xref: /openbmc/linux/mm/memcontrol.c (revision 05bcf503)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/ip.h>
55 #include <net/tcp_memcontrol.h>
56 
57 #include <asm/uaccess.h>
58 
59 #include <trace/events/vmscan.h>
60 
61 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
62 #define MEM_CGROUP_RECLAIM_RETRIES	5
63 static struct mem_cgroup *root_mem_cgroup __read_mostly;
64 
65 #ifdef CONFIG_MEMCG_SWAP
66 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
67 int do_swap_account __read_mostly;
68 
69 /* for remember boot option*/
70 #ifdef CONFIG_MEMCG_SWAP_ENABLED
71 static int really_do_swap_account __initdata = 1;
72 #else
73 static int really_do_swap_account __initdata = 0;
74 #endif
75 
76 #else
77 #define do_swap_account		0
78 #endif
79 
80 
81 /*
82  * Statistics for memory cgroup.
83  */
84 enum mem_cgroup_stat_index {
85 	/*
86 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 	 */
88 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
89 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
90 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
91 	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
92 	MEM_CGROUP_STAT_NSTATS,
93 };
94 
95 static const char * const mem_cgroup_stat_names[] = {
96 	"cache",
97 	"rss",
98 	"mapped_file",
99 	"swap",
100 };
101 
102 enum mem_cgroup_events_index {
103 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
104 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
105 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
106 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
107 	MEM_CGROUP_EVENTS_NSTATS,
108 };
109 
110 static const char * const mem_cgroup_events_names[] = {
111 	"pgpgin",
112 	"pgpgout",
113 	"pgfault",
114 	"pgmajfault",
115 };
116 
117 /*
118  * Per memcg event counter is incremented at every pagein/pageout. With THP,
119  * it will be incremated by the number of pages. This counter is used for
120  * for trigger some periodic events. This is straightforward and better
121  * than using jiffies etc. to handle periodic memcg event.
122  */
123 enum mem_cgroup_events_target {
124 	MEM_CGROUP_TARGET_THRESH,
125 	MEM_CGROUP_TARGET_SOFTLIMIT,
126 	MEM_CGROUP_TARGET_NUMAINFO,
127 	MEM_CGROUP_NTARGETS,
128 };
129 #define THRESHOLDS_EVENTS_TARGET 128
130 #define SOFTLIMIT_EVENTS_TARGET 1024
131 #define NUMAINFO_EVENTS_TARGET	1024
132 
133 struct mem_cgroup_stat_cpu {
134 	long count[MEM_CGROUP_STAT_NSTATS];
135 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
136 	unsigned long nr_page_events;
137 	unsigned long targets[MEM_CGROUP_NTARGETS];
138 };
139 
140 struct mem_cgroup_reclaim_iter {
141 	/* css_id of the last scanned hierarchy member */
142 	int position;
143 	/* scan generation, increased every round-trip */
144 	unsigned int generation;
145 };
146 
147 /*
148  * per-zone information in memory controller.
149  */
150 struct mem_cgroup_per_zone {
151 	struct lruvec		lruvec;
152 	unsigned long		lru_size[NR_LRU_LISTS];
153 
154 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
155 
156 	struct rb_node		tree_node;	/* RB tree node */
157 	unsigned long long	usage_in_excess;/* Set to the value by which */
158 						/* the soft limit is exceeded*/
159 	bool			on_tree;
160 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
161 						/* use container_of	   */
162 };
163 
164 struct mem_cgroup_per_node {
165 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
166 };
167 
168 struct mem_cgroup_lru_info {
169 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
170 };
171 
172 /*
173  * Cgroups above their limits are maintained in a RB-Tree, independent of
174  * their hierarchy representation
175  */
176 
177 struct mem_cgroup_tree_per_zone {
178 	struct rb_root rb_root;
179 	spinlock_t lock;
180 };
181 
182 struct mem_cgroup_tree_per_node {
183 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
184 };
185 
186 struct mem_cgroup_tree {
187 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
188 };
189 
190 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
191 
192 struct mem_cgroup_threshold {
193 	struct eventfd_ctx *eventfd;
194 	u64 threshold;
195 };
196 
197 /* For threshold */
198 struct mem_cgroup_threshold_ary {
199 	/* An array index points to threshold just below or equal to usage. */
200 	int current_threshold;
201 	/* Size of entries[] */
202 	unsigned int size;
203 	/* Array of thresholds */
204 	struct mem_cgroup_threshold entries[0];
205 };
206 
207 struct mem_cgroup_thresholds {
208 	/* Primary thresholds array */
209 	struct mem_cgroup_threshold_ary *primary;
210 	/*
211 	 * Spare threshold array.
212 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
213 	 * It must be able to store at least primary->size - 1 entries.
214 	 */
215 	struct mem_cgroup_threshold_ary *spare;
216 };
217 
218 /* for OOM */
219 struct mem_cgroup_eventfd_list {
220 	struct list_head list;
221 	struct eventfd_ctx *eventfd;
222 };
223 
224 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
225 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
226 
227 /*
228  * The memory controller data structure. The memory controller controls both
229  * page cache and RSS per cgroup. We would eventually like to provide
230  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
231  * to help the administrator determine what knobs to tune.
232  *
233  * TODO: Add a water mark for the memory controller. Reclaim will begin when
234  * we hit the water mark. May be even add a low water mark, such that
235  * no reclaim occurs from a cgroup at it's low water mark, this is
236  * a feature that will be implemented much later in the future.
237  */
238 struct mem_cgroup {
239 	struct cgroup_subsys_state css;
240 	/*
241 	 * the counter to account for memory usage
242 	 */
243 	struct res_counter res;
244 
245 	union {
246 		/*
247 		 * the counter to account for mem+swap usage.
248 		 */
249 		struct res_counter memsw;
250 
251 		/*
252 		 * rcu_freeing is used only when freeing struct mem_cgroup,
253 		 * so put it into a union to avoid wasting more memory.
254 		 * It must be disjoint from the css field.  It could be
255 		 * in a union with the res field, but res plays a much
256 		 * larger part in mem_cgroup life than memsw, and might
257 		 * be of interest, even at time of free, when debugging.
258 		 * So share rcu_head with the less interesting memsw.
259 		 */
260 		struct rcu_head rcu_freeing;
261 		/*
262 		 * We also need some space for a worker in deferred freeing.
263 		 * By the time we call it, rcu_freeing is no longer in use.
264 		 */
265 		struct work_struct work_freeing;
266 	};
267 
268 	/*
269 	 * Per cgroup active and inactive list, similar to the
270 	 * per zone LRU lists.
271 	 */
272 	struct mem_cgroup_lru_info info;
273 	int last_scanned_node;
274 #if MAX_NUMNODES > 1
275 	nodemask_t	scan_nodes;
276 	atomic_t	numainfo_events;
277 	atomic_t	numainfo_updating;
278 #endif
279 	/*
280 	 * Should the accounting and control be hierarchical, per subtree?
281 	 */
282 	bool use_hierarchy;
283 
284 	bool		oom_lock;
285 	atomic_t	under_oom;
286 
287 	atomic_t	refcnt;
288 
289 	int	swappiness;
290 	/* OOM-Killer disable */
291 	int		oom_kill_disable;
292 
293 	/* set when res.limit == memsw.limit */
294 	bool		memsw_is_minimum;
295 
296 	/* protect arrays of thresholds */
297 	struct mutex thresholds_lock;
298 
299 	/* thresholds for memory usage. RCU-protected */
300 	struct mem_cgroup_thresholds thresholds;
301 
302 	/* thresholds for mem+swap usage. RCU-protected */
303 	struct mem_cgroup_thresholds memsw_thresholds;
304 
305 	/* For oom notifier event fd */
306 	struct list_head oom_notify;
307 
308 	/*
309 	 * Should we move charges of a task when a task is moved into this
310 	 * mem_cgroup ? And what type of charges should we move ?
311 	 */
312 	unsigned long 	move_charge_at_immigrate;
313 	/*
314 	 * set > 0 if pages under this cgroup are moving to other cgroup.
315 	 */
316 	atomic_t	moving_account;
317 	/* taken only while moving_account > 0 */
318 	spinlock_t	move_lock;
319 	/*
320 	 * percpu counter.
321 	 */
322 	struct mem_cgroup_stat_cpu __percpu *stat;
323 	/*
324 	 * used when a cpu is offlined or other synchronizations
325 	 * See mem_cgroup_read_stat().
326 	 */
327 	struct mem_cgroup_stat_cpu nocpu_base;
328 	spinlock_t pcp_counter_lock;
329 
330 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
331 	struct tcp_memcontrol tcp_mem;
332 #endif
333 };
334 
335 /* Stuffs for move charges at task migration. */
336 /*
337  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
338  * left-shifted bitmap of these types.
339  */
340 enum move_type {
341 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
342 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
343 	NR_MOVE_TYPE,
344 };
345 
346 /* "mc" and its members are protected by cgroup_mutex */
347 static struct move_charge_struct {
348 	spinlock_t	  lock; /* for from, to */
349 	struct mem_cgroup *from;
350 	struct mem_cgroup *to;
351 	unsigned long precharge;
352 	unsigned long moved_charge;
353 	unsigned long moved_swap;
354 	struct task_struct *moving_task;	/* a task moving charges */
355 	wait_queue_head_t waitq;		/* a waitq for other context */
356 } mc = {
357 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
358 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
359 };
360 
361 static bool move_anon(void)
362 {
363 	return test_bit(MOVE_CHARGE_TYPE_ANON,
364 					&mc.to->move_charge_at_immigrate);
365 }
366 
367 static bool move_file(void)
368 {
369 	return test_bit(MOVE_CHARGE_TYPE_FILE,
370 					&mc.to->move_charge_at_immigrate);
371 }
372 
373 /*
374  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
375  * limit reclaim to prevent infinite loops, if they ever occur.
376  */
377 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
378 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
379 
380 enum charge_type {
381 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
382 	MEM_CGROUP_CHARGE_TYPE_ANON,
383 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
384 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
385 	NR_CHARGE_TYPE,
386 };
387 
388 /* for encoding cft->private value on file */
389 #define _MEM			(0)
390 #define _MEMSWAP		(1)
391 #define _OOM_TYPE		(2)
392 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
393 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
394 #define MEMFILE_ATTR(val)	((val) & 0xffff)
395 /* Used for OOM nofiier */
396 #define OOM_CONTROL		(0)
397 
398 /*
399  * Reclaim flags for mem_cgroup_hierarchical_reclaim
400  */
401 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
402 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
403 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
404 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
405 
406 static void mem_cgroup_get(struct mem_cgroup *memcg);
407 static void mem_cgroup_put(struct mem_cgroup *memcg);
408 
409 static inline
410 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
411 {
412 	return container_of(s, struct mem_cgroup, css);
413 }
414 
415 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
416 {
417 	return (memcg == root_mem_cgroup);
418 }
419 
420 /* Writing them here to avoid exposing memcg's inner layout */
421 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
422 
423 void sock_update_memcg(struct sock *sk)
424 {
425 	if (mem_cgroup_sockets_enabled) {
426 		struct mem_cgroup *memcg;
427 		struct cg_proto *cg_proto;
428 
429 		BUG_ON(!sk->sk_prot->proto_cgroup);
430 
431 		/* Socket cloning can throw us here with sk_cgrp already
432 		 * filled. It won't however, necessarily happen from
433 		 * process context. So the test for root memcg given
434 		 * the current task's memcg won't help us in this case.
435 		 *
436 		 * Respecting the original socket's memcg is a better
437 		 * decision in this case.
438 		 */
439 		if (sk->sk_cgrp) {
440 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
441 			mem_cgroup_get(sk->sk_cgrp->memcg);
442 			return;
443 		}
444 
445 		rcu_read_lock();
446 		memcg = mem_cgroup_from_task(current);
447 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
448 		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
449 			mem_cgroup_get(memcg);
450 			sk->sk_cgrp = cg_proto;
451 		}
452 		rcu_read_unlock();
453 	}
454 }
455 EXPORT_SYMBOL(sock_update_memcg);
456 
457 void sock_release_memcg(struct sock *sk)
458 {
459 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
460 		struct mem_cgroup *memcg;
461 		WARN_ON(!sk->sk_cgrp->memcg);
462 		memcg = sk->sk_cgrp->memcg;
463 		mem_cgroup_put(memcg);
464 	}
465 }
466 
467 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
468 {
469 	if (!memcg || mem_cgroup_is_root(memcg))
470 		return NULL;
471 
472 	return &memcg->tcp_mem.cg_proto;
473 }
474 EXPORT_SYMBOL(tcp_proto_cgroup);
475 
476 static void disarm_sock_keys(struct mem_cgroup *memcg)
477 {
478 	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
479 		return;
480 	static_key_slow_dec(&memcg_socket_limit_enabled);
481 }
482 #else
483 static void disarm_sock_keys(struct mem_cgroup *memcg)
484 {
485 }
486 #endif
487 
488 static void drain_all_stock_async(struct mem_cgroup *memcg);
489 
490 static struct mem_cgroup_per_zone *
491 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
492 {
493 	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
494 }
495 
496 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
497 {
498 	return &memcg->css;
499 }
500 
501 static struct mem_cgroup_per_zone *
502 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
503 {
504 	int nid = page_to_nid(page);
505 	int zid = page_zonenum(page);
506 
507 	return mem_cgroup_zoneinfo(memcg, nid, zid);
508 }
509 
510 static struct mem_cgroup_tree_per_zone *
511 soft_limit_tree_node_zone(int nid, int zid)
512 {
513 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
514 }
515 
516 static struct mem_cgroup_tree_per_zone *
517 soft_limit_tree_from_page(struct page *page)
518 {
519 	int nid = page_to_nid(page);
520 	int zid = page_zonenum(page);
521 
522 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
523 }
524 
525 static void
526 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
527 				struct mem_cgroup_per_zone *mz,
528 				struct mem_cgroup_tree_per_zone *mctz,
529 				unsigned long long new_usage_in_excess)
530 {
531 	struct rb_node **p = &mctz->rb_root.rb_node;
532 	struct rb_node *parent = NULL;
533 	struct mem_cgroup_per_zone *mz_node;
534 
535 	if (mz->on_tree)
536 		return;
537 
538 	mz->usage_in_excess = new_usage_in_excess;
539 	if (!mz->usage_in_excess)
540 		return;
541 	while (*p) {
542 		parent = *p;
543 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
544 					tree_node);
545 		if (mz->usage_in_excess < mz_node->usage_in_excess)
546 			p = &(*p)->rb_left;
547 		/*
548 		 * We can't avoid mem cgroups that are over their soft
549 		 * limit by the same amount
550 		 */
551 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 			p = &(*p)->rb_right;
553 	}
554 	rb_link_node(&mz->tree_node, parent, p);
555 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
556 	mz->on_tree = true;
557 }
558 
559 static void
560 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
561 				struct mem_cgroup_per_zone *mz,
562 				struct mem_cgroup_tree_per_zone *mctz)
563 {
564 	if (!mz->on_tree)
565 		return;
566 	rb_erase(&mz->tree_node, &mctz->rb_root);
567 	mz->on_tree = false;
568 }
569 
570 static void
571 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
572 				struct mem_cgroup_per_zone *mz,
573 				struct mem_cgroup_tree_per_zone *mctz)
574 {
575 	spin_lock(&mctz->lock);
576 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
577 	spin_unlock(&mctz->lock);
578 }
579 
580 
581 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
582 {
583 	unsigned long long excess;
584 	struct mem_cgroup_per_zone *mz;
585 	struct mem_cgroup_tree_per_zone *mctz;
586 	int nid = page_to_nid(page);
587 	int zid = page_zonenum(page);
588 	mctz = soft_limit_tree_from_page(page);
589 
590 	/*
591 	 * Necessary to update all ancestors when hierarchy is used.
592 	 * because their event counter is not touched.
593 	 */
594 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
595 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
596 		excess = res_counter_soft_limit_excess(&memcg->res);
597 		/*
598 		 * We have to update the tree if mz is on RB-tree or
599 		 * mem is over its softlimit.
600 		 */
601 		if (excess || mz->on_tree) {
602 			spin_lock(&mctz->lock);
603 			/* if on-tree, remove it */
604 			if (mz->on_tree)
605 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
606 			/*
607 			 * Insert again. mz->usage_in_excess will be updated.
608 			 * If excess is 0, no tree ops.
609 			 */
610 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
611 			spin_unlock(&mctz->lock);
612 		}
613 	}
614 }
615 
616 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
617 {
618 	int node, zone;
619 	struct mem_cgroup_per_zone *mz;
620 	struct mem_cgroup_tree_per_zone *mctz;
621 
622 	for_each_node(node) {
623 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
624 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
625 			mctz = soft_limit_tree_node_zone(node, zone);
626 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
627 		}
628 	}
629 }
630 
631 static struct mem_cgroup_per_zone *
632 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
633 {
634 	struct rb_node *rightmost = NULL;
635 	struct mem_cgroup_per_zone *mz;
636 
637 retry:
638 	mz = NULL;
639 	rightmost = rb_last(&mctz->rb_root);
640 	if (!rightmost)
641 		goto done;		/* Nothing to reclaim from */
642 
643 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
644 	/*
645 	 * Remove the node now but someone else can add it back,
646 	 * we will to add it back at the end of reclaim to its correct
647 	 * position in the tree.
648 	 */
649 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
650 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
651 		!css_tryget(&mz->memcg->css))
652 		goto retry;
653 done:
654 	return mz;
655 }
656 
657 static struct mem_cgroup_per_zone *
658 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
659 {
660 	struct mem_cgroup_per_zone *mz;
661 
662 	spin_lock(&mctz->lock);
663 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
664 	spin_unlock(&mctz->lock);
665 	return mz;
666 }
667 
668 /*
669  * Implementation Note: reading percpu statistics for memcg.
670  *
671  * Both of vmstat[] and percpu_counter has threshold and do periodic
672  * synchronization to implement "quick" read. There are trade-off between
673  * reading cost and precision of value. Then, we may have a chance to implement
674  * a periodic synchronizion of counter in memcg's counter.
675  *
676  * But this _read() function is used for user interface now. The user accounts
677  * memory usage by memory cgroup and he _always_ requires exact value because
678  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
679  * have to visit all online cpus and make sum. So, for now, unnecessary
680  * synchronization is not implemented. (just implemented for cpu hotplug)
681  *
682  * If there are kernel internal actions which can make use of some not-exact
683  * value, and reading all cpu value can be performance bottleneck in some
684  * common workload, threashold and synchonization as vmstat[] should be
685  * implemented.
686  */
687 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
688 				 enum mem_cgroup_stat_index idx)
689 {
690 	long val = 0;
691 	int cpu;
692 
693 	get_online_cpus();
694 	for_each_online_cpu(cpu)
695 		val += per_cpu(memcg->stat->count[idx], cpu);
696 #ifdef CONFIG_HOTPLUG_CPU
697 	spin_lock(&memcg->pcp_counter_lock);
698 	val += memcg->nocpu_base.count[idx];
699 	spin_unlock(&memcg->pcp_counter_lock);
700 #endif
701 	put_online_cpus();
702 	return val;
703 }
704 
705 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
706 					 bool charge)
707 {
708 	int val = (charge) ? 1 : -1;
709 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
710 }
711 
712 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
713 					    enum mem_cgroup_events_index idx)
714 {
715 	unsigned long val = 0;
716 	int cpu;
717 
718 	for_each_online_cpu(cpu)
719 		val += per_cpu(memcg->stat->events[idx], cpu);
720 #ifdef CONFIG_HOTPLUG_CPU
721 	spin_lock(&memcg->pcp_counter_lock);
722 	val += memcg->nocpu_base.events[idx];
723 	spin_unlock(&memcg->pcp_counter_lock);
724 #endif
725 	return val;
726 }
727 
728 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
729 					 bool anon, int nr_pages)
730 {
731 	preempt_disable();
732 
733 	/*
734 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
735 	 * counted as CACHE even if it's on ANON LRU.
736 	 */
737 	if (anon)
738 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
739 				nr_pages);
740 	else
741 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
742 				nr_pages);
743 
744 	/* pagein of a big page is an event. So, ignore page size */
745 	if (nr_pages > 0)
746 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
747 	else {
748 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
749 		nr_pages = -nr_pages; /* for event */
750 	}
751 
752 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
753 
754 	preempt_enable();
755 }
756 
757 unsigned long
758 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
759 {
760 	struct mem_cgroup_per_zone *mz;
761 
762 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
763 	return mz->lru_size[lru];
764 }
765 
766 static unsigned long
767 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
768 			unsigned int lru_mask)
769 {
770 	struct mem_cgroup_per_zone *mz;
771 	enum lru_list lru;
772 	unsigned long ret = 0;
773 
774 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
775 
776 	for_each_lru(lru) {
777 		if (BIT(lru) & lru_mask)
778 			ret += mz->lru_size[lru];
779 	}
780 	return ret;
781 }
782 
783 static unsigned long
784 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
785 			int nid, unsigned int lru_mask)
786 {
787 	u64 total = 0;
788 	int zid;
789 
790 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
791 		total += mem_cgroup_zone_nr_lru_pages(memcg,
792 						nid, zid, lru_mask);
793 
794 	return total;
795 }
796 
797 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
798 			unsigned int lru_mask)
799 {
800 	int nid;
801 	u64 total = 0;
802 
803 	for_each_node_state(nid, N_HIGH_MEMORY)
804 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
805 	return total;
806 }
807 
808 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
809 				       enum mem_cgroup_events_target target)
810 {
811 	unsigned long val, next;
812 
813 	val = __this_cpu_read(memcg->stat->nr_page_events);
814 	next = __this_cpu_read(memcg->stat->targets[target]);
815 	/* from time_after() in jiffies.h */
816 	if ((long)next - (long)val < 0) {
817 		switch (target) {
818 		case MEM_CGROUP_TARGET_THRESH:
819 			next = val + THRESHOLDS_EVENTS_TARGET;
820 			break;
821 		case MEM_CGROUP_TARGET_SOFTLIMIT:
822 			next = val + SOFTLIMIT_EVENTS_TARGET;
823 			break;
824 		case MEM_CGROUP_TARGET_NUMAINFO:
825 			next = val + NUMAINFO_EVENTS_TARGET;
826 			break;
827 		default:
828 			break;
829 		}
830 		__this_cpu_write(memcg->stat->targets[target], next);
831 		return true;
832 	}
833 	return false;
834 }
835 
836 /*
837  * Check events in order.
838  *
839  */
840 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
841 {
842 	preempt_disable();
843 	/* threshold event is triggered in finer grain than soft limit */
844 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
845 						MEM_CGROUP_TARGET_THRESH))) {
846 		bool do_softlimit;
847 		bool do_numainfo __maybe_unused;
848 
849 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
850 						MEM_CGROUP_TARGET_SOFTLIMIT);
851 #if MAX_NUMNODES > 1
852 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
853 						MEM_CGROUP_TARGET_NUMAINFO);
854 #endif
855 		preempt_enable();
856 
857 		mem_cgroup_threshold(memcg);
858 		if (unlikely(do_softlimit))
859 			mem_cgroup_update_tree(memcg, page);
860 #if MAX_NUMNODES > 1
861 		if (unlikely(do_numainfo))
862 			atomic_inc(&memcg->numainfo_events);
863 #endif
864 	} else
865 		preempt_enable();
866 }
867 
868 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
869 {
870 	return mem_cgroup_from_css(
871 		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
872 }
873 
874 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
875 {
876 	/*
877 	 * mm_update_next_owner() may clear mm->owner to NULL
878 	 * if it races with swapoff, page migration, etc.
879 	 * So this can be called with p == NULL.
880 	 */
881 	if (unlikely(!p))
882 		return NULL;
883 
884 	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
885 }
886 
887 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
888 {
889 	struct mem_cgroup *memcg = NULL;
890 
891 	if (!mm)
892 		return NULL;
893 	/*
894 	 * Because we have no locks, mm->owner's may be being moved to other
895 	 * cgroup. We use css_tryget() here even if this looks
896 	 * pessimistic (rather than adding locks here).
897 	 */
898 	rcu_read_lock();
899 	do {
900 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
901 		if (unlikely(!memcg))
902 			break;
903 	} while (!css_tryget(&memcg->css));
904 	rcu_read_unlock();
905 	return memcg;
906 }
907 
908 /**
909  * mem_cgroup_iter - iterate over memory cgroup hierarchy
910  * @root: hierarchy root
911  * @prev: previously returned memcg, NULL on first invocation
912  * @reclaim: cookie for shared reclaim walks, NULL for full walks
913  *
914  * Returns references to children of the hierarchy below @root, or
915  * @root itself, or %NULL after a full round-trip.
916  *
917  * Caller must pass the return value in @prev on subsequent
918  * invocations for reference counting, or use mem_cgroup_iter_break()
919  * to cancel a hierarchy walk before the round-trip is complete.
920  *
921  * Reclaimers can specify a zone and a priority level in @reclaim to
922  * divide up the memcgs in the hierarchy among all concurrent
923  * reclaimers operating on the same zone and priority.
924  */
925 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
926 				   struct mem_cgroup *prev,
927 				   struct mem_cgroup_reclaim_cookie *reclaim)
928 {
929 	struct mem_cgroup *memcg = NULL;
930 	int id = 0;
931 
932 	if (mem_cgroup_disabled())
933 		return NULL;
934 
935 	if (!root)
936 		root = root_mem_cgroup;
937 
938 	if (prev && !reclaim)
939 		id = css_id(&prev->css);
940 
941 	if (prev && prev != root)
942 		css_put(&prev->css);
943 
944 	if (!root->use_hierarchy && root != root_mem_cgroup) {
945 		if (prev)
946 			return NULL;
947 		return root;
948 	}
949 
950 	while (!memcg) {
951 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
952 		struct cgroup_subsys_state *css;
953 
954 		if (reclaim) {
955 			int nid = zone_to_nid(reclaim->zone);
956 			int zid = zone_idx(reclaim->zone);
957 			struct mem_cgroup_per_zone *mz;
958 
959 			mz = mem_cgroup_zoneinfo(root, nid, zid);
960 			iter = &mz->reclaim_iter[reclaim->priority];
961 			if (prev && reclaim->generation != iter->generation)
962 				return NULL;
963 			id = iter->position;
964 		}
965 
966 		rcu_read_lock();
967 		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
968 		if (css) {
969 			if (css == &root->css || css_tryget(css))
970 				memcg = mem_cgroup_from_css(css);
971 		} else
972 			id = 0;
973 		rcu_read_unlock();
974 
975 		if (reclaim) {
976 			iter->position = id;
977 			if (!css)
978 				iter->generation++;
979 			else if (!prev && memcg)
980 				reclaim->generation = iter->generation;
981 		}
982 
983 		if (prev && !css)
984 			return NULL;
985 	}
986 	return memcg;
987 }
988 
989 /**
990  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
991  * @root: hierarchy root
992  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
993  */
994 void mem_cgroup_iter_break(struct mem_cgroup *root,
995 			   struct mem_cgroup *prev)
996 {
997 	if (!root)
998 		root = root_mem_cgroup;
999 	if (prev && prev != root)
1000 		css_put(&prev->css);
1001 }
1002 
1003 /*
1004  * Iteration constructs for visiting all cgroups (under a tree).  If
1005  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1006  * be used for reference counting.
1007  */
1008 #define for_each_mem_cgroup_tree(iter, root)		\
1009 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1010 	     iter != NULL;				\
1011 	     iter = mem_cgroup_iter(root, iter, NULL))
1012 
1013 #define for_each_mem_cgroup(iter)			\
1014 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1015 	     iter != NULL;				\
1016 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1017 
1018 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1019 {
1020 	struct mem_cgroup *memcg;
1021 
1022 	if (!mm)
1023 		return;
1024 
1025 	rcu_read_lock();
1026 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1027 	if (unlikely(!memcg))
1028 		goto out;
1029 
1030 	switch (idx) {
1031 	case PGFAULT:
1032 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1033 		break;
1034 	case PGMAJFAULT:
1035 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1036 		break;
1037 	default:
1038 		BUG();
1039 	}
1040 out:
1041 	rcu_read_unlock();
1042 }
1043 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1044 
1045 /**
1046  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1047  * @zone: zone of the wanted lruvec
1048  * @memcg: memcg of the wanted lruvec
1049  *
1050  * Returns the lru list vector holding pages for the given @zone and
1051  * @mem.  This can be the global zone lruvec, if the memory controller
1052  * is disabled.
1053  */
1054 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1055 				      struct mem_cgroup *memcg)
1056 {
1057 	struct mem_cgroup_per_zone *mz;
1058 	struct lruvec *lruvec;
1059 
1060 	if (mem_cgroup_disabled()) {
1061 		lruvec = &zone->lruvec;
1062 		goto out;
1063 	}
1064 
1065 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1066 	lruvec = &mz->lruvec;
1067 out:
1068 	/*
1069 	 * Since a node can be onlined after the mem_cgroup was created,
1070 	 * we have to be prepared to initialize lruvec->zone here;
1071 	 * and if offlined then reonlined, we need to reinitialize it.
1072 	 */
1073 	if (unlikely(lruvec->zone != zone))
1074 		lruvec->zone = zone;
1075 	return lruvec;
1076 }
1077 
1078 /*
1079  * Following LRU functions are allowed to be used without PCG_LOCK.
1080  * Operations are called by routine of global LRU independently from memcg.
1081  * What we have to take care of here is validness of pc->mem_cgroup.
1082  *
1083  * Changes to pc->mem_cgroup happens when
1084  * 1. charge
1085  * 2. moving account
1086  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1087  * It is added to LRU before charge.
1088  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1089  * When moving account, the page is not on LRU. It's isolated.
1090  */
1091 
1092 /**
1093  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1094  * @page: the page
1095  * @zone: zone of the page
1096  */
1097 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1098 {
1099 	struct mem_cgroup_per_zone *mz;
1100 	struct mem_cgroup *memcg;
1101 	struct page_cgroup *pc;
1102 	struct lruvec *lruvec;
1103 
1104 	if (mem_cgroup_disabled()) {
1105 		lruvec = &zone->lruvec;
1106 		goto out;
1107 	}
1108 
1109 	pc = lookup_page_cgroup(page);
1110 	memcg = pc->mem_cgroup;
1111 
1112 	/*
1113 	 * Surreptitiously switch any uncharged offlist page to root:
1114 	 * an uncharged page off lru does nothing to secure
1115 	 * its former mem_cgroup from sudden removal.
1116 	 *
1117 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1118 	 * under page_cgroup lock: between them, they make all uses
1119 	 * of pc->mem_cgroup safe.
1120 	 */
1121 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1122 		pc->mem_cgroup = memcg = root_mem_cgroup;
1123 
1124 	mz = page_cgroup_zoneinfo(memcg, page);
1125 	lruvec = &mz->lruvec;
1126 out:
1127 	/*
1128 	 * Since a node can be onlined after the mem_cgroup was created,
1129 	 * we have to be prepared to initialize lruvec->zone here;
1130 	 * and if offlined then reonlined, we need to reinitialize it.
1131 	 */
1132 	if (unlikely(lruvec->zone != zone))
1133 		lruvec->zone = zone;
1134 	return lruvec;
1135 }
1136 
1137 /**
1138  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1139  * @lruvec: mem_cgroup per zone lru vector
1140  * @lru: index of lru list the page is sitting on
1141  * @nr_pages: positive when adding or negative when removing
1142  *
1143  * This function must be called when a page is added to or removed from an
1144  * lru list.
1145  */
1146 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1147 				int nr_pages)
1148 {
1149 	struct mem_cgroup_per_zone *mz;
1150 	unsigned long *lru_size;
1151 
1152 	if (mem_cgroup_disabled())
1153 		return;
1154 
1155 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1156 	lru_size = mz->lru_size + lru;
1157 	*lru_size += nr_pages;
1158 	VM_BUG_ON((long)(*lru_size) < 0);
1159 }
1160 
1161 /*
1162  * Checks whether given mem is same or in the root_mem_cgroup's
1163  * hierarchy subtree
1164  */
1165 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1166 				  struct mem_cgroup *memcg)
1167 {
1168 	if (root_memcg == memcg)
1169 		return true;
1170 	if (!root_memcg->use_hierarchy || !memcg)
1171 		return false;
1172 	return css_is_ancestor(&memcg->css, &root_memcg->css);
1173 }
1174 
1175 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1176 				       struct mem_cgroup *memcg)
1177 {
1178 	bool ret;
1179 
1180 	rcu_read_lock();
1181 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1182 	rcu_read_unlock();
1183 	return ret;
1184 }
1185 
1186 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1187 {
1188 	int ret;
1189 	struct mem_cgroup *curr = NULL;
1190 	struct task_struct *p;
1191 
1192 	p = find_lock_task_mm(task);
1193 	if (p) {
1194 		curr = try_get_mem_cgroup_from_mm(p->mm);
1195 		task_unlock(p);
1196 	} else {
1197 		/*
1198 		 * All threads may have already detached their mm's, but the oom
1199 		 * killer still needs to detect if they have already been oom
1200 		 * killed to prevent needlessly killing additional tasks.
1201 		 */
1202 		task_lock(task);
1203 		curr = mem_cgroup_from_task(task);
1204 		if (curr)
1205 			css_get(&curr->css);
1206 		task_unlock(task);
1207 	}
1208 	if (!curr)
1209 		return 0;
1210 	/*
1211 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1212 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1213 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1214 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1215 	 */
1216 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1217 	css_put(&curr->css);
1218 	return ret;
1219 }
1220 
1221 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1222 {
1223 	unsigned long inactive_ratio;
1224 	unsigned long inactive;
1225 	unsigned long active;
1226 	unsigned long gb;
1227 
1228 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1229 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1230 
1231 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1232 	if (gb)
1233 		inactive_ratio = int_sqrt(10 * gb);
1234 	else
1235 		inactive_ratio = 1;
1236 
1237 	return inactive * inactive_ratio < active;
1238 }
1239 
1240 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1241 {
1242 	unsigned long active;
1243 	unsigned long inactive;
1244 
1245 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1246 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1247 
1248 	return (active > inactive);
1249 }
1250 
1251 #define mem_cgroup_from_res_counter(counter, member)	\
1252 	container_of(counter, struct mem_cgroup, member)
1253 
1254 /**
1255  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1256  * @memcg: the memory cgroup
1257  *
1258  * Returns the maximum amount of memory @mem can be charged with, in
1259  * pages.
1260  */
1261 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1262 {
1263 	unsigned long long margin;
1264 
1265 	margin = res_counter_margin(&memcg->res);
1266 	if (do_swap_account)
1267 		margin = min(margin, res_counter_margin(&memcg->memsw));
1268 	return margin >> PAGE_SHIFT;
1269 }
1270 
1271 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1272 {
1273 	struct cgroup *cgrp = memcg->css.cgroup;
1274 
1275 	/* root ? */
1276 	if (cgrp->parent == NULL)
1277 		return vm_swappiness;
1278 
1279 	return memcg->swappiness;
1280 }
1281 
1282 /*
1283  * memcg->moving_account is used for checking possibility that some thread is
1284  * calling move_account(). When a thread on CPU-A starts moving pages under
1285  * a memcg, other threads should check memcg->moving_account under
1286  * rcu_read_lock(), like this:
1287  *
1288  *         CPU-A                                    CPU-B
1289  *                                              rcu_read_lock()
1290  *         memcg->moving_account+1              if (memcg->mocing_account)
1291  *                                                   take heavy locks.
1292  *         synchronize_rcu()                    update something.
1293  *                                              rcu_read_unlock()
1294  *         start move here.
1295  */
1296 
1297 /* for quick checking without looking up memcg */
1298 atomic_t memcg_moving __read_mostly;
1299 
1300 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1301 {
1302 	atomic_inc(&memcg_moving);
1303 	atomic_inc(&memcg->moving_account);
1304 	synchronize_rcu();
1305 }
1306 
1307 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1308 {
1309 	/*
1310 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1311 	 * We check NULL in callee rather than caller.
1312 	 */
1313 	if (memcg) {
1314 		atomic_dec(&memcg_moving);
1315 		atomic_dec(&memcg->moving_account);
1316 	}
1317 }
1318 
1319 /*
1320  * 2 routines for checking "mem" is under move_account() or not.
1321  *
1322  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1323  *			  is used for avoiding races in accounting.  If true,
1324  *			  pc->mem_cgroup may be overwritten.
1325  *
1326  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1327  *			  under hierarchy of moving cgroups. This is for
1328  *			  waiting at hith-memory prressure caused by "move".
1329  */
1330 
1331 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1332 {
1333 	VM_BUG_ON(!rcu_read_lock_held());
1334 	return atomic_read(&memcg->moving_account) > 0;
1335 }
1336 
1337 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1338 {
1339 	struct mem_cgroup *from;
1340 	struct mem_cgroup *to;
1341 	bool ret = false;
1342 	/*
1343 	 * Unlike task_move routines, we access mc.to, mc.from not under
1344 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1345 	 */
1346 	spin_lock(&mc.lock);
1347 	from = mc.from;
1348 	to = mc.to;
1349 	if (!from)
1350 		goto unlock;
1351 
1352 	ret = mem_cgroup_same_or_subtree(memcg, from)
1353 		|| mem_cgroup_same_or_subtree(memcg, to);
1354 unlock:
1355 	spin_unlock(&mc.lock);
1356 	return ret;
1357 }
1358 
1359 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1360 {
1361 	if (mc.moving_task && current != mc.moving_task) {
1362 		if (mem_cgroup_under_move(memcg)) {
1363 			DEFINE_WAIT(wait);
1364 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1365 			/* moving charge context might have finished. */
1366 			if (mc.moving_task)
1367 				schedule();
1368 			finish_wait(&mc.waitq, &wait);
1369 			return true;
1370 		}
1371 	}
1372 	return false;
1373 }
1374 
1375 /*
1376  * Take this lock when
1377  * - a code tries to modify page's memcg while it's USED.
1378  * - a code tries to modify page state accounting in a memcg.
1379  * see mem_cgroup_stolen(), too.
1380  */
1381 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1382 				  unsigned long *flags)
1383 {
1384 	spin_lock_irqsave(&memcg->move_lock, *flags);
1385 }
1386 
1387 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1388 				unsigned long *flags)
1389 {
1390 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1391 }
1392 
1393 /**
1394  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1395  * @memcg: The memory cgroup that went over limit
1396  * @p: Task that is going to be killed
1397  *
1398  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1399  * enabled
1400  */
1401 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1402 {
1403 	struct cgroup *task_cgrp;
1404 	struct cgroup *mem_cgrp;
1405 	/*
1406 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1407 	 * on the assumption that OOM is serialized for memory controller.
1408 	 * If this assumption is broken, revisit this code.
1409 	 */
1410 	static char memcg_name[PATH_MAX];
1411 	int ret;
1412 
1413 	if (!memcg || !p)
1414 		return;
1415 
1416 	rcu_read_lock();
1417 
1418 	mem_cgrp = memcg->css.cgroup;
1419 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1420 
1421 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1422 	if (ret < 0) {
1423 		/*
1424 		 * Unfortunately, we are unable to convert to a useful name
1425 		 * But we'll still print out the usage information
1426 		 */
1427 		rcu_read_unlock();
1428 		goto done;
1429 	}
1430 	rcu_read_unlock();
1431 
1432 	printk(KERN_INFO "Task in %s killed", memcg_name);
1433 
1434 	rcu_read_lock();
1435 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1436 	if (ret < 0) {
1437 		rcu_read_unlock();
1438 		goto done;
1439 	}
1440 	rcu_read_unlock();
1441 
1442 	/*
1443 	 * Continues from above, so we don't need an KERN_ level
1444 	 */
1445 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1446 done:
1447 
1448 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1449 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1450 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1451 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1452 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1453 		"failcnt %llu\n",
1454 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1455 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1456 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1457 }
1458 
1459 /*
1460  * This function returns the number of memcg under hierarchy tree. Returns
1461  * 1(self count) if no children.
1462  */
1463 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1464 {
1465 	int num = 0;
1466 	struct mem_cgroup *iter;
1467 
1468 	for_each_mem_cgroup_tree(iter, memcg)
1469 		num++;
1470 	return num;
1471 }
1472 
1473 /*
1474  * Return the memory (and swap, if configured) limit for a memcg.
1475  */
1476 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1477 {
1478 	u64 limit;
1479 
1480 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1481 
1482 	/*
1483 	 * Do not consider swap space if we cannot swap due to swappiness
1484 	 */
1485 	if (mem_cgroup_swappiness(memcg)) {
1486 		u64 memsw;
1487 
1488 		limit += total_swap_pages << PAGE_SHIFT;
1489 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1490 
1491 		/*
1492 		 * If memsw is finite and limits the amount of swap space
1493 		 * available to this memcg, return that limit.
1494 		 */
1495 		limit = min(limit, memsw);
1496 	}
1497 
1498 	return limit;
1499 }
1500 
1501 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1502 			      int order)
1503 {
1504 	struct mem_cgroup *iter;
1505 	unsigned long chosen_points = 0;
1506 	unsigned long totalpages;
1507 	unsigned int points = 0;
1508 	struct task_struct *chosen = NULL;
1509 
1510 	/*
1511 	 * If current has a pending SIGKILL, then automatically select it.  The
1512 	 * goal is to allow it to allocate so that it may quickly exit and free
1513 	 * its memory.
1514 	 */
1515 	if (fatal_signal_pending(current)) {
1516 		set_thread_flag(TIF_MEMDIE);
1517 		return;
1518 	}
1519 
1520 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1521 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1522 	for_each_mem_cgroup_tree(iter, memcg) {
1523 		struct cgroup *cgroup = iter->css.cgroup;
1524 		struct cgroup_iter it;
1525 		struct task_struct *task;
1526 
1527 		cgroup_iter_start(cgroup, &it);
1528 		while ((task = cgroup_iter_next(cgroup, &it))) {
1529 			switch (oom_scan_process_thread(task, totalpages, NULL,
1530 							false)) {
1531 			case OOM_SCAN_SELECT:
1532 				if (chosen)
1533 					put_task_struct(chosen);
1534 				chosen = task;
1535 				chosen_points = ULONG_MAX;
1536 				get_task_struct(chosen);
1537 				/* fall through */
1538 			case OOM_SCAN_CONTINUE:
1539 				continue;
1540 			case OOM_SCAN_ABORT:
1541 				cgroup_iter_end(cgroup, &it);
1542 				mem_cgroup_iter_break(memcg, iter);
1543 				if (chosen)
1544 					put_task_struct(chosen);
1545 				return;
1546 			case OOM_SCAN_OK:
1547 				break;
1548 			};
1549 			points = oom_badness(task, memcg, NULL, totalpages);
1550 			if (points > chosen_points) {
1551 				if (chosen)
1552 					put_task_struct(chosen);
1553 				chosen = task;
1554 				chosen_points = points;
1555 				get_task_struct(chosen);
1556 			}
1557 		}
1558 		cgroup_iter_end(cgroup, &it);
1559 	}
1560 
1561 	if (!chosen)
1562 		return;
1563 	points = chosen_points * 1000 / totalpages;
1564 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1565 			 NULL, "Memory cgroup out of memory");
1566 }
1567 
1568 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1569 					gfp_t gfp_mask,
1570 					unsigned long flags)
1571 {
1572 	unsigned long total = 0;
1573 	bool noswap = false;
1574 	int loop;
1575 
1576 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1577 		noswap = true;
1578 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1579 		noswap = true;
1580 
1581 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1582 		if (loop)
1583 			drain_all_stock_async(memcg);
1584 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1585 		/*
1586 		 * Allow limit shrinkers, which are triggered directly
1587 		 * by userspace, to catch signals and stop reclaim
1588 		 * after minimal progress, regardless of the margin.
1589 		 */
1590 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1591 			break;
1592 		if (mem_cgroup_margin(memcg))
1593 			break;
1594 		/*
1595 		 * If nothing was reclaimed after two attempts, there
1596 		 * may be no reclaimable pages in this hierarchy.
1597 		 */
1598 		if (loop && !total)
1599 			break;
1600 	}
1601 	return total;
1602 }
1603 
1604 /**
1605  * test_mem_cgroup_node_reclaimable
1606  * @memcg: the target memcg
1607  * @nid: the node ID to be checked.
1608  * @noswap : specify true here if the user wants flle only information.
1609  *
1610  * This function returns whether the specified memcg contains any
1611  * reclaimable pages on a node. Returns true if there are any reclaimable
1612  * pages in the node.
1613  */
1614 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1615 		int nid, bool noswap)
1616 {
1617 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1618 		return true;
1619 	if (noswap || !total_swap_pages)
1620 		return false;
1621 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1622 		return true;
1623 	return false;
1624 
1625 }
1626 #if MAX_NUMNODES > 1
1627 
1628 /*
1629  * Always updating the nodemask is not very good - even if we have an empty
1630  * list or the wrong list here, we can start from some node and traverse all
1631  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1632  *
1633  */
1634 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1635 {
1636 	int nid;
1637 	/*
1638 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1639 	 * pagein/pageout changes since the last update.
1640 	 */
1641 	if (!atomic_read(&memcg->numainfo_events))
1642 		return;
1643 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1644 		return;
1645 
1646 	/* make a nodemask where this memcg uses memory from */
1647 	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1648 
1649 	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1650 
1651 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1652 			node_clear(nid, memcg->scan_nodes);
1653 	}
1654 
1655 	atomic_set(&memcg->numainfo_events, 0);
1656 	atomic_set(&memcg->numainfo_updating, 0);
1657 }
1658 
1659 /*
1660  * Selecting a node where we start reclaim from. Because what we need is just
1661  * reducing usage counter, start from anywhere is O,K. Considering
1662  * memory reclaim from current node, there are pros. and cons.
1663  *
1664  * Freeing memory from current node means freeing memory from a node which
1665  * we'll use or we've used. So, it may make LRU bad. And if several threads
1666  * hit limits, it will see a contention on a node. But freeing from remote
1667  * node means more costs for memory reclaim because of memory latency.
1668  *
1669  * Now, we use round-robin. Better algorithm is welcomed.
1670  */
1671 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1672 {
1673 	int node;
1674 
1675 	mem_cgroup_may_update_nodemask(memcg);
1676 	node = memcg->last_scanned_node;
1677 
1678 	node = next_node(node, memcg->scan_nodes);
1679 	if (node == MAX_NUMNODES)
1680 		node = first_node(memcg->scan_nodes);
1681 	/*
1682 	 * We call this when we hit limit, not when pages are added to LRU.
1683 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1684 	 * memcg is too small and all pages are not on LRU. In that case,
1685 	 * we use curret node.
1686 	 */
1687 	if (unlikely(node == MAX_NUMNODES))
1688 		node = numa_node_id();
1689 
1690 	memcg->last_scanned_node = node;
1691 	return node;
1692 }
1693 
1694 /*
1695  * Check all nodes whether it contains reclaimable pages or not.
1696  * For quick scan, we make use of scan_nodes. This will allow us to skip
1697  * unused nodes. But scan_nodes is lazily updated and may not cotain
1698  * enough new information. We need to do double check.
1699  */
1700 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1701 {
1702 	int nid;
1703 
1704 	/*
1705 	 * quick check...making use of scan_node.
1706 	 * We can skip unused nodes.
1707 	 */
1708 	if (!nodes_empty(memcg->scan_nodes)) {
1709 		for (nid = first_node(memcg->scan_nodes);
1710 		     nid < MAX_NUMNODES;
1711 		     nid = next_node(nid, memcg->scan_nodes)) {
1712 
1713 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1714 				return true;
1715 		}
1716 	}
1717 	/*
1718 	 * Check rest of nodes.
1719 	 */
1720 	for_each_node_state(nid, N_HIGH_MEMORY) {
1721 		if (node_isset(nid, memcg->scan_nodes))
1722 			continue;
1723 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1724 			return true;
1725 	}
1726 	return false;
1727 }
1728 
1729 #else
1730 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1731 {
1732 	return 0;
1733 }
1734 
1735 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1736 {
1737 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1738 }
1739 #endif
1740 
1741 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1742 				   struct zone *zone,
1743 				   gfp_t gfp_mask,
1744 				   unsigned long *total_scanned)
1745 {
1746 	struct mem_cgroup *victim = NULL;
1747 	int total = 0;
1748 	int loop = 0;
1749 	unsigned long excess;
1750 	unsigned long nr_scanned;
1751 	struct mem_cgroup_reclaim_cookie reclaim = {
1752 		.zone = zone,
1753 		.priority = 0,
1754 	};
1755 
1756 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1757 
1758 	while (1) {
1759 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1760 		if (!victim) {
1761 			loop++;
1762 			if (loop >= 2) {
1763 				/*
1764 				 * If we have not been able to reclaim
1765 				 * anything, it might because there are
1766 				 * no reclaimable pages under this hierarchy
1767 				 */
1768 				if (!total)
1769 					break;
1770 				/*
1771 				 * We want to do more targeted reclaim.
1772 				 * excess >> 2 is not to excessive so as to
1773 				 * reclaim too much, nor too less that we keep
1774 				 * coming back to reclaim from this cgroup
1775 				 */
1776 				if (total >= (excess >> 2) ||
1777 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1778 					break;
1779 			}
1780 			continue;
1781 		}
1782 		if (!mem_cgroup_reclaimable(victim, false))
1783 			continue;
1784 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1785 						     zone, &nr_scanned);
1786 		*total_scanned += nr_scanned;
1787 		if (!res_counter_soft_limit_excess(&root_memcg->res))
1788 			break;
1789 	}
1790 	mem_cgroup_iter_break(root_memcg, victim);
1791 	return total;
1792 }
1793 
1794 /*
1795  * Check OOM-Killer is already running under our hierarchy.
1796  * If someone is running, return false.
1797  * Has to be called with memcg_oom_lock
1798  */
1799 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1800 {
1801 	struct mem_cgroup *iter, *failed = NULL;
1802 
1803 	for_each_mem_cgroup_tree(iter, memcg) {
1804 		if (iter->oom_lock) {
1805 			/*
1806 			 * this subtree of our hierarchy is already locked
1807 			 * so we cannot give a lock.
1808 			 */
1809 			failed = iter;
1810 			mem_cgroup_iter_break(memcg, iter);
1811 			break;
1812 		} else
1813 			iter->oom_lock = true;
1814 	}
1815 
1816 	if (!failed)
1817 		return true;
1818 
1819 	/*
1820 	 * OK, we failed to lock the whole subtree so we have to clean up
1821 	 * what we set up to the failing subtree
1822 	 */
1823 	for_each_mem_cgroup_tree(iter, memcg) {
1824 		if (iter == failed) {
1825 			mem_cgroup_iter_break(memcg, iter);
1826 			break;
1827 		}
1828 		iter->oom_lock = false;
1829 	}
1830 	return false;
1831 }
1832 
1833 /*
1834  * Has to be called with memcg_oom_lock
1835  */
1836 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1837 {
1838 	struct mem_cgroup *iter;
1839 
1840 	for_each_mem_cgroup_tree(iter, memcg)
1841 		iter->oom_lock = false;
1842 	return 0;
1843 }
1844 
1845 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1846 {
1847 	struct mem_cgroup *iter;
1848 
1849 	for_each_mem_cgroup_tree(iter, memcg)
1850 		atomic_inc(&iter->under_oom);
1851 }
1852 
1853 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1854 {
1855 	struct mem_cgroup *iter;
1856 
1857 	/*
1858 	 * When a new child is created while the hierarchy is under oom,
1859 	 * mem_cgroup_oom_lock() may not be called. We have to use
1860 	 * atomic_add_unless() here.
1861 	 */
1862 	for_each_mem_cgroup_tree(iter, memcg)
1863 		atomic_add_unless(&iter->under_oom, -1, 0);
1864 }
1865 
1866 static DEFINE_SPINLOCK(memcg_oom_lock);
1867 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1868 
1869 struct oom_wait_info {
1870 	struct mem_cgroup *memcg;
1871 	wait_queue_t	wait;
1872 };
1873 
1874 static int memcg_oom_wake_function(wait_queue_t *wait,
1875 	unsigned mode, int sync, void *arg)
1876 {
1877 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1878 	struct mem_cgroup *oom_wait_memcg;
1879 	struct oom_wait_info *oom_wait_info;
1880 
1881 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1882 	oom_wait_memcg = oom_wait_info->memcg;
1883 
1884 	/*
1885 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1886 	 * Then we can use css_is_ancestor without taking care of RCU.
1887 	 */
1888 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1889 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1890 		return 0;
1891 	return autoremove_wake_function(wait, mode, sync, arg);
1892 }
1893 
1894 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1895 {
1896 	/* for filtering, pass "memcg" as argument. */
1897 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1898 }
1899 
1900 static void memcg_oom_recover(struct mem_cgroup *memcg)
1901 {
1902 	if (memcg && atomic_read(&memcg->under_oom))
1903 		memcg_wakeup_oom(memcg);
1904 }
1905 
1906 /*
1907  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1908  */
1909 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1910 				  int order)
1911 {
1912 	struct oom_wait_info owait;
1913 	bool locked, need_to_kill;
1914 
1915 	owait.memcg = memcg;
1916 	owait.wait.flags = 0;
1917 	owait.wait.func = memcg_oom_wake_function;
1918 	owait.wait.private = current;
1919 	INIT_LIST_HEAD(&owait.wait.task_list);
1920 	need_to_kill = true;
1921 	mem_cgroup_mark_under_oom(memcg);
1922 
1923 	/* At first, try to OOM lock hierarchy under memcg.*/
1924 	spin_lock(&memcg_oom_lock);
1925 	locked = mem_cgroup_oom_lock(memcg);
1926 	/*
1927 	 * Even if signal_pending(), we can't quit charge() loop without
1928 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1929 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1930 	 */
1931 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1932 	if (!locked || memcg->oom_kill_disable)
1933 		need_to_kill = false;
1934 	if (locked)
1935 		mem_cgroup_oom_notify(memcg);
1936 	spin_unlock(&memcg_oom_lock);
1937 
1938 	if (need_to_kill) {
1939 		finish_wait(&memcg_oom_waitq, &owait.wait);
1940 		mem_cgroup_out_of_memory(memcg, mask, order);
1941 	} else {
1942 		schedule();
1943 		finish_wait(&memcg_oom_waitq, &owait.wait);
1944 	}
1945 	spin_lock(&memcg_oom_lock);
1946 	if (locked)
1947 		mem_cgroup_oom_unlock(memcg);
1948 	memcg_wakeup_oom(memcg);
1949 	spin_unlock(&memcg_oom_lock);
1950 
1951 	mem_cgroup_unmark_under_oom(memcg);
1952 
1953 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1954 		return false;
1955 	/* Give chance to dying process */
1956 	schedule_timeout_uninterruptible(1);
1957 	return true;
1958 }
1959 
1960 /*
1961  * Currently used to update mapped file statistics, but the routine can be
1962  * generalized to update other statistics as well.
1963  *
1964  * Notes: Race condition
1965  *
1966  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1967  * it tends to be costly. But considering some conditions, we doesn't need
1968  * to do so _always_.
1969  *
1970  * Considering "charge", lock_page_cgroup() is not required because all
1971  * file-stat operations happen after a page is attached to radix-tree. There
1972  * are no race with "charge".
1973  *
1974  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1975  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1976  * if there are race with "uncharge". Statistics itself is properly handled
1977  * by flags.
1978  *
1979  * Considering "move", this is an only case we see a race. To make the race
1980  * small, we check mm->moving_account and detect there are possibility of race
1981  * If there is, we take a lock.
1982  */
1983 
1984 void __mem_cgroup_begin_update_page_stat(struct page *page,
1985 				bool *locked, unsigned long *flags)
1986 {
1987 	struct mem_cgroup *memcg;
1988 	struct page_cgroup *pc;
1989 
1990 	pc = lookup_page_cgroup(page);
1991 again:
1992 	memcg = pc->mem_cgroup;
1993 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1994 		return;
1995 	/*
1996 	 * If this memory cgroup is not under account moving, we don't
1997 	 * need to take move_lock_mem_cgroup(). Because we already hold
1998 	 * rcu_read_lock(), any calls to move_account will be delayed until
1999 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2000 	 */
2001 	if (!mem_cgroup_stolen(memcg))
2002 		return;
2003 
2004 	move_lock_mem_cgroup(memcg, flags);
2005 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2006 		move_unlock_mem_cgroup(memcg, flags);
2007 		goto again;
2008 	}
2009 	*locked = true;
2010 }
2011 
2012 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2013 {
2014 	struct page_cgroup *pc = lookup_page_cgroup(page);
2015 
2016 	/*
2017 	 * It's guaranteed that pc->mem_cgroup never changes while
2018 	 * lock is held because a routine modifies pc->mem_cgroup
2019 	 * should take move_lock_mem_cgroup().
2020 	 */
2021 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2022 }
2023 
2024 void mem_cgroup_update_page_stat(struct page *page,
2025 				 enum mem_cgroup_page_stat_item idx, int val)
2026 {
2027 	struct mem_cgroup *memcg;
2028 	struct page_cgroup *pc = lookup_page_cgroup(page);
2029 	unsigned long uninitialized_var(flags);
2030 
2031 	if (mem_cgroup_disabled())
2032 		return;
2033 
2034 	memcg = pc->mem_cgroup;
2035 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2036 		return;
2037 
2038 	switch (idx) {
2039 	case MEMCG_NR_FILE_MAPPED:
2040 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2041 		break;
2042 	default:
2043 		BUG();
2044 	}
2045 
2046 	this_cpu_add(memcg->stat->count[idx], val);
2047 }
2048 
2049 /*
2050  * size of first charge trial. "32" comes from vmscan.c's magic value.
2051  * TODO: maybe necessary to use big numbers in big irons.
2052  */
2053 #define CHARGE_BATCH	32U
2054 struct memcg_stock_pcp {
2055 	struct mem_cgroup *cached; /* this never be root cgroup */
2056 	unsigned int nr_pages;
2057 	struct work_struct work;
2058 	unsigned long flags;
2059 #define FLUSHING_CACHED_CHARGE	0
2060 };
2061 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2062 static DEFINE_MUTEX(percpu_charge_mutex);
2063 
2064 /*
2065  * Try to consume stocked charge on this cpu. If success, one page is consumed
2066  * from local stock and true is returned. If the stock is 0 or charges from a
2067  * cgroup which is not current target, returns false. This stock will be
2068  * refilled.
2069  */
2070 static bool consume_stock(struct mem_cgroup *memcg)
2071 {
2072 	struct memcg_stock_pcp *stock;
2073 	bool ret = true;
2074 
2075 	stock = &get_cpu_var(memcg_stock);
2076 	if (memcg == stock->cached && stock->nr_pages)
2077 		stock->nr_pages--;
2078 	else /* need to call res_counter_charge */
2079 		ret = false;
2080 	put_cpu_var(memcg_stock);
2081 	return ret;
2082 }
2083 
2084 /*
2085  * Returns stocks cached in percpu to res_counter and reset cached information.
2086  */
2087 static void drain_stock(struct memcg_stock_pcp *stock)
2088 {
2089 	struct mem_cgroup *old = stock->cached;
2090 
2091 	if (stock->nr_pages) {
2092 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2093 
2094 		res_counter_uncharge(&old->res, bytes);
2095 		if (do_swap_account)
2096 			res_counter_uncharge(&old->memsw, bytes);
2097 		stock->nr_pages = 0;
2098 	}
2099 	stock->cached = NULL;
2100 }
2101 
2102 /*
2103  * This must be called under preempt disabled or must be called by
2104  * a thread which is pinned to local cpu.
2105  */
2106 static void drain_local_stock(struct work_struct *dummy)
2107 {
2108 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2109 	drain_stock(stock);
2110 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2111 }
2112 
2113 /*
2114  * Cache charges(val) which is from res_counter, to local per_cpu area.
2115  * This will be consumed by consume_stock() function, later.
2116  */
2117 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2118 {
2119 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2120 
2121 	if (stock->cached != memcg) { /* reset if necessary */
2122 		drain_stock(stock);
2123 		stock->cached = memcg;
2124 	}
2125 	stock->nr_pages += nr_pages;
2126 	put_cpu_var(memcg_stock);
2127 }
2128 
2129 /*
2130  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2131  * of the hierarchy under it. sync flag says whether we should block
2132  * until the work is done.
2133  */
2134 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2135 {
2136 	int cpu, curcpu;
2137 
2138 	/* Notify other cpus that system-wide "drain" is running */
2139 	get_online_cpus();
2140 	curcpu = get_cpu();
2141 	for_each_online_cpu(cpu) {
2142 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2143 		struct mem_cgroup *memcg;
2144 
2145 		memcg = stock->cached;
2146 		if (!memcg || !stock->nr_pages)
2147 			continue;
2148 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2149 			continue;
2150 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2151 			if (cpu == curcpu)
2152 				drain_local_stock(&stock->work);
2153 			else
2154 				schedule_work_on(cpu, &stock->work);
2155 		}
2156 	}
2157 	put_cpu();
2158 
2159 	if (!sync)
2160 		goto out;
2161 
2162 	for_each_online_cpu(cpu) {
2163 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2164 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2165 			flush_work(&stock->work);
2166 	}
2167 out:
2168  	put_online_cpus();
2169 }
2170 
2171 /*
2172  * Tries to drain stocked charges in other cpus. This function is asynchronous
2173  * and just put a work per cpu for draining localy on each cpu. Caller can
2174  * expects some charges will be back to res_counter later but cannot wait for
2175  * it.
2176  */
2177 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2178 {
2179 	/*
2180 	 * If someone calls draining, avoid adding more kworker runs.
2181 	 */
2182 	if (!mutex_trylock(&percpu_charge_mutex))
2183 		return;
2184 	drain_all_stock(root_memcg, false);
2185 	mutex_unlock(&percpu_charge_mutex);
2186 }
2187 
2188 /* This is a synchronous drain interface. */
2189 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2190 {
2191 	/* called when force_empty is called */
2192 	mutex_lock(&percpu_charge_mutex);
2193 	drain_all_stock(root_memcg, true);
2194 	mutex_unlock(&percpu_charge_mutex);
2195 }
2196 
2197 /*
2198  * This function drains percpu counter value from DEAD cpu and
2199  * move it to local cpu. Note that this function can be preempted.
2200  */
2201 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2202 {
2203 	int i;
2204 
2205 	spin_lock(&memcg->pcp_counter_lock);
2206 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2207 		long x = per_cpu(memcg->stat->count[i], cpu);
2208 
2209 		per_cpu(memcg->stat->count[i], cpu) = 0;
2210 		memcg->nocpu_base.count[i] += x;
2211 	}
2212 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2213 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2214 
2215 		per_cpu(memcg->stat->events[i], cpu) = 0;
2216 		memcg->nocpu_base.events[i] += x;
2217 	}
2218 	spin_unlock(&memcg->pcp_counter_lock);
2219 }
2220 
2221 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2222 					unsigned long action,
2223 					void *hcpu)
2224 {
2225 	int cpu = (unsigned long)hcpu;
2226 	struct memcg_stock_pcp *stock;
2227 	struct mem_cgroup *iter;
2228 
2229 	if (action == CPU_ONLINE)
2230 		return NOTIFY_OK;
2231 
2232 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2233 		return NOTIFY_OK;
2234 
2235 	for_each_mem_cgroup(iter)
2236 		mem_cgroup_drain_pcp_counter(iter, cpu);
2237 
2238 	stock = &per_cpu(memcg_stock, cpu);
2239 	drain_stock(stock);
2240 	return NOTIFY_OK;
2241 }
2242 
2243 
2244 /* See __mem_cgroup_try_charge() for details */
2245 enum {
2246 	CHARGE_OK,		/* success */
2247 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2248 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2249 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2250 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2251 };
2252 
2253 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2254 				unsigned int nr_pages, bool oom_check)
2255 {
2256 	unsigned long csize = nr_pages * PAGE_SIZE;
2257 	struct mem_cgroup *mem_over_limit;
2258 	struct res_counter *fail_res;
2259 	unsigned long flags = 0;
2260 	int ret;
2261 
2262 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2263 
2264 	if (likely(!ret)) {
2265 		if (!do_swap_account)
2266 			return CHARGE_OK;
2267 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2268 		if (likely(!ret))
2269 			return CHARGE_OK;
2270 
2271 		res_counter_uncharge(&memcg->res, csize);
2272 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2273 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2274 	} else
2275 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2276 	/*
2277 	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2278 	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2279 	 *
2280 	 * Never reclaim on behalf of optional batching, retry with a
2281 	 * single page instead.
2282 	 */
2283 	if (nr_pages == CHARGE_BATCH)
2284 		return CHARGE_RETRY;
2285 
2286 	if (!(gfp_mask & __GFP_WAIT))
2287 		return CHARGE_WOULDBLOCK;
2288 
2289 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2290 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2291 		return CHARGE_RETRY;
2292 	/*
2293 	 * Even though the limit is exceeded at this point, reclaim
2294 	 * may have been able to free some pages.  Retry the charge
2295 	 * before killing the task.
2296 	 *
2297 	 * Only for regular pages, though: huge pages are rather
2298 	 * unlikely to succeed so close to the limit, and we fall back
2299 	 * to regular pages anyway in case of failure.
2300 	 */
2301 	if (nr_pages == 1 && ret)
2302 		return CHARGE_RETRY;
2303 
2304 	/*
2305 	 * At task move, charge accounts can be doubly counted. So, it's
2306 	 * better to wait until the end of task_move if something is going on.
2307 	 */
2308 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2309 		return CHARGE_RETRY;
2310 
2311 	/* If we don't need to call oom-killer at el, return immediately */
2312 	if (!oom_check)
2313 		return CHARGE_NOMEM;
2314 	/* check OOM */
2315 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2316 		return CHARGE_OOM_DIE;
2317 
2318 	return CHARGE_RETRY;
2319 }
2320 
2321 /*
2322  * __mem_cgroup_try_charge() does
2323  * 1. detect memcg to be charged against from passed *mm and *ptr,
2324  * 2. update res_counter
2325  * 3. call memory reclaim if necessary.
2326  *
2327  * In some special case, if the task is fatal, fatal_signal_pending() or
2328  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2329  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2330  * as possible without any hazards. 2: all pages should have a valid
2331  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2332  * pointer, that is treated as a charge to root_mem_cgroup.
2333  *
2334  * So __mem_cgroup_try_charge() will return
2335  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2336  *  -ENOMEM ...  charge failure because of resource limits.
2337  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2338  *
2339  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2340  * the oom-killer can be invoked.
2341  */
2342 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2343 				   gfp_t gfp_mask,
2344 				   unsigned int nr_pages,
2345 				   struct mem_cgroup **ptr,
2346 				   bool oom)
2347 {
2348 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2349 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2350 	struct mem_cgroup *memcg = NULL;
2351 	int ret;
2352 
2353 	/*
2354 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2355 	 * in system level. So, allow to go ahead dying process in addition to
2356 	 * MEMDIE process.
2357 	 */
2358 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2359 		     || fatal_signal_pending(current)))
2360 		goto bypass;
2361 
2362 	/*
2363 	 * We always charge the cgroup the mm_struct belongs to.
2364 	 * The mm_struct's mem_cgroup changes on task migration if the
2365 	 * thread group leader migrates. It's possible that mm is not
2366 	 * set, if so charge the root memcg (happens for pagecache usage).
2367 	 */
2368 	if (!*ptr && !mm)
2369 		*ptr = root_mem_cgroup;
2370 again:
2371 	if (*ptr) { /* css should be a valid one */
2372 		memcg = *ptr;
2373 		VM_BUG_ON(css_is_removed(&memcg->css));
2374 		if (mem_cgroup_is_root(memcg))
2375 			goto done;
2376 		if (nr_pages == 1 && consume_stock(memcg))
2377 			goto done;
2378 		css_get(&memcg->css);
2379 	} else {
2380 		struct task_struct *p;
2381 
2382 		rcu_read_lock();
2383 		p = rcu_dereference(mm->owner);
2384 		/*
2385 		 * Because we don't have task_lock(), "p" can exit.
2386 		 * In that case, "memcg" can point to root or p can be NULL with
2387 		 * race with swapoff. Then, we have small risk of mis-accouning.
2388 		 * But such kind of mis-account by race always happens because
2389 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2390 		 * small race, here.
2391 		 * (*) swapoff at el will charge against mm-struct not against
2392 		 * task-struct. So, mm->owner can be NULL.
2393 		 */
2394 		memcg = mem_cgroup_from_task(p);
2395 		if (!memcg)
2396 			memcg = root_mem_cgroup;
2397 		if (mem_cgroup_is_root(memcg)) {
2398 			rcu_read_unlock();
2399 			goto done;
2400 		}
2401 		if (nr_pages == 1 && consume_stock(memcg)) {
2402 			/*
2403 			 * It seems dagerous to access memcg without css_get().
2404 			 * But considering how consume_stok works, it's not
2405 			 * necessary. If consume_stock success, some charges
2406 			 * from this memcg are cached on this cpu. So, we
2407 			 * don't need to call css_get()/css_tryget() before
2408 			 * calling consume_stock().
2409 			 */
2410 			rcu_read_unlock();
2411 			goto done;
2412 		}
2413 		/* after here, we may be blocked. we need to get refcnt */
2414 		if (!css_tryget(&memcg->css)) {
2415 			rcu_read_unlock();
2416 			goto again;
2417 		}
2418 		rcu_read_unlock();
2419 	}
2420 
2421 	do {
2422 		bool oom_check;
2423 
2424 		/* If killed, bypass charge */
2425 		if (fatal_signal_pending(current)) {
2426 			css_put(&memcg->css);
2427 			goto bypass;
2428 		}
2429 
2430 		oom_check = false;
2431 		if (oom && !nr_oom_retries) {
2432 			oom_check = true;
2433 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2434 		}
2435 
2436 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2437 		switch (ret) {
2438 		case CHARGE_OK:
2439 			break;
2440 		case CHARGE_RETRY: /* not in OOM situation but retry */
2441 			batch = nr_pages;
2442 			css_put(&memcg->css);
2443 			memcg = NULL;
2444 			goto again;
2445 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2446 			css_put(&memcg->css);
2447 			goto nomem;
2448 		case CHARGE_NOMEM: /* OOM routine works */
2449 			if (!oom) {
2450 				css_put(&memcg->css);
2451 				goto nomem;
2452 			}
2453 			/* If oom, we never return -ENOMEM */
2454 			nr_oom_retries--;
2455 			break;
2456 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2457 			css_put(&memcg->css);
2458 			goto bypass;
2459 		}
2460 	} while (ret != CHARGE_OK);
2461 
2462 	if (batch > nr_pages)
2463 		refill_stock(memcg, batch - nr_pages);
2464 	css_put(&memcg->css);
2465 done:
2466 	*ptr = memcg;
2467 	return 0;
2468 nomem:
2469 	*ptr = NULL;
2470 	return -ENOMEM;
2471 bypass:
2472 	*ptr = root_mem_cgroup;
2473 	return -EINTR;
2474 }
2475 
2476 /*
2477  * Somemtimes we have to undo a charge we got by try_charge().
2478  * This function is for that and do uncharge, put css's refcnt.
2479  * gotten by try_charge().
2480  */
2481 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2482 				       unsigned int nr_pages)
2483 {
2484 	if (!mem_cgroup_is_root(memcg)) {
2485 		unsigned long bytes = nr_pages * PAGE_SIZE;
2486 
2487 		res_counter_uncharge(&memcg->res, bytes);
2488 		if (do_swap_account)
2489 			res_counter_uncharge(&memcg->memsw, bytes);
2490 	}
2491 }
2492 
2493 /*
2494  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2495  * This is useful when moving usage to parent cgroup.
2496  */
2497 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2498 					unsigned int nr_pages)
2499 {
2500 	unsigned long bytes = nr_pages * PAGE_SIZE;
2501 
2502 	if (mem_cgroup_is_root(memcg))
2503 		return;
2504 
2505 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2506 	if (do_swap_account)
2507 		res_counter_uncharge_until(&memcg->memsw,
2508 						memcg->memsw.parent, bytes);
2509 }
2510 
2511 /*
2512  * A helper function to get mem_cgroup from ID. must be called under
2513  * rcu_read_lock(). The caller must check css_is_removed() or some if
2514  * it's concern. (dropping refcnt from swap can be called against removed
2515  * memcg.)
2516  */
2517 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2518 {
2519 	struct cgroup_subsys_state *css;
2520 
2521 	/* ID 0 is unused ID */
2522 	if (!id)
2523 		return NULL;
2524 	css = css_lookup(&mem_cgroup_subsys, id);
2525 	if (!css)
2526 		return NULL;
2527 	return mem_cgroup_from_css(css);
2528 }
2529 
2530 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2531 {
2532 	struct mem_cgroup *memcg = NULL;
2533 	struct page_cgroup *pc;
2534 	unsigned short id;
2535 	swp_entry_t ent;
2536 
2537 	VM_BUG_ON(!PageLocked(page));
2538 
2539 	pc = lookup_page_cgroup(page);
2540 	lock_page_cgroup(pc);
2541 	if (PageCgroupUsed(pc)) {
2542 		memcg = pc->mem_cgroup;
2543 		if (memcg && !css_tryget(&memcg->css))
2544 			memcg = NULL;
2545 	} else if (PageSwapCache(page)) {
2546 		ent.val = page_private(page);
2547 		id = lookup_swap_cgroup_id(ent);
2548 		rcu_read_lock();
2549 		memcg = mem_cgroup_lookup(id);
2550 		if (memcg && !css_tryget(&memcg->css))
2551 			memcg = NULL;
2552 		rcu_read_unlock();
2553 	}
2554 	unlock_page_cgroup(pc);
2555 	return memcg;
2556 }
2557 
2558 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2559 				       struct page *page,
2560 				       unsigned int nr_pages,
2561 				       enum charge_type ctype,
2562 				       bool lrucare)
2563 {
2564 	struct page_cgroup *pc = lookup_page_cgroup(page);
2565 	struct zone *uninitialized_var(zone);
2566 	struct lruvec *lruvec;
2567 	bool was_on_lru = false;
2568 	bool anon;
2569 
2570 	lock_page_cgroup(pc);
2571 	VM_BUG_ON(PageCgroupUsed(pc));
2572 	/*
2573 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2574 	 * accessed by any other context at this point.
2575 	 */
2576 
2577 	/*
2578 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2579 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2580 	 */
2581 	if (lrucare) {
2582 		zone = page_zone(page);
2583 		spin_lock_irq(&zone->lru_lock);
2584 		if (PageLRU(page)) {
2585 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2586 			ClearPageLRU(page);
2587 			del_page_from_lru_list(page, lruvec, page_lru(page));
2588 			was_on_lru = true;
2589 		}
2590 	}
2591 
2592 	pc->mem_cgroup = memcg;
2593 	/*
2594 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2595 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2596 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2597 	 * before USED bit, we need memory barrier here.
2598 	 * See mem_cgroup_add_lru_list(), etc.
2599  	 */
2600 	smp_wmb();
2601 	SetPageCgroupUsed(pc);
2602 
2603 	if (lrucare) {
2604 		if (was_on_lru) {
2605 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2606 			VM_BUG_ON(PageLRU(page));
2607 			SetPageLRU(page);
2608 			add_page_to_lru_list(page, lruvec, page_lru(page));
2609 		}
2610 		spin_unlock_irq(&zone->lru_lock);
2611 	}
2612 
2613 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2614 		anon = true;
2615 	else
2616 		anon = false;
2617 
2618 	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2619 	unlock_page_cgroup(pc);
2620 
2621 	/*
2622 	 * "charge_statistics" updated event counter. Then, check it.
2623 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2624 	 * if they exceeds softlimit.
2625 	 */
2626 	memcg_check_events(memcg, page);
2627 }
2628 
2629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2630 
2631 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2632 /*
2633  * Because tail pages are not marked as "used", set it. We're under
2634  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2635  * charge/uncharge will be never happen and move_account() is done under
2636  * compound_lock(), so we don't have to take care of races.
2637  */
2638 void mem_cgroup_split_huge_fixup(struct page *head)
2639 {
2640 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2641 	struct page_cgroup *pc;
2642 	int i;
2643 
2644 	if (mem_cgroup_disabled())
2645 		return;
2646 	for (i = 1; i < HPAGE_PMD_NR; i++) {
2647 		pc = head_pc + i;
2648 		pc->mem_cgroup = head_pc->mem_cgroup;
2649 		smp_wmb();/* see __commit_charge() */
2650 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2651 	}
2652 }
2653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2654 
2655 /**
2656  * mem_cgroup_move_account - move account of the page
2657  * @page: the page
2658  * @nr_pages: number of regular pages (>1 for huge pages)
2659  * @pc:	page_cgroup of the page.
2660  * @from: mem_cgroup which the page is moved from.
2661  * @to:	mem_cgroup which the page is moved to. @from != @to.
2662  *
2663  * The caller must confirm following.
2664  * - page is not on LRU (isolate_page() is useful.)
2665  * - compound_lock is held when nr_pages > 1
2666  *
2667  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2668  * from old cgroup.
2669  */
2670 static int mem_cgroup_move_account(struct page *page,
2671 				   unsigned int nr_pages,
2672 				   struct page_cgroup *pc,
2673 				   struct mem_cgroup *from,
2674 				   struct mem_cgroup *to)
2675 {
2676 	unsigned long flags;
2677 	int ret;
2678 	bool anon = PageAnon(page);
2679 
2680 	VM_BUG_ON(from == to);
2681 	VM_BUG_ON(PageLRU(page));
2682 	/*
2683 	 * The page is isolated from LRU. So, collapse function
2684 	 * will not handle this page. But page splitting can happen.
2685 	 * Do this check under compound_page_lock(). The caller should
2686 	 * hold it.
2687 	 */
2688 	ret = -EBUSY;
2689 	if (nr_pages > 1 && !PageTransHuge(page))
2690 		goto out;
2691 
2692 	lock_page_cgroup(pc);
2693 
2694 	ret = -EINVAL;
2695 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2696 		goto unlock;
2697 
2698 	move_lock_mem_cgroup(from, &flags);
2699 
2700 	if (!anon && page_mapped(page)) {
2701 		/* Update mapped_file data for mem_cgroup */
2702 		preempt_disable();
2703 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2704 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2705 		preempt_enable();
2706 	}
2707 	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2708 
2709 	/* caller should have done css_get */
2710 	pc->mem_cgroup = to;
2711 	mem_cgroup_charge_statistics(to, anon, nr_pages);
2712 	/*
2713 	 * We charges against "to" which may not have any tasks. Then, "to"
2714 	 * can be under rmdir(). But in current implementation, caller of
2715 	 * this function is just force_empty() and move charge, so it's
2716 	 * guaranteed that "to" is never removed. So, we don't check rmdir
2717 	 * status here.
2718 	 */
2719 	move_unlock_mem_cgroup(from, &flags);
2720 	ret = 0;
2721 unlock:
2722 	unlock_page_cgroup(pc);
2723 	/*
2724 	 * check events
2725 	 */
2726 	memcg_check_events(to, page);
2727 	memcg_check_events(from, page);
2728 out:
2729 	return ret;
2730 }
2731 
2732 /*
2733  * move charges to its parent.
2734  */
2735 
2736 static int mem_cgroup_move_parent(struct page *page,
2737 				  struct page_cgroup *pc,
2738 				  struct mem_cgroup *child)
2739 {
2740 	struct mem_cgroup *parent;
2741 	unsigned int nr_pages;
2742 	unsigned long uninitialized_var(flags);
2743 	int ret;
2744 
2745 	/* Is ROOT ? */
2746 	if (mem_cgroup_is_root(child))
2747 		return -EINVAL;
2748 
2749 	ret = -EBUSY;
2750 	if (!get_page_unless_zero(page))
2751 		goto out;
2752 	if (isolate_lru_page(page))
2753 		goto put;
2754 
2755 	nr_pages = hpage_nr_pages(page);
2756 
2757 	parent = parent_mem_cgroup(child);
2758 	/*
2759 	 * If no parent, move charges to root cgroup.
2760 	 */
2761 	if (!parent)
2762 		parent = root_mem_cgroup;
2763 
2764 	if (nr_pages > 1)
2765 		flags = compound_lock_irqsave(page);
2766 
2767 	ret = mem_cgroup_move_account(page, nr_pages,
2768 				pc, child, parent);
2769 	if (!ret)
2770 		__mem_cgroup_cancel_local_charge(child, nr_pages);
2771 
2772 	if (nr_pages > 1)
2773 		compound_unlock_irqrestore(page, flags);
2774 	putback_lru_page(page);
2775 put:
2776 	put_page(page);
2777 out:
2778 	return ret;
2779 }
2780 
2781 /*
2782  * Charge the memory controller for page usage.
2783  * Return
2784  * 0 if the charge was successful
2785  * < 0 if the cgroup is over its limit
2786  */
2787 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2788 				gfp_t gfp_mask, enum charge_type ctype)
2789 {
2790 	struct mem_cgroup *memcg = NULL;
2791 	unsigned int nr_pages = 1;
2792 	bool oom = true;
2793 	int ret;
2794 
2795 	if (PageTransHuge(page)) {
2796 		nr_pages <<= compound_order(page);
2797 		VM_BUG_ON(!PageTransHuge(page));
2798 		/*
2799 		 * Never OOM-kill a process for a huge page.  The
2800 		 * fault handler will fall back to regular pages.
2801 		 */
2802 		oom = false;
2803 	}
2804 
2805 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2806 	if (ret == -ENOMEM)
2807 		return ret;
2808 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2809 	return 0;
2810 }
2811 
2812 int mem_cgroup_newpage_charge(struct page *page,
2813 			      struct mm_struct *mm, gfp_t gfp_mask)
2814 {
2815 	if (mem_cgroup_disabled())
2816 		return 0;
2817 	VM_BUG_ON(page_mapped(page));
2818 	VM_BUG_ON(page->mapping && !PageAnon(page));
2819 	VM_BUG_ON(!mm);
2820 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2821 					MEM_CGROUP_CHARGE_TYPE_ANON);
2822 }
2823 
2824 /*
2825  * While swap-in, try_charge -> commit or cancel, the page is locked.
2826  * And when try_charge() successfully returns, one refcnt to memcg without
2827  * struct page_cgroup is acquired. This refcnt will be consumed by
2828  * "commit()" or removed by "cancel()"
2829  */
2830 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2831 					  struct page *page,
2832 					  gfp_t mask,
2833 					  struct mem_cgroup **memcgp)
2834 {
2835 	struct mem_cgroup *memcg;
2836 	struct page_cgroup *pc;
2837 	int ret;
2838 
2839 	pc = lookup_page_cgroup(page);
2840 	/*
2841 	 * Every swap fault against a single page tries to charge the
2842 	 * page, bail as early as possible.  shmem_unuse() encounters
2843 	 * already charged pages, too.  The USED bit is protected by
2844 	 * the page lock, which serializes swap cache removal, which
2845 	 * in turn serializes uncharging.
2846 	 */
2847 	if (PageCgroupUsed(pc))
2848 		return 0;
2849 	if (!do_swap_account)
2850 		goto charge_cur_mm;
2851 	memcg = try_get_mem_cgroup_from_page(page);
2852 	if (!memcg)
2853 		goto charge_cur_mm;
2854 	*memcgp = memcg;
2855 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2856 	css_put(&memcg->css);
2857 	if (ret == -EINTR)
2858 		ret = 0;
2859 	return ret;
2860 charge_cur_mm:
2861 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2862 	if (ret == -EINTR)
2863 		ret = 0;
2864 	return ret;
2865 }
2866 
2867 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2868 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2869 {
2870 	*memcgp = NULL;
2871 	if (mem_cgroup_disabled())
2872 		return 0;
2873 	/*
2874 	 * A racing thread's fault, or swapoff, may have already
2875 	 * updated the pte, and even removed page from swap cache: in
2876 	 * those cases unuse_pte()'s pte_same() test will fail; but
2877 	 * there's also a KSM case which does need to charge the page.
2878 	 */
2879 	if (!PageSwapCache(page)) {
2880 		int ret;
2881 
2882 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2883 		if (ret == -EINTR)
2884 			ret = 0;
2885 		return ret;
2886 	}
2887 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2888 }
2889 
2890 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2891 {
2892 	if (mem_cgroup_disabled())
2893 		return;
2894 	if (!memcg)
2895 		return;
2896 	__mem_cgroup_cancel_charge(memcg, 1);
2897 }
2898 
2899 static void
2900 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2901 					enum charge_type ctype)
2902 {
2903 	if (mem_cgroup_disabled())
2904 		return;
2905 	if (!memcg)
2906 		return;
2907 	cgroup_exclude_rmdir(&memcg->css);
2908 
2909 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2910 	/*
2911 	 * Now swap is on-memory. This means this page may be
2912 	 * counted both as mem and swap....double count.
2913 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2914 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2915 	 * may call delete_from_swap_cache() before reach here.
2916 	 */
2917 	if (do_swap_account && PageSwapCache(page)) {
2918 		swp_entry_t ent = {.val = page_private(page)};
2919 		mem_cgroup_uncharge_swap(ent);
2920 	}
2921 	/*
2922 	 * At swapin, we may charge account against cgroup which has no tasks.
2923 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2924 	 * In that case, we need to call pre_destroy() again. check it here.
2925 	 */
2926 	cgroup_release_and_wakeup_rmdir(&memcg->css);
2927 }
2928 
2929 void mem_cgroup_commit_charge_swapin(struct page *page,
2930 				     struct mem_cgroup *memcg)
2931 {
2932 	__mem_cgroup_commit_charge_swapin(page, memcg,
2933 					  MEM_CGROUP_CHARGE_TYPE_ANON);
2934 }
2935 
2936 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2937 				gfp_t gfp_mask)
2938 {
2939 	struct mem_cgroup *memcg = NULL;
2940 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2941 	int ret;
2942 
2943 	if (mem_cgroup_disabled())
2944 		return 0;
2945 	if (PageCompound(page))
2946 		return 0;
2947 
2948 	if (!PageSwapCache(page))
2949 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2950 	else { /* page is swapcache/shmem */
2951 		ret = __mem_cgroup_try_charge_swapin(mm, page,
2952 						     gfp_mask, &memcg);
2953 		if (!ret)
2954 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
2955 	}
2956 	return ret;
2957 }
2958 
2959 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2960 				   unsigned int nr_pages,
2961 				   const enum charge_type ctype)
2962 {
2963 	struct memcg_batch_info *batch = NULL;
2964 	bool uncharge_memsw = true;
2965 
2966 	/* If swapout, usage of swap doesn't decrease */
2967 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2968 		uncharge_memsw = false;
2969 
2970 	batch = &current->memcg_batch;
2971 	/*
2972 	 * In usual, we do css_get() when we remember memcg pointer.
2973 	 * But in this case, we keep res->usage until end of a series of
2974 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2975 	 */
2976 	if (!batch->memcg)
2977 		batch->memcg = memcg;
2978 	/*
2979 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2980 	 * In those cases, all pages freed continuously can be expected to be in
2981 	 * the same cgroup and we have chance to coalesce uncharges.
2982 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2983 	 * because we want to do uncharge as soon as possible.
2984 	 */
2985 
2986 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2987 		goto direct_uncharge;
2988 
2989 	if (nr_pages > 1)
2990 		goto direct_uncharge;
2991 
2992 	/*
2993 	 * In typical case, batch->memcg == mem. This means we can
2994 	 * merge a series of uncharges to an uncharge of res_counter.
2995 	 * If not, we uncharge res_counter ony by one.
2996 	 */
2997 	if (batch->memcg != memcg)
2998 		goto direct_uncharge;
2999 	/* remember freed charge and uncharge it later */
3000 	batch->nr_pages++;
3001 	if (uncharge_memsw)
3002 		batch->memsw_nr_pages++;
3003 	return;
3004 direct_uncharge:
3005 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3006 	if (uncharge_memsw)
3007 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3008 	if (unlikely(batch->memcg != memcg))
3009 		memcg_oom_recover(memcg);
3010 }
3011 
3012 /*
3013  * uncharge if !page_mapped(page)
3014  */
3015 static struct mem_cgroup *
3016 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3017 			     bool end_migration)
3018 {
3019 	struct mem_cgroup *memcg = NULL;
3020 	unsigned int nr_pages = 1;
3021 	struct page_cgroup *pc;
3022 	bool anon;
3023 
3024 	if (mem_cgroup_disabled())
3025 		return NULL;
3026 
3027 	VM_BUG_ON(PageSwapCache(page));
3028 
3029 	if (PageTransHuge(page)) {
3030 		nr_pages <<= compound_order(page);
3031 		VM_BUG_ON(!PageTransHuge(page));
3032 	}
3033 	/*
3034 	 * Check if our page_cgroup is valid
3035 	 */
3036 	pc = lookup_page_cgroup(page);
3037 	if (unlikely(!PageCgroupUsed(pc)))
3038 		return NULL;
3039 
3040 	lock_page_cgroup(pc);
3041 
3042 	memcg = pc->mem_cgroup;
3043 
3044 	if (!PageCgroupUsed(pc))
3045 		goto unlock_out;
3046 
3047 	anon = PageAnon(page);
3048 
3049 	switch (ctype) {
3050 	case MEM_CGROUP_CHARGE_TYPE_ANON:
3051 		/*
3052 		 * Generally PageAnon tells if it's the anon statistics to be
3053 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3054 		 * used before page reached the stage of being marked PageAnon.
3055 		 */
3056 		anon = true;
3057 		/* fallthrough */
3058 	case MEM_CGROUP_CHARGE_TYPE_DROP:
3059 		/* See mem_cgroup_prepare_migration() */
3060 		if (page_mapped(page))
3061 			goto unlock_out;
3062 		/*
3063 		 * Pages under migration may not be uncharged.  But
3064 		 * end_migration() /must/ be the one uncharging the
3065 		 * unused post-migration page and so it has to call
3066 		 * here with the migration bit still set.  See the
3067 		 * res_counter handling below.
3068 		 */
3069 		if (!end_migration && PageCgroupMigration(pc))
3070 			goto unlock_out;
3071 		break;
3072 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3073 		if (!PageAnon(page)) {	/* Shared memory */
3074 			if (page->mapping && !page_is_file_cache(page))
3075 				goto unlock_out;
3076 		} else if (page_mapped(page)) /* Anon */
3077 				goto unlock_out;
3078 		break;
3079 	default:
3080 		break;
3081 	}
3082 
3083 	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3084 
3085 	ClearPageCgroupUsed(pc);
3086 	/*
3087 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3088 	 * freed from LRU. This is safe because uncharged page is expected not
3089 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3090 	 * special functions.
3091 	 */
3092 
3093 	unlock_page_cgroup(pc);
3094 	/*
3095 	 * even after unlock, we have memcg->res.usage here and this memcg
3096 	 * will never be freed.
3097 	 */
3098 	memcg_check_events(memcg, page);
3099 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3100 		mem_cgroup_swap_statistics(memcg, true);
3101 		mem_cgroup_get(memcg);
3102 	}
3103 	/*
3104 	 * Migration does not charge the res_counter for the
3105 	 * replacement page, so leave it alone when phasing out the
3106 	 * page that is unused after the migration.
3107 	 */
3108 	if (!end_migration && !mem_cgroup_is_root(memcg))
3109 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3110 
3111 	return memcg;
3112 
3113 unlock_out:
3114 	unlock_page_cgroup(pc);
3115 	return NULL;
3116 }
3117 
3118 void mem_cgroup_uncharge_page(struct page *page)
3119 {
3120 	/* early check. */
3121 	if (page_mapped(page))
3122 		return;
3123 	VM_BUG_ON(page->mapping && !PageAnon(page));
3124 	if (PageSwapCache(page))
3125 		return;
3126 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3127 }
3128 
3129 void mem_cgroup_uncharge_cache_page(struct page *page)
3130 {
3131 	VM_BUG_ON(page_mapped(page));
3132 	VM_BUG_ON(page->mapping);
3133 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3134 }
3135 
3136 /*
3137  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3138  * In that cases, pages are freed continuously and we can expect pages
3139  * are in the same memcg. All these calls itself limits the number of
3140  * pages freed at once, then uncharge_start/end() is called properly.
3141  * This may be called prural(2) times in a context,
3142  */
3143 
3144 void mem_cgroup_uncharge_start(void)
3145 {
3146 	current->memcg_batch.do_batch++;
3147 	/* We can do nest. */
3148 	if (current->memcg_batch.do_batch == 1) {
3149 		current->memcg_batch.memcg = NULL;
3150 		current->memcg_batch.nr_pages = 0;
3151 		current->memcg_batch.memsw_nr_pages = 0;
3152 	}
3153 }
3154 
3155 void mem_cgroup_uncharge_end(void)
3156 {
3157 	struct memcg_batch_info *batch = &current->memcg_batch;
3158 
3159 	if (!batch->do_batch)
3160 		return;
3161 
3162 	batch->do_batch--;
3163 	if (batch->do_batch) /* If stacked, do nothing. */
3164 		return;
3165 
3166 	if (!batch->memcg)
3167 		return;
3168 	/*
3169 	 * This "batch->memcg" is valid without any css_get/put etc...
3170 	 * bacause we hide charges behind us.
3171 	 */
3172 	if (batch->nr_pages)
3173 		res_counter_uncharge(&batch->memcg->res,
3174 				     batch->nr_pages * PAGE_SIZE);
3175 	if (batch->memsw_nr_pages)
3176 		res_counter_uncharge(&batch->memcg->memsw,
3177 				     batch->memsw_nr_pages * PAGE_SIZE);
3178 	memcg_oom_recover(batch->memcg);
3179 	/* forget this pointer (for sanity check) */
3180 	batch->memcg = NULL;
3181 }
3182 
3183 #ifdef CONFIG_SWAP
3184 /*
3185  * called after __delete_from_swap_cache() and drop "page" account.
3186  * memcg information is recorded to swap_cgroup of "ent"
3187  */
3188 void
3189 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3190 {
3191 	struct mem_cgroup *memcg;
3192 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3193 
3194 	if (!swapout) /* this was a swap cache but the swap is unused ! */
3195 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3196 
3197 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3198 
3199 	/*
3200 	 * record memcg information,  if swapout && memcg != NULL,
3201 	 * mem_cgroup_get() was called in uncharge().
3202 	 */
3203 	if (do_swap_account && swapout && memcg)
3204 		swap_cgroup_record(ent, css_id(&memcg->css));
3205 }
3206 #endif
3207 
3208 #ifdef CONFIG_MEMCG_SWAP
3209 /*
3210  * called from swap_entry_free(). remove record in swap_cgroup and
3211  * uncharge "memsw" account.
3212  */
3213 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3214 {
3215 	struct mem_cgroup *memcg;
3216 	unsigned short id;
3217 
3218 	if (!do_swap_account)
3219 		return;
3220 
3221 	id = swap_cgroup_record(ent, 0);
3222 	rcu_read_lock();
3223 	memcg = mem_cgroup_lookup(id);
3224 	if (memcg) {
3225 		/*
3226 		 * We uncharge this because swap is freed.
3227 		 * This memcg can be obsolete one. We avoid calling css_tryget
3228 		 */
3229 		if (!mem_cgroup_is_root(memcg))
3230 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3231 		mem_cgroup_swap_statistics(memcg, false);
3232 		mem_cgroup_put(memcg);
3233 	}
3234 	rcu_read_unlock();
3235 }
3236 
3237 /**
3238  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3239  * @entry: swap entry to be moved
3240  * @from:  mem_cgroup which the entry is moved from
3241  * @to:  mem_cgroup which the entry is moved to
3242  *
3243  * It succeeds only when the swap_cgroup's record for this entry is the same
3244  * as the mem_cgroup's id of @from.
3245  *
3246  * Returns 0 on success, -EINVAL on failure.
3247  *
3248  * The caller must have charged to @to, IOW, called res_counter_charge() about
3249  * both res and memsw, and called css_get().
3250  */
3251 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3252 				struct mem_cgroup *from, struct mem_cgroup *to)
3253 {
3254 	unsigned short old_id, new_id;
3255 
3256 	old_id = css_id(&from->css);
3257 	new_id = css_id(&to->css);
3258 
3259 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3260 		mem_cgroup_swap_statistics(from, false);
3261 		mem_cgroup_swap_statistics(to, true);
3262 		/*
3263 		 * This function is only called from task migration context now.
3264 		 * It postpones res_counter and refcount handling till the end
3265 		 * of task migration(mem_cgroup_clear_mc()) for performance
3266 		 * improvement. But we cannot postpone mem_cgroup_get(to)
3267 		 * because if the process that has been moved to @to does
3268 		 * swap-in, the refcount of @to might be decreased to 0.
3269 		 */
3270 		mem_cgroup_get(to);
3271 		return 0;
3272 	}
3273 	return -EINVAL;
3274 }
3275 #else
3276 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3277 				struct mem_cgroup *from, struct mem_cgroup *to)
3278 {
3279 	return -EINVAL;
3280 }
3281 #endif
3282 
3283 /*
3284  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3285  * page belongs to.
3286  */
3287 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3288 				  struct mem_cgroup **memcgp)
3289 {
3290 	struct mem_cgroup *memcg = NULL;
3291 	struct page_cgroup *pc;
3292 	enum charge_type ctype;
3293 
3294 	*memcgp = NULL;
3295 
3296 	VM_BUG_ON(PageTransHuge(page));
3297 	if (mem_cgroup_disabled())
3298 		return;
3299 
3300 	pc = lookup_page_cgroup(page);
3301 	lock_page_cgroup(pc);
3302 	if (PageCgroupUsed(pc)) {
3303 		memcg = pc->mem_cgroup;
3304 		css_get(&memcg->css);
3305 		/*
3306 		 * At migrating an anonymous page, its mapcount goes down
3307 		 * to 0 and uncharge() will be called. But, even if it's fully
3308 		 * unmapped, migration may fail and this page has to be
3309 		 * charged again. We set MIGRATION flag here and delay uncharge
3310 		 * until end_migration() is called
3311 		 *
3312 		 * Corner Case Thinking
3313 		 * A)
3314 		 * When the old page was mapped as Anon and it's unmap-and-freed
3315 		 * while migration was ongoing.
3316 		 * If unmap finds the old page, uncharge() of it will be delayed
3317 		 * until end_migration(). If unmap finds a new page, it's
3318 		 * uncharged when it make mapcount to be 1->0. If unmap code
3319 		 * finds swap_migration_entry, the new page will not be mapped
3320 		 * and end_migration() will find it(mapcount==0).
3321 		 *
3322 		 * B)
3323 		 * When the old page was mapped but migraion fails, the kernel
3324 		 * remaps it. A charge for it is kept by MIGRATION flag even
3325 		 * if mapcount goes down to 0. We can do remap successfully
3326 		 * without charging it again.
3327 		 *
3328 		 * C)
3329 		 * The "old" page is under lock_page() until the end of
3330 		 * migration, so, the old page itself will not be swapped-out.
3331 		 * If the new page is swapped out before end_migraton, our
3332 		 * hook to usual swap-out path will catch the event.
3333 		 */
3334 		if (PageAnon(page))
3335 			SetPageCgroupMigration(pc);
3336 	}
3337 	unlock_page_cgroup(pc);
3338 	/*
3339 	 * If the page is not charged at this point,
3340 	 * we return here.
3341 	 */
3342 	if (!memcg)
3343 		return;
3344 
3345 	*memcgp = memcg;
3346 	/*
3347 	 * We charge new page before it's used/mapped. So, even if unlock_page()
3348 	 * is called before end_migration, we can catch all events on this new
3349 	 * page. In the case new page is migrated but not remapped, new page's
3350 	 * mapcount will be finally 0 and we call uncharge in end_migration().
3351 	 */
3352 	if (PageAnon(page))
3353 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3354 	else
3355 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3356 	/*
3357 	 * The page is committed to the memcg, but it's not actually
3358 	 * charged to the res_counter since we plan on replacing the
3359 	 * old one and only one page is going to be left afterwards.
3360 	 */
3361 	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3362 }
3363 
3364 /* remove redundant charge if migration failed*/
3365 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3366 	struct page *oldpage, struct page *newpage, bool migration_ok)
3367 {
3368 	struct page *used, *unused;
3369 	struct page_cgroup *pc;
3370 	bool anon;
3371 
3372 	if (!memcg)
3373 		return;
3374 	/* blocks rmdir() */
3375 	cgroup_exclude_rmdir(&memcg->css);
3376 	if (!migration_ok) {
3377 		used = oldpage;
3378 		unused = newpage;
3379 	} else {
3380 		used = newpage;
3381 		unused = oldpage;
3382 	}
3383 	anon = PageAnon(used);
3384 	__mem_cgroup_uncharge_common(unused,
3385 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3386 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
3387 				     true);
3388 	css_put(&memcg->css);
3389 	/*
3390 	 * We disallowed uncharge of pages under migration because mapcount
3391 	 * of the page goes down to zero, temporarly.
3392 	 * Clear the flag and check the page should be charged.
3393 	 */
3394 	pc = lookup_page_cgroup(oldpage);
3395 	lock_page_cgroup(pc);
3396 	ClearPageCgroupMigration(pc);
3397 	unlock_page_cgroup(pc);
3398 
3399 	/*
3400 	 * If a page is a file cache, radix-tree replacement is very atomic
3401 	 * and we can skip this check. When it was an Anon page, its mapcount
3402 	 * goes down to 0. But because we added MIGRATION flage, it's not
3403 	 * uncharged yet. There are several case but page->mapcount check
3404 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3405 	 * check. (see prepare_charge() also)
3406 	 */
3407 	if (anon)
3408 		mem_cgroup_uncharge_page(used);
3409 	/*
3410 	 * At migration, we may charge account against cgroup which has no
3411 	 * tasks.
3412 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3413 	 * In that case, we need to call pre_destroy() again. check it here.
3414 	 */
3415 	cgroup_release_and_wakeup_rmdir(&memcg->css);
3416 }
3417 
3418 /*
3419  * At replace page cache, newpage is not under any memcg but it's on
3420  * LRU. So, this function doesn't touch res_counter but handles LRU
3421  * in correct way. Both pages are locked so we cannot race with uncharge.
3422  */
3423 void mem_cgroup_replace_page_cache(struct page *oldpage,
3424 				  struct page *newpage)
3425 {
3426 	struct mem_cgroup *memcg = NULL;
3427 	struct page_cgroup *pc;
3428 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3429 
3430 	if (mem_cgroup_disabled())
3431 		return;
3432 
3433 	pc = lookup_page_cgroup(oldpage);
3434 	/* fix accounting on old pages */
3435 	lock_page_cgroup(pc);
3436 	if (PageCgroupUsed(pc)) {
3437 		memcg = pc->mem_cgroup;
3438 		mem_cgroup_charge_statistics(memcg, false, -1);
3439 		ClearPageCgroupUsed(pc);
3440 	}
3441 	unlock_page_cgroup(pc);
3442 
3443 	/*
3444 	 * When called from shmem_replace_page(), in some cases the
3445 	 * oldpage has already been charged, and in some cases not.
3446 	 */
3447 	if (!memcg)
3448 		return;
3449 	/*
3450 	 * Even if newpage->mapping was NULL before starting replacement,
3451 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3452 	 * LRU while we overwrite pc->mem_cgroup.
3453 	 */
3454 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3455 }
3456 
3457 #ifdef CONFIG_DEBUG_VM
3458 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3459 {
3460 	struct page_cgroup *pc;
3461 
3462 	pc = lookup_page_cgroup(page);
3463 	/*
3464 	 * Can be NULL while feeding pages into the page allocator for
3465 	 * the first time, i.e. during boot or memory hotplug;
3466 	 * or when mem_cgroup_disabled().
3467 	 */
3468 	if (likely(pc) && PageCgroupUsed(pc))
3469 		return pc;
3470 	return NULL;
3471 }
3472 
3473 bool mem_cgroup_bad_page_check(struct page *page)
3474 {
3475 	if (mem_cgroup_disabled())
3476 		return false;
3477 
3478 	return lookup_page_cgroup_used(page) != NULL;
3479 }
3480 
3481 void mem_cgroup_print_bad_page(struct page *page)
3482 {
3483 	struct page_cgroup *pc;
3484 
3485 	pc = lookup_page_cgroup_used(page);
3486 	if (pc) {
3487 		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3488 		       pc, pc->flags, pc->mem_cgroup);
3489 	}
3490 }
3491 #endif
3492 
3493 static DEFINE_MUTEX(set_limit_mutex);
3494 
3495 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3496 				unsigned long long val)
3497 {
3498 	int retry_count;
3499 	u64 memswlimit, memlimit;
3500 	int ret = 0;
3501 	int children = mem_cgroup_count_children(memcg);
3502 	u64 curusage, oldusage;
3503 	int enlarge;
3504 
3505 	/*
3506 	 * For keeping hierarchical_reclaim simple, how long we should retry
3507 	 * is depends on callers. We set our retry-count to be function
3508 	 * of # of children which we should visit in this loop.
3509 	 */
3510 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3511 
3512 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3513 
3514 	enlarge = 0;
3515 	while (retry_count) {
3516 		if (signal_pending(current)) {
3517 			ret = -EINTR;
3518 			break;
3519 		}
3520 		/*
3521 		 * Rather than hide all in some function, I do this in
3522 		 * open coded manner. You see what this really does.
3523 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3524 		 */
3525 		mutex_lock(&set_limit_mutex);
3526 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3527 		if (memswlimit < val) {
3528 			ret = -EINVAL;
3529 			mutex_unlock(&set_limit_mutex);
3530 			break;
3531 		}
3532 
3533 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3534 		if (memlimit < val)
3535 			enlarge = 1;
3536 
3537 		ret = res_counter_set_limit(&memcg->res, val);
3538 		if (!ret) {
3539 			if (memswlimit == val)
3540 				memcg->memsw_is_minimum = true;
3541 			else
3542 				memcg->memsw_is_minimum = false;
3543 		}
3544 		mutex_unlock(&set_limit_mutex);
3545 
3546 		if (!ret)
3547 			break;
3548 
3549 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3550 				   MEM_CGROUP_RECLAIM_SHRINK);
3551 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3552 		/* Usage is reduced ? */
3553   		if (curusage >= oldusage)
3554 			retry_count--;
3555 		else
3556 			oldusage = curusage;
3557 	}
3558 	if (!ret && enlarge)
3559 		memcg_oom_recover(memcg);
3560 
3561 	return ret;
3562 }
3563 
3564 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3565 					unsigned long long val)
3566 {
3567 	int retry_count;
3568 	u64 memlimit, memswlimit, oldusage, curusage;
3569 	int children = mem_cgroup_count_children(memcg);
3570 	int ret = -EBUSY;
3571 	int enlarge = 0;
3572 
3573 	/* see mem_cgroup_resize_res_limit */
3574  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3575 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3576 	while (retry_count) {
3577 		if (signal_pending(current)) {
3578 			ret = -EINTR;
3579 			break;
3580 		}
3581 		/*
3582 		 * Rather than hide all in some function, I do this in
3583 		 * open coded manner. You see what this really does.
3584 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3585 		 */
3586 		mutex_lock(&set_limit_mutex);
3587 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3588 		if (memlimit > val) {
3589 			ret = -EINVAL;
3590 			mutex_unlock(&set_limit_mutex);
3591 			break;
3592 		}
3593 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3594 		if (memswlimit < val)
3595 			enlarge = 1;
3596 		ret = res_counter_set_limit(&memcg->memsw, val);
3597 		if (!ret) {
3598 			if (memlimit == val)
3599 				memcg->memsw_is_minimum = true;
3600 			else
3601 				memcg->memsw_is_minimum = false;
3602 		}
3603 		mutex_unlock(&set_limit_mutex);
3604 
3605 		if (!ret)
3606 			break;
3607 
3608 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3609 				   MEM_CGROUP_RECLAIM_NOSWAP |
3610 				   MEM_CGROUP_RECLAIM_SHRINK);
3611 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3612 		/* Usage is reduced ? */
3613 		if (curusage >= oldusage)
3614 			retry_count--;
3615 		else
3616 			oldusage = curusage;
3617 	}
3618 	if (!ret && enlarge)
3619 		memcg_oom_recover(memcg);
3620 	return ret;
3621 }
3622 
3623 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3624 					    gfp_t gfp_mask,
3625 					    unsigned long *total_scanned)
3626 {
3627 	unsigned long nr_reclaimed = 0;
3628 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3629 	unsigned long reclaimed;
3630 	int loop = 0;
3631 	struct mem_cgroup_tree_per_zone *mctz;
3632 	unsigned long long excess;
3633 	unsigned long nr_scanned;
3634 
3635 	if (order > 0)
3636 		return 0;
3637 
3638 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3639 	/*
3640 	 * This loop can run a while, specially if mem_cgroup's continuously
3641 	 * keep exceeding their soft limit and putting the system under
3642 	 * pressure
3643 	 */
3644 	do {
3645 		if (next_mz)
3646 			mz = next_mz;
3647 		else
3648 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3649 		if (!mz)
3650 			break;
3651 
3652 		nr_scanned = 0;
3653 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3654 						    gfp_mask, &nr_scanned);
3655 		nr_reclaimed += reclaimed;
3656 		*total_scanned += nr_scanned;
3657 		spin_lock(&mctz->lock);
3658 
3659 		/*
3660 		 * If we failed to reclaim anything from this memory cgroup
3661 		 * it is time to move on to the next cgroup
3662 		 */
3663 		next_mz = NULL;
3664 		if (!reclaimed) {
3665 			do {
3666 				/*
3667 				 * Loop until we find yet another one.
3668 				 *
3669 				 * By the time we get the soft_limit lock
3670 				 * again, someone might have aded the
3671 				 * group back on the RB tree. Iterate to
3672 				 * make sure we get a different mem.
3673 				 * mem_cgroup_largest_soft_limit_node returns
3674 				 * NULL if no other cgroup is present on
3675 				 * the tree
3676 				 */
3677 				next_mz =
3678 				__mem_cgroup_largest_soft_limit_node(mctz);
3679 				if (next_mz == mz)
3680 					css_put(&next_mz->memcg->css);
3681 				else /* next_mz == NULL or other memcg */
3682 					break;
3683 			} while (1);
3684 		}
3685 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3686 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3687 		/*
3688 		 * One school of thought says that we should not add
3689 		 * back the node to the tree if reclaim returns 0.
3690 		 * But our reclaim could return 0, simply because due
3691 		 * to priority we are exposing a smaller subset of
3692 		 * memory to reclaim from. Consider this as a longer
3693 		 * term TODO.
3694 		 */
3695 		/* If excess == 0, no tree ops */
3696 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3697 		spin_unlock(&mctz->lock);
3698 		css_put(&mz->memcg->css);
3699 		loop++;
3700 		/*
3701 		 * Could not reclaim anything and there are no more
3702 		 * mem cgroups to try or we seem to be looping without
3703 		 * reclaiming anything.
3704 		 */
3705 		if (!nr_reclaimed &&
3706 			(next_mz == NULL ||
3707 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3708 			break;
3709 	} while (!nr_reclaimed);
3710 	if (next_mz)
3711 		css_put(&next_mz->memcg->css);
3712 	return nr_reclaimed;
3713 }
3714 
3715 /*
3716  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3717  * reclaim the pages page themselves - it just removes the page_cgroups.
3718  * Returns true if some page_cgroups were not freed, indicating that the caller
3719  * must retry this operation.
3720  */
3721 static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3722 				int node, int zid, enum lru_list lru)
3723 {
3724 	struct lruvec *lruvec;
3725 	unsigned long flags, loop;
3726 	struct list_head *list;
3727 	struct page *busy;
3728 	struct zone *zone;
3729 
3730 	zone = &NODE_DATA(node)->node_zones[zid];
3731 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3732 	list = &lruvec->lists[lru];
3733 
3734 	loop = mem_cgroup_get_lru_size(lruvec, lru);
3735 	/* give some margin against EBUSY etc...*/
3736 	loop += 256;
3737 	busy = NULL;
3738 	while (loop--) {
3739 		struct page_cgroup *pc;
3740 		struct page *page;
3741 
3742 		spin_lock_irqsave(&zone->lru_lock, flags);
3743 		if (list_empty(list)) {
3744 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3745 			break;
3746 		}
3747 		page = list_entry(list->prev, struct page, lru);
3748 		if (busy == page) {
3749 			list_move(&page->lru, list);
3750 			busy = NULL;
3751 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3752 			continue;
3753 		}
3754 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3755 
3756 		pc = lookup_page_cgroup(page);
3757 
3758 		if (mem_cgroup_move_parent(page, pc, memcg)) {
3759 			/* found lock contention or "pc" is obsolete. */
3760 			busy = page;
3761 			cond_resched();
3762 		} else
3763 			busy = NULL;
3764 	}
3765 	return !list_empty(list);
3766 }
3767 
3768 /*
3769  * make mem_cgroup's charge to be 0 if there is no task.
3770  * This enables deleting this mem_cgroup.
3771  */
3772 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3773 {
3774 	int ret;
3775 	int node, zid, shrink;
3776 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3777 	struct cgroup *cgrp = memcg->css.cgroup;
3778 
3779 	css_get(&memcg->css);
3780 
3781 	shrink = 0;
3782 	/* should free all ? */
3783 	if (free_all)
3784 		goto try_to_free;
3785 move_account:
3786 	do {
3787 		ret = -EBUSY;
3788 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3789 			goto out;
3790 		/* This is for making all *used* pages to be on LRU. */
3791 		lru_add_drain_all();
3792 		drain_all_stock_sync(memcg);
3793 		ret = 0;
3794 		mem_cgroup_start_move(memcg);
3795 		for_each_node_state(node, N_HIGH_MEMORY) {
3796 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3797 				enum lru_list lru;
3798 				for_each_lru(lru) {
3799 					ret = mem_cgroup_force_empty_list(memcg,
3800 							node, zid, lru);
3801 					if (ret)
3802 						break;
3803 				}
3804 			}
3805 			if (ret)
3806 				break;
3807 		}
3808 		mem_cgroup_end_move(memcg);
3809 		memcg_oom_recover(memcg);
3810 		cond_resched();
3811 	/* "ret" should also be checked to ensure all lists are empty. */
3812 	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3813 out:
3814 	css_put(&memcg->css);
3815 	return ret;
3816 
3817 try_to_free:
3818 	/* returns EBUSY if there is a task or if we come here twice. */
3819 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3820 		ret = -EBUSY;
3821 		goto out;
3822 	}
3823 	/* we call try-to-free pages for make this cgroup empty */
3824 	lru_add_drain_all();
3825 	/* try to free all pages in this cgroup */
3826 	shrink = 1;
3827 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3828 		int progress;
3829 
3830 		if (signal_pending(current)) {
3831 			ret = -EINTR;
3832 			goto out;
3833 		}
3834 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3835 						false);
3836 		if (!progress) {
3837 			nr_retries--;
3838 			/* maybe some writeback is necessary */
3839 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3840 		}
3841 
3842 	}
3843 	lru_add_drain();
3844 	/* try move_account...there may be some *locked* pages. */
3845 	goto move_account;
3846 }
3847 
3848 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3849 {
3850 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3851 }
3852 
3853 
3854 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3855 {
3856 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3857 }
3858 
3859 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3860 					u64 val)
3861 {
3862 	int retval = 0;
3863 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3864 	struct cgroup *parent = cont->parent;
3865 	struct mem_cgroup *parent_memcg = NULL;
3866 
3867 	if (parent)
3868 		parent_memcg = mem_cgroup_from_cont(parent);
3869 
3870 	cgroup_lock();
3871 
3872 	if (memcg->use_hierarchy == val)
3873 		goto out;
3874 
3875 	/*
3876 	 * If parent's use_hierarchy is set, we can't make any modifications
3877 	 * in the child subtrees. If it is unset, then the change can
3878 	 * occur, provided the current cgroup has no children.
3879 	 *
3880 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3881 	 * set if there are no children.
3882 	 */
3883 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3884 				(val == 1 || val == 0)) {
3885 		if (list_empty(&cont->children))
3886 			memcg->use_hierarchy = val;
3887 		else
3888 			retval = -EBUSY;
3889 	} else
3890 		retval = -EINVAL;
3891 
3892 out:
3893 	cgroup_unlock();
3894 
3895 	return retval;
3896 }
3897 
3898 
3899 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3900 					       enum mem_cgroup_stat_index idx)
3901 {
3902 	struct mem_cgroup *iter;
3903 	long val = 0;
3904 
3905 	/* Per-cpu values can be negative, use a signed accumulator */
3906 	for_each_mem_cgroup_tree(iter, memcg)
3907 		val += mem_cgroup_read_stat(iter, idx);
3908 
3909 	if (val < 0) /* race ? */
3910 		val = 0;
3911 	return val;
3912 }
3913 
3914 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3915 {
3916 	u64 val;
3917 
3918 	if (!mem_cgroup_is_root(memcg)) {
3919 		if (!swap)
3920 			return res_counter_read_u64(&memcg->res, RES_USAGE);
3921 		else
3922 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3923 	}
3924 
3925 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3926 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3927 
3928 	if (swap)
3929 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3930 
3931 	return val << PAGE_SHIFT;
3932 }
3933 
3934 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3935 			       struct file *file, char __user *buf,
3936 			       size_t nbytes, loff_t *ppos)
3937 {
3938 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3939 	char str[64];
3940 	u64 val;
3941 	int type, name, len;
3942 
3943 	type = MEMFILE_TYPE(cft->private);
3944 	name = MEMFILE_ATTR(cft->private);
3945 
3946 	if (!do_swap_account && type == _MEMSWAP)
3947 		return -EOPNOTSUPP;
3948 
3949 	switch (type) {
3950 	case _MEM:
3951 		if (name == RES_USAGE)
3952 			val = mem_cgroup_usage(memcg, false);
3953 		else
3954 			val = res_counter_read_u64(&memcg->res, name);
3955 		break;
3956 	case _MEMSWAP:
3957 		if (name == RES_USAGE)
3958 			val = mem_cgroup_usage(memcg, true);
3959 		else
3960 			val = res_counter_read_u64(&memcg->memsw, name);
3961 		break;
3962 	default:
3963 		BUG();
3964 	}
3965 
3966 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3967 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3968 }
3969 /*
3970  * The user of this function is...
3971  * RES_LIMIT.
3972  */
3973 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3974 			    const char *buffer)
3975 {
3976 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3977 	int type, name;
3978 	unsigned long long val;
3979 	int ret;
3980 
3981 	type = MEMFILE_TYPE(cft->private);
3982 	name = MEMFILE_ATTR(cft->private);
3983 
3984 	if (!do_swap_account && type == _MEMSWAP)
3985 		return -EOPNOTSUPP;
3986 
3987 	switch (name) {
3988 	case RES_LIMIT:
3989 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3990 			ret = -EINVAL;
3991 			break;
3992 		}
3993 		/* This function does all necessary parse...reuse it */
3994 		ret = res_counter_memparse_write_strategy(buffer, &val);
3995 		if (ret)
3996 			break;
3997 		if (type == _MEM)
3998 			ret = mem_cgroup_resize_limit(memcg, val);
3999 		else
4000 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4001 		break;
4002 	case RES_SOFT_LIMIT:
4003 		ret = res_counter_memparse_write_strategy(buffer, &val);
4004 		if (ret)
4005 			break;
4006 		/*
4007 		 * For memsw, soft limits are hard to implement in terms
4008 		 * of semantics, for now, we support soft limits for
4009 		 * control without swap
4010 		 */
4011 		if (type == _MEM)
4012 			ret = res_counter_set_soft_limit(&memcg->res, val);
4013 		else
4014 			ret = -EINVAL;
4015 		break;
4016 	default:
4017 		ret = -EINVAL; /* should be BUG() ? */
4018 		break;
4019 	}
4020 	return ret;
4021 }
4022 
4023 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4024 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
4025 {
4026 	struct cgroup *cgroup;
4027 	unsigned long long min_limit, min_memsw_limit, tmp;
4028 
4029 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4030 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4031 	cgroup = memcg->css.cgroup;
4032 	if (!memcg->use_hierarchy)
4033 		goto out;
4034 
4035 	while (cgroup->parent) {
4036 		cgroup = cgroup->parent;
4037 		memcg = mem_cgroup_from_cont(cgroup);
4038 		if (!memcg->use_hierarchy)
4039 			break;
4040 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4041 		min_limit = min(min_limit, tmp);
4042 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4043 		min_memsw_limit = min(min_memsw_limit, tmp);
4044 	}
4045 out:
4046 	*mem_limit = min_limit;
4047 	*memsw_limit = min_memsw_limit;
4048 }
4049 
4050 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4051 {
4052 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4053 	int type, name;
4054 
4055 	type = MEMFILE_TYPE(event);
4056 	name = MEMFILE_ATTR(event);
4057 
4058 	if (!do_swap_account && type == _MEMSWAP)
4059 		return -EOPNOTSUPP;
4060 
4061 	switch (name) {
4062 	case RES_MAX_USAGE:
4063 		if (type == _MEM)
4064 			res_counter_reset_max(&memcg->res);
4065 		else
4066 			res_counter_reset_max(&memcg->memsw);
4067 		break;
4068 	case RES_FAILCNT:
4069 		if (type == _MEM)
4070 			res_counter_reset_failcnt(&memcg->res);
4071 		else
4072 			res_counter_reset_failcnt(&memcg->memsw);
4073 		break;
4074 	}
4075 
4076 	return 0;
4077 }
4078 
4079 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4080 					struct cftype *cft)
4081 {
4082 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4083 }
4084 
4085 #ifdef CONFIG_MMU
4086 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4087 					struct cftype *cft, u64 val)
4088 {
4089 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4090 
4091 	if (val >= (1 << NR_MOVE_TYPE))
4092 		return -EINVAL;
4093 	/*
4094 	 * We check this value several times in both in can_attach() and
4095 	 * attach(), so we need cgroup lock to prevent this value from being
4096 	 * inconsistent.
4097 	 */
4098 	cgroup_lock();
4099 	memcg->move_charge_at_immigrate = val;
4100 	cgroup_unlock();
4101 
4102 	return 0;
4103 }
4104 #else
4105 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4106 					struct cftype *cft, u64 val)
4107 {
4108 	return -ENOSYS;
4109 }
4110 #endif
4111 
4112 #ifdef CONFIG_NUMA
4113 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4114 				      struct seq_file *m)
4115 {
4116 	int nid;
4117 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4118 	unsigned long node_nr;
4119 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4120 
4121 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4122 	seq_printf(m, "total=%lu", total_nr);
4123 	for_each_node_state(nid, N_HIGH_MEMORY) {
4124 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4125 		seq_printf(m, " N%d=%lu", nid, node_nr);
4126 	}
4127 	seq_putc(m, '\n');
4128 
4129 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4130 	seq_printf(m, "file=%lu", file_nr);
4131 	for_each_node_state(nid, N_HIGH_MEMORY) {
4132 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4133 				LRU_ALL_FILE);
4134 		seq_printf(m, " N%d=%lu", nid, node_nr);
4135 	}
4136 	seq_putc(m, '\n');
4137 
4138 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4139 	seq_printf(m, "anon=%lu", anon_nr);
4140 	for_each_node_state(nid, N_HIGH_MEMORY) {
4141 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4142 				LRU_ALL_ANON);
4143 		seq_printf(m, " N%d=%lu", nid, node_nr);
4144 	}
4145 	seq_putc(m, '\n');
4146 
4147 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4148 	seq_printf(m, "unevictable=%lu", unevictable_nr);
4149 	for_each_node_state(nid, N_HIGH_MEMORY) {
4150 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4151 				BIT(LRU_UNEVICTABLE));
4152 		seq_printf(m, " N%d=%lu", nid, node_nr);
4153 	}
4154 	seq_putc(m, '\n');
4155 	return 0;
4156 }
4157 #endif /* CONFIG_NUMA */
4158 
4159 static const char * const mem_cgroup_lru_names[] = {
4160 	"inactive_anon",
4161 	"active_anon",
4162 	"inactive_file",
4163 	"active_file",
4164 	"unevictable",
4165 };
4166 
4167 static inline void mem_cgroup_lru_names_not_uptodate(void)
4168 {
4169 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4170 }
4171 
4172 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4173 				 struct seq_file *m)
4174 {
4175 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4176 	struct mem_cgroup *mi;
4177 	unsigned int i;
4178 
4179 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4180 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4181 			continue;
4182 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4183 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4184 	}
4185 
4186 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4187 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4188 			   mem_cgroup_read_events(memcg, i));
4189 
4190 	for (i = 0; i < NR_LRU_LISTS; i++)
4191 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4192 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4193 
4194 	/* Hierarchical information */
4195 	{
4196 		unsigned long long limit, memsw_limit;
4197 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4198 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4199 		if (do_swap_account)
4200 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
4201 				   memsw_limit);
4202 	}
4203 
4204 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4205 		long long val = 0;
4206 
4207 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4208 			continue;
4209 		for_each_mem_cgroup_tree(mi, memcg)
4210 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4211 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4212 	}
4213 
4214 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4215 		unsigned long long val = 0;
4216 
4217 		for_each_mem_cgroup_tree(mi, memcg)
4218 			val += mem_cgroup_read_events(mi, i);
4219 		seq_printf(m, "total_%s %llu\n",
4220 			   mem_cgroup_events_names[i], val);
4221 	}
4222 
4223 	for (i = 0; i < NR_LRU_LISTS; i++) {
4224 		unsigned long long val = 0;
4225 
4226 		for_each_mem_cgroup_tree(mi, memcg)
4227 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4228 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4229 	}
4230 
4231 #ifdef CONFIG_DEBUG_VM
4232 	{
4233 		int nid, zid;
4234 		struct mem_cgroup_per_zone *mz;
4235 		struct zone_reclaim_stat *rstat;
4236 		unsigned long recent_rotated[2] = {0, 0};
4237 		unsigned long recent_scanned[2] = {0, 0};
4238 
4239 		for_each_online_node(nid)
4240 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4241 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4242 				rstat = &mz->lruvec.reclaim_stat;
4243 
4244 				recent_rotated[0] += rstat->recent_rotated[0];
4245 				recent_rotated[1] += rstat->recent_rotated[1];
4246 				recent_scanned[0] += rstat->recent_scanned[0];
4247 				recent_scanned[1] += rstat->recent_scanned[1];
4248 			}
4249 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4250 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4251 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4252 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4253 	}
4254 #endif
4255 
4256 	return 0;
4257 }
4258 
4259 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4260 {
4261 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4262 
4263 	return mem_cgroup_swappiness(memcg);
4264 }
4265 
4266 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4267 				       u64 val)
4268 {
4269 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4270 	struct mem_cgroup *parent;
4271 
4272 	if (val > 100)
4273 		return -EINVAL;
4274 
4275 	if (cgrp->parent == NULL)
4276 		return -EINVAL;
4277 
4278 	parent = mem_cgroup_from_cont(cgrp->parent);
4279 
4280 	cgroup_lock();
4281 
4282 	/* If under hierarchy, only empty-root can set this value */
4283 	if ((parent->use_hierarchy) ||
4284 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4285 		cgroup_unlock();
4286 		return -EINVAL;
4287 	}
4288 
4289 	memcg->swappiness = val;
4290 
4291 	cgroup_unlock();
4292 
4293 	return 0;
4294 }
4295 
4296 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4297 {
4298 	struct mem_cgroup_threshold_ary *t;
4299 	u64 usage;
4300 	int i;
4301 
4302 	rcu_read_lock();
4303 	if (!swap)
4304 		t = rcu_dereference(memcg->thresholds.primary);
4305 	else
4306 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4307 
4308 	if (!t)
4309 		goto unlock;
4310 
4311 	usage = mem_cgroup_usage(memcg, swap);
4312 
4313 	/*
4314 	 * current_threshold points to threshold just below or equal to usage.
4315 	 * If it's not true, a threshold was crossed after last
4316 	 * call of __mem_cgroup_threshold().
4317 	 */
4318 	i = t->current_threshold;
4319 
4320 	/*
4321 	 * Iterate backward over array of thresholds starting from
4322 	 * current_threshold and check if a threshold is crossed.
4323 	 * If none of thresholds below usage is crossed, we read
4324 	 * only one element of the array here.
4325 	 */
4326 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4327 		eventfd_signal(t->entries[i].eventfd, 1);
4328 
4329 	/* i = current_threshold + 1 */
4330 	i++;
4331 
4332 	/*
4333 	 * Iterate forward over array of thresholds starting from
4334 	 * current_threshold+1 and check if a threshold is crossed.
4335 	 * If none of thresholds above usage is crossed, we read
4336 	 * only one element of the array here.
4337 	 */
4338 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4339 		eventfd_signal(t->entries[i].eventfd, 1);
4340 
4341 	/* Update current_threshold */
4342 	t->current_threshold = i - 1;
4343 unlock:
4344 	rcu_read_unlock();
4345 }
4346 
4347 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4348 {
4349 	while (memcg) {
4350 		__mem_cgroup_threshold(memcg, false);
4351 		if (do_swap_account)
4352 			__mem_cgroup_threshold(memcg, true);
4353 
4354 		memcg = parent_mem_cgroup(memcg);
4355 	}
4356 }
4357 
4358 static int compare_thresholds(const void *a, const void *b)
4359 {
4360 	const struct mem_cgroup_threshold *_a = a;
4361 	const struct mem_cgroup_threshold *_b = b;
4362 
4363 	return _a->threshold - _b->threshold;
4364 }
4365 
4366 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4367 {
4368 	struct mem_cgroup_eventfd_list *ev;
4369 
4370 	list_for_each_entry(ev, &memcg->oom_notify, list)
4371 		eventfd_signal(ev->eventfd, 1);
4372 	return 0;
4373 }
4374 
4375 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4376 {
4377 	struct mem_cgroup *iter;
4378 
4379 	for_each_mem_cgroup_tree(iter, memcg)
4380 		mem_cgroup_oom_notify_cb(iter);
4381 }
4382 
4383 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4384 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4385 {
4386 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4387 	struct mem_cgroup_thresholds *thresholds;
4388 	struct mem_cgroup_threshold_ary *new;
4389 	int type = MEMFILE_TYPE(cft->private);
4390 	u64 threshold, usage;
4391 	int i, size, ret;
4392 
4393 	ret = res_counter_memparse_write_strategy(args, &threshold);
4394 	if (ret)
4395 		return ret;
4396 
4397 	mutex_lock(&memcg->thresholds_lock);
4398 
4399 	if (type == _MEM)
4400 		thresholds = &memcg->thresholds;
4401 	else if (type == _MEMSWAP)
4402 		thresholds = &memcg->memsw_thresholds;
4403 	else
4404 		BUG();
4405 
4406 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4407 
4408 	/* Check if a threshold crossed before adding a new one */
4409 	if (thresholds->primary)
4410 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4411 
4412 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4413 
4414 	/* Allocate memory for new array of thresholds */
4415 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4416 			GFP_KERNEL);
4417 	if (!new) {
4418 		ret = -ENOMEM;
4419 		goto unlock;
4420 	}
4421 	new->size = size;
4422 
4423 	/* Copy thresholds (if any) to new array */
4424 	if (thresholds->primary) {
4425 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4426 				sizeof(struct mem_cgroup_threshold));
4427 	}
4428 
4429 	/* Add new threshold */
4430 	new->entries[size - 1].eventfd = eventfd;
4431 	new->entries[size - 1].threshold = threshold;
4432 
4433 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4434 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4435 			compare_thresholds, NULL);
4436 
4437 	/* Find current threshold */
4438 	new->current_threshold = -1;
4439 	for (i = 0; i < size; i++) {
4440 		if (new->entries[i].threshold <= usage) {
4441 			/*
4442 			 * new->current_threshold will not be used until
4443 			 * rcu_assign_pointer(), so it's safe to increment
4444 			 * it here.
4445 			 */
4446 			++new->current_threshold;
4447 		} else
4448 			break;
4449 	}
4450 
4451 	/* Free old spare buffer and save old primary buffer as spare */
4452 	kfree(thresholds->spare);
4453 	thresholds->spare = thresholds->primary;
4454 
4455 	rcu_assign_pointer(thresholds->primary, new);
4456 
4457 	/* To be sure that nobody uses thresholds */
4458 	synchronize_rcu();
4459 
4460 unlock:
4461 	mutex_unlock(&memcg->thresholds_lock);
4462 
4463 	return ret;
4464 }
4465 
4466 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4467 	struct cftype *cft, struct eventfd_ctx *eventfd)
4468 {
4469 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4470 	struct mem_cgroup_thresholds *thresholds;
4471 	struct mem_cgroup_threshold_ary *new;
4472 	int type = MEMFILE_TYPE(cft->private);
4473 	u64 usage;
4474 	int i, j, size;
4475 
4476 	mutex_lock(&memcg->thresholds_lock);
4477 	if (type == _MEM)
4478 		thresholds = &memcg->thresholds;
4479 	else if (type == _MEMSWAP)
4480 		thresholds = &memcg->memsw_thresholds;
4481 	else
4482 		BUG();
4483 
4484 	if (!thresholds->primary)
4485 		goto unlock;
4486 
4487 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4488 
4489 	/* Check if a threshold crossed before removing */
4490 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4491 
4492 	/* Calculate new number of threshold */
4493 	size = 0;
4494 	for (i = 0; i < thresholds->primary->size; i++) {
4495 		if (thresholds->primary->entries[i].eventfd != eventfd)
4496 			size++;
4497 	}
4498 
4499 	new = thresholds->spare;
4500 
4501 	/* Set thresholds array to NULL if we don't have thresholds */
4502 	if (!size) {
4503 		kfree(new);
4504 		new = NULL;
4505 		goto swap_buffers;
4506 	}
4507 
4508 	new->size = size;
4509 
4510 	/* Copy thresholds and find current threshold */
4511 	new->current_threshold = -1;
4512 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4513 		if (thresholds->primary->entries[i].eventfd == eventfd)
4514 			continue;
4515 
4516 		new->entries[j] = thresholds->primary->entries[i];
4517 		if (new->entries[j].threshold <= usage) {
4518 			/*
4519 			 * new->current_threshold will not be used
4520 			 * until rcu_assign_pointer(), so it's safe to increment
4521 			 * it here.
4522 			 */
4523 			++new->current_threshold;
4524 		}
4525 		j++;
4526 	}
4527 
4528 swap_buffers:
4529 	/* Swap primary and spare array */
4530 	thresholds->spare = thresholds->primary;
4531 	/* If all events are unregistered, free the spare array */
4532 	if (!new) {
4533 		kfree(thresholds->spare);
4534 		thresholds->spare = NULL;
4535 	}
4536 
4537 	rcu_assign_pointer(thresholds->primary, new);
4538 
4539 	/* To be sure that nobody uses thresholds */
4540 	synchronize_rcu();
4541 unlock:
4542 	mutex_unlock(&memcg->thresholds_lock);
4543 }
4544 
4545 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4546 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4547 {
4548 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4549 	struct mem_cgroup_eventfd_list *event;
4550 	int type = MEMFILE_TYPE(cft->private);
4551 
4552 	BUG_ON(type != _OOM_TYPE);
4553 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4554 	if (!event)
4555 		return -ENOMEM;
4556 
4557 	spin_lock(&memcg_oom_lock);
4558 
4559 	event->eventfd = eventfd;
4560 	list_add(&event->list, &memcg->oom_notify);
4561 
4562 	/* already in OOM ? */
4563 	if (atomic_read(&memcg->under_oom))
4564 		eventfd_signal(eventfd, 1);
4565 	spin_unlock(&memcg_oom_lock);
4566 
4567 	return 0;
4568 }
4569 
4570 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4571 	struct cftype *cft, struct eventfd_ctx *eventfd)
4572 {
4573 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4574 	struct mem_cgroup_eventfd_list *ev, *tmp;
4575 	int type = MEMFILE_TYPE(cft->private);
4576 
4577 	BUG_ON(type != _OOM_TYPE);
4578 
4579 	spin_lock(&memcg_oom_lock);
4580 
4581 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4582 		if (ev->eventfd == eventfd) {
4583 			list_del(&ev->list);
4584 			kfree(ev);
4585 		}
4586 	}
4587 
4588 	spin_unlock(&memcg_oom_lock);
4589 }
4590 
4591 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4592 	struct cftype *cft,  struct cgroup_map_cb *cb)
4593 {
4594 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4595 
4596 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4597 
4598 	if (atomic_read(&memcg->under_oom))
4599 		cb->fill(cb, "under_oom", 1);
4600 	else
4601 		cb->fill(cb, "under_oom", 0);
4602 	return 0;
4603 }
4604 
4605 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4606 	struct cftype *cft, u64 val)
4607 {
4608 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4609 	struct mem_cgroup *parent;
4610 
4611 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4612 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4613 		return -EINVAL;
4614 
4615 	parent = mem_cgroup_from_cont(cgrp->parent);
4616 
4617 	cgroup_lock();
4618 	/* oom-kill-disable is a flag for subhierarchy. */
4619 	if ((parent->use_hierarchy) ||
4620 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4621 		cgroup_unlock();
4622 		return -EINVAL;
4623 	}
4624 	memcg->oom_kill_disable = val;
4625 	if (!val)
4626 		memcg_oom_recover(memcg);
4627 	cgroup_unlock();
4628 	return 0;
4629 }
4630 
4631 #ifdef CONFIG_MEMCG_KMEM
4632 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4633 {
4634 	return mem_cgroup_sockets_init(memcg, ss);
4635 };
4636 
4637 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4638 {
4639 	mem_cgroup_sockets_destroy(memcg);
4640 }
4641 #else
4642 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4643 {
4644 	return 0;
4645 }
4646 
4647 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4648 {
4649 }
4650 #endif
4651 
4652 static struct cftype mem_cgroup_files[] = {
4653 	{
4654 		.name = "usage_in_bytes",
4655 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4656 		.read = mem_cgroup_read,
4657 		.register_event = mem_cgroup_usage_register_event,
4658 		.unregister_event = mem_cgroup_usage_unregister_event,
4659 	},
4660 	{
4661 		.name = "max_usage_in_bytes",
4662 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4663 		.trigger = mem_cgroup_reset,
4664 		.read = mem_cgroup_read,
4665 	},
4666 	{
4667 		.name = "limit_in_bytes",
4668 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4669 		.write_string = mem_cgroup_write,
4670 		.read = mem_cgroup_read,
4671 	},
4672 	{
4673 		.name = "soft_limit_in_bytes",
4674 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4675 		.write_string = mem_cgroup_write,
4676 		.read = mem_cgroup_read,
4677 	},
4678 	{
4679 		.name = "failcnt",
4680 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4681 		.trigger = mem_cgroup_reset,
4682 		.read = mem_cgroup_read,
4683 	},
4684 	{
4685 		.name = "stat",
4686 		.read_seq_string = memcg_stat_show,
4687 	},
4688 	{
4689 		.name = "force_empty",
4690 		.trigger = mem_cgroup_force_empty_write,
4691 	},
4692 	{
4693 		.name = "use_hierarchy",
4694 		.write_u64 = mem_cgroup_hierarchy_write,
4695 		.read_u64 = mem_cgroup_hierarchy_read,
4696 	},
4697 	{
4698 		.name = "swappiness",
4699 		.read_u64 = mem_cgroup_swappiness_read,
4700 		.write_u64 = mem_cgroup_swappiness_write,
4701 	},
4702 	{
4703 		.name = "move_charge_at_immigrate",
4704 		.read_u64 = mem_cgroup_move_charge_read,
4705 		.write_u64 = mem_cgroup_move_charge_write,
4706 	},
4707 	{
4708 		.name = "oom_control",
4709 		.read_map = mem_cgroup_oom_control_read,
4710 		.write_u64 = mem_cgroup_oom_control_write,
4711 		.register_event = mem_cgroup_oom_register_event,
4712 		.unregister_event = mem_cgroup_oom_unregister_event,
4713 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4714 	},
4715 #ifdef CONFIG_NUMA
4716 	{
4717 		.name = "numa_stat",
4718 		.read_seq_string = memcg_numa_stat_show,
4719 	},
4720 #endif
4721 #ifdef CONFIG_MEMCG_SWAP
4722 	{
4723 		.name = "memsw.usage_in_bytes",
4724 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4725 		.read = mem_cgroup_read,
4726 		.register_event = mem_cgroup_usage_register_event,
4727 		.unregister_event = mem_cgroup_usage_unregister_event,
4728 	},
4729 	{
4730 		.name = "memsw.max_usage_in_bytes",
4731 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4732 		.trigger = mem_cgroup_reset,
4733 		.read = mem_cgroup_read,
4734 	},
4735 	{
4736 		.name = "memsw.limit_in_bytes",
4737 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4738 		.write_string = mem_cgroup_write,
4739 		.read = mem_cgroup_read,
4740 	},
4741 	{
4742 		.name = "memsw.failcnt",
4743 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4744 		.trigger = mem_cgroup_reset,
4745 		.read = mem_cgroup_read,
4746 	},
4747 #endif
4748 	{ },	/* terminate */
4749 };
4750 
4751 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4752 {
4753 	struct mem_cgroup_per_node *pn;
4754 	struct mem_cgroup_per_zone *mz;
4755 	int zone, tmp = node;
4756 	/*
4757 	 * This routine is called against possible nodes.
4758 	 * But it's BUG to call kmalloc() against offline node.
4759 	 *
4760 	 * TODO: this routine can waste much memory for nodes which will
4761 	 *       never be onlined. It's better to use memory hotplug callback
4762 	 *       function.
4763 	 */
4764 	if (!node_state(node, N_NORMAL_MEMORY))
4765 		tmp = -1;
4766 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4767 	if (!pn)
4768 		return 1;
4769 
4770 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4771 		mz = &pn->zoneinfo[zone];
4772 		lruvec_init(&mz->lruvec);
4773 		mz->usage_in_excess = 0;
4774 		mz->on_tree = false;
4775 		mz->memcg = memcg;
4776 	}
4777 	memcg->info.nodeinfo[node] = pn;
4778 	return 0;
4779 }
4780 
4781 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4782 {
4783 	kfree(memcg->info.nodeinfo[node]);
4784 }
4785 
4786 static struct mem_cgroup *mem_cgroup_alloc(void)
4787 {
4788 	struct mem_cgroup *memcg;
4789 	int size = sizeof(struct mem_cgroup);
4790 
4791 	/* Can be very big if MAX_NUMNODES is very big */
4792 	if (size < PAGE_SIZE)
4793 		memcg = kzalloc(size, GFP_KERNEL);
4794 	else
4795 		memcg = vzalloc(size);
4796 
4797 	if (!memcg)
4798 		return NULL;
4799 
4800 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4801 	if (!memcg->stat)
4802 		goto out_free;
4803 	spin_lock_init(&memcg->pcp_counter_lock);
4804 	return memcg;
4805 
4806 out_free:
4807 	if (size < PAGE_SIZE)
4808 		kfree(memcg);
4809 	else
4810 		vfree(memcg);
4811 	return NULL;
4812 }
4813 
4814 /*
4815  * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4816  * but in process context.  The work_freeing structure is overlaid
4817  * on the rcu_freeing structure, which itself is overlaid on memsw.
4818  */
4819 static void free_work(struct work_struct *work)
4820 {
4821 	struct mem_cgroup *memcg;
4822 	int size = sizeof(struct mem_cgroup);
4823 
4824 	memcg = container_of(work, struct mem_cgroup, work_freeing);
4825 	/*
4826 	 * We need to make sure that (at least for now), the jump label
4827 	 * destruction code runs outside of the cgroup lock. This is because
4828 	 * get_online_cpus(), which is called from the static_branch update,
4829 	 * can't be called inside the cgroup_lock. cpusets are the ones
4830 	 * enforcing this dependency, so if they ever change, we might as well.
4831 	 *
4832 	 * schedule_work() will guarantee this happens. Be careful if you need
4833 	 * to move this code around, and make sure it is outside
4834 	 * the cgroup_lock.
4835 	 */
4836 	disarm_sock_keys(memcg);
4837 	if (size < PAGE_SIZE)
4838 		kfree(memcg);
4839 	else
4840 		vfree(memcg);
4841 }
4842 
4843 static void free_rcu(struct rcu_head *rcu_head)
4844 {
4845 	struct mem_cgroup *memcg;
4846 
4847 	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4848 	INIT_WORK(&memcg->work_freeing, free_work);
4849 	schedule_work(&memcg->work_freeing);
4850 }
4851 
4852 /*
4853  * At destroying mem_cgroup, references from swap_cgroup can remain.
4854  * (scanning all at force_empty is too costly...)
4855  *
4856  * Instead of clearing all references at force_empty, we remember
4857  * the number of reference from swap_cgroup and free mem_cgroup when
4858  * it goes down to 0.
4859  *
4860  * Removal of cgroup itself succeeds regardless of refs from swap.
4861  */
4862 
4863 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4864 {
4865 	int node;
4866 
4867 	mem_cgroup_remove_from_trees(memcg);
4868 	free_css_id(&mem_cgroup_subsys, &memcg->css);
4869 
4870 	for_each_node(node)
4871 		free_mem_cgroup_per_zone_info(memcg, node);
4872 
4873 	free_percpu(memcg->stat);
4874 	call_rcu(&memcg->rcu_freeing, free_rcu);
4875 }
4876 
4877 static void mem_cgroup_get(struct mem_cgroup *memcg)
4878 {
4879 	atomic_inc(&memcg->refcnt);
4880 }
4881 
4882 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4883 {
4884 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
4885 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4886 		__mem_cgroup_free(memcg);
4887 		if (parent)
4888 			mem_cgroup_put(parent);
4889 	}
4890 }
4891 
4892 static void mem_cgroup_put(struct mem_cgroup *memcg)
4893 {
4894 	__mem_cgroup_put(memcg, 1);
4895 }
4896 
4897 /*
4898  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4899  */
4900 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4901 {
4902 	if (!memcg->res.parent)
4903 		return NULL;
4904 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4905 }
4906 EXPORT_SYMBOL(parent_mem_cgroup);
4907 
4908 #ifdef CONFIG_MEMCG_SWAP
4909 static void __init enable_swap_cgroup(void)
4910 {
4911 	if (!mem_cgroup_disabled() && really_do_swap_account)
4912 		do_swap_account = 1;
4913 }
4914 #else
4915 static void __init enable_swap_cgroup(void)
4916 {
4917 }
4918 #endif
4919 
4920 static int mem_cgroup_soft_limit_tree_init(void)
4921 {
4922 	struct mem_cgroup_tree_per_node *rtpn;
4923 	struct mem_cgroup_tree_per_zone *rtpz;
4924 	int tmp, node, zone;
4925 
4926 	for_each_node(node) {
4927 		tmp = node;
4928 		if (!node_state(node, N_NORMAL_MEMORY))
4929 			tmp = -1;
4930 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4931 		if (!rtpn)
4932 			goto err_cleanup;
4933 
4934 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4935 
4936 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4937 			rtpz = &rtpn->rb_tree_per_zone[zone];
4938 			rtpz->rb_root = RB_ROOT;
4939 			spin_lock_init(&rtpz->lock);
4940 		}
4941 	}
4942 	return 0;
4943 
4944 err_cleanup:
4945 	for_each_node(node) {
4946 		if (!soft_limit_tree.rb_tree_per_node[node])
4947 			break;
4948 		kfree(soft_limit_tree.rb_tree_per_node[node]);
4949 		soft_limit_tree.rb_tree_per_node[node] = NULL;
4950 	}
4951 	return 1;
4952 
4953 }
4954 
4955 static struct cgroup_subsys_state * __ref
4956 mem_cgroup_create(struct cgroup *cont)
4957 {
4958 	struct mem_cgroup *memcg, *parent;
4959 	long error = -ENOMEM;
4960 	int node;
4961 
4962 	memcg = mem_cgroup_alloc();
4963 	if (!memcg)
4964 		return ERR_PTR(error);
4965 
4966 	for_each_node(node)
4967 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4968 			goto free_out;
4969 
4970 	/* root ? */
4971 	if (cont->parent == NULL) {
4972 		int cpu;
4973 		enable_swap_cgroup();
4974 		parent = NULL;
4975 		if (mem_cgroup_soft_limit_tree_init())
4976 			goto free_out;
4977 		root_mem_cgroup = memcg;
4978 		for_each_possible_cpu(cpu) {
4979 			struct memcg_stock_pcp *stock =
4980 						&per_cpu(memcg_stock, cpu);
4981 			INIT_WORK(&stock->work, drain_local_stock);
4982 		}
4983 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4984 	} else {
4985 		parent = mem_cgroup_from_cont(cont->parent);
4986 		memcg->use_hierarchy = parent->use_hierarchy;
4987 		memcg->oom_kill_disable = parent->oom_kill_disable;
4988 	}
4989 
4990 	if (parent && parent->use_hierarchy) {
4991 		res_counter_init(&memcg->res, &parent->res);
4992 		res_counter_init(&memcg->memsw, &parent->memsw);
4993 		/*
4994 		 * We increment refcnt of the parent to ensure that we can
4995 		 * safely access it on res_counter_charge/uncharge.
4996 		 * This refcnt will be decremented when freeing this
4997 		 * mem_cgroup(see mem_cgroup_put).
4998 		 */
4999 		mem_cgroup_get(parent);
5000 	} else {
5001 		res_counter_init(&memcg->res, NULL);
5002 		res_counter_init(&memcg->memsw, NULL);
5003 		/*
5004 		 * Deeper hierachy with use_hierarchy == false doesn't make
5005 		 * much sense so let cgroup subsystem know about this
5006 		 * unfortunate state in our controller.
5007 		 */
5008 		if (parent && parent != root_mem_cgroup)
5009 			mem_cgroup_subsys.broken_hierarchy = true;
5010 	}
5011 	memcg->last_scanned_node = MAX_NUMNODES;
5012 	INIT_LIST_HEAD(&memcg->oom_notify);
5013 
5014 	if (parent)
5015 		memcg->swappiness = mem_cgroup_swappiness(parent);
5016 	atomic_set(&memcg->refcnt, 1);
5017 	memcg->move_charge_at_immigrate = 0;
5018 	mutex_init(&memcg->thresholds_lock);
5019 	spin_lock_init(&memcg->move_lock);
5020 
5021 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5022 	if (error) {
5023 		/*
5024 		 * We call put now because our (and parent's) refcnts
5025 		 * are already in place. mem_cgroup_put() will internally
5026 		 * call __mem_cgroup_free, so return directly
5027 		 */
5028 		mem_cgroup_put(memcg);
5029 		return ERR_PTR(error);
5030 	}
5031 	return &memcg->css;
5032 free_out:
5033 	__mem_cgroup_free(memcg);
5034 	return ERR_PTR(error);
5035 }
5036 
5037 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5038 {
5039 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5040 
5041 	return mem_cgroup_force_empty(memcg, false);
5042 }
5043 
5044 static void mem_cgroup_destroy(struct cgroup *cont)
5045 {
5046 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5047 
5048 	kmem_cgroup_destroy(memcg);
5049 
5050 	mem_cgroup_put(memcg);
5051 }
5052 
5053 #ifdef CONFIG_MMU
5054 /* Handlers for move charge at task migration. */
5055 #define PRECHARGE_COUNT_AT_ONCE	256
5056 static int mem_cgroup_do_precharge(unsigned long count)
5057 {
5058 	int ret = 0;
5059 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5060 	struct mem_cgroup *memcg = mc.to;
5061 
5062 	if (mem_cgroup_is_root(memcg)) {
5063 		mc.precharge += count;
5064 		/* we don't need css_get for root */
5065 		return ret;
5066 	}
5067 	/* try to charge at once */
5068 	if (count > 1) {
5069 		struct res_counter *dummy;
5070 		/*
5071 		 * "memcg" cannot be under rmdir() because we've already checked
5072 		 * by cgroup_lock_live_cgroup() that it is not removed and we
5073 		 * are still under the same cgroup_mutex. So we can postpone
5074 		 * css_get().
5075 		 */
5076 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5077 			goto one_by_one;
5078 		if (do_swap_account && res_counter_charge(&memcg->memsw,
5079 						PAGE_SIZE * count, &dummy)) {
5080 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5081 			goto one_by_one;
5082 		}
5083 		mc.precharge += count;
5084 		return ret;
5085 	}
5086 one_by_one:
5087 	/* fall back to one by one charge */
5088 	while (count--) {
5089 		if (signal_pending(current)) {
5090 			ret = -EINTR;
5091 			break;
5092 		}
5093 		if (!batch_count--) {
5094 			batch_count = PRECHARGE_COUNT_AT_ONCE;
5095 			cond_resched();
5096 		}
5097 		ret = __mem_cgroup_try_charge(NULL,
5098 					GFP_KERNEL, 1, &memcg, false);
5099 		if (ret)
5100 			/* mem_cgroup_clear_mc() will do uncharge later */
5101 			return ret;
5102 		mc.precharge++;
5103 	}
5104 	return ret;
5105 }
5106 
5107 /**
5108  * get_mctgt_type - get target type of moving charge
5109  * @vma: the vma the pte to be checked belongs
5110  * @addr: the address corresponding to the pte to be checked
5111  * @ptent: the pte to be checked
5112  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5113  *
5114  * Returns
5115  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5116  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5117  *     move charge. if @target is not NULL, the page is stored in target->page
5118  *     with extra refcnt got(Callers should handle it).
5119  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5120  *     target for charge migration. if @target is not NULL, the entry is stored
5121  *     in target->ent.
5122  *
5123  * Called with pte lock held.
5124  */
5125 union mc_target {
5126 	struct page	*page;
5127 	swp_entry_t	ent;
5128 };
5129 
5130 enum mc_target_type {
5131 	MC_TARGET_NONE = 0,
5132 	MC_TARGET_PAGE,
5133 	MC_TARGET_SWAP,
5134 };
5135 
5136 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5137 						unsigned long addr, pte_t ptent)
5138 {
5139 	struct page *page = vm_normal_page(vma, addr, ptent);
5140 
5141 	if (!page || !page_mapped(page))
5142 		return NULL;
5143 	if (PageAnon(page)) {
5144 		/* we don't move shared anon */
5145 		if (!move_anon())
5146 			return NULL;
5147 	} else if (!move_file())
5148 		/* we ignore mapcount for file pages */
5149 		return NULL;
5150 	if (!get_page_unless_zero(page))
5151 		return NULL;
5152 
5153 	return page;
5154 }
5155 
5156 #ifdef CONFIG_SWAP
5157 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5158 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5159 {
5160 	struct page *page = NULL;
5161 	swp_entry_t ent = pte_to_swp_entry(ptent);
5162 
5163 	if (!move_anon() || non_swap_entry(ent))
5164 		return NULL;
5165 	/*
5166 	 * Because lookup_swap_cache() updates some statistics counter,
5167 	 * we call find_get_page() with swapper_space directly.
5168 	 */
5169 	page = find_get_page(&swapper_space, ent.val);
5170 	if (do_swap_account)
5171 		entry->val = ent.val;
5172 
5173 	return page;
5174 }
5175 #else
5176 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5177 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5178 {
5179 	return NULL;
5180 }
5181 #endif
5182 
5183 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5184 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5185 {
5186 	struct page *page = NULL;
5187 	struct address_space *mapping;
5188 	pgoff_t pgoff;
5189 
5190 	if (!vma->vm_file) /* anonymous vma */
5191 		return NULL;
5192 	if (!move_file())
5193 		return NULL;
5194 
5195 	mapping = vma->vm_file->f_mapping;
5196 	if (pte_none(ptent))
5197 		pgoff = linear_page_index(vma, addr);
5198 	else /* pte_file(ptent) is true */
5199 		pgoff = pte_to_pgoff(ptent);
5200 
5201 	/* page is moved even if it's not RSS of this task(page-faulted). */
5202 	page = find_get_page(mapping, pgoff);
5203 
5204 #ifdef CONFIG_SWAP
5205 	/* shmem/tmpfs may report page out on swap: account for that too. */
5206 	if (radix_tree_exceptional_entry(page)) {
5207 		swp_entry_t swap = radix_to_swp_entry(page);
5208 		if (do_swap_account)
5209 			*entry = swap;
5210 		page = find_get_page(&swapper_space, swap.val);
5211 	}
5212 #endif
5213 	return page;
5214 }
5215 
5216 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5217 		unsigned long addr, pte_t ptent, union mc_target *target)
5218 {
5219 	struct page *page = NULL;
5220 	struct page_cgroup *pc;
5221 	enum mc_target_type ret = MC_TARGET_NONE;
5222 	swp_entry_t ent = { .val = 0 };
5223 
5224 	if (pte_present(ptent))
5225 		page = mc_handle_present_pte(vma, addr, ptent);
5226 	else if (is_swap_pte(ptent))
5227 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5228 	else if (pte_none(ptent) || pte_file(ptent))
5229 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5230 
5231 	if (!page && !ent.val)
5232 		return ret;
5233 	if (page) {
5234 		pc = lookup_page_cgroup(page);
5235 		/*
5236 		 * Do only loose check w/o page_cgroup lock.
5237 		 * mem_cgroup_move_account() checks the pc is valid or not under
5238 		 * the lock.
5239 		 */
5240 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5241 			ret = MC_TARGET_PAGE;
5242 			if (target)
5243 				target->page = page;
5244 		}
5245 		if (!ret || !target)
5246 			put_page(page);
5247 	}
5248 	/* There is a swap entry and a page doesn't exist or isn't charged */
5249 	if (ent.val && !ret &&
5250 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5251 		ret = MC_TARGET_SWAP;
5252 		if (target)
5253 			target->ent = ent;
5254 	}
5255 	return ret;
5256 }
5257 
5258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5259 /*
5260  * We don't consider swapping or file mapped pages because THP does not
5261  * support them for now.
5262  * Caller should make sure that pmd_trans_huge(pmd) is true.
5263  */
5264 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5265 		unsigned long addr, pmd_t pmd, union mc_target *target)
5266 {
5267 	struct page *page = NULL;
5268 	struct page_cgroup *pc;
5269 	enum mc_target_type ret = MC_TARGET_NONE;
5270 
5271 	page = pmd_page(pmd);
5272 	VM_BUG_ON(!page || !PageHead(page));
5273 	if (!move_anon())
5274 		return ret;
5275 	pc = lookup_page_cgroup(page);
5276 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5277 		ret = MC_TARGET_PAGE;
5278 		if (target) {
5279 			get_page(page);
5280 			target->page = page;
5281 		}
5282 	}
5283 	return ret;
5284 }
5285 #else
5286 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5287 		unsigned long addr, pmd_t pmd, union mc_target *target)
5288 {
5289 	return MC_TARGET_NONE;
5290 }
5291 #endif
5292 
5293 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5294 					unsigned long addr, unsigned long end,
5295 					struct mm_walk *walk)
5296 {
5297 	struct vm_area_struct *vma = walk->private;
5298 	pte_t *pte;
5299 	spinlock_t *ptl;
5300 
5301 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5302 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5303 			mc.precharge += HPAGE_PMD_NR;
5304 		spin_unlock(&vma->vm_mm->page_table_lock);
5305 		return 0;
5306 	}
5307 
5308 	if (pmd_trans_unstable(pmd))
5309 		return 0;
5310 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5311 	for (; addr != end; pte++, addr += PAGE_SIZE)
5312 		if (get_mctgt_type(vma, addr, *pte, NULL))
5313 			mc.precharge++;	/* increment precharge temporarily */
5314 	pte_unmap_unlock(pte - 1, ptl);
5315 	cond_resched();
5316 
5317 	return 0;
5318 }
5319 
5320 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5321 {
5322 	unsigned long precharge;
5323 	struct vm_area_struct *vma;
5324 
5325 	down_read(&mm->mmap_sem);
5326 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5327 		struct mm_walk mem_cgroup_count_precharge_walk = {
5328 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5329 			.mm = mm,
5330 			.private = vma,
5331 		};
5332 		if (is_vm_hugetlb_page(vma))
5333 			continue;
5334 		walk_page_range(vma->vm_start, vma->vm_end,
5335 					&mem_cgroup_count_precharge_walk);
5336 	}
5337 	up_read(&mm->mmap_sem);
5338 
5339 	precharge = mc.precharge;
5340 	mc.precharge = 0;
5341 
5342 	return precharge;
5343 }
5344 
5345 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5346 {
5347 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5348 
5349 	VM_BUG_ON(mc.moving_task);
5350 	mc.moving_task = current;
5351 	return mem_cgroup_do_precharge(precharge);
5352 }
5353 
5354 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5355 static void __mem_cgroup_clear_mc(void)
5356 {
5357 	struct mem_cgroup *from = mc.from;
5358 	struct mem_cgroup *to = mc.to;
5359 
5360 	/* we must uncharge all the leftover precharges from mc.to */
5361 	if (mc.precharge) {
5362 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5363 		mc.precharge = 0;
5364 	}
5365 	/*
5366 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5367 	 * we must uncharge here.
5368 	 */
5369 	if (mc.moved_charge) {
5370 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5371 		mc.moved_charge = 0;
5372 	}
5373 	/* we must fixup refcnts and charges */
5374 	if (mc.moved_swap) {
5375 		/* uncharge swap account from the old cgroup */
5376 		if (!mem_cgroup_is_root(mc.from))
5377 			res_counter_uncharge(&mc.from->memsw,
5378 						PAGE_SIZE * mc.moved_swap);
5379 		__mem_cgroup_put(mc.from, mc.moved_swap);
5380 
5381 		if (!mem_cgroup_is_root(mc.to)) {
5382 			/*
5383 			 * we charged both to->res and to->memsw, so we should
5384 			 * uncharge to->res.
5385 			 */
5386 			res_counter_uncharge(&mc.to->res,
5387 						PAGE_SIZE * mc.moved_swap);
5388 		}
5389 		/* we've already done mem_cgroup_get(mc.to) */
5390 		mc.moved_swap = 0;
5391 	}
5392 	memcg_oom_recover(from);
5393 	memcg_oom_recover(to);
5394 	wake_up_all(&mc.waitq);
5395 }
5396 
5397 static void mem_cgroup_clear_mc(void)
5398 {
5399 	struct mem_cgroup *from = mc.from;
5400 
5401 	/*
5402 	 * we must clear moving_task before waking up waiters at the end of
5403 	 * task migration.
5404 	 */
5405 	mc.moving_task = NULL;
5406 	__mem_cgroup_clear_mc();
5407 	spin_lock(&mc.lock);
5408 	mc.from = NULL;
5409 	mc.to = NULL;
5410 	spin_unlock(&mc.lock);
5411 	mem_cgroup_end_move(from);
5412 }
5413 
5414 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5415 				 struct cgroup_taskset *tset)
5416 {
5417 	struct task_struct *p = cgroup_taskset_first(tset);
5418 	int ret = 0;
5419 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5420 
5421 	if (memcg->move_charge_at_immigrate) {
5422 		struct mm_struct *mm;
5423 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5424 
5425 		VM_BUG_ON(from == memcg);
5426 
5427 		mm = get_task_mm(p);
5428 		if (!mm)
5429 			return 0;
5430 		/* We move charges only when we move a owner of the mm */
5431 		if (mm->owner == p) {
5432 			VM_BUG_ON(mc.from);
5433 			VM_BUG_ON(mc.to);
5434 			VM_BUG_ON(mc.precharge);
5435 			VM_BUG_ON(mc.moved_charge);
5436 			VM_BUG_ON(mc.moved_swap);
5437 			mem_cgroup_start_move(from);
5438 			spin_lock(&mc.lock);
5439 			mc.from = from;
5440 			mc.to = memcg;
5441 			spin_unlock(&mc.lock);
5442 			/* We set mc.moving_task later */
5443 
5444 			ret = mem_cgroup_precharge_mc(mm);
5445 			if (ret)
5446 				mem_cgroup_clear_mc();
5447 		}
5448 		mmput(mm);
5449 	}
5450 	return ret;
5451 }
5452 
5453 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5454 				     struct cgroup_taskset *tset)
5455 {
5456 	mem_cgroup_clear_mc();
5457 }
5458 
5459 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5460 				unsigned long addr, unsigned long end,
5461 				struct mm_walk *walk)
5462 {
5463 	int ret = 0;
5464 	struct vm_area_struct *vma = walk->private;
5465 	pte_t *pte;
5466 	spinlock_t *ptl;
5467 	enum mc_target_type target_type;
5468 	union mc_target target;
5469 	struct page *page;
5470 	struct page_cgroup *pc;
5471 
5472 	/*
5473 	 * We don't take compound_lock() here but no race with splitting thp
5474 	 * happens because:
5475 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5476 	 *    under splitting, which means there's no concurrent thp split,
5477 	 *  - if another thread runs into split_huge_page() just after we
5478 	 *    entered this if-block, the thread must wait for page table lock
5479 	 *    to be unlocked in __split_huge_page_splitting(), where the main
5480 	 *    part of thp split is not executed yet.
5481 	 */
5482 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5483 		if (mc.precharge < HPAGE_PMD_NR) {
5484 			spin_unlock(&vma->vm_mm->page_table_lock);
5485 			return 0;
5486 		}
5487 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5488 		if (target_type == MC_TARGET_PAGE) {
5489 			page = target.page;
5490 			if (!isolate_lru_page(page)) {
5491 				pc = lookup_page_cgroup(page);
5492 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5493 							pc, mc.from, mc.to)) {
5494 					mc.precharge -= HPAGE_PMD_NR;
5495 					mc.moved_charge += HPAGE_PMD_NR;
5496 				}
5497 				putback_lru_page(page);
5498 			}
5499 			put_page(page);
5500 		}
5501 		spin_unlock(&vma->vm_mm->page_table_lock);
5502 		return 0;
5503 	}
5504 
5505 	if (pmd_trans_unstable(pmd))
5506 		return 0;
5507 retry:
5508 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5509 	for (; addr != end; addr += PAGE_SIZE) {
5510 		pte_t ptent = *(pte++);
5511 		swp_entry_t ent;
5512 
5513 		if (!mc.precharge)
5514 			break;
5515 
5516 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5517 		case MC_TARGET_PAGE:
5518 			page = target.page;
5519 			if (isolate_lru_page(page))
5520 				goto put;
5521 			pc = lookup_page_cgroup(page);
5522 			if (!mem_cgroup_move_account(page, 1, pc,
5523 						     mc.from, mc.to)) {
5524 				mc.precharge--;
5525 				/* we uncharge from mc.from later. */
5526 				mc.moved_charge++;
5527 			}
5528 			putback_lru_page(page);
5529 put:			/* get_mctgt_type() gets the page */
5530 			put_page(page);
5531 			break;
5532 		case MC_TARGET_SWAP:
5533 			ent = target.ent;
5534 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5535 				mc.precharge--;
5536 				/* we fixup refcnts and charges later. */
5537 				mc.moved_swap++;
5538 			}
5539 			break;
5540 		default:
5541 			break;
5542 		}
5543 	}
5544 	pte_unmap_unlock(pte - 1, ptl);
5545 	cond_resched();
5546 
5547 	if (addr != end) {
5548 		/*
5549 		 * We have consumed all precharges we got in can_attach().
5550 		 * We try charge one by one, but don't do any additional
5551 		 * charges to mc.to if we have failed in charge once in attach()
5552 		 * phase.
5553 		 */
5554 		ret = mem_cgroup_do_precharge(1);
5555 		if (!ret)
5556 			goto retry;
5557 	}
5558 
5559 	return ret;
5560 }
5561 
5562 static void mem_cgroup_move_charge(struct mm_struct *mm)
5563 {
5564 	struct vm_area_struct *vma;
5565 
5566 	lru_add_drain_all();
5567 retry:
5568 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5569 		/*
5570 		 * Someone who are holding the mmap_sem might be waiting in
5571 		 * waitq. So we cancel all extra charges, wake up all waiters,
5572 		 * and retry. Because we cancel precharges, we might not be able
5573 		 * to move enough charges, but moving charge is a best-effort
5574 		 * feature anyway, so it wouldn't be a big problem.
5575 		 */
5576 		__mem_cgroup_clear_mc();
5577 		cond_resched();
5578 		goto retry;
5579 	}
5580 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5581 		int ret;
5582 		struct mm_walk mem_cgroup_move_charge_walk = {
5583 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5584 			.mm = mm,
5585 			.private = vma,
5586 		};
5587 		if (is_vm_hugetlb_page(vma))
5588 			continue;
5589 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5590 						&mem_cgroup_move_charge_walk);
5591 		if (ret)
5592 			/*
5593 			 * means we have consumed all precharges and failed in
5594 			 * doing additional charge. Just abandon here.
5595 			 */
5596 			break;
5597 	}
5598 	up_read(&mm->mmap_sem);
5599 }
5600 
5601 static void mem_cgroup_move_task(struct cgroup *cont,
5602 				 struct cgroup_taskset *tset)
5603 {
5604 	struct task_struct *p = cgroup_taskset_first(tset);
5605 	struct mm_struct *mm = get_task_mm(p);
5606 
5607 	if (mm) {
5608 		if (mc.to)
5609 			mem_cgroup_move_charge(mm);
5610 		mmput(mm);
5611 	}
5612 	if (mc.to)
5613 		mem_cgroup_clear_mc();
5614 }
5615 #else	/* !CONFIG_MMU */
5616 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5617 				 struct cgroup_taskset *tset)
5618 {
5619 	return 0;
5620 }
5621 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5622 				     struct cgroup_taskset *tset)
5623 {
5624 }
5625 static void mem_cgroup_move_task(struct cgroup *cont,
5626 				 struct cgroup_taskset *tset)
5627 {
5628 }
5629 #endif
5630 
5631 struct cgroup_subsys mem_cgroup_subsys = {
5632 	.name = "memory",
5633 	.subsys_id = mem_cgroup_subsys_id,
5634 	.create = mem_cgroup_create,
5635 	.pre_destroy = mem_cgroup_pre_destroy,
5636 	.destroy = mem_cgroup_destroy,
5637 	.can_attach = mem_cgroup_can_attach,
5638 	.cancel_attach = mem_cgroup_cancel_attach,
5639 	.attach = mem_cgroup_move_task,
5640 	.base_cftypes = mem_cgroup_files,
5641 	.early_init = 0,
5642 	.use_id = 1,
5643 	.__DEPRECATED_clear_css_refs = true,
5644 };
5645 
5646 #ifdef CONFIG_MEMCG_SWAP
5647 static int __init enable_swap_account(char *s)
5648 {
5649 	/* consider enabled if no parameter or 1 is given */
5650 	if (!strcmp(s, "1"))
5651 		really_do_swap_account = 1;
5652 	else if (!strcmp(s, "0"))
5653 		really_do_swap_account = 0;
5654 	return 1;
5655 }
5656 __setup("swapaccount=", enable_swap_account);
5657 
5658 #endif
5659