1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/mm.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include <linux/seq_buf.h> 61 #include "internal.h" 62 #include <net/sock.h> 63 #include <net/ip.h> 64 #include "slab.h" 65 66 #include <linux/uaccess.h> 67 68 #include <trace/events/vmscan.h> 69 70 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 71 EXPORT_SYMBOL(memory_cgrp_subsys); 72 73 struct mem_cgroup *root_mem_cgroup __read_mostly; 74 75 #define MEM_CGROUP_RECLAIM_RETRIES 5 76 77 /* Socket memory accounting disabled? */ 78 static bool cgroup_memory_nosocket; 79 80 /* Kernel memory accounting disabled? */ 81 static bool cgroup_memory_nokmem; 82 83 /* Whether the swap controller is active */ 84 #ifdef CONFIG_MEMCG_SWAP 85 int do_swap_account __read_mostly; 86 #else 87 #define do_swap_account 0 88 #endif 89 90 /* Whether legacy memory+swap accounting is active */ 91 static bool do_memsw_account(void) 92 { 93 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 94 } 95 96 static const char *const mem_cgroup_lru_names[] = { 97 "inactive_anon", 98 "active_anon", 99 "inactive_file", 100 "active_file", 101 "unevictable", 102 }; 103 104 #define THRESHOLDS_EVENTS_TARGET 128 105 #define SOFTLIMIT_EVENTS_TARGET 1024 106 #define NUMAINFO_EVENTS_TARGET 1024 107 108 /* 109 * Cgroups above their limits are maintained in a RB-Tree, independent of 110 * their hierarchy representation 111 */ 112 113 struct mem_cgroup_tree_per_node { 114 struct rb_root rb_root; 115 struct rb_node *rb_rightmost; 116 spinlock_t lock; 117 }; 118 119 struct mem_cgroup_tree { 120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 121 }; 122 123 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 124 125 /* for OOM */ 126 struct mem_cgroup_eventfd_list { 127 struct list_head list; 128 struct eventfd_ctx *eventfd; 129 }; 130 131 /* 132 * cgroup_event represents events which userspace want to receive. 133 */ 134 struct mem_cgroup_event { 135 /* 136 * memcg which the event belongs to. 137 */ 138 struct mem_cgroup *memcg; 139 /* 140 * eventfd to signal userspace about the event. 141 */ 142 struct eventfd_ctx *eventfd; 143 /* 144 * Each of these stored in a list by the cgroup. 145 */ 146 struct list_head list; 147 /* 148 * register_event() callback will be used to add new userspace 149 * waiter for changes related to this event. Use eventfd_signal() 150 * on eventfd to send notification to userspace. 151 */ 152 int (*register_event)(struct mem_cgroup *memcg, 153 struct eventfd_ctx *eventfd, const char *args); 154 /* 155 * unregister_event() callback will be called when userspace closes 156 * the eventfd or on cgroup removing. This callback must be set, 157 * if you want provide notification functionality. 158 */ 159 void (*unregister_event)(struct mem_cgroup *memcg, 160 struct eventfd_ctx *eventfd); 161 /* 162 * All fields below needed to unregister event when 163 * userspace closes eventfd. 164 */ 165 poll_table pt; 166 wait_queue_head_t *wqh; 167 wait_queue_entry_t wait; 168 struct work_struct remove; 169 }; 170 171 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 173 174 /* Stuffs for move charges at task migration. */ 175 /* 176 * Types of charges to be moved. 177 */ 178 #define MOVE_ANON 0x1U 179 #define MOVE_FILE 0x2U 180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 181 182 /* "mc" and its members are protected by cgroup_mutex */ 183 static struct move_charge_struct { 184 spinlock_t lock; /* for from, to */ 185 struct mm_struct *mm; 186 struct mem_cgroup *from; 187 struct mem_cgroup *to; 188 unsigned long flags; 189 unsigned long precharge; 190 unsigned long moved_charge; 191 unsigned long moved_swap; 192 struct task_struct *moving_task; /* a task moving charges */ 193 wait_queue_head_t waitq; /* a waitq for other context */ 194 } mc = { 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 197 }; 198 199 /* 200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 201 * limit reclaim to prevent infinite loops, if they ever occur. 202 */ 203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 205 206 enum charge_type { 207 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 208 MEM_CGROUP_CHARGE_TYPE_ANON, 209 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 210 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 211 NR_CHARGE_TYPE, 212 }; 213 214 /* for encoding cft->private value on file */ 215 enum res_type { 216 _MEM, 217 _MEMSWAP, 218 _OOM_TYPE, 219 _KMEM, 220 _TCP, 221 }; 222 223 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 224 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 225 #define MEMFILE_ATTR(val) ((val) & 0xffff) 226 /* Used for OOM nofiier */ 227 #define OOM_CONTROL (0) 228 229 /* 230 * Iteration constructs for visiting all cgroups (under a tree). If 231 * loops are exited prematurely (break), mem_cgroup_iter_break() must 232 * be used for reference counting. 233 */ 234 #define for_each_mem_cgroup_tree(iter, root) \ 235 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 236 iter != NULL; \ 237 iter = mem_cgroup_iter(root, iter, NULL)) 238 239 #define for_each_mem_cgroup(iter) \ 240 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 241 iter != NULL; \ 242 iter = mem_cgroup_iter(NULL, iter, NULL)) 243 244 static inline bool should_force_charge(void) 245 { 246 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 247 (current->flags & PF_EXITING); 248 } 249 250 /* Some nice accessors for the vmpressure. */ 251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 252 { 253 if (!memcg) 254 memcg = root_mem_cgroup; 255 return &memcg->vmpressure; 256 } 257 258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 259 { 260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 261 } 262 263 #ifdef CONFIG_MEMCG_KMEM 264 /* 265 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 266 * The main reason for not using cgroup id for this: 267 * this works better in sparse environments, where we have a lot of memcgs, 268 * but only a few kmem-limited. Or also, if we have, for instance, 200 269 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 270 * 200 entry array for that. 271 * 272 * The current size of the caches array is stored in memcg_nr_cache_ids. It 273 * will double each time we have to increase it. 274 */ 275 static DEFINE_IDA(memcg_cache_ida); 276 int memcg_nr_cache_ids; 277 278 /* Protects memcg_nr_cache_ids */ 279 static DECLARE_RWSEM(memcg_cache_ids_sem); 280 281 void memcg_get_cache_ids(void) 282 { 283 down_read(&memcg_cache_ids_sem); 284 } 285 286 void memcg_put_cache_ids(void) 287 { 288 up_read(&memcg_cache_ids_sem); 289 } 290 291 /* 292 * MIN_SIZE is different than 1, because we would like to avoid going through 293 * the alloc/free process all the time. In a small machine, 4 kmem-limited 294 * cgroups is a reasonable guess. In the future, it could be a parameter or 295 * tunable, but that is strictly not necessary. 296 * 297 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 298 * this constant directly from cgroup, but it is understandable that this is 299 * better kept as an internal representation in cgroup.c. In any case, the 300 * cgrp_id space is not getting any smaller, and we don't have to necessarily 301 * increase ours as well if it increases. 302 */ 303 #define MEMCG_CACHES_MIN_SIZE 4 304 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 305 306 /* 307 * A lot of the calls to the cache allocation functions are expected to be 308 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 309 * conditional to this static branch, we'll have to allow modules that does 310 * kmem_cache_alloc and the such to see this symbol as well 311 */ 312 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 313 EXPORT_SYMBOL(memcg_kmem_enabled_key); 314 315 struct workqueue_struct *memcg_kmem_cache_wq; 316 317 static int memcg_shrinker_map_size; 318 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 319 320 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 321 { 322 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 323 } 324 325 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 326 int size, int old_size) 327 { 328 struct memcg_shrinker_map *new, *old; 329 int nid; 330 331 lockdep_assert_held(&memcg_shrinker_map_mutex); 332 333 for_each_node(nid) { 334 old = rcu_dereference_protected( 335 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 336 /* Not yet online memcg */ 337 if (!old) 338 return 0; 339 340 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); 341 if (!new) 342 return -ENOMEM; 343 344 /* Set all old bits, clear all new bits */ 345 memset(new->map, (int)0xff, old_size); 346 memset((void *)new->map + old_size, 0, size - old_size); 347 348 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 349 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 350 } 351 352 return 0; 353 } 354 355 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 356 { 357 struct mem_cgroup_per_node *pn; 358 struct memcg_shrinker_map *map; 359 int nid; 360 361 if (mem_cgroup_is_root(memcg)) 362 return; 363 364 for_each_node(nid) { 365 pn = mem_cgroup_nodeinfo(memcg, nid); 366 map = rcu_dereference_protected(pn->shrinker_map, true); 367 if (map) 368 kvfree(map); 369 rcu_assign_pointer(pn->shrinker_map, NULL); 370 } 371 } 372 373 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 374 { 375 struct memcg_shrinker_map *map; 376 int nid, size, ret = 0; 377 378 if (mem_cgroup_is_root(memcg)) 379 return 0; 380 381 mutex_lock(&memcg_shrinker_map_mutex); 382 size = memcg_shrinker_map_size; 383 for_each_node(nid) { 384 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); 385 if (!map) { 386 memcg_free_shrinker_maps(memcg); 387 ret = -ENOMEM; 388 break; 389 } 390 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 391 } 392 mutex_unlock(&memcg_shrinker_map_mutex); 393 394 return ret; 395 } 396 397 int memcg_expand_shrinker_maps(int new_id) 398 { 399 int size, old_size, ret = 0; 400 struct mem_cgroup *memcg; 401 402 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 403 old_size = memcg_shrinker_map_size; 404 if (size <= old_size) 405 return 0; 406 407 mutex_lock(&memcg_shrinker_map_mutex); 408 if (!root_mem_cgroup) 409 goto unlock; 410 411 for_each_mem_cgroup(memcg) { 412 if (mem_cgroup_is_root(memcg)) 413 continue; 414 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 415 if (ret) 416 goto unlock; 417 } 418 unlock: 419 if (!ret) 420 memcg_shrinker_map_size = size; 421 mutex_unlock(&memcg_shrinker_map_mutex); 422 return ret; 423 } 424 425 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 426 { 427 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 428 struct memcg_shrinker_map *map; 429 430 rcu_read_lock(); 431 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 432 /* Pairs with smp mb in shrink_slab() */ 433 smp_mb__before_atomic(); 434 set_bit(shrinker_id, map->map); 435 rcu_read_unlock(); 436 } 437 } 438 439 #else /* CONFIG_MEMCG_KMEM */ 440 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 441 { 442 return 0; 443 } 444 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { } 445 #endif /* CONFIG_MEMCG_KMEM */ 446 447 /** 448 * mem_cgroup_css_from_page - css of the memcg associated with a page 449 * @page: page of interest 450 * 451 * If memcg is bound to the default hierarchy, css of the memcg associated 452 * with @page is returned. The returned css remains associated with @page 453 * until it is released. 454 * 455 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 456 * is returned. 457 */ 458 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 459 { 460 struct mem_cgroup *memcg; 461 462 memcg = page->mem_cgroup; 463 464 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 465 memcg = root_mem_cgroup; 466 467 return &memcg->css; 468 } 469 470 /** 471 * page_cgroup_ino - return inode number of the memcg a page is charged to 472 * @page: the page 473 * 474 * Look up the closest online ancestor of the memory cgroup @page is charged to 475 * and return its inode number or 0 if @page is not charged to any cgroup. It 476 * is safe to call this function without holding a reference to @page. 477 * 478 * Note, this function is inherently racy, because there is nothing to prevent 479 * the cgroup inode from getting torn down and potentially reallocated a moment 480 * after page_cgroup_ino() returns, so it only should be used by callers that 481 * do not care (such as procfs interfaces). 482 */ 483 ino_t page_cgroup_ino(struct page *page) 484 { 485 struct mem_cgroup *memcg; 486 unsigned long ino = 0; 487 488 rcu_read_lock(); 489 if (PageHead(page) && PageSlab(page)) 490 memcg = memcg_from_slab_page(page); 491 else 492 memcg = READ_ONCE(page->mem_cgroup); 493 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 494 memcg = parent_mem_cgroup(memcg); 495 if (memcg) 496 ino = cgroup_ino(memcg->css.cgroup); 497 rcu_read_unlock(); 498 return ino; 499 } 500 501 static struct mem_cgroup_per_node * 502 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 503 { 504 int nid = page_to_nid(page); 505 506 return memcg->nodeinfo[nid]; 507 } 508 509 static struct mem_cgroup_tree_per_node * 510 soft_limit_tree_node(int nid) 511 { 512 return soft_limit_tree.rb_tree_per_node[nid]; 513 } 514 515 static struct mem_cgroup_tree_per_node * 516 soft_limit_tree_from_page(struct page *page) 517 { 518 int nid = page_to_nid(page); 519 520 return soft_limit_tree.rb_tree_per_node[nid]; 521 } 522 523 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 524 struct mem_cgroup_tree_per_node *mctz, 525 unsigned long new_usage_in_excess) 526 { 527 struct rb_node **p = &mctz->rb_root.rb_node; 528 struct rb_node *parent = NULL; 529 struct mem_cgroup_per_node *mz_node; 530 bool rightmost = true; 531 532 if (mz->on_tree) 533 return; 534 535 mz->usage_in_excess = new_usage_in_excess; 536 if (!mz->usage_in_excess) 537 return; 538 while (*p) { 539 parent = *p; 540 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 541 tree_node); 542 if (mz->usage_in_excess < mz_node->usage_in_excess) { 543 p = &(*p)->rb_left; 544 rightmost = false; 545 } 546 547 /* 548 * We can't avoid mem cgroups that are over their soft 549 * limit by the same amount 550 */ 551 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 552 p = &(*p)->rb_right; 553 } 554 555 if (rightmost) 556 mctz->rb_rightmost = &mz->tree_node; 557 558 rb_link_node(&mz->tree_node, parent, p); 559 rb_insert_color(&mz->tree_node, &mctz->rb_root); 560 mz->on_tree = true; 561 } 562 563 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 564 struct mem_cgroup_tree_per_node *mctz) 565 { 566 if (!mz->on_tree) 567 return; 568 569 if (&mz->tree_node == mctz->rb_rightmost) 570 mctz->rb_rightmost = rb_prev(&mz->tree_node); 571 572 rb_erase(&mz->tree_node, &mctz->rb_root); 573 mz->on_tree = false; 574 } 575 576 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 577 struct mem_cgroup_tree_per_node *mctz) 578 { 579 unsigned long flags; 580 581 spin_lock_irqsave(&mctz->lock, flags); 582 __mem_cgroup_remove_exceeded(mz, mctz); 583 spin_unlock_irqrestore(&mctz->lock, flags); 584 } 585 586 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 587 { 588 unsigned long nr_pages = page_counter_read(&memcg->memory); 589 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 590 unsigned long excess = 0; 591 592 if (nr_pages > soft_limit) 593 excess = nr_pages - soft_limit; 594 595 return excess; 596 } 597 598 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 599 { 600 unsigned long excess; 601 struct mem_cgroup_per_node *mz; 602 struct mem_cgroup_tree_per_node *mctz; 603 604 mctz = soft_limit_tree_from_page(page); 605 if (!mctz) 606 return; 607 /* 608 * Necessary to update all ancestors when hierarchy is used. 609 * because their event counter is not touched. 610 */ 611 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 612 mz = mem_cgroup_page_nodeinfo(memcg, page); 613 excess = soft_limit_excess(memcg); 614 /* 615 * We have to update the tree if mz is on RB-tree or 616 * mem is over its softlimit. 617 */ 618 if (excess || mz->on_tree) { 619 unsigned long flags; 620 621 spin_lock_irqsave(&mctz->lock, flags); 622 /* if on-tree, remove it */ 623 if (mz->on_tree) 624 __mem_cgroup_remove_exceeded(mz, mctz); 625 /* 626 * Insert again. mz->usage_in_excess will be updated. 627 * If excess is 0, no tree ops. 628 */ 629 __mem_cgroup_insert_exceeded(mz, mctz, excess); 630 spin_unlock_irqrestore(&mctz->lock, flags); 631 } 632 } 633 } 634 635 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 636 { 637 struct mem_cgroup_tree_per_node *mctz; 638 struct mem_cgroup_per_node *mz; 639 int nid; 640 641 for_each_node(nid) { 642 mz = mem_cgroup_nodeinfo(memcg, nid); 643 mctz = soft_limit_tree_node(nid); 644 if (mctz) 645 mem_cgroup_remove_exceeded(mz, mctz); 646 } 647 } 648 649 static struct mem_cgroup_per_node * 650 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 651 { 652 struct mem_cgroup_per_node *mz; 653 654 retry: 655 mz = NULL; 656 if (!mctz->rb_rightmost) 657 goto done; /* Nothing to reclaim from */ 658 659 mz = rb_entry(mctz->rb_rightmost, 660 struct mem_cgroup_per_node, tree_node); 661 /* 662 * Remove the node now but someone else can add it back, 663 * we will to add it back at the end of reclaim to its correct 664 * position in the tree. 665 */ 666 __mem_cgroup_remove_exceeded(mz, mctz); 667 if (!soft_limit_excess(mz->memcg) || 668 !css_tryget_online(&mz->memcg->css)) 669 goto retry; 670 done: 671 return mz; 672 } 673 674 static struct mem_cgroup_per_node * 675 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 676 { 677 struct mem_cgroup_per_node *mz; 678 679 spin_lock_irq(&mctz->lock); 680 mz = __mem_cgroup_largest_soft_limit_node(mctz); 681 spin_unlock_irq(&mctz->lock); 682 return mz; 683 } 684 685 /** 686 * __mod_memcg_state - update cgroup memory statistics 687 * @memcg: the memory cgroup 688 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 689 * @val: delta to add to the counter, can be negative 690 */ 691 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 692 { 693 long x; 694 695 if (mem_cgroup_disabled()) 696 return; 697 698 __this_cpu_add(memcg->vmstats_local->stat[idx], val); 699 700 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 701 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 702 struct mem_cgroup *mi; 703 704 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 705 atomic_long_add(x, &mi->vmstats[idx]); 706 x = 0; 707 } 708 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 709 } 710 711 static struct mem_cgroup_per_node * 712 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 713 { 714 struct mem_cgroup *parent; 715 716 parent = parent_mem_cgroup(pn->memcg); 717 if (!parent) 718 return NULL; 719 return mem_cgroup_nodeinfo(parent, nid); 720 } 721 722 /** 723 * __mod_lruvec_state - update lruvec memory statistics 724 * @lruvec: the lruvec 725 * @idx: the stat item 726 * @val: delta to add to the counter, can be negative 727 * 728 * The lruvec is the intersection of the NUMA node and a cgroup. This 729 * function updates the all three counters that are affected by a 730 * change of state at this level: per-node, per-cgroup, per-lruvec. 731 */ 732 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 733 int val) 734 { 735 pg_data_t *pgdat = lruvec_pgdat(lruvec); 736 struct mem_cgroup_per_node *pn; 737 struct mem_cgroup *memcg; 738 long x; 739 740 /* Update node */ 741 __mod_node_page_state(pgdat, idx, val); 742 743 if (mem_cgroup_disabled()) 744 return; 745 746 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 747 memcg = pn->memcg; 748 749 /* Update memcg */ 750 __mod_memcg_state(memcg, idx, val); 751 752 /* Update lruvec */ 753 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 754 755 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 756 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 757 struct mem_cgroup_per_node *pi; 758 759 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 760 atomic_long_add(x, &pi->lruvec_stat[idx]); 761 x = 0; 762 } 763 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 764 } 765 766 /** 767 * __count_memcg_events - account VM events in a cgroup 768 * @memcg: the memory cgroup 769 * @idx: the event item 770 * @count: the number of events that occured 771 */ 772 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 773 unsigned long count) 774 { 775 unsigned long x; 776 777 if (mem_cgroup_disabled()) 778 return; 779 780 __this_cpu_add(memcg->vmstats_local->events[idx], count); 781 782 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 783 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 784 struct mem_cgroup *mi; 785 786 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 787 atomic_long_add(x, &mi->vmevents[idx]); 788 x = 0; 789 } 790 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 791 } 792 793 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 794 { 795 return atomic_long_read(&memcg->vmevents[event]); 796 } 797 798 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 799 { 800 long x = 0; 801 int cpu; 802 803 for_each_possible_cpu(cpu) 804 x += per_cpu(memcg->vmstats_local->events[event], cpu); 805 return x; 806 } 807 808 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 809 struct page *page, 810 bool compound, int nr_pages) 811 { 812 /* 813 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 814 * counted as CACHE even if it's on ANON LRU. 815 */ 816 if (PageAnon(page)) 817 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 818 else { 819 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 820 if (PageSwapBacked(page)) 821 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 822 } 823 824 if (compound) { 825 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 826 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 827 } 828 829 /* pagein of a big page is an event. So, ignore page size */ 830 if (nr_pages > 0) 831 __count_memcg_events(memcg, PGPGIN, 1); 832 else { 833 __count_memcg_events(memcg, PGPGOUT, 1); 834 nr_pages = -nr_pages; /* for event */ 835 } 836 837 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 838 } 839 840 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 841 enum mem_cgroup_events_target target) 842 { 843 unsigned long val, next; 844 845 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 846 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 847 /* from time_after() in jiffies.h */ 848 if ((long)(next - val) < 0) { 849 switch (target) { 850 case MEM_CGROUP_TARGET_THRESH: 851 next = val + THRESHOLDS_EVENTS_TARGET; 852 break; 853 case MEM_CGROUP_TARGET_SOFTLIMIT: 854 next = val + SOFTLIMIT_EVENTS_TARGET; 855 break; 856 case MEM_CGROUP_TARGET_NUMAINFO: 857 next = val + NUMAINFO_EVENTS_TARGET; 858 break; 859 default: 860 break; 861 } 862 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 863 return true; 864 } 865 return false; 866 } 867 868 /* 869 * Check events in order. 870 * 871 */ 872 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 873 { 874 /* threshold event is triggered in finer grain than soft limit */ 875 if (unlikely(mem_cgroup_event_ratelimit(memcg, 876 MEM_CGROUP_TARGET_THRESH))) { 877 bool do_softlimit; 878 bool do_numainfo __maybe_unused; 879 880 do_softlimit = mem_cgroup_event_ratelimit(memcg, 881 MEM_CGROUP_TARGET_SOFTLIMIT); 882 #if MAX_NUMNODES > 1 883 do_numainfo = mem_cgroup_event_ratelimit(memcg, 884 MEM_CGROUP_TARGET_NUMAINFO); 885 #endif 886 mem_cgroup_threshold(memcg); 887 if (unlikely(do_softlimit)) 888 mem_cgroup_update_tree(memcg, page); 889 #if MAX_NUMNODES > 1 890 if (unlikely(do_numainfo)) 891 atomic_inc(&memcg->numainfo_events); 892 #endif 893 } 894 } 895 896 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 897 { 898 /* 899 * mm_update_next_owner() may clear mm->owner to NULL 900 * if it races with swapoff, page migration, etc. 901 * So this can be called with p == NULL. 902 */ 903 if (unlikely(!p)) 904 return NULL; 905 906 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 907 } 908 EXPORT_SYMBOL(mem_cgroup_from_task); 909 910 /** 911 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 912 * @mm: mm from which memcg should be extracted. It can be NULL. 913 * 914 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 915 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 916 * returned. 917 */ 918 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 919 { 920 struct mem_cgroup *memcg; 921 922 if (mem_cgroup_disabled()) 923 return NULL; 924 925 rcu_read_lock(); 926 do { 927 /* 928 * Page cache insertions can happen withou an 929 * actual mm context, e.g. during disk probing 930 * on boot, loopback IO, acct() writes etc. 931 */ 932 if (unlikely(!mm)) 933 memcg = root_mem_cgroup; 934 else { 935 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 936 if (unlikely(!memcg)) 937 memcg = root_mem_cgroup; 938 } 939 } while (!css_tryget_online(&memcg->css)); 940 rcu_read_unlock(); 941 return memcg; 942 } 943 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 944 945 /** 946 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 947 * @page: page from which memcg should be extracted. 948 * 949 * Obtain a reference on page->memcg and returns it if successful. Otherwise 950 * root_mem_cgroup is returned. 951 */ 952 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 953 { 954 struct mem_cgroup *memcg = page->mem_cgroup; 955 956 if (mem_cgroup_disabled()) 957 return NULL; 958 959 rcu_read_lock(); 960 if (!memcg || !css_tryget_online(&memcg->css)) 961 memcg = root_mem_cgroup; 962 rcu_read_unlock(); 963 return memcg; 964 } 965 EXPORT_SYMBOL(get_mem_cgroup_from_page); 966 967 /** 968 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 969 */ 970 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 971 { 972 if (unlikely(current->active_memcg)) { 973 struct mem_cgroup *memcg = root_mem_cgroup; 974 975 rcu_read_lock(); 976 if (css_tryget_online(¤t->active_memcg->css)) 977 memcg = current->active_memcg; 978 rcu_read_unlock(); 979 return memcg; 980 } 981 return get_mem_cgroup_from_mm(current->mm); 982 } 983 984 /** 985 * mem_cgroup_iter - iterate over memory cgroup hierarchy 986 * @root: hierarchy root 987 * @prev: previously returned memcg, NULL on first invocation 988 * @reclaim: cookie for shared reclaim walks, NULL for full walks 989 * 990 * Returns references to children of the hierarchy below @root, or 991 * @root itself, or %NULL after a full round-trip. 992 * 993 * Caller must pass the return value in @prev on subsequent 994 * invocations for reference counting, or use mem_cgroup_iter_break() 995 * to cancel a hierarchy walk before the round-trip is complete. 996 * 997 * Reclaimers can specify a node and a priority level in @reclaim to 998 * divide up the memcgs in the hierarchy among all concurrent 999 * reclaimers operating on the same node and priority. 1000 */ 1001 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1002 struct mem_cgroup *prev, 1003 struct mem_cgroup_reclaim_cookie *reclaim) 1004 { 1005 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1006 struct cgroup_subsys_state *css = NULL; 1007 struct mem_cgroup *memcg = NULL; 1008 struct mem_cgroup *pos = NULL; 1009 1010 if (mem_cgroup_disabled()) 1011 return NULL; 1012 1013 if (!root) 1014 root = root_mem_cgroup; 1015 1016 if (prev && !reclaim) 1017 pos = prev; 1018 1019 if (!root->use_hierarchy && root != root_mem_cgroup) { 1020 if (prev) 1021 goto out; 1022 return root; 1023 } 1024 1025 rcu_read_lock(); 1026 1027 if (reclaim) { 1028 struct mem_cgroup_per_node *mz; 1029 1030 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1031 iter = &mz->iter[reclaim->priority]; 1032 1033 if (prev && reclaim->generation != iter->generation) 1034 goto out_unlock; 1035 1036 while (1) { 1037 pos = READ_ONCE(iter->position); 1038 if (!pos || css_tryget(&pos->css)) 1039 break; 1040 /* 1041 * css reference reached zero, so iter->position will 1042 * be cleared by ->css_released. However, we should not 1043 * rely on this happening soon, because ->css_released 1044 * is called from a work queue, and by busy-waiting we 1045 * might block it. So we clear iter->position right 1046 * away. 1047 */ 1048 (void)cmpxchg(&iter->position, pos, NULL); 1049 } 1050 } 1051 1052 if (pos) 1053 css = &pos->css; 1054 1055 for (;;) { 1056 css = css_next_descendant_pre(css, &root->css); 1057 if (!css) { 1058 /* 1059 * Reclaimers share the hierarchy walk, and a 1060 * new one might jump in right at the end of 1061 * the hierarchy - make sure they see at least 1062 * one group and restart from the beginning. 1063 */ 1064 if (!prev) 1065 continue; 1066 break; 1067 } 1068 1069 /* 1070 * Verify the css and acquire a reference. The root 1071 * is provided by the caller, so we know it's alive 1072 * and kicking, and don't take an extra reference. 1073 */ 1074 memcg = mem_cgroup_from_css(css); 1075 1076 if (css == &root->css) 1077 break; 1078 1079 if (css_tryget(css)) 1080 break; 1081 1082 memcg = NULL; 1083 } 1084 1085 if (reclaim) { 1086 /* 1087 * The position could have already been updated by a competing 1088 * thread, so check that the value hasn't changed since we read 1089 * it to avoid reclaiming from the same cgroup twice. 1090 */ 1091 (void)cmpxchg(&iter->position, pos, memcg); 1092 1093 if (pos) 1094 css_put(&pos->css); 1095 1096 if (!memcg) 1097 iter->generation++; 1098 else if (!prev) 1099 reclaim->generation = iter->generation; 1100 } 1101 1102 out_unlock: 1103 rcu_read_unlock(); 1104 out: 1105 if (prev && prev != root) 1106 css_put(&prev->css); 1107 1108 return memcg; 1109 } 1110 1111 /** 1112 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1113 * @root: hierarchy root 1114 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1115 */ 1116 void mem_cgroup_iter_break(struct mem_cgroup *root, 1117 struct mem_cgroup *prev) 1118 { 1119 if (!root) 1120 root = root_mem_cgroup; 1121 if (prev && prev != root) 1122 css_put(&prev->css); 1123 } 1124 1125 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1126 { 1127 struct mem_cgroup *memcg = dead_memcg; 1128 struct mem_cgroup_reclaim_iter *iter; 1129 struct mem_cgroup_per_node *mz; 1130 int nid; 1131 int i; 1132 1133 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1134 for_each_node(nid) { 1135 mz = mem_cgroup_nodeinfo(memcg, nid); 1136 for (i = 0; i <= DEF_PRIORITY; i++) { 1137 iter = &mz->iter[i]; 1138 cmpxchg(&iter->position, 1139 dead_memcg, NULL); 1140 } 1141 } 1142 } 1143 } 1144 1145 /** 1146 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1147 * @memcg: hierarchy root 1148 * @fn: function to call for each task 1149 * @arg: argument passed to @fn 1150 * 1151 * This function iterates over tasks attached to @memcg or to any of its 1152 * descendants and calls @fn for each task. If @fn returns a non-zero 1153 * value, the function breaks the iteration loop and returns the value. 1154 * Otherwise, it will iterate over all tasks and return 0. 1155 * 1156 * This function must not be called for the root memory cgroup. 1157 */ 1158 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1159 int (*fn)(struct task_struct *, void *), void *arg) 1160 { 1161 struct mem_cgroup *iter; 1162 int ret = 0; 1163 1164 BUG_ON(memcg == root_mem_cgroup); 1165 1166 for_each_mem_cgroup_tree(iter, memcg) { 1167 struct css_task_iter it; 1168 struct task_struct *task; 1169 1170 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1171 while (!ret && (task = css_task_iter_next(&it))) 1172 ret = fn(task, arg); 1173 css_task_iter_end(&it); 1174 if (ret) { 1175 mem_cgroup_iter_break(memcg, iter); 1176 break; 1177 } 1178 } 1179 return ret; 1180 } 1181 1182 /** 1183 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1184 * @page: the page 1185 * @pgdat: pgdat of the page 1186 * 1187 * This function is only safe when following the LRU page isolation 1188 * and putback protocol: the LRU lock must be held, and the page must 1189 * either be PageLRU() or the caller must have isolated/allocated it. 1190 */ 1191 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1192 { 1193 struct mem_cgroup_per_node *mz; 1194 struct mem_cgroup *memcg; 1195 struct lruvec *lruvec; 1196 1197 if (mem_cgroup_disabled()) { 1198 lruvec = &pgdat->lruvec; 1199 goto out; 1200 } 1201 1202 memcg = page->mem_cgroup; 1203 /* 1204 * Swapcache readahead pages are added to the LRU - and 1205 * possibly migrated - before they are charged. 1206 */ 1207 if (!memcg) 1208 memcg = root_mem_cgroup; 1209 1210 mz = mem_cgroup_page_nodeinfo(memcg, page); 1211 lruvec = &mz->lruvec; 1212 out: 1213 /* 1214 * Since a node can be onlined after the mem_cgroup was created, 1215 * we have to be prepared to initialize lruvec->zone here; 1216 * and if offlined then reonlined, we need to reinitialize it. 1217 */ 1218 if (unlikely(lruvec->pgdat != pgdat)) 1219 lruvec->pgdat = pgdat; 1220 return lruvec; 1221 } 1222 1223 /** 1224 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1225 * @lruvec: mem_cgroup per zone lru vector 1226 * @lru: index of lru list the page is sitting on 1227 * @zid: zone id of the accounted pages 1228 * @nr_pages: positive when adding or negative when removing 1229 * 1230 * This function must be called under lru_lock, just before a page is added 1231 * to or just after a page is removed from an lru list (that ordering being 1232 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1233 */ 1234 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1235 int zid, int nr_pages) 1236 { 1237 struct mem_cgroup_per_node *mz; 1238 unsigned long *lru_size; 1239 long size; 1240 1241 if (mem_cgroup_disabled()) 1242 return; 1243 1244 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1245 lru_size = &mz->lru_zone_size[zid][lru]; 1246 1247 if (nr_pages < 0) 1248 *lru_size += nr_pages; 1249 1250 size = *lru_size; 1251 if (WARN_ONCE(size < 0, 1252 "%s(%p, %d, %d): lru_size %ld\n", 1253 __func__, lruvec, lru, nr_pages, size)) { 1254 VM_BUG_ON(1); 1255 *lru_size = 0; 1256 } 1257 1258 if (nr_pages > 0) 1259 *lru_size += nr_pages; 1260 } 1261 1262 /** 1263 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1264 * @memcg: the memory cgroup 1265 * 1266 * Returns the maximum amount of memory @mem can be charged with, in 1267 * pages. 1268 */ 1269 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1270 { 1271 unsigned long margin = 0; 1272 unsigned long count; 1273 unsigned long limit; 1274 1275 count = page_counter_read(&memcg->memory); 1276 limit = READ_ONCE(memcg->memory.max); 1277 if (count < limit) 1278 margin = limit - count; 1279 1280 if (do_memsw_account()) { 1281 count = page_counter_read(&memcg->memsw); 1282 limit = READ_ONCE(memcg->memsw.max); 1283 if (count <= limit) 1284 margin = min(margin, limit - count); 1285 else 1286 margin = 0; 1287 } 1288 1289 return margin; 1290 } 1291 1292 /* 1293 * A routine for checking "mem" is under move_account() or not. 1294 * 1295 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1296 * moving cgroups. This is for waiting at high-memory pressure 1297 * caused by "move". 1298 */ 1299 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1300 { 1301 struct mem_cgroup *from; 1302 struct mem_cgroup *to; 1303 bool ret = false; 1304 /* 1305 * Unlike task_move routines, we access mc.to, mc.from not under 1306 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1307 */ 1308 spin_lock(&mc.lock); 1309 from = mc.from; 1310 to = mc.to; 1311 if (!from) 1312 goto unlock; 1313 1314 ret = mem_cgroup_is_descendant(from, memcg) || 1315 mem_cgroup_is_descendant(to, memcg); 1316 unlock: 1317 spin_unlock(&mc.lock); 1318 return ret; 1319 } 1320 1321 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1322 { 1323 if (mc.moving_task && current != mc.moving_task) { 1324 if (mem_cgroup_under_move(memcg)) { 1325 DEFINE_WAIT(wait); 1326 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1327 /* moving charge context might have finished. */ 1328 if (mc.moving_task) 1329 schedule(); 1330 finish_wait(&mc.waitq, &wait); 1331 return true; 1332 } 1333 } 1334 return false; 1335 } 1336 1337 static char *memory_stat_format(struct mem_cgroup *memcg) 1338 { 1339 struct seq_buf s; 1340 int i; 1341 1342 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1343 if (!s.buffer) 1344 return NULL; 1345 1346 /* 1347 * Provide statistics on the state of the memory subsystem as 1348 * well as cumulative event counters that show past behavior. 1349 * 1350 * This list is ordered following a combination of these gradients: 1351 * 1) generic big picture -> specifics and details 1352 * 2) reflecting userspace activity -> reflecting kernel heuristics 1353 * 1354 * Current memory state: 1355 */ 1356 1357 seq_buf_printf(&s, "anon %llu\n", 1358 (u64)memcg_page_state(memcg, MEMCG_RSS) * 1359 PAGE_SIZE); 1360 seq_buf_printf(&s, "file %llu\n", 1361 (u64)memcg_page_state(memcg, MEMCG_CACHE) * 1362 PAGE_SIZE); 1363 seq_buf_printf(&s, "kernel_stack %llu\n", 1364 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1365 1024); 1366 seq_buf_printf(&s, "slab %llu\n", 1367 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + 1368 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * 1369 PAGE_SIZE); 1370 seq_buf_printf(&s, "sock %llu\n", 1371 (u64)memcg_page_state(memcg, MEMCG_SOCK) * 1372 PAGE_SIZE); 1373 1374 seq_buf_printf(&s, "shmem %llu\n", 1375 (u64)memcg_page_state(memcg, NR_SHMEM) * 1376 PAGE_SIZE); 1377 seq_buf_printf(&s, "file_mapped %llu\n", 1378 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * 1379 PAGE_SIZE); 1380 seq_buf_printf(&s, "file_dirty %llu\n", 1381 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * 1382 PAGE_SIZE); 1383 seq_buf_printf(&s, "file_writeback %llu\n", 1384 (u64)memcg_page_state(memcg, NR_WRITEBACK) * 1385 PAGE_SIZE); 1386 1387 /* 1388 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter 1389 * with the NR_ANON_THP vm counter, but right now it's a pain in the 1390 * arse because it requires migrating the work out of rmap to a place 1391 * where the page->mem_cgroup is set up and stable. 1392 */ 1393 seq_buf_printf(&s, "anon_thp %llu\n", 1394 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * 1395 PAGE_SIZE); 1396 1397 for (i = 0; i < NR_LRU_LISTS; i++) 1398 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i], 1399 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 1400 PAGE_SIZE); 1401 1402 seq_buf_printf(&s, "slab_reclaimable %llu\n", 1403 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * 1404 PAGE_SIZE); 1405 seq_buf_printf(&s, "slab_unreclaimable %llu\n", 1406 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * 1407 PAGE_SIZE); 1408 1409 /* Accumulated memory events */ 1410 1411 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT)); 1412 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT)); 1413 1414 seq_buf_printf(&s, "workingset_refault %lu\n", 1415 memcg_page_state(memcg, WORKINGSET_REFAULT)); 1416 seq_buf_printf(&s, "workingset_activate %lu\n", 1417 memcg_page_state(memcg, WORKINGSET_ACTIVATE)); 1418 seq_buf_printf(&s, "workingset_nodereclaim %lu\n", 1419 memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); 1420 1421 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL)); 1422 seq_buf_printf(&s, "pgscan %lu\n", 1423 memcg_events(memcg, PGSCAN_KSWAPD) + 1424 memcg_events(memcg, PGSCAN_DIRECT)); 1425 seq_buf_printf(&s, "pgsteal %lu\n", 1426 memcg_events(memcg, PGSTEAL_KSWAPD) + 1427 memcg_events(memcg, PGSTEAL_DIRECT)); 1428 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE)); 1429 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE)); 1430 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE)); 1431 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED)); 1432 1433 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1434 seq_buf_printf(&s, "thp_fault_alloc %lu\n", 1435 memcg_events(memcg, THP_FAULT_ALLOC)); 1436 seq_buf_printf(&s, "thp_collapse_alloc %lu\n", 1437 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1438 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1439 1440 /* The above should easily fit into one page */ 1441 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1442 1443 return s.buffer; 1444 } 1445 1446 #define K(x) ((x) << (PAGE_SHIFT-10)) 1447 /** 1448 * mem_cgroup_print_oom_context: Print OOM information relevant to 1449 * memory controller. 1450 * @memcg: The memory cgroup that went over limit 1451 * @p: Task that is going to be killed 1452 * 1453 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1454 * enabled 1455 */ 1456 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1457 { 1458 rcu_read_lock(); 1459 1460 if (memcg) { 1461 pr_cont(",oom_memcg="); 1462 pr_cont_cgroup_path(memcg->css.cgroup); 1463 } else 1464 pr_cont(",global_oom"); 1465 if (p) { 1466 pr_cont(",task_memcg="); 1467 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1468 } 1469 rcu_read_unlock(); 1470 } 1471 1472 /** 1473 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1474 * memory controller. 1475 * @memcg: The memory cgroup that went over limit 1476 */ 1477 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1478 { 1479 char *buf; 1480 1481 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1482 K((u64)page_counter_read(&memcg->memory)), 1483 K((u64)memcg->memory.max), memcg->memory.failcnt); 1484 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1485 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1486 K((u64)page_counter_read(&memcg->swap)), 1487 K((u64)memcg->swap.max), memcg->swap.failcnt); 1488 else { 1489 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1490 K((u64)page_counter_read(&memcg->memsw)), 1491 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1492 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1493 K((u64)page_counter_read(&memcg->kmem)), 1494 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1495 } 1496 1497 pr_info("Memory cgroup stats for "); 1498 pr_cont_cgroup_path(memcg->css.cgroup); 1499 pr_cont(":"); 1500 buf = memory_stat_format(memcg); 1501 if (!buf) 1502 return; 1503 pr_info("%s", buf); 1504 kfree(buf); 1505 } 1506 1507 /* 1508 * Return the memory (and swap, if configured) limit for a memcg. 1509 */ 1510 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1511 { 1512 unsigned long max; 1513 1514 max = memcg->memory.max; 1515 if (mem_cgroup_swappiness(memcg)) { 1516 unsigned long memsw_max; 1517 unsigned long swap_max; 1518 1519 memsw_max = memcg->memsw.max; 1520 swap_max = memcg->swap.max; 1521 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1522 max = min(max + swap_max, memsw_max); 1523 } 1524 return max; 1525 } 1526 1527 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1528 int order) 1529 { 1530 struct oom_control oc = { 1531 .zonelist = NULL, 1532 .nodemask = NULL, 1533 .memcg = memcg, 1534 .gfp_mask = gfp_mask, 1535 .order = order, 1536 }; 1537 bool ret; 1538 1539 if (mutex_lock_killable(&oom_lock)) 1540 return true; 1541 /* 1542 * A few threads which were not waiting at mutex_lock_killable() can 1543 * fail to bail out. Therefore, check again after holding oom_lock. 1544 */ 1545 ret = should_force_charge() || out_of_memory(&oc); 1546 mutex_unlock(&oom_lock); 1547 return ret; 1548 } 1549 1550 #if MAX_NUMNODES > 1 1551 1552 /** 1553 * test_mem_cgroup_node_reclaimable 1554 * @memcg: the target memcg 1555 * @nid: the node ID to be checked. 1556 * @noswap : specify true here if the user wants flle only information. 1557 * 1558 * This function returns whether the specified memcg contains any 1559 * reclaimable pages on a node. Returns true if there are any reclaimable 1560 * pages in the node. 1561 */ 1562 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1563 int nid, bool noswap) 1564 { 1565 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 1566 1567 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) || 1568 lruvec_page_state(lruvec, NR_ACTIVE_FILE)) 1569 return true; 1570 if (noswap || !total_swap_pages) 1571 return false; 1572 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) || 1573 lruvec_page_state(lruvec, NR_ACTIVE_ANON)) 1574 return true; 1575 return false; 1576 1577 } 1578 1579 /* 1580 * Always updating the nodemask is not very good - even if we have an empty 1581 * list or the wrong list here, we can start from some node and traverse all 1582 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1583 * 1584 */ 1585 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1586 { 1587 int nid; 1588 /* 1589 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1590 * pagein/pageout changes since the last update. 1591 */ 1592 if (!atomic_read(&memcg->numainfo_events)) 1593 return; 1594 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1595 return; 1596 1597 /* make a nodemask where this memcg uses memory from */ 1598 memcg->scan_nodes = node_states[N_MEMORY]; 1599 1600 for_each_node_mask(nid, node_states[N_MEMORY]) { 1601 1602 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1603 node_clear(nid, memcg->scan_nodes); 1604 } 1605 1606 atomic_set(&memcg->numainfo_events, 0); 1607 atomic_set(&memcg->numainfo_updating, 0); 1608 } 1609 1610 /* 1611 * Selecting a node where we start reclaim from. Because what we need is just 1612 * reducing usage counter, start from anywhere is O,K. Considering 1613 * memory reclaim from current node, there are pros. and cons. 1614 * 1615 * Freeing memory from current node means freeing memory from a node which 1616 * we'll use or we've used. So, it may make LRU bad. And if several threads 1617 * hit limits, it will see a contention on a node. But freeing from remote 1618 * node means more costs for memory reclaim because of memory latency. 1619 * 1620 * Now, we use round-robin. Better algorithm is welcomed. 1621 */ 1622 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1623 { 1624 int node; 1625 1626 mem_cgroup_may_update_nodemask(memcg); 1627 node = memcg->last_scanned_node; 1628 1629 node = next_node_in(node, memcg->scan_nodes); 1630 /* 1631 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1632 * last time it really checked all the LRUs due to rate limiting. 1633 * Fallback to the current node in that case for simplicity. 1634 */ 1635 if (unlikely(node == MAX_NUMNODES)) 1636 node = numa_node_id(); 1637 1638 memcg->last_scanned_node = node; 1639 return node; 1640 } 1641 #else 1642 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1643 { 1644 return 0; 1645 } 1646 #endif 1647 1648 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1649 pg_data_t *pgdat, 1650 gfp_t gfp_mask, 1651 unsigned long *total_scanned) 1652 { 1653 struct mem_cgroup *victim = NULL; 1654 int total = 0; 1655 int loop = 0; 1656 unsigned long excess; 1657 unsigned long nr_scanned; 1658 struct mem_cgroup_reclaim_cookie reclaim = { 1659 .pgdat = pgdat, 1660 .priority = 0, 1661 }; 1662 1663 excess = soft_limit_excess(root_memcg); 1664 1665 while (1) { 1666 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1667 if (!victim) { 1668 loop++; 1669 if (loop >= 2) { 1670 /* 1671 * If we have not been able to reclaim 1672 * anything, it might because there are 1673 * no reclaimable pages under this hierarchy 1674 */ 1675 if (!total) 1676 break; 1677 /* 1678 * We want to do more targeted reclaim. 1679 * excess >> 2 is not to excessive so as to 1680 * reclaim too much, nor too less that we keep 1681 * coming back to reclaim from this cgroup 1682 */ 1683 if (total >= (excess >> 2) || 1684 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1685 break; 1686 } 1687 continue; 1688 } 1689 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1690 pgdat, &nr_scanned); 1691 *total_scanned += nr_scanned; 1692 if (!soft_limit_excess(root_memcg)) 1693 break; 1694 } 1695 mem_cgroup_iter_break(root_memcg, victim); 1696 return total; 1697 } 1698 1699 #ifdef CONFIG_LOCKDEP 1700 static struct lockdep_map memcg_oom_lock_dep_map = { 1701 .name = "memcg_oom_lock", 1702 }; 1703 #endif 1704 1705 static DEFINE_SPINLOCK(memcg_oom_lock); 1706 1707 /* 1708 * Check OOM-Killer is already running under our hierarchy. 1709 * If someone is running, return false. 1710 */ 1711 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1712 { 1713 struct mem_cgroup *iter, *failed = NULL; 1714 1715 spin_lock(&memcg_oom_lock); 1716 1717 for_each_mem_cgroup_tree(iter, memcg) { 1718 if (iter->oom_lock) { 1719 /* 1720 * this subtree of our hierarchy is already locked 1721 * so we cannot give a lock. 1722 */ 1723 failed = iter; 1724 mem_cgroup_iter_break(memcg, iter); 1725 break; 1726 } else 1727 iter->oom_lock = true; 1728 } 1729 1730 if (failed) { 1731 /* 1732 * OK, we failed to lock the whole subtree so we have 1733 * to clean up what we set up to the failing subtree 1734 */ 1735 for_each_mem_cgroup_tree(iter, memcg) { 1736 if (iter == failed) { 1737 mem_cgroup_iter_break(memcg, iter); 1738 break; 1739 } 1740 iter->oom_lock = false; 1741 } 1742 } else 1743 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1744 1745 spin_unlock(&memcg_oom_lock); 1746 1747 return !failed; 1748 } 1749 1750 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1751 { 1752 struct mem_cgroup *iter; 1753 1754 spin_lock(&memcg_oom_lock); 1755 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1756 for_each_mem_cgroup_tree(iter, memcg) 1757 iter->oom_lock = false; 1758 spin_unlock(&memcg_oom_lock); 1759 } 1760 1761 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1762 { 1763 struct mem_cgroup *iter; 1764 1765 spin_lock(&memcg_oom_lock); 1766 for_each_mem_cgroup_tree(iter, memcg) 1767 iter->under_oom++; 1768 spin_unlock(&memcg_oom_lock); 1769 } 1770 1771 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1772 { 1773 struct mem_cgroup *iter; 1774 1775 /* 1776 * When a new child is created while the hierarchy is under oom, 1777 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1778 */ 1779 spin_lock(&memcg_oom_lock); 1780 for_each_mem_cgroup_tree(iter, memcg) 1781 if (iter->under_oom > 0) 1782 iter->under_oom--; 1783 spin_unlock(&memcg_oom_lock); 1784 } 1785 1786 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1787 1788 struct oom_wait_info { 1789 struct mem_cgroup *memcg; 1790 wait_queue_entry_t wait; 1791 }; 1792 1793 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1794 unsigned mode, int sync, void *arg) 1795 { 1796 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1797 struct mem_cgroup *oom_wait_memcg; 1798 struct oom_wait_info *oom_wait_info; 1799 1800 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1801 oom_wait_memcg = oom_wait_info->memcg; 1802 1803 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1804 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1805 return 0; 1806 return autoremove_wake_function(wait, mode, sync, arg); 1807 } 1808 1809 static void memcg_oom_recover(struct mem_cgroup *memcg) 1810 { 1811 /* 1812 * For the following lockless ->under_oom test, the only required 1813 * guarantee is that it must see the state asserted by an OOM when 1814 * this function is called as a result of userland actions 1815 * triggered by the notification of the OOM. This is trivially 1816 * achieved by invoking mem_cgroup_mark_under_oom() before 1817 * triggering notification. 1818 */ 1819 if (memcg && memcg->under_oom) 1820 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1821 } 1822 1823 enum oom_status { 1824 OOM_SUCCESS, 1825 OOM_FAILED, 1826 OOM_ASYNC, 1827 OOM_SKIPPED 1828 }; 1829 1830 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1831 { 1832 enum oom_status ret; 1833 bool locked; 1834 1835 if (order > PAGE_ALLOC_COSTLY_ORDER) 1836 return OOM_SKIPPED; 1837 1838 memcg_memory_event(memcg, MEMCG_OOM); 1839 1840 /* 1841 * We are in the middle of the charge context here, so we 1842 * don't want to block when potentially sitting on a callstack 1843 * that holds all kinds of filesystem and mm locks. 1844 * 1845 * cgroup1 allows disabling the OOM killer and waiting for outside 1846 * handling until the charge can succeed; remember the context and put 1847 * the task to sleep at the end of the page fault when all locks are 1848 * released. 1849 * 1850 * On the other hand, in-kernel OOM killer allows for an async victim 1851 * memory reclaim (oom_reaper) and that means that we are not solely 1852 * relying on the oom victim to make a forward progress and we can 1853 * invoke the oom killer here. 1854 * 1855 * Please note that mem_cgroup_out_of_memory might fail to find a 1856 * victim and then we have to bail out from the charge path. 1857 */ 1858 if (memcg->oom_kill_disable) { 1859 if (!current->in_user_fault) 1860 return OOM_SKIPPED; 1861 css_get(&memcg->css); 1862 current->memcg_in_oom = memcg; 1863 current->memcg_oom_gfp_mask = mask; 1864 current->memcg_oom_order = order; 1865 1866 return OOM_ASYNC; 1867 } 1868 1869 mem_cgroup_mark_under_oom(memcg); 1870 1871 locked = mem_cgroup_oom_trylock(memcg); 1872 1873 if (locked) 1874 mem_cgroup_oom_notify(memcg); 1875 1876 mem_cgroup_unmark_under_oom(memcg); 1877 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1878 ret = OOM_SUCCESS; 1879 else 1880 ret = OOM_FAILED; 1881 1882 if (locked) 1883 mem_cgroup_oom_unlock(memcg); 1884 1885 return ret; 1886 } 1887 1888 /** 1889 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1890 * @handle: actually kill/wait or just clean up the OOM state 1891 * 1892 * This has to be called at the end of a page fault if the memcg OOM 1893 * handler was enabled. 1894 * 1895 * Memcg supports userspace OOM handling where failed allocations must 1896 * sleep on a waitqueue until the userspace task resolves the 1897 * situation. Sleeping directly in the charge context with all kinds 1898 * of locks held is not a good idea, instead we remember an OOM state 1899 * in the task and mem_cgroup_oom_synchronize() has to be called at 1900 * the end of the page fault to complete the OOM handling. 1901 * 1902 * Returns %true if an ongoing memcg OOM situation was detected and 1903 * completed, %false otherwise. 1904 */ 1905 bool mem_cgroup_oom_synchronize(bool handle) 1906 { 1907 struct mem_cgroup *memcg = current->memcg_in_oom; 1908 struct oom_wait_info owait; 1909 bool locked; 1910 1911 /* OOM is global, do not handle */ 1912 if (!memcg) 1913 return false; 1914 1915 if (!handle) 1916 goto cleanup; 1917 1918 owait.memcg = memcg; 1919 owait.wait.flags = 0; 1920 owait.wait.func = memcg_oom_wake_function; 1921 owait.wait.private = current; 1922 INIT_LIST_HEAD(&owait.wait.entry); 1923 1924 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1925 mem_cgroup_mark_under_oom(memcg); 1926 1927 locked = mem_cgroup_oom_trylock(memcg); 1928 1929 if (locked) 1930 mem_cgroup_oom_notify(memcg); 1931 1932 if (locked && !memcg->oom_kill_disable) { 1933 mem_cgroup_unmark_under_oom(memcg); 1934 finish_wait(&memcg_oom_waitq, &owait.wait); 1935 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1936 current->memcg_oom_order); 1937 } else { 1938 schedule(); 1939 mem_cgroup_unmark_under_oom(memcg); 1940 finish_wait(&memcg_oom_waitq, &owait.wait); 1941 } 1942 1943 if (locked) { 1944 mem_cgroup_oom_unlock(memcg); 1945 /* 1946 * There is no guarantee that an OOM-lock contender 1947 * sees the wakeups triggered by the OOM kill 1948 * uncharges. Wake any sleepers explicitely. 1949 */ 1950 memcg_oom_recover(memcg); 1951 } 1952 cleanup: 1953 current->memcg_in_oom = NULL; 1954 css_put(&memcg->css); 1955 return true; 1956 } 1957 1958 /** 1959 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1960 * @victim: task to be killed by the OOM killer 1961 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1962 * 1963 * Returns a pointer to a memory cgroup, which has to be cleaned up 1964 * by killing all belonging OOM-killable tasks. 1965 * 1966 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1967 */ 1968 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1969 struct mem_cgroup *oom_domain) 1970 { 1971 struct mem_cgroup *oom_group = NULL; 1972 struct mem_cgroup *memcg; 1973 1974 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1975 return NULL; 1976 1977 if (!oom_domain) 1978 oom_domain = root_mem_cgroup; 1979 1980 rcu_read_lock(); 1981 1982 memcg = mem_cgroup_from_task(victim); 1983 if (memcg == root_mem_cgroup) 1984 goto out; 1985 1986 /* 1987 * Traverse the memory cgroup hierarchy from the victim task's 1988 * cgroup up to the OOMing cgroup (or root) to find the 1989 * highest-level memory cgroup with oom.group set. 1990 */ 1991 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1992 if (memcg->oom_group) 1993 oom_group = memcg; 1994 1995 if (memcg == oom_domain) 1996 break; 1997 } 1998 1999 if (oom_group) 2000 css_get(&oom_group->css); 2001 out: 2002 rcu_read_unlock(); 2003 2004 return oom_group; 2005 } 2006 2007 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2008 { 2009 pr_info("Tasks in "); 2010 pr_cont_cgroup_path(memcg->css.cgroup); 2011 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2012 } 2013 2014 /** 2015 * lock_page_memcg - lock a page->mem_cgroup binding 2016 * @page: the page 2017 * 2018 * This function protects unlocked LRU pages from being moved to 2019 * another cgroup. 2020 * 2021 * It ensures lifetime of the returned memcg. Caller is responsible 2022 * for the lifetime of the page; __unlock_page_memcg() is available 2023 * when @page might get freed inside the locked section. 2024 */ 2025 struct mem_cgroup *lock_page_memcg(struct page *page) 2026 { 2027 struct mem_cgroup *memcg; 2028 unsigned long flags; 2029 2030 /* 2031 * The RCU lock is held throughout the transaction. The fast 2032 * path can get away without acquiring the memcg->move_lock 2033 * because page moving starts with an RCU grace period. 2034 * 2035 * The RCU lock also protects the memcg from being freed when 2036 * the page state that is going to change is the only thing 2037 * preventing the page itself from being freed. E.g. writeback 2038 * doesn't hold a page reference and relies on PG_writeback to 2039 * keep off truncation, migration and so forth. 2040 */ 2041 rcu_read_lock(); 2042 2043 if (mem_cgroup_disabled()) 2044 return NULL; 2045 again: 2046 memcg = page->mem_cgroup; 2047 if (unlikely(!memcg)) 2048 return NULL; 2049 2050 if (atomic_read(&memcg->moving_account) <= 0) 2051 return memcg; 2052 2053 spin_lock_irqsave(&memcg->move_lock, flags); 2054 if (memcg != page->mem_cgroup) { 2055 spin_unlock_irqrestore(&memcg->move_lock, flags); 2056 goto again; 2057 } 2058 2059 /* 2060 * When charge migration first begins, we can have locked and 2061 * unlocked page stat updates happening concurrently. Track 2062 * the task who has the lock for unlock_page_memcg(). 2063 */ 2064 memcg->move_lock_task = current; 2065 memcg->move_lock_flags = flags; 2066 2067 return memcg; 2068 } 2069 EXPORT_SYMBOL(lock_page_memcg); 2070 2071 /** 2072 * __unlock_page_memcg - unlock and unpin a memcg 2073 * @memcg: the memcg 2074 * 2075 * Unlock and unpin a memcg returned by lock_page_memcg(). 2076 */ 2077 void __unlock_page_memcg(struct mem_cgroup *memcg) 2078 { 2079 if (memcg && memcg->move_lock_task == current) { 2080 unsigned long flags = memcg->move_lock_flags; 2081 2082 memcg->move_lock_task = NULL; 2083 memcg->move_lock_flags = 0; 2084 2085 spin_unlock_irqrestore(&memcg->move_lock, flags); 2086 } 2087 2088 rcu_read_unlock(); 2089 } 2090 2091 /** 2092 * unlock_page_memcg - unlock a page->mem_cgroup binding 2093 * @page: the page 2094 */ 2095 void unlock_page_memcg(struct page *page) 2096 { 2097 __unlock_page_memcg(page->mem_cgroup); 2098 } 2099 EXPORT_SYMBOL(unlock_page_memcg); 2100 2101 struct memcg_stock_pcp { 2102 struct mem_cgroup *cached; /* this never be root cgroup */ 2103 unsigned int nr_pages; 2104 struct work_struct work; 2105 unsigned long flags; 2106 #define FLUSHING_CACHED_CHARGE 0 2107 }; 2108 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2109 static DEFINE_MUTEX(percpu_charge_mutex); 2110 2111 /** 2112 * consume_stock: Try to consume stocked charge on this cpu. 2113 * @memcg: memcg to consume from. 2114 * @nr_pages: how many pages to charge. 2115 * 2116 * The charges will only happen if @memcg matches the current cpu's memcg 2117 * stock, and at least @nr_pages are available in that stock. Failure to 2118 * service an allocation will refill the stock. 2119 * 2120 * returns true if successful, false otherwise. 2121 */ 2122 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2123 { 2124 struct memcg_stock_pcp *stock; 2125 unsigned long flags; 2126 bool ret = false; 2127 2128 if (nr_pages > MEMCG_CHARGE_BATCH) 2129 return ret; 2130 2131 local_irq_save(flags); 2132 2133 stock = this_cpu_ptr(&memcg_stock); 2134 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2135 stock->nr_pages -= nr_pages; 2136 ret = true; 2137 } 2138 2139 local_irq_restore(flags); 2140 2141 return ret; 2142 } 2143 2144 /* 2145 * Returns stocks cached in percpu and reset cached information. 2146 */ 2147 static void drain_stock(struct memcg_stock_pcp *stock) 2148 { 2149 struct mem_cgroup *old = stock->cached; 2150 2151 if (stock->nr_pages) { 2152 page_counter_uncharge(&old->memory, stock->nr_pages); 2153 if (do_memsw_account()) 2154 page_counter_uncharge(&old->memsw, stock->nr_pages); 2155 css_put_many(&old->css, stock->nr_pages); 2156 stock->nr_pages = 0; 2157 } 2158 stock->cached = NULL; 2159 } 2160 2161 static void drain_local_stock(struct work_struct *dummy) 2162 { 2163 struct memcg_stock_pcp *stock; 2164 unsigned long flags; 2165 2166 /* 2167 * The only protection from memory hotplug vs. drain_stock races is 2168 * that we always operate on local CPU stock here with IRQ disabled 2169 */ 2170 local_irq_save(flags); 2171 2172 stock = this_cpu_ptr(&memcg_stock); 2173 drain_stock(stock); 2174 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2175 2176 local_irq_restore(flags); 2177 } 2178 2179 /* 2180 * Cache charges(val) to local per_cpu area. 2181 * This will be consumed by consume_stock() function, later. 2182 */ 2183 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2184 { 2185 struct memcg_stock_pcp *stock; 2186 unsigned long flags; 2187 2188 local_irq_save(flags); 2189 2190 stock = this_cpu_ptr(&memcg_stock); 2191 if (stock->cached != memcg) { /* reset if necessary */ 2192 drain_stock(stock); 2193 stock->cached = memcg; 2194 } 2195 stock->nr_pages += nr_pages; 2196 2197 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2198 drain_stock(stock); 2199 2200 local_irq_restore(flags); 2201 } 2202 2203 /* 2204 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2205 * of the hierarchy under it. 2206 */ 2207 static void drain_all_stock(struct mem_cgroup *root_memcg) 2208 { 2209 int cpu, curcpu; 2210 2211 /* If someone's already draining, avoid adding running more workers. */ 2212 if (!mutex_trylock(&percpu_charge_mutex)) 2213 return; 2214 /* 2215 * Notify other cpus that system-wide "drain" is running 2216 * We do not care about races with the cpu hotplug because cpu down 2217 * as well as workers from this path always operate on the local 2218 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2219 */ 2220 curcpu = get_cpu(); 2221 for_each_online_cpu(cpu) { 2222 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2223 struct mem_cgroup *memcg; 2224 2225 memcg = stock->cached; 2226 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css)) 2227 continue; 2228 if (!mem_cgroup_is_descendant(memcg, root_memcg)) { 2229 css_put(&memcg->css); 2230 continue; 2231 } 2232 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2233 if (cpu == curcpu) 2234 drain_local_stock(&stock->work); 2235 else 2236 schedule_work_on(cpu, &stock->work); 2237 } 2238 css_put(&memcg->css); 2239 } 2240 put_cpu(); 2241 mutex_unlock(&percpu_charge_mutex); 2242 } 2243 2244 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2245 { 2246 struct memcg_stock_pcp *stock; 2247 struct mem_cgroup *memcg, *mi; 2248 2249 stock = &per_cpu(memcg_stock, cpu); 2250 drain_stock(stock); 2251 2252 for_each_mem_cgroup(memcg) { 2253 int i; 2254 2255 for (i = 0; i < MEMCG_NR_STAT; i++) { 2256 int nid; 2257 long x; 2258 2259 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2260 if (x) 2261 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2262 atomic_long_add(x, &memcg->vmstats[i]); 2263 2264 if (i >= NR_VM_NODE_STAT_ITEMS) 2265 continue; 2266 2267 for_each_node(nid) { 2268 struct mem_cgroup_per_node *pn; 2269 2270 pn = mem_cgroup_nodeinfo(memcg, nid); 2271 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2272 if (x) 2273 do { 2274 atomic_long_add(x, &pn->lruvec_stat[i]); 2275 } while ((pn = parent_nodeinfo(pn, nid))); 2276 } 2277 } 2278 2279 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2280 long x; 2281 2282 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2283 if (x) 2284 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2285 atomic_long_add(x, &memcg->vmevents[i]); 2286 } 2287 } 2288 2289 return 0; 2290 } 2291 2292 static void reclaim_high(struct mem_cgroup *memcg, 2293 unsigned int nr_pages, 2294 gfp_t gfp_mask) 2295 { 2296 do { 2297 if (page_counter_read(&memcg->memory) <= memcg->high) 2298 continue; 2299 memcg_memory_event(memcg, MEMCG_HIGH); 2300 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2301 } while ((memcg = parent_mem_cgroup(memcg))); 2302 } 2303 2304 static void high_work_func(struct work_struct *work) 2305 { 2306 struct mem_cgroup *memcg; 2307 2308 memcg = container_of(work, struct mem_cgroup, high_work); 2309 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2310 } 2311 2312 /* 2313 * Scheduled by try_charge() to be executed from the userland return path 2314 * and reclaims memory over the high limit. 2315 */ 2316 void mem_cgroup_handle_over_high(void) 2317 { 2318 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2319 struct mem_cgroup *memcg; 2320 2321 if (likely(!nr_pages)) 2322 return; 2323 2324 memcg = get_mem_cgroup_from_mm(current->mm); 2325 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2326 css_put(&memcg->css); 2327 current->memcg_nr_pages_over_high = 0; 2328 } 2329 2330 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2331 unsigned int nr_pages) 2332 { 2333 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2334 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2335 struct mem_cgroup *mem_over_limit; 2336 struct page_counter *counter; 2337 unsigned long nr_reclaimed; 2338 bool may_swap = true; 2339 bool drained = false; 2340 enum oom_status oom_status; 2341 2342 if (mem_cgroup_is_root(memcg)) 2343 return 0; 2344 retry: 2345 if (consume_stock(memcg, nr_pages)) 2346 return 0; 2347 2348 if (!do_memsw_account() || 2349 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2350 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2351 goto done_restock; 2352 if (do_memsw_account()) 2353 page_counter_uncharge(&memcg->memsw, batch); 2354 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2355 } else { 2356 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2357 may_swap = false; 2358 } 2359 2360 if (batch > nr_pages) { 2361 batch = nr_pages; 2362 goto retry; 2363 } 2364 2365 /* 2366 * Unlike in global OOM situations, memcg is not in a physical 2367 * memory shortage. Allow dying and OOM-killed tasks to 2368 * bypass the last charges so that they can exit quickly and 2369 * free their memory. 2370 */ 2371 if (unlikely(should_force_charge())) 2372 goto force; 2373 2374 /* 2375 * Prevent unbounded recursion when reclaim operations need to 2376 * allocate memory. This might exceed the limits temporarily, 2377 * but we prefer facilitating memory reclaim and getting back 2378 * under the limit over triggering OOM kills in these cases. 2379 */ 2380 if (unlikely(current->flags & PF_MEMALLOC)) 2381 goto force; 2382 2383 if (unlikely(task_in_memcg_oom(current))) 2384 goto nomem; 2385 2386 if (!gfpflags_allow_blocking(gfp_mask)) 2387 goto nomem; 2388 2389 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2390 2391 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2392 gfp_mask, may_swap); 2393 2394 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2395 goto retry; 2396 2397 if (!drained) { 2398 drain_all_stock(mem_over_limit); 2399 drained = true; 2400 goto retry; 2401 } 2402 2403 if (gfp_mask & __GFP_NORETRY) 2404 goto nomem; 2405 /* 2406 * Even though the limit is exceeded at this point, reclaim 2407 * may have been able to free some pages. Retry the charge 2408 * before killing the task. 2409 * 2410 * Only for regular pages, though: huge pages are rather 2411 * unlikely to succeed so close to the limit, and we fall back 2412 * to regular pages anyway in case of failure. 2413 */ 2414 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2415 goto retry; 2416 /* 2417 * At task move, charge accounts can be doubly counted. So, it's 2418 * better to wait until the end of task_move if something is going on. 2419 */ 2420 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2421 goto retry; 2422 2423 if (nr_retries--) 2424 goto retry; 2425 2426 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2427 goto nomem; 2428 2429 if (gfp_mask & __GFP_NOFAIL) 2430 goto force; 2431 2432 if (fatal_signal_pending(current)) 2433 goto force; 2434 2435 /* 2436 * keep retrying as long as the memcg oom killer is able to make 2437 * a forward progress or bypass the charge if the oom killer 2438 * couldn't make any progress. 2439 */ 2440 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2441 get_order(nr_pages * PAGE_SIZE)); 2442 switch (oom_status) { 2443 case OOM_SUCCESS: 2444 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2445 goto retry; 2446 case OOM_FAILED: 2447 goto force; 2448 default: 2449 goto nomem; 2450 } 2451 nomem: 2452 if (!(gfp_mask & __GFP_NOFAIL)) 2453 return -ENOMEM; 2454 force: 2455 /* 2456 * The allocation either can't fail or will lead to more memory 2457 * being freed very soon. Allow memory usage go over the limit 2458 * temporarily by force charging it. 2459 */ 2460 page_counter_charge(&memcg->memory, nr_pages); 2461 if (do_memsw_account()) 2462 page_counter_charge(&memcg->memsw, nr_pages); 2463 css_get_many(&memcg->css, nr_pages); 2464 2465 return 0; 2466 2467 done_restock: 2468 css_get_many(&memcg->css, batch); 2469 if (batch > nr_pages) 2470 refill_stock(memcg, batch - nr_pages); 2471 2472 /* 2473 * If the hierarchy is above the normal consumption range, schedule 2474 * reclaim on returning to userland. We can perform reclaim here 2475 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2476 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2477 * not recorded as it most likely matches current's and won't 2478 * change in the meantime. As high limit is checked again before 2479 * reclaim, the cost of mismatch is negligible. 2480 */ 2481 do { 2482 if (page_counter_read(&memcg->memory) > memcg->high) { 2483 /* Don't bother a random interrupted task */ 2484 if (in_interrupt()) { 2485 schedule_work(&memcg->high_work); 2486 break; 2487 } 2488 current->memcg_nr_pages_over_high += batch; 2489 set_notify_resume(current); 2490 break; 2491 } 2492 } while ((memcg = parent_mem_cgroup(memcg))); 2493 2494 return 0; 2495 } 2496 2497 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2498 { 2499 if (mem_cgroup_is_root(memcg)) 2500 return; 2501 2502 page_counter_uncharge(&memcg->memory, nr_pages); 2503 if (do_memsw_account()) 2504 page_counter_uncharge(&memcg->memsw, nr_pages); 2505 2506 css_put_many(&memcg->css, nr_pages); 2507 } 2508 2509 static void lock_page_lru(struct page *page, int *isolated) 2510 { 2511 pg_data_t *pgdat = page_pgdat(page); 2512 2513 spin_lock_irq(&pgdat->lru_lock); 2514 if (PageLRU(page)) { 2515 struct lruvec *lruvec; 2516 2517 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2518 ClearPageLRU(page); 2519 del_page_from_lru_list(page, lruvec, page_lru(page)); 2520 *isolated = 1; 2521 } else 2522 *isolated = 0; 2523 } 2524 2525 static void unlock_page_lru(struct page *page, int isolated) 2526 { 2527 pg_data_t *pgdat = page_pgdat(page); 2528 2529 if (isolated) { 2530 struct lruvec *lruvec; 2531 2532 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2533 VM_BUG_ON_PAGE(PageLRU(page), page); 2534 SetPageLRU(page); 2535 add_page_to_lru_list(page, lruvec, page_lru(page)); 2536 } 2537 spin_unlock_irq(&pgdat->lru_lock); 2538 } 2539 2540 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2541 bool lrucare) 2542 { 2543 int isolated; 2544 2545 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2546 2547 /* 2548 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2549 * may already be on some other mem_cgroup's LRU. Take care of it. 2550 */ 2551 if (lrucare) 2552 lock_page_lru(page, &isolated); 2553 2554 /* 2555 * Nobody should be changing or seriously looking at 2556 * page->mem_cgroup at this point: 2557 * 2558 * - the page is uncharged 2559 * 2560 * - the page is off-LRU 2561 * 2562 * - an anonymous fault has exclusive page access, except for 2563 * a locked page table 2564 * 2565 * - a page cache insertion, a swapin fault, or a migration 2566 * have the page locked 2567 */ 2568 page->mem_cgroup = memcg; 2569 2570 if (lrucare) 2571 unlock_page_lru(page, isolated); 2572 } 2573 2574 #ifdef CONFIG_MEMCG_KMEM 2575 static int memcg_alloc_cache_id(void) 2576 { 2577 int id, size; 2578 int err; 2579 2580 id = ida_simple_get(&memcg_cache_ida, 2581 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2582 if (id < 0) 2583 return id; 2584 2585 if (id < memcg_nr_cache_ids) 2586 return id; 2587 2588 /* 2589 * There's no space for the new id in memcg_caches arrays, 2590 * so we have to grow them. 2591 */ 2592 down_write(&memcg_cache_ids_sem); 2593 2594 size = 2 * (id + 1); 2595 if (size < MEMCG_CACHES_MIN_SIZE) 2596 size = MEMCG_CACHES_MIN_SIZE; 2597 else if (size > MEMCG_CACHES_MAX_SIZE) 2598 size = MEMCG_CACHES_MAX_SIZE; 2599 2600 err = memcg_update_all_caches(size); 2601 if (!err) 2602 err = memcg_update_all_list_lrus(size); 2603 if (!err) 2604 memcg_nr_cache_ids = size; 2605 2606 up_write(&memcg_cache_ids_sem); 2607 2608 if (err) { 2609 ida_simple_remove(&memcg_cache_ida, id); 2610 return err; 2611 } 2612 return id; 2613 } 2614 2615 static void memcg_free_cache_id(int id) 2616 { 2617 ida_simple_remove(&memcg_cache_ida, id); 2618 } 2619 2620 struct memcg_kmem_cache_create_work { 2621 struct mem_cgroup *memcg; 2622 struct kmem_cache *cachep; 2623 struct work_struct work; 2624 }; 2625 2626 static void memcg_kmem_cache_create_func(struct work_struct *w) 2627 { 2628 struct memcg_kmem_cache_create_work *cw = 2629 container_of(w, struct memcg_kmem_cache_create_work, work); 2630 struct mem_cgroup *memcg = cw->memcg; 2631 struct kmem_cache *cachep = cw->cachep; 2632 2633 memcg_create_kmem_cache(memcg, cachep); 2634 2635 css_put(&memcg->css); 2636 kfree(cw); 2637 } 2638 2639 /* 2640 * Enqueue the creation of a per-memcg kmem_cache. 2641 */ 2642 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2643 struct kmem_cache *cachep) 2644 { 2645 struct memcg_kmem_cache_create_work *cw; 2646 2647 if (!css_tryget_online(&memcg->css)) 2648 return; 2649 2650 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2651 if (!cw) 2652 return; 2653 2654 cw->memcg = memcg; 2655 cw->cachep = cachep; 2656 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2657 2658 queue_work(memcg_kmem_cache_wq, &cw->work); 2659 } 2660 2661 static inline bool memcg_kmem_bypass(void) 2662 { 2663 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2664 return true; 2665 return false; 2666 } 2667 2668 /** 2669 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2670 * @cachep: the original global kmem cache 2671 * 2672 * Return the kmem_cache we're supposed to use for a slab allocation. 2673 * We try to use the current memcg's version of the cache. 2674 * 2675 * If the cache does not exist yet, if we are the first user of it, we 2676 * create it asynchronously in a workqueue and let the current allocation 2677 * go through with the original cache. 2678 * 2679 * This function takes a reference to the cache it returns to assure it 2680 * won't get destroyed while we are working with it. Once the caller is 2681 * done with it, memcg_kmem_put_cache() must be called to release the 2682 * reference. 2683 */ 2684 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2685 { 2686 struct mem_cgroup *memcg; 2687 struct kmem_cache *memcg_cachep; 2688 struct memcg_cache_array *arr; 2689 int kmemcg_id; 2690 2691 VM_BUG_ON(!is_root_cache(cachep)); 2692 2693 if (memcg_kmem_bypass()) 2694 return cachep; 2695 2696 rcu_read_lock(); 2697 2698 if (unlikely(current->active_memcg)) 2699 memcg = current->active_memcg; 2700 else 2701 memcg = mem_cgroup_from_task(current); 2702 2703 if (!memcg || memcg == root_mem_cgroup) 2704 goto out_unlock; 2705 2706 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2707 if (kmemcg_id < 0) 2708 goto out_unlock; 2709 2710 arr = rcu_dereference(cachep->memcg_params.memcg_caches); 2711 2712 /* 2713 * Make sure we will access the up-to-date value. The code updating 2714 * memcg_caches issues a write barrier to match the data dependency 2715 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()). 2716 */ 2717 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]); 2718 2719 /* 2720 * If we are in a safe context (can wait, and not in interrupt 2721 * context), we could be be predictable and return right away. 2722 * This would guarantee that the allocation being performed 2723 * already belongs in the new cache. 2724 * 2725 * However, there are some clashes that can arrive from locking. 2726 * For instance, because we acquire the slab_mutex while doing 2727 * memcg_create_kmem_cache, this means no further allocation 2728 * could happen with the slab_mutex held. So it's better to 2729 * defer everything. 2730 * 2731 * If the memcg is dying or memcg_cache is about to be released, 2732 * don't bother creating new kmem_caches. Because memcg_cachep 2733 * is ZEROed as the fist step of kmem offlining, we don't need 2734 * percpu_ref_tryget_live() here. css_tryget_online() check in 2735 * memcg_schedule_kmem_cache_create() will prevent us from 2736 * creation of a new kmem_cache. 2737 */ 2738 if (unlikely(!memcg_cachep)) 2739 memcg_schedule_kmem_cache_create(memcg, cachep); 2740 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt)) 2741 cachep = memcg_cachep; 2742 out_unlock: 2743 rcu_read_unlock(); 2744 return cachep; 2745 } 2746 2747 /** 2748 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2749 * @cachep: the cache returned by memcg_kmem_get_cache 2750 */ 2751 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2752 { 2753 if (!is_root_cache(cachep)) 2754 percpu_ref_put(&cachep->memcg_params.refcnt); 2755 } 2756 2757 /** 2758 * __memcg_kmem_charge_memcg: charge a kmem page 2759 * @page: page to charge 2760 * @gfp: reclaim mode 2761 * @order: allocation order 2762 * @memcg: memory cgroup to charge 2763 * 2764 * Returns 0 on success, an error code on failure. 2765 */ 2766 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2767 struct mem_cgroup *memcg) 2768 { 2769 unsigned int nr_pages = 1 << order; 2770 struct page_counter *counter; 2771 int ret; 2772 2773 ret = try_charge(memcg, gfp, nr_pages); 2774 if (ret) 2775 return ret; 2776 2777 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2778 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2779 cancel_charge(memcg, nr_pages); 2780 return -ENOMEM; 2781 } 2782 return 0; 2783 } 2784 2785 /** 2786 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup 2787 * @page: page to charge 2788 * @gfp: reclaim mode 2789 * @order: allocation order 2790 * 2791 * Returns 0 on success, an error code on failure. 2792 */ 2793 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2794 { 2795 struct mem_cgroup *memcg; 2796 int ret = 0; 2797 2798 if (memcg_kmem_bypass()) 2799 return 0; 2800 2801 memcg = get_mem_cgroup_from_current(); 2802 if (!mem_cgroup_is_root(memcg)) { 2803 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2804 if (!ret) { 2805 page->mem_cgroup = memcg; 2806 __SetPageKmemcg(page); 2807 } 2808 } 2809 css_put(&memcg->css); 2810 return ret; 2811 } 2812 2813 /** 2814 * __memcg_kmem_uncharge_memcg: uncharge a kmem page 2815 * @memcg: memcg to uncharge 2816 * @nr_pages: number of pages to uncharge 2817 */ 2818 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg, 2819 unsigned int nr_pages) 2820 { 2821 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2822 page_counter_uncharge(&memcg->kmem, nr_pages); 2823 2824 page_counter_uncharge(&memcg->memory, nr_pages); 2825 if (do_memsw_account()) 2826 page_counter_uncharge(&memcg->memsw, nr_pages); 2827 } 2828 /** 2829 * __memcg_kmem_uncharge: uncharge a kmem page 2830 * @page: page to uncharge 2831 * @order: allocation order 2832 */ 2833 void __memcg_kmem_uncharge(struct page *page, int order) 2834 { 2835 struct mem_cgroup *memcg = page->mem_cgroup; 2836 unsigned int nr_pages = 1 << order; 2837 2838 if (!memcg) 2839 return; 2840 2841 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2842 __memcg_kmem_uncharge_memcg(memcg, nr_pages); 2843 page->mem_cgroup = NULL; 2844 2845 /* slab pages do not have PageKmemcg flag set */ 2846 if (PageKmemcg(page)) 2847 __ClearPageKmemcg(page); 2848 2849 css_put_many(&memcg->css, nr_pages); 2850 } 2851 #endif /* CONFIG_MEMCG_KMEM */ 2852 2853 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2854 2855 /* 2856 * Because tail pages are not marked as "used", set it. We're under 2857 * pgdat->lru_lock and migration entries setup in all page mappings. 2858 */ 2859 void mem_cgroup_split_huge_fixup(struct page *head) 2860 { 2861 int i; 2862 2863 if (mem_cgroup_disabled()) 2864 return; 2865 2866 for (i = 1; i < HPAGE_PMD_NR; i++) 2867 head[i].mem_cgroup = head->mem_cgroup; 2868 2869 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 2870 } 2871 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2872 2873 #ifdef CONFIG_MEMCG_SWAP 2874 /** 2875 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2876 * @entry: swap entry to be moved 2877 * @from: mem_cgroup which the entry is moved from 2878 * @to: mem_cgroup which the entry is moved to 2879 * 2880 * It succeeds only when the swap_cgroup's record for this entry is the same 2881 * as the mem_cgroup's id of @from. 2882 * 2883 * Returns 0 on success, -EINVAL on failure. 2884 * 2885 * The caller must have charged to @to, IOW, called page_counter_charge() about 2886 * both res and memsw, and called css_get(). 2887 */ 2888 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2889 struct mem_cgroup *from, struct mem_cgroup *to) 2890 { 2891 unsigned short old_id, new_id; 2892 2893 old_id = mem_cgroup_id(from); 2894 new_id = mem_cgroup_id(to); 2895 2896 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2897 mod_memcg_state(from, MEMCG_SWAP, -1); 2898 mod_memcg_state(to, MEMCG_SWAP, 1); 2899 return 0; 2900 } 2901 return -EINVAL; 2902 } 2903 #else 2904 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2905 struct mem_cgroup *from, struct mem_cgroup *to) 2906 { 2907 return -EINVAL; 2908 } 2909 #endif 2910 2911 static DEFINE_MUTEX(memcg_max_mutex); 2912 2913 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 2914 unsigned long max, bool memsw) 2915 { 2916 bool enlarge = false; 2917 bool drained = false; 2918 int ret; 2919 bool limits_invariant; 2920 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 2921 2922 do { 2923 if (signal_pending(current)) { 2924 ret = -EINTR; 2925 break; 2926 } 2927 2928 mutex_lock(&memcg_max_mutex); 2929 /* 2930 * Make sure that the new limit (memsw or memory limit) doesn't 2931 * break our basic invariant rule memory.max <= memsw.max. 2932 */ 2933 limits_invariant = memsw ? max >= memcg->memory.max : 2934 max <= memcg->memsw.max; 2935 if (!limits_invariant) { 2936 mutex_unlock(&memcg_max_mutex); 2937 ret = -EINVAL; 2938 break; 2939 } 2940 if (max > counter->max) 2941 enlarge = true; 2942 ret = page_counter_set_max(counter, max); 2943 mutex_unlock(&memcg_max_mutex); 2944 2945 if (!ret) 2946 break; 2947 2948 if (!drained) { 2949 drain_all_stock(memcg); 2950 drained = true; 2951 continue; 2952 } 2953 2954 if (!try_to_free_mem_cgroup_pages(memcg, 1, 2955 GFP_KERNEL, !memsw)) { 2956 ret = -EBUSY; 2957 break; 2958 } 2959 } while (true); 2960 2961 if (!ret && enlarge) 2962 memcg_oom_recover(memcg); 2963 2964 return ret; 2965 } 2966 2967 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 2968 gfp_t gfp_mask, 2969 unsigned long *total_scanned) 2970 { 2971 unsigned long nr_reclaimed = 0; 2972 struct mem_cgroup_per_node *mz, *next_mz = NULL; 2973 unsigned long reclaimed; 2974 int loop = 0; 2975 struct mem_cgroup_tree_per_node *mctz; 2976 unsigned long excess; 2977 unsigned long nr_scanned; 2978 2979 if (order > 0) 2980 return 0; 2981 2982 mctz = soft_limit_tree_node(pgdat->node_id); 2983 2984 /* 2985 * Do not even bother to check the largest node if the root 2986 * is empty. Do it lockless to prevent lock bouncing. Races 2987 * are acceptable as soft limit is best effort anyway. 2988 */ 2989 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 2990 return 0; 2991 2992 /* 2993 * This loop can run a while, specially if mem_cgroup's continuously 2994 * keep exceeding their soft limit and putting the system under 2995 * pressure 2996 */ 2997 do { 2998 if (next_mz) 2999 mz = next_mz; 3000 else 3001 mz = mem_cgroup_largest_soft_limit_node(mctz); 3002 if (!mz) 3003 break; 3004 3005 nr_scanned = 0; 3006 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3007 gfp_mask, &nr_scanned); 3008 nr_reclaimed += reclaimed; 3009 *total_scanned += nr_scanned; 3010 spin_lock_irq(&mctz->lock); 3011 __mem_cgroup_remove_exceeded(mz, mctz); 3012 3013 /* 3014 * If we failed to reclaim anything from this memory cgroup 3015 * it is time to move on to the next cgroup 3016 */ 3017 next_mz = NULL; 3018 if (!reclaimed) 3019 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3020 3021 excess = soft_limit_excess(mz->memcg); 3022 /* 3023 * One school of thought says that we should not add 3024 * back the node to the tree if reclaim returns 0. 3025 * But our reclaim could return 0, simply because due 3026 * to priority we are exposing a smaller subset of 3027 * memory to reclaim from. Consider this as a longer 3028 * term TODO. 3029 */ 3030 /* If excess == 0, no tree ops */ 3031 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3032 spin_unlock_irq(&mctz->lock); 3033 css_put(&mz->memcg->css); 3034 loop++; 3035 /* 3036 * Could not reclaim anything and there are no more 3037 * mem cgroups to try or we seem to be looping without 3038 * reclaiming anything. 3039 */ 3040 if (!nr_reclaimed && 3041 (next_mz == NULL || 3042 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3043 break; 3044 } while (!nr_reclaimed); 3045 if (next_mz) 3046 css_put(&next_mz->memcg->css); 3047 return nr_reclaimed; 3048 } 3049 3050 /* 3051 * Test whether @memcg has children, dead or alive. Note that this 3052 * function doesn't care whether @memcg has use_hierarchy enabled and 3053 * returns %true if there are child csses according to the cgroup 3054 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 3055 */ 3056 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3057 { 3058 bool ret; 3059 3060 rcu_read_lock(); 3061 ret = css_next_child(NULL, &memcg->css); 3062 rcu_read_unlock(); 3063 return ret; 3064 } 3065 3066 /* 3067 * Reclaims as many pages from the given memcg as possible. 3068 * 3069 * Caller is responsible for holding css reference for memcg. 3070 */ 3071 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3072 { 3073 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3074 3075 /* we call try-to-free pages for make this cgroup empty */ 3076 lru_add_drain_all(); 3077 3078 drain_all_stock(memcg); 3079 3080 /* try to free all pages in this cgroup */ 3081 while (nr_retries && page_counter_read(&memcg->memory)) { 3082 int progress; 3083 3084 if (signal_pending(current)) 3085 return -EINTR; 3086 3087 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3088 GFP_KERNEL, true); 3089 if (!progress) { 3090 nr_retries--; 3091 /* maybe some writeback is necessary */ 3092 congestion_wait(BLK_RW_ASYNC, HZ/10); 3093 } 3094 3095 } 3096 3097 return 0; 3098 } 3099 3100 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3101 char *buf, size_t nbytes, 3102 loff_t off) 3103 { 3104 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3105 3106 if (mem_cgroup_is_root(memcg)) 3107 return -EINVAL; 3108 return mem_cgroup_force_empty(memcg) ?: nbytes; 3109 } 3110 3111 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3112 struct cftype *cft) 3113 { 3114 return mem_cgroup_from_css(css)->use_hierarchy; 3115 } 3116 3117 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3118 struct cftype *cft, u64 val) 3119 { 3120 int retval = 0; 3121 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3122 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3123 3124 if (memcg->use_hierarchy == val) 3125 return 0; 3126 3127 /* 3128 * If parent's use_hierarchy is set, we can't make any modifications 3129 * in the child subtrees. If it is unset, then the change can 3130 * occur, provided the current cgroup has no children. 3131 * 3132 * For the root cgroup, parent_mem is NULL, we allow value to be 3133 * set if there are no children. 3134 */ 3135 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3136 (val == 1 || val == 0)) { 3137 if (!memcg_has_children(memcg)) 3138 memcg->use_hierarchy = val; 3139 else 3140 retval = -EBUSY; 3141 } else 3142 retval = -EINVAL; 3143 3144 return retval; 3145 } 3146 3147 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3148 { 3149 unsigned long val; 3150 3151 if (mem_cgroup_is_root(memcg)) { 3152 val = memcg_page_state(memcg, MEMCG_CACHE) + 3153 memcg_page_state(memcg, MEMCG_RSS); 3154 if (swap) 3155 val += memcg_page_state(memcg, MEMCG_SWAP); 3156 } else { 3157 if (!swap) 3158 val = page_counter_read(&memcg->memory); 3159 else 3160 val = page_counter_read(&memcg->memsw); 3161 } 3162 return val; 3163 } 3164 3165 enum { 3166 RES_USAGE, 3167 RES_LIMIT, 3168 RES_MAX_USAGE, 3169 RES_FAILCNT, 3170 RES_SOFT_LIMIT, 3171 }; 3172 3173 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3174 struct cftype *cft) 3175 { 3176 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3177 struct page_counter *counter; 3178 3179 switch (MEMFILE_TYPE(cft->private)) { 3180 case _MEM: 3181 counter = &memcg->memory; 3182 break; 3183 case _MEMSWAP: 3184 counter = &memcg->memsw; 3185 break; 3186 case _KMEM: 3187 counter = &memcg->kmem; 3188 break; 3189 case _TCP: 3190 counter = &memcg->tcpmem; 3191 break; 3192 default: 3193 BUG(); 3194 } 3195 3196 switch (MEMFILE_ATTR(cft->private)) { 3197 case RES_USAGE: 3198 if (counter == &memcg->memory) 3199 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3200 if (counter == &memcg->memsw) 3201 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3202 return (u64)page_counter_read(counter) * PAGE_SIZE; 3203 case RES_LIMIT: 3204 return (u64)counter->max * PAGE_SIZE; 3205 case RES_MAX_USAGE: 3206 return (u64)counter->watermark * PAGE_SIZE; 3207 case RES_FAILCNT: 3208 return counter->failcnt; 3209 case RES_SOFT_LIMIT: 3210 return (u64)memcg->soft_limit * PAGE_SIZE; 3211 default: 3212 BUG(); 3213 } 3214 } 3215 3216 #ifdef CONFIG_MEMCG_KMEM 3217 static int memcg_online_kmem(struct mem_cgroup *memcg) 3218 { 3219 int memcg_id; 3220 3221 if (cgroup_memory_nokmem) 3222 return 0; 3223 3224 BUG_ON(memcg->kmemcg_id >= 0); 3225 BUG_ON(memcg->kmem_state); 3226 3227 memcg_id = memcg_alloc_cache_id(); 3228 if (memcg_id < 0) 3229 return memcg_id; 3230 3231 static_branch_inc(&memcg_kmem_enabled_key); 3232 /* 3233 * A memory cgroup is considered kmem-online as soon as it gets 3234 * kmemcg_id. Setting the id after enabling static branching will 3235 * guarantee no one starts accounting before all call sites are 3236 * patched. 3237 */ 3238 memcg->kmemcg_id = memcg_id; 3239 memcg->kmem_state = KMEM_ONLINE; 3240 INIT_LIST_HEAD(&memcg->kmem_caches); 3241 3242 return 0; 3243 } 3244 3245 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3246 { 3247 struct cgroup_subsys_state *css; 3248 struct mem_cgroup *parent, *child; 3249 int kmemcg_id; 3250 3251 if (memcg->kmem_state != KMEM_ONLINE) 3252 return; 3253 /* 3254 * Clear the online state before clearing memcg_caches array 3255 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3256 * guarantees that no cache will be created for this cgroup 3257 * after we are done (see memcg_create_kmem_cache()). 3258 */ 3259 memcg->kmem_state = KMEM_ALLOCATED; 3260 3261 parent = parent_mem_cgroup(memcg); 3262 if (!parent) 3263 parent = root_mem_cgroup; 3264 3265 memcg_deactivate_kmem_caches(memcg, parent); 3266 3267 kmemcg_id = memcg->kmemcg_id; 3268 BUG_ON(kmemcg_id < 0); 3269 3270 /* 3271 * Change kmemcg_id of this cgroup and all its descendants to the 3272 * parent's id, and then move all entries from this cgroup's list_lrus 3273 * to ones of the parent. After we have finished, all list_lrus 3274 * corresponding to this cgroup are guaranteed to remain empty. The 3275 * ordering is imposed by list_lru_node->lock taken by 3276 * memcg_drain_all_list_lrus(). 3277 */ 3278 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3279 css_for_each_descendant_pre(css, &memcg->css) { 3280 child = mem_cgroup_from_css(css); 3281 BUG_ON(child->kmemcg_id != kmemcg_id); 3282 child->kmemcg_id = parent->kmemcg_id; 3283 if (!memcg->use_hierarchy) 3284 break; 3285 } 3286 rcu_read_unlock(); 3287 3288 memcg_drain_all_list_lrus(kmemcg_id, parent); 3289 3290 memcg_free_cache_id(kmemcg_id); 3291 } 3292 3293 static void memcg_free_kmem(struct mem_cgroup *memcg) 3294 { 3295 /* css_alloc() failed, offlining didn't happen */ 3296 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3297 memcg_offline_kmem(memcg); 3298 3299 if (memcg->kmem_state == KMEM_ALLOCATED) { 3300 WARN_ON(!list_empty(&memcg->kmem_caches)); 3301 static_branch_dec(&memcg_kmem_enabled_key); 3302 } 3303 } 3304 #else 3305 static int memcg_online_kmem(struct mem_cgroup *memcg) 3306 { 3307 return 0; 3308 } 3309 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3310 { 3311 } 3312 static void memcg_free_kmem(struct mem_cgroup *memcg) 3313 { 3314 } 3315 #endif /* CONFIG_MEMCG_KMEM */ 3316 3317 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3318 unsigned long max) 3319 { 3320 int ret; 3321 3322 mutex_lock(&memcg_max_mutex); 3323 ret = page_counter_set_max(&memcg->kmem, max); 3324 mutex_unlock(&memcg_max_mutex); 3325 return ret; 3326 } 3327 3328 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3329 { 3330 int ret; 3331 3332 mutex_lock(&memcg_max_mutex); 3333 3334 ret = page_counter_set_max(&memcg->tcpmem, max); 3335 if (ret) 3336 goto out; 3337 3338 if (!memcg->tcpmem_active) { 3339 /* 3340 * The active flag needs to be written after the static_key 3341 * update. This is what guarantees that the socket activation 3342 * function is the last one to run. See mem_cgroup_sk_alloc() 3343 * for details, and note that we don't mark any socket as 3344 * belonging to this memcg until that flag is up. 3345 * 3346 * We need to do this, because static_keys will span multiple 3347 * sites, but we can't control their order. If we mark a socket 3348 * as accounted, but the accounting functions are not patched in 3349 * yet, we'll lose accounting. 3350 * 3351 * We never race with the readers in mem_cgroup_sk_alloc(), 3352 * because when this value change, the code to process it is not 3353 * patched in yet. 3354 */ 3355 static_branch_inc(&memcg_sockets_enabled_key); 3356 memcg->tcpmem_active = true; 3357 } 3358 out: 3359 mutex_unlock(&memcg_max_mutex); 3360 return ret; 3361 } 3362 3363 /* 3364 * The user of this function is... 3365 * RES_LIMIT. 3366 */ 3367 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3368 char *buf, size_t nbytes, loff_t off) 3369 { 3370 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3371 unsigned long nr_pages; 3372 int ret; 3373 3374 buf = strstrip(buf); 3375 ret = page_counter_memparse(buf, "-1", &nr_pages); 3376 if (ret) 3377 return ret; 3378 3379 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3380 case RES_LIMIT: 3381 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3382 ret = -EINVAL; 3383 break; 3384 } 3385 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3386 case _MEM: 3387 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3388 break; 3389 case _MEMSWAP: 3390 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3391 break; 3392 case _KMEM: 3393 ret = memcg_update_kmem_max(memcg, nr_pages); 3394 break; 3395 case _TCP: 3396 ret = memcg_update_tcp_max(memcg, nr_pages); 3397 break; 3398 } 3399 break; 3400 case RES_SOFT_LIMIT: 3401 memcg->soft_limit = nr_pages; 3402 ret = 0; 3403 break; 3404 } 3405 return ret ?: nbytes; 3406 } 3407 3408 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3409 size_t nbytes, loff_t off) 3410 { 3411 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3412 struct page_counter *counter; 3413 3414 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3415 case _MEM: 3416 counter = &memcg->memory; 3417 break; 3418 case _MEMSWAP: 3419 counter = &memcg->memsw; 3420 break; 3421 case _KMEM: 3422 counter = &memcg->kmem; 3423 break; 3424 case _TCP: 3425 counter = &memcg->tcpmem; 3426 break; 3427 default: 3428 BUG(); 3429 } 3430 3431 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3432 case RES_MAX_USAGE: 3433 page_counter_reset_watermark(counter); 3434 break; 3435 case RES_FAILCNT: 3436 counter->failcnt = 0; 3437 break; 3438 default: 3439 BUG(); 3440 } 3441 3442 return nbytes; 3443 } 3444 3445 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3446 struct cftype *cft) 3447 { 3448 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3449 } 3450 3451 #ifdef CONFIG_MMU 3452 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3453 struct cftype *cft, u64 val) 3454 { 3455 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3456 3457 if (val & ~MOVE_MASK) 3458 return -EINVAL; 3459 3460 /* 3461 * No kind of locking is needed in here, because ->can_attach() will 3462 * check this value once in the beginning of the process, and then carry 3463 * on with stale data. This means that changes to this value will only 3464 * affect task migrations starting after the change. 3465 */ 3466 memcg->move_charge_at_immigrate = val; 3467 return 0; 3468 } 3469 #else 3470 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3471 struct cftype *cft, u64 val) 3472 { 3473 return -ENOSYS; 3474 } 3475 #endif 3476 3477 #ifdef CONFIG_NUMA 3478 3479 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3480 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3481 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3482 3483 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3484 int nid, unsigned int lru_mask) 3485 { 3486 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 3487 unsigned long nr = 0; 3488 enum lru_list lru; 3489 3490 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3491 3492 for_each_lru(lru) { 3493 if (!(BIT(lru) & lru_mask)) 3494 continue; 3495 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3496 } 3497 return nr; 3498 } 3499 3500 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3501 unsigned int lru_mask) 3502 { 3503 unsigned long nr = 0; 3504 enum lru_list lru; 3505 3506 for_each_lru(lru) { 3507 if (!(BIT(lru) & lru_mask)) 3508 continue; 3509 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3510 } 3511 return nr; 3512 } 3513 3514 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3515 { 3516 struct numa_stat { 3517 const char *name; 3518 unsigned int lru_mask; 3519 }; 3520 3521 static const struct numa_stat stats[] = { 3522 { "total", LRU_ALL }, 3523 { "file", LRU_ALL_FILE }, 3524 { "anon", LRU_ALL_ANON }, 3525 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3526 }; 3527 const struct numa_stat *stat; 3528 int nid; 3529 unsigned long nr; 3530 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3531 3532 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3533 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3534 seq_printf(m, "%s=%lu", stat->name, nr); 3535 for_each_node_state(nid, N_MEMORY) { 3536 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3537 stat->lru_mask); 3538 seq_printf(m, " N%d=%lu", nid, nr); 3539 } 3540 seq_putc(m, '\n'); 3541 } 3542 3543 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3544 struct mem_cgroup *iter; 3545 3546 nr = 0; 3547 for_each_mem_cgroup_tree(iter, memcg) 3548 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3549 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3550 for_each_node_state(nid, N_MEMORY) { 3551 nr = 0; 3552 for_each_mem_cgroup_tree(iter, memcg) 3553 nr += mem_cgroup_node_nr_lru_pages( 3554 iter, nid, stat->lru_mask); 3555 seq_printf(m, " N%d=%lu", nid, nr); 3556 } 3557 seq_putc(m, '\n'); 3558 } 3559 3560 return 0; 3561 } 3562 #endif /* CONFIG_NUMA */ 3563 3564 static const unsigned int memcg1_stats[] = { 3565 MEMCG_CACHE, 3566 MEMCG_RSS, 3567 MEMCG_RSS_HUGE, 3568 NR_SHMEM, 3569 NR_FILE_MAPPED, 3570 NR_FILE_DIRTY, 3571 NR_WRITEBACK, 3572 MEMCG_SWAP, 3573 }; 3574 3575 static const char *const memcg1_stat_names[] = { 3576 "cache", 3577 "rss", 3578 "rss_huge", 3579 "shmem", 3580 "mapped_file", 3581 "dirty", 3582 "writeback", 3583 "swap", 3584 }; 3585 3586 /* Universal VM events cgroup1 shows, original sort order */ 3587 static const unsigned int memcg1_events[] = { 3588 PGPGIN, 3589 PGPGOUT, 3590 PGFAULT, 3591 PGMAJFAULT, 3592 }; 3593 3594 static const char *const memcg1_event_names[] = { 3595 "pgpgin", 3596 "pgpgout", 3597 "pgfault", 3598 "pgmajfault", 3599 }; 3600 3601 static int memcg_stat_show(struct seq_file *m, void *v) 3602 { 3603 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3604 unsigned long memory, memsw; 3605 struct mem_cgroup *mi; 3606 unsigned int i; 3607 3608 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3609 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3610 3611 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3612 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3613 continue; 3614 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3615 memcg_page_state_local(memcg, memcg1_stats[i]) * 3616 PAGE_SIZE); 3617 } 3618 3619 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3620 seq_printf(m, "%s %lu\n", memcg1_event_names[i], 3621 memcg_events_local(memcg, memcg1_events[i])); 3622 3623 for (i = 0; i < NR_LRU_LISTS; i++) 3624 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3625 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3626 PAGE_SIZE); 3627 3628 /* Hierarchical information */ 3629 memory = memsw = PAGE_COUNTER_MAX; 3630 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3631 memory = min(memory, mi->memory.max); 3632 memsw = min(memsw, mi->memsw.max); 3633 } 3634 seq_printf(m, "hierarchical_memory_limit %llu\n", 3635 (u64)memory * PAGE_SIZE); 3636 if (do_memsw_account()) 3637 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3638 (u64)memsw * PAGE_SIZE); 3639 3640 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3641 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3642 continue; 3643 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3644 (u64)memcg_page_state(memcg, memcg1_stats[i]) * 3645 PAGE_SIZE); 3646 } 3647 3648 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3649 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], 3650 (u64)memcg_events(memcg, memcg1_events[i])); 3651 3652 for (i = 0; i < NR_LRU_LISTS; i++) 3653 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], 3654 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 3655 PAGE_SIZE); 3656 3657 #ifdef CONFIG_DEBUG_VM 3658 { 3659 pg_data_t *pgdat; 3660 struct mem_cgroup_per_node *mz; 3661 struct zone_reclaim_stat *rstat; 3662 unsigned long recent_rotated[2] = {0, 0}; 3663 unsigned long recent_scanned[2] = {0, 0}; 3664 3665 for_each_online_pgdat(pgdat) { 3666 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3667 rstat = &mz->lruvec.reclaim_stat; 3668 3669 recent_rotated[0] += rstat->recent_rotated[0]; 3670 recent_rotated[1] += rstat->recent_rotated[1]; 3671 recent_scanned[0] += rstat->recent_scanned[0]; 3672 recent_scanned[1] += rstat->recent_scanned[1]; 3673 } 3674 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3675 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3676 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3677 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3678 } 3679 #endif 3680 3681 return 0; 3682 } 3683 3684 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3685 struct cftype *cft) 3686 { 3687 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3688 3689 return mem_cgroup_swappiness(memcg); 3690 } 3691 3692 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3693 struct cftype *cft, u64 val) 3694 { 3695 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3696 3697 if (val > 100) 3698 return -EINVAL; 3699 3700 if (css->parent) 3701 memcg->swappiness = val; 3702 else 3703 vm_swappiness = val; 3704 3705 return 0; 3706 } 3707 3708 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3709 { 3710 struct mem_cgroup_threshold_ary *t; 3711 unsigned long usage; 3712 int i; 3713 3714 rcu_read_lock(); 3715 if (!swap) 3716 t = rcu_dereference(memcg->thresholds.primary); 3717 else 3718 t = rcu_dereference(memcg->memsw_thresholds.primary); 3719 3720 if (!t) 3721 goto unlock; 3722 3723 usage = mem_cgroup_usage(memcg, swap); 3724 3725 /* 3726 * current_threshold points to threshold just below or equal to usage. 3727 * If it's not true, a threshold was crossed after last 3728 * call of __mem_cgroup_threshold(). 3729 */ 3730 i = t->current_threshold; 3731 3732 /* 3733 * Iterate backward over array of thresholds starting from 3734 * current_threshold and check if a threshold is crossed. 3735 * If none of thresholds below usage is crossed, we read 3736 * only one element of the array here. 3737 */ 3738 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3739 eventfd_signal(t->entries[i].eventfd, 1); 3740 3741 /* i = current_threshold + 1 */ 3742 i++; 3743 3744 /* 3745 * Iterate forward over array of thresholds starting from 3746 * current_threshold+1 and check if a threshold is crossed. 3747 * If none of thresholds above usage is crossed, we read 3748 * only one element of the array here. 3749 */ 3750 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3751 eventfd_signal(t->entries[i].eventfd, 1); 3752 3753 /* Update current_threshold */ 3754 t->current_threshold = i - 1; 3755 unlock: 3756 rcu_read_unlock(); 3757 } 3758 3759 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3760 { 3761 while (memcg) { 3762 __mem_cgroup_threshold(memcg, false); 3763 if (do_memsw_account()) 3764 __mem_cgroup_threshold(memcg, true); 3765 3766 memcg = parent_mem_cgroup(memcg); 3767 } 3768 } 3769 3770 static int compare_thresholds(const void *a, const void *b) 3771 { 3772 const struct mem_cgroup_threshold *_a = a; 3773 const struct mem_cgroup_threshold *_b = b; 3774 3775 if (_a->threshold > _b->threshold) 3776 return 1; 3777 3778 if (_a->threshold < _b->threshold) 3779 return -1; 3780 3781 return 0; 3782 } 3783 3784 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3785 { 3786 struct mem_cgroup_eventfd_list *ev; 3787 3788 spin_lock(&memcg_oom_lock); 3789 3790 list_for_each_entry(ev, &memcg->oom_notify, list) 3791 eventfd_signal(ev->eventfd, 1); 3792 3793 spin_unlock(&memcg_oom_lock); 3794 return 0; 3795 } 3796 3797 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3798 { 3799 struct mem_cgroup *iter; 3800 3801 for_each_mem_cgroup_tree(iter, memcg) 3802 mem_cgroup_oom_notify_cb(iter); 3803 } 3804 3805 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3806 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3807 { 3808 struct mem_cgroup_thresholds *thresholds; 3809 struct mem_cgroup_threshold_ary *new; 3810 unsigned long threshold; 3811 unsigned long usage; 3812 int i, size, ret; 3813 3814 ret = page_counter_memparse(args, "-1", &threshold); 3815 if (ret) 3816 return ret; 3817 3818 mutex_lock(&memcg->thresholds_lock); 3819 3820 if (type == _MEM) { 3821 thresholds = &memcg->thresholds; 3822 usage = mem_cgroup_usage(memcg, false); 3823 } else if (type == _MEMSWAP) { 3824 thresholds = &memcg->memsw_thresholds; 3825 usage = mem_cgroup_usage(memcg, true); 3826 } else 3827 BUG(); 3828 3829 /* Check if a threshold crossed before adding a new one */ 3830 if (thresholds->primary) 3831 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3832 3833 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3834 3835 /* Allocate memory for new array of thresholds */ 3836 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 3837 if (!new) { 3838 ret = -ENOMEM; 3839 goto unlock; 3840 } 3841 new->size = size; 3842 3843 /* Copy thresholds (if any) to new array */ 3844 if (thresholds->primary) { 3845 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3846 sizeof(struct mem_cgroup_threshold)); 3847 } 3848 3849 /* Add new threshold */ 3850 new->entries[size - 1].eventfd = eventfd; 3851 new->entries[size - 1].threshold = threshold; 3852 3853 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3854 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3855 compare_thresholds, NULL); 3856 3857 /* Find current threshold */ 3858 new->current_threshold = -1; 3859 for (i = 0; i < size; i++) { 3860 if (new->entries[i].threshold <= usage) { 3861 /* 3862 * new->current_threshold will not be used until 3863 * rcu_assign_pointer(), so it's safe to increment 3864 * it here. 3865 */ 3866 ++new->current_threshold; 3867 } else 3868 break; 3869 } 3870 3871 /* Free old spare buffer and save old primary buffer as spare */ 3872 kfree(thresholds->spare); 3873 thresholds->spare = thresholds->primary; 3874 3875 rcu_assign_pointer(thresholds->primary, new); 3876 3877 /* To be sure that nobody uses thresholds */ 3878 synchronize_rcu(); 3879 3880 unlock: 3881 mutex_unlock(&memcg->thresholds_lock); 3882 3883 return ret; 3884 } 3885 3886 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3887 struct eventfd_ctx *eventfd, const char *args) 3888 { 3889 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3890 } 3891 3892 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3893 struct eventfd_ctx *eventfd, const char *args) 3894 { 3895 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3896 } 3897 3898 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3899 struct eventfd_ctx *eventfd, enum res_type type) 3900 { 3901 struct mem_cgroup_thresholds *thresholds; 3902 struct mem_cgroup_threshold_ary *new; 3903 unsigned long usage; 3904 int i, j, size; 3905 3906 mutex_lock(&memcg->thresholds_lock); 3907 3908 if (type == _MEM) { 3909 thresholds = &memcg->thresholds; 3910 usage = mem_cgroup_usage(memcg, false); 3911 } else if (type == _MEMSWAP) { 3912 thresholds = &memcg->memsw_thresholds; 3913 usage = mem_cgroup_usage(memcg, true); 3914 } else 3915 BUG(); 3916 3917 if (!thresholds->primary) 3918 goto unlock; 3919 3920 /* Check if a threshold crossed before removing */ 3921 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3922 3923 /* Calculate new number of threshold */ 3924 size = 0; 3925 for (i = 0; i < thresholds->primary->size; i++) { 3926 if (thresholds->primary->entries[i].eventfd != eventfd) 3927 size++; 3928 } 3929 3930 new = thresholds->spare; 3931 3932 /* Set thresholds array to NULL if we don't have thresholds */ 3933 if (!size) { 3934 kfree(new); 3935 new = NULL; 3936 goto swap_buffers; 3937 } 3938 3939 new->size = size; 3940 3941 /* Copy thresholds and find current threshold */ 3942 new->current_threshold = -1; 3943 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3944 if (thresholds->primary->entries[i].eventfd == eventfd) 3945 continue; 3946 3947 new->entries[j] = thresholds->primary->entries[i]; 3948 if (new->entries[j].threshold <= usage) { 3949 /* 3950 * new->current_threshold will not be used 3951 * until rcu_assign_pointer(), so it's safe to increment 3952 * it here. 3953 */ 3954 ++new->current_threshold; 3955 } 3956 j++; 3957 } 3958 3959 swap_buffers: 3960 /* Swap primary and spare array */ 3961 thresholds->spare = thresholds->primary; 3962 3963 rcu_assign_pointer(thresholds->primary, new); 3964 3965 /* To be sure that nobody uses thresholds */ 3966 synchronize_rcu(); 3967 3968 /* If all events are unregistered, free the spare array */ 3969 if (!new) { 3970 kfree(thresholds->spare); 3971 thresholds->spare = NULL; 3972 } 3973 unlock: 3974 mutex_unlock(&memcg->thresholds_lock); 3975 } 3976 3977 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3978 struct eventfd_ctx *eventfd) 3979 { 3980 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3981 } 3982 3983 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3984 struct eventfd_ctx *eventfd) 3985 { 3986 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3987 } 3988 3989 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3990 struct eventfd_ctx *eventfd, const char *args) 3991 { 3992 struct mem_cgroup_eventfd_list *event; 3993 3994 event = kmalloc(sizeof(*event), GFP_KERNEL); 3995 if (!event) 3996 return -ENOMEM; 3997 3998 spin_lock(&memcg_oom_lock); 3999 4000 event->eventfd = eventfd; 4001 list_add(&event->list, &memcg->oom_notify); 4002 4003 /* already in OOM ? */ 4004 if (memcg->under_oom) 4005 eventfd_signal(eventfd, 1); 4006 spin_unlock(&memcg_oom_lock); 4007 4008 return 0; 4009 } 4010 4011 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4012 struct eventfd_ctx *eventfd) 4013 { 4014 struct mem_cgroup_eventfd_list *ev, *tmp; 4015 4016 spin_lock(&memcg_oom_lock); 4017 4018 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4019 if (ev->eventfd == eventfd) { 4020 list_del(&ev->list); 4021 kfree(ev); 4022 } 4023 } 4024 4025 spin_unlock(&memcg_oom_lock); 4026 } 4027 4028 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4029 { 4030 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4031 4032 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4033 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4034 seq_printf(sf, "oom_kill %lu\n", 4035 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4036 return 0; 4037 } 4038 4039 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4040 struct cftype *cft, u64 val) 4041 { 4042 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4043 4044 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4045 if (!css->parent || !((val == 0) || (val == 1))) 4046 return -EINVAL; 4047 4048 memcg->oom_kill_disable = val; 4049 if (!val) 4050 memcg_oom_recover(memcg); 4051 4052 return 0; 4053 } 4054 4055 #ifdef CONFIG_CGROUP_WRITEBACK 4056 4057 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4058 { 4059 return wb_domain_init(&memcg->cgwb_domain, gfp); 4060 } 4061 4062 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4063 { 4064 wb_domain_exit(&memcg->cgwb_domain); 4065 } 4066 4067 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4068 { 4069 wb_domain_size_changed(&memcg->cgwb_domain); 4070 } 4071 4072 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4073 { 4074 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4075 4076 if (!memcg->css.parent) 4077 return NULL; 4078 4079 return &memcg->cgwb_domain; 4080 } 4081 4082 /* 4083 * idx can be of type enum memcg_stat_item or node_stat_item. 4084 * Keep in sync with memcg_exact_page(). 4085 */ 4086 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4087 { 4088 long x = atomic_long_read(&memcg->vmstats[idx]); 4089 int cpu; 4090 4091 for_each_online_cpu(cpu) 4092 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4093 if (x < 0) 4094 x = 0; 4095 return x; 4096 } 4097 4098 /** 4099 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4100 * @wb: bdi_writeback in question 4101 * @pfilepages: out parameter for number of file pages 4102 * @pheadroom: out parameter for number of allocatable pages according to memcg 4103 * @pdirty: out parameter for number of dirty pages 4104 * @pwriteback: out parameter for number of pages under writeback 4105 * 4106 * Determine the numbers of file, headroom, dirty, and writeback pages in 4107 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4108 * is a bit more involved. 4109 * 4110 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4111 * headroom is calculated as the lowest headroom of itself and the 4112 * ancestors. Note that this doesn't consider the actual amount of 4113 * available memory in the system. The caller should further cap 4114 * *@pheadroom accordingly. 4115 */ 4116 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4117 unsigned long *pheadroom, unsigned long *pdirty, 4118 unsigned long *pwriteback) 4119 { 4120 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4121 struct mem_cgroup *parent; 4122 4123 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4124 4125 /* this should eventually include NR_UNSTABLE_NFS */ 4126 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4127 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4128 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4129 *pheadroom = PAGE_COUNTER_MAX; 4130 4131 while ((parent = parent_mem_cgroup(memcg))) { 4132 unsigned long ceiling = min(memcg->memory.max, memcg->high); 4133 unsigned long used = page_counter_read(&memcg->memory); 4134 4135 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4136 memcg = parent; 4137 } 4138 } 4139 4140 #else /* CONFIG_CGROUP_WRITEBACK */ 4141 4142 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4143 { 4144 return 0; 4145 } 4146 4147 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4148 { 4149 } 4150 4151 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4152 { 4153 } 4154 4155 #endif /* CONFIG_CGROUP_WRITEBACK */ 4156 4157 /* 4158 * DO NOT USE IN NEW FILES. 4159 * 4160 * "cgroup.event_control" implementation. 4161 * 4162 * This is way over-engineered. It tries to support fully configurable 4163 * events for each user. Such level of flexibility is completely 4164 * unnecessary especially in the light of the planned unified hierarchy. 4165 * 4166 * Please deprecate this and replace with something simpler if at all 4167 * possible. 4168 */ 4169 4170 /* 4171 * Unregister event and free resources. 4172 * 4173 * Gets called from workqueue. 4174 */ 4175 static void memcg_event_remove(struct work_struct *work) 4176 { 4177 struct mem_cgroup_event *event = 4178 container_of(work, struct mem_cgroup_event, remove); 4179 struct mem_cgroup *memcg = event->memcg; 4180 4181 remove_wait_queue(event->wqh, &event->wait); 4182 4183 event->unregister_event(memcg, event->eventfd); 4184 4185 /* Notify userspace the event is going away. */ 4186 eventfd_signal(event->eventfd, 1); 4187 4188 eventfd_ctx_put(event->eventfd); 4189 kfree(event); 4190 css_put(&memcg->css); 4191 } 4192 4193 /* 4194 * Gets called on EPOLLHUP on eventfd when user closes it. 4195 * 4196 * Called with wqh->lock held and interrupts disabled. 4197 */ 4198 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4199 int sync, void *key) 4200 { 4201 struct mem_cgroup_event *event = 4202 container_of(wait, struct mem_cgroup_event, wait); 4203 struct mem_cgroup *memcg = event->memcg; 4204 __poll_t flags = key_to_poll(key); 4205 4206 if (flags & EPOLLHUP) { 4207 /* 4208 * If the event has been detached at cgroup removal, we 4209 * can simply return knowing the other side will cleanup 4210 * for us. 4211 * 4212 * We can't race against event freeing since the other 4213 * side will require wqh->lock via remove_wait_queue(), 4214 * which we hold. 4215 */ 4216 spin_lock(&memcg->event_list_lock); 4217 if (!list_empty(&event->list)) { 4218 list_del_init(&event->list); 4219 /* 4220 * We are in atomic context, but cgroup_event_remove() 4221 * may sleep, so we have to call it in workqueue. 4222 */ 4223 schedule_work(&event->remove); 4224 } 4225 spin_unlock(&memcg->event_list_lock); 4226 } 4227 4228 return 0; 4229 } 4230 4231 static void memcg_event_ptable_queue_proc(struct file *file, 4232 wait_queue_head_t *wqh, poll_table *pt) 4233 { 4234 struct mem_cgroup_event *event = 4235 container_of(pt, struct mem_cgroup_event, pt); 4236 4237 event->wqh = wqh; 4238 add_wait_queue(wqh, &event->wait); 4239 } 4240 4241 /* 4242 * DO NOT USE IN NEW FILES. 4243 * 4244 * Parse input and register new cgroup event handler. 4245 * 4246 * Input must be in format '<event_fd> <control_fd> <args>'. 4247 * Interpretation of args is defined by control file implementation. 4248 */ 4249 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4250 char *buf, size_t nbytes, loff_t off) 4251 { 4252 struct cgroup_subsys_state *css = of_css(of); 4253 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4254 struct mem_cgroup_event *event; 4255 struct cgroup_subsys_state *cfile_css; 4256 unsigned int efd, cfd; 4257 struct fd efile; 4258 struct fd cfile; 4259 const char *name; 4260 char *endp; 4261 int ret; 4262 4263 buf = strstrip(buf); 4264 4265 efd = simple_strtoul(buf, &endp, 10); 4266 if (*endp != ' ') 4267 return -EINVAL; 4268 buf = endp + 1; 4269 4270 cfd = simple_strtoul(buf, &endp, 10); 4271 if ((*endp != ' ') && (*endp != '\0')) 4272 return -EINVAL; 4273 buf = endp + 1; 4274 4275 event = kzalloc(sizeof(*event), GFP_KERNEL); 4276 if (!event) 4277 return -ENOMEM; 4278 4279 event->memcg = memcg; 4280 INIT_LIST_HEAD(&event->list); 4281 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4282 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4283 INIT_WORK(&event->remove, memcg_event_remove); 4284 4285 efile = fdget(efd); 4286 if (!efile.file) { 4287 ret = -EBADF; 4288 goto out_kfree; 4289 } 4290 4291 event->eventfd = eventfd_ctx_fileget(efile.file); 4292 if (IS_ERR(event->eventfd)) { 4293 ret = PTR_ERR(event->eventfd); 4294 goto out_put_efile; 4295 } 4296 4297 cfile = fdget(cfd); 4298 if (!cfile.file) { 4299 ret = -EBADF; 4300 goto out_put_eventfd; 4301 } 4302 4303 /* the process need read permission on control file */ 4304 /* AV: shouldn't we check that it's been opened for read instead? */ 4305 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4306 if (ret < 0) 4307 goto out_put_cfile; 4308 4309 /* 4310 * Determine the event callbacks and set them in @event. This used 4311 * to be done via struct cftype but cgroup core no longer knows 4312 * about these events. The following is crude but the whole thing 4313 * is for compatibility anyway. 4314 * 4315 * DO NOT ADD NEW FILES. 4316 */ 4317 name = cfile.file->f_path.dentry->d_name.name; 4318 4319 if (!strcmp(name, "memory.usage_in_bytes")) { 4320 event->register_event = mem_cgroup_usage_register_event; 4321 event->unregister_event = mem_cgroup_usage_unregister_event; 4322 } else if (!strcmp(name, "memory.oom_control")) { 4323 event->register_event = mem_cgroup_oom_register_event; 4324 event->unregister_event = mem_cgroup_oom_unregister_event; 4325 } else if (!strcmp(name, "memory.pressure_level")) { 4326 event->register_event = vmpressure_register_event; 4327 event->unregister_event = vmpressure_unregister_event; 4328 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4329 event->register_event = memsw_cgroup_usage_register_event; 4330 event->unregister_event = memsw_cgroup_usage_unregister_event; 4331 } else { 4332 ret = -EINVAL; 4333 goto out_put_cfile; 4334 } 4335 4336 /* 4337 * Verify @cfile should belong to @css. Also, remaining events are 4338 * automatically removed on cgroup destruction but the removal is 4339 * asynchronous, so take an extra ref on @css. 4340 */ 4341 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4342 &memory_cgrp_subsys); 4343 ret = -EINVAL; 4344 if (IS_ERR(cfile_css)) 4345 goto out_put_cfile; 4346 if (cfile_css != css) { 4347 css_put(cfile_css); 4348 goto out_put_cfile; 4349 } 4350 4351 ret = event->register_event(memcg, event->eventfd, buf); 4352 if (ret) 4353 goto out_put_css; 4354 4355 vfs_poll(efile.file, &event->pt); 4356 4357 spin_lock(&memcg->event_list_lock); 4358 list_add(&event->list, &memcg->event_list); 4359 spin_unlock(&memcg->event_list_lock); 4360 4361 fdput(cfile); 4362 fdput(efile); 4363 4364 return nbytes; 4365 4366 out_put_css: 4367 css_put(css); 4368 out_put_cfile: 4369 fdput(cfile); 4370 out_put_eventfd: 4371 eventfd_ctx_put(event->eventfd); 4372 out_put_efile: 4373 fdput(efile); 4374 out_kfree: 4375 kfree(event); 4376 4377 return ret; 4378 } 4379 4380 static struct cftype mem_cgroup_legacy_files[] = { 4381 { 4382 .name = "usage_in_bytes", 4383 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4384 .read_u64 = mem_cgroup_read_u64, 4385 }, 4386 { 4387 .name = "max_usage_in_bytes", 4388 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4389 .write = mem_cgroup_reset, 4390 .read_u64 = mem_cgroup_read_u64, 4391 }, 4392 { 4393 .name = "limit_in_bytes", 4394 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4395 .write = mem_cgroup_write, 4396 .read_u64 = mem_cgroup_read_u64, 4397 }, 4398 { 4399 .name = "soft_limit_in_bytes", 4400 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4401 .write = mem_cgroup_write, 4402 .read_u64 = mem_cgroup_read_u64, 4403 }, 4404 { 4405 .name = "failcnt", 4406 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4407 .write = mem_cgroup_reset, 4408 .read_u64 = mem_cgroup_read_u64, 4409 }, 4410 { 4411 .name = "stat", 4412 .seq_show = memcg_stat_show, 4413 }, 4414 { 4415 .name = "force_empty", 4416 .write = mem_cgroup_force_empty_write, 4417 }, 4418 { 4419 .name = "use_hierarchy", 4420 .write_u64 = mem_cgroup_hierarchy_write, 4421 .read_u64 = mem_cgroup_hierarchy_read, 4422 }, 4423 { 4424 .name = "cgroup.event_control", /* XXX: for compat */ 4425 .write = memcg_write_event_control, 4426 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4427 }, 4428 { 4429 .name = "swappiness", 4430 .read_u64 = mem_cgroup_swappiness_read, 4431 .write_u64 = mem_cgroup_swappiness_write, 4432 }, 4433 { 4434 .name = "move_charge_at_immigrate", 4435 .read_u64 = mem_cgroup_move_charge_read, 4436 .write_u64 = mem_cgroup_move_charge_write, 4437 }, 4438 { 4439 .name = "oom_control", 4440 .seq_show = mem_cgroup_oom_control_read, 4441 .write_u64 = mem_cgroup_oom_control_write, 4442 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4443 }, 4444 { 4445 .name = "pressure_level", 4446 }, 4447 #ifdef CONFIG_NUMA 4448 { 4449 .name = "numa_stat", 4450 .seq_show = memcg_numa_stat_show, 4451 }, 4452 #endif 4453 { 4454 .name = "kmem.limit_in_bytes", 4455 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4456 .write = mem_cgroup_write, 4457 .read_u64 = mem_cgroup_read_u64, 4458 }, 4459 { 4460 .name = "kmem.usage_in_bytes", 4461 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4462 .read_u64 = mem_cgroup_read_u64, 4463 }, 4464 { 4465 .name = "kmem.failcnt", 4466 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4467 .write = mem_cgroup_reset, 4468 .read_u64 = mem_cgroup_read_u64, 4469 }, 4470 { 4471 .name = "kmem.max_usage_in_bytes", 4472 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4473 .write = mem_cgroup_reset, 4474 .read_u64 = mem_cgroup_read_u64, 4475 }, 4476 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 4477 { 4478 .name = "kmem.slabinfo", 4479 .seq_start = memcg_slab_start, 4480 .seq_next = memcg_slab_next, 4481 .seq_stop = memcg_slab_stop, 4482 .seq_show = memcg_slab_show, 4483 }, 4484 #endif 4485 { 4486 .name = "kmem.tcp.limit_in_bytes", 4487 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4488 .write = mem_cgroup_write, 4489 .read_u64 = mem_cgroup_read_u64, 4490 }, 4491 { 4492 .name = "kmem.tcp.usage_in_bytes", 4493 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4494 .read_u64 = mem_cgroup_read_u64, 4495 }, 4496 { 4497 .name = "kmem.tcp.failcnt", 4498 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4499 .write = mem_cgroup_reset, 4500 .read_u64 = mem_cgroup_read_u64, 4501 }, 4502 { 4503 .name = "kmem.tcp.max_usage_in_bytes", 4504 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4505 .write = mem_cgroup_reset, 4506 .read_u64 = mem_cgroup_read_u64, 4507 }, 4508 { }, /* terminate */ 4509 }; 4510 4511 /* 4512 * Private memory cgroup IDR 4513 * 4514 * Swap-out records and page cache shadow entries need to store memcg 4515 * references in constrained space, so we maintain an ID space that is 4516 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4517 * memory-controlled cgroups to 64k. 4518 * 4519 * However, there usually are many references to the oflline CSS after 4520 * the cgroup has been destroyed, such as page cache or reclaimable 4521 * slab objects, that don't need to hang on to the ID. We want to keep 4522 * those dead CSS from occupying IDs, or we might quickly exhaust the 4523 * relatively small ID space and prevent the creation of new cgroups 4524 * even when there are much fewer than 64k cgroups - possibly none. 4525 * 4526 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4527 * be freed and recycled when it's no longer needed, which is usually 4528 * when the CSS is offlined. 4529 * 4530 * The only exception to that are records of swapped out tmpfs/shmem 4531 * pages that need to be attributed to live ancestors on swapin. But 4532 * those references are manageable from userspace. 4533 */ 4534 4535 static DEFINE_IDR(mem_cgroup_idr); 4536 4537 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4538 { 4539 if (memcg->id.id > 0) { 4540 idr_remove(&mem_cgroup_idr, memcg->id.id); 4541 memcg->id.id = 0; 4542 } 4543 } 4544 4545 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4546 { 4547 refcount_add(n, &memcg->id.ref); 4548 } 4549 4550 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4551 { 4552 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4553 mem_cgroup_id_remove(memcg); 4554 4555 /* Memcg ID pins CSS */ 4556 css_put(&memcg->css); 4557 } 4558 } 4559 4560 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) 4561 { 4562 mem_cgroup_id_get_many(memcg, 1); 4563 } 4564 4565 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4566 { 4567 mem_cgroup_id_put_many(memcg, 1); 4568 } 4569 4570 /** 4571 * mem_cgroup_from_id - look up a memcg from a memcg id 4572 * @id: the memcg id to look up 4573 * 4574 * Caller must hold rcu_read_lock(). 4575 */ 4576 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4577 { 4578 WARN_ON_ONCE(!rcu_read_lock_held()); 4579 return idr_find(&mem_cgroup_idr, id); 4580 } 4581 4582 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4583 { 4584 struct mem_cgroup_per_node *pn; 4585 int tmp = node; 4586 /* 4587 * This routine is called against possible nodes. 4588 * But it's BUG to call kmalloc() against offline node. 4589 * 4590 * TODO: this routine can waste much memory for nodes which will 4591 * never be onlined. It's better to use memory hotplug callback 4592 * function. 4593 */ 4594 if (!node_state(node, N_NORMAL_MEMORY)) 4595 tmp = -1; 4596 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4597 if (!pn) 4598 return 1; 4599 4600 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat); 4601 if (!pn->lruvec_stat_local) { 4602 kfree(pn); 4603 return 1; 4604 } 4605 4606 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4607 if (!pn->lruvec_stat_cpu) { 4608 free_percpu(pn->lruvec_stat_local); 4609 kfree(pn); 4610 return 1; 4611 } 4612 4613 lruvec_init(&pn->lruvec); 4614 pn->usage_in_excess = 0; 4615 pn->on_tree = false; 4616 pn->memcg = memcg; 4617 4618 memcg->nodeinfo[node] = pn; 4619 return 0; 4620 } 4621 4622 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4623 { 4624 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4625 4626 if (!pn) 4627 return; 4628 4629 free_percpu(pn->lruvec_stat_cpu); 4630 free_percpu(pn->lruvec_stat_local); 4631 kfree(pn); 4632 } 4633 4634 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4635 { 4636 int node; 4637 4638 for_each_node(node) 4639 free_mem_cgroup_per_node_info(memcg, node); 4640 free_percpu(memcg->vmstats_percpu); 4641 free_percpu(memcg->vmstats_local); 4642 kfree(memcg); 4643 } 4644 4645 static void mem_cgroup_free(struct mem_cgroup *memcg) 4646 { 4647 memcg_wb_domain_exit(memcg); 4648 __mem_cgroup_free(memcg); 4649 } 4650 4651 static struct mem_cgroup *mem_cgroup_alloc(void) 4652 { 4653 struct mem_cgroup *memcg; 4654 unsigned int size; 4655 int node; 4656 4657 size = sizeof(struct mem_cgroup); 4658 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4659 4660 memcg = kzalloc(size, GFP_KERNEL); 4661 if (!memcg) 4662 return NULL; 4663 4664 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4665 1, MEM_CGROUP_ID_MAX, 4666 GFP_KERNEL); 4667 if (memcg->id.id < 0) 4668 goto fail; 4669 4670 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu); 4671 if (!memcg->vmstats_local) 4672 goto fail; 4673 4674 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); 4675 if (!memcg->vmstats_percpu) 4676 goto fail; 4677 4678 for_each_node(node) 4679 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4680 goto fail; 4681 4682 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4683 goto fail; 4684 4685 INIT_WORK(&memcg->high_work, high_work_func); 4686 memcg->last_scanned_node = MAX_NUMNODES; 4687 INIT_LIST_HEAD(&memcg->oom_notify); 4688 mutex_init(&memcg->thresholds_lock); 4689 spin_lock_init(&memcg->move_lock); 4690 vmpressure_init(&memcg->vmpressure); 4691 INIT_LIST_HEAD(&memcg->event_list); 4692 spin_lock_init(&memcg->event_list_lock); 4693 memcg->socket_pressure = jiffies; 4694 #ifdef CONFIG_MEMCG_KMEM 4695 memcg->kmemcg_id = -1; 4696 #endif 4697 #ifdef CONFIG_CGROUP_WRITEBACK 4698 INIT_LIST_HEAD(&memcg->cgwb_list); 4699 #endif 4700 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4701 return memcg; 4702 fail: 4703 mem_cgroup_id_remove(memcg); 4704 __mem_cgroup_free(memcg); 4705 return NULL; 4706 } 4707 4708 static struct cgroup_subsys_state * __ref 4709 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4710 { 4711 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4712 struct mem_cgroup *memcg; 4713 long error = -ENOMEM; 4714 4715 memcg = mem_cgroup_alloc(); 4716 if (!memcg) 4717 return ERR_PTR(error); 4718 4719 memcg->high = PAGE_COUNTER_MAX; 4720 memcg->soft_limit = PAGE_COUNTER_MAX; 4721 if (parent) { 4722 memcg->swappiness = mem_cgroup_swappiness(parent); 4723 memcg->oom_kill_disable = parent->oom_kill_disable; 4724 } 4725 if (parent && parent->use_hierarchy) { 4726 memcg->use_hierarchy = true; 4727 page_counter_init(&memcg->memory, &parent->memory); 4728 page_counter_init(&memcg->swap, &parent->swap); 4729 page_counter_init(&memcg->memsw, &parent->memsw); 4730 page_counter_init(&memcg->kmem, &parent->kmem); 4731 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4732 } else { 4733 page_counter_init(&memcg->memory, NULL); 4734 page_counter_init(&memcg->swap, NULL); 4735 page_counter_init(&memcg->memsw, NULL); 4736 page_counter_init(&memcg->kmem, NULL); 4737 page_counter_init(&memcg->tcpmem, NULL); 4738 /* 4739 * Deeper hierachy with use_hierarchy == false doesn't make 4740 * much sense so let cgroup subsystem know about this 4741 * unfortunate state in our controller. 4742 */ 4743 if (parent != root_mem_cgroup) 4744 memory_cgrp_subsys.broken_hierarchy = true; 4745 } 4746 4747 /* The following stuff does not apply to the root */ 4748 if (!parent) { 4749 #ifdef CONFIG_MEMCG_KMEM 4750 INIT_LIST_HEAD(&memcg->kmem_caches); 4751 #endif 4752 root_mem_cgroup = memcg; 4753 return &memcg->css; 4754 } 4755 4756 error = memcg_online_kmem(memcg); 4757 if (error) 4758 goto fail; 4759 4760 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4761 static_branch_inc(&memcg_sockets_enabled_key); 4762 4763 return &memcg->css; 4764 fail: 4765 mem_cgroup_id_remove(memcg); 4766 mem_cgroup_free(memcg); 4767 return ERR_PTR(-ENOMEM); 4768 } 4769 4770 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4771 { 4772 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4773 4774 /* 4775 * A memcg must be visible for memcg_expand_shrinker_maps() 4776 * by the time the maps are allocated. So, we allocate maps 4777 * here, when for_each_mem_cgroup() can't skip it. 4778 */ 4779 if (memcg_alloc_shrinker_maps(memcg)) { 4780 mem_cgroup_id_remove(memcg); 4781 return -ENOMEM; 4782 } 4783 4784 /* Online state pins memcg ID, memcg ID pins CSS */ 4785 refcount_set(&memcg->id.ref, 1); 4786 css_get(css); 4787 return 0; 4788 } 4789 4790 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4791 { 4792 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4793 struct mem_cgroup_event *event, *tmp; 4794 4795 /* 4796 * Unregister events and notify userspace. 4797 * Notify userspace about cgroup removing only after rmdir of cgroup 4798 * directory to avoid race between userspace and kernelspace. 4799 */ 4800 spin_lock(&memcg->event_list_lock); 4801 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4802 list_del_init(&event->list); 4803 schedule_work(&event->remove); 4804 } 4805 spin_unlock(&memcg->event_list_lock); 4806 4807 page_counter_set_min(&memcg->memory, 0); 4808 page_counter_set_low(&memcg->memory, 0); 4809 4810 memcg_offline_kmem(memcg); 4811 wb_memcg_offline(memcg); 4812 4813 drain_all_stock(memcg); 4814 4815 mem_cgroup_id_put(memcg); 4816 } 4817 4818 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4819 { 4820 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4821 4822 invalidate_reclaim_iterators(memcg); 4823 } 4824 4825 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4826 { 4827 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4828 4829 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4830 static_branch_dec(&memcg_sockets_enabled_key); 4831 4832 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4833 static_branch_dec(&memcg_sockets_enabled_key); 4834 4835 vmpressure_cleanup(&memcg->vmpressure); 4836 cancel_work_sync(&memcg->high_work); 4837 mem_cgroup_remove_from_trees(memcg); 4838 memcg_free_shrinker_maps(memcg); 4839 memcg_free_kmem(memcg); 4840 mem_cgroup_free(memcg); 4841 } 4842 4843 /** 4844 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4845 * @css: the target css 4846 * 4847 * Reset the states of the mem_cgroup associated with @css. This is 4848 * invoked when the userland requests disabling on the default hierarchy 4849 * but the memcg is pinned through dependency. The memcg should stop 4850 * applying policies and should revert to the vanilla state as it may be 4851 * made visible again. 4852 * 4853 * The current implementation only resets the essential configurations. 4854 * This needs to be expanded to cover all the visible parts. 4855 */ 4856 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4857 { 4858 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4859 4860 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 4861 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 4862 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 4863 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 4864 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 4865 page_counter_set_min(&memcg->memory, 0); 4866 page_counter_set_low(&memcg->memory, 0); 4867 memcg->high = PAGE_COUNTER_MAX; 4868 memcg->soft_limit = PAGE_COUNTER_MAX; 4869 memcg_wb_domain_size_changed(memcg); 4870 } 4871 4872 #ifdef CONFIG_MMU 4873 /* Handlers for move charge at task migration. */ 4874 static int mem_cgroup_do_precharge(unsigned long count) 4875 { 4876 int ret; 4877 4878 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4879 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4880 if (!ret) { 4881 mc.precharge += count; 4882 return ret; 4883 } 4884 4885 /* Try charges one by one with reclaim, but do not retry */ 4886 while (count--) { 4887 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 4888 if (ret) 4889 return ret; 4890 mc.precharge++; 4891 cond_resched(); 4892 } 4893 return 0; 4894 } 4895 4896 union mc_target { 4897 struct page *page; 4898 swp_entry_t ent; 4899 }; 4900 4901 enum mc_target_type { 4902 MC_TARGET_NONE = 0, 4903 MC_TARGET_PAGE, 4904 MC_TARGET_SWAP, 4905 MC_TARGET_DEVICE, 4906 }; 4907 4908 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4909 unsigned long addr, pte_t ptent) 4910 { 4911 struct page *page = vm_normal_page(vma, addr, ptent); 4912 4913 if (!page || !page_mapped(page)) 4914 return NULL; 4915 if (PageAnon(page)) { 4916 if (!(mc.flags & MOVE_ANON)) 4917 return NULL; 4918 } else { 4919 if (!(mc.flags & MOVE_FILE)) 4920 return NULL; 4921 } 4922 if (!get_page_unless_zero(page)) 4923 return NULL; 4924 4925 return page; 4926 } 4927 4928 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 4929 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4930 pte_t ptent, swp_entry_t *entry) 4931 { 4932 struct page *page = NULL; 4933 swp_entry_t ent = pte_to_swp_entry(ptent); 4934 4935 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4936 return NULL; 4937 4938 /* 4939 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 4940 * a device and because they are not accessible by CPU they are store 4941 * as special swap entry in the CPU page table. 4942 */ 4943 if (is_device_private_entry(ent)) { 4944 page = device_private_entry_to_page(ent); 4945 /* 4946 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 4947 * a refcount of 1 when free (unlike normal page) 4948 */ 4949 if (!page_ref_add_unless(page, 1, 1)) 4950 return NULL; 4951 return page; 4952 } 4953 4954 /* 4955 * Because lookup_swap_cache() updates some statistics counter, 4956 * we call find_get_page() with swapper_space directly. 4957 */ 4958 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 4959 if (do_memsw_account()) 4960 entry->val = ent.val; 4961 4962 return page; 4963 } 4964 #else 4965 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4966 pte_t ptent, swp_entry_t *entry) 4967 { 4968 return NULL; 4969 } 4970 #endif 4971 4972 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4973 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4974 { 4975 struct page *page = NULL; 4976 struct address_space *mapping; 4977 pgoff_t pgoff; 4978 4979 if (!vma->vm_file) /* anonymous vma */ 4980 return NULL; 4981 if (!(mc.flags & MOVE_FILE)) 4982 return NULL; 4983 4984 mapping = vma->vm_file->f_mapping; 4985 pgoff = linear_page_index(vma, addr); 4986 4987 /* page is moved even if it's not RSS of this task(page-faulted). */ 4988 #ifdef CONFIG_SWAP 4989 /* shmem/tmpfs may report page out on swap: account for that too. */ 4990 if (shmem_mapping(mapping)) { 4991 page = find_get_entry(mapping, pgoff); 4992 if (xa_is_value(page)) { 4993 swp_entry_t swp = radix_to_swp_entry(page); 4994 if (do_memsw_account()) 4995 *entry = swp; 4996 page = find_get_page(swap_address_space(swp), 4997 swp_offset(swp)); 4998 } 4999 } else 5000 page = find_get_page(mapping, pgoff); 5001 #else 5002 page = find_get_page(mapping, pgoff); 5003 #endif 5004 return page; 5005 } 5006 5007 /** 5008 * mem_cgroup_move_account - move account of the page 5009 * @page: the page 5010 * @compound: charge the page as compound or small page 5011 * @from: mem_cgroup which the page is moved from. 5012 * @to: mem_cgroup which the page is moved to. @from != @to. 5013 * 5014 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5015 * 5016 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5017 * from old cgroup. 5018 */ 5019 static int mem_cgroup_move_account(struct page *page, 5020 bool compound, 5021 struct mem_cgroup *from, 5022 struct mem_cgroup *to) 5023 { 5024 unsigned long flags; 5025 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5026 int ret; 5027 bool anon; 5028 5029 VM_BUG_ON(from == to); 5030 VM_BUG_ON_PAGE(PageLRU(page), page); 5031 VM_BUG_ON(compound && !PageTransHuge(page)); 5032 5033 /* 5034 * Prevent mem_cgroup_migrate() from looking at 5035 * page->mem_cgroup of its source page while we change it. 5036 */ 5037 ret = -EBUSY; 5038 if (!trylock_page(page)) 5039 goto out; 5040 5041 ret = -EINVAL; 5042 if (page->mem_cgroup != from) 5043 goto out_unlock; 5044 5045 anon = PageAnon(page); 5046 5047 spin_lock_irqsave(&from->move_lock, flags); 5048 5049 if (!anon && page_mapped(page)) { 5050 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages); 5051 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages); 5052 } 5053 5054 /* 5055 * move_lock grabbed above and caller set from->moving_account, so 5056 * mod_memcg_page_state will serialize updates to PageDirty. 5057 * So mapping should be stable for dirty pages. 5058 */ 5059 if (!anon && PageDirty(page)) { 5060 struct address_space *mapping = page_mapping(page); 5061 5062 if (mapping_cap_account_dirty(mapping)) { 5063 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages); 5064 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages); 5065 } 5066 } 5067 5068 if (PageWriteback(page)) { 5069 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages); 5070 __mod_memcg_state(to, NR_WRITEBACK, nr_pages); 5071 } 5072 5073 /* 5074 * It is safe to change page->mem_cgroup here because the page 5075 * is referenced, charged, and isolated - we can't race with 5076 * uncharging, charging, migration, or LRU putback. 5077 */ 5078 5079 /* caller should have done css_get */ 5080 page->mem_cgroup = to; 5081 spin_unlock_irqrestore(&from->move_lock, flags); 5082 5083 ret = 0; 5084 5085 local_irq_disable(); 5086 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 5087 memcg_check_events(to, page); 5088 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 5089 memcg_check_events(from, page); 5090 local_irq_enable(); 5091 out_unlock: 5092 unlock_page(page); 5093 out: 5094 return ret; 5095 } 5096 5097 /** 5098 * get_mctgt_type - get target type of moving charge 5099 * @vma: the vma the pte to be checked belongs 5100 * @addr: the address corresponding to the pte to be checked 5101 * @ptent: the pte to be checked 5102 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5103 * 5104 * Returns 5105 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5106 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5107 * move charge. if @target is not NULL, the page is stored in target->page 5108 * with extra refcnt got(Callers should handle it). 5109 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5110 * target for charge migration. if @target is not NULL, the entry is stored 5111 * in target->ent. 5112 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5113 * (so ZONE_DEVICE page and thus not on the lru). 5114 * For now we such page is charge like a regular page would be as for all 5115 * intent and purposes it is just special memory taking the place of a 5116 * regular page. 5117 * 5118 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5119 * 5120 * Called with pte lock held. 5121 */ 5122 5123 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5124 unsigned long addr, pte_t ptent, union mc_target *target) 5125 { 5126 struct page *page = NULL; 5127 enum mc_target_type ret = MC_TARGET_NONE; 5128 swp_entry_t ent = { .val = 0 }; 5129 5130 if (pte_present(ptent)) 5131 page = mc_handle_present_pte(vma, addr, ptent); 5132 else if (is_swap_pte(ptent)) 5133 page = mc_handle_swap_pte(vma, ptent, &ent); 5134 else if (pte_none(ptent)) 5135 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5136 5137 if (!page && !ent.val) 5138 return ret; 5139 if (page) { 5140 /* 5141 * Do only loose check w/o serialization. 5142 * mem_cgroup_move_account() checks the page is valid or 5143 * not under LRU exclusion. 5144 */ 5145 if (page->mem_cgroup == mc.from) { 5146 ret = MC_TARGET_PAGE; 5147 if (is_device_private_page(page)) 5148 ret = MC_TARGET_DEVICE; 5149 if (target) 5150 target->page = page; 5151 } 5152 if (!ret || !target) 5153 put_page(page); 5154 } 5155 /* 5156 * There is a swap entry and a page doesn't exist or isn't charged. 5157 * But we cannot move a tail-page in a THP. 5158 */ 5159 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5160 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5161 ret = MC_TARGET_SWAP; 5162 if (target) 5163 target->ent = ent; 5164 } 5165 return ret; 5166 } 5167 5168 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5169 /* 5170 * We don't consider PMD mapped swapping or file mapped pages because THP does 5171 * not support them for now. 5172 * Caller should make sure that pmd_trans_huge(pmd) is true. 5173 */ 5174 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5175 unsigned long addr, pmd_t pmd, union mc_target *target) 5176 { 5177 struct page *page = NULL; 5178 enum mc_target_type ret = MC_TARGET_NONE; 5179 5180 if (unlikely(is_swap_pmd(pmd))) { 5181 VM_BUG_ON(thp_migration_supported() && 5182 !is_pmd_migration_entry(pmd)); 5183 return ret; 5184 } 5185 page = pmd_page(pmd); 5186 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5187 if (!(mc.flags & MOVE_ANON)) 5188 return ret; 5189 if (page->mem_cgroup == mc.from) { 5190 ret = MC_TARGET_PAGE; 5191 if (target) { 5192 get_page(page); 5193 target->page = page; 5194 } 5195 } 5196 return ret; 5197 } 5198 #else 5199 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5200 unsigned long addr, pmd_t pmd, union mc_target *target) 5201 { 5202 return MC_TARGET_NONE; 5203 } 5204 #endif 5205 5206 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5207 unsigned long addr, unsigned long end, 5208 struct mm_walk *walk) 5209 { 5210 struct vm_area_struct *vma = walk->vma; 5211 pte_t *pte; 5212 spinlock_t *ptl; 5213 5214 ptl = pmd_trans_huge_lock(pmd, vma); 5215 if (ptl) { 5216 /* 5217 * Note their can not be MC_TARGET_DEVICE for now as we do not 5218 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5219 * this might change. 5220 */ 5221 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5222 mc.precharge += HPAGE_PMD_NR; 5223 spin_unlock(ptl); 5224 return 0; 5225 } 5226 5227 if (pmd_trans_unstable(pmd)) 5228 return 0; 5229 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5230 for (; addr != end; pte++, addr += PAGE_SIZE) 5231 if (get_mctgt_type(vma, addr, *pte, NULL)) 5232 mc.precharge++; /* increment precharge temporarily */ 5233 pte_unmap_unlock(pte - 1, ptl); 5234 cond_resched(); 5235 5236 return 0; 5237 } 5238 5239 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5240 { 5241 unsigned long precharge; 5242 5243 struct mm_walk mem_cgroup_count_precharge_walk = { 5244 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5245 .mm = mm, 5246 }; 5247 down_read(&mm->mmap_sem); 5248 walk_page_range(0, mm->highest_vm_end, 5249 &mem_cgroup_count_precharge_walk); 5250 up_read(&mm->mmap_sem); 5251 5252 precharge = mc.precharge; 5253 mc.precharge = 0; 5254 5255 return precharge; 5256 } 5257 5258 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5259 { 5260 unsigned long precharge = mem_cgroup_count_precharge(mm); 5261 5262 VM_BUG_ON(mc.moving_task); 5263 mc.moving_task = current; 5264 return mem_cgroup_do_precharge(precharge); 5265 } 5266 5267 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5268 static void __mem_cgroup_clear_mc(void) 5269 { 5270 struct mem_cgroup *from = mc.from; 5271 struct mem_cgroup *to = mc.to; 5272 5273 /* we must uncharge all the leftover precharges from mc.to */ 5274 if (mc.precharge) { 5275 cancel_charge(mc.to, mc.precharge); 5276 mc.precharge = 0; 5277 } 5278 /* 5279 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5280 * we must uncharge here. 5281 */ 5282 if (mc.moved_charge) { 5283 cancel_charge(mc.from, mc.moved_charge); 5284 mc.moved_charge = 0; 5285 } 5286 /* we must fixup refcnts and charges */ 5287 if (mc.moved_swap) { 5288 /* uncharge swap account from the old cgroup */ 5289 if (!mem_cgroup_is_root(mc.from)) 5290 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5291 5292 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5293 5294 /* 5295 * we charged both to->memory and to->memsw, so we 5296 * should uncharge to->memory. 5297 */ 5298 if (!mem_cgroup_is_root(mc.to)) 5299 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5300 5301 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5302 css_put_many(&mc.to->css, mc.moved_swap); 5303 5304 mc.moved_swap = 0; 5305 } 5306 memcg_oom_recover(from); 5307 memcg_oom_recover(to); 5308 wake_up_all(&mc.waitq); 5309 } 5310 5311 static void mem_cgroup_clear_mc(void) 5312 { 5313 struct mm_struct *mm = mc.mm; 5314 5315 /* 5316 * we must clear moving_task before waking up waiters at the end of 5317 * task migration. 5318 */ 5319 mc.moving_task = NULL; 5320 __mem_cgroup_clear_mc(); 5321 spin_lock(&mc.lock); 5322 mc.from = NULL; 5323 mc.to = NULL; 5324 mc.mm = NULL; 5325 spin_unlock(&mc.lock); 5326 5327 mmput(mm); 5328 } 5329 5330 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5331 { 5332 struct cgroup_subsys_state *css; 5333 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5334 struct mem_cgroup *from; 5335 struct task_struct *leader, *p; 5336 struct mm_struct *mm; 5337 unsigned long move_flags; 5338 int ret = 0; 5339 5340 /* charge immigration isn't supported on the default hierarchy */ 5341 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5342 return 0; 5343 5344 /* 5345 * Multi-process migrations only happen on the default hierarchy 5346 * where charge immigration is not used. Perform charge 5347 * immigration if @tset contains a leader and whine if there are 5348 * multiple. 5349 */ 5350 p = NULL; 5351 cgroup_taskset_for_each_leader(leader, css, tset) { 5352 WARN_ON_ONCE(p); 5353 p = leader; 5354 memcg = mem_cgroup_from_css(css); 5355 } 5356 if (!p) 5357 return 0; 5358 5359 /* 5360 * We are now commited to this value whatever it is. Changes in this 5361 * tunable will only affect upcoming migrations, not the current one. 5362 * So we need to save it, and keep it going. 5363 */ 5364 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5365 if (!move_flags) 5366 return 0; 5367 5368 from = mem_cgroup_from_task(p); 5369 5370 VM_BUG_ON(from == memcg); 5371 5372 mm = get_task_mm(p); 5373 if (!mm) 5374 return 0; 5375 /* We move charges only when we move a owner of the mm */ 5376 if (mm->owner == p) { 5377 VM_BUG_ON(mc.from); 5378 VM_BUG_ON(mc.to); 5379 VM_BUG_ON(mc.precharge); 5380 VM_BUG_ON(mc.moved_charge); 5381 VM_BUG_ON(mc.moved_swap); 5382 5383 spin_lock(&mc.lock); 5384 mc.mm = mm; 5385 mc.from = from; 5386 mc.to = memcg; 5387 mc.flags = move_flags; 5388 spin_unlock(&mc.lock); 5389 /* We set mc.moving_task later */ 5390 5391 ret = mem_cgroup_precharge_mc(mm); 5392 if (ret) 5393 mem_cgroup_clear_mc(); 5394 } else { 5395 mmput(mm); 5396 } 5397 return ret; 5398 } 5399 5400 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5401 { 5402 if (mc.to) 5403 mem_cgroup_clear_mc(); 5404 } 5405 5406 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5407 unsigned long addr, unsigned long end, 5408 struct mm_walk *walk) 5409 { 5410 int ret = 0; 5411 struct vm_area_struct *vma = walk->vma; 5412 pte_t *pte; 5413 spinlock_t *ptl; 5414 enum mc_target_type target_type; 5415 union mc_target target; 5416 struct page *page; 5417 5418 ptl = pmd_trans_huge_lock(pmd, vma); 5419 if (ptl) { 5420 if (mc.precharge < HPAGE_PMD_NR) { 5421 spin_unlock(ptl); 5422 return 0; 5423 } 5424 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5425 if (target_type == MC_TARGET_PAGE) { 5426 page = target.page; 5427 if (!isolate_lru_page(page)) { 5428 if (!mem_cgroup_move_account(page, true, 5429 mc.from, mc.to)) { 5430 mc.precharge -= HPAGE_PMD_NR; 5431 mc.moved_charge += HPAGE_PMD_NR; 5432 } 5433 putback_lru_page(page); 5434 } 5435 put_page(page); 5436 } else if (target_type == MC_TARGET_DEVICE) { 5437 page = target.page; 5438 if (!mem_cgroup_move_account(page, true, 5439 mc.from, mc.to)) { 5440 mc.precharge -= HPAGE_PMD_NR; 5441 mc.moved_charge += HPAGE_PMD_NR; 5442 } 5443 put_page(page); 5444 } 5445 spin_unlock(ptl); 5446 return 0; 5447 } 5448 5449 if (pmd_trans_unstable(pmd)) 5450 return 0; 5451 retry: 5452 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5453 for (; addr != end; addr += PAGE_SIZE) { 5454 pte_t ptent = *(pte++); 5455 bool device = false; 5456 swp_entry_t ent; 5457 5458 if (!mc.precharge) 5459 break; 5460 5461 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5462 case MC_TARGET_DEVICE: 5463 device = true; 5464 /* fall through */ 5465 case MC_TARGET_PAGE: 5466 page = target.page; 5467 /* 5468 * We can have a part of the split pmd here. Moving it 5469 * can be done but it would be too convoluted so simply 5470 * ignore such a partial THP and keep it in original 5471 * memcg. There should be somebody mapping the head. 5472 */ 5473 if (PageTransCompound(page)) 5474 goto put; 5475 if (!device && isolate_lru_page(page)) 5476 goto put; 5477 if (!mem_cgroup_move_account(page, false, 5478 mc.from, mc.to)) { 5479 mc.precharge--; 5480 /* we uncharge from mc.from later. */ 5481 mc.moved_charge++; 5482 } 5483 if (!device) 5484 putback_lru_page(page); 5485 put: /* get_mctgt_type() gets the page */ 5486 put_page(page); 5487 break; 5488 case MC_TARGET_SWAP: 5489 ent = target.ent; 5490 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5491 mc.precharge--; 5492 /* we fixup refcnts and charges later. */ 5493 mc.moved_swap++; 5494 } 5495 break; 5496 default: 5497 break; 5498 } 5499 } 5500 pte_unmap_unlock(pte - 1, ptl); 5501 cond_resched(); 5502 5503 if (addr != end) { 5504 /* 5505 * We have consumed all precharges we got in can_attach(). 5506 * We try charge one by one, but don't do any additional 5507 * charges to mc.to if we have failed in charge once in attach() 5508 * phase. 5509 */ 5510 ret = mem_cgroup_do_precharge(1); 5511 if (!ret) 5512 goto retry; 5513 } 5514 5515 return ret; 5516 } 5517 5518 static void mem_cgroup_move_charge(void) 5519 { 5520 struct mm_walk mem_cgroup_move_charge_walk = { 5521 .pmd_entry = mem_cgroup_move_charge_pte_range, 5522 .mm = mc.mm, 5523 }; 5524 5525 lru_add_drain_all(); 5526 /* 5527 * Signal lock_page_memcg() to take the memcg's move_lock 5528 * while we're moving its pages to another memcg. Then wait 5529 * for already started RCU-only updates to finish. 5530 */ 5531 atomic_inc(&mc.from->moving_account); 5532 synchronize_rcu(); 5533 retry: 5534 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5535 /* 5536 * Someone who are holding the mmap_sem might be waiting in 5537 * waitq. So we cancel all extra charges, wake up all waiters, 5538 * and retry. Because we cancel precharges, we might not be able 5539 * to move enough charges, but moving charge is a best-effort 5540 * feature anyway, so it wouldn't be a big problem. 5541 */ 5542 __mem_cgroup_clear_mc(); 5543 cond_resched(); 5544 goto retry; 5545 } 5546 /* 5547 * When we have consumed all precharges and failed in doing 5548 * additional charge, the page walk just aborts. 5549 */ 5550 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk); 5551 5552 up_read(&mc.mm->mmap_sem); 5553 atomic_dec(&mc.from->moving_account); 5554 } 5555 5556 static void mem_cgroup_move_task(void) 5557 { 5558 if (mc.to) { 5559 mem_cgroup_move_charge(); 5560 mem_cgroup_clear_mc(); 5561 } 5562 } 5563 #else /* !CONFIG_MMU */ 5564 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5565 { 5566 return 0; 5567 } 5568 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5569 { 5570 } 5571 static void mem_cgroup_move_task(void) 5572 { 5573 } 5574 #endif 5575 5576 /* 5577 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5578 * to verify whether we're attached to the default hierarchy on each mount 5579 * attempt. 5580 */ 5581 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5582 { 5583 /* 5584 * use_hierarchy is forced on the default hierarchy. cgroup core 5585 * guarantees that @root doesn't have any children, so turning it 5586 * on for the root memcg is enough. 5587 */ 5588 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5589 root_mem_cgroup->use_hierarchy = true; 5590 else 5591 root_mem_cgroup->use_hierarchy = false; 5592 } 5593 5594 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 5595 { 5596 if (value == PAGE_COUNTER_MAX) 5597 seq_puts(m, "max\n"); 5598 else 5599 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 5600 5601 return 0; 5602 } 5603 5604 static u64 memory_current_read(struct cgroup_subsys_state *css, 5605 struct cftype *cft) 5606 { 5607 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5608 5609 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5610 } 5611 5612 static int memory_min_show(struct seq_file *m, void *v) 5613 { 5614 return seq_puts_memcg_tunable(m, 5615 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 5616 } 5617 5618 static ssize_t memory_min_write(struct kernfs_open_file *of, 5619 char *buf, size_t nbytes, loff_t off) 5620 { 5621 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5622 unsigned long min; 5623 int err; 5624 5625 buf = strstrip(buf); 5626 err = page_counter_memparse(buf, "max", &min); 5627 if (err) 5628 return err; 5629 5630 page_counter_set_min(&memcg->memory, min); 5631 5632 return nbytes; 5633 } 5634 5635 static int memory_low_show(struct seq_file *m, void *v) 5636 { 5637 return seq_puts_memcg_tunable(m, 5638 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 5639 } 5640 5641 static ssize_t memory_low_write(struct kernfs_open_file *of, 5642 char *buf, size_t nbytes, loff_t off) 5643 { 5644 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5645 unsigned long low; 5646 int err; 5647 5648 buf = strstrip(buf); 5649 err = page_counter_memparse(buf, "max", &low); 5650 if (err) 5651 return err; 5652 5653 page_counter_set_low(&memcg->memory, low); 5654 5655 return nbytes; 5656 } 5657 5658 static int memory_high_show(struct seq_file *m, void *v) 5659 { 5660 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); 5661 } 5662 5663 static ssize_t memory_high_write(struct kernfs_open_file *of, 5664 char *buf, size_t nbytes, loff_t off) 5665 { 5666 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5667 unsigned long nr_pages; 5668 unsigned long high; 5669 int err; 5670 5671 buf = strstrip(buf); 5672 err = page_counter_memparse(buf, "max", &high); 5673 if (err) 5674 return err; 5675 5676 memcg->high = high; 5677 5678 nr_pages = page_counter_read(&memcg->memory); 5679 if (nr_pages > high) 5680 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5681 GFP_KERNEL, true); 5682 5683 memcg_wb_domain_size_changed(memcg); 5684 return nbytes; 5685 } 5686 5687 static int memory_max_show(struct seq_file *m, void *v) 5688 { 5689 return seq_puts_memcg_tunable(m, 5690 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 5691 } 5692 5693 static ssize_t memory_max_write(struct kernfs_open_file *of, 5694 char *buf, size_t nbytes, loff_t off) 5695 { 5696 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5697 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5698 bool drained = false; 5699 unsigned long max; 5700 int err; 5701 5702 buf = strstrip(buf); 5703 err = page_counter_memparse(buf, "max", &max); 5704 if (err) 5705 return err; 5706 5707 xchg(&memcg->memory.max, max); 5708 5709 for (;;) { 5710 unsigned long nr_pages = page_counter_read(&memcg->memory); 5711 5712 if (nr_pages <= max) 5713 break; 5714 5715 if (signal_pending(current)) { 5716 err = -EINTR; 5717 break; 5718 } 5719 5720 if (!drained) { 5721 drain_all_stock(memcg); 5722 drained = true; 5723 continue; 5724 } 5725 5726 if (nr_reclaims) { 5727 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5728 GFP_KERNEL, true)) 5729 nr_reclaims--; 5730 continue; 5731 } 5732 5733 memcg_memory_event(memcg, MEMCG_OOM); 5734 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5735 break; 5736 } 5737 5738 memcg_wb_domain_size_changed(memcg); 5739 return nbytes; 5740 } 5741 5742 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 5743 { 5744 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 5745 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 5746 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 5747 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 5748 seq_printf(m, "oom_kill %lu\n", 5749 atomic_long_read(&events[MEMCG_OOM_KILL])); 5750 } 5751 5752 static int memory_events_show(struct seq_file *m, void *v) 5753 { 5754 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5755 5756 __memory_events_show(m, memcg->memory_events); 5757 return 0; 5758 } 5759 5760 static int memory_events_local_show(struct seq_file *m, void *v) 5761 { 5762 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5763 5764 __memory_events_show(m, memcg->memory_events_local); 5765 return 0; 5766 } 5767 5768 static int memory_stat_show(struct seq_file *m, void *v) 5769 { 5770 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5771 char *buf; 5772 5773 buf = memory_stat_format(memcg); 5774 if (!buf) 5775 return -ENOMEM; 5776 seq_puts(m, buf); 5777 kfree(buf); 5778 return 0; 5779 } 5780 5781 static int memory_oom_group_show(struct seq_file *m, void *v) 5782 { 5783 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5784 5785 seq_printf(m, "%d\n", memcg->oom_group); 5786 5787 return 0; 5788 } 5789 5790 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 5791 char *buf, size_t nbytes, loff_t off) 5792 { 5793 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5794 int ret, oom_group; 5795 5796 buf = strstrip(buf); 5797 if (!buf) 5798 return -EINVAL; 5799 5800 ret = kstrtoint(buf, 0, &oom_group); 5801 if (ret) 5802 return ret; 5803 5804 if (oom_group != 0 && oom_group != 1) 5805 return -EINVAL; 5806 5807 memcg->oom_group = oom_group; 5808 5809 return nbytes; 5810 } 5811 5812 static struct cftype memory_files[] = { 5813 { 5814 .name = "current", 5815 .flags = CFTYPE_NOT_ON_ROOT, 5816 .read_u64 = memory_current_read, 5817 }, 5818 { 5819 .name = "min", 5820 .flags = CFTYPE_NOT_ON_ROOT, 5821 .seq_show = memory_min_show, 5822 .write = memory_min_write, 5823 }, 5824 { 5825 .name = "low", 5826 .flags = CFTYPE_NOT_ON_ROOT, 5827 .seq_show = memory_low_show, 5828 .write = memory_low_write, 5829 }, 5830 { 5831 .name = "high", 5832 .flags = CFTYPE_NOT_ON_ROOT, 5833 .seq_show = memory_high_show, 5834 .write = memory_high_write, 5835 }, 5836 { 5837 .name = "max", 5838 .flags = CFTYPE_NOT_ON_ROOT, 5839 .seq_show = memory_max_show, 5840 .write = memory_max_write, 5841 }, 5842 { 5843 .name = "events", 5844 .flags = CFTYPE_NOT_ON_ROOT, 5845 .file_offset = offsetof(struct mem_cgroup, events_file), 5846 .seq_show = memory_events_show, 5847 }, 5848 { 5849 .name = "events.local", 5850 .flags = CFTYPE_NOT_ON_ROOT, 5851 .file_offset = offsetof(struct mem_cgroup, events_local_file), 5852 .seq_show = memory_events_local_show, 5853 }, 5854 { 5855 .name = "stat", 5856 .flags = CFTYPE_NOT_ON_ROOT, 5857 .seq_show = memory_stat_show, 5858 }, 5859 { 5860 .name = "oom.group", 5861 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 5862 .seq_show = memory_oom_group_show, 5863 .write = memory_oom_group_write, 5864 }, 5865 { } /* terminate */ 5866 }; 5867 5868 struct cgroup_subsys memory_cgrp_subsys = { 5869 .css_alloc = mem_cgroup_css_alloc, 5870 .css_online = mem_cgroup_css_online, 5871 .css_offline = mem_cgroup_css_offline, 5872 .css_released = mem_cgroup_css_released, 5873 .css_free = mem_cgroup_css_free, 5874 .css_reset = mem_cgroup_css_reset, 5875 .can_attach = mem_cgroup_can_attach, 5876 .cancel_attach = mem_cgroup_cancel_attach, 5877 .post_attach = mem_cgroup_move_task, 5878 .bind = mem_cgroup_bind, 5879 .dfl_cftypes = memory_files, 5880 .legacy_cftypes = mem_cgroup_legacy_files, 5881 .early_init = 0, 5882 }; 5883 5884 /** 5885 * mem_cgroup_protected - check if memory consumption is in the normal range 5886 * @root: the top ancestor of the sub-tree being checked 5887 * @memcg: the memory cgroup to check 5888 * 5889 * WARNING: This function is not stateless! It can only be used as part 5890 * of a top-down tree iteration, not for isolated queries. 5891 * 5892 * Returns one of the following: 5893 * MEMCG_PROT_NONE: cgroup memory is not protected 5894 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 5895 * an unprotected supply of reclaimable memory from other cgroups. 5896 * MEMCG_PROT_MIN: cgroup memory is protected 5897 * 5898 * @root is exclusive; it is never protected when looked at directly 5899 * 5900 * To provide a proper hierarchical behavior, effective memory.min/low values 5901 * are used. Below is the description of how effective memory.low is calculated. 5902 * Effective memory.min values is calculated in the same way. 5903 * 5904 * Effective memory.low is always equal or less than the original memory.low. 5905 * If there is no memory.low overcommittment (which is always true for 5906 * top-level memory cgroups), these two values are equal. 5907 * Otherwise, it's a part of parent's effective memory.low, 5908 * calculated as a cgroup's memory.low usage divided by sum of sibling's 5909 * memory.low usages, where memory.low usage is the size of actually 5910 * protected memory. 5911 * 5912 * low_usage 5913 * elow = min( memory.low, parent->elow * ------------------ ), 5914 * siblings_low_usage 5915 * 5916 * | memory.current, if memory.current < memory.low 5917 * low_usage = | 5918 * | 0, otherwise. 5919 * 5920 * 5921 * Such definition of the effective memory.low provides the expected 5922 * hierarchical behavior: parent's memory.low value is limiting 5923 * children, unprotected memory is reclaimed first and cgroups, 5924 * which are not using their guarantee do not affect actual memory 5925 * distribution. 5926 * 5927 * For example, if there are memcgs A, A/B, A/C, A/D and A/E: 5928 * 5929 * A A/memory.low = 2G, A/memory.current = 6G 5930 * //\\ 5931 * BC DE B/memory.low = 3G B/memory.current = 2G 5932 * C/memory.low = 1G C/memory.current = 2G 5933 * D/memory.low = 0 D/memory.current = 2G 5934 * E/memory.low = 10G E/memory.current = 0 5935 * 5936 * and the memory pressure is applied, the following memory distribution 5937 * is expected (approximately): 5938 * 5939 * A/memory.current = 2G 5940 * 5941 * B/memory.current = 1.3G 5942 * C/memory.current = 0.6G 5943 * D/memory.current = 0 5944 * E/memory.current = 0 5945 * 5946 * These calculations require constant tracking of the actual low usages 5947 * (see propagate_protected_usage()), as well as recursive calculation of 5948 * effective memory.low values. But as we do call mem_cgroup_protected() 5949 * path for each memory cgroup top-down from the reclaim, 5950 * it's possible to optimize this part, and save calculated elow 5951 * for next usage. This part is intentionally racy, but it's ok, 5952 * as memory.low is a best-effort mechanism. 5953 */ 5954 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 5955 struct mem_cgroup *memcg) 5956 { 5957 struct mem_cgroup *parent; 5958 unsigned long emin, parent_emin; 5959 unsigned long elow, parent_elow; 5960 unsigned long usage; 5961 5962 if (mem_cgroup_disabled()) 5963 return MEMCG_PROT_NONE; 5964 5965 if (!root) 5966 root = root_mem_cgroup; 5967 if (memcg == root) 5968 return MEMCG_PROT_NONE; 5969 5970 usage = page_counter_read(&memcg->memory); 5971 if (!usage) 5972 return MEMCG_PROT_NONE; 5973 5974 emin = memcg->memory.min; 5975 elow = memcg->memory.low; 5976 5977 parent = parent_mem_cgroup(memcg); 5978 /* No parent means a non-hierarchical mode on v1 memcg */ 5979 if (!parent) 5980 return MEMCG_PROT_NONE; 5981 5982 if (parent == root) 5983 goto exit; 5984 5985 parent_emin = READ_ONCE(parent->memory.emin); 5986 emin = min(emin, parent_emin); 5987 if (emin && parent_emin) { 5988 unsigned long min_usage, siblings_min_usage; 5989 5990 min_usage = min(usage, memcg->memory.min); 5991 siblings_min_usage = atomic_long_read( 5992 &parent->memory.children_min_usage); 5993 5994 if (min_usage && siblings_min_usage) 5995 emin = min(emin, parent_emin * min_usage / 5996 siblings_min_usage); 5997 } 5998 5999 parent_elow = READ_ONCE(parent->memory.elow); 6000 elow = min(elow, parent_elow); 6001 if (elow && parent_elow) { 6002 unsigned long low_usage, siblings_low_usage; 6003 6004 low_usage = min(usage, memcg->memory.low); 6005 siblings_low_usage = atomic_long_read( 6006 &parent->memory.children_low_usage); 6007 6008 if (low_usage && siblings_low_usage) 6009 elow = min(elow, parent_elow * low_usage / 6010 siblings_low_usage); 6011 } 6012 6013 exit: 6014 memcg->memory.emin = emin; 6015 memcg->memory.elow = elow; 6016 6017 if (usage <= emin) 6018 return MEMCG_PROT_MIN; 6019 else if (usage <= elow) 6020 return MEMCG_PROT_LOW; 6021 else 6022 return MEMCG_PROT_NONE; 6023 } 6024 6025 /** 6026 * mem_cgroup_try_charge - try charging a page 6027 * @page: page to charge 6028 * @mm: mm context of the victim 6029 * @gfp_mask: reclaim mode 6030 * @memcgp: charged memcg return 6031 * @compound: charge the page as compound or small page 6032 * 6033 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6034 * pages according to @gfp_mask if necessary. 6035 * 6036 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 6037 * Otherwise, an error code is returned. 6038 * 6039 * After page->mapping has been set up, the caller must finalize the 6040 * charge with mem_cgroup_commit_charge(). Or abort the transaction 6041 * with mem_cgroup_cancel_charge() in case page instantiation fails. 6042 */ 6043 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 6044 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6045 bool compound) 6046 { 6047 struct mem_cgroup *memcg = NULL; 6048 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6049 int ret = 0; 6050 6051 if (mem_cgroup_disabled()) 6052 goto out; 6053 6054 if (PageSwapCache(page)) { 6055 /* 6056 * Every swap fault against a single page tries to charge the 6057 * page, bail as early as possible. shmem_unuse() encounters 6058 * already charged pages, too. The USED bit is protected by 6059 * the page lock, which serializes swap cache removal, which 6060 * in turn serializes uncharging. 6061 */ 6062 VM_BUG_ON_PAGE(!PageLocked(page), page); 6063 if (compound_head(page)->mem_cgroup) 6064 goto out; 6065 6066 if (do_swap_account) { 6067 swp_entry_t ent = { .val = page_private(page), }; 6068 unsigned short id = lookup_swap_cgroup_id(ent); 6069 6070 rcu_read_lock(); 6071 memcg = mem_cgroup_from_id(id); 6072 if (memcg && !css_tryget_online(&memcg->css)) 6073 memcg = NULL; 6074 rcu_read_unlock(); 6075 } 6076 } 6077 6078 if (!memcg) 6079 memcg = get_mem_cgroup_from_mm(mm); 6080 6081 ret = try_charge(memcg, gfp_mask, nr_pages); 6082 6083 css_put(&memcg->css); 6084 out: 6085 *memcgp = memcg; 6086 return ret; 6087 } 6088 6089 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 6090 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6091 bool compound) 6092 { 6093 struct mem_cgroup *memcg; 6094 int ret; 6095 6096 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 6097 memcg = *memcgp; 6098 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 6099 return ret; 6100 } 6101 6102 /** 6103 * mem_cgroup_commit_charge - commit a page charge 6104 * @page: page to charge 6105 * @memcg: memcg to charge the page to 6106 * @lrucare: page might be on LRU already 6107 * @compound: charge the page as compound or small page 6108 * 6109 * Finalize a charge transaction started by mem_cgroup_try_charge(), 6110 * after page->mapping has been set up. This must happen atomically 6111 * as part of the page instantiation, i.e. under the page table lock 6112 * for anonymous pages, under the page lock for page and swap cache. 6113 * 6114 * In addition, the page must not be on the LRU during the commit, to 6115 * prevent racing with task migration. If it might be, use @lrucare. 6116 * 6117 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 6118 */ 6119 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 6120 bool lrucare, bool compound) 6121 { 6122 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6123 6124 VM_BUG_ON_PAGE(!page->mapping, page); 6125 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 6126 6127 if (mem_cgroup_disabled()) 6128 return; 6129 /* 6130 * Swap faults will attempt to charge the same page multiple 6131 * times. But reuse_swap_page() might have removed the page 6132 * from swapcache already, so we can't check PageSwapCache(). 6133 */ 6134 if (!memcg) 6135 return; 6136 6137 commit_charge(page, memcg, lrucare); 6138 6139 local_irq_disable(); 6140 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 6141 memcg_check_events(memcg, page); 6142 local_irq_enable(); 6143 6144 if (do_memsw_account() && PageSwapCache(page)) { 6145 swp_entry_t entry = { .val = page_private(page) }; 6146 /* 6147 * The swap entry might not get freed for a long time, 6148 * let's not wait for it. The page already received a 6149 * memory+swap charge, drop the swap entry duplicate. 6150 */ 6151 mem_cgroup_uncharge_swap(entry, nr_pages); 6152 } 6153 } 6154 6155 /** 6156 * mem_cgroup_cancel_charge - cancel a page charge 6157 * @page: page to charge 6158 * @memcg: memcg to charge the page to 6159 * @compound: charge the page as compound or small page 6160 * 6161 * Cancel a charge transaction started by mem_cgroup_try_charge(). 6162 */ 6163 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 6164 bool compound) 6165 { 6166 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6167 6168 if (mem_cgroup_disabled()) 6169 return; 6170 /* 6171 * Swap faults will attempt to charge the same page multiple 6172 * times. But reuse_swap_page() might have removed the page 6173 * from swapcache already, so we can't check PageSwapCache(). 6174 */ 6175 if (!memcg) 6176 return; 6177 6178 cancel_charge(memcg, nr_pages); 6179 } 6180 6181 struct uncharge_gather { 6182 struct mem_cgroup *memcg; 6183 unsigned long pgpgout; 6184 unsigned long nr_anon; 6185 unsigned long nr_file; 6186 unsigned long nr_kmem; 6187 unsigned long nr_huge; 6188 unsigned long nr_shmem; 6189 struct page *dummy_page; 6190 }; 6191 6192 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6193 { 6194 memset(ug, 0, sizeof(*ug)); 6195 } 6196 6197 static void uncharge_batch(const struct uncharge_gather *ug) 6198 { 6199 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6200 unsigned long flags; 6201 6202 if (!mem_cgroup_is_root(ug->memcg)) { 6203 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6204 if (do_memsw_account()) 6205 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6206 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6207 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6208 memcg_oom_recover(ug->memcg); 6209 } 6210 6211 local_irq_save(flags); 6212 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6213 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6214 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6215 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6216 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6217 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages); 6218 memcg_check_events(ug->memcg, ug->dummy_page); 6219 local_irq_restore(flags); 6220 6221 if (!mem_cgroup_is_root(ug->memcg)) 6222 css_put_many(&ug->memcg->css, nr_pages); 6223 } 6224 6225 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6226 { 6227 VM_BUG_ON_PAGE(PageLRU(page), page); 6228 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6229 !PageHWPoison(page) , page); 6230 6231 if (!page->mem_cgroup) 6232 return; 6233 6234 /* 6235 * Nobody should be changing or seriously looking at 6236 * page->mem_cgroup at this point, we have fully 6237 * exclusive access to the page. 6238 */ 6239 6240 if (ug->memcg != page->mem_cgroup) { 6241 if (ug->memcg) { 6242 uncharge_batch(ug); 6243 uncharge_gather_clear(ug); 6244 } 6245 ug->memcg = page->mem_cgroup; 6246 } 6247 6248 if (!PageKmemcg(page)) { 6249 unsigned int nr_pages = 1; 6250 6251 if (PageTransHuge(page)) { 6252 nr_pages <<= compound_order(page); 6253 ug->nr_huge += nr_pages; 6254 } 6255 if (PageAnon(page)) 6256 ug->nr_anon += nr_pages; 6257 else { 6258 ug->nr_file += nr_pages; 6259 if (PageSwapBacked(page)) 6260 ug->nr_shmem += nr_pages; 6261 } 6262 ug->pgpgout++; 6263 } else { 6264 ug->nr_kmem += 1 << compound_order(page); 6265 __ClearPageKmemcg(page); 6266 } 6267 6268 ug->dummy_page = page; 6269 page->mem_cgroup = NULL; 6270 } 6271 6272 static void uncharge_list(struct list_head *page_list) 6273 { 6274 struct uncharge_gather ug; 6275 struct list_head *next; 6276 6277 uncharge_gather_clear(&ug); 6278 6279 /* 6280 * Note that the list can be a single page->lru; hence the 6281 * do-while loop instead of a simple list_for_each_entry(). 6282 */ 6283 next = page_list->next; 6284 do { 6285 struct page *page; 6286 6287 page = list_entry(next, struct page, lru); 6288 next = page->lru.next; 6289 6290 uncharge_page(page, &ug); 6291 } while (next != page_list); 6292 6293 if (ug.memcg) 6294 uncharge_batch(&ug); 6295 } 6296 6297 /** 6298 * mem_cgroup_uncharge - uncharge a page 6299 * @page: page to uncharge 6300 * 6301 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6302 * mem_cgroup_commit_charge(). 6303 */ 6304 void mem_cgroup_uncharge(struct page *page) 6305 { 6306 struct uncharge_gather ug; 6307 6308 if (mem_cgroup_disabled()) 6309 return; 6310 6311 /* Don't touch page->lru of any random page, pre-check: */ 6312 if (!page->mem_cgroup) 6313 return; 6314 6315 uncharge_gather_clear(&ug); 6316 uncharge_page(page, &ug); 6317 uncharge_batch(&ug); 6318 } 6319 6320 /** 6321 * mem_cgroup_uncharge_list - uncharge a list of page 6322 * @page_list: list of pages to uncharge 6323 * 6324 * Uncharge a list of pages previously charged with 6325 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6326 */ 6327 void mem_cgroup_uncharge_list(struct list_head *page_list) 6328 { 6329 if (mem_cgroup_disabled()) 6330 return; 6331 6332 if (!list_empty(page_list)) 6333 uncharge_list(page_list); 6334 } 6335 6336 /** 6337 * mem_cgroup_migrate - charge a page's replacement 6338 * @oldpage: currently circulating page 6339 * @newpage: replacement page 6340 * 6341 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6342 * be uncharged upon free. 6343 * 6344 * Both pages must be locked, @newpage->mapping must be set up. 6345 */ 6346 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6347 { 6348 struct mem_cgroup *memcg; 6349 unsigned int nr_pages; 6350 bool compound; 6351 unsigned long flags; 6352 6353 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6354 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6355 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6356 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6357 newpage); 6358 6359 if (mem_cgroup_disabled()) 6360 return; 6361 6362 /* Page cache replacement: new page already charged? */ 6363 if (newpage->mem_cgroup) 6364 return; 6365 6366 /* Swapcache readahead pages can get replaced before being charged */ 6367 memcg = oldpage->mem_cgroup; 6368 if (!memcg) 6369 return; 6370 6371 /* Force-charge the new page. The old one will be freed soon */ 6372 compound = PageTransHuge(newpage); 6373 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 6374 6375 page_counter_charge(&memcg->memory, nr_pages); 6376 if (do_memsw_account()) 6377 page_counter_charge(&memcg->memsw, nr_pages); 6378 css_get_many(&memcg->css, nr_pages); 6379 6380 commit_charge(newpage, memcg, false); 6381 6382 local_irq_save(flags); 6383 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 6384 memcg_check_events(memcg, newpage); 6385 local_irq_restore(flags); 6386 } 6387 6388 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6389 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6390 6391 void mem_cgroup_sk_alloc(struct sock *sk) 6392 { 6393 struct mem_cgroup *memcg; 6394 6395 if (!mem_cgroup_sockets_enabled) 6396 return; 6397 6398 /* 6399 * Socket cloning can throw us here with sk_memcg already 6400 * filled. It won't however, necessarily happen from 6401 * process context. So the test for root memcg given 6402 * the current task's memcg won't help us in this case. 6403 * 6404 * Respecting the original socket's memcg is a better 6405 * decision in this case. 6406 */ 6407 if (sk->sk_memcg) { 6408 css_get(&sk->sk_memcg->css); 6409 return; 6410 } 6411 6412 rcu_read_lock(); 6413 memcg = mem_cgroup_from_task(current); 6414 if (memcg == root_mem_cgroup) 6415 goto out; 6416 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6417 goto out; 6418 if (css_tryget_online(&memcg->css)) 6419 sk->sk_memcg = memcg; 6420 out: 6421 rcu_read_unlock(); 6422 } 6423 6424 void mem_cgroup_sk_free(struct sock *sk) 6425 { 6426 if (sk->sk_memcg) 6427 css_put(&sk->sk_memcg->css); 6428 } 6429 6430 /** 6431 * mem_cgroup_charge_skmem - charge socket memory 6432 * @memcg: memcg to charge 6433 * @nr_pages: number of pages to charge 6434 * 6435 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6436 * @memcg's configured limit, %false if the charge had to be forced. 6437 */ 6438 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6439 { 6440 gfp_t gfp_mask = GFP_KERNEL; 6441 6442 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6443 struct page_counter *fail; 6444 6445 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6446 memcg->tcpmem_pressure = 0; 6447 return true; 6448 } 6449 page_counter_charge(&memcg->tcpmem, nr_pages); 6450 memcg->tcpmem_pressure = 1; 6451 return false; 6452 } 6453 6454 /* Don't block in the packet receive path */ 6455 if (in_softirq()) 6456 gfp_mask = GFP_NOWAIT; 6457 6458 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6459 6460 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6461 return true; 6462 6463 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6464 return false; 6465 } 6466 6467 /** 6468 * mem_cgroup_uncharge_skmem - uncharge socket memory 6469 * @memcg: memcg to uncharge 6470 * @nr_pages: number of pages to uncharge 6471 */ 6472 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6473 { 6474 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6475 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6476 return; 6477 } 6478 6479 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6480 6481 refill_stock(memcg, nr_pages); 6482 } 6483 6484 static int __init cgroup_memory(char *s) 6485 { 6486 char *token; 6487 6488 while ((token = strsep(&s, ",")) != NULL) { 6489 if (!*token) 6490 continue; 6491 if (!strcmp(token, "nosocket")) 6492 cgroup_memory_nosocket = true; 6493 if (!strcmp(token, "nokmem")) 6494 cgroup_memory_nokmem = true; 6495 } 6496 return 0; 6497 } 6498 __setup("cgroup.memory=", cgroup_memory); 6499 6500 /* 6501 * subsys_initcall() for memory controller. 6502 * 6503 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6504 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6505 * basically everything that doesn't depend on a specific mem_cgroup structure 6506 * should be initialized from here. 6507 */ 6508 static int __init mem_cgroup_init(void) 6509 { 6510 int cpu, node; 6511 6512 #ifdef CONFIG_MEMCG_KMEM 6513 /* 6514 * Kmem cache creation is mostly done with the slab_mutex held, 6515 * so use a workqueue with limited concurrency to avoid stalling 6516 * all worker threads in case lots of cgroups are created and 6517 * destroyed simultaneously. 6518 */ 6519 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6520 BUG_ON(!memcg_kmem_cache_wq); 6521 #endif 6522 6523 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6524 memcg_hotplug_cpu_dead); 6525 6526 for_each_possible_cpu(cpu) 6527 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6528 drain_local_stock); 6529 6530 for_each_node(node) { 6531 struct mem_cgroup_tree_per_node *rtpn; 6532 6533 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6534 node_online(node) ? node : NUMA_NO_NODE); 6535 6536 rtpn->rb_root = RB_ROOT; 6537 rtpn->rb_rightmost = NULL; 6538 spin_lock_init(&rtpn->lock); 6539 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6540 } 6541 6542 return 0; 6543 } 6544 subsys_initcall(mem_cgroup_init); 6545 6546 #ifdef CONFIG_MEMCG_SWAP 6547 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6548 { 6549 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6550 /* 6551 * The root cgroup cannot be destroyed, so it's refcount must 6552 * always be >= 1. 6553 */ 6554 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6555 VM_BUG_ON(1); 6556 break; 6557 } 6558 memcg = parent_mem_cgroup(memcg); 6559 if (!memcg) 6560 memcg = root_mem_cgroup; 6561 } 6562 return memcg; 6563 } 6564 6565 /** 6566 * mem_cgroup_swapout - transfer a memsw charge to swap 6567 * @page: page whose memsw charge to transfer 6568 * @entry: swap entry to move the charge to 6569 * 6570 * Transfer the memsw charge of @page to @entry. 6571 */ 6572 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6573 { 6574 struct mem_cgroup *memcg, *swap_memcg; 6575 unsigned int nr_entries; 6576 unsigned short oldid; 6577 6578 VM_BUG_ON_PAGE(PageLRU(page), page); 6579 VM_BUG_ON_PAGE(page_count(page), page); 6580 6581 if (!do_memsw_account()) 6582 return; 6583 6584 memcg = page->mem_cgroup; 6585 6586 /* Readahead page, never charged */ 6587 if (!memcg) 6588 return; 6589 6590 /* 6591 * In case the memcg owning these pages has been offlined and doesn't 6592 * have an ID allocated to it anymore, charge the closest online 6593 * ancestor for the swap instead and transfer the memory+swap charge. 6594 */ 6595 swap_memcg = mem_cgroup_id_get_online(memcg); 6596 nr_entries = hpage_nr_pages(page); 6597 /* Get references for the tail pages, too */ 6598 if (nr_entries > 1) 6599 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6600 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6601 nr_entries); 6602 VM_BUG_ON_PAGE(oldid, page); 6603 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6604 6605 page->mem_cgroup = NULL; 6606 6607 if (!mem_cgroup_is_root(memcg)) 6608 page_counter_uncharge(&memcg->memory, nr_entries); 6609 6610 if (memcg != swap_memcg) { 6611 if (!mem_cgroup_is_root(swap_memcg)) 6612 page_counter_charge(&swap_memcg->memsw, nr_entries); 6613 page_counter_uncharge(&memcg->memsw, nr_entries); 6614 } 6615 6616 /* 6617 * Interrupts should be disabled here because the caller holds the 6618 * i_pages lock which is taken with interrupts-off. It is 6619 * important here to have the interrupts disabled because it is the 6620 * only synchronisation we have for updating the per-CPU variables. 6621 */ 6622 VM_BUG_ON(!irqs_disabled()); 6623 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 6624 -nr_entries); 6625 memcg_check_events(memcg, page); 6626 6627 if (!mem_cgroup_is_root(memcg)) 6628 css_put_many(&memcg->css, nr_entries); 6629 } 6630 6631 /** 6632 * mem_cgroup_try_charge_swap - try charging swap space for a page 6633 * @page: page being added to swap 6634 * @entry: swap entry to charge 6635 * 6636 * Try to charge @page's memcg for the swap space at @entry. 6637 * 6638 * Returns 0 on success, -ENOMEM on failure. 6639 */ 6640 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 6641 { 6642 unsigned int nr_pages = hpage_nr_pages(page); 6643 struct page_counter *counter; 6644 struct mem_cgroup *memcg; 6645 unsigned short oldid; 6646 6647 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 6648 return 0; 6649 6650 memcg = page->mem_cgroup; 6651 6652 /* Readahead page, never charged */ 6653 if (!memcg) 6654 return 0; 6655 6656 if (!entry.val) { 6657 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6658 return 0; 6659 } 6660 6661 memcg = mem_cgroup_id_get_online(memcg); 6662 6663 if (!mem_cgroup_is_root(memcg) && 6664 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 6665 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 6666 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6667 mem_cgroup_id_put(memcg); 6668 return -ENOMEM; 6669 } 6670 6671 /* Get references for the tail pages, too */ 6672 if (nr_pages > 1) 6673 mem_cgroup_id_get_many(memcg, nr_pages - 1); 6674 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 6675 VM_BUG_ON_PAGE(oldid, page); 6676 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 6677 6678 return 0; 6679 } 6680 6681 /** 6682 * mem_cgroup_uncharge_swap - uncharge swap space 6683 * @entry: swap entry to uncharge 6684 * @nr_pages: the amount of swap space to uncharge 6685 */ 6686 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 6687 { 6688 struct mem_cgroup *memcg; 6689 unsigned short id; 6690 6691 if (!do_swap_account) 6692 return; 6693 6694 id = swap_cgroup_record(entry, 0, nr_pages); 6695 rcu_read_lock(); 6696 memcg = mem_cgroup_from_id(id); 6697 if (memcg) { 6698 if (!mem_cgroup_is_root(memcg)) { 6699 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6700 page_counter_uncharge(&memcg->swap, nr_pages); 6701 else 6702 page_counter_uncharge(&memcg->memsw, nr_pages); 6703 } 6704 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 6705 mem_cgroup_id_put_many(memcg, nr_pages); 6706 } 6707 rcu_read_unlock(); 6708 } 6709 6710 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 6711 { 6712 long nr_swap_pages = get_nr_swap_pages(); 6713 6714 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6715 return nr_swap_pages; 6716 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6717 nr_swap_pages = min_t(long, nr_swap_pages, 6718 READ_ONCE(memcg->swap.max) - 6719 page_counter_read(&memcg->swap)); 6720 return nr_swap_pages; 6721 } 6722 6723 bool mem_cgroup_swap_full(struct page *page) 6724 { 6725 struct mem_cgroup *memcg; 6726 6727 VM_BUG_ON_PAGE(!PageLocked(page), page); 6728 6729 if (vm_swap_full()) 6730 return true; 6731 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6732 return false; 6733 6734 memcg = page->mem_cgroup; 6735 if (!memcg) 6736 return false; 6737 6738 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6739 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) 6740 return true; 6741 6742 return false; 6743 } 6744 6745 /* for remember boot option*/ 6746 #ifdef CONFIG_MEMCG_SWAP_ENABLED 6747 static int really_do_swap_account __initdata = 1; 6748 #else 6749 static int really_do_swap_account __initdata; 6750 #endif 6751 6752 static int __init enable_swap_account(char *s) 6753 { 6754 if (!strcmp(s, "1")) 6755 really_do_swap_account = 1; 6756 else if (!strcmp(s, "0")) 6757 really_do_swap_account = 0; 6758 return 1; 6759 } 6760 __setup("swapaccount=", enable_swap_account); 6761 6762 static u64 swap_current_read(struct cgroup_subsys_state *css, 6763 struct cftype *cft) 6764 { 6765 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6766 6767 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 6768 } 6769 6770 static int swap_max_show(struct seq_file *m, void *v) 6771 { 6772 return seq_puts_memcg_tunable(m, 6773 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 6774 } 6775 6776 static ssize_t swap_max_write(struct kernfs_open_file *of, 6777 char *buf, size_t nbytes, loff_t off) 6778 { 6779 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6780 unsigned long max; 6781 int err; 6782 6783 buf = strstrip(buf); 6784 err = page_counter_memparse(buf, "max", &max); 6785 if (err) 6786 return err; 6787 6788 xchg(&memcg->swap.max, max); 6789 6790 return nbytes; 6791 } 6792 6793 static int swap_events_show(struct seq_file *m, void *v) 6794 { 6795 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6796 6797 seq_printf(m, "max %lu\n", 6798 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 6799 seq_printf(m, "fail %lu\n", 6800 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 6801 6802 return 0; 6803 } 6804 6805 static struct cftype swap_files[] = { 6806 { 6807 .name = "swap.current", 6808 .flags = CFTYPE_NOT_ON_ROOT, 6809 .read_u64 = swap_current_read, 6810 }, 6811 { 6812 .name = "swap.max", 6813 .flags = CFTYPE_NOT_ON_ROOT, 6814 .seq_show = swap_max_show, 6815 .write = swap_max_write, 6816 }, 6817 { 6818 .name = "swap.events", 6819 .flags = CFTYPE_NOT_ON_ROOT, 6820 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 6821 .seq_show = swap_events_show, 6822 }, 6823 { } /* terminate */ 6824 }; 6825 6826 static struct cftype memsw_cgroup_files[] = { 6827 { 6828 .name = "memsw.usage_in_bytes", 6829 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6830 .read_u64 = mem_cgroup_read_u64, 6831 }, 6832 { 6833 .name = "memsw.max_usage_in_bytes", 6834 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6835 .write = mem_cgroup_reset, 6836 .read_u64 = mem_cgroup_read_u64, 6837 }, 6838 { 6839 .name = "memsw.limit_in_bytes", 6840 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6841 .write = mem_cgroup_write, 6842 .read_u64 = mem_cgroup_read_u64, 6843 }, 6844 { 6845 .name = "memsw.failcnt", 6846 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6847 .write = mem_cgroup_reset, 6848 .read_u64 = mem_cgroup_read_u64, 6849 }, 6850 { }, /* terminate */ 6851 }; 6852 6853 static int __init mem_cgroup_swap_init(void) 6854 { 6855 if (!mem_cgroup_disabled() && really_do_swap_account) { 6856 do_swap_account = 1; 6857 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6858 swap_files)); 6859 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6860 memsw_cgroup_files)); 6861 } 6862 return 0; 6863 } 6864 subsys_initcall(mem_cgroup_swap_init); 6865 6866 #endif /* CONFIG_MEMCG_SWAP */ 6867