3898 3899 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 3900 enum mem_cgroup_stat_index idx) 3901 { 3902 struct mem_cgroup *iter; 3903 long val = 0; 3904 3905 /* Per-cpu values can be negative, use a signed accumulator */ 3906 for_each_mem_cgroup_tree(iter, memcg) 3907 val += mem_cgroup_read_stat(iter, idx); 3908 3909 if (val < 0) /* race ? */ 3910 val = 0; 3911 return val; 3912 } 3913 3914 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3915 { 3916 u64 val; 3917 3918 if (!mem_cgroup_is_root(memcg)) { 3919 if (!swap) 3920 return res_counter_read_u64(&memcg->res, RES_USAGE); 3921 else 3922 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 3923 } 3924 3925 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 3926 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 3927 3928 if (swap) 3929 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 3930 3931 return val << PAGE_SHIFT; 3932 } 3933 3934 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, 3935 struct file *file, char __user *buf, 3936 size_t nbytes, loff_t *ppos) 3937 { 3938 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3939 char str[64]; 3940 u64 val; 3941 int type, name, len; 3942 3943 type = MEMFILE_TYPE(cft->private); 3944 name = MEMFILE_ATTR(cft->private); 3945 3946 if (!do_swap_account && type == _MEMSWAP) 3947 return -EOPNOTSUPP; 3948 3949 switch (type) { 3950 case _MEM: 3951 if (name == RES_USAGE) 3952 val = mem_cgroup_usage(memcg, false); 3953 else 3954 val = res_counter_read_u64(&memcg->res, name); 3955 break; 3956 case _MEMSWAP: 3957 if (name == RES_USAGE) 3958 val = mem_cgroup_usage(memcg, true); 3959 else 3960 val = res_counter_read_u64(&memcg->memsw, name); 3961 break; 3962 default: 3963 BUG(); 3964 } 3965 3966 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); 3967 return simple_read_from_buffer(buf, nbytes, ppos, str, len); 3968 } 3969 /* 3970 * The user of this function is... 3971 * RES_LIMIT. 3972 */ 3973 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 3974 const char *buffer) 3975 { 3976 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3977 int type, name; 3978 unsigned long long val; 3979 int ret; 3980 3981 type = MEMFILE_TYPE(cft->private); 3982 name = MEMFILE_ATTR(cft->private); 3983 3984 if (!do_swap_account && type == _MEMSWAP) 3985 return -EOPNOTSUPP; 3986 3987 switch (name) { 3988 case RES_LIMIT: 3989 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3990 ret = -EINVAL; 3991 break; 3992 } 3993 /* This function does all necessary parse...reuse it */ 3994 ret = res_counter_memparse_write_strategy(buffer, &val); 3995 if (ret) 3996 break; 3997 if (type == _MEM) 3998 ret = mem_cgroup_resize_limit(memcg, val); 3999 else 4000 ret = mem_cgroup_resize_memsw_limit(memcg, val); 4001 break; 4002 case RES_SOFT_LIMIT: 4003 ret = res_counter_memparse_write_strategy(buffer, &val); 4004 if (ret) 4005 break; 4006 /* 4007 * For memsw, soft limits are hard to implement in terms 4008 * of semantics, for now, we support soft limits for 4009 * control without swap 4010 */ 4011 if (type == _MEM) 4012 ret = res_counter_set_soft_limit(&memcg->res, val); 4013 else 4014 ret = -EINVAL; 4015 break; 4016 default: 4017 ret = -EINVAL; /* should be BUG() ? */ 4018 break; 4019 } 4020 return ret; 4021 } 4022 4023 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 4024 unsigned long long *mem_limit, unsigned long long *memsw_limit) 4025 { 4026 struct cgroup *cgroup; 4027 unsigned long long min_limit, min_memsw_limit, tmp; 4028 4029 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4030 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4031 cgroup = memcg->css.cgroup; 4032 if (!memcg->use_hierarchy) 4033 goto out; 4034 4035 while (cgroup->parent) { 4036 cgroup = cgroup->parent; 4037 memcg = mem_cgroup_from_cont(cgroup); 4038 if (!memcg->use_hierarchy) 4039 break; 4040 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 4041 min_limit = min(min_limit, tmp); 4042 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4043 min_memsw_limit = min(min_memsw_limit, tmp); 4044 } 4045 out: 4046 *mem_limit = min_limit; 4047 *memsw_limit = min_memsw_limit; 4048 } 4049 4050 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 4051 { 4052 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4053 int type, name; 4054 4055 type = MEMFILE_TYPE(event); 4056 name = MEMFILE_ATTR(event); 4057 4058 if (!do_swap_account && type == _MEMSWAP) 4059 return -EOPNOTSUPP; 4060 4061 switch (name) { 4062 case RES_MAX_USAGE: 4063 if (type == _MEM) 4064 res_counter_reset_max(&memcg->res); 4065 else 4066 res_counter_reset_max(&memcg->memsw); 4067 break; 4068 case RES_FAILCNT: 4069 if (type == _MEM) 4070 res_counter_reset_failcnt(&memcg->res); 4071 else 4072 res_counter_reset_failcnt(&memcg->memsw); 4073 break; 4074 } 4075 4076 return 0; 4077 } 4078 4079 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, 4080 struct cftype *cft) 4081 { 4082 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; 4083 } 4084 4085 #ifdef CONFIG_MMU 4086 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 4087 struct cftype *cft, u64 val) 4088 { 4089 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4090 4091 if (val >= (1 << NR_MOVE_TYPE)) 4092 return -EINVAL; 4093 /* 4094 * We check this value several times in both in can_attach() and 4095 * attach(), so we need cgroup lock to prevent this value from being 4096 * inconsistent. 4097 */ 4098 cgroup_lock(); 4099 memcg->move_charge_at_immigrate = val; 4100 cgroup_unlock(); 4101 4102 return 0; 4103 } 4104 #else 4105 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 4106 struct cftype *cft, u64 val) 4107 { 4108 return -ENOSYS; 4109 } 4110 #endif 4111 4112 #ifdef CONFIG_NUMA 4113 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft, 4114 struct seq_file *m) 4115 { 4116 int nid; 4117 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 4118 unsigned long node_nr; 4119 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4120 4121 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); 4122 seq_printf(m, "total=%lu", total_nr); 4123 for_each_node_state(nid, N_HIGH_MEMORY) { 4124 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); 4125 seq_printf(m, " N%d=%lu", nid, node_nr); 4126 } 4127 seq_putc(m, '\n'); 4128 4129 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); 4130 seq_printf(m, "file=%lu", file_nr); 4131 for_each_node_state(nid, N_HIGH_MEMORY) { 4132 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4133 LRU_ALL_FILE); 4134 seq_printf(m, " N%d=%lu", nid, node_nr); 4135 } 4136 seq_putc(m, '\n'); 4137 4138 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); 4139 seq_printf(m, "anon=%lu", anon_nr); 4140 for_each_node_state(nid, N_HIGH_MEMORY) { 4141 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4142 LRU_ALL_ANON); 4143 seq_printf(m, " N%d=%lu", nid, node_nr); 4144 } 4145 seq_putc(m, '\n'); 4146 4147 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 4148 seq_printf(m, "unevictable=%lu", unevictable_nr); 4149 for_each_node_state(nid, N_HIGH_MEMORY) { 4150 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4151 BIT(LRU_UNEVICTABLE)); 4152 seq_printf(m, " N%d=%lu", nid, node_nr); 4153 } 4154 seq_putc(m, '\n'); 4155 return 0; 4156 } 4157 #endif /* CONFIG_NUMA */ 4158 4159 static const char * const mem_cgroup_lru_names[] = { 4160 "inactive_anon", 4161 "active_anon", 4162 "inactive_file", 4163 "active_file", 4164 "unevictable", 4165 }; 4166 4167 static inline void mem_cgroup_lru_names_not_uptodate(void) 4168 { 4169 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 4170 } 4171 4172 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft, 4173 struct seq_file *m) 4174 { 4175 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4176 struct mem_cgroup *mi; 4177 unsigned int i; 4178 4179 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 4180 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 4181 continue; 4182 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 4183 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 4184 } 4185 4186 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 4187 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 4188 mem_cgroup_read_events(memcg, i)); 4189 4190 for (i = 0; i < NR_LRU_LISTS; i++) 4191 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 4192 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 4193 4194 /* Hierarchical information */ 4195 { 4196 unsigned long long limit, memsw_limit; 4197 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 4198 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 4199 if (do_swap_account) 4200 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4201 memsw_limit); 4202 } 4203 4204 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 4205 long long val = 0; 4206 4207 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 4208 continue; 4209 for_each_mem_cgroup_tree(mi, memcg) 4210 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 4211 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 4212 } 4213 4214 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 4215 unsigned long long val = 0; 4216 4217 for_each_mem_cgroup_tree(mi, memcg) 4218 val += mem_cgroup_read_events(mi, i); 4219 seq_printf(m, "total_%s %llu\n", 4220 mem_cgroup_events_names[i], val); 4221 } 4222 4223 for (i = 0; i < NR_LRU_LISTS; i++) { 4224 unsigned long long val = 0; 4225 4226 for_each_mem_cgroup_tree(mi, memcg) 4227 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 4228 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 4229 } 4230 4231 #ifdef CONFIG_DEBUG_VM 4232 { 4233 int nid, zid; 4234 struct mem_cgroup_per_zone *mz; 4235 struct zone_reclaim_stat *rstat; 4236 unsigned long recent_rotated[2] = {0, 0}; 4237 unsigned long recent_scanned[2] = {0, 0}; 4238 4239 for_each_online_node(nid) 4240 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4241 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 4242 rstat = &mz->lruvec.reclaim_stat; 4243 4244 recent_rotated[0] += rstat->recent_rotated[0]; 4245 recent_rotated[1] += rstat->recent_rotated[1]; 4246 recent_scanned[0] += rstat->recent_scanned[0]; 4247 recent_scanned[1] += rstat->recent_scanned[1]; 4248 } 4249 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 4250 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 4251 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 4252 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 4253 } 4254 #endif 4255 4256 return 0; 4257 } 4258 4259 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 4260 { 4261 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4262 4263 return mem_cgroup_swappiness(memcg); 4264 } 4265 4266 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 4267 u64 val) 4268 { 4269 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4270 struct mem_cgroup *parent; 4271 4272 if (val > 100) 4273 return -EINVAL; 4274 4275 if (cgrp->parent == NULL) 4276 return -EINVAL; 4277 4278 parent = mem_cgroup_from_cont(cgrp->parent); 4279 4280 cgroup_lock(); 4281 4282 /* If under hierarchy, only empty-root can set this value */ 4283 if ((parent->use_hierarchy) || 4284 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4285 cgroup_unlock(); 4286 return -EINVAL; 4287 } 4288 4289 memcg->swappiness = val; 4290 4291 cgroup_unlock(); 4292 4293 return 0; 4294 } 4295 4296 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4297 { 4298 struct mem_cgroup_threshold_ary *t; 4299 u64 usage; 4300 int i; 4301 4302 rcu_read_lock(); 4303 if (!swap) 4304 t = rcu_dereference(memcg->thresholds.primary); 4305 else 4306 t = rcu_dereference(memcg->memsw_thresholds.primary); 4307 4308 if (!t) 4309 goto unlock; 4310 4311 usage = mem_cgroup_usage(memcg, swap); 4312 4313 /* 4314 * current_threshold points to threshold just below or equal to usage. 4315 * If it's not true, a threshold was crossed after last 4316 * call of __mem_cgroup_threshold(). 4317 */ 4318 i = t->current_threshold; 4319 4320 /* 4321 * Iterate backward over array of thresholds starting from 4322 * current_threshold and check if a threshold is crossed. 4323 * If none of thresholds below usage is crossed, we read 4324 * only one element of the array here. 4325 */ 4326 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4327 eventfd_signal(t->entries[i].eventfd, 1); 4328 4329 /* i = current_threshold + 1 */ 4330 i++; 4331 4332 /* 4333 * Iterate forward over array of thresholds starting from 4334 * current_threshold+1 and check if a threshold is crossed. 4335 * If none of thresholds above usage is crossed, we read 4336 * only one element of the array here. 4337 */ 4338 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4339 eventfd_signal(t->entries[i].eventfd, 1); 4340 4341 /* Update current_threshold */ 4342 t->current_threshold = i - 1; 4343 unlock: 4344 rcu_read_unlock(); 4345 } 4346 4347 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4348 { 4349 while (memcg) { 4350 __mem_cgroup_threshold(memcg, false); 4351 if (do_swap_account) 4352 __mem_cgroup_threshold(memcg, true); 4353 4354 memcg = parent_mem_cgroup(memcg); 4355 } 4356 } 4357 4358 static int compare_thresholds(const void *a, const void *b) 4359 { 4360 const struct mem_cgroup_threshold *_a = a; 4361 const struct mem_cgroup_threshold *_b = b; 4362 4363 return _a->threshold - _b->threshold; 4364 } 4365 4366 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4367 { 4368 struct mem_cgroup_eventfd_list *ev; 4369 4370 list_for_each_entry(ev, &memcg->oom_notify, list) 4371 eventfd_signal(ev->eventfd, 1); 4372 return 0; 4373 } 4374 4375 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4376 { 4377 struct mem_cgroup *iter; 4378 4379 for_each_mem_cgroup_tree(iter, memcg) 4380 mem_cgroup_oom_notify_cb(iter); 4381 } 4382 4383 static int mem_cgroup_usage_register_event(struct cgroup *cgrp, 4384 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4385 { 4386 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4387 struct mem_cgroup_thresholds *thresholds; 4388 struct mem_cgroup_threshold_ary *new; 4389 int type = MEMFILE_TYPE(cft->private); 4390 u64 threshold, usage; 4391 int i, size, ret; 4392 4393 ret = res_counter_memparse_write_strategy(args, &threshold); 4394 if (ret) 4395 return ret; 4396 4397 mutex_lock(&memcg->thresholds_lock); 4398 4399 if (type == _MEM) 4400 thresholds = &memcg->thresholds; 4401 else if (type == _MEMSWAP) 4402 thresholds = &memcg->memsw_thresholds; 4403 else 4404 BUG(); 4405 4406 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4407 4408 /* Check if a threshold crossed before adding a new one */ 4409 if (thresholds->primary) 4410 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4411 4412 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4413 4414 /* Allocate memory for new array of thresholds */ 4415 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 4416 GFP_KERNEL); 4417 if (!new) { 4418 ret = -ENOMEM; 4419 goto unlock; 4420 } 4421 new->size = size; 4422 4423 /* Copy thresholds (if any) to new array */ 4424 if (thresholds->primary) { 4425 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4426 sizeof(struct mem_cgroup_threshold)); 4427 } 4428 4429 /* Add new threshold */ 4430 new->entries[size - 1].eventfd = eventfd; 4431 new->entries[size - 1].threshold = threshold; 4432 4433 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4434 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4435 compare_thresholds, NULL); 4436 4437 /* Find current threshold */ 4438 new->current_threshold = -1; 4439 for (i = 0; i < size; i++) { 4440 if (new->entries[i].threshold <= usage) { 4441 /* 4442 * new->current_threshold will not be used until 4443 * rcu_assign_pointer(), so it's safe to increment 4444 * it here. 4445 */ 4446 ++new->current_threshold; 4447 } else 4448 break; 4449 } 4450 4451 /* Free old spare buffer and save old primary buffer as spare */ 4452 kfree(thresholds->spare); 4453 thresholds->spare = thresholds->primary; 4454 4455 rcu_assign_pointer(thresholds->primary, new); 4456 4457 /* To be sure that nobody uses thresholds */ 4458 synchronize_rcu(); 4459 4460 unlock: 4461 mutex_unlock(&memcg->thresholds_lock); 4462 4463 return ret; 4464 } 4465 4466 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, 4467 struct cftype *cft, struct eventfd_ctx *eventfd) 4468 { 4469 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4470 struct mem_cgroup_thresholds *thresholds; 4471 struct mem_cgroup_threshold_ary *new; 4472 int type = MEMFILE_TYPE(cft->private); 4473 u64 usage; 4474 int i, j, size; 4475 4476 mutex_lock(&memcg->thresholds_lock); 4477 if (type == _MEM) 4478 thresholds = &memcg->thresholds; 4479 else if (type == _MEMSWAP) 4480 thresholds = &memcg->memsw_thresholds; 4481 else 4482 BUG(); 4483 4484 if (!thresholds->primary) 4485 goto unlock; 4486 4487 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4488 4489 /* Check if a threshold crossed before removing */ 4490 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4491 4492 /* Calculate new number of threshold */ 4493 size = 0; 4494 for (i = 0; i < thresholds->primary->size; i++) { 4495 if (thresholds->primary->entries[i].eventfd != eventfd) 4496 size++; 4497 } 4498 4499 new = thresholds->spare; 4500 4501 /* Set thresholds array to NULL if we don't have thresholds */ 4502 if (!size) { 4503 kfree(new); 4504 new = NULL; 4505 goto swap_buffers; 4506 } 4507 4508 new->size = size; 4509 4510 /* Copy thresholds and find current threshold */ 4511 new->current_threshold = -1; 4512 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4513 if (thresholds->primary->entries[i].eventfd == eventfd) 4514 continue; 4515 4516 new->entries[j] = thresholds->primary->entries[i]; 4517 if (new->entries[j].threshold <= usage) { 4518 /* 4519 * new->current_threshold will not be used 4520 * until rcu_assign_pointer(), so it's safe to increment 4521 * it here. 4522 */ 4523 ++new->current_threshold; 4524 } 4525 j++; 4526 } 4527 4528 swap_buffers: 4529 /* Swap primary and spare array */ 4530 thresholds->spare = thresholds->primary; 4531 /* If all events are unregistered, free the spare array */ 4532 if (!new) { 4533 kfree(thresholds->spare); 4534 thresholds->spare = NULL; 4535 } 4536 4537 rcu_assign_pointer(thresholds->primary, new); 4538 4539 /* To be sure that nobody uses thresholds */ 4540 synchronize_rcu(); 4541 unlock: 4542 mutex_unlock(&memcg->thresholds_lock); 4543 } 4544 4545 static int mem_cgroup_oom_register_event(struct cgroup *cgrp, 4546 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4547 { 4548 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4549 struct mem_cgroup_eventfd_list *event; 4550 int type = MEMFILE_TYPE(cft->private); 4551 4552 BUG_ON(type != _OOM_TYPE); 4553 event = kmalloc(sizeof(*event), GFP_KERNEL); 4554 if (!event) 4555 return -ENOMEM; 4556 4557 spin_lock(&memcg_oom_lock); 4558 4559 event->eventfd = eventfd; 4560 list_add(&event->list, &memcg->oom_notify); 4561 4562 /* already in OOM ? */ 4563 if (atomic_read(&memcg->under_oom)) 4564 eventfd_signal(eventfd, 1); 4565 spin_unlock(&memcg_oom_lock); 4566 4567 return 0; 4568 } 4569 4570 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, 4571 struct cftype *cft, struct eventfd_ctx *eventfd) 4572 { 4573 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4574 struct mem_cgroup_eventfd_list *ev, *tmp; 4575 int type = MEMFILE_TYPE(cft->private); 4576 4577 BUG_ON(type != _OOM_TYPE); 4578 4579 spin_lock(&memcg_oom_lock); 4580 4581 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4582 if (ev->eventfd == eventfd) { 4583 list_del(&ev->list); 4584 kfree(ev); 4585 } 4586 } 4587 4588 spin_unlock(&memcg_oom_lock); 4589 } 4590 4591 static int mem_cgroup_oom_control_read(struct cgroup *cgrp, 4592 struct cftype *cft, struct cgroup_map_cb *cb) 4593 { 4594 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4595 4596 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 4597 4598 if (atomic_read(&memcg->under_oom)) 4599 cb->fill(cb, "under_oom", 1); 4600 else 4601 cb->fill(cb, "under_oom", 0); 4602 return 0; 4603 } 4604 4605 static int mem_cgroup_oom_control_write(struct cgroup *cgrp, 4606 struct cftype *cft, u64 val) 4607 { 4608 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4609 struct mem_cgroup *parent; 4610 4611 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4612 if (!cgrp->parent || !((val == 0) || (val == 1))) 4613 return -EINVAL; 4614 4615 parent = mem_cgroup_from_cont(cgrp->parent); 4616 4617 cgroup_lock(); 4618 /* oom-kill-disable is a flag for subhierarchy. */ 4619 if ((parent->use_hierarchy) || 4620 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4621 cgroup_unlock(); 4622 return -EINVAL; 4623 } 4624 memcg->oom_kill_disable = val; 4625 if (!val) 4626 memcg_oom_recover(memcg); 4627 cgroup_unlock(); 4628 return 0; 4629 } 4630 4631 #ifdef CONFIG_MEMCG_KMEM 4632 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 4633 { 4634 return mem_cgroup_sockets_init(memcg, ss); 4635 }; 4636 4637 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 4638 { 4639 mem_cgroup_sockets_destroy(memcg); 4640 } 4641 #else 4642 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 4643 { 4644 return 0; 4645 } 4646 4647 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 4648 { 4649 } 4650 #endif 4651 4652 static struct cftype mem_cgroup_files[] = { 4653 { 4654 .name = "usage_in_bytes", 4655 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4656 .read = mem_cgroup_read, 4657 .register_event = mem_cgroup_usage_register_event, 4658 .unregister_event = mem_cgroup_usage_unregister_event, 4659 }, 4660 { 4661 .name = "max_usage_in_bytes", 4662 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4663 .trigger = mem_cgroup_reset, 4664 .read = mem_cgroup_read, 4665 }, 4666 { 4667 .name = "limit_in_bytes", 4668 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4669 .write_string = mem_cgroup_write, 4670 .read = mem_cgroup_read, 4671 }, 4672 { 4673 .name = "soft_limit_in_bytes", 4674 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4675 .write_string = mem_cgroup_write, 4676 .read = mem_cgroup_read, 4677 }, 4678 { 4679 .name = "failcnt", 4680 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4681 .trigger = mem_cgroup_reset, 4682 .read = mem_cgroup_read, 4683 }, 4684 { 4685 .name = "stat", 4686 .read_seq_string = memcg_stat_show, 4687 }, 4688 { 4689 .name = "force_empty", 4690 .trigger = mem_cgroup_force_empty_write, 4691 }, 4692 { 4693 .name = "use_hierarchy", 4694 .write_u64 = mem_cgroup_hierarchy_write, 4695 .read_u64 = mem_cgroup_hierarchy_read, 4696 }, 4697 { 4698 .name = "swappiness", 4699 .read_u64 = mem_cgroup_swappiness_read, 4700 .write_u64 = mem_cgroup_swappiness_write, 4701 }, 4702 { 4703 .name = "move_charge_at_immigrate", 4704 .read_u64 = mem_cgroup_move_charge_read, 4705 .write_u64 = mem_cgroup_move_charge_write, 4706 }, 4707 { 4708 .name = "oom_control", 4709 .read_map = mem_cgroup_oom_control_read, 4710 .write_u64 = mem_cgroup_oom_control_write, 4711 .register_event = mem_cgroup_oom_register_event, 4712 .unregister_event = mem_cgroup_oom_unregister_event, 4713 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4714 }, 4715 #ifdef CONFIG_NUMA 4716 { 4717 .name = "numa_stat", 4718 .read_seq_string = memcg_numa_stat_show, 4719 }, 4720 #endif 4721 #ifdef CONFIG_MEMCG_SWAP 4722 { 4723 .name = "memsw.usage_in_bytes", 4724 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 4725 .read = mem_cgroup_read, 4726 .register_event = mem_cgroup_usage_register_event, 4727 .unregister_event = mem_cgroup_usage_unregister_event, 4728 }, 4729 { 4730 .name = "memsw.max_usage_in_bytes", 4731 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 4732 .trigger = mem_cgroup_reset, 4733 .read = mem_cgroup_read, 4734 }, 4735 { 4736 .name = "memsw.limit_in_bytes", 4737 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 4738 .write_string = mem_cgroup_write, 4739 .read = mem_cgroup_read, 4740 }, 4741 { 4742 .name = "memsw.failcnt", 4743 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 4744 .trigger = mem_cgroup_reset, 4745 .read = mem_cgroup_read, 4746 }, 4747 #endif 4748 { }, /* terminate */ 4749 }; 4750 4751 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4752 { 4753 struct mem_cgroup_per_node *pn; 4754 struct mem_cgroup_per_zone *mz; 4755 int zone, tmp = node; 4756 /* 4757 * This routine is called against possible nodes. 4758 * But it's BUG to call kmalloc() against offline node. 4759 * 4760 * TODO: this routine can waste much memory for nodes which will 4761 * never be onlined. It's better to use memory hotplug callback 4762 * function. 4763 */ 4764 if (!node_state(node, N_NORMAL_MEMORY)) 4765 tmp = -1; 4766 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4767 if (!pn) 4768 return 1; 4769 4770 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4771 mz = &pn->zoneinfo[zone]; 4772 lruvec_init(&mz->lruvec); 4773 mz->usage_in_excess = 0; 4774 mz->on_tree = false; 4775 mz->memcg = memcg; 4776 } 4777 memcg->info.nodeinfo[node] = pn; 4778 return 0; 4779 } 4780 4781 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4782 { 4783 kfree(memcg->info.nodeinfo[node]); 4784 } 4785 4786 static struct mem_cgroup *mem_cgroup_alloc(void) 4787 { 4788 struct mem_cgroup *memcg; 4789 int size = sizeof(struct mem_cgroup); 4790 4791 /* Can be very big if MAX_NUMNODES is very big */ 4792 if (size < PAGE_SIZE) 4793 memcg = kzalloc(size, GFP_KERNEL); 4794 else 4795 memcg = vzalloc(size); 4796 4797 if (!memcg) 4798 return NULL; 4799 4800 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4801 if (!memcg->stat) 4802 goto out_free; 4803 spin_lock_init(&memcg->pcp_counter_lock); 4804 return memcg; 4805 4806 out_free: 4807 if (size < PAGE_SIZE) 4808 kfree(memcg); 4809 else 4810 vfree(memcg); 4811 return NULL; 4812 } 4813 4814 /* 4815 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU, 4816 * but in process context. The work_freeing structure is overlaid 4817 * on the rcu_freeing structure, which itself is overlaid on memsw. 4818 */ 4819 static void free_work(struct work_struct *work) 4820 { 4821 struct mem_cgroup *memcg; 4822 int size = sizeof(struct mem_cgroup); 4823 4824 memcg = container_of(work, struct mem_cgroup, work_freeing); 4825 /* 4826 * We need to make sure that (at least for now), the jump label 4827 * destruction code runs outside of the cgroup lock. This is because 4828 * get_online_cpus(), which is called from the static_branch update, 4829 * can't be called inside the cgroup_lock. cpusets are the ones 4830 * enforcing this dependency, so if they ever change, we might as well. 4831 * 4832 * schedule_work() will guarantee this happens. Be careful if you need 4833 * to move this code around, and make sure it is outside 4834 * the cgroup_lock. 4835 */ 4836 disarm_sock_keys(memcg); 4837 if (size < PAGE_SIZE) 4838 kfree(memcg); 4839 else 4840 vfree(memcg); 4841 } 4842 4843 static void free_rcu(struct rcu_head *rcu_head) 4844 { 4845 struct mem_cgroup *memcg; 4846 4847 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); 4848 INIT_WORK(&memcg->work_freeing, free_work); 4849 schedule_work(&memcg->work_freeing); 4850 } 4851 4852 /* 4853 * At destroying mem_cgroup, references from swap_cgroup can remain. 4854 * (scanning all at force_empty is too costly...) 4855 * 4856 * Instead of clearing all references at force_empty, we remember 4857 * the number of reference from swap_cgroup and free mem_cgroup when 4858 * it goes down to 0. 4859 * 4860 * Removal of cgroup itself succeeds regardless of refs from swap. 4861 */ 4862 4863 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4864 { 4865 int node; 4866 4867 mem_cgroup_remove_from_trees(memcg); 4868 free_css_id(&mem_cgroup_subsys, &memcg->css); 4869 4870 for_each_node(node) 4871 free_mem_cgroup_per_zone_info(memcg, node); 4872 4873 free_percpu(memcg->stat); 4874 call_rcu(&memcg->rcu_freeing, free_rcu); 4875 } 4876 4877 static void mem_cgroup_get(struct mem_cgroup *memcg) 4878 { 4879 atomic_inc(&memcg->refcnt); 4880 } 4881 4882 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) 4883 { 4884 if (atomic_sub_and_test(count, &memcg->refcnt)) { 4885 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 4886 __mem_cgroup_free(memcg); 4887 if (parent) 4888 mem_cgroup_put(parent); 4889 } 4890 } 4891 4892 static void mem_cgroup_put(struct mem_cgroup *memcg) 4893 { 4894 __mem_cgroup_put(memcg, 1); 4895 } 4896 4897 /* 4898 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 4899 */ 4900 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 4901 { 4902 if (!memcg->res.parent) 4903 return NULL; 4904 return mem_cgroup_from_res_counter(memcg->res.parent, res); 4905 } 4906 EXPORT_SYMBOL(parent_mem_cgroup); 4907 4908 #ifdef CONFIG_MEMCG_SWAP 4909 static void __init enable_swap_cgroup(void) 4910 { 4911 if (!mem_cgroup_disabled() && really_do_swap_account) 4912 do_swap_account = 1; 4913 } 4914 #else 4915 static void __init enable_swap_cgroup(void) 4916 { 4917 } 4918 #endif 4919 4920 static int mem_cgroup_soft_limit_tree_init(void) 4921 { 4922 struct mem_cgroup_tree_per_node *rtpn; 4923 struct mem_cgroup_tree_per_zone *rtpz; 4924 int tmp, node, zone; 4925 4926 for_each_node(node) { 4927 tmp = node; 4928 if (!node_state(node, N_NORMAL_MEMORY)) 4929 tmp = -1; 4930 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 4931 if (!rtpn) 4932 goto err_cleanup; 4933 4934 soft_limit_tree.rb_tree_per_node[node] = rtpn; 4935 4936 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4937 rtpz = &rtpn->rb_tree_per_zone[zone]; 4938 rtpz->rb_root = RB_ROOT; 4939 spin_lock_init(&rtpz->lock); 4940 } 4941 } 4942 return 0; 4943 4944 err_cleanup: 4945 for_each_node(node) { 4946 if (!soft_limit_tree.rb_tree_per_node[node]) 4947 break; 4948 kfree(soft_limit_tree.rb_tree_per_node[node]); 4949 soft_limit_tree.rb_tree_per_node[node] = NULL; 4950 } 4951 return 1; 4952 4953 } 4954 4955 static struct cgroup_subsys_state * __ref 4956 mem_cgroup_create(struct cgroup *cont) 4957 { 4958 struct mem_cgroup *memcg, *parent; 4959 long error = -ENOMEM; 4960 int node; 4961 4962 memcg = mem_cgroup_alloc(); 4963 if (!memcg) 4964 return ERR_PTR(error); 4965 4966 for_each_node(node) 4967 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 4968 goto free_out; 4969 4970 /* root ? */ 4971 if (cont->parent == NULL) { 4972 int cpu; 4973 enable_swap_cgroup(); 4974 parent = NULL; 4975 if (mem_cgroup_soft_limit_tree_init()) 4976 goto free_out; 4977 root_mem_cgroup = memcg; 4978 for_each_possible_cpu(cpu) { 4979 struct memcg_stock_pcp *stock = 4980 &per_cpu(memcg_stock, cpu); 4981 INIT_WORK(&stock->work, drain_local_stock); 4982 } 4983 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 4984 } else { 4985 parent = mem_cgroup_from_cont(cont->parent); 4986 memcg->use_hierarchy = parent->use_hierarchy; 4987 memcg->oom_kill_disable = parent->oom_kill_disable; 4988 } 4989 4990 if (parent && parent->use_hierarchy) { 4991 res_counter_init(&memcg->res, &parent->res); 4992 res_counter_init(&memcg->memsw, &parent->memsw); 4993 /* 4994 * We increment refcnt of the parent to ensure that we can 4995 * safely access it on res_counter_charge/uncharge. 4996 * This refcnt will be decremented when freeing this 4997 * mem_cgroup(see mem_cgroup_put). 4998 */ 4999 mem_cgroup_get(parent); 5000 } else { 5001 res_counter_init(&memcg->res, NULL); 5002 res_counter_init(&memcg->memsw, NULL); 5003 /* 5004 * Deeper hierachy with use_hierarchy == false doesn't make 5005 * much sense so let cgroup subsystem know about this 5006 * unfortunate state in our controller. 5007 */ 5008 if (parent && parent != root_mem_cgroup) 5009 mem_cgroup_subsys.broken_hierarchy = true; 5010 } 5011 memcg->last_scanned_node = MAX_NUMNODES; 5012 INIT_LIST_HEAD(&memcg->oom_notify); 5013 5014 if (parent) 5015 memcg->swappiness = mem_cgroup_swappiness(parent); 5016 atomic_set(&memcg->refcnt, 1); 5017 memcg->move_charge_at_immigrate = 0; 5018 mutex_init(&memcg->thresholds_lock); 5019 spin_lock_init(&memcg->move_lock); 5020 5021 error = memcg_init_kmem(memcg, &mem_cgroup_subsys); 5022 if (error) { 5023 /* 5024 * We call put now because our (and parent's) refcnts 5025 * are already in place. mem_cgroup_put() will internally 5026 * call __mem_cgroup_free, so return directly 5027 */ 5028 mem_cgroup_put(memcg); 5029 return ERR_PTR(error); 5030 } 5031 return &memcg->css; 5032 free_out: 5033 __mem_cgroup_free(memcg); 5034 return ERR_PTR(error); 5035 } 5036 5037 static int mem_cgroup_pre_destroy(struct cgroup *cont) 5038 { 5039 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5040 5041 return mem_cgroup_force_empty(memcg, false); 5042 } 5043 5044 static void mem_cgroup_destroy(struct cgroup *cont) 5045 { 5046 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5047 5048 kmem_cgroup_destroy(memcg); 5049 5050 mem_cgroup_put(memcg); 5051 } 5052 5053 #ifdef CONFIG_MMU 5054 /* Handlers for move charge at task migration. */ 5055 #define PRECHARGE_COUNT_AT_ONCE 256 5056 static int mem_cgroup_do_precharge(unsigned long count) 5057 { 5058 int ret = 0; 5059 int batch_count = PRECHARGE_COUNT_AT_ONCE; 5060 struct mem_cgroup *memcg = mc.to; 5061 5062 if (mem_cgroup_is_root(memcg)) { 5063 mc.precharge += count; 5064 /* we don't need css_get for root */ 5065 return ret; 5066 } 5067 /* try to charge at once */ 5068 if (count > 1) { 5069 struct res_counter *dummy; 5070 /* 5071 * "memcg" cannot be under rmdir() because we've already checked 5072 * by cgroup_lock_live_cgroup() that it is not removed and we 5073 * are still under the same cgroup_mutex. So we can postpone 5074 * css_get(). 5075 */ 5076 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 5077 goto one_by_one; 5078 if (do_swap_account && res_counter_charge(&memcg->memsw, 5079 PAGE_SIZE * count, &dummy)) { 5080 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 5081 goto one_by_one; 5082 } 5083 mc.precharge += count; 5084 return ret; 5085 } 5086 one_by_one: 5087 /* fall back to one by one charge */ 5088 while (count--) { 5089 if (signal_pending(current)) { 5090 ret = -EINTR; 5091 break; 5092 } 5093 if (!batch_count--) { 5094 batch_count = PRECHARGE_COUNT_AT_ONCE; 5095 cond_resched(); 5096 } 5097 ret = __mem_cgroup_try_charge(NULL, 5098 GFP_KERNEL, 1, &memcg, false); 5099 if (ret) 5100 /* mem_cgroup_clear_mc() will do uncharge later */ 5101 return ret; 5102 mc.precharge++; 5103 } 5104 return ret; 5105 } 5106 5107 /** 5108 * get_mctgt_type - get target type of moving charge 5109 * @vma: the vma the pte to be checked belongs 5110 * @addr: the address corresponding to the pte to be checked 5111 * @ptent: the pte to be checked 5112 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5113 * 5114 * Returns 5115 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5116 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5117 * move charge. if @target is not NULL, the page is stored in target->page 5118 * with extra refcnt got(Callers should handle it). 5119 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5120 * target for charge migration. if @target is not NULL, the entry is stored 5121 * in target->ent. 5122 * 5123 * Called with pte lock held. 5124 */ 5125 union mc_target { 5126 struct page *page; 5127 swp_entry_t ent; 5128 }; 5129 5130 enum mc_target_type { 5131 MC_TARGET_NONE = 0, 5132 MC_TARGET_PAGE, 5133 MC_TARGET_SWAP, 5134 }; 5135 5136 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5137 unsigned long addr, pte_t ptent) 5138 { 5139 struct page *page = vm_normal_page(vma, addr, ptent); 5140 5141 if (!page || !page_mapped(page)) 5142 return NULL; 5143 if (PageAnon(page)) { 5144 /* we don't move shared anon */ 5145 if (!move_anon()) 5146 return NULL; 5147 } else if (!move_file()) 5148 /* we ignore mapcount for file pages */ 5149 return NULL; 5150 if (!get_page_unless_zero(page)) 5151 return NULL; 5152 5153 return page; 5154 } 5155 5156 #ifdef CONFIG_SWAP 5157 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5158 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5159 { 5160 struct page *page = NULL; 5161 swp_entry_t ent = pte_to_swp_entry(ptent); 5162 5163 if (!move_anon() || non_swap_entry(ent)) 5164 return NULL; 5165 /* 5166 * Because lookup_swap_cache() updates some statistics counter, 5167 * we call find_get_page() with swapper_space directly. 5168 */ 5169 page = find_get_page(&swapper_space, ent.val); 5170 if (do_swap_account) 5171 entry->val = ent.val; 5172 5173 return page; 5174 } 5175 #else 5176 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5177 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5178 { 5179 return NULL; 5180 } 5181 #endif 5182 5183 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5184 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5185 { 5186 struct page *page = NULL; 5187 struct address_space *mapping; 5188 pgoff_t pgoff; 5189 5190 if (!vma->vm_file) /* anonymous vma */ 5191 return NULL; 5192 if (!move_file()) 5193 return NULL; 5194 5195 mapping = vma->vm_file->f_mapping; 5196 if (pte_none(ptent)) 5197 pgoff = linear_page_index(vma, addr); 5198 else /* pte_file(ptent) is true */ 5199 pgoff = pte_to_pgoff(ptent); 5200 5201 /* page is moved even if it's not RSS of this task(page-faulted). */ 5202 page = find_get_page(mapping, pgoff); 5203 5204 #ifdef CONFIG_SWAP 5205 /* shmem/tmpfs may report page out on swap: account for that too. */ 5206 if (radix_tree_exceptional_entry(page)) { 5207 swp_entry_t swap = radix_to_swp_entry(page); 5208 if (do_swap_account) 5209 *entry = swap; 5210 page = find_get_page(&swapper_space, swap.val); 5211 } 5212 #endif 5213 return page; 5214 } 5215 5216 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5217 unsigned long addr, pte_t ptent, union mc_target *target) 5218 { 5219 struct page *page = NULL; 5220 struct page_cgroup *pc; 5221 enum mc_target_type ret = MC_TARGET_NONE; 5222 swp_entry_t ent = { .val = 0 }; 5223 5224 if (pte_present(ptent)) 5225 page = mc_handle_present_pte(vma, addr, ptent); 5226 else if (is_swap_pte(ptent)) 5227 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 5228 else if (pte_none(ptent) || pte_file(ptent)) 5229 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5230 5231 if (!page && !ent.val) 5232 return ret; 5233 if (page) { 5234 pc = lookup_page_cgroup(page); 5235 /* 5236 * Do only loose check w/o page_cgroup lock. 5237 * mem_cgroup_move_account() checks the pc is valid or not under 5238 * the lock. 5239 */ 5240 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5241 ret = MC_TARGET_PAGE; 5242 if (target) 5243 target->page = page; 5244 } 5245 if (!ret || !target) 5246 put_page(page); 5247 } 5248 /* There is a swap entry and a page doesn't exist or isn't charged */ 5249 if (ent.val && !ret && 5250 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 5251 ret = MC_TARGET_SWAP; 5252 if (target) 5253 target->ent = ent; 5254 } 5255 return ret; 5256 } 5257 5258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5259 /* 5260 * We don't consider swapping or file mapped pages because THP does not 5261 * support them for now. 5262 * Caller should make sure that pmd_trans_huge(pmd) is true. 5263 */ 5264 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5265 unsigned long addr, pmd_t pmd, union mc_target *target) 5266 { 5267 struct page *page = NULL; 5268 struct page_cgroup *pc; 5269 enum mc_target_type ret = MC_TARGET_NONE; 5270 5271 page = pmd_page(pmd); 5272 VM_BUG_ON(!page || !PageHead(page)); 5273 if (!move_anon()) 5274 return ret; 5275 pc = lookup_page_cgroup(page); 5276 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5277 ret = MC_TARGET_PAGE; 5278 if (target) { 5279 get_page(page); 5280 target->page = page; 5281 } 5282 } 5283 return ret; 5284 } 5285 #else 5286 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5287 unsigned long addr, pmd_t pmd, union mc_target *target) 5288 { 5289 return MC_TARGET_NONE; 5290 } 5291 #endif 5292 5293 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5294 unsigned long addr, unsigned long end, 5295 struct mm_walk *walk) 5296 { 5297 struct vm_area_struct *vma = walk->private; 5298 pte_t *pte; 5299 spinlock_t *ptl; 5300 5301 if (pmd_trans_huge_lock(pmd, vma) == 1) { 5302 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5303 mc.precharge += HPAGE_PMD_NR; 5304 spin_unlock(&vma->vm_mm->page_table_lock); 5305 return 0; 5306 } 5307 5308 if (pmd_trans_unstable(pmd)) 5309 return 0; 5310 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5311 for (; addr != end; pte++, addr += PAGE_SIZE) 5312 if (get_mctgt_type(vma, addr, *pte, NULL)) 5313 mc.precharge++; /* increment precharge temporarily */ 5314 pte_unmap_unlock(pte - 1, ptl); 5315 cond_resched(); 5316 5317 return 0; 5318 } 5319 5320 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5321 { 5322 unsigned long precharge; 5323 struct vm_area_struct *vma; 5324 5325 down_read(&mm->mmap_sem); 5326 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5327 struct mm_walk mem_cgroup_count_precharge_walk = { 5328 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5329 .mm = mm, 5330 .private = vma, 5331 }; 5332 if (is_vm_hugetlb_page(vma)) 5333 continue; 5334 walk_page_range(vma->vm_start, vma->vm_end, 5335 &mem_cgroup_count_precharge_walk); 5336 } 5337 up_read(&mm->mmap_sem); 5338 5339 precharge = mc.precharge; 5340 mc.precharge = 0; 5341 5342 return precharge; 5343 } 5344 5345 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5346 { 5347 unsigned long precharge = mem_cgroup_count_precharge(mm); 5348 5349 VM_BUG_ON(mc.moving_task); 5350 mc.moving_task = current; 5351 return mem_cgroup_do_precharge(precharge); 5352 } 5353 5354 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5355 static void __mem_cgroup_clear_mc(void) 5356 { 5357 struct mem_cgroup *from = mc.from; 5358 struct mem_cgroup *to = mc.to; 5359 5360 /* we must uncharge all the leftover precharges from mc.to */ 5361 if (mc.precharge) { 5362 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 5363 mc.precharge = 0; 5364 } 5365 /* 5366 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5367 * we must uncharge here. 5368 */ 5369 if (mc.moved_charge) { 5370 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 5371 mc.moved_charge = 0; 5372 } 5373 /* we must fixup refcnts and charges */ 5374 if (mc.moved_swap) { 5375 /* uncharge swap account from the old cgroup */ 5376 if (!mem_cgroup_is_root(mc.from)) 5377 res_counter_uncharge(&mc.from->memsw, 5378 PAGE_SIZE * mc.moved_swap); 5379 __mem_cgroup_put(mc.from, mc.moved_swap); 5380 5381 if (!mem_cgroup_is_root(mc.to)) { 5382 /* 5383 * we charged both to->res and to->memsw, so we should 5384 * uncharge to->res. 5385 */ 5386 res_counter_uncharge(&mc.to->res, 5387 PAGE_SIZE * mc.moved_swap); 5388 } 5389 /* we've already done mem_cgroup_get(mc.to) */ 5390 mc.moved_swap = 0; 5391 } 5392 memcg_oom_recover(from); 5393 memcg_oom_recover(to); 5394 wake_up_all(&mc.waitq); 5395 } 5396 5397 static void mem_cgroup_clear_mc(void) 5398 { 5399 struct mem_cgroup *from = mc.from; 5400 5401 /* 5402 * we must clear moving_task before waking up waiters at the end of 5403 * task migration. 5404 */ 5405 mc.moving_task = NULL; 5406 __mem_cgroup_clear_mc(); 5407 spin_lock(&mc.lock); 5408 mc.from = NULL; 5409 mc.to = NULL; 5410 spin_unlock(&mc.lock); 5411 mem_cgroup_end_move(from); 5412 } 5413 5414 static int mem_cgroup_can_attach(struct cgroup *cgroup, 5415 struct cgroup_taskset *tset) 5416 { 5417 struct task_struct *p = cgroup_taskset_first(tset); 5418 int ret = 0; 5419 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); 5420 5421 if (memcg->move_charge_at_immigrate) { 5422 struct mm_struct *mm; 5423 struct mem_cgroup *from = mem_cgroup_from_task(p); 5424 5425 VM_BUG_ON(from == memcg); 5426 5427 mm = get_task_mm(p); 5428 if (!mm) 5429 return 0; 5430 /* We move charges only when we move a owner of the mm */ 5431 if (mm->owner == p) { 5432 VM_BUG_ON(mc.from); 5433 VM_BUG_ON(mc.to); 5434 VM_BUG_ON(mc.precharge); 5435 VM_BUG_ON(mc.moved_charge); 5436 VM_BUG_ON(mc.moved_swap); 5437 mem_cgroup_start_move(from); 5438 spin_lock(&mc.lock); 5439 mc.from = from; 5440 mc.to = memcg; 5441 spin_unlock(&mc.lock); 5442 /* We set mc.moving_task later */ 5443 5444 ret = mem_cgroup_precharge_mc(mm); 5445 if (ret) 5446 mem_cgroup_clear_mc(); 5447 } 5448 mmput(mm); 5449 } 5450 return ret; 5451 } 5452 5453 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 5454 struct cgroup_taskset *tset) 5455 { 5456 mem_cgroup_clear_mc(); 5457 } 5458 5459 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5460 unsigned long addr, unsigned long end, 5461 struct mm_walk *walk) 5462 { 5463 int ret = 0; 5464 struct vm_area_struct *vma = walk->private; 5465 pte_t *pte; 5466 spinlock_t *ptl; 5467 enum mc_target_type target_type; 5468 union mc_target target; 5469 struct page *page; 5470 struct page_cgroup *pc; 5471 5472 /* 5473 * We don't take compound_lock() here but no race with splitting thp 5474 * happens because: 5475 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 5476 * under splitting, which means there's no concurrent thp split, 5477 * - if another thread runs into split_huge_page() just after we 5478 * entered this if-block, the thread must wait for page table lock 5479 * to be unlocked in __split_huge_page_splitting(), where the main 5480 * part of thp split is not executed yet. 5481 */ 5482 if (pmd_trans_huge_lock(pmd, vma) == 1) { 5483 if (mc.precharge < HPAGE_PMD_NR) { 5484 spin_unlock(&vma->vm_mm->page_table_lock); 5485 return 0; 5486 } 5487 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5488 if (target_type == MC_TARGET_PAGE) { 5489 page = target.page; 5490 if (!isolate_lru_page(page)) { 5491 pc = lookup_page_cgroup(page); 5492 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 5493 pc, mc.from, mc.to)) { 5494 mc.precharge -= HPAGE_PMD_NR; 5495 mc.moved_charge += HPAGE_PMD_NR; 5496 } 5497 putback_lru_page(page); 5498 } 5499 put_page(page); 5500 } 5501 spin_unlock(&vma->vm_mm->page_table_lock); 5502 return 0; 5503 } 5504 5505 if (pmd_trans_unstable(pmd)) 5506 return 0; 5507 retry: 5508 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5509 for (; addr != end; addr += PAGE_SIZE) { 5510 pte_t ptent = *(pte++); 5511 swp_entry_t ent; 5512 5513 if (!mc.precharge) 5514 break; 5515 5516 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5517 case MC_TARGET_PAGE: 5518 page = target.page; 5519 if (isolate_lru_page(page)) 5520 goto put; 5521 pc = lookup_page_cgroup(page); 5522 if (!mem_cgroup_move_account(page, 1, pc, 5523 mc.from, mc.to)) { 5524 mc.precharge--; 5525 /* we uncharge from mc.from later. */ 5526 mc.moved_charge++; 5527 } 5528 putback_lru_page(page); 5529 put: /* get_mctgt_type() gets the page */ 5530 put_page(page); 5531 break; 5532 case MC_TARGET_SWAP: 5533 ent = target.ent; 5534 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5535 mc.precharge--; 5536 /* we fixup refcnts and charges later. */ 5537 mc.moved_swap++; 5538 } 5539 break; 5540 default: 5541 break; 5542 } 5543 } 5544 pte_unmap_unlock(pte - 1, ptl); 5545 cond_resched(); 5546 5547 if (addr != end) { 5548 /* 5549 * We have consumed all precharges we got in can_attach(). 5550 * We try charge one by one, but don't do any additional 5551 * charges to mc.to if we have failed in charge once in attach() 5552 * phase. 5553 */ 5554 ret = mem_cgroup_do_precharge(1); 5555 if (!ret) 5556 goto retry; 5557 } 5558 5559 return ret; 5560 } 5561 5562 static void mem_cgroup_move_charge(struct mm_struct *mm) 5563 { 5564 struct vm_area_struct *vma; 5565 5566 lru_add_drain_all(); 5567 retry: 5568 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 5569 /* 5570 * Someone who are holding the mmap_sem might be waiting in 5571 * waitq. So we cancel all extra charges, wake up all waiters, 5572 * and retry. Because we cancel precharges, we might not be able 5573 * to move enough charges, but moving charge is a best-effort 5574 * feature anyway, so it wouldn't be a big problem. 5575 */ 5576 __mem_cgroup_clear_mc(); 5577 cond_resched(); 5578 goto retry; 5579 } 5580 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5581 int ret; 5582 struct mm_walk mem_cgroup_move_charge_walk = { 5583 .pmd_entry = mem_cgroup_move_charge_pte_range, 5584 .mm = mm, 5585 .private = vma, 5586 }; 5587 if (is_vm_hugetlb_page(vma)) 5588 continue; 5589 ret = walk_page_range(vma->vm_start, vma->vm_end, 5590 &mem_cgroup_move_charge_walk); 5591 if (ret) 5592 /* 5593 * means we have consumed all precharges and failed in 5594 * doing additional charge. Just abandon here. 5595 */ 5596 break; 5597 } 5598 up_read(&mm->mmap_sem); 5599 } 5600 5601 static void mem_cgroup_move_task(struct cgroup *cont, 5602 struct cgroup_taskset *tset) 5603 { 5604 struct task_struct *p = cgroup_taskset_first(tset); 5605 struct mm_struct *mm = get_task_mm(p); 5606 5607 if (mm) { 5608 if (mc.to) 5609 mem_cgroup_move_charge(mm); 5610 mmput(mm); 5611 } 5612 if (mc.to) 5613 mem_cgroup_clear_mc(); 5614 } 5615 #else /* !CONFIG_MMU */ 5616 static int mem_cgroup_can_attach(struct cgroup *cgroup, 5617 struct cgroup_taskset *tset) 5618 { 5619 return 0; 5620 } 5621 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 5622 struct cgroup_taskset *tset) 5623 { 5624 } 5625 static void mem_cgroup_move_task(struct cgroup *cont, 5626 struct cgroup_taskset *tset) 5627 { 5628 } 5629 #endif 5630 5631 struct cgroup_subsys mem_cgroup_subsys = { 5632 .name = "memory", 5633 .subsys_id = mem_cgroup_subsys_id, 5634 .create = mem_cgroup_create, 5635 .pre_destroy = mem_cgroup_pre_destroy, 5636 .destroy = mem_cgroup_destroy, 5637 .can_attach = mem_cgroup_can_attach, 5638 .cancel_attach = mem_cgroup_cancel_attach, 5639 .attach = mem_cgroup_move_task, 5640 .base_cftypes = mem_cgroup_files, 5641 .early_init = 0, 5642 .use_id = 1, 5643 .__DEPRECATED_clear_css_refs = true, 5644 }; 5645 5646 #ifdef CONFIG_MEMCG_SWAP 5647 static int __init enable_swap_account(char *s) 5648 { 5649 /* consider enabled if no parameter or 1 is given */ 5650 if (!strcmp(s, "1")) 5651 really_do_swap_account = 1; 5652 else if (!strcmp(s, "0")) 5653 really_do_swap_account = 0; 5654 return 1; 5655 } 5656 __setup("swapaccount=", enable_swap_account); 5657 5658 #endif 5659