xref: /openbmc/linux/mm/memcontrol.c (revision 03638e62)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/mm.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/seq_buf.h>
61 #include "internal.h"
62 #include <net/sock.h>
63 #include <net/ip.h>
64 #include "slab.h"
65 
66 #include <linux/uaccess.h>
67 
68 #include <trace/events/vmscan.h>
69 
70 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
71 EXPORT_SYMBOL(memory_cgrp_subsys);
72 
73 struct mem_cgroup *root_mem_cgroup __read_mostly;
74 
75 #define MEM_CGROUP_RECLAIM_RETRIES	5
76 
77 /* Socket memory accounting disabled? */
78 static bool cgroup_memory_nosocket;
79 
80 /* Kernel memory accounting disabled? */
81 static bool cgroup_memory_nokmem;
82 
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
86 #else
87 #define do_swap_account		0
88 #endif
89 
90 /* Whether legacy memory+swap accounting is active */
91 static bool do_memsw_account(void)
92 {
93 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
94 }
95 
96 static const char *const mem_cgroup_lru_names[] = {
97 	"inactive_anon",
98 	"active_anon",
99 	"inactive_file",
100 	"active_file",
101 	"unevictable",
102 };
103 
104 #define THRESHOLDS_EVENTS_TARGET 128
105 #define SOFTLIMIT_EVENTS_TARGET 1024
106 #define NUMAINFO_EVENTS_TARGET	1024
107 
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112 
113 struct mem_cgroup_tree_per_node {
114 	struct rb_root rb_root;
115 	struct rb_node *rb_rightmost;
116 	spinlock_t lock;
117 };
118 
119 struct mem_cgroup_tree {
120 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122 
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124 
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 	struct list_head list;
128 	struct eventfd_ctx *eventfd;
129 };
130 
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135 	/*
136 	 * memcg which the event belongs to.
137 	 */
138 	struct mem_cgroup *memcg;
139 	/*
140 	 * eventfd to signal userspace about the event.
141 	 */
142 	struct eventfd_ctx *eventfd;
143 	/*
144 	 * Each of these stored in a list by the cgroup.
145 	 */
146 	struct list_head list;
147 	/*
148 	 * register_event() callback will be used to add new userspace
149 	 * waiter for changes related to this event.  Use eventfd_signal()
150 	 * on eventfd to send notification to userspace.
151 	 */
152 	int (*register_event)(struct mem_cgroup *memcg,
153 			      struct eventfd_ctx *eventfd, const char *args);
154 	/*
155 	 * unregister_event() callback will be called when userspace closes
156 	 * the eventfd or on cgroup removing.  This callback must be set,
157 	 * if you want provide notification functionality.
158 	 */
159 	void (*unregister_event)(struct mem_cgroup *memcg,
160 				 struct eventfd_ctx *eventfd);
161 	/*
162 	 * All fields below needed to unregister event when
163 	 * userspace closes eventfd.
164 	 */
165 	poll_table pt;
166 	wait_queue_head_t *wqh;
167 	wait_queue_entry_t wait;
168 	struct work_struct remove;
169 };
170 
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173 
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON	0x1U
179 #define MOVE_FILE	0x2U
180 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181 
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 	spinlock_t	  lock; /* for from, to */
185 	struct mm_struct  *mm;
186 	struct mem_cgroup *from;
187 	struct mem_cgroup *to;
188 	unsigned long flags;
189 	unsigned long precharge;
190 	unsigned long moved_charge;
191 	unsigned long moved_swap;
192 	struct task_struct *moving_task;	/* a task moving charges */
193 	wait_queue_head_t waitq;		/* a waitq for other context */
194 } mc = {
195 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198 
199 /*
200  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205 
206 enum charge_type {
207 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
208 	MEM_CGROUP_CHARGE_TYPE_ANON,
209 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
210 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
211 	NR_CHARGE_TYPE,
212 };
213 
214 /* for encoding cft->private value on file */
215 enum res_type {
216 	_MEM,
217 	_MEMSWAP,
218 	_OOM_TYPE,
219 	_KMEM,
220 	_TCP,
221 };
222 
223 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
224 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
225 #define MEMFILE_ATTR(val)	((val) & 0xffff)
226 /* Used for OOM nofiier */
227 #define OOM_CONTROL		(0)
228 
229 /*
230  * Iteration constructs for visiting all cgroups (under a tree).  If
231  * loops are exited prematurely (break), mem_cgroup_iter_break() must
232  * be used for reference counting.
233  */
234 #define for_each_mem_cgroup_tree(iter, root)		\
235 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
236 	     iter != NULL;				\
237 	     iter = mem_cgroup_iter(root, iter, NULL))
238 
239 #define for_each_mem_cgroup(iter)			\
240 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
241 	     iter != NULL;				\
242 	     iter = mem_cgroup_iter(NULL, iter, NULL))
243 
244 static inline bool should_force_charge(void)
245 {
246 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
247 		(current->flags & PF_EXITING);
248 }
249 
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 	if (!memcg)
254 		memcg = root_mem_cgroup;
255 	return &memcg->vmpressure;
256 }
257 
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262 
263 #ifdef CONFIG_MEMCG_KMEM
264 /*
265  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
266  * The main reason for not using cgroup id for this:
267  *  this works better in sparse environments, where we have a lot of memcgs,
268  *  but only a few kmem-limited. Or also, if we have, for instance, 200
269  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
270  *  200 entry array for that.
271  *
272  * The current size of the caches array is stored in memcg_nr_cache_ids. It
273  * will double each time we have to increase it.
274  */
275 static DEFINE_IDA(memcg_cache_ida);
276 int memcg_nr_cache_ids;
277 
278 /* Protects memcg_nr_cache_ids */
279 static DECLARE_RWSEM(memcg_cache_ids_sem);
280 
281 void memcg_get_cache_ids(void)
282 {
283 	down_read(&memcg_cache_ids_sem);
284 }
285 
286 void memcg_put_cache_ids(void)
287 {
288 	up_read(&memcg_cache_ids_sem);
289 }
290 
291 /*
292  * MIN_SIZE is different than 1, because we would like to avoid going through
293  * the alloc/free process all the time. In a small machine, 4 kmem-limited
294  * cgroups is a reasonable guess. In the future, it could be a parameter or
295  * tunable, but that is strictly not necessary.
296  *
297  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
298  * this constant directly from cgroup, but it is understandable that this is
299  * better kept as an internal representation in cgroup.c. In any case, the
300  * cgrp_id space is not getting any smaller, and we don't have to necessarily
301  * increase ours as well if it increases.
302  */
303 #define MEMCG_CACHES_MIN_SIZE 4
304 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
305 
306 /*
307  * A lot of the calls to the cache allocation functions are expected to be
308  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
309  * conditional to this static branch, we'll have to allow modules that does
310  * kmem_cache_alloc and the such to see this symbol as well
311  */
312 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
313 EXPORT_SYMBOL(memcg_kmem_enabled_key);
314 
315 struct workqueue_struct *memcg_kmem_cache_wq;
316 
317 static int memcg_shrinker_map_size;
318 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
319 
320 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
321 {
322 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
323 }
324 
325 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
326 					 int size, int old_size)
327 {
328 	struct memcg_shrinker_map *new, *old;
329 	int nid;
330 
331 	lockdep_assert_held(&memcg_shrinker_map_mutex);
332 
333 	for_each_node(nid) {
334 		old = rcu_dereference_protected(
335 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
336 		/* Not yet online memcg */
337 		if (!old)
338 			return 0;
339 
340 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
341 		if (!new)
342 			return -ENOMEM;
343 
344 		/* Set all old bits, clear all new bits */
345 		memset(new->map, (int)0xff, old_size);
346 		memset((void *)new->map + old_size, 0, size - old_size);
347 
348 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
349 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
350 	}
351 
352 	return 0;
353 }
354 
355 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
356 {
357 	struct mem_cgroup_per_node *pn;
358 	struct memcg_shrinker_map *map;
359 	int nid;
360 
361 	if (mem_cgroup_is_root(memcg))
362 		return;
363 
364 	for_each_node(nid) {
365 		pn = mem_cgroup_nodeinfo(memcg, nid);
366 		map = rcu_dereference_protected(pn->shrinker_map, true);
367 		if (map)
368 			kvfree(map);
369 		rcu_assign_pointer(pn->shrinker_map, NULL);
370 	}
371 }
372 
373 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
374 {
375 	struct memcg_shrinker_map *map;
376 	int nid, size, ret = 0;
377 
378 	if (mem_cgroup_is_root(memcg))
379 		return 0;
380 
381 	mutex_lock(&memcg_shrinker_map_mutex);
382 	size = memcg_shrinker_map_size;
383 	for_each_node(nid) {
384 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
385 		if (!map) {
386 			memcg_free_shrinker_maps(memcg);
387 			ret = -ENOMEM;
388 			break;
389 		}
390 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
391 	}
392 	mutex_unlock(&memcg_shrinker_map_mutex);
393 
394 	return ret;
395 }
396 
397 int memcg_expand_shrinker_maps(int new_id)
398 {
399 	int size, old_size, ret = 0;
400 	struct mem_cgroup *memcg;
401 
402 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
403 	old_size = memcg_shrinker_map_size;
404 	if (size <= old_size)
405 		return 0;
406 
407 	mutex_lock(&memcg_shrinker_map_mutex);
408 	if (!root_mem_cgroup)
409 		goto unlock;
410 
411 	for_each_mem_cgroup(memcg) {
412 		if (mem_cgroup_is_root(memcg))
413 			continue;
414 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
415 		if (ret)
416 			goto unlock;
417 	}
418 unlock:
419 	if (!ret)
420 		memcg_shrinker_map_size = size;
421 	mutex_unlock(&memcg_shrinker_map_mutex);
422 	return ret;
423 }
424 
425 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
426 {
427 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
428 		struct memcg_shrinker_map *map;
429 
430 		rcu_read_lock();
431 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
432 		/* Pairs with smp mb in shrink_slab() */
433 		smp_mb__before_atomic();
434 		set_bit(shrinker_id, map->map);
435 		rcu_read_unlock();
436 	}
437 }
438 
439 #else /* CONFIG_MEMCG_KMEM */
440 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
441 {
442 	return 0;
443 }
444 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
445 #endif /* CONFIG_MEMCG_KMEM */
446 
447 /**
448  * mem_cgroup_css_from_page - css of the memcg associated with a page
449  * @page: page of interest
450  *
451  * If memcg is bound to the default hierarchy, css of the memcg associated
452  * with @page is returned.  The returned css remains associated with @page
453  * until it is released.
454  *
455  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
456  * is returned.
457  */
458 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
459 {
460 	struct mem_cgroup *memcg;
461 
462 	memcg = page->mem_cgroup;
463 
464 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
465 		memcg = root_mem_cgroup;
466 
467 	return &memcg->css;
468 }
469 
470 /**
471  * page_cgroup_ino - return inode number of the memcg a page is charged to
472  * @page: the page
473  *
474  * Look up the closest online ancestor of the memory cgroup @page is charged to
475  * and return its inode number or 0 if @page is not charged to any cgroup. It
476  * is safe to call this function without holding a reference to @page.
477  *
478  * Note, this function is inherently racy, because there is nothing to prevent
479  * the cgroup inode from getting torn down and potentially reallocated a moment
480  * after page_cgroup_ino() returns, so it only should be used by callers that
481  * do not care (such as procfs interfaces).
482  */
483 ino_t page_cgroup_ino(struct page *page)
484 {
485 	struct mem_cgroup *memcg;
486 	unsigned long ino = 0;
487 
488 	rcu_read_lock();
489 	if (PageHead(page) && PageSlab(page))
490 		memcg = memcg_from_slab_page(page);
491 	else
492 		memcg = READ_ONCE(page->mem_cgroup);
493 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
494 		memcg = parent_mem_cgroup(memcg);
495 	if (memcg)
496 		ino = cgroup_ino(memcg->css.cgroup);
497 	rcu_read_unlock();
498 	return ino;
499 }
500 
501 static struct mem_cgroup_per_node *
502 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
503 {
504 	int nid = page_to_nid(page);
505 
506 	return memcg->nodeinfo[nid];
507 }
508 
509 static struct mem_cgroup_tree_per_node *
510 soft_limit_tree_node(int nid)
511 {
512 	return soft_limit_tree.rb_tree_per_node[nid];
513 }
514 
515 static struct mem_cgroup_tree_per_node *
516 soft_limit_tree_from_page(struct page *page)
517 {
518 	int nid = page_to_nid(page);
519 
520 	return soft_limit_tree.rb_tree_per_node[nid];
521 }
522 
523 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
524 					 struct mem_cgroup_tree_per_node *mctz,
525 					 unsigned long new_usage_in_excess)
526 {
527 	struct rb_node **p = &mctz->rb_root.rb_node;
528 	struct rb_node *parent = NULL;
529 	struct mem_cgroup_per_node *mz_node;
530 	bool rightmost = true;
531 
532 	if (mz->on_tree)
533 		return;
534 
535 	mz->usage_in_excess = new_usage_in_excess;
536 	if (!mz->usage_in_excess)
537 		return;
538 	while (*p) {
539 		parent = *p;
540 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
541 					tree_node);
542 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
543 			p = &(*p)->rb_left;
544 			rightmost = false;
545 		}
546 
547 		/*
548 		 * We can't avoid mem cgroups that are over their soft
549 		 * limit by the same amount
550 		 */
551 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 			p = &(*p)->rb_right;
553 	}
554 
555 	if (rightmost)
556 		mctz->rb_rightmost = &mz->tree_node;
557 
558 	rb_link_node(&mz->tree_node, parent, p);
559 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
560 	mz->on_tree = true;
561 }
562 
563 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
564 					 struct mem_cgroup_tree_per_node *mctz)
565 {
566 	if (!mz->on_tree)
567 		return;
568 
569 	if (&mz->tree_node == mctz->rb_rightmost)
570 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
571 
572 	rb_erase(&mz->tree_node, &mctz->rb_root);
573 	mz->on_tree = false;
574 }
575 
576 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
577 				       struct mem_cgroup_tree_per_node *mctz)
578 {
579 	unsigned long flags;
580 
581 	spin_lock_irqsave(&mctz->lock, flags);
582 	__mem_cgroup_remove_exceeded(mz, mctz);
583 	spin_unlock_irqrestore(&mctz->lock, flags);
584 }
585 
586 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
587 {
588 	unsigned long nr_pages = page_counter_read(&memcg->memory);
589 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
590 	unsigned long excess = 0;
591 
592 	if (nr_pages > soft_limit)
593 		excess = nr_pages - soft_limit;
594 
595 	return excess;
596 }
597 
598 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
599 {
600 	unsigned long excess;
601 	struct mem_cgroup_per_node *mz;
602 	struct mem_cgroup_tree_per_node *mctz;
603 
604 	mctz = soft_limit_tree_from_page(page);
605 	if (!mctz)
606 		return;
607 	/*
608 	 * Necessary to update all ancestors when hierarchy is used.
609 	 * because their event counter is not touched.
610 	 */
611 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
612 		mz = mem_cgroup_page_nodeinfo(memcg, page);
613 		excess = soft_limit_excess(memcg);
614 		/*
615 		 * We have to update the tree if mz is on RB-tree or
616 		 * mem is over its softlimit.
617 		 */
618 		if (excess || mz->on_tree) {
619 			unsigned long flags;
620 
621 			spin_lock_irqsave(&mctz->lock, flags);
622 			/* if on-tree, remove it */
623 			if (mz->on_tree)
624 				__mem_cgroup_remove_exceeded(mz, mctz);
625 			/*
626 			 * Insert again. mz->usage_in_excess will be updated.
627 			 * If excess is 0, no tree ops.
628 			 */
629 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
630 			spin_unlock_irqrestore(&mctz->lock, flags);
631 		}
632 	}
633 }
634 
635 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
636 {
637 	struct mem_cgroup_tree_per_node *mctz;
638 	struct mem_cgroup_per_node *mz;
639 	int nid;
640 
641 	for_each_node(nid) {
642 		mz = mem_cgroup_nodeinfo(memcg, nid);
643 		mctz = soft_limit_tree_node(nid);
644 		if (mctz)
645 			mem_cgroup_remove_exceeded(mz, mctz);
646 	}
647 }
648 
649 static struct mem_cgroup_per_node *
650 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
651 {
652 	struct mem_cgroup_per_node *mz;
653 
654 retry:
655 	mz = NULL;
656 	if (!mctz->rb_rightmost)
657 		goto done;		/* Nothing to reclaim from */
658 
659 	mz = rb_entry(mctz->rb_rightmost,
660 		      struct mem_cgroup_per_node, tree_node);
661 	/*
662 	 * Remove the node now but someone else can add it back,
663 	 * we will to add it back at the end of reclaim to its correct
664 	 * position in the tree.
665 	 */
666 	__mem_cgroup_remove_exceeded(mz, mctz);
667 	if (!soft_limit_excess(mz->memcg) ||
668 	    !css_tryget_online(&mz->memcg->css))
669 		goto retry;
670 done:
671 	return mz;
672 }
673 
674 static struct mem_cgroup_per_node *
675 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
676 {
677 	struct mem_cgroup_per_node *mz;
678 
679 	spin_lock_irq(&mctz->lock);
680 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
681 	spin_unlock_irq(&mctz->lock);
682 	return mz;
683 }
684 
685 /**
686  * __mod_memcg_state - update cgroup memory statistics
687  * @memcg: the memory cgroup
688  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689  * @val: delta to add to the counter, can be negative
690  */
691 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
692 {
693 	long x;
694 
695 	if (mem_cgroup_disabled())
696 		return;
697 
698 	__this_cpu_add(memcg->vmstats_local->stat[idx], val);
699 
700 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
701 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
702 		struct mem_cgroup *mi;
703 
704 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
705 			atomic_long_add(x, &mi->vmstats[idx]);
706 		x = 0;
707 	}
708 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
709 }
710 
711 static struct mem_cgroup_per_node *
712 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
713 {
714 	struct mem_cgroup *parent;
715 
716 	parent = parent_mem_cgroup(pn->memcg);
717 	if (!parent)
718 		return NULL;
719 	return mem_cgroup_nodeinfo(parent, nid);
720 }
721 
722 /**
723  * __mod_lruvec_state - update lruvec memory statistics
724  * @lruvec: the lruvec
725  * @idx: the stat item
726  * @val: delta to add to the counter, can be negative
727  *
728  * The lruvec is the intersection of the NUMA node and a cgroup. This
729  * function updates the all three counters that are affected by a
730  * change of state at this level: per-node, per-cgroup, per-lruvec.
731  */
732 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
733 			int val)
734 {
735 	pg_data_t *pgdat = lruvec_pgdat(lruvec);
736 	struct mem_cgroup_per_node *pn;
737 	struct mem_cgroup *memcg;
738 	long x;
739 
740 	/* Update node */
741 	__mod_node_page_state(pgdat, idx, val);
742 
743 	if (mem_cgroup_disabled())
744 		return;
745 
746 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
747 	memcg = pn->memcg;
748 
749 	/* Update memcg */
750 	__mod_memcg_state(memcg, idx, val);
751 
752 	/* Update lruvec */
753 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
754 
755 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
756 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
757 		struct mem_cgroup_per_node *pi;
758 
759 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
760 			atomic_long_add(x, &pi->lruvec_stat[idx]);
761 		x = 0;
762 	}
763 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
764 }
765 
766 /**
767  * __count_memcg_events - account VM events in a cgroup
768  * @memcg: the memory cgroup
769  * @idx: the event item
770  * @count: the number of events that occured
771  */
772 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
773 			  unsigned long count)
774 {
775 	unsigned long x;
776 
777 	if (mem_cgroup_disabled())
778 		return;
779 
780 	__this_cpu_add(memcg->vmstats_local->events[idx], count);
781 
782 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
783 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
784 		struct mem_cgroup *mi;
785 
786 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
787 			atomic_long_add(x, &mi->vmevents[idx]);
788 		x = 0;
789 	}
790 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
791 }
792 
793 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
794 {
795 	return atomic_long_read(&memcg->vmevents[event]);
796 }
797 
798 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
799 {
800 	long x = 0;
801 	int cpu;
802 
803 	for_each_possible_cpu(cpu)
804 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
805 	return x;
806 }
807 
808 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
809 					 struct page *page,
810 					 bool compound, int nr_pages)
811 {
812 	/*
813 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
814 	 * counted as CACHE even if it's on ANON LRU.
815 	 */
816 	if (PageAnon(page))
817 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
818 	else {
819 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
820 		if (PageSwapBacked(page))
821 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
822 	}
823 
824 	if (compound) {
825 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
826 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
827 	}
828 
829 	/* pagein of a big page is an event. So, ignore page size */
830 	if (nr_pages > 0)
831 		__count_memcg_events(memcg, PGPGIN, 1);
832 	else {
833 		__count_memcg_events(memcg, PGPGOUT, 1);
834 		nr_pages = -nr_pages; /* for event */
835 	}
836 
837 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
838 }
839 
840 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
841 				       enum mem_cgroup_events_target target)
842 {
843 	unsigned long val, next;
844 
845 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
846 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
847 	/* from time_after() in jiffies.h */
848 	if ((long)(next - val) < 0) {
849 		switch (target) {
850 		case MEM_CGROUP_TARGET_THRESH:
851 			next = val + THRESHOLDS_EVENTS_TARGET;
852 			break;
853 		case MEM_CGROUP_TARGET_SOFTLIMIT:
854 			next = val + SOFTLIMIT_EVENTS_TARGET;
855 			break;
856 		case MEM_CGROUP_TARGET_NUMAINFO:
857 			next = val + NUMAINFO_EVENTS_TARGET;
858 			break;
859 		default:
860 			break;
861 		}
862 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
863 		return true;
864 	}
865 	return false;
866 }
867 
868 /*
869  * Check events in order.
870  *
871  */
872 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
873 {
874 	/* threshold event is triggered in finer grain than soft limit */
875 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
876 						MEM_CGROUP_TARGET_THRESH))) {
877 		bool do_softlimit;
878 		bool do_numainfo __maybe_unused;
879 
880 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
881 						MEM_CGROUP_TARGET_SOFTLIMIT);
882 #if MAX_NUMNODES > 1
883 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
884 						MEM_CGROUP_TARGET_NUMAINFO);
885 #endif
886 		mem_cgroup_threshold(memcg);
887 		if (unlikely(do_softlimit))
888 			mem_cgroup_update_tree(memcg, page);
889 #if MAX_NUMNODES > 1
890 		if (unlikely(do_numainfo))
891 			atomic_inc(&memcg->numainfo_events);
892 #endif
893 	}
894 }
895 
896 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
897 {
898 	/*
899 	 * mm_update_next_owner() may clear mm->owner to NULL
900 	 * if it races with swapoff, page migration, etc.
901 	 * So this can be called with p == NULL.
902 	 */
903 	if (unlikely(!p))
904 		return NULL;
905 
906 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
907 }
908 EXPORT_SYMBOL(mem_cgroup_from_task);
909 
910 /**
911  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
912  * @mm: mm from which memcg should be extracted. It can be NULL.
913  *
914  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
915  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
916  * returned.
917  */
918 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
919 {
920 	struct mem_cgroup *memcg;
921 
922 	if (mem_cgroup_disabled())
923 		return NULL;
924 
925 	rcu_read_lock();
926 	do {
927 		/*
928 		 * Page cache insertions can happen withou an
929 		 * actual mm context, e.g. during disk probing
930 		 * on boot, loopback IO, acct() writes etc.
931 		 */
932 		if (unlikely(!mm))
933 			memcg = root_mem_cgroup;
934 		else {
935 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
936 			if (unlikely(!memcg))
937 				memcg = root_mem_cgroup;
938 		}
939 	} while (!css_tryget_online(&memcg->css));
940 	rcu_read_unlock();
941 	return memcg;
942 }
943 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
944 
945 /**
946  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
947  * @page: page from which memcg should be extracted.
948  *
949  * Obtain a reference on page->memcg and returns it if successful. Otherwise
950  * root_mem_cgroup is returned.
951  */
952 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
953 {
954 	struct mem_cgroup *memcg = page->mem_cgroup;
955 
956 	if (mem_cgroup_disabled())
957 		return NULL;
958 
959 	rcu_read_lock();
960 	if (!memcg || !css_tryget_online(&memcg->css))
961 		memcg = root_mem_cgroup;
962 	rcu_read_unlock();
963 	return memcg;
964 }
965 EXPORT_SYMBOL(get_mem_cgroup_from_page);
966 
967 /**
968  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
969  */
970 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
971 {
972 	if (unlikely(current->active_memcg)) {
973 		struct mem_cgroup *memcg = root_mem_cgroup;
974 
975 		rcu_read_lock();
976 		if (css_tryget_online(&current->active_memcg->css))
977 			memcg = current->active_memcg;
978 		rcu_read_unlock();
979 		return memcg;
980 	}
981 	return get_mem_cgroup_from_mm(current->mm);
982 }
983 
984 /**
985  * mem_cgroup_iter - iterate over memory cgroup hierarchy
986  * @root: hierarchy root
987  * @prev: previously returned memcg, NULL on first invocation
988  * @reclaim: cookie for shared reclaim walks, NULL for full walks
989  *
990  * Returns references to children of the hierarchy below @root, or
991  * @root itself, or %NULL after a full round-trip.
992  *
993  * Caller must pass the return value in @prev on subsequent
994  * invocations for reference counting, or use mem_cgroup_iter_break()
995  * to cancel a hierarchy walk before the round-trip is complete.
996  *
997  * Reclaimers can specify a node and a priority level in @reclaim to
998  * divide up the memcgs in the hierarchy among all concurrent
999  * reclaimers operating on the same node and priority.
1000  */
1001 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1002 				   struct mem_cgroup *prev,
1003 				   struct mem_cgroup_reclaim_cookie *reclaim)
1004 {
1005 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1006 	struct cgroup_subsys_state *css = NULL;
1007 	struct mem_cgroup *memcg = NULL;
1008 	struct mem_cgroup *pos = NULL;
1009 
1010 	if (mem_cgroup_disabled())
1011 		return NULL;
1012 
1013 	if (!root)
1014 		root = root_mem_cgroup;
1015 
1016 	if (prev && !reclaim)
1017 		pos = prev;
1018 
1019 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1020 		if (prev)
1021 			goto out;
1022 		return root;
1023 	}
1024 
1025 	rcu_read_lock();
1026 
1027 	if (reclaim) {
1028 		struct mem_cgroup_per_node *mz;
1029 
1030 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1031 		iter = &mz->iter[reclaim->priority];
1032 
1033 		if (prev && reclaim->generation != iter->generation)
1034 			goto out_unlock;
1035 
1036 		while (1) {
1037 			pos = READ_ONCE(iter->position);
1038 			if (!pos || css_tryget(&pos->css))
1039 				break;
1040 			/*
1041 			 * css reference reached zero, so iter->position will
1042 			 * be cleared by ->css_released. However, we should not
1043 			 * rely on this happening soon, because ->css_released
1044 			 * is called from a work queue, and by busy-waiting we
1045 			 * might block it. So we clear iter->position right
1046 			 * away.
1047 			 */
1048 			(void)cmpxchg(&iter->position, pos, NULL);
1049 		}
1050 	}
1051 
1052 	if (pos)
1053 		css = &pos->css;
1054 
1055 	for (;;) {
1056 		css = css_next_descendant_pre(css, &root->css);
1057 		if (!css) {
1058 			/*
1059 			 * Reclaimers share the hierarchy walk, and a
1060 			 * new one might jump in right at the end of
1061 			 * the hierarchy - make sure they see at least
1062 			 * one group and restart from the beginning.
1063 			 */
1064 			if (!prev)
1065 				continue;
1066 			break;
1067 		}
1068 
1069 		/*
1070 		 * Verify the css and acquire a reference.  The root
1071 		 * is provided by the caller, so we know it's alive
1072 		 * and kicking, and don't take an extra reference.
1073 		 */
1074 		memcg = mem_cgroup_from_css(css);
1075 
1076 		if (css == &root->css)
1077 			break;
1078 
1079 		if (css_tryget(css))
1080 			break;
1081 
1082 		memcg = NULL;
1083 	}
1084 
1085 	if (reclaim) {
1086 		/*
1087 		 * The position could have already been updated by a competing
1088 		 * thread, so check that the value hasn't changed since we read
1089 		 * it to avoid reclaiming from the same cgroup twice.
1090 		 */
1091 		(void)cmpxchg(&iter->position, pos, memcg);
1092 
1093 		if (pos)
1094 			css_put(&pos->css);
1095 
1096 		if (!memcg)
1097 			iter->generation++;
1098 		else if (!prev)
1099 			reclaim->generation = iter->generation;
1100 	}
1101 
1102 out_unlock:
1103 	rcu_read_unlock();
1104 out:
1105 	if (prev && prev != root)
1106 		css_put(&prev->css);
1107 
1108 	return memcg;
1109 }
1110 
1111 /**
1112  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1113  * @root: hierarchy root
1114  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1115  */
1116 void mem_cgroup_iter_break(struct mem_cgroup *root,
1117 			   struct mem_cgroup *prev)
1118 {
1119 	if (!root)
1120 		root = root_mem_cgroup;
1121 	if (prev && prev != root)
1122 		css_put(&prev->css);
1123 }
1124 
1125 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126 {
1127 	struct mem_cgroup *memcg = dead_memcg;
1128 	struct mem_cgroup_reclaim_iter *iter;
1129 	struct mem_cgroup_per_node *mz;
1130 	int nid;
1131 	int i;
1132 
1133 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1134 		for_each_node(nid) {
1135 			mz = mem_cgroup_nodeinfo(memcg, nid);
1136 			for (i = 0; i <= DEF_PRIORITY; i++) {
1137 				iter = &mz->iter[i];
1138 				cmpxchg(&iter->position,
1139 					dead_memcg, NULL);
1140 			}
1141 		}
1142 	}
1143 }
1144 
1145 /**
1146  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1147  * @memcg: hierarchy root
1148  * @fn: function to call for each task
1149  * @arg: argument passed to @fn
1150  *
1151  * This function iterates over tasks attached to @memcg or to any of its
1152  * descendants and calls @fn for each task. If @fn returns a non-zero
1153  * value, the function breaks the iteration loop and returns the value.
1154  * Otherwise, it will iterate over all tasks and return 0.
1155  *
1156  * This function must not be called for the root memory cgroup.
1157  */
1158 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1159 			  int (*fn)(struct task_struct *, void *), void *arg)
1160 {
1161 	struct mem_cgroup *iter;
1162 	int ret = 0;
1163 
1164 	BUG_ON(memcg == root_mem_cgroup);
1165 
1166 	for_each_mem_cgroup_tree(iter, memcg) {
1167 		struct css_task_iter it;
1168 		struct task_struct *task;
1169 
1170 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1171 		while (!ret && (task = css_task_iter_next(&it)))
1172 			ret = fn(task, arg);
1173 		css_task_iter_end(&it);
1174 		if (ret) {
1175 			mem_cgroup_iter_break(memcg, iter);
1176 			break;
1177 		}
1178 	}
1179 	return ret;
1180 }
1181 
1182 /**
1183  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1184  * @page: the page
1185  * @pgdat: pgdat of the page
1186  *
1187  * This function is only safe when following the LRU page isolation
1188  * and putback protocol: the LRU lock must be held, and the page must
1189  * either be PageLRU() or the caller must have isolated/allocated it.
1190  */
1191 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1192 {
1193 	struct mem_cgroup_per_node *mz;
1194 	struct mem_cgroup *memcg;
1195 	struct lruvec *lruvec;
1196 
1197 	if (mem_cgroup_disabled()) {
1198 		lruvec = &pgdat->lruvec;
1199 		goto out;
1200 	}
1201 
1202 	memcg = page->mem_cgroup;
1203 	/*
1204 	 * Swapcache readahead pages are added to the LRU - and
1205 	 * possibly migrated - before they are charged.
1206 	 */
1207 	if (!memcg)
1208 		memcg = root_mem_cgroup;
1209 
1210 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1211 	lruvec = &mz->lruvec;
1212 out:
1213 	/*
1214 	 * Since a node can be onlined after the mem_cgroup was created,
1215 	 * we have to be prepared to initialize lruvec->zone here;
1216 	 * and if offlined then reonlined, we need to reinitialize it.
1217 	 */
1218 	if (unlikely(lruvec->pgdat != pgdat))
1219 		lruvec->pgdat = pgdat;
1220 	return lruvec;
1221 }
1222 
1223 /**
1224  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1225  * @lruvec: mem_cgroup per zone lru vector
1226  * @lru: index of lru list the page is sitting on
1227  * @zid: zone id of the accounted pages
1228  * @nr_pages: positive when adding or negative when removing
1229  *
1230  * This function must be called under lru_lock, just before a page is added
1231  * to or just after a page is removed from an lru list (that ordering being
1232  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1233  */
1234 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1235 				int zid, int nr_pages)
1236 {
1237 	struct mem_cgroup_per_node *mz;
1238 	unsigned long *lru_size;
1239 	long size;
1240 
1241 	if (mem_cgroup_disabled())
1242 		return;
1243 
1244 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1245 	lru_size = &mz->lru_zone_size[zid][lru];
1246 
1247 	if (nr_pages < 0)
1248 		*lru_size += nr_pages;
1249 
1250 	size = *lru_size;
1251 	if (WARN_ONCE(size < 0,
1252 		"%s(%p, %d, %d): lru_size %ld\n",
1253 		__func__, lruvec, lru, nr_pages, size)) {
1254 		VM_BUG_ON(1);
1255 		*lru_size = 0;
1256 	}
1257 
1258 	if (nr_pages > 0)
1259 		*lru_size += nr_pages;
1260 }
1261 
1262 /**
1263  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1264  * @memcg: the memory cgroup
1265  *
1266  * Returns the maximum amount of memory @mem can be charged with, in
1267  * pages.
1268  */
1269 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1270 {
1271 	unsigned long margin = 0;
1272 	unsigned long count;
1273 	unsigned long limit;
1274 
1275 	count = page_counter_read(&memcg->memory);
1276 	limit = READ_ONCE(memcg->memory.max);
1277 	if (count < limit)
1278 		margin = limit - count;
1279 
1280 	if (do_memsw_account()) {
1281 		count = page_counter_read(&memcg->memsw);
1282 		limit = READ_ONCE(memcg->memsw.max);
1283 		if (count <= limit)
1284 			margin = min(margin, limit - count);
1285 		else
1286 			margin = 0;
1287 	}
1288 
1289 	return margin;
1290 }
1291 
1292 /*
1293  * A routine for checking "mem" is under move_account() or not.
1294  *
1295  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1296  * moving cgroups. This is for waiting at high-memory pressure
1297  * caused by "move".
1298  */
1299 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1300 {
1301 	struct mem_cgroup *from;
1302 	struct mem_cgroup *to;
1303 	bool ret = false;
1304 	/*
1305 	 * Unlike task_move routines, we access mc.to, mc.from not under
1306 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1307 	 */
1308 	spin_lock(&mc.lock);
1309 	from = mc.from;
1310 	to = mc.to;
1311 	if (!from)
1312 		goto unlock;
1313 
1314 	ret = mem_cgroup_is_descendant(from, memcg) ||
1315 		mem_cgroup_is_descendant(to, memcg);
1316 unlock:
1317 	spin_unlock(&mc.lock);
1318 	return ret;
1319 }
1320 
1321 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1322 {
1323 	if (mc.moving_task && current != mc.moving_task) {
1324 		if (mem_cgroup_under_move(memcg)) {
1325 			DEFINE_WAIT(wait);
1326 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1327 			/* moving charge context might have finished. */
1328 			if (mc.moving_task)
1329 				schedule();
1330 			finish_wait(&mc.waitq, &wait);
1331 			return true;
1332 		}
1333 	}
1334 	return false;
1335 }
1336 
1337 static char *memory_stat_format(struct mem_cgroup *memcg)
1338 {
1339 	struct seq_buf s;
1340 	int i;
1341 
1342 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1343 	if (!s.buffer)
1344 		return NULL;
1345 
1346 	/*
1347 	 * Provide statistics on the state of the memory subsystem as
1348 	 * well as cumulative event counters that show past behavior.
1349 	 *
1350 	 * This list is ordered following a combination of these gradients:
1351 	 * 1) generic big picture -> specifics and details
1352 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1353 	 *
1354 	 * Current memory state:
1355 	 */
1356 
1357 	seq_buf_printf(&s, "anon %llu\n",
1358 		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
1359 		       PAGE_SIZE);
1360 	seq_buf_printf(&s, "file %llu\n",
1361 		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1362 		       PAGE_SIZE);
1363 	seq_buf_printf(&s, "kernel_stack %llu\n",
1364 		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1365 		       1024);
1366 	seq_buf_printf(&s, "slab %llu\n",
1367 		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1368 			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1369 		       PAGE_SIZE);
1370 	seq_buf_printf(&s, "sock %llu\n",
1371 		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1372 		       PAGE_SIZE);
1373 
1374 	seq_buf_printf(&s, "shmem %llu\n",
1375 		       (u64)memcg_page_state(memcg, NR_SHMEM) *
1376 		       PAGE_SIZE);
1377 	seq_buf_printf(&s, "file_mapped %llu\n",
1378 		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1379 		       PAGE_SIZE);
1380 	seq_buf_printf(&s, "file_dirty %llu\n",
1381 		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1382 		       PAGE_SIZE);
1383 	seq_buf_printf(&s, "file_writeback %llu\n",
1384 		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1385 		       PAGE_SIZE);
1386 
1387 	/*
1388 	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1389 	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1390 	 * arse because it requires migrating the work out of rmap to a place
1391 	 * where the page->mem_cgroup is set up and stable.
1392 	 */
1393 	seq_buf_printf(&s, "anon_thp %llu\n",
1394 		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1395 		       PAGE_SIZE);
1396 
1397 	for (i = 0; i < NR_LRU_LISTS; i++)
1398 		seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1399 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1400 			       PAGE_SIZE);
1401 
1402 	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1403 		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1404 		       PAGE_SIZE);
1405 	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1406 		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1407 		       PAGE_SIZE);
1408 
1409 	/* Accumulated memory events */
1410 
1411 	seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1412 	seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1413 
1414 	seq_buf_printf(&s, "workingset_refault %lu\n",
1415 		       memcg_page_state(memcg, WORKINGSET_REFAULT));
1416 	seq_buf_printf(&s, "workingset_activate %lu\n",
1417 		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1418 	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1419 		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1420 
1421 	seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1422 	seq_buf_printf(&s, "pgscan %lu\n",
1423 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1424 		       memcg_events(memcg, PGSCAN_DIRECT));
1425 	seq_buf_printf(&s, "pgsteal %lu\n",
1426 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1427 		       memcg_events(memcg, PGSTEAL_DIRECT));
1428 	seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1429 	seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1430 	seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1431 	seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1432 
1433 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1434 	seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1435 		       memcg_events(memcg, THP_FAULT_ALLOC));
1436 	seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1437 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1438 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1439 
1440 	/* The above should easily fit into one page */
1441 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1442 
1443 	return s.buffer;
1444 }
1445 
1446 #define K(x) ((x) << (PAGE_SHIFT-10))
1447 /**
1448  * mem_cgroup_print_oom_context: Print OOM information relevant to
1449  * memory controller.
1450  * @memcg: The memory cgroup that went over limit
1451  * @p: Task that is going to be killed
1452  *
1453  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1454  * enabled
1455  */
1456 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1457 {
1458 	rcu_read_lock();
1459 
1460 	if (memcg) {
1461 		pr_cont(",oom_memcg=");
1462 		pr_cont_cgroup_path(memcg->css.cgroup);
1463 	} else
1464 		pr_cont(",global_oom");
1465 	if (p) {
1466 		pr_cont(",task_memcg=");
1467 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1468 	}
1469 	rcu_read_unlock();
1470 }
1471 
1472 /**
1473  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1474  * memory controller.
1475  * @memcg: The memory cgroup that went over limit
1476  */
1477 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1478 {
1479 	char *buf;
1480 
1481 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1482 		K((u64)page_counter_read(&memcg->memory)),
1483 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1484 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1485 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1486 			K((u64)page_counter_read(&memcg->swap)),
1487 			K((u64)memcg->swap.max), memcg->swap.failcnt);
1488 	else {
1489 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1490 			K((u64)page_counter_read(&memcg->memsw)),
1491 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1492 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1493 			K((u64)page_counter_read(&memcg->kmem)),
1494 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1495 	}
1496 
1497 	pr_info("Memory cgroup stats for ");
1498 	pr_cont_cgroup_path(memcg->css.cgroup);
1499 	pr_cont(":");
1500 	buf = memory_stat_format(memcg);
1501 	if (!buf)
1502 		return;
1503 	pr_info("%s", buf);
1504 	kfree(buf);
1505 }
1506 
1507 /*
1508  * Return the memory (and swap, if configured) limit for a memcg.
1509  */
1510 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1511 {
1512 	unsigned long max;
1513 
1514 	max = memcg->memory.max;
1515 	if (mem_cgroup_swappiness(memcg)) {
1516 		unsigned long memsw_max;
1517 		unsigned long swap_max;
1518 
1519 		memsw_max = memcg->memsw.max;
1520 		swap_max = memcg->swap.max;
1521 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1522 		max = min(max + swap_max, memsw_max);
1523 	}
1524 	return max;
1525 }
1526 
1527 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1528 				     int order)
1529 {
1530 	struct oom_control oc = {
1531 		.zonelist = NULL,
1532 		.nodemask = NULL,
1533 		.memcg = memcg,
1534 		.gfp_mask = gfp_mask,
1535 		.order = order,
1536 	};
1537 	bool ret;
1538 
1539 	if (mutex_lock_killable(&oom_lock))
1540 		return true;
1541 	/*
1542 	 * A few threads which were not waiting at mutex_lock_killable() can
1543 	 * fail to bail out. Therefore, check again after holding oom_lock.
1544 	 */
1545 	ret = should_force_charge() || out_of_memory(&oc);
1546 	mutex_unlock(&oom_lock);
1547 	return ret;
1548 }
1549 
1550 #if MAX_NUMNODES > 1
1551 
1552 /**
1553  * test_mem_cgroup_node_reclaimable
1554  * @memcg: the target memcg
1555  * @nid: the node ID to be checked.
1556  * @noswap : specify true here if the user wants flle only information.
1557  *
1558  * This function returns whether the specified memcg contains any
1559  * reclaimable pages on a node. Returns true if there are any reclaimable
1560  * pages in the node.
1561  */
1562 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1563 		int nid, bool noswap)
1564 {
1565 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1566 
1567 	if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1568 	    lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1569 		return true;
1570 	if (noswap || !total_swap_pages)
1571 		return false;
1572 	if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1573 	    lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1574 		return true;
1575 	return false;
1576 
1577 }
1578 
1579 /*
1580  * Always updating the nodemask is not very good - even if we have an empty
1581  * list or the wrong list here, we can start from some node and traverse all
1582  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1583  *
1584  */
1585 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1586 {
1587 	int nid;
1588 	/*
1589 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1590 	 * pagein/pageout changes since the last update.
1591 	 */
1592 	if (!atomic_read(&memcg->numainfo_events))
1593 		return;
1594 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1595 		return;
1596 
1597 	/* make a nodemask where this memcg uses memory from */
1598 	memcg->scan_nodes = node_states[N_MEMORY];
1599 
1600 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1601 
1602 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1603 			node_clear(nid, memcg->scan_nodes);
1604 	}
1605 
1606 	atomic_set(&memcg->numainfo_events, 0);
1607 	atomic_set(&memcg->numainfo_updating, 0);
1608 }
1609 
1610 /*
1611  * Selecting a node where we start reclaim from. Because what we need is just
1612  * reducing usage counter, start from anywhere is O,K. Considering
1613  * memory reclaim from current node, there are pros. and cons.
1614  *
1615  * Freeing memory from current node means freeing memory from a node which
1616  * we'll use or we've used. So, it may make LRU bad. And if several threads
1617  * hit limits, it will see a contention on a node. But freeing from remote
1618  * node means more costs for memory reclaim because of memory latency.
1619  *
1620  * Now, we use round-robin. Better algorithm is welcomed.
1621  */
1622 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1623 {
1624 	int node;
1625 
1626 	mem_cgroup_may_update_nodemask(memcg);
1627 	node = memcg->last_scanned_node;
1628 
1629 	node = next_node_in(node, memcg->scan_nodes);
1630 	/*
1631 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1632 	 * last time it really checked all the LRUs due to rate limiting.
1633 	 * Fallback to the current node in that case for simplicity.
1634 	 */
1635 	if (unlikely(node == MAX_NUMNODES))
1636 		node = numa_node_id();
1637 
1638 	memcg->last_scanned_node = node;
1639 	return node;
1640 }
1641 #else
1642 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1643 {
1644 	return 0;
1645 }
1646 #endif
1647 
1648 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1649 				   pg_data_t *pgdat,
1650 				   gfp_t gfp_mask,
1651 				   unsigned long *total_scanned)
1652 {
1653 	struct mem_cgroup *victim = NULL;
1654 	int total = 0;
1655 	int loop = 0;
1656 	unsigned long excess;
1657 	unsigned long nr_scanned;
1658 	struct mem_cgroup_reclaim_cookie reclaim = {
1659 		.pgdat = pgdat,
1660 		.priority = 0,
1661 	};
1662 
1663 	excess = soft_limit_excess(root_memcg);
1664 
1665 	while (1) {
1666 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1667 		if (!victim) {
1668 			loop++;
1669 			if (loop >= 2) {
1670 				/*
1671 				 * If we have not been able to reclaim
1672 				 * anything, it might because there are
1673 				 * no reclaimable pages under this hierarchy
1674 				 */
1675 				if (!total)
1676 					break;
1677 				/*
1678 				 * We want to do more targeted reclaim.
1679 				 * excess >> 2 is not to excessive so as to
1680 				 * reclaim too much, nor too less that we keep
1681 				 * coming back to reclaim from this cgroup
1682 				 */
1683 				if (total >= (excess >> 2) ||
1684 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1685 					break;
1686 			}
1687 			continue;
1688 		}
1689 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1690 					pgdat, &nr_scanned);
1691 		*total_scanned += nr_scanned;
1692 		if (!soft_limit_excess(root_memcg))
1693 			break;
1694 	}
1695 	mem_cgroup_iter_break(root_memcg, victim);
1696 	return total;
1697 }
1698 
1699 #ifdef CONFIG_LOCKDEP
1700 static struct lockdep_map memcg_oom_lock_dep_map = {
1701 	.name = "memcg_oom_lock",
1702 };
1703 #endif
1704 
1705 static DEFINE_SPINLOCK(memcg_oom_lock);
1706 
1707 /*
1708  * Check OOM-Killer is already running under our hierarchy.
1709  * If someone is running, return false.
1710  */
1711 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1712 {
1713 	struct mem_cgroup *iter, *failed = NULL;
1714 
1715 	spin_lock(&memcg_oom_lock);
1716 
1717 	for_each_mem_cgroup_tree(iter, memcg) {
1718 		if (iter->oom_lock) {
1719 			/*
1720 			 * this subtree of our hierarchy is already locked
1721 			 * so we cannot give a lock.
1722 			 */
1723 			failed = iter;
1724 			mem_cgroup_iter_break(memcg, iter);
1725 			break;
1726 		} else
1727 			iter->oom_lock = true;
1728 	}
1729 
1730 	if (failed) {
1731 		/*
1732 		 * OK, we failed to lock the whole subtree so we have
1733 		 * to clean up what we set up to the failing subtree
1734 		 */
1735 		for_each_mem_cgroup_tree(iter, memcg) {
1736 			if (iter == failed) {
1737 				mem_cgroup_iter_break(memcg, iter);
1738 				break;
1739 			}
1740 			iter->oom_lock = false;
1741 		}
1742 	} else
1743 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1744 
1745 	spin_unlock(&memcg_oom_lock);
1746 
1747 	return !failed;
1748 }
1749 
1750 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1751 {
1752 	struct mem_cgroup *iter;
1753 
1754 	spin_lock(&memcg_oom_lock);
1755 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1756 	for_each_mem_cgroup_tree(iter, memcg)
1757 		iter->oom_lock = false;
1758 	spin_unlock(&memcg_oom_lock);
1759 }
1760 
1761 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1762 {
1763 	struct mem_cgroup *iter;
1764 
1765 	spin_lock(&memcg_oom_lock);
1766 	for_each_mem_cgroup_tree(iter, memcg)
1767 		iter->under_oom++;
1768 	spin_unlock(&memcg_oom_lock);
1769 }
1770 
1771 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1772 {
1773 	struct mem_cgroup *iter;
1774 
1775 	/*
1776 	 * When a new child is created while the hierarchy is under oom,
1777 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1778 	 */
1779 	spin_lock(&memcg_oom_lock);
1780 	for_each_mem_cgroup_tree(iter, memcg)
1781 		if (iter->under_oom > 0)
1782 			iter->under_oom--;
1783 	spin_unlock(&memcg_oom_lock);
1784 }
1785 
1786 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1787 
1788 struct oom_wait_info {
1789 	struct mem_cgroup *memcg;
1790 	wait_queue_entry_t	wait;
1791 };
1792 
1793 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1794 	unsigned mode, int sync, void *arg)
1795 {
1796 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1797 	struct mem_cgroup *oom_wait_memcg;
1798 	struct oom_wait_info *oom_wait_info;
1799 
1800 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1801 	oom_wait_memcg = oom_wait_info->memcg;
1802 
1803 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1804 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1805 		return 0;
1806 	return autoremove_wake_function(wait, mode, sync, arg);
1807 }
1808 
1809 static void memcg_oom_recover(struct mem_cgroup *memcg)
1810 {
1811 	/*
1812 	 * For the following lockless ->under_oom test, the only required
1813 	 * guarantee is that it must see the state asserted by an OOM when
1814 	 * this function is called as a result of userland actions
1815 	 * triggered by the notification of the OOM.  This is trivially
1816 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1817 	 * triggering notification.
1818 	 */
1819 	if (memcg && memcg->under_oom)
1820 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1821 }
1822 
1823 enum oom_status {
1824 	OOM_SUCCESS,
1825 	OOM_FAILED,
1826 	OOM_ASYNC,
1827 	OOM_SKIPPED
1828 };
1829 
1830 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1831 {
1832 	enum oom_status ret;
1833 	bool locked;
1834 
1835 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1836 		return OOM_SKIPPED;
1837 
1838 	memcg_memory_event(memcg, MEMCG_OOM);
1839 
1840 	/*
1841 	 * We are in the middle of the charge context here, so we
1842 	 * don't want to block when potentially sitting on a callstack
1843 	 * that holds all kinds of filesystem and mm locks.
1844 	 *
1845 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1846 	 * handling until the charge can succeed; remember the context and put
1847 	 * the task to sleep at the end of the page fault when all locks are
1848 	 * released.
1849 	 *
1850 	 * On the other hand, in-kernel OOM killer allows for an async victim
1851 	 * memory reclaim (oom_reaper) and that means that we are not solely
1852 	 * relying on the oom victim to make a forward progress and we can
1853 	 * invoke the oom killer here.
1854 	 *
1855 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1856 	 * victim and then we have to bail out from the charge path.
1857 	 */
1858 	if (memcg->oom_kill_disable) {
1859 		if (!current->in_user_fault)
1860 			return OOM_SKIPPED;
1861 		css_get(&memcg->css);
1862 		current->memcg_in_oom = memcg;
1863 		current->memcg_oom_gfp_mask = mask;
1864 		current->memcg_oom_order = order;
1865 
1866 		return OOM_ASYNC;
1867 	}
1868 
1869 	mem_cgroup_mark_under_oom(memcg);
1870 
1871 	locked = mem_cgroup_oom_trylock(memcg);
1872 
1873 	if (locked)
1874 		mem_cgroup_oom_notify(memcg);
1875 
1876 	mem_cgroup_unmark_under_oom(memcg);
1877 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1878 		ret = OOM_SUCCESS;
1879 	else
1880 		ret = OOM_FAILED;
1881 
1882 	if (locked)
1883 		mem_cgroup_oom_unlock(memcg);
1884 
1885 	return ret;
1886 }
1887 
1888 /**
1889  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1890  * @handle: actually kill/wait or just clean up the OOM state
1891  *
1892  * This has to be called at the end of a page fault if the memcg OOM
1893  * handler was enabled.
1894  *
1895  * Memcg supports userspace OOM handling where failed allocations must
1896  * sleep on a waitqueue until the userspace task resolves the
1897  * situation.  Sleeping directly in the charge context with all kinds
1898  * of locks held is not a good idea, instead we remember an OOM state
1899  * in the task and mem_cgroup_oom_synchronize() has to be called at
1900  * the end of the page fault to complete the OOM handling.
1901  *
1902  * Returns %true if an ongoing memcg OOM situation was detected and
1903  * completed, %false otherwise.
1904  */
1905 bool mem_cgroup_oom_synchronize(bool handle)
1906 {
1907 	struct mem_cgroup *memcg = current->memcg_in_oom;
1908 	struct oom_wait_info owait;
1909 	bool locked;
1910 
1911 	/* OOM is global, do not handle */
1912 	if (!memcg)
1913 		return false;
1914 
1915 	if (!handle)
1916 		goto cleanup;
1917 
1918 	owait.memcg = memcg;
1919 	owait.wait.flags = 0;
1920 	owait.wait.func = memcg_oom_wake_function;
1921 	owait.wait.private = current;
1922 	INIT_LIST_HEAD(&owait.wait.entry);
1923 
1924 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1925 	mem_cgroup_mark_under_oom(memcg);
1926 
1927 	locked = mem_cgroup_oom_trylock(memcg);
1928 
1929 	if (locked)
1930 		mem_cgroup_oom_notify(memcg);
1931 
1932 	if (locked && !memcg->oom_kill_disable) {
1933 		mem_cgroup_unmark_under_oom(memcg);
1934 		finish_wait(&memcg_oom_waitq, &owait.wait);
1935 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1936 					 current->memcg_oom_order);
1937 	} else {
1938 		schedule();
1939 		mem_cgroup_unmark_under_oom(memcg);
1940 		finish_wait(&memcg_oom_waitq, &owait.wait);
1941 	}
1942 
1943 	if (locked) {
1944 		mem_cgroup_oom_unlock(memcg);
1945 		/*
1946 		 * There is no guarantee that an OOM-lock contender
1947 		 * sees the wakeups triggered by the OOM kill
1948 		 * uncharges.  Wake any sleepers explicitely.
1949 		 */
1950 		memcg_oom_recover(memcg);
1951 	}
1952 cleanup:
1953 	current->memcg_in_oom = NULL;
1954 	css_put(&memcg->css);
1955 	return true;
1956 }
1957 
1958 /**
1959  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1960  * @victim: task to be killed by the OOM killer
1961  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1962  *
1963  * Returns a pointer to a memory cgroup, which has to be cleaned up
1964  * by killing all belonging OOM-killable tasks.
1965  *
1966  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1967  */
1968 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1969 					    struct mem_cgroup *oom_domain)
1970 {
1971 	struct mem_cgroup *oom_group = NULL;
1972 	struct mem_cgroup *memcg;
1973 
1974 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1975 		return NULL;
1976 
1977 	if (!oom_domain)
1978 		oom_domain = root_mem_cgroup;
1979 
1980 	rcu_read_lock();
1981 
1982 	memcg = mem_cgroup_from_task(victim);
1983 	if (memcg == root_mem_cgroup)
1984 		goto out;
1985 
1986 	/*
1987 	 * Traverse the memory cgroup hierarchy from the victim task's
1988 	 * cgroup up to the OOMing cgroup (or root) to find the
1989 	 * highest-level memory cgroup with oom.group set.
1990 	 */
1991 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1992 		if (memcg->oom_group)
1993 			oom_group = memcg;
1994 
1995 		if (memcg == oom_domain)
1996 			break;
1997 	}
1998 
1999 	if (oom_group)
2000 		css_get(&oom_group->css);
2001 out:
2002 	rcu_read_unlock();
2003 
2004 	return oom_group;
2005 }
2006 
2007 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2008 {
2009 	pr_info("Tasks in ");
2010 	pr_cont_cgroup_path(memcg->css.cgroup);
2011 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2012 }
2013 
2014 /**
2015  * lock_page_memcg - lock a page->mem_cgroup binding
2016  * @page: the page
2017  *
2018  * This function protects unlocked LRU pages from being moved to
2019  * another cgroup.
2020  *
2021  * It ensures lifetime of the returned memcg. Caller is responsible
2022  * for the lifetime of the page; __unlock_page_memcg() is available
2023  * when @page might get freed inside the locked section.
2024  */
2025 struct mem_cgroup *lock_page_memcg(struct page *page)
2026 {
2027 	struct mem_cgroup *memcg;
2028 	unsigned long flags;
2029 
2030 	/*
2031 	 * The RCU lock is held throughout the transaction.  The fast
2032 	 * path can get away without acquiring the memcg->move_lock
2033 	 * because page moving starts with an RCU grace period.
2034 	 *
2035 	 * The RCU lock also protects the memcg from being freed when
2036 	 * the page state that is going to change is the only thing
2037 	 * preventing the page itself from being freed. E.g. writeback
2038 	 * doesn't hold a page reference and relies on PG_writeback to
2039 	 * keep off truncation, migration and so forth.
2040          */
2041 	rcu_read_lock();
2042 
2043 	if (mem_cgroup_disabled())
2044 		return NULL;
2045 again:
2046 	memcg = page->mem_cgroup;
2047 	if (unlikely(!memcg))
2048 		return NULL;
2049 
2050 	if (atomic_read(&memcg->moving_account) <= 0)
2051 		return memcg;
2052 
2053 	spin_lock_irqsave(&memcg->move_lock, flags);
2054 	if (memcg != page->mem_cgroup) {
2055 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2056 		goto again;
2057 	}
2058 
2059 	/*
2060 	 * When charge migration first begins, we can have locked and
2061 	 * unlocked page stat updates happening concurrently.  Track
2062 	 * the task who has the lock for unlock_page_memcg().
2063 	 */
2064 	memcg->move_lock_task = current;
2065 	memcg->move_lock_flags = flags;
2066 
2067 	return memcg;
2068 }
2069 EXPORT_SYMBOL(lock_page_memcg);
2070 
2071 /**
2072  * __unlock_page_memcg - unlock and unpin a memcg
2073  * @memcg: the memcg
2074  *
2075  * Unlock and unpin a memcg returned by lock_page_memcg().
2076  */
2077 void __unlock_page_memcg(struct mem_cgroup *memcg)
2078 {
2079 	if (memcg && memcg->move_lock_task == current) {
2080 		unsigned long flags = memcg->move_lock_flags;
2081 
2082 		memcg->move_lock_task = NULL;
2083 		memcg->move_lock_flags = 0;
2084 
2085 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2086 	}
2087 
2088 	rcu_read_unlock();
2089 }
2090 
2091 /**
2092  * unlock_page_memcg - unlock a page->mem_cgroup binding
2093  * @page: the page
2094  */
2095 void unlock_page_memcg(struct page *page)
2096 {
2097 	__unlock_page_memcg(page->mem_cgroup);
2098 }
2099 EXPORT_SYMBOL(unlock_page_memcg);
2100 
2101 struct memcg_stock_pcp {
2102 	struct mem_cgroup *cached; /* this never be root cgroup */
2103 	unsigned int nr_pages;
2104 	struct work_struct work;
2105 	unsigned long flags;
2106 #define FLUSHING_CACHED_CHARGE	0
2107 };
2108 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2109 static DEFINE_MUTEX(percpu_charge_mutex);
2110 
2111 /**
2112  * consume_stock: Try to consume stocked charge on this cpu.
2113  * @memcg: memcg to consume from.
2114  * @nr_pages: how many pages to charge.
2115  *
2116  * The charges will only happen if @memcg matches the current cpu's memcg
2117  * stock, and at least @nr_pages are available in that stock.  Failure to
2118  * service an allocation will refill the stock.
2119  *
2120  * returns true if successful, false otherwise.
2121  */
2122 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2123 {
2124 	struct memcg_stock_pcp *stock;
2125 	unsigned long flags;
2126 	bool ret = false;
2127 
2128 	if (nr_pages > MEMCG_CHARGE_BATCH)
2129 		return ret;
2130 
2131 	local_irq_save(flags);
2132 
2133 	stock = this_cpu_ptr(&memcg_stock);
2134 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2135 		stock->nr_pages -= nr_pages;
2136 		ret = true;
2137 	}
2138 
2139 	local_irq_restore(flags);
2140 
2141 	return ret;
2142 }
2143 
2144 /*
2145  * Returns stocks cached in percpu and reset cached information.
2146  */
2147 static void drain_stock(struct memcg_stock_pcp *stock)
2148 {
2149 	struct mem_cgroup *old = stock->cached;
2150 
2151 	if (stock->nr_pages) {
2152 		page_counter_uncharge(&old->memory, stock->nr_pages);
2153 		if (do_memsw_account())
2154 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2155 		css_put_many(&old->css, stock->nr_pages);
2156 		stock->nr_pages = 0;
2157 	}
2158 	stock->cached = NULL;
2159 }
2160 
2161 static void drain_local_stock(struct work_struct *dummy)
2162 {
2163 	struct memcg_stock_pcp *stock;
2164 	unsigned long flags;
2165 
2166 	/*
2167 	 * The only protection from memory hotplug vs. drain_stock races is
2168 	 * that we always operate on local CPU stock here with IRQ disabled
2169 	 */
2170 	local_irq_save(flags);
2171 
2172 	stock = this_cpu_ptr(&memcg_stock);
2173 	drain_stock(stock);
2174 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2175 
2176 	local_irq_restore(flags);
2177 }
2178 
2179 /*
2180  * Cache charges(val) to local per_cpu area.
2181  * This will be consumed by consume_stock() function, later.
2182  */
2183 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2184 {
2185 	struct memcg_stock_pcp *stock;
2186 	unsigned long flags;
2187 
2188 	local_irq_save(flags);
2189 
2190 	stock = this_cpu_ptr(&memcg_stock);
2191 	if (stock->cached != memcg) { /* reset if necessary */
2192 		drain_stock(stock);
2193 		stock->cached = memcg;
2194 	}
2195 	stock->nr_pages += nr_pages;
2196 
2197 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2198 		drain_stock(stock);
2199 
2200 	local_irq_restore(flags);
2201 }
2202 
2203 /*
2204  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2205  * of the hierarchy under it.
2206  */
2207 static void drain_all_stock(struct mem_cgroup *root_memcg)
2208 {
2209 	int cpu, curcpu;
2210 
2211 	/* If someone's already draining, avoid adding running more workers. */
2212 	if (!mutex_trylock(&percpu_charge_mutex))
2213 		return;
2214 	/*
2215 	 * Notify other cpus that system-wide "drain" is running
2216 	 * We do not care about races with the cpu hotplug because cpu down
2217 	 * as well as workers from this path always operate on the local
2218 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2219 	 */
2220 	curcpu = get_cpu();
2221 	for_each_online_cpu(cpu) {
2222 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2223 		struct mem_cgroup *memcg;
2224 
2225 		memcg = stock->cached;
2226 		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2227 			continue;
2228 		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2229 			css_put(&memcg->css);
2230 			continue;
2231 		}
2232 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2233 			if (cpu == curcpu)
2234 				drain_local_stock(&stock->work);
2235 			else
2236 				schedule_work_on(cpu, &stock->work);
2237 		}
2238 		css_put(&memcg->css);
2239 	}
2240 	put_cpu();
2241 	mutex_unlock(&percpu_charge_mutex);
2242 }
2243 
2244 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2245 {
2246 	struct memcg_stock_pcp *stock;
2247 	struct mem_cgroup *memcg, *mi;
2248 
2249 	stock = &per_cpu(memcg_stock, cpu);
2250 	drain_stock(stock);
2251 
2252 	for_each_mem_cgroup(memcg) {
2253 		int i;
2254 
2255 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2256 			int nid;
2257 			long x;
2258 
2259 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2260 			if (x)
2261 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2262 					atomic_long_add(x, &memcg->vmstats[i]);
2263 
2264 			if (i >= NR_VM_NODE_STAT_ITEMS)
2265 				continue;
2266 
2267 			for_each_node(nid) {
2268 				struct mem_cgroup_per_node *pn;
2269 
2270 				pn = mem_cgroup_nodeinfo(memcg, nid);
2271 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2272 				if (x)
2273 					do {
2274 						atomic_long_add(x, &pn->lruvec_stat[i]);
2275 					} while ((pn = parent_nodeinfo(pn, nid)));
2276 			}
2277 		}
2278 
2279 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2280 			long x;
2281 
2282 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2283 			if (x)
2284 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2285 					atomic_long_add(x, &memcg->vmevents[i]);
2286 		}
2287 	}
2288 
2289 	return 0;
2290 }
2291 
2292 static void reclaim_high(struct mem_cgroup *memcg,
2293 			 unsigned int nr_pages,
2294 			 gfp_t gfp_mask)
2295 {
2296 	do {
2297 		if (page_counter_read(&memcg->memory) <= memcg->high)
2298 			continue;
2299 		memcg_memory_event(memcg, MEMCG_HIGH);
2300 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2301 	} while ((memcg = parent_mem_cgroup(memcg)));
2302 }
2303 
2304 static void high_work_func(struct work_struct *work)
2305 {
2306 	struct mem_cgroup *memcg;
2307 
2308 	memcg = container_of(work, struct mem_cgroup, high_work);
2309 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2310 }
2311 
2312 /*
2313  * Scheduled by try_charge() to be executed from the userland return path
2314  * and reclaims memory over the high limit.
2315  */
2316 void mem_cgroup_handle_over_high(void)
2317 {
2318 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2319 	struct mem_cgroup *memcg;
2320 
2321 	if (likely(!nr_pages))
2322 		return;
2323 
2324 	memcg = get_mem_cgroup_from_mm(current->mm);
2325 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2326 	css_put(&memcg->css);
2327 	current->memcg_nr_pages_over_high = 0;
2328 }
2329 
2330 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2331 		      unsigned int nr_pages)
2332 {
2333 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2334 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2335 	struct mem_cgroup *mem_over_limit;
2336 	struct page_counter *counter;
2337 	unsigned long nr_reclaimed;
2338 	bool may_swap = true;
2339 	bool drained = false;
2340 	enum oom_status oom_status;
2341 
2342 	if (mem_cgroup_is_root(memcg))
2343 		return 0;
2344 retry:
2345 	if (consume_stock(memcg, nr_pages))
2346 		return 0;
2347 
2348 	if (!do_memsw_account() ||
2349 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2350 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2351 			goto done_restock;
2352 		if (do_memsw_account())
2353 			page_counter_uncharge(&memcg->memsw, batch);
2354 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2355 	} else {
2356 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2357 		may_swap = false;
2358 	}
2359 
2360 	if (batch > nr_pages) {
2361 		batch = nr_pages;
2362 		goto retry;
2363 	}
2364 
2365 	/*
2366 	 * Unlike in global OOM situations, memcg is not in a physical
2367 	 * memory shortage.  Allow dying and OOM-killed tasks to
2368 	 * bypass the last charges so that they can exit quickly and
2369 	 * free their memory.
2370 	 */
2371 	if (unlikely(should_force_charge()))
2372 		goto force;
2373 
2374 	/*
2375 	 * Prevent unbounded recursion when reclaim operations need to
2376 	 * allocate memory. This might exceed the limits temporarily,
2377 	 * but we prefer facilitating memory reclaim and getting back
2378 	 * under the limit over triggering OOM kills in these cases.
2379 	 */
2380 	if (unlikely(current->flags & PF_MEMALLOC))
2381 		goto force;
2382 
2383 	if (unlikely(task_in_memcg_oom(current)))
2384 		goto nomem;
2385 
2386 	if (!gfpflags_allow_blocking(gfp_mask))
2387 		goto nomem;
2388 
2389 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2390 
2391 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2392 						    gfp_mask, may_swap);
2393 
2394 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2395 		goto retry;
2396 
2397 	if (!drained) {
2398 		drain_all_stock(mem_over_limit);
2399 		drained = true;
2400 		goto retry;
2401 	}
2402 
2403 	if (gfp_mask & __GFP_NORETRY)
2404 		goto nomem;
2405 	/*
2406 	 * Even though the limit is exceeded at this point, reclaim
2407 	 * may have been able to free some pages.  Retry the charge
2408 	 * before killing the task.
2409 	 *
2410 	 * Only for regular pages, though: huge pages are rather
2411 	 * unlikely to succeed so close to the limit, and we fall back
2412 	 * to regular pages anyway in case of failure.
2413 	 */
2414 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2415 		goto retry;
2416 	/*
2417 	 * At task move, charge accounts can be doubly counted. So, it's
2418 	 * better to wait until the end of task_move if something is going on.
2419 	 */
2420 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2421 		goto retry;
2422 
2423 	if (nr_retries--)
2424 		goto retry;
2425 
2426 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2427 		goto nomem;
2428 
2429 	if (gfp_mask & __GFP_NOFAIL)
2430 		goto force;
2431 
2432 	if (fatal_signal_pending(current))
2433 		goto force;
2434 
2435 	/*
2436 	 * keep retrying as long as the memcg oom killer is able to make
2437 	 * a forward progress or bypass the charge if the oom killer
2438 	 * couldn't make any progress.
2439 	 */
2440 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2441 		       get_order(nr_pages * PAGE_SIZE));
2442 	switch (oom_status) {
2443 	case OOM_SUCCESS:
2444 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2445 		goto retry;
2446 	case OOM_FAILED:
2447 		goto force;
2448 	default:
2449 		goto nomem;
2450 	}
2451 nomem:
2452 	if (!(gfp_mask & __GFP_NOFAIL))
2453 		return -ENOMEM;
2454 force:
2455 	/*
2456 	 * The allocation either can't fail or will lead to more memory
2457 	 * being freed very soon.  Allow memory usage go over the limit
2458 	 * temporarily by force charging it.
2459 	 */
2460 	page_counter_charge(&memcg->memory, nr_pages);
2461 	if (do_memsw_account())
2462 		page_counter_charge(&memcg->memsw, nr_pages);
2463 	css_get_many(&memcg->css, nr_pages);
2464 
2465 	return 0;
2466 
2467 done_restock:
2468 	css_get_many(&memcg->css, batch);
2469 	if (batch > nr_pages)
2470 		refill_stock(memcg, batch - nr_pages);
2471 
2472 	/*
2473 	 * If the hierarchy is above the normal consumption range, schedule
2474 	 * reclaim on returning to userland.  We can perform reclaim here
2475 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2476 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2477 	 * not recorded as it most likely matches current's and won't
2478 	 * change in the meantime.  As high limit is checked again before
2479 	 * reclaim, the cost of mismatch is negligible.
2480 	 */
2481 	do {
2482 		if (page_counter_read(&memcg->memory) > memcg->high) {
2483 			/* Don't bother a random interrupted task */
2484 			if (in_interrupt()) {
2485 				schedule_work(&memcg->high_work);
2486 				break;
2487 			}
2488 			current->memcg_nr_pages_over_high += batch;
2489 			set_notify_resume(current);
2490 			break;
2491 		}
2492 	} while ((memcg = parent_mem_cgroup(memcg)));
2493 
2494 	return 0;
2495 }
2496 
2497 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2498 {
2499 	if (mem_cgroup_is_root(memcg))
2500 		return;
2501 
2502 	page_counter_uncharge(&memcg->memory, nr_pages);
2503 	if (do_memsw_account())
2504 		page_counter_uncharge(&memcg->memsw, nr_pages);
2505 
2506 	css_put_many(&memcg->css, nr_pages);
2507 }
2508 
2509 static void lock_page_lru(struct page *page, int *isolated)
2510 {
2511 	pg_data_t *pgdat = page_pgdat(page);
2512 
2513 	spin_lock_irq(&pgdat->lru_lock);
2514 	if (PageLRU(page)) {
2515 		struct lruvec *lruvec;
2516 
2517 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2518 		ClearPageLRU(page);
2519 		del_page_from_lru_list(page, lruvec, page_lru(page));
2520 		*isolated = 1;
2521 	} else
2522 		*isolated = 0;
2523 }
2524 
2525 static void unlock_page_lru(struct page *page, int isolated)
2526 {
2527 	pg_data_t *pgdat = page_pgdat(page);
2528 
2529 	if (isolated) {
2530 		struct lruvec *lruvec;
2531 
2532 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2533 		VM_BUG_ON_PAGE(PageLRU(page), page);
2534 		SetPageLRU(page);
2535 		add_page_to_lru_list(page, lruvec, page_lru(page));
2536 	}
2537 	spin_unlock_irq(&pgdat->lru_lock);
2538 }
2539 
2540 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2541 			  bool lrucare)
2542 {
2543 	int isolated;
2544 
2545 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2546 
2547 	/*
2548 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2549 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2550 	 */
2551 	if (lrucare)
2552 		lock_page_lru(page, &isolated);
2553 
2554 	/*
2555 	 * Nobody should be changing or seriously looking at
2556 	 * page->mem_cgroup at this point:
2557 	 *
2558 	 * - the page is uncharged
2559 	 *
2560 	 * - the page is off-LRU
2561 	 *
2562 	 * - an anonymous fault has exclusive page access, except for
2563 	 *   a locked page table
2564 	 *
2565 	 * - a page cache insertion, a swapin fault, or a migration
2566 	 *   have the page locked
2567 	 */
2568 	page->mem_cgroup = memcg;
2569 
2570 	if (lrucare)
2571 		unlock_page_lru(page, isolated);
2572 }
2573 
2574 #ifdef CONFIG_MEMCG_KMEM
2575 static int memcg_alloc_cache_id(void)
2576 {
2577 	int id, size;
2578 	int err;
2579 
2580 	id = ida_simple_get(&memcg_cache_ida,
2581 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2582 	if (id < 0)
2583 		return id;
2584 
2585 	if (id < memcg_nr_cache_ids)
2586 		return id;
2587 
2588 	/*
2589 	 * There's no space for the new id in memcg_caches arrays,
2590 	 * so we have to grow them.
2591 	 */
2592 	down_write(&memcg_cache_ids_sem);
2593 
2594 	size = 2 * (id + 1);
2595 	if (size < MEMCG_CACHES_MIN_SIZE)
2596 		size = MEMCG_CACHES_MIN_SIZE;
2597 	else if (size > MEMCG_CACHES_MAX_SIZE)
2598 		size = MEMCG_CACHES_MAX_SIZE;
2599 
2600 	err = memcg_update_all_caches(size);
2601 	if (!err)
2602 		err = memcg_update_all_list_lrus(size);
2603 	if (!err)
2604 		memcg_nr_cache_ids = size;
2605 
2606 	up_write(&memcg_cache_ids_sem);
2607 
2608 	if (err) {
2609 		ida_simple_remove(&memcg_cache_ida, id);
2610 		return err;
2611 	}
2612 	return id;
2613 }
2614 
2615 static void memcg_free_cache_id(int id)
2616 {
2617 	ida_simple_remove(&memcg_cache_ida, id);
2618 }
2619 
2620 struct memcg_kmem_cache_create_work {
2621 	struct mem_cgroup *memcg;
2622 	struct kmem_cache *cachep;
2623 	struct work_struct work;
2624 };
2625 
2626 static void memcg_kmem_cache_create_func(struct work_struct *w)
2627 {
2628 	struct memcg_kmem_cache_create_work *cw =
2629 		container_of(w, struct memcg_kmem_cache_create_work, work);
2630 	struct mem_cgroup *memcg = cw->memcg;
2631 	struct kmem_cache *cachep = cw->cachep;
2632 
2633 	memcg_create_kmem_cache(memcg, cachep);
2634 
2635 	css_put(&memcg->css);
2636 	kfree(cw);
2637 }
2638 
2639 /*
2640  * Enqueue the creation of a per-memcg kmem_cache.
2641  */
2642 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2643 					       struct kmem_cache *cachep)
2644 {
2645 	struct memcg_kmem_cache_create_work *cw;
2646 
2647 	if (!css_tryget_online(&memcg->css))
2648 		return;
2649 
2650 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2651 	if (!cw)
2652 		return;
2653 
2654 	cw->memcg = memcg;
2655 	cw->cachep = cachep;
2656 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2657 
2658 	queue_work(memcg_kmem_cache_wq, &cw->work);
2659 }
2660 
2661 static inline bool memcg_kmem_bypass(void)
2662 {
2663 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2664 		return true;
2665 	return false;
2666 }
2667 
2668 /**
2669  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2670  * @cachep: the original global kmem cache
2671  *
2672  * Return the kmem_cache we're supposed to use for a slab allocation.
2673  * We try to use the current memcg's version of the cache.
2674  *
2675  * If the cache does not exist yet, if we are the first user of it, we
2676  * create it asynchronously in a workqueue and let the current allocation
2677  * go through with the original cache.
2678  *
2679  * This function takes a reference to the cache it returns to assure it
2680  * won't get destroyed while we are working with it. Once the caller is
2681  * done with it, memcg_kmem_put_cache() must be called to release the
2682  * reference.
2683  */
2684 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2685 {
2686 	struct mem_cgroup *memcg;
2687 	struct kmem_cache *memcg_cachep;
2688 	struct memcg_cache_array *arr;
2689 	int kmemcg_id;
2690 
2691 	VM_BUG_ON(!is_root_cache(cachep));
2692 
2693 	if (memcg_kmem_bypass())
2694 		return cachep;
2695 
2696 	rcu_read_lock();
2697 
2698 	if (unlikely(current->active_memcg))
2699 		memcg = current->active_memcg;
2700 	else
2701 		memcg = mem_cgroup_from_task(current);
2702 
2703 	if (!memcg || memcg == root_mem_cgroup)
2704 		goto out_unlock;
2705 
2706 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2707 	if (kmemcg_id < 0)
2708 		goto out_unlock;
2709 
2710 	arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2711 
2712 	/*
2713 	 * Make sure we will access the up-to-date value. The code updating
2714 	 * memcg_caches issues a write barrier to match the data dependency
2715 	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2716 	 */
2717 	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2718 
2719 	/*
2720 	 * If we are in a safe context (can wait, and not in interrupt
2721 	 * context), we could be be predictable and return right away.
2722 	 * This would guarantee that the allocation being performed
2723 	 * already belongs in the new cache.
2724 	 *
2725 	 * However, there are some clashes that can arrive from locking.
2726 	 * For instance, because we acquire the slab_mutex while doing
2727 	 * memcg_create_kmem_cache, this means no further allocation
2728 	 * could happen with the slab_mutex held. So it's better to
2729 	 * defer everything.
2730 	 *
2731 	 * If the memcg is dying or memcg_cache is about to be released,
2732 	 * don't bother creating new kmem_caches. Because memcg_cachep
2733 	 * is ZEROed as the fist step of kmem offlining, we don't need
2734 	 * percpu_ref_tryget_live() here. css_tryget_online() check in
2735 	 * memcg_schedule_kmem_cache_create() will prevent us from
2736 	 * creation of a new kmem_cache.
2737 	 */
2738 	if (unlikely(!memcg_cachep))
2739 		memcg_schedule_kmem_cache_create(memcg, cachep);
2740 	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2741 		cachep = memcg_cachep;
2742 out_unlock:
2743 	rcu_read_unlock();
2744 	return cachep;
2745 }
2746 
2747 /**
2748  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2749  * @cachep: the cache returned by memcg_kmem_get_cache
2750  */
2751 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2752 {
2753 	if (!is_root_cache(cachep))
2754 		percpu_ref_put(&cachep->memcg_params.refcnt);
2755 }
2756 
2757 /**
2758  * __memcg_kmem_charge_memcg: charge a kmem page
2759  * @page: page to charge
2760  * @gfp: reclaim mode
2761  * @order: allocation order
2762  * @memcg: memory cgroup to charge
2763  *
2764  * Returns 0 on success, an error code on failure.
2765  */
2766 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2767 			    struct mem_cgroup *memcg)
2768 {
2769 	unsigned int nr_pages = 1 << order;
2770 	struct page_counter *counter;
2771 	int ret;
2772 
2773 	ret = try_charge(memcg, gfp, nr_pages);
2774 	if (ret)
2775 		return ret;
2776 
2777 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2778 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2779 		cancel_charge(memcg, nr_pages);
2780 		return -ENOMEM;
2781 	}
2782 	return 0;
2783 }
2784 
2785 /**
2786  * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2787  * @page: page to charge
2788  * @gfp: reclaim mode
2789  * @order: allocation order
2790  *
2791  * Returns 0 on success, an error code on failure.
2792  */
2793 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2794 {
2795 	struct mem_cgroup *memcg;
2796 	int ret = 0;
2797 
2798 	if (memcg_kmem_bypass())
2799 		return 0;
2800 
2801 	memcg = get_mem_cgroup_from_current();
2802 	if (!mem_cgroup_is_root(memcg)) {
2803 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2804 		if (!ret) {
2805 			page->mem_cgroup = memcg;
2806 			__SetPageKmemcg(page);
2807 		}
2808 	}
2809 	css_put(&memcg->css);
2810 	return ret;
2811 }
2812 
2813 /**
2814  * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2815  * @memcg: memcg to uncharge
2816  * @nr_pages: number of pages to uncharge
2817  */
2818 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2819 				 unsigned int nr_pages)
2820 {
2821 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2822 		page_counter_uncharge(&memcg->kmem, nr_pages);
2823 
2824 	page_counter_uncharge(&memcg->memory, nr_pages);
2825 	if (do_memsw_account())
2826 		page_counter_uncharge(&memcg->memsw, nr_pages);
2827 }
2828 /**
2829  * __memcg_kmem_uncharge: uncharge a kmem page
2830  * @page: page to uncharge
2831  * @order: allocation order
2832  */
2833 void __memcg_kmem_uncharge(struct page *page, int order)
2834 {
2835 	struct mem_cgroup *memcg = page->mem_cgroup;
2836 	unsigned int nr_pages = 1 << order;
2837 
2838 	if (!memcg)
2839 		return;
2840 
2841 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2842 	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
2843 	page->mem_cgroup = NULL;
2844 
2845 	/* slab pages do not have PageKmemcg flag set */
2846 	if (PageKmemcg(page))
2847 		__ClearPageKmemcg(page);
2848 
2849 	css_put_many(&memcg->css, nr_pages);
2850 }
2851 #endif /* CONFIG_MEMCG_KMEM */
2852 
2853 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2854 
2855 /*
2856  * Because tail pages are not marked as "used", set it. We're under
2857  * pgdat->lru_lock and migration entries setup in all page mappings.
2858  */
2859 void mem_cgroup_split_huge_fixup(struct page *head)
2860 {
2861 	int i;
2862 
2863 	if (mem_cgroup_disabled())
2864 		return;
2865 
2866 	for (i = 1; i < HPAGE_PMD_NR; i++)
2867 		head[i].mem_cgroup = head->mem_cgroup;
2868 
2869 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2870 }
2871 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2872 
2873 #ifdef CONFIG_MEMCG_SWAP
2874 /**
2875  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2876  * @entry: swap entry to be moved
2877  * @from:  mem_cgroup which the entry is moved from
2878  * @to:  mem_cgroup which the entry is moved to
2879  *
2880  * It succeeds only when the swap_cgroup's record for this entry is the same
2881  * as the mem_cgroup's id of @from.
2882  *
2883  * Returns 0 on success, -EINVAL on failure.
2884  *
2885  * The caller must have charged to @to, IOW, called page_counter_charge() about
2886  * both res and memsw, and called css_get().
2887  */
2888 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2889 				struct mem_cgroup *from, struct mem_cgroup *to)
2890 {
2891 	unsigned short old_id, new_id;
2892 
2893 	old_id = mem_cgroup_id(from);
2894 	new_id = mem_cgroup_id(to);
2895 
2896 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2897 		mod_memcg_state(from, MEMCG_SWAP, -1);
2898 		mod_memcg_state(to, MEMCG_SWAP, 1);
2899 		return 0;
2900 	}
2901 	return -EINVAL;
2902 }
2903 #else
2904 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2905 				struct mem_cgroup *from, struct mem_cgroup *to)
2906 {
2907 	return -EINVAL;
2908 }
2909 #endif
2910 
2911 static DEFINE_MUTEX(memcg_max_mutex);
2912 
2913 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2914 				 unsigned long max, bool memsw)
2915 {
2916 	bool enlarge = false;
2917 	bool drained = false;
2918 	int ret;
2919 	bool limits_invariant;
2920 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2921 
2922 	do {
2923 		if (signal_pending(current)) {
2924 			ret = -EINTR;
2925 			break;
2926 		}
2927 
2928 		mutex_lock(&memcg_max_mutex);
2929 		/*
2930 		 * Make sure that the new limit (memsw or memory limit) doesn't
2931 		 * break our basic invariant rule memory.max <= memsw.max.
2932 		 */
2933 		limits_invariant = memsw ? max >= memcg->memory.max :
2934 					   max <= memcg->memsw.max;
2935 		if (!limits_invariant) {
2936 			mutex_unlock(&memcg_max_mutex);
2937 			ret = -EINVAL;
2938 			break;
2939 		}
2940 		if (max > counter->max)
2941 			enlarge = true;
2942 		ret = page_counter_set_max(counter, max);
2943 		mutex_unlock(&memcg_max_mutex);
2944 
2945 		if (!ret)
2946 			break;
2947 
2948 		if (!drained) {
2949 			drain_all_stock(memcg);
2950 			drained = true;
2951 			continue;
2952 		}
2953 
2954 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
2955 					GFP_KERNEL, !memsw)) {
2956 			ret = -EBUSY;
2957 			break;
2958 		}
2959 	} while (true);
2960 
2961 	if (!ret && enlarge)
2962 		memcg_oom_recover(memcg);
2963 
2964 	return ret;
2965 }
2966 
2967 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2968 					    gfp_t gfp_mask,
2969 					    unsigned long *total_scanned)
2970 {
2971 	unsigned long nr_reclaimed = 0;
2972 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2973 	unsigned long reclaimed;
2974 	int loop = 0;
2975 	struct mem_cgroup_tree_per_node *mctz;
2976 	unsigned long excess;
2977 	unsigned long nr_scanned;
2978 
2979 	if (order > 0)
2980 		return 0;
2981 
2982 	mctz = soft_limit_tree_node(pgdat->node_id);
2983 
2984 	/*
2985 	 * Do not even bother to check the largest node if the root
2986 	 * is empty. Do it lockless to prevent lock bouncing. Races
2987 	 * are acceptable as soft limit is best effort anyway.
2988 	 */
2989 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2990 		return 0;
2991 
2992 	/*
2993 	 * This loop can run a while, specially if mem_cgroup's continuously
2994 	 * keep exceeding their soft limit and putting the system under
2995 	 * pressure
2996 	 */
2997 	do {
2998 		if (next_mz)
2999 			mz = next_mz;
3000 		else
3001 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3002 		if (!mz)
3003 			break;
3004 
3005 		nr_scanned = 0;
3006 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3007 						    gfp_mask, &nr_scanned);
3008 		nr_reclaimed += reclaimed;
3009 		*total_scanned += nr_scanned;
3010 		spin_lock_irq(&mctz->lock);
3011 		__mem_cgroup_remove_exceeded(mz, mctz);
3012 
3013 		/*
3014 		 * If we failed to reclaim anything from this memory cgroup
3015 		 * it is time to move on to the next cgroup
3016 		 */
3017 		next_mz = NULL;
3018 		if (!reclaimed)
3019 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3020 
3021 		excess = soft_limit_excess(mz->memcg);
3022 		/*
3023 		 * One school of thought says that we should not add
3024 		 * back the node to the tree if reclaim returns 0.
3025 		 * But our reclaim could return 0, simply because due
3026 		 * to priority we are exposing a smaller subset of
3027 		 * memory to reclaim from. Consider this as a longer
3028 		 * term TODO.
3029 		 */
3030 		/* If excess == 0, no tree ops */
3031 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3032 		spin_unlock_irq(&mctz->lock);
3033 		css_put(&mz->memcg->css);
3034 		loop++;
3035 		/*
3036 		 * Could not reclaim anything and there are no more
3037 		 * mem cgroups to try or we seem to be looping without
3038 		 * reclaiming anything.
3039 		 */
3040 		if (!nr_reclaimed &&
3041 			(next_mz == NULL ||
3042 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3043 			break;
3044 	} while (!nr_reclaimed);
3045 	if (next_mz)
3046 		css_put(&next_mz->memcg->css);
3047 	return nr_reclaimed;
3048 }
3049 
3050 /*
3051  * Test whether @memcg has children, dead or alive.  Note that this
3052  * function doesn't care whether @memcg has use_hierarchy enabled and
3053  * returns %true if there are child csses according to the cgroup
3054  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3055  */
3056 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3057 {
3058 	bool ret;
3059 
3060 	rcu_read_lock();
3061 	ret = css_next_child(NULL, &memcg->css);
3062 	rcu_read_unlock();
3063 	return ret;
3064 }
3065 
3066 /*
3067  * Reclaims as many pages from the given memcg as possible.
3068  *
3069  * Caller is responsible for holding css reference for memcg.
3070  */
3071 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3072 {
3073 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3074 
3075 	/* we call try-to-free pages for make this cgroup empty */
3076 	lru_add_drain_all();
3077 
3078 	drain_all_stock(memcg);
3079 
3080 	/* try to free all pages in this cgroup */
3081 	while (nr_retries && page_counter_read(&memcg->memory)) {
3082 		int progress;
3083 
3084 		if (signal_pending(current))
3085 			return -EINTR;
3086 
3087 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3088 							GFP_KERNEL, true);
3089 		if (!progress) {
3090 			nr_retries--;
3091 			/* maybe some writeback is necessary */
3092 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3093 		}
3094 
3095 	}
3096 
3097 	return 0;
3098 }
3099 
3100 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3101 					    char *buf, size_t nbytes,
3102 					    loff_t off)
3103 {
3104 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3105 
3106 	if (mem_cgroup_is_root(memcg))
3107 		return -EINVAL;
3108 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3109 }
3110 
3111 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3112 				     struct cftype *cft)
3113 {
3114 	return mem_cgroup_from_css(css)->use_hierarchy;
3115 }
3116 
3117 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3118 				      struct cftype *cft, u64 val)
3119 {
3120 	int retval = 0;
3121 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3122 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3123 
3124 	if (memcg->use_hierarchy == val)
3125 		return 0;
3126 
3127 	/*
3128 	 * If parent's use_hierarchy is set, we can't make any modifications
3129 	 * in the child subtrees. If it is unset, then the change can
3130 	 * occur, provided the current cgroup has no children.
3131 	 *
3132 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3133 	 * set if there are no children.
3134 	 */
3135 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3136 				(val == 1 || val == 0)) {
3137 		if (!memcg_has_children(memcg))
3138 			memcg->use_hierarchy = val;
3139 		else
3140 			retval = -EBUSY;
3141 	} else
3142 		retval = -EINVAL;
3143 
3144 	return retval;
3145 }
3146 
3147 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3148 {
3149 	unsigned long val;
3150 
3151 	if (mem_cgroup_is_root(memcg)) {
3152 		val = memcg_page_state(memcg, MEMCG_CACHE) +
3153 			memcg_page_state(memcg, MEMCG_RSS);
3154 		if (swap)
3155 			val += memcg_page_state(memcg, MEMCG_SWAP);
3156 	} else {
3157 		if (!swap)
3158 			val = page_counter_read(&memcg->memory);
3159 		else
3160 			val = page_counter_read(&memcg->memsw);
3161 	}
3162 	return val;
3163 }
3164 
3165 enum {
3166 	RES_USAGE,
3167 	RES_LIMIT,
3168 	RES_MAX_USAGE,
3169 	RES_FAILCNT,
3170 	RES_SOFT_LIMIT,
3171 };
3172 
3173 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3174 			       struct cftype *cft)
3175 {
3176 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3177 	struct page_counter *counter;
3178 
3179 	switch (MEMFILE_TYPE(cft->private)) {
3180 	case _MEM:
3181 		counter = &memcg->memory;
3182 		break;
3183 	case _MEMSWAP:
3184 		counter = &memcg->memsw;
3185 		break;
3186 	case _KMEM:
3187 		counter = &memcg->kmem;
3188 		break;
3189 	case _TCP:
3190 		counter = &memcg->tcpmem;
3191 		break;
3192 	default:
3193 		BUG();
3194 	}
3195 
3196 	switch (MEMFILE_ATTR(cft->private)) {
3197 	case RES_USAGE:
3198 		if (counter == &memcg->memory)
3199 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3200 		if (counter == &memcg->memsw)
3201 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3202 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3203 	case RES_LIMIT:
3204 		return (u64)counter->max * PAGE_SIZE;
3205 	case RES_MAX_USAGE:
3206 		return (u64)counter->watermark * PAGE_SIZE;
3207 	case RES_FAILCNT:
3208 		return counter->failcnt;
3209 	case RES_SOFT_LIMIT:
3210 		return (u64)memcg->soft_limit * PAGE_SIZE;
3211 	default:
3212 		BUG();
3213 	}
3214 }
3215 
3216 #ifdef CONFIG_MEMCG_KMEM
3217 static int memcg_online_kmem(struct mem_cgroup *memcg)
3218 {
3219 	int memcg_id;
3220 
3221 	if (cgroup_memory_nokmem)
3222 		return 0;
3223 
3224 	BUG_ON(memcg->kmemcg_id >= 0);
3225 	BUG_ON(memcg->kmem_state);
3226 
3227 	memcg_id = memcg_alloc_cache_id();
3228 	if (memcg_id < 0)
3229 		return memcg_id;
3230 
3231 	static_branch_inc(&memcg_kmem_enabled_key);
3232 	/*
3233 	 * A memory cgroup is considered kmem-online as soon as it gets
3234 	 * kmemcg_id. Setting the id after enabling static branching will
3235 	 * guarantee no one starts accounting before all call sites are
3236 	 * patched.
3237 	 */
3238 	memcg->kmemcg_id = memcg_id;
3239 	memcg->kmem_state = KMEM_ONLINE;
3240 	INIT_LIST_HEAD(&memcg->kmem_caches);
3241 
3242 	return 0;
3243 }
3244 
3245 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3246 {
3247 	struct cgroup_subsys_state *css;
3248 	struct mem_cgroup *parent, *child;
3249 	int kmemcg_id;
3250 
3251 	if (memcg->kmem_state != KMEM_ONLINE)
3252 		return;
3253 	/*
3254 	 * Clear the online state before clearing memcg_caches array
3255 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3256 	 * guarantees that no cache will be created for this cgroup
3257 	 * after we are done (see memcg_create_kmem_cache()).
3258 	 */
3259 	memcg->kmem_state = KMEM_ALLOCATED;
3260 
3261 	parent = parent_mem_cgroup(memcg);
3262 	if (!parent)
3263 		parent = root_mem_cgroup;
3264 
3265 	memcg_deactivate_kmem_caches(memcg, parent);
3266 
3267 	kmemcg_id = memcg->kmemcg_id;
3268 	BUG_ON(kmemcg_id < 0);
3269 
3270 	/*
3271 	 * Change kmemcg_id of this cgroup and all its descendants to the
3272 	 * parent's id, and then move all entries from this cgroup's list_lrus
3273 	 * to ones of the parent. After we have finished, all list_lrus
3274 	 * corresponding to this cgroup are guaranteed to remain empty. The
3275 	 * ordering is imposed by list_lru_node->lock taken by
3276 	 * memcg_drain_all_list_lrus().
3277 	 */
3278 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3279 	css_for_each_descendant_pre(css, &memcg->css) {
3280 		child = mem_cgroup_from_css(css);
3281 		BUG_ON(child->kmemcg_id != kmemcg_id);
3282 		child->kmemcg_id = parent->kmemcg_id;
3283 		if (!memcg->use_hierarchy)
3284 			break;
3285 	}
3286 	rcu_read_unlock();
3287 
3288 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3289 
3290 	memcg_free_cache_id(kmemcg_id);
3291 }
3292 
3293 static void memcg_free_kmem(struct mem_cgroup *memcg)
3294 {
3295 	/* css_alloc() failed, offlining didn't happen */
3296 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3297 		memcg_offline_kmem(memcg);
3298 
3299 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3300 		WARN_ON(!list_empty(&memcg->kmem_caches));
3301 		static_branch_dec(&memcg_kmem_enabled_key);
3302 	}
3303 }
3304 #else
3305 static int memcg_online_kmem(struct mem_cgroup *memcg)
3306 {
3307 	return 0;
3308 }
3309 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3310 {
3311 }
3312 static void memcg_free_kmem(struct mem_cgroup *memcg)
3313 {
3314 }
3315 #endif /* CONFIG_MEMCG_KMEM */
3316 
3317 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3318 				 unsigned long max)
3319 {
3320 	int ret;
3321 
3322 	mutex_lock(&memcg_max_mutex);
3323 	ret = page_counter_set_max(&memcg->kmem, max);
3324 	mutex_unlock(&memcg_max_mutex);
3325 	return ret;
3326 }
3327 
3328 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3329 {
3330 	int ret;
3331 
3332 	mutex_lock(&memcg_max_mutex);
3333 
3334 	ret = page_counter_set_max(&memcg->tcpmem, max);
3335 	if (ret)
3336 		goto out;
3337 
3338 	if (!memcg->tcpmem_active) {
3339 		/*
3340 		 * The active flag needs to be written after the static_key
3341 		 * update. This is what guarantees that the socket activation
3342 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3343 		 * for details, and note that we don't mark any socket as
3344 		 * belonging to this memcg until that flag is up.
3345 		 *
3346 		 * We need to do this, because static_keys will span multiple
3347 		 * sites, but we can't control their order. If we mark a socket
3348 		 * as accounted, but the accounting functions are not patched in
3349 		 * yet, we'll lose accounting.
3350 		 *
3351 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3352 		 * because when this value change, the code to process it is not
3353 		 * patched in yet.
3354 		 */
3355 		static_branch_inc(&memcg_sockets_enabled_key);
3356 		memcg->tcpmem_active = true;
3357 	}
3358 out:
3359 	mutex_unlock(&memcg_max_mutex);
3360 	return ret;
3361 }
3362 
3363 /*
3364  * The user of this function is...
3365  * RES_LIMIT.
3366  */
3367 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3368 				char *buf, size_t nbytes, loff_t off)
3369 {
3370 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3371 	unsigned long nr_pages;
3372 	int ret;
3373 
3374 	buf = strstrip(buf);
3375 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3376 	if (ret)
3377 		return ret;
3378 
3379 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3380 	case RES_LIMIT:
3381 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3382 			ret = -EINVAL;
3383 			break;
3384 		}
3385 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3386 		case _MEM:
3387 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3388 			break;
3389 		case _MEMSWAP:
3390 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3391 			break;
3392 		case _KMEM:
3393 			ret = memcg_update_kmem_max(memcg, nr_pages);
3394 			break;
3395 		case _TCP:
3396 			ret = memcg_update_tcp_max(memcg, nr_pages);
3397 			break;
3398 		}
3399 		break;
3400 	case RES_SOFT_LIMIT:
3401 		memcg->soft_limit = nr_pages;
3402 		ret = 0;
3403 		break;
3404 	}
3405 	return ret ?: nbytes;
3406 }
3407 
3408 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3409 				size_t nbytes, loff_t off)
3410 {
3411 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3412 	struct page_counter *counter;
3413 
3414 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3415 	case _MEM:
3416 		counter = &memcg->memory;
3417 		break;
3418 	case _MEMSWAP:
3419 		counter = &memcg->memsw;
3420 		break;
3421 	case _KMEM:
3422 		counter = &memcg->kmem;
3423 		break;
3424 	case _TCP:
3425 		counter = &memcg->tcpmem;
3426 		break;
3427 	default:
3428 		BUG();
3429 	}
3430 
3431 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3432 	case RES_MAX_USAGE:
3433 		page_counter_reset_watermark(counter);
3434 		break;
3435 	case RES_FAILCNT:
3436 		counter->failcnt = 0;
3437 		break;
3438 	default:
3439 		BUG();
3440 	}
3441 
3442 	return nbytes;
3443 }
3444 
3445 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3446 					struct cftype *cft)
3447 {
3448 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3449 }
3450 
3451 #ifdef CONFIG_MMU
3452 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3453 					struct cftype *cft, u64 val)
3454 {
3455 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3456 
3457 	if (val & ~MOVE_MASK)
3458 		return -EINVAL;
3459 
3460 	/*
3461 	 * No kind of locking is needed in here, because ->can_attach() will
3462 	 * check this value once in the beginning of the process, and then carry
3463 	 * on with stale data. This means that changes to this value will only
3464 	 * affect task migrations starting after the change.
3465 	 */
3466 	memcg->move_charge_at_immigrate = val;
3467 	return 0;
3468 }
3469 #else
3470 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3471 					struct cftype *cft, u64 val)
3472 {
3473 	return -ENOSYS;
3474 }
3475 #endif
3476 
3477 #ifdef CONFIG_NUMA
3478 
3479 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3480 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3481 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3482 
3483 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3484 					   int nid, unsigned int lru_mask)
3485 {
3486 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3487 	unsigned long nr = 0;
3488 	enum lru_list lru;
3489 
3490 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3491 
3492 	for_each_lru(lru) {
3493 		if (!(BIT(lru) & lru_mask))
3494 			continue;
3495 		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3496 	}
3497 	return nr;
3498 }
3499 
3500 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3501 					     unsigned int lru_mask)
3502 {
3503 	unsigned long nr = 0;
3504 	enum lru_list lru;
3505 
3506 	for_each_lru(lru) {
3507 		if (!(BIT(lru) & lru_mask))
3508 			continue;
3509 		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3510 	}
3511 	return nr;
3512 }
3513 
3514 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3515 {
3516 	struct numa_stat {
3517 		const char *name;
3518 		unsigned int lru_mask;
3519 	};
3520 
3521 	static const struct numa_stat stats[] = {
3522 		{ "total", LRU_ALL },
3523 		{ "file", LRU_ALL_FILE },
3524 		{ "anon", LRU_ALL_ANON },
3525 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3526 	};
3527 	const struct numa_stat *stat;
3528 	int nid;
3529 	unsigned long nr;
3530 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3531 
3532 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3533 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3534 		seq_printf(m, "%s=%lu", stat->name, nr);
3535 		for_each_node_state(nid, N_MEMORY) {
3536 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3537 							  stat->lru_mask);
3538 			seq_printf(m, " N%d=%lu", nid, nr);
3539 		}
3540 		seq_putc(m, '\n');
3541 	}
3542 
3543 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3544 		struct mem_cgroup *iter;
3545 
3546 		nr = 0;
3547 		for_each_mem_cgroup_tree(iter, memcg)
3548 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3549 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3550 		for_each_node_state(nid, N_MEMORY) {
3551 			nr = 0;
3552 			for_each_mem_cgroup_tree(iter, memcg)
3553 				nr += mem_cgroup_node_nr_lru_pages(
3554 					iter, nid, stat->lru_mask);
3555 			seq_printf(m, " N%d=%lu", nid, nr);
3556 		}
3557 		seq_putc(m, '\n');
3558 	}
3559 
3560 	return 0;
3561 }
3562 #endif /* CONFIG_NUMA */
3563 
3564 static const unsigned int memcg1_stats[] = {
3565 	MEMCG_CACHE,
3566 	MEMCG_RSS,
3567 	MEMCG_RSS_HUGE,
3568 	NR_SHMEM,
3569 	NR_FILE_MAPPED,
3570 	NR_FILE_DIRTY,
3571 	NR_WRITEBACK,
3572 	MEMCG_SWAP,
3573 };
3574 
3575 static const char *const memcg1_stat_names[] = {
3576 	"cache",
3577 	"rss",
3578 	"rss_huge",
3579 	"shmem",
3580 	"mapped_file",
3581 	"dirty",
3582 	"writeback",
3583 	"swap",
3584 };
3585 
3586 /* Universal VM events cgroup1 shows, original sort order */
3587 static const unsigned int memcg1_events[] = {
3588 	PGPGIN,
3589 	PGPGOUT,
3590 	PGFAULT,
3591 	PGMAJFAULT,
3592 };
3593 
3594 static const char *const memcg1_event_names[] = {
3595 	"pgpgin",
3596 	"pgpgout",
3597 	"pgfault",
3598 	"pgmajfault",
3599 };
3600 
3601 static int memcg_stat_show(struct seq_file *m, void *v)
3602 {
3603 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3604 	unsigned long memory, memsw;
3605 	struct mem_cgroup *mi;
3606 	unsigned int i;
3607 
3608 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3609 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3610 
3611 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3612 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3613 			continue;
3614 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3615 			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3616 			   PAGE_SIZE);
3617 	}
3618 
3619 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3620 		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3621 			   memcg_events_local(memcg, memcg1_events[i]));
3622 
3623 	for (i = 0; i < NR_LRU_LISTS; i++)
3624 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3625 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3626 			   PAGE_SIZE);
3627 
3628 	/* Hierarchical information */
3629 	memory = memsw = PAGE_COUNTER_MAX;
3630 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3631 		memory = min(memory, mi->memory.max);
3632 		memsw = min(memsw, mi->memsw.max);
3633 	}
3634 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3635 		   (u64)memory * PAGE_SIZE);
3636 	if (do_memsw_account())
3637 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3638 			   (u64)memsw * PAGE_SIZE);
3639 
3640 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3641 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3642 			continue;
3643 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3644 			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3645 			   PAGE_SIZE);
3646 	}
3647 
3648 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3649 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3650 			   (u64)memcg_events(memcg, memcg1_events[i]));
3651 
3652 	for (i = 0; i < NR_LRU_LISTS; i++)
3653 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3654 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3655 			   PAGE_SIZE);
3656 
3657 #ifdef CONFIG_DEBUG_VM
3658 	{
3659 		pg_data_t *pgdat;
3660 		struct mem_cgroup_per_node *mz;
3661 		struct zone_reclaim_stat *rstat;
3662 		unsigned long recent_rotated[2] = {0, 0};
3663 		unsigned long recent_scanned[2] = {0, 0};
3664 
3665 		for_each_online_pgdat(pgdat) {
3666 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3667 			rstat = &mz->lruvec.reclaim_stat;
3668 
3669 			recent_rotated[0] += rstat->recent_rotated[0];
3670 			recent_rotated[1] += rstat->recent_rotated[1];
3671 			recent_scanned[0] += rstat->recent_scanned[0];
3672 			recent_scanned[1] += rstat->recent_scanned[1];
3673 		}
3674 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3675 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3676 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3677 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3678 	}
3679 #endif
3680 
3681 	return 0;
3682 }
3683 
3684 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3685 				      struct cftype *cft)
3686 {
3687 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3688 
3689 	return mem_cgroup_swappiness(memcg);
3690 }
3691 
3692 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3693 				       struct cftype *cft, u64 val)
3694 {
3695 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3696 
3697 	if (val > 100)
3698 		return -EINVAL;
3699 
3700 	if (css->parent)
3701 		memcg->swappiness = val;
3702 	else
3703 		vm_swappiness = val;
3704 
3705 	return 0;
3706 }
3707 
3708 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3709 {
3710 	struct mem_cgroup_threshold_ary *t;
3711 	unsigned long usage;
3712 	int i;
3713 
3714 	rcu_read_lock();
3715 	if (!swap)
3716 		t = rcu_dereference(memcg->thresholds.primary);
3717 	else
3718 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3719 
3720 	if (!t)
3721 		goto unlock;
3722 
3723 	usage = mem_cgroup_usage(memcg, swap);
3724 
3725 	/*
3726 	 * current_threshold points to threshold just below or equal to usage.
3727 	 * If it's not true, a threshold was crossed after last
3728 	 * call of __mem_cgroup_threshold().
3729 	 */
3730 	i = t->current_threshold;
3731 
3732 	/*
3733 	 * Iterate backward over array of thresholds starting from
3734 	 * current_threshold and check if a threshold is crossed.
3735 	 * If none of thresholds below usage is crossed, we read
3736 	 * only one element of the array here.
3737 	 */
3738 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3739 		eventfd_signal(t->entries[i].eventfd, 1);
3740 
3741 	/* i = current_threshold + 1 */
3742 	i++;
3743 
3744 	/*
3745 	 * Iterate forward over array of thresholds starting from
3746 	 * current_threshold+1 and check if a threshold is crossed.
3747 	 * If none of thresholds above usage is crossed, we read
3748 	 * only one element of the array here.
3749 	 */
3750 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3751 		eventfd_signal(t->entries[i].eventfd, 1);
3752 
3753 	/* Update current_threshold */
3754 	t->current_threshold = i - 1;
3755 unlock:
3756 	rcu_read_unlock();
3757 }
3758 
3759 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3760 {
3761 	while (memcg) {
3762 		__mem_cgroup_threshold(memcg, false);
3763 		if (do_memsw_account())
3764 			__mem_cgroup_threshold(memcg, true);
3765 
3766 		memcg = parent_mem_cgroup(memcg);
3767 	}
3768 }
3769 
3770 static int compare_thresholds(const void *a, const void *b)
3771 {
3772 	const struct mem_cgroup_threshold *_a = a;
3773 	const struct mem_cgroup_threshold *_b = b;
3774 
3775 	if (_a->threshold > _b->threshold)
3776 		return 1;
3777 
3778 	if (_a->threshold < _b->threshold)
3779 		return -1;
3780 
3781 	return 0;
3782 }
3783 
3784 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3785 {
3786 	struct mem_cgroup_eventfd_list *ev;
3787 
3788 	spin_lock(&memcg_oom_lock);
3789 
3790 	list_for_each_entry(ev, &memcg->oom_notify, list)
3791 		eventfd_signal(ev->eventfd, 1);
3792 
3793 	spin_unlock(&memcg_oom_lock);
3794 	return 0;
3795 }
3796 
3797 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3798 {
3799 	struct mem_cgroup *iter;
3800 
3801 	for_each_mem_cgroup_tree(iter, memcg)
3802 		mem_cgroup_oom_notify_cb(iter);
3803 }
3804 
3805 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3806 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3807 {
3808 	struct mem_cgroup_thresholds *thresholds;
3809 	struct mem_cgroup_threshold_ary *new;
3810 	unsigned long threshold;
3811 	unsigned long usage;
3812 	int i, size, ret;
3813 
3814 	ret = page_counter_memparse(args, "-1", &threshold);
3815 	if (ret)
3816 		return ret;
3817 
3818 	mutex_lock(&memcg->thresholds_lock);
3819 
3820 	if (type == _MEM) {
3821 		thresholds = &memcg->thresholds;
3822 		usage = mem_cgroup_usage(memcg, false);
3823 	} else if (type == _MEMSWAP) {
3824 		thresholds = &memcg->memsw_thresholds;
3825 		usage = mem_cgroup_usage(memcg, true);
3826 	} else
3827 		BUG();
3828 
3829 	/* Check if a threshold crossed before adding a new one */
3830 	if (thresholds->primary)
3831 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3832 
3833 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3834 
3835 	/* Allocate memory for new array of thresholds */
3836 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3837 	if (!new) {
3838 		ret = -ENOMEM;
3839 		goto unlock;
3840 	}
3841 	new->size = size;
3842 
3843 	/* Copy thresholds (if any) to new array */
3844 	if (thresholds->primary) {
3845 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3846 				sizeof(struct mem_cgroup_threshold));
3847 	}
3848 
3849 	/* Add new threshold */
3850 	new->entries[size - 1].eventfd = eventfd;
3851 	new->entries[size - 1].threshold = threshold;
3852 
3853 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3854 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3855 			compare_thresholds, NULL);
3856 
3857 	/* Find current threshold */
3858 	new->current_threshold = -1;
3859 	for (i = 0; i < size; i++) {
3860 		if (new->entries[i].threshold <= usage) {
3861 			/*
3862 			 * new->current_threshold will not be used until
3863 			 * rcu_assign_pointer(), so it's safe to increment
3864 			 * it here.
3865 			 */
3866 			++new->current_threshold;
3867 		} else
3868 			break;
3869 	}
3870 
3871 	/* Free old spare buffer and save old primary buffer as spare */
3872 	kfree(thresholds->spare);
3873 	thresholds->spare = thresholds->primary;
3874 
3875 	rcu_assign_pointer(thresholds->primary, new);
3876 
3877 	/* To be sure that nobody uses thresholds */
3878 	synchronize_rcu();
3879 
3880 unlock:
3881 	mutex_unlock(&memcg->thresholds_lock);
3882 
3883 	return ret;
3884 }
3885 
3886 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3887 	struct eventfd_ctx *eventfd, const char *args)
3888 {
3889 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3890 }
3891 
3892 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3893 	struct eventfd_ctx *eventfd, const char *args)
3894 {
3895 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3896 }
3897 
3898 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3899 	struct eventfd_ctx *eventfd, enum res_type type)
3900 {
3901 	struct mem_cgroup_thresholds *thresholds;
3902 	struct mem_cgroup_threshold_ary *new;
3903 	unsigned long usage;
3904 	int i, j, size;
3905 
3906 	mutex_lock(&memcg->thresholds_lock);
3907 
3908 	if (type == _MEM) {
3909 		thresholds = &memcg->thresholds;
3910 		usage = mem_cgroup_usage(memcg, false);
3911 	} else if (type == _MEMSWAP) {
3912 		thresholds = &memcg->memsw_thresholds;
3913 		usage = mem_cgroup_usage(memcg, true);
3914 	} else
3915 		BUG();
3916 
3917 	if (!thresholds->primary)
3918 		goto unlock;
3919 
3920 	/* Check if a threshold crossed before removing */
3921 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3922 
3923 	/* Calculate new number of threshold */
3924 	size = 0;
3925 	for (i = 0; i < thresholds->primary->size; i++) {
3926 		if (thresholds->primary->entries[i].eventfd != eventfd)
3927 			size++;
3928 	}
3929 
3930 	new = thresholds->spare;
3931 
3932 	/* Set thresholds array to NULL if we don't have thresholds */
3933 	if (!size) {
3934 		kfree(new);
3935 		new = NULL;
3936 		goto swap_buffers;
3937 	}
3938 
3939 	new->size = size;
3940 
3941 	/* Copy thresholds and find current threshold */
3942 	new->current_threshold = -1;
3943 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3944 		if (thresholds->primary->entries[i].eventfd == eventfd)
3945 			continue;
3946 
3947 		new->entries[j] = thresholds->primary->entries[i];
3948 		if (new->entries[j].threshold <= usage) {
3949 			/*
3950 			 * new->current_threshold will not be used
3951 			 * until rcu_assign_pointer(), so it's safe to increment
3952 			 * it here.
3953 			 */
3954 			++new->current_threshold;
3955 		}
3956 		j++;
3957 	}
3958 
3959 swap_buffers:
3960 	/* Swap primary and spare array */
3961 	thresholds->spare = thresholds->primary;
3962 
3963 	rcu_assign_pointer(thresholds->primary, new);
3964 
3965 	/* To be sure that nobody uses thresholds */
3966 	synchronize_rcu();
3967 
3968 	/* If all events are unregistered, free the spare array */
3969 	if (!new) {
3970 		kfree(thresholds->spare);
3971 		thresholds->spare = NULL;
3972 	}
3973 unlock:
3974 	mutex_unlock(&memcg->thresholds_lock);
3975 }
3976 
3977 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3978 	struct eventfd_ctx *eventfd)
3979 {
3980 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3981 }
3982 
3983 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3984 	struct eventfd_ctx *eventfd)
3985 {
3986 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3987 }
3988 
3989 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3990 	struct eventfd_ctx *eventfd, const char *args)
3991 {
3992 	struct mem_cgroup_eventfd_list *event;
3993 
3994 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3995 	if (!event)
3996 		return -ENOMEM;
3997 
3998 	spin_lock(&memcg_oom_lock);
3999 
4000 	event->eventfd = eventfd;
4001 	list_add(&event->list, &memcg->oom_notify);
4002 
4003 	/* already in OOM ? */
4004 	if (memcg->under_oom)
4005 		eventfd_signal(eventfd, 1);
4006 	spin_unlock(&memcg_oom_lock);
4007 
4008 	return 0;
4009 }
4010 
4011 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4012 	struct eventfd_ctx *eventfd)
4013 {
4014 	struct mem_cgroup_eventfd_list *ev, *tmp;
4015 
4016 	spin_lock(&memcg_oom_lock);
4017 
4018 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4019 		if (ev->eventfd == eventfd) {
4020 			list_del(&ev->list);
4021 			kfree(ev);
4022 		}
4023 	}
4024 
4025 	spin_unlock(&memcg_oom_lock);
4026 }
4027 
4028 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4029 {
4030 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4031 
4032 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4033 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4034 	seq_printf(sf, "oom_kill %lu\n",
4035 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4036 	return 0;
4037 }
4038 
4039 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4040 	struct cftype *cft, u64 val)
4041 {
4042 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4043 
4044 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4045 	if (!css->parent || !((val == 0) || (val == 1)))
4046 		return -EINVAL;
4047 
4048 	memcg->oom_kill_disable = val;
4049 	if (!val)
4050 		memcg_oom_recover(memcg);
4051 
4052 	return 0;
4053 }
4054 
4055 #ifdef CONFIG_CGROUP_WRITEBACK
4056 
4057 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4058 {
4059 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4060 }
4061 
4062 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4063 {
4064 	wb_domain_exit(&memcg->cgwb_domain);
4065 }
4066 
4067 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4068 {
4069 	wb_domain_size_changed(&memcg->cgwb_domain);
4070 }
4071 
4072 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4073 {
4074 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4075 
4076 	if (!memcg->css.parent)
4077 		return NULL;
4078 
4079 	return &memcg->cgwb_domain;
4080 }
4081 
4082 /*
4083  * idx can be of type enum memcg_stat_item or node_stat_item.
4084  * Keep in sync with memcg_exact_page().
4085  */
4086 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4087 {
4088 	long x = atomic_long_read(&memcg->vmstats[idx]);
4089 	int cpu;
4090 
4091 	for_each_online_cpu(cpu)
4092 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4093 	if (x < 0)
4094 		x = 0;
4095 	return x;
4096 }
4097 
4098 /**
4099  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4100  * @wb: bdi_writeback in question
4101  * @pfilepages: out parameter for number of file pages
4102  * @pheadroom: out parameter for number of allocatable pages according to memcg
4103  * @pdirty: out parameter for number of dirty pages
4104  * @pwriteback: out parameter for number of pages under writeback
4105  *
4106  * Determine the numbers of file, headroom, dirty, and writeback pages in
4107  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4108  * is a bit more involved.
4109  *
4110  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4111  * headroom is calculated as the lowest headroom of itself and the
4112  * ancestors.  Note that this doesn't consider the actual amount of
4113  * available memory in the system.  The caller should further cap
4114  * *@pheadroom accordingly.
4115  */
4116 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4117 			 unsigned long *pheadroom, unsigned long *pdirty,
4118 			 unsigned long *pwriteback)
4119 {
4120 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4121 	struct mem_cgroup *parent;
4122 
4123 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4124 
4125 	/* this should eventually include NR_UNSTABLE_NFS */
4126 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4127 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4128 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4129 	*pheadroom = PAGE_COUNTER_MAX;
4130 
4131 	while ((parent = parent_mem_cgroup(memcg))) {
4132 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4133 		unsigned long used = page_counter_read(&memcg->memory);
4134 
4135 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4136 		memcg = parent;
4137 	}
4138 }
4139 
4140 #else	/* CONFIG_CGROUP_WRITEBACK */
4141 
4142 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4143 {
4144 	return 0;
4145 }
4146 
4147 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4148 {
4149 }
4150 
4151 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4152 {
4153 }
4154 
4155 #endif	/* CONFIG_CGROUP_WRITEBACK */
4156 
4157 /*
4158  * DO NOT USE IN NEW FILES.
4159  *
4160  * "cgroup.event_control" implementation.
4161  *
4162  * This is way over-engineered.  It tries to support fully configurable
4163  * events for each user.  Such level of flexibility is completely
4164  * unnecessary especially in the light of the planned unified hierarchy.
4165  *
4166  * Please deprecate this and replace with something simpler if at all
4167  * possible.
4168  */
4169 
4170 /*
4171  * Unregister event and free resources.
4172  *
4173  * Gets called from workqueue.
4174  */
4175 static void memcg_event_remove(struct work_struct *work)
4176 {
4177 	struct mem_cgroup_event *event =
4178 		container_of(work, struct mem_cgroup_event, remove);
4179 	struct mem_cgroup *memcg = event->memcg;
4180 
4181 	remove_wait_queue(event->wqh, &event->wait);
4182 
4183 	event->unregister_event(memcg, event->eventfd);
4184 
4185 	/* Notify userspace the event is going away. */
4186 	eventfd_signal(event->eventfd, 1);
4187 
4188 	eventfd_ctx_put(event->eventfd);
4189 	kfree(event);
4190 	css_put(&memcg->css);
4191 }
4192 
4193 /*
4194  * Gets called on EPOLLHUP on eventfd when user closes it.
4195  *
4196  * Called with wqh->lock held and interrupts disabled.
4197  */
4198 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4199 			    int sync, void *key)
4200 {
4201 	struct mem_cgroup_event *event =
4202 		container_of(wait, struct mem_cgroup_event, wait);
4203 	struct mem_cgroup *memcg = event->memcg;
4204 	__poll_t flags = key_to_poll(key);
4205 
4206 	if (flags & EPOLLHUP) {
4207 		/*
4208 		 * If the event has been detached at cgroup removal, we
4209 		 * can simply return knowing the other side will cleanup
4210 		 * for us.
4211 		 *
4212 		 * We can't race against event freeing since the other
4213 		 * side will require wqh->lock via remove_wait_queue(),
4214 		 * which we hold.
4215 		 */
4216 		spin_lock(&memcg->event_list_lock);
4217 		if (!list_empty(&event->list)) {
4218 			list_del_init(&event->list);
4219 			/*
4220 			 * We are in atomic context, but cgroup_event_remove()
4221 			 * may sleep, so we have to call it in workqueue.
4222 			 */
4223 			schedule_work(&event->remove);
4224 		}
4225 		spin_unlock(&memcg->event_list_lock);
4226 	}
4227 
4228 	return 0;
4229 }
4230 
4231 static void memcg_event_ptable_queue_proc(struct file *file,
4232 		wait_queue_head_t *wqh, poll_table *pt)
4233 {
4234 	struct mem_cgroup_event *event =
4235 		container_of(pt, struct mem_cgroup_event, pt);
4236 
4237 	event->wqh = wqh;
4238 	add_wait_queue(wqh, &event->wait);
4239 }
4240 
4241 /*
4242  * DO NOT USE IN NEW FILES.
4243  *
4244  * Parse input and register new cgroup event handler.
4245  *
4246  * Input must be in format '<event_fd> <control_fd> <args>'.
4247  * Interpretation of args is defined by control file implementation.
4248  */
4249 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4250 					 char *buf, size_t nbytes, loff_t off)
4251 {
4252 	struct cgroup_subsys_state *css = of_css(of);
4253 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4254 	struct mem_cgroup_event *event;
4255 	struct cgroup_subsys_state *cfile_css;
4256 	unsigned int efd, cfd;
4257 	struct fd efile;
4258 	struct fd cfile;
4259 	const char *name;
4260 	char *endp;
4261 	int ret;
4262 
4263 	buf = strstrip(buf);
4264 
4265 	efd = simple_strtoul(buf, &endp, 10);
4266 	if (*endp != ' ')
4267 		return -EINVAL;
4268 	buf = endp + 1;
4269 
4270 	cfd = simple_strtoul(buf, &endp, 10);
4271 	if ((*endp != ' ') && (*endp != '\0'))
4272 		return -EINVAL;
4273 	buf = endp + 1;
4274 
4275 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4276 	if (!event)
4277 		return -ENOMEM;
4278 
4279 	event->memcg = memcg;
4280 	INIT_LIST_HEAD(&event->list);
4281 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4282 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4283 	INIT_WORK(&event->remove, memcg_event_remove);
4284 
4285 	efile = fdget(efd);
4286 	if (!efile.file) {
4287 		ret = -EBADF;
4288 		goto out_kfree;
4289 	}
4290 
4291 	event->eventfd = eventfd_ctx_fileget(efile.file);
4292 	if (IS_ERR(event->eventfd)) {
4293 		ret = PTR_ERR(event->eventfd);
4294 		goto out_put_efile;
4295 	}
4296 
4297 	cfile = fdget(cfd);
4298 	if (!cfile.file) {
4299 		ret = -EBADF;
4300 		goto out_put_eventfd;
4301 	}
4302 
4303 	/* the process need read permission on control file */
4304 	/* AV: shouldn't we check that it's been opened for read instead? */
4305 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4306 	if (ret < 0)
4307 		goto out_put_cfile;
4308 
4309 	/*
4310 	 * Determine the event callbacks and set them in @event.  This used
4311 	 * to be done via struct cftype but cgroup core no longer knows
4312 	 * about these events.  The following is crude but the whole thing
4313 	 * is for compatibility anyway.
4314 	 *
4315 	 * DO NOT ADD NEW FILES.
4316 	 */
4317 	name = cfile.file->f_path.dentry->d_name.name;
4318 
4319 	if (!strcmp(name, "memory.usage_in_bytes")) {
4320 		event->register_event = mem_cgroup_usage_register_event;
4321 		event->unregister_event = mem_cgroup_usage_unregister_event;
4322 	} else if (!strcmp(name, "memory.oom_control")) {
4323 		event->register_event = mem_cgroup_oom_register_event;
4324 		event->unregister_event = mem_cgroup_oom_unregister_event;
4325 	} else if (!strcmp(name, "memory.pressure_level")) {
4326 		event->register_event = vmpressure_register_event;
4327 		event->unregister_event = vmpressure_unregister_event;
4328 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4329 		event->register_event = memsw_cgroup_usage_register_event;
4330 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4331 	} else {
4332 		ret = -EINVAL;
4333 		goto out_put_cfile;
4334 	}
4335 
4336 	/*
4337 	 * Verify @cfile should belong to @css.  Also, remaining events are
4338 	 * automatically removed on cgroup destruction but the removal is
4339 	 * asynchronous, so take an extra ref on @css.
4340 	 */
4341 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4342 					       &memory_cgrp_subsys);
4343 	ret = -EINVAL;
4344 	if (IS_ERR(cfile_css))
4345 		goto out_put_cfile;
4346 	if (cfile_css != css) {
4347 		css_put(cfile_css);
4348 		goto out_put_cfile;
4349 	}
4350 
4351 	ret = event->register_event(memcg, event->eventfd, buf);
4352 	if (ret)
4353 		goto out_put_css;
4354 
4355 	vfs_poll(efile.file, &event->pt);
4356 
4357 	spin_lock(&memcg->event_list_lock);
4358 	list_add(&event->list, &memcg->event_list);
4359 	spin_unlock(&memcg->event_list_lock);
4360 
4361 	fdput(cfile);
4362 	fdput(efile);
4363 
4364 	return nbytes;
4365 
4366 out_put_css:
4367 	css_put(css);
4368 out_put_cfile:
4369 	fdput(cfile);
4370 out_put_eventfd:
4371 	eventfd_ctx_put(event->eventfd);
4372 out_put_efile:
4373 	fdput(efile);
4374 out_kfree:
4375 	kfree(event);
4376 
4377 	return ret;
4378 }
4379 
4380 static struct cftype mem_cgroup_legacy_files[] = {
4381 	{
4382 		.name = "usage_in_bytes",
4383 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4384 		.read_u64 = mem_cgroup_read_u64,
4385 	},
4386 	{
4387 		.name = "max_usage_in_bytes",
4388 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4389 		.write = mem_cgroup_reset,
4390 		.read_u64 = mem_cgroup_read_u64,
4391 	},
4392 	{
4393 		.name = "limit_in_bytes",
4394 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4395 		.write = mem_cgroup_write,
4396 		.read_u64 = mem_cgroup_read_u64,
4397 	},
4398 	{
4399 		.name = "soft_limit_in_bytes",
4400 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4401 		.write = mem_cgroup_write,
4402 		.read_u64 = mem_cgroup_read_u64,
4403 	},
4404 	{
4405 		.name = "failcnt",
4406 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4407 		.write = mem_cgroup_reset,
4408 		.read_u64 = mem_cgroup_read_u64,
4409 	},
4410 	{
4411 		.name = "stat",
4412 		.seq_show = memcg_stat_show,
4413 	},
4414 	{
4415 		.name = "force_empty",
4416 		.write = mem_cgroup_force_empty_write,
4417 	},
4418 	{
4419 		.name = "use_hierarchy",
4420 		.write_u64 = mem_cgroup_hierarchy_write,
4421 		.read_u64 = mem_cgroup_hierarchy_read,
4422 	},
4423 	{
4424 		.name = "cgroup.event_control",		/* XXX: for compat */
4425 		.write = memcg_write_event_control,
4426 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4427 	},
4428 	{
4429 		.name = "swappiness",
4430 		.read_u64 = mem_cgroup_swappiness_read,
4431 		.write_u64 = mem_cgroup_swappiness_write,
4432 	},
4433 	{
4434 		.name = "move_charge_at_immigrate",
4435 		.read_u64 = mem_cgroup_move_charge_read,
4436 		.write_u64 = mem_cgroup_move_charge_write,
4437 	},
4438 	{
4439 		.name = "oom_control",
4440 		.seq_show = mem_cgroup_oom_control_read,
4441 		.write_u64 = mem_cgroup_oom_control_write,
4442 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4443 	},
4444 	{
4445 		.name = "pressure_level",
4446 	},
4447 #ifdef CONFIG_NUMA
4448 	{
4449 		.name = "numa_stat",
4450 		.seq_show = memcg_numa_stat_show,
4451 	},
4452 #endif
4453 	{
4454 		.name = "kmem.limit_in_bytes",
4455 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4456 		.write = mem_cgroup_write,
4457 		.read_u64 = mem_cgroup_read_u64,
4458 	},
4459 	{
4460 		.name = "kmem.usage_in_bytes",
4461 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4462 		.read_u64 = mem_cgroup_read_u64,
4463 	},
4464 	{
4465 		.name = "kmem.failcnt",
4466 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4467 		.write = mem_cgroup_reset,
4468 		.read_u64 = mem_cgroup_read_u64,
4469 	},
4470 	{
4471 		.name = "kmem.max_usage_in_bytes",
4472 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4473 		.write = mem_cgroup_reset,
4474 		.read_u64 = mem_cgroup_read_u64,
4475 	},
4476 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4477 	{
4478 		.name = "kmem.slabinfo",
4479 		.seq_start = memcg_slab_start,
4480 		.seq_next = memcg_slab_next,
4481 		.seq_stop = memcg_slab_stop,
4482 		.seq_show = memcg_slab_show,
4483 	},
4484 #endif
4485 	{
4486 		.name = "kmem.tcp.limit_in_bytes",
4487 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4488 		.write = mem_cgroup_write,
4489 		.read_u64 = mem_cgroup_read_u64,
4490 	},
4491 	{
4492 		.name = "kmem.tcp.usage_in_bytes",
4493 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4494 		.read_u64 = mem_cgroup_read_u64,
4495 	},
4496 	{
4497 		.name = "kmem.tcp.failcnt",
4498 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4499 		.write = mem_cgroup_reset,
4500 		.read_u64 = mem_cgroup_read_u64,
4501 	},
4502 	{
4503 		.name = "kmem.tcp.max_usage_in_bytes",
4504 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4505 		.write = mem_cgroup_reset,
4506 		.read_u64 = mem_cgroup_read_u64,
4507 	},
4508 	{ },	/* terminate */
4509 };
4510 
4511 /*
4512  * Private memory cgroup IDR
4513  *
4514  * Swap-out records and page cache shadow entries need to store memcg
4515  * references in constrained space, so we maintain an ID space that is
4516  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4517  * memory-controlled cgroups to 64k.
4518  *
4519  * However, there usually are many references to the oflline CSS after
4520  * the cgroup has been destroyed, such as page cache or reclaimable
4521  * slab objects, that don't need to hang on to the ID. We want to keep
4522  * those dead CSS from occupying IDs, or we might quickly exhaust the
4523  * relatively small ID space and prevent the creation of new cgroups
4524  * even when there are much fewer than 64k cgroups - possibly none.
4525  *
4526  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4527  * be freed and recycled when it's no longer needed, which is usually
4528  * when the CSS is offlined.
4529  *
4530  * The only exception to that are records of swapped out tmpfs/shmem
4531  * pages that need to be attributed to live ancestors on swapin. But
4532  * those references are manageable from userspace.
4533  */
4534 
4535 static DEFINE_IDR(mem_cgroup_idr);
4536 
4537 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4538 {
4539 	if (memcg->id.id > 0) {
4540 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4541 		memcg->id.id = 0;
4542 	}
4543 }
4544 
4545 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4546 {
4547 	refcount_add(n, &memcg->id.ref);
4548 }
4549 
4550 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4551 {
4552 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4553 		mem_cgroup_id_remove(memcg);
4554 
4555 		/* Memcg ID pins CSS */
4556 		css_put(&memcg->css);
4557 	}
4558 }
4559 
4560 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4561 {
4562 	mem_cgroup_id_get_many(memcg, 1);
4563 }
4564 
4565 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4566 {
4567 	mem_cgroup_id_put_many(memcg, 1);
4568 }
4569 
4570 /**
4571  * mem_cgroup_from_id - look up a memcg from a memcg id
4572  * @id: the memcg id to look up
4573  *
4574  * Caller must hold rcu_read_lock().
4575  */
4576 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4577 {
4578 	WARN_ON_ONCE(!rcu_read_lock_held());
4579 	return idr_find(&mem_cgroup_idr, id);
4580 }
4581 
4582 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4583 {
4584 	struct mem_cgroup_per_node *pn;
4585 	int tmp = node;
4586 	/*
4587 	 * This routine is called against possible nodes.
4588 	 * But it's BUG to call kmalloc() against offline node.
4589 	 *
4590 	 * TODO: this routine can waste much memory for nodes which will
4591 	 *       never be onlined. It's better to use memory hotplug callback
4592 	 *       function.
4593 	 */
4594 	if (!node_state(node, N_NORMAL_MEMORY))
4595 		tmp = -1;
4596 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4597 	if (!pn)
4598 		return 1;
4599 
4600 	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4601 	if (!pn->lruvec_stat_local) {
4602 		kfree(pn);
4603 		return 1;
4604 	}
4605 
4606 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4607 	if (!pn->lruvec_stat_cpu) {
4608 		free_percpu(pn->lruvec_stat_local);
4609 		kfree(pn);
4610 		return 1;
4611 	}
4612 
4613 	lruvec_init(&pn->lruvec);
4614 	pn->usage_in_excess = 0;
4615 	pn->on_tree = false;
4616 	pn->memcg = memcg;
4617 
4618 	memcg->nodeinfo[node] = pn;
4619 	return 0;
4620 }
4621 
4622 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4623 {
4624 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4625 
4626 	if (!pn)
4627 		return;
4628 
4629 	free_percpu(pn->lruvec_stat_cpu);
4630 	free_percpu(pn->lruvec_stat_local);
4631 	kfree(pn);
4632 }
4633 
4634 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4635 {
4636 	int node;
4637 
4638 	for_each_node(node)
4639 		free_mem_cgroup_per_node_info(memcg, node);
4640 	free_percpu(memcg->vmstats_percpu);
4641 	free_percpu(memcg->vmstats_local);
4642 	kfree(memcg);
4643 }
4644 
4645 static void mem_cgroup_free(struct mem_cgroup *memcg)
4646 {
4647 	memcg_wb_domain_exit(memcg);
4648 	__mem_cgroup_free(memcg);
4649 }
4650 
4651 static struct mem_cgroup *mem_cgroup_alloc(void)
4652 {
4653 	struct mem_cgroup *memcg;
4654 	unsigned int size;
4655 	int node;
4656 
4657 	size = sizeof(struct mem_cgroup);
4658 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4659 
4660 	memcg = kzalloc(size, GFP_KERNEL);
4661 	if (!memcg)
4662 		return NULL;
4663 
4664 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4665 				 1, MEM_CGROUP_ID_MAX,
4666 				 GFP_KERNEL);
4667 	if (memcg->id.id < 0)
4668 		goto fail;
4669 
4670 	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4671 	if (!memcg->vmstats_local)
4672 		goto fail;
4673 
4674 	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4675 	if (!memcg->vmstats_percpu)
4676 		goto fail;
4677 
4678 	for_each_node(node)
4679 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4680 			goto fail;
4681 
4682 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4683 		goto fail;
4684 
4685 	INIT_WORK(&memcg->high_work, high_work_func);
4686 	memcg->last_scanned_node = MAX_NUMNODES;
4687 	INIT_LIST_HEAD(&memcg->oom_notify);
4688 	mutex_init(&memcg->thresholds_lock);
4689 	spin_lock_init(&memcg->move_lock);
4690 	vmpressure_init(&memcg->vmpressure);
4691 	INIT_LIST_HEAD(&memcg->event_list);
4692 	spin_lock_init(&memcg->event_list_lock);
4693 	memcg->socket_pressure = jiffies;
4694 #ifdef CONFIG_MEMCG_KMEM
4695 	memcg->kmemcg_id = -1;
4696 #endif
4697 #ifdef CONFIG_CGROUP_WRITEBACK
4698 	INIT_LIST_HEAD(&memcg->cgwb_list);
4699 #endif
4700 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4701 	return memcg;
4702 fail:
4703 	mem_cgroup_id_remove(memcg);
4704 	__mem_cgroup_free(memcg);
4705 	return NULL;
4706 }
4707 
4708 static struct cgroup_subsys_state * __ref
4709 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4710 {
4711 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4712 	struct mem_cgroup *memcg;
4713 	long error = -ENOMEM;
4714 
4715 	memcg = mem_cgroup_alloc();
4716 	if (!memcg)
4717 		return ERR_PTR(error);
4718 
4719 	memcg->high = PAGE_COUNTER_MAX;
4720 	memcg->soft_limit = PAGE_COUNTER_MAX;
4721 	if (parent) {
4722 		memcg->swappiness = mem_cgroup_swappiness(parent);
4723 		memcg->oom_kill_disable = parent->oom_kill_disable;
4724 	}
4725 	if (parent && parent->use_hierarchy) {
4726 		memcg->use_hierarchy = true;
4727 		page_counter_init(&memcg->memory, &parent->memory);
4728 		page_counter_init(&memcg->swap, &parent->swap);
4729 		page_counter_init(&memcg->memsw, &parent->memsw);
4730 		page_counter_init(&memcg->kmem, &parent->kmem);
4731 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4732 	} else {
4733 		page_counter_init(&memcg->memory, NULL);
4734 		page_counter_init(&memcg->swap, NULL);
4735 		page_counter_init(&memcg->memsw, NULL);
4736 		page_counter_init(&memcg->kmem, NULL);
4737 		page_counter_init(&memcg->tcpmem, NULL);
4738 		/*
4739 		 * Deeper hierachy with use_hierarchy == false doesn't make
4740 		 * much sense so let cgroup subsystem know about this
4741 		 * unfortunate state in our controller.
4742 		 */
4743 		if (parent != root_mem_cgroup)
4744 			memory_cgrp_subsys.broken_hierarchy = true;
4745 	}
4746 
4747 	/* The following stuff does not apply to the root */
4748 	if (!parent) {
4749 #ifdef CONFIG_MEMCG_KMEM
4750 		INIT_LIST_HEAD(&memcg->kmem_caches);
4751 #endif
4752 		root_mem_cgroup = memcg;
4753 		return &memcg->css;
4754 	}
4755 
4756 	error = memcg_online_kmem(memcg);
4757 	if (error)
4758 		goto fail;
4759 
4760 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4761 		static_branch_inc(&memcg_sockets_enabled_key);
4762 
4763 	return &memcg->css;
4764 fail:
4765 	mem_cgroup_id_remove(memcg);
4766 	mem_cgroup_free(memcg);
4767 	return ERR_PTR(-ENOMEM);
4768 }
4769 
4770 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4771 {
4772 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4773 
4774 	/*
4775 	 * A memcg must be visible for memcg_expand_shrinker_maps()
4776 	 * by the time the maps are allocated. So, we allocate maps
4777 	 * here, when for_each_mem_cgroup() can't skip it.
4778 	 */
4779 	if (memcg_alloc_shrinker_maps(memcg)) {
4780 		mem_cgroup_id_remove(memcg);
4781 		return -ENOMEM;
4782 	}
4783 
4784 	/* Online state pins memcg ID, memcg ID pins CSS */
4785 	refcount_set(&memcg->id.ref, 1);
4786 	css_get(css);
4787 	return 0;
4788 }
4789 
4790 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4791 {
4792 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4793 	struct mem_cgroup_event *event, *tmp;
4794 
4795 	/*
4796 	 * Unregister events and notify userspace.
4797 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4798 	 * directory to avoid race between userspace and kernelspace.
4799 	 */
4800 	spin_lock(&memcg->event_list_lock);
4801 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4802 		list_del_init(&event->list);
4803 		schedule_work(&event->remove);
4804 	}
4805 	spin_unlock(&memcg->event_list_lock);
4806 
4807 	page_counter_set_min(&memcg->memory, 0);
4808 	page_counter_set_low(&memcg->memory, 0);
4809 
4810 	memcg_offline_kmem(memcg);
4811 	wb_memcg_offline(memcg);
4812 
4813 	drain_all_stock(memcg);
4814 
4815 	mem_cgroup_id_put(memcg);
4816 }
4817 
4818 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4819 {
4820 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4821 
4822 	invalidate_reclaim_iterators(memcg);
4823 }
4824 
4825 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4826 {
4827 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4828 
4829 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4830 		static_branch_dec(&memcg_sockets_enabled_key);
4831 
4832 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4833 		static_branch_dec(&memcg_sockets_enabled_key);
4834 
4835 	vmpressure_cleanup(&memcg->vmpressure);
4836 	cancel_work_sync(&memcg->high_work);
4837 	mem_cgroup_remove_from_trees(memcg);
4838 	memcg_free_shrinker_maps(memcg);
4839 	memcg_free_kmem(memcg);
4840 	mem_cgroup_free(memcg);
4841 }
4842 
4843 /**
4844  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4845  * @css: the target css
4846  *
4847  * Reset the states of the mem_cgroup associated with @css.  This is
4848  * invoked when the userland requests disabling on the default hierarchy
4849  * but the memcg is pinned through dependency.  The memcg should stop
4850  * applying policies and should revert to the vanilla state as it may be
4851  * made visible again.
4852  *
4853  * The current implementation only resets the essential configurations.
4854  * This needs to be expanded to cover all the visible parts.
4855  */
4856 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4857 {
4858 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4859 
4860 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4861 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4862 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4863 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4864 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4865 	page_counter_set_min(&memcg->memory, 0);
4866 	page_counter_set_low(&memcg->memory, 0);
4867 	memcg->high = PAGE_COUNTER_MAX;
4868 	memcg->soft_limit = PAGE_COUNTER_MAX;
4869 	memcg_wb_domain_size_changed(memcg);
4870 }
4871 
4872 #ifdef CONFIG_MMU
4873 /* Handlers for move charge at task migration. */
4874 static int mem_cgroup_do_precharge(unsigned long count)
4875 {
4876 	int ret;
4877 
4878 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4879 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4880 	if (!ret) {
4881 		mc.precharge += count;
4882 		return ret;
4883 	}
4884 
4885 	/* Try charges one by one with reclaim, but do not retry */
4886 	while (count--) {
4887 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4888 		if (ret)
4889 			return ret;
4890 		mc.precharge++;
4891 		cond_resched();
4892 	}
4893 	return 0;
4894 }
4895 
4896 union mc_target {
4897 	struct page	*page;
4898 	swp_entry_t	ent;
4899 };
4900 
4901 enum mc_target_type {
4902 	MC_TARGET_NONE = 0,
4903 	MC_TARGET_PAGE,
4904 	MC_TARGET_SWAP,
4905 	MC_TARGET_DEVICE,
4906 };
4907 
4908 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4909 						unsigned long addr, pte_t ptent)
4910 {
4911 	struct page *page = vm_normal_page(vma, addr, ptent);
4912 
4913 	if (!page || !page_mapped(page))
4914 		return NULL;
4915 	if (PageAnon(page)) {
4916 		if (!(mc.flags & MOVE_ANON))
4917 			return NULL;
4918 	} else {
4919 		if (!(mc.flags & MOVE_FILE))
4920 			return NULL;
4921 	}
4922 	if (!get_page_unless_zero(page))
4923 		return NULL;
4924 
4925 	return page;
4926 }
4927 
4928 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4929 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4930 			pte_t ptent, swp_entry_t *entry)
4931 {
4932 	struct page *page = NULL;
4933 	swp_entry_t ent = pte_to_swp_entry(ptent);
4934 
4935 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4936 		return NULL;
4937 
4938 	/*
4939 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4940 	 * a device and because they are not accessible by CPU they are store
4941 	 * as special swap entry in the CPU page table.
4942 	 */
4943 	if (is_device_private_entry(ent)) {
4944 		page = device_private_entry_to_page(ent);
4945 		/*
4946 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4947 		 * a refcount of 1 when free (unlike normal page)
4948 		 */
4949 		if (!page_ref_add_unless(page, 1, 1))
4950 			return NULL;
4951 		return page;
4952 	}
4953 
4954 	/*
4955 	 * Because lookup_swap_cache() updates some statistics counter,
4956 	 * we call find_get_page() with swapper_space directly.
4957 	 */
4958 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4959 	if (do_memsw_account())
4960 		entry->val = ent.val;
4961 
4962 	return page;
4963 }
4964 #else
4965 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4966 			pte_t ptent, swp_entry_t *entry)
4967 {
4968 	return NULL;
4969 }
4970 #endif
4971 
4972 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4973 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4974 {
4975 	struct page *page = NULL;
4976 	struct address_space *mapping;
4977 	pgoff_t pgoff;
4978 
4979 	if (!vma->vm_file) /* anonymous vma */
4980 		return NULL;
4981 	if (!(mc.flags & MOVE_FILE))
4982 		return NULL;
4983 
4984 	mapping = vma->vm_file->f_mapping;
4985 	pgoff = linear_page_index(vma, addr);
4986 
4987 	/* page is moved even if it's not RSS of this task(page-faulted). */
4988 #ifdef CONFIG_SWAP
4989 	/* shmem/tmpfs may report page out on swap: account for that too. */
4990 	if (shmem_mapping(mapping)) {
4991 		page = find_get_entry(mapping, pgoff);
4992 		if (xa_is_value(page)) {
4993 			swp_entry_t swp = radix_to_swp_entry(page);
4994 			if (do_memsw_account())
4995 				*entry = swp;
4996 			page = find_get_page(swap_address_space(swp),
4997 					     swp_offset(swp));
4998 		}
4999 	} else
5000 		page = find_get_page(mapping, pgoff);
5001 #else
5002 	page = find_get_page(mapping, pgoff);
5003 #endif
5004 	return page;
5005 }
5006 
5007 /**
5008  * mem_cgroup_move_account - move account of the page
5009  * @page: the page
5010  * @compound: charge the page as compound or small page
5011  * @from: mem_cgroup which the page is moved from.
5012  * @to:	mem_cgroup which the page is moved to. @from != @to.
5013  *
5014  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5015  *
5016  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5017  * from old cgroup.
5018  */
5019 static int mem_cgroup_move_account(struct page *page,
5020 				   bool compound,
5021 				   struct mem_cgroup *from,
5022 				   struct mem_cgroup *to)
5023 {
5024 	unsigned long flags;
5025 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5026 	int ret;
5027 	bool anon;
5028 
5029 	VM_BUG_ON(from == to);
5030 	VM_BUG_ON_PAGE(PageLRU(page), page);
5031 	VM_BUG_ON(compound && !PageTransHuge(page));
5032 
5033 	/*
5034 	 * Prevent mem_cgroup_migrate() from looking at
5035 	 * page->mem_cgroup of its source page while we change it.
5036 	 */
5037 	ret = -EBUSY;
5038 	if (!trylock_page(page))
5039 		goto out;
5040 
5041 	ret = -EINVAL;
5042 	if (page->mem_cgroup != from)
5043 		goto out_unlock;
5044 
5045 	anon = PageAnon(page);
5046 
5047 	spin_lock_irqsave(&from->move_lock, flags);
5048 
5049 	if (!anon && page_mapped(page)) {
5050 		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
5051 		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
5052 	}
5053 
5054 	/*
5055 	 * move_lock grabbed above and caller set from->moving_account, so
5056 	 * mod_memcg_page_state will serialize updates to PageDirty.
5057 	 * So mapping should be stable for dirty pages.
5058 	 */
5059 	if (!anon && PageDirty(page)) {
5060 		struct address_space *mapping = page_mapping(page);
5061 
5062 		if (mapping_cap_account_dirty(mapping)) {
5063 			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
5064 			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
5065 		}
5066 	}
5067 
5068 	if (PageWriteback(page)) {
5069 		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
5070 		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
5071 	}
5072 
5073 	/*
5074 	 * It is safe to change page->mem_cgroup here because the page
5075 	 * is referenced, charged, and isolated - we can't race with
5076 	 * uncharging, charging, migration, or LRU putback.
5077 	 */
5078 
5079 	/* caller should have done css_get */
5080 	page->mem_cgroup = to;
5081 	spin_unlock_irqrestore(&from->move_lock, flags);
5082 
5083 	ret = 0;
5084 
5085 	local_irq_disable();
5086 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5087 	memcg_check_events(to, page);
5088 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5089 	memcg_check_events(from, page);
5090 	local_irq_enable();
5091 out_unlock:
5092 	unlock_page(page);
5093 out:
5094 	return ret;
5095 }
5096 
5097 /**
5098  * get_mctgt_type - get target type of moving charge
5099  * @vma: the vma the pte to be checked belongs
5100  * @addr: the address corresponding to the pte to be checked
5101  * @ptent: the pte to be checked
5102  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5103  *
5104  * Returns
5105  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5106  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5107  *     move charge. if @target is not NULL, the page is stored in target->page
5108  *     with extra refcnt got(Callers should handle it).
5109  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5110  *     target for charge migration. if @target is not NULL, the entry is stored
5111  *     in target->ent.
5112  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5113  *     (so ZONE_DEVICE page and thus not on the lru).
5114  *     For now we such page is charge like a regular page would be as for all
5115  *     intent and purposes it is just special memory taking the place of a
5116  *     regular page.
5117  *
5118  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5119  *
5120  * Called with pte lock held.
5121  */
5122 
5123 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5124 		unsigned long addr, pte_t ptent, union mc_target *target)
5125 {
5126 	struct page *page = NULL;
5127 	enum mc_target_type ret = MC_TARGET_NONE;
5128 	swp_entry_t ent = { .val = 0 };
5129 
5130 	if (pte_present(ptent))
5131 		page = mc_handle_present_pte(vma, addr, ptent);
5132 	else if (is_swap_pte(ptent))
5133 		page = mc_handle_swap_pte(vma, ptent, &ent);
5134 	else if (pte_none(ptent))
5135 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5136 
5137 	if (!page && !ent.val)
5138 		return ret;
5139 	if (page) {
5140 		/*
5141 		 * Do only loose check w/o serialization.
5142 		 * mem_cgroup_move_account() checks the page is valid or
5143 		 * not under LRU exclusion.
5144 		 */
5145 		if (page->mem_cgroup == mc.from) {
5146 			ret = MC_TARGET_PAGE;
5147 			if (is_device_private_page(page))
5148 				ret = MC_TARGET_DEVICE;
5149 			if (target)
5150 				target->page = page;
5151 		}
5152 		if (!ret || !target)
5153 			put_page(page);
5154 	}
5155 	/*
5156 	 * There is a swap entry and a page doesn't exist or isn't charged.
5157 	 * But we cannot move a tail-page in a THP.
5158 	 */
5159 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5160 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5161 		ret = MC_TARGET_SWAP;
5162 		if (target)
5163 			target->ent = ent;
5164 	}
5165 	return ret;
5166 }
5167 
5168 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5169 /*
5170  * We don't consider PMD mapped swapping or file mapped pages because THP does
5171  * not support them for now.
5172  * Caller should make sure that pmd_trans_huge(pmd) is true.
5173  */
5174 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5175 		unsigned long addr, pmd_t pmd, union mc_target *target)
5176 {
5177 	struct page *page = NULL;
5178 	enum mc_target_type ret = MC_TARGET_NONE;
5179 
5180 	if (unlikely(is_swap_pmd(pmd))) {
5181 		VM_BUG_ON(thp_migration_supported() &&
5182 				  !is_pmd_migration_entry(pmd));
5183 		return ret;
5184 	}
5185 	page = pmd_page(pmd);
5186 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5187 	if (!(mc.flags & MOVE_ANON))
5188 		return ret;
5189 	if (page->mem_cgroup == mc.from) {
5190 		ret = MC_TARGET_PAGE;
5191 		if (target) {
5192 			get_page(page);
5193 			target->page = page;
5194 		}
5195 	}
5196 	return ret;
5197 }
5198 #else
5199 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5200 		unsigned long addr, pmd_t pmd, union mc_target *target)
5201 {
5202 	return MC_TARGET_NONE;
5203 }
5204 #endif
5205 
5206 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5207 					unsigned long addr, unsigned long end,
5208 					struct mm_walk *walk)
5209 {
5210 	struct vm_area_struct *vma = walk->vma;
5211 	pte_t *pte;
5212 	spinlock_t *ptl;
5213 
5214 	ptl = pmd_trans_huge_lock(pmd, vma);
5215 	if (ptl) {
5216 		/*
5217 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5218 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5219 		 * this might change.
5220 		 */
5221 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5222 			mc.precharge += HPAGE_PMD_NR;
5223 		spin_unlock(ptl);
5224 		return 0;
5225 	}
5226 
5227 	if (pmd_trans_unstable(pmd))
5228 		return 0;
5229 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5230 	for (; addr != end; pte++, addr += PAGE_SIZE)
5231 		if (get_mctgt_type(vma, addr, *pte, NULL))
5232 			mc.precharge++;	/* increment precharge temporarily */
5233 	pte_unmap_unlock(pte - 1, ptl);
5234 	cond_resched();
5235 
5236 	return 0;
5237 }
5238 
5239 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5240 {
5241 	unsigned long precharge;
5242 
5243 	struct mm_walk mem_cgroup_count_precharge_walk = {
5244 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
5245 		.mm = mm,
5246 	};
5247 	down_read(&mm->mmap_sem);
5248 	walk_page_range(0, mm->highest_vm_end,
5249 			&mem_cgroup_count_precharge_walk);
5250 	up_read(&mm->mmap_sem);
5251 
5252 	precharge = mc.precharge;
5253 	mc.precharge = 0;
5254 
5255 	return precharge;
5256 }
5257 
5258 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5259 {
5260 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5261 
5262 	VM_BUG_ON(mc.moving_task);
5263 	mc.moving_task = current;
5264 	return mem_cgroup_do_precharge(precharge);
5265 }
5266 
5267 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5268 static void __mem_cgroup_clear_mc(void)
5269 {
5270 	struct mem_cgroup *from = mc.from;
5271 	struct mem_cgroup *to = mc.to;
5272 
5273 	/* we must uncharge all the leftover precharges from mc.to */
5274 	if (mc.precharge) {
5275 		cancel_charge(mc.to, mc.precharge);
5276 		mc.precharge = 0;
5277 	}
5278 	/*
5279 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5280 	 * we must uncharge here.
5281 	 */
5282 	if (mc.moved_charge) {
5283 		cancel_charge(mc.from, mc.moved_charge);
5284 		mc.moved_charge = 0;
5285 	}
5286 	/* we must fixup refcnts and charges */
5287 	if (mc.moved_swap) {
5288 		/* uncharge swap account from the old cgroup */
5289 		if (!mem_cgroup_is_root(mc.from))
5290 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5291 
5292 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5293 
5294 		/*
5295 		 * we charged both to->memory and to->memsw, so we
5296 		 * should uncharge to->memory.
5297 		 */
5298 		if (!mem_cgroup_is_root(mc.to))
5299 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5300 
5301 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5302 		css_put_many(&mc.to->css, mc.moved_swap);
5303 
5304 		mc.moved_swap = 0;
5305 	}
5306 	memcg_oom_recover(from);
5307 	memcg_oom_recover(to);
5308 	wake_up_all(&mc.waitq);
5309 }
5310 
5311 static void mem_cgroup_clear_mc(void)
5312 {
5313 	struct mm_struct *mm = mc.mm;
5314 
5315 	/*
5316 	 * we must clear moving_task before waking up waiters at the end of
5317 	 * task migration.
5318 	 */
5319 	mc.moving_task = NULL;
5320 	__mem_cgroup_clear_mc();
5321 	spin_lock(&mc.lock);
5322 	mc.from = NULL;
5323 	mc.to = NULL;
5324 	mc.mm = NULL;
5325 	spin_unlock(&mc.lock);
5326 
5327 	mmput(mm);
5328 }
5329 
5330 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5331 {
5332 	struct cgroup_subsys_state *css;
5333 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5334 	struct mem_cgroup *from;
5335 	struct task_struct *leader, *p;
5336 	struct mm_struct *mm;
5337 	unsigned long move_flags;
5338 	int ret = 0;
5339 
5340 	/* charge immigration isn't supported on the default hierarchy */
5341 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5342 		return 0;
5343 
5344 	/*
5345 	 * Multi-process migrations only happen on the default hierarchy
5346 	 * where charge immigration is not used.  Perform charge
5347 	 * immigration if @tset contains a leader and whine if there are
5348 	 * multiple.
5349 	 */
5350 	p = NULL;
5351 	cgroup_taskset_for_each_leader(leader, css, tset) {
5352 		WARN_ON_ONCE(p);
5353 		p = leader;
5354 		memcg = mem_cgroup_from_css(css);
5355 	}
5356 	if (!p)
5357 		return 0;
5358 
5359 	/*
5360 	 * We are now commited to this value whatever it is. Changes in this
5361 	 * tunable will only affect upcoming migrations, not the current one.
5362 	 * So we need to save it, and keep it going.
5363 	 */
5364 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5365 	if (!move_flags)
5366 		return 0;
5367 
5368 	from = mem_cgroup_from_task(p);
5369 
5370 	VM_BUG_ON(from == memcg);
5371 
5372 	mm = get_task_mm(p);
5373 	if (!mm)
5374 		return 0;
5375 	/* We move charges only when we move a owner of the mm */
5376 	if (mm->owner == p) {
5377 		VM_BUG_ON(mc.from);
5378 		VM_BUG_ON(mc.to);
5379 		VM_BUG_ON(mc.precharge);
5380 		VM_BUG_ON(mc.moved_charge);
5381 		VM_BUG_ON(mc.moved_swap);
5382 
5383 		spin_lock(&mc.lock);
5384 		mc.mm = mm;
5385 		mc.from = from;
5386 		mc.to = memcg;
5387 		mc.flags = move_flags;
5388 		spin_unlock(&mc.lock);
5389 		/* We set mc.moving_task later */
5390 
5391 		ret = mem_cgroup_precharge_mc(mm);
5392 		if (ret)
5393 			mem_cgroup_clear_mc();
5394 	} else {
5395 		mmput(mm);
5396 	}
5397 	return ret;
5398 }
5399 
5400 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5401 {
5402 	if (mc.to)
5403 		mem_cgroup_clear_mc();
5404 }
5405 
5406 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5407 				unsigned long addr, unsigned long end,
5408 				struct mm_walk *walk)
5409 {
5410 	int ret = 0;
5411 	struct vm_area_struct *vma = walk->vma;
5412 	pte_t *pte;
5413 	spinlock_t *ptl;
5414 	enum mc_target_type target_type;
5415 	union mc_target target;
5416 	struct page *page;
5417 
5418 	ptl = pmd_trans_huge_lock(pmd, vma);
5419 	if (ptl) {
5420 		if (mc.precharge < HPAGE_PMD_NR) {
5421 			spin_unlock(ptl);
5422 			return 0;
5423 		}
5424 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5425 		if (target_type == MC_TARGET_PAGE) {
5426 			page = target.page;
5427 			if (!isolate_lru_page(page)) {
5428 				if (!mem_cgroup_move_account(page, true,
5429 							     mc.from, mc.to)) {
5430 					mc.precharge -= HPAGE_PMD_NR;
5431 					mc.moved_charge += HPAGE_PMD_NR;
5432 				}
5433 				putback_lru_page(page);
5434 			}
5435 			put_page(page);
5436 		} else if (target_type == MC_TARGET_DEVICE) {
5437 			page = target.page;
5438 			if (!mem_cgroup_move_account(page, true,
5439 						     mc.from, mc.to)) {
5440 				mc.precharge -= HPAGE_PMD_NR;
5441 				mc.moved_charge += HPAGE_PMD_NR;
5442 			}
5443 			put_page(page);
5444 		}
5445 		spin_unlock(ptl);
5446 		return 0;
5447 	}
5448 
5449 	if (pmd_trans_unstable(pmd))
5450 		return 0;
5451 retry:
5452 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5453 	for (; addr != end; addr += PAGE_SIZE) {
5454 		pte_t ptent = *(pte++);
5455 		bool device = false;
5456 		swp_entry_t ent;
5457 
5458 		if (!mc.precharge)
5459 			break;
5460 
5461 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5462 		case MC_TARGET_DEVICE:
5463 			device = true;
5464 			/* fall through */
5465 		case MC_TARGET_PAGE:
5466 			page = target.page;
5467 			/*
5468 			 * We can have a part of the split pmd here. Moving it
5469 			 * can be done but it would be too convoluted so simply
5470 			 * ignore such a partial THP and keep it in original
5471 			 * memcg. There should be somebody mapping the head.
5472 			 */
5473 			if (PageTransCompound(page))
5474 				goto put;
5475 			if (!device && isolate_lru_page(page))
5476 				goto put;
5477 			if (!mem_cgroup_move_account(page, false,
5478 						mc.from, mc.to)) {
5479 				mc.precharge--;
5480 				/* we uncharge from mc.from later. */
5481 				mc.moved_charge++;
5482 			}
5483 			if (!device)
5484 				putback_lru_page(page);
5485 put:			/* get_mctgt_type() gets the page */
5486 			put_page(page);
5487 			break;
5488 		case MC_TARGET_SWAP:
5489 			ent = target.ent;
5490 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5491 				mc.precharge--;
5492 				/* we fixup refcnts and charges later. */
5493 				mc.moved_swap++;
5494 			}
5495 			break;
5496 		default:
5497 			break;
5498 		}
5499 	}
5500 	pte_unmap_unlock(pte - 1, ptl);
5501 	cond_resched();
5502 
5503 	if (addr != end) {
5504 		/*
5505 		 * We have consumed all precharges we got in can_attach().
5506 		 * We try charge one by one, but don't do any additional
5507 		 * charges to mc.to if we have failed in charge once in attach()
5508 		 * phase.
5509 		 */
5510 		ret = mem_cgroup_do_precharge(1);
5511 		if (!ret)
5512 			goto retry;
5513 	}
5514 
5515 	return ret;
5516 }
5517 
5518 static void mem_cgroup_move_charge(void)
5519 {
5520 	struct mm_walk mem_cgroup_move_charge_walk = {
5521 		.pmd_entry = mem_cgroup_move_charge_pte_range,
5522 		.mm = mc.mm,
5523 	};
5524 
5525 	lru_add_drain_all();
5526 	/*
5527 	 * Signal lock_page_memcg() to take the memcg's move_lock
5528 	 * while we're moving its pages to another memcg. Then wait
5529 	 * for already started RCU-only updates to finish.
5530 	 */
5531 	atomic_inc(&mc.from->moving_account);
5532 	synchronize_rcu();
5533 retry:
5534 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5535 		/*
5536 		 * Someone who are holding the mmap_sem might be waiting in
5537 		 * waitq. So we cancel all extra charges, wake up all waiters,
5538 		 * and retry. Because we cancel precharges, we might not be able
5539 		 * to move enough charges, but moving charge is a best-effort
5540 		 * feature anyway, so it wouldn't be a big problem.
5541 		 */
5542 		__mem_cgroup_clear_mc();
5543 		cond_resched();
5544 		goto retry;
5545 	}
5546 	/*
5547 	 * When we have consumed all precharges and failed in doing
5548 	 * additional charge, the page walk just aborts.
5549 	 */
5550 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5551 
5552 	up_read(&mc.mm->mmap_sem);
5553 	atomic_dec(&mc.from->moving_account);
5554 }
5555 
5556 static void mem_cgroup_move_task(void)
5557 {
5558 	if (mc.to) {
5559 		mem_cgroup_move_charge();
5560 		mem_cgroup_clear_mc();
5561 	}
5562 }
5563 #else	/* !CONFIG_MMU */
5564 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5565 {
5566 	return 0;
5567 }
5568 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5569 {
5570 }
5571 static void mem_cgroup_move_task(void)
5572 {
5573 }
5574 #endif
5575 
5576 /*
5577  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5578  * to verify whether we're attached to the default hierarchy on each mount
5579  * attempt.
5580  */
5581 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5582 {
5583 	/*
5584 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5585 	 * guarantees that @root doesn't have any children, so turning it
5586 	 * on for the root memcg is enough.
5587 	 */
5588 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5589 		root_mem_cgroup->use_hierarchy = true;
5590 	else
5591 		root_mem_cgroup->use_hierarchy = false;
5592 }
5593 
5594 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5595 {
5596 	if (value == PAGE_COUNTER_MAX)
5597 		seq_puts(m, "max\n");
5598 	else
5599 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5600 
5601 	return 0;
5602 }
5603 
5604 static u64 memory_current_read(struct cgroup_subsys_state *css,
5605 			       struct cftype *cft)
5606 {
5607 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5608 
5609 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5610 }
5611 
5612 static int memory_min_show(struct seq_file *m, void *v)
5613 {
5614 	return seq_puts_memcg_tunable(m,
5615 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5616 }
5617 
5618 static ssize_t memory_min_write(struct kernfs_open_file *of,
5619 				char *buf, size_t nbytes, loff_t off)
5620 {
5621 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5622 	unsigned long min;
5623 	int err;
5624 
5625 	buf = strstrip(buf);
5626 	err = page_counter_memparse(buf, "max", &min);
5627 	if (err)
5628 		return err;
5629 
5630 	page_counter_set_min(&memcg->memory, min);
5631 
5632 	return nbytes;
5633 }
5634 
5635 static int memory_low_show(struct seq_file *m, void *v)
5636 {
5637 	return seq_puts_memcg_tunable(m,
5638 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5639 }
5640 
5641 static ssize_t memory_low_write(struct kernfs_open_file *of,
5642 				char *buf, size_t nbytes, loff_t off)
5643 {
5644 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5645 	unsigned long low;
5646 	int err;
5647 
5648 	buf = strstrip(buf);
5649 	err = page_counter_memparse(buf, "max", &low);
5650 	if (err)
5651 		return err;
5652 
5653 	page_counter_set_low(&memcg->memory, low);
5654 
5655 	return nbytes;
5656 }
5657 
5658 static int memory_high_show(struct seq_file *m, void *v)
5659 {
5660 	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5661 }
5662 
5663 static ssize_t memory_high_write(struct kernfs_open_file *of,
5664 				 char *buf, size_t nbytes, loff_t off)
5665 {
5666 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5667 	unsigned long nr_pages;
5668 	unsigned long high;
5669 	int err;
5670 
5671 	buf = strstrip(buf);
5672 	err = page_counter_memparse(buf, "max", &high);
5673 	if (err)
5674 		return err;
5675 
5676 	memcg->high = high;
5677 
5678 	nr_pages = page_counter_read(&memcg->memory);
5679 	if (nr_pages > high)
5680 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5681 					     GFP_KERNEL, true);
5682 
5683 	memcg_wb_domain_size_changed(memcg);
5684 	return nbytes;
5685 }
5686 
5687 static int memory_max_show(struct seq_file *m, void *v)
5688 {
5689 	return seq_puts_memcg_tunable(m,
5690 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5691 }
5692 
5693 static ssize_t memory_max_write(struct kernfs_open_file *of,
5694 				char *buf, size_t nbytes, loff_t off)
5695 {
5696 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5697 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5698 	bool drained = false;
5699 	unsigned long max;
5700 	int err;
5701 
5702 	buf = strstrip(buf);
5703 	err = page_counter_memparse(buf, "max", &max);
5704 	if (err)
5705 		return err;
5706 
5707 	xchg(&memcg->memory.max, max);
5708 
5709 	for (;;) {
5710 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5711 
5712 		if (nr_pages <= max)
5713 			break;
5714 
5715 		if (signal_pending(current)) {
5716 			err = -EINTR;
5717 			break;
5718 		}
5719 
5720 		if (!drained) {
5721 			drain_all_stock(memcg);
5722 			drained = true;
5723 			continue;
5724 		}
5725 
5726 		if (nr_reclaims) {
5727 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5728 							  GFP_KERNEL, true))
5729 				nr_reclaims--;
5730 			continue;
5731 		}
5732 
5733 		memcg_memory_event(memcg, MEMCG_OOM);
5734 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5735 			break;
5736 	}
5737 
5738 	memcg_wb_domain_size_changed(memcg);
5739 	return nbytes;
5740 }
5741 
5742 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
5743 {
5744 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
5745 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
5746 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
5747 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
5748 	seq_printf(m, "oom_kill %lu\n",
5749 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
5750 }
5751 
5752 static int memory_events_show(struct seq_file *m, void *v)
5753 {
5754 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5755 
5756 	__memory_events_show(m, memcg->memory_events);
5757 	return 0;
5758 }
5759 
5760 static int memory_events_local_show(struct seq_file *m, void *v)
5761 {
5762 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5763 
5764 	__memory_events_show(m, memcg->memory_events_local);
5765 	return 0;
5766 }
5767 
5768 static int memory_stat_show(struct seq_file *m, void *v)
5769 {
5770 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5771 	char *buf;
5772 
5773 	buf = memory_stat_format(memcg);
5774 	if (!buf)
5775 		return -ENOMEM;
5776 	seq_puts(m, buf);
5777 	kfree(buf);
5778 	return 0;
5779 }
5780 
5781 static int memory_oom_group_show(struct seq_file *m, void *v)
5782 {
5783 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5784 
5785 	seq_printf(m, "%d\n", memcg->oom_group);
5786 
5787 	return 0;
5788 }
5789 
5790 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5791 				      char *buf, size_t nbytes, loff_t off)
5792 {
5793 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5794 	int ret, oom_group;
5795 
5796 	buf = strstrip(buf);
5797 	if (!buf)
5798 		return -EINVAL;
5799 
5800 	ret = kstrtoint(buf, 0, &oom_group);
5801 	if (ret)
5802 		return ret;
5803 
5804 	if (oom_group != 0 && oom_group != 1)
5805 		return -EINVAL;
5806 
5807 	memcg->oom_group = oom_group;
5808 
5809 	return nbytes;
5810 }
5811 
5812 static struct cftype memory_files[] = {
5813 	{
5814 		.name = "current",
5815 		.flags = CFTYPE_NOT_ON_ROOT,
5816 		.read_u64 = memory_current_read,
5817 	},
5818 	{
5819 		.name = "min",
5820 		.flags = CFTYPE_NOT_ON_ROOT,
5821 		.seq_show = memory_min_show,
5822 		.write = memory_min_write,
5823 	},
5824 	{
5825 		.name = "low",
5826 		.flags = CFTYPE_NOT_ON_ROOT,
5827 		.seq_show = memory_low_show,
5828 		.write = memory_low_write,
5829 	},
5830 	{
5831 		.name = "high",
5832 		.flags = CFTYPE_NOT_ON_ROOT,
5833 		.seq_show = memory_high_show,
5834 		.write = memory_high_write,
5835 	},
5836 	{
5837 		.name = "max",
5838 		.flags = CFTYPE_NOT_ON_ROOT,
5839 		.seq_show = memory_max_show,
5840 		.write = memory_max_write,
5841 	},
5842 	{
5843 		.name = "events",
5844 		.flags = CFTYPE_NOT_ON_ROOT,
5845 		.file_offset = offsetof(struct mem_cgroup, events_file),
5846 		.seq_show = memory_events_show,
5847 	},
5848 	{
5849 		.name = "events.local",
5850 		.flags = CFTYPE_NOT_ON_ROOT,
5851 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
5852 		.seq_show = memory_events_local_show,
5853 	},
5854 	{
5855 		.name = "stat",
5856 		.flags = CFTYPE_NOT_ON_ROOT,
5857 		.seq_show = memory_stat_show,
5858 	},
5859 	{
5860 		.name = "oom.group",
5861 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5862 		.seq_show = memory_oom_group_show,
5863 		.write = memory_oom_group_write,
5864 	},
5865 	{ }	/* terminate */
5866 };
5867 
5868 struct cgroup_subsys memory_cgrp_subsys = {
5869 	.css_alloc = mem_cgroup_css_alloc,
5870 	.css_online = mem_cgroup_css_online,
5871 	.css_offline = mem_cgroup_css_offline,
5872 	.css_released = mem_cgroup_css_released,
5873 	.css_free = mem_cgroup_css_free,
5874 	.css_reset = mem_cgroup_css_reset,
5875 	.can_attach = mem_cgroup_can_attach,
5876 	.cancel_attach = mem_cgroup_cancel_attach,
5877 	.post_attach = mem_cgroup_move_task,
5878 	.bind = mem_cgroup_bind,
5879 	.dfl_cftypes = memory_files,
5880 	.legacy_cftypes = mem_cgroup_legacy_files,
5881 	.early_init = 0,
5882 };
5883 
5884 /**
5885  * mem_cgroup_protected - check if memory consumption is in the normal range
5886  * @root: the top ancestor of the sub-tree being checked
5887  * @memcg: the memory cgroup to check
5888  *
5889  * WARNING: This function is not stateless! It can only be used as part
5890  *          of a top-down tree iteration, not for isolated queries.
5891  *
5892  * Returns one of the following:
5893  *   MEMCG_PROT_NONE: cgroup memory is not protected
5894  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
5895  *     an unprotected supply of reclaimable memory from other cgroups.
5896  *   MEMCG_PROT_MIN: cgroup memory is protected
5897  *
5898  * @root is exclusive; it is never protected when looked at directly
5899  *
5900  * To provide a proper hierarchical behavior, effective memory.min/low values
5901  * are used. Below is the description of how effective memory.low is calculated.
5902  * Effective memory.min values is calculated in the same way.
5903  *
5904  * Effective memory.low is always equal or less than the original memory.low.
5905  * If there is no memory.low overcommittment (which is always true for
5906  * top-level memory cgroups), these two values are equal.
5907  * Otherwise, it's a part of parent's effective memory.low,
5908  * calculated as a cgroup's memory.low usage divided by sum of sibling's
5909  * memory.low usages, where memory.low usage is the size of actually
5910  * protected memory.
5911  *
5912  *                                             low_usage
5913  * elow = min( memory.low, parent->elow * ------------------ ),
5914  *                                        siblings_low_usage
5915  *
5916  *             | memory.current, if memory.current < memory.low
5917  * low_usage = |
5918  *	       | 0, otherwise.
5919  *
5920  *
5921  * Such definition of the effective memory.low provides the expected
5922  * hierarchical behavior: parent's memory.low value is limiting
5923  * children, unprotected memory is reclaimed first and cgroups,
5924  * which are not using their guarantee do not affect actual memory
5925  * distribution.
5926  *
5927  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5928  *
5929  *     A      A/memory.low = 2G, A/memory.current = 6G
5930  *    //\\
5931  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
5932  *            C/memory.low = 1G  C/memory.current = 2G
5933  *            D/memory.low = 0   D/memory.current = 2G
5934  *            E/memory.low = 10G E/memory.current = 0
5935  *
5936  * and the memory pressure is applied, the following memory distribution
5937  * is expected (approximately):
5938  *
5939  *     A/memory.current = 2G
5940  *
5941  *     B/memory.current = 1.3G
5942  *     C/memory.current = 0.6G
5943  *     D/memory.current = 0
5944  *     E/memory.current = 0
5945  *
5946  * These calculations require constant tracking of the actual low usages
5947  * (see propagate_protected_usage()), as well as recursive calculation of
5948  * effective memory.low values. But as we do call mem_cgroup_protected()
5949  * path for each memory cgroup top-down from the reclaim,
5950  * it's possible to optimize this part, and save calculated elow
5951  * for next usage. This part is intentionally racy, but it's ok,
5952  * as memory.low is a best-effort mechanism.
5953  */
5954 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5955 						struct mem_cgroup *memcg)
5956 {
5957 	struct mem_cgroup *parent;
5958 	unsigned long emin, parent_emin;
5959 	unsigned long elow, parent_elow;
5960 	unsigned long usage;
5961 
5962 	if (mem_cgroup_disabled())
5963 		return MEMCG_PROT_NONE;
5964 
5965 	if (!root)
5966 		root = root_mem_cgroup;
5967 	if (memcg == root)
5968 		return MEMCG_PROT_NONE;
5969 
5970 	usage = page_counter_read(&memcg->memory);
5971 	if (!usage)
5972 		return MEMCG_PROT_NONE;
5973 
5974 	emin = memcg->memory.min;
5975 	elow = memcg->memory.low;
5976 
5977 	parent = parent_mem_cgroup(memcg);
5978 	/* No parent means a non-hierarchical mode on v1 memcg */
5979 	if (!parent)
5980 		return MEMCG_PROT_NONE;
5981 
5982 	if (parent == root)
5983 		goto exit;
5984 
5985 	parent_emin = READ_ONCE(parent->memory.emin);
5986 	emin = min(emin, parent_emin);
5987 	if (emin && parent_emin) {
5988 		unsigned long min_usage, siblings_min_usage;
5989 
5990 		min_usage = min(usage, memcg->memory.min);
5991 		siblings_min_usage = atomic_long_read(
5992 			&parent->memory.children_min_usage);
5993 
5994 		if (min_usage && siblings_min_usage)
5995 			emin = min(emin, parent_emin * min_usage /
5996 				   siblings_min_usage);
5997 	}
5998 
5999 	parent_elow = READ_ONCE(parent->memory.elow);
6000 	elow = min(elow, parent_elow);
6001 	if (elow && parent_elow) {
6002 		unsigned long low_usage, siblings_low_usage;
6003 
6004 		low_usage = min(usage, memcg->memory.low);
6005 		siblings_low_usage = atomic_long_read(
6006 			&parent->memory.children_low_usage);
6007 
6008 		if (low_usage && siblings_low_usage)
6009 			elow = min(elow, parent_elow * low_usage /
6010 				   siblings_low_usage);
6011 	}
6012 
6013 exit:
6014 	memcg->memory.emin = emin;
6015 	memcg->memory.elow = elow;
6016 
6017 	if (usage <= emin)
6018 		return MEMCG_PROT_MIN;
6019 	else if (usage <= elow)
6020 		return MEMCG_PROT_LOW;
6021 	else
6022 		return MEMCG_PROT_NONE;
6023 }
6024 
6025 /**
6026  * mem_cgroup_try_charge - try charging a page
6027  * @page: page to charge
6028  * @mm: mm context of the victim
6029  * @gfp_mask: reclaim mode
6030  * @memcgp: charged memcg return
6031  * @compound: charge the page as compound or small page
6032  *
6033  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6034  * pages according to @gfp_mask if necessary.
6035  *
6036  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6037  * Otherwise, an error code is returned.
6038  *
6039  * After page->mapping has been set up, the caller must finalize the
6040  * charge with mem_cgroup_commit_charge().  Or abort the transaction
6041  * with mem_cgroup_cancel_charge() in case page instantiation fails.
6042  */
6043 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6044 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6045 			  bool compound)
6046 {
6047 	struct mem_cgroup *memcg = NULL;
6048 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6049 	int ret = 0;
6050 
6051 	if (mem_cgroup_disabled())
6052 		goto out;
6053 
6054 	if (PageSwapCache(page)) {
6055 		/*
6056 		 * Every swap fault against a single page tries to charge the
6057 		 * page, bail as early as possible.  shmem_unuse() encounters
6058 		 * already charged pages, too.  The USED bit is protected by
6059 		 * the page lock, which serializes swap cache removal, which
6060 		 * in turn serializes uncharging.
6061 		 */
6062 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6063 		if (compound_head(page)->mem_cgroup)
6064 			goto out;
6065 
6066 		if (do_swap_account) {
6067 			swp_entry_t ent = { .val = page_private(page), };
6068 			unsigned short id = lookup_swap_cgroup_id(ent);
6069 
6070 			rcu_read_lock();
6071 			memcg = mem_cgroup_from_id(id);
6072 			if (memcg && !css_tryget_online(&memcg->css))
6073 				memcg = NULL;
6074 			rcu_read_unlock();
6075 		}
6076 	}
6077 
6078 	if (!memcg)
6079 		memcg = get_mem_cgroup_from_mm(mm);
6080 
6081 	ret = try_charge(memcg, gfp_mask, nr_pages);
6082 
6083 	css_put(&memcg->css);
6084 out:
6085 	*memcgp = memcg;
6086 	return ret;
6087 }
6088 
6089 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6090 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6091 			  bool compound)
6092 {
6093 	struct mem_cgroup *memcg;
6094 	int ret;
6095 
6096 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6097 	memcg = *memcgp;
6098 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6099 	return ret;
6100 }
6101 
6102 /**
6103  * mem_cgroup_commit_charge - commit a page charge
6104  * @page: page to charge
6105  * @memcg: memcg to charge the page to
6106  * @lrucare: page might be on LRU already
6107  * @compound: charge the page as compound or small page
6108  *
6109  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6110  * after page->mapping has been set up.  This must happen atomically
6111  * as part of the page instantiation, i.e. under the page table lock
6112  * for anonymous pages, under the page lock for page and swap cache.
6113  *
6114  * In addition, the page must not be on the LRU during the commit, to
6115  * prevent racing with task migration.  If it might be, use @lrucare.
6116  *
6117  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6118  */
6119 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6120 			      bool lrucare, bool compound)
6121 {
6122 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6123 
6124 	VM_BUG_ON_PAGE(!page->mapping, page);
6125 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6126 
6127 	if (mem_cgroup_disabled())
6128 		return;
6129 	/*
6130 	 * Swap faults will attempt to charge the same page multiple
6131 	 * times.  But reuse_swap_page() might have removed the page
6132 	 * from swapcache already, so we can't check PageSwapCache().
6133 	 */
6134 	if (!memcg)
6135 		return;
6136 
6137 	commit_charge(page, memcg, lrucare);
6138 
6139 	local_irq_disable();
6140 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6141 	memcg_check_events(memcg, page);
6142 	local_irq_enable();
6143 
6144 	if (do_memsw_account() && PageSwapCache(page)) {
6145 		swp_entry_t entry = { .val = page_private(page) };
6146 		/*
6147 		 * The swap entry might not get freed for a long time,
6148 		 * let's not wait for it.  The page already received a
6149 		 * memory+swap charge, drop the swap entry duplicate.
6150 		 */
6151 		mem_cgroup_uncharge_swap(entry, nr_pages);
6152 	}
6153 }
6154 
6155 /**
6156  * mem_cgroup_cancel_charge - cancel a page charge
6157  * @page: page to charge
6158  * @memcg: memcg to charge the page to
6159  * @compound: charge the page as compound or small page
6160  *
6161  * Cancel a charge transaction started by mem_cgroup_try_charge().
6162  */
6163 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6164 		bool compound)
6165 {
6166 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6167 
6168 	if (mem_cgroup_disabled())
6169 		return;
6170 	/*
6171 	 * Swap faults will attempt to charge the same page multiple
6172 	 * times.  But reuse_swap_page() might have removed the page
6173 	 * from swapcache already, so we can't check PageSwapCache().
6174 	 */
6175 	if (!memcg)
6176 		return;
6177 
6178 	cancel_charge(memcg, nr_pages);
6179 }
6180 
6181 struct uncharge_gather {
6182 	struct mem_cgroup *memcg;
6183 	unsigned long pgpgout;
6184 	unsigned long nr_anon;
6185 	unsigned long nr_file;
6186 	unsigned long nr_kmem;
6187 	unsigned long nr_huge;
6188 	unsigned long nr_shmem;
6189 	struct page *dummy_page;
6190 };
6191 
6192 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6193 {
6194 	memset(ug, 0, sizeof(*ug));
6195 }
6196 
6197 static void uncharge_batch(const struct uncharge_gather *ug)
6198 {
6199 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6200 	unsigned long flags;
6201 
6202 	if (!mem_cgroup_is_root(ug->memcg)) {
6203 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6204 		if (do_memsw_account())
6205 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6206 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6207 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6208 		memcg_oom_recover(ug->memcg);
6209 	}
6210 
6211 	local_irq_save(flags);
6212 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6213 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6214 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6215 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6216 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6217 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6218 	memcg_check_events(ug->memcg, ug->dummy_page);
6219 	local_irq_restore(flags);
6220 
6221 	if (!mem_cgroup_is_root(ug->memcg))
6222 		css_put_many(&ug->memcg->css, nr_pages);
6223 }
6224 
6225 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6226 {
6227 	VM_BUG_ON_PAGE(PageLRU(page), page);
6228 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6229 			!PageHWPoison(page) , page);
6230 
6231 	if (!page->mem_cgroup)
6232 		return;
6233 
6234 	/*
6235 	 * Nobody should be changing or seriously looking at
6236 	 * page->mem_cgroup at this point, we have fully
6237 	 * exclusive access to the page.
6238 	 */
6239 
6240 	if (ug->memcg != page->mem_cgroup) {
6241 		if (ug->memcg) {
6242 			uncharge_batch(ug);
6243 			uncharge_gather_clear(ug);
6244 		}
6245 		ug->memcg = page->mem_cgroup;
6246 	}
6247 
6248 	if (!PageKmemcg(page)) {
6249 		unsigned int nr_pages = 1;
6250 
6251 		if (PageTransHuge(page)) {
6252 			nr_pages <<= compound_order(page);
6253 			ug->nr_huge += nr_pages;
6254 		}
6255 		if (PageAnon(page))
6256 			ug->nr_anon += nr_pages;
6257 		else {
6258 			ug->nr_file += nr_pages;
6259 			if (PageSwapBacked(page))
6260 				ug->nr_shmem += nr_pages;
6261 		}
6262 		ug->pgpgout++;
6263 	} else {
6264 		ug->nr_kmem += 1 << compound_order(page);
6265 		__ClearPageKmemcg(page);
6266 	}
6267 
6268 	ug->dummy_page = page;
6269 	page->mem_cgroup = NULL;
6270 }
6271 
6272 static void uncharge_list(struct list_head *page_list)
6273 {
6274 	struct uncharge_gather ug;
6275 	struct list_head *next;
6276 
6277 	uncharge_gather_clear(&ug);
6278 
6279 	/*
6280 	 * Note that the list can be a single page->lru; hence the
6281 	 * do-while loop instead of a simple list_for_each_entry().
6282 	 */
6283 	next = page_list->next;
6284 	do {
6285 		struct page *page;
6286 
6287 		page = list_entry(next, struct page, lru);
6288 		next = page->lru.next;
6289 
6290 		uncharge_page(page, &ug);
6291 	} while (next != page_list);
6292 
6293 	if (ug.memcg)
6294 		uncharge_batch(&ug);
6295 }
6296 
6297 /**
6298  * mem_cgroup_uncharge - uncharge a page
6299  * @page: page to uncharge
6300  *
6301  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6302  * mem_cgroup_commit_charge().
6303  */
6304 void mem_cgroup_uncharge(struct page *page)
6305 {
6306 	struct uncharge_gather ug;
6307 
6308 	if (mem_cgroup_disabled())
6309 		return;
6310 
6311 	/* Don't touch page->lru of any random page, pre-check: */
6312 	if (!page->mem_cgroup)
6313 		return;
6314 
6315 	uncharge_gather_clear(&ug);
6316 	uncharge_page(page, &ug);
6317 	uncharge_batch(&ug);
6318 }
6319 
6320 /**
6321  * mem_cgroup_uncharge_list - uncharge a list of page
6322  * @page_list: list of pages to uncharge
6323  *
6324  * Uncharge a list of pages previously charged with
6325  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6326  */
6327 void mem_cgroup_uncharge_list(struct list_head *page_list)
6328 {
6329 	if (mem_cgroup_disabled())
6330 		return;
6331 
6332 	if (!list_empty(page_list))
6333 		uncharge_list(page_list);
6334 }
6335 
6336 /**
6337  * mem_cgroup_migrate - charge a page's replacement
6338  * @oldpage: currently circulating page
6339  * @newpage: replacement page
6340  *
6341  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6342  * be uncharged upon free.
6343  *
6344  * Both pages must be locked, @newpage->mapping must be set up.
6345  */
6346 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6347 {
6348 	struct mem_cgroup *memcg;
6349 	unsigned int nr_pages;
6350 	bool compound;
6351 	unsigned long flags;
6352 
6353 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6354 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6355 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6356 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6357 		       newpage);
6358 
6359 	if (mem_cgroup_disabled())
6360 		return;
6361 
6362 	/* Page cache replacement: new page already charged? */
6363 	if (newpage->mem_cgroup)
6364 		return;
6365 
6366 	/* Swapcache readahead pages can get replaced before being charged */
6367 	memcg = oldpage->mem_cgroup;
6368 	if (!memcg)
6369 		return;
6370 
6371 	/* Force-charge the new page. The old one will be freed soon */
6372 	compound = PageTransHuge(newpage);
6373 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6374 
6375 	page_counter_charge(&memcg->memory, nr_pages);
6376 	if (do_memsw_account())
6377 		page_counter_charge(&memcg->memsw, nr_pages);
6378 	css_get_many(&memcg->css, nr_pages);
6379 
6380 	commit_charge(newpage, memcg, false);
6381 
6382 	local_irq_save(flags);
6383 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6384 	memcg_check_events(memcg, newpage);
6385 	local_irq_restore(flags);
6386 }
6387 
6388 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6389 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6390 
6391 void mem_cgroup_sk_alloc(struct sock *sk)
6392 {
6393 	struct mem_cgroup *memcg;
6394 
6395 	if (!mem_cgroup_sockets_enabled)
6396 		return;
6397 
6398 	/*
6399 	 * Socket cloning can throw us here with sk_memcg already
6400 	 * filled. It won't however, necessarily happen from
6401 	 * process context. So the test for root memcg given
6402 	 * the current task's memcg won't help us in this case.
6403 	 *
6404 	 * Respecting the original socket's memcg is a better
6405 	 * decision in this case.
6406 	 */
6407 	if (sk->sk_memcg) {
6408 		css_get(&sk->sk_memcg->css);
6409 		return;
6410 	}
6411 
6412 	rcu_read_lock();
6413 	memcg = mem_cgroup_from_task(current);
6414 	if (memcg == root_mem_cgroup)
6415 		goto out;
6416 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6417 		goto out;
6418 	if (css_tryget_online(&memcg->css))
6419 		sk->sk_memcg = memcg;
6420 out:
6421 	rcu_read_unlock();
6422 }
6423 
6424 void mem_cgroup_sk_free(struct sock *sk)
6425 {
6426 	if (sk->sk_memcg)
6427 		css_put(&sk->sk_memcg->css);
6428 }
6429 
6430 /**
6431  * mem_cgroup_charge_skmem - charge socket memory
6432  * @memcg: memcg to charge
6433  * @nr_pages: number of pages to charge
6434  *
6435  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6436  * @memcg's configured limit, %false if the charge had to be forced.
6437  */
6438 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6439 {
6440 	gfp_t gfp_mask = GFP_KERNEL;
6441 
6442 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6443 		struct page_counter *fail;
6444 
6445 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6446 			memcg->tcpmem_pressure = 0;
6447 			return true;
6448 		}
6449 		page_counter_charge(&memcg->tcpmem, nr_pages);
6450 		memcg->tcpmem_pressure = 1;
6451 		return false;
6452 	}
6453 
6454 	/* Don't block in the packet receive path */
6455 	if (in_softirq())
6456 		gfp_mask = GFP_NOWAIT;
6457 
6458 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6459 
6460 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6461 		return true;
6462 
6463 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6464 	return false;
6465 }
6466 
6467 /**
6468  * mem_cgroup_uncharge_skmem - uncharge socket memory
6469  * @memcg: memcg to uncharge
6470  * @nr_pages: number of pages to uncharge
6471  */
6472 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6473 {
6474 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6475 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6476 		return;
6477 	}
6478 
6479 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6480 
6481 	refill_stock(memcg, nr_pages);
6482 }
6483 
6484 static int __init cgroup_memory(char *s)
6485 {
6486 	char *token;
6487 
6488 	while ((token = strsep(&s, ",")) != NULL) {
6489 		if (!*token)
6490 			continue;
6491 		if (!strcmp(token, "nosocket"))
6492 			cgroup_memory_nosocket = true;
6493 		if (!strcmp(token, "nokmem"))
6494 			cgroup_memory_nokmem = true;
6495 	}
6496 	return 0;
6497 }
6498 __setup("cgroup.memory=", cgroup_memory);
6499 
6500 /*
6501  * subsys_initcall() for memory controller.
6502  *
6503  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6504  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6505  * basically everything that doesn't depend on a specific mem_cgroup structure
6506  * should be initialized from here.
6507  */
6508 static int __init mem_cgroup_init(void)
6509 {
6510 	int cpu, node;
6511 
6512 #ifdef CONFIG_MEMCG_KMEM
6513 	/*
6514 	 * Kmem cache creation is mostly done with the slab_mutex held,
6515 	 * so use a workqueue with limited concurrency to avoid stalling
6516 	 * all worker threads in case lots of cgroups are created and
6517 	 * destroyed simultaneously.
6518 	 */
6519 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6520 	BUG_ON(!memcg_kmem_cache_wq);
6521 #endif
6522 
6523 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6524 				  memcg_hotplug_cpu_dead);
6525 
6526 	for_each_possible_cpu(cpu)
6527 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6528 			  drain_local_stock);
6529 
6530 	for_each_node(node) {
6531 		struct mem_cgroup_tree_per_node *rtpn;
6532 
6533 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6534 				    node_online(node) ? node : NUMA_NO_NODE);
6535 
6536 		rtpn->rb_root = RB_ROOT;
6537 		rtpn->rb_rightmost = NULL;
6538 		spin_lock_init(&rtpn->lock);
6539 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6540 	}
6541 
6542 	return 0;
6543 }
6544 subsys_initcall(mem_cgroup_init);
6545 
6546 #ifdef CONFIG_MEMCG_SWAP
6547 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6548 {
6549 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6550 		/*
6551 		 * The root cgroup cannot be destroyed, so it's refcount must
6552 		 * always be >= 1.
6553 		 */
6554 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6555 			VM_BUG_ON(1);
6556 			break;
6557 		}
6558 		memcg = parent_mem_cgroup(memcg);
6559 		if (!memcg)
6560 			memcg = root_mem_cgroup;
6561 	}
6562 	return memcg;
6563 }
6564 
6565 /**
6566  * mem_cgroup_swapout - transfer a memsw charge to swap
6567  * @page: page whose memsw charge to transfer
6568  * @entry: swap entry to move the charge to
6569  *
6570  * Transfer the memsw charge of @page to @entry.
6571  */
6572 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6573 {
6574 	struct mem_cgroup *memcg, *swap_memcg;
6575 	unsigned int nr_entries;
6576 	unsigned short oldid;
6577 
6578 	VM_BUG_ON_PAGE(PageLRU(page), page);
6579 	VM_BUG_ON_PAGE(page_count(page), page);
6580 
6581 	if (!do_memsw_account())
6582 		return;
6583 
6584 	memcg = page->mem_cgroup;
6585 
6586 	/* Readahead page, never charged */
6587 	if (!memcg)
6588 		return;
6589 
6590 	/*
6591 	 * In case the memcg owning these pages has been offlined and doesn't
6592 	 * have an ID allocated to it anymore, charge the closest online
6593 	 * ancestor for the swap instead and transfer the memory+swap charge.
6594 	 */
6595 	swap_memcg = mem_cgroup_id_get_online(memcg);
6596 	nr_entries = hpage_nr_pages(page);
6597 	/* Get references for the tail pages, too */
6598 	if (nr_entries > 1)
6599 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6600 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6601 				   nr_entries);
6602 	VM_BUG_ON_PAGE(oldid, page);
6603 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6604 
6605 	page->mem_cgroup = NULL;
6606 
6607 	if (!mem_cgroup_is_root(memcg))
6608 		page_counter_uncharge(&memcg->memory, nr_entries);
6609 
6610 	if (memcg != swap_memcg) {
6611 		if (!mem_cgroup_is_root(swap_memcg))
6612 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6613 		page_counter_uncharge(&memcg->memsw, nr_entries);
6614 	}
6615 
6616 	/*
6617 	 * Interrupts should be disabled here because the caller holds the
6618 	 * i_pages lock which is taken with interrupts-off. It is
6619 	 * important here to have the interrupts disabled because it is the
6620 	 * only synchronisation we have for updating the per-CPU variables.
6621 	 */
6622 	VM_BUG_ON(!irqs_disabled());
6623 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6624 				     -nr_entries);
6625 	memcg_check_events(memcg, page);
6626 
6627 	if (!mem_cgroup_is_root(memcg))
6628 		css_put_many(&memcg->css, nr_entries);
6629 }
6630 
6631 /**
6632  * mem_cgroup_try_charge_swap - try charging swap space for a page
6633  * @page: page being added to swap
6634  * @entry: swap entry to charge
6635  *
6636  * Try to charge @page's memcg for the swap space at @entry.
6637  *
6638  * Returns 0 on success, -ENOMEM on failure.
6639  */
6640 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6641 {
6642 	unsigned int nr_pages = hpage_nr_pages(page);
6643 	struct page_counter *counter;
6644 	struct mem_cgroup *memcg;
6645 	unsigned short oldid;
6646 
6647 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6648 		return 0;
6649 
6650 	memcg = page->mem_cgroup;
6651 
6652 	/* Readahead page, never charged */
6653 	if (!memcg)
6654 		return 0;
6655 
6656 	if (!entry.val) {
6657 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6658 		return 0;
6659 	}
6660 
6661 	memcg = mem_cgroup_id_get_online(memcg);
6662 
6663 	if (!mem_cgroup_is_root(memcg) &&
6664 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6665 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6666 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6667 		mem_cgroup_id_put(memcg);
6668 		return -ENOMEM;
6669 	}
6670 
6671 	/* Get references for the tail pages, too */
6672 	if (nr_pages > 1)
6673 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6674 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6675 	VM_BUG_ON_PAGE(oldid, page);
6676 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6677 
6678 	return 0;
6679 }
6680 
6681 /**
6682  * mem_cgroup_uncharge_swap - uncharge swap space
6683  * @entry: swap entry to uncharge
6684  * @nr_pages: the amount of swap space to uncharge
6685  */
6686 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6687 {
6688 	struct mem_cgroup *memcg;
6689 	unsigned short id;
6690 
6691 	if (!do_swap_account)
6692 		return;
6693 
6694 	id = swap_cgroup_record(entry, 0, nr_pages);
6695 	rcu_read_lock();
6696 	memcg = mem_cgroup_from_id(id);
6697 	if (memcg) {
6698 		if (!mem_cgroup_is_root(memcg)) {
6699 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6700 				page_counter_uncharge(&memcg->swap, nr_pages);
6701 			else
6702 				page_counter_uncharge(&memcg->memsw, nr_pages);
6703 		}
6704 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6705 		mem_cgroup_id_put_many(memcg, nr_pages);
6706 	}
6707 	rcu_read_unlock();
6708 }
6709 
6710 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6711 {
6712 	long nr_swap_pages = get_nr_swap_pages();
6713 
6714 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6715 		return nr_swap_pages;
6716 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6717 		nr_swap_pages = min_t(long, nr_swap_pages,
6718 				      READ_ONCE(memcg->swap.max) -
6719 				      page_counter_read(&memcg->swap));
6720 	return nr_swap_pages;
6721 }
6722 
6723 bool mem_cgroup_swap_full(struct page *page)
6724 {
6725 	struct mem_cgroup *memcg;
6726 
6727 	VM_BUG_ON_PAGE(!PageLocked(page), page);
6728 
6729 	if (vm_swap_full())
6730 		return true;
6731 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6732 		return false;
6733 
6734 	memcg = page->mem_cgroup;
6735 	if (!memcg)
6736 		return false;
6737 
6738 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6739 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6740 			return true;
6741 
6742 	return false;
6743 }
6744 
6745 /* for remember boot option*/
6746 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6747 static int really_do_swap_account __initdata = 1;
6748 #else
6749 static int really_do_swap_account __initdata;
6750 #endif
6751 
6752 static int __init enable_swap_account(char *s)
6753 {
6754 	if (!strcmp(s, "1"))
6755 		really_do_swap_account = 1;
6756 	else if (!strcmp(s, "0"))
6757 		really_do_swap_account = 0;
6758 	return 1;
6759 }
6760 __setup("swapaccount=", enable_swap_account);
6761 
6762 static u64 swap_current_read(struct cgroup_subsys_state *css,
6763 			     struct cftype *cft)
6764 {
6765 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6766 
6767 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6768 }
6769 
6770 static int swap_max_show(struct seq_file *m, void *v)
6771 {
6772 	return seq_puts_memcg_tunable(m,
6773 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6774 }
6775 
6776 static ssize_t swap_max_write(struct kernfs_open_file *of,
6777 			      char *buf, size_t nbytes, loff_t off)
6778 {
6779 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6780 	unsigned long max;
6781 	int err;
6782 
6783 	buf = strstrip(buf);
6784 	err = page_counter_memparse(buf, "max", &max);
6785 	if (err)
6786 		return err;
6787 
6788 	xchg(&memcg->swap.max, max);
6789 
6790 	return nbytes;
6791 }
6792 
6793 static int swap_events_show(struct seq_file *m, void *v)
6794 {
6795 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6796 
6797 	seq_printf(m, "max %lu\n",
6798 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6799 	seq_printf(m, "fail %lu\n",
6800 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6801 
6802 	return 0;
6803 }
6804 
6805 static struct cftype swap_files[] = {
6806 	{
6807 		.name = "swap.current",
6808 		.flags = CFTYPE_NOT_ON_ROOT,
6809 		.read_u64 = swap_current_read,
6810 	},
6811 	{
6812 		.name = "swap.max",
6813 		.flags = CFTYPE_NOT_ON_ROOT,
6814 		.seq_show = swap_max_show,
6815 		.write = swap_max_write,
6816 	},
6817 	{
6818 		.name = "swap.events",
6819 		.flags = CFTYPE_NOT_ON_ROOT,
6820 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
6821 		.seq_show = swap_events_show,
6822 	},
6823 	{ }	/* terminate */
6824 };
6825 
6826 static struct cftype memsw_cgroup_files[] = {
6827 	{
6828 		.name = "memsw.usage_in_bytes",
6829 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6830 		.read_u64 = mem_cgroup_read_u64,
6831 	},
6832 	{
6833 		.name = "memsw.max_usage_in_bytes",
6834 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6835 		.write = mem_cgroup_reset,
6836 		.read_u64 = mem_cgroup_read_u64,
6837 	},
6838 	{
6839 		.name = "memsw.limit_in_bytes",
6840 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6841 		.write = mem_cgroup_write,
6842 		.read_u64 = mem_cgroup_read_u64,
6843 	},
6844 	{
6845 		.name = "memsw.failcnt",
6846 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6847 		.write = mem_cgroup_reset,
6848 		.read_u64 = mem_cgroup_read_u64,
6849 	},
6850 	{ },	/* terminate */
6851 };
6852 
6853 static int __init mem_cgroup_swap_init(void)
6854 {
6855 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6856 		do_swap_account = 1;
6857 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6858 					       swap_files));
6859 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6860 						  memsw_cgroup_files));
6861 	}
6862 	return 0;
6863 }
6864 subsys_initcall(mem_cgroup_swap_init);
6865 
6866 #endif /* CONFIG_MEMCG_SWAP */
6867