1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for maintaining information about logical memory blocks. 4 * 5 * Peter Bergner, IBM Corp. June 2001. 6 * Copyright (C) 2001 Peter Bergner. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/init.h> 12 #include <linux/bitops.h> 13 #include <linux/poison.h> 14 #include <linux/pfn.h> 15 #include <linux/debugfs.h> 16 #include <linux/kmemleak.h> 17 #include <linux/seq_file.h> 18 #include <linux/memblock.h> 19 20 #include <asm/sections.h> 21 #include <linux/io.h> 22 23 #include "internal.h" 24 25 #define INIT_MEMBLOCK_REGIONS 128 26 #define INIT_PHYSMEM_REGIONS 4 27 28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS 29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS 30 #endif 31 32 /** 33 * DOC: memblock overview 34 * 35 * Memblock is a method of managing memory regions during the early 36 * boot period when the usual kernel memory allocators are not up and 37 * running. 38 * 39 * Memblock views the system memory as collections of contiguous 40 * regions. There are several types of these collections: 41 * 42 * * ``memory`` - describes the physical memory available to the 43 * kernel; this may differ from the actual physical memory installed 44 * in the system, for instance when the memory is restricted with 45 * ``mem=`` command line parameter 46 * * ``reserved`` - describes the regions that were allocated 47 * * ``physmem`` - describes the actual physical memory available during 48 * boot regardless of the possible restrictions and memory hot(un)plug; 49 * the ``physmem`` type is only available on some architectures. 50 * 51 * Each region is represented by struct memblock_region that 52 * defines the region extents, its attributes and NUMA node id on NUMA 53 * systems. Every memory type is described by the struct memblock_type 54 * which contains an array of memory regions along with 55 * the allocator metadata. The "memory" and "reserved" types are nicely 56 * wrapped with struct memblock. This structure is statically 57 * initialized at build time. The region arrays are initially sized to 58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS 59 * for "reserved". The region array for "physmem" is initially sized to 60 * %INIT_PHYSMEM_REGIONS. 61 * The memblock_allow_resize() enables automatic resizing of the region 62 * arrays during addition of new regions. This feature should be used 63 * with care so that memory allocated for the region array will not 64 * overlap with areas that should be reserved, for example initrd. 65 * 66 * The early architecture setup should tell memblock what the physical 67 * memory layout is by using memblock_add() or memblock_add_node() 68 * functions. The first function does not assign the region to a NUMA 69 * node and it is appropriate for UMA systems. Yet, it is possible to 70 * use it on NUMA systems as well and assign the region to a NUMA node 71 * later in the setup process using memblock_set_node(). The 72 * memblock_add_node() performs such an assignment directly. 73 * 74 * Once memblock is setup the memory can be allocated using one of the 75 * API variants: 76 * 77 * * memblock_phys_alloc*() - these functions return the **physical** 78 * address of the allocated memory 79 * * memblock_alloc*() - these functions return the **virtual** address 80 * of the allocated memory. 81 * 82 * Note, that both API variants use implicit assumptions about allowed 83 * memory ranges and the fallback methods. Consult the documentation 84 * of memblock_alloc_internal() and memblock_alloc_range_nid() 85 * functions for more elaborate description. 86 * 87 * As the system boot progresses, the architecture specific mem_init() 88 * function frees all the memory to the buddy page allocator. 89 * 90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the 91 * memblock data structures (except "physmem") will be discarded after the 92 * system initialization completes. 93 */ 94 95 #ifndef CONFIG_NEED_MULTIPLE_NODES 96 struct pglist_data __refdata contig_page_data; 97 EXPORT_SYMBOL(contig_page_data); 98 #endif 99 100 unsigned long max_low_pfn; 101 unsigned long min_low_pfn; 102 unsigned long max_pfn; 103 unsigned long long max_possible_pfn; 104 105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; 107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; 109 #endif 110 111 struct memblock memblock __initdata_memblock = { 112 .memory.regions = memblock_memory_init_regions, 113 .memory.cnt = 1, /* empty dummy entry */ 114 .memory.max = INIT_MEMBLOCK_REGIONS, 115 .memory.name = "memory", 116 117 .reserved.regions = memblock_reserved_init_regions, 118 .reserved.cnt = 1, /* empty dummy entry */ 119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, 120 .reserved.name = "reserved", 121 122 .bottom_up = false, 123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 124 }; 125 126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 127 struct memblock_type physmem = { 128 .regions = memblock_physmem_init_regions, 129 .cnt = 1, /* empty dummy entry */ 130 .max = INIT_PHYSMEM_REGIONS, 131 .name = "physmem", 132 }; 133 #endif 134 135 /* 136 * keep a pointer to &memblock.memory in the text section to use it in 137 * __next_mem_range() and its helpers. 138 * For architectures that do not keep memblock data after init, this 139 * pointer will be reset to NULL at memblock_discard() 140 */ 141 static __refdata struct memblock_type *memblock_memory = &memblock.memory; 142 143 #define for_each_memblock_type(i, memblock_type, rgn) \ 144 for (i = 0, rgn = &memblock_type->regions[0]; \ 145 i < memblock_type->cnt; \ 146 i++, rgn = &memblock_type->regions[i]) 147 148 #define memblock_dbg(fmt, ...) \ 149 do { \ 150 if (memblock_debug) \ 151 pr_info(fmt, ##__VA_ARGS__); \ 152 } while (0) 153 154 static int memblock_debug __initdata_memblock; 155 static bool system_has_some_mirror __initdata_memblock = false; 156 static int memblock_can_resize __initdata_memblock; 157 static int memblock_memory_in_slab __initdata_memblock = 0; 158 static int memblock_reserved_in_slab __initdata_memblock = 0; 159 160 static enum memblock_flags __init_memblock choose_memblock_flags(void) 161 { 162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 163 } 164 165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 167 { 168 return *size = min(*size, PHYS_ADDR_MAX - base); 169 } 170 171 /* 172 * Address comparison utilities 173 */ 174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 175 phys_addr_t base2, phys_addr_t size2) 176 { 177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 178 } 179 180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 181 phys_addr_t base, phys_addr_t size) 182 { 183 unsigned long i; 184 185 for (i = 0; i < type->cnt; i++) 186 if (memblock_addrs_overlap(base, size, type->regions[i].base, 187 type->regions[i].size)) 188 break; 189 return i < type->cnt; 190 } 191 192 /** 193 * __memblock_find_range_bottom_up - find free area utility in bottom-up 194 * @start: start of candidate range 195 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 196 * %MEMBLOCK_ALLOC_ACCESSIBLE 197 * @size: size of free area to find 198 * @align: alignment of free area to find 199 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 200 * @flags: pick from blocks based on memory attributes 201 * 202 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 203 * 204 * Return: 205 * Found address on success, 0 on failure. 206 */ 207 static phys_addr_t __init_memblock 208 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 209 phys_addr_t size, phys_addr_t align, int nid, 210 enum memblock_flags flags) 211 { 212 phys_addr_t this_start, this_end, cand; 213 u64 i; 214 215 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 216 this_start = clamp(this_start, start, end); 217 this_end = clamp(this_end, start, end); 218 219 cand = round_up(this_start, align); 220 if (cand < this_end && this_end - cand >= size) 221 return cand; 222 } 223 224 return 0; 225 } 226 227 /** 228 * __memblock_find_range_top_down - find free area utility, in top-down 229 * @start: start of candidate range 230 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 231 * %MEMBLOCK_ALLOC_ACCESSIBLE 232 * @size: size of free area to find 233 * @align: alignment of free area to find 234 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 235 * @flags: pick from blocks based on memory attributes 236 * 237 * Utility called from memblock_find_in_range_node(), find free area top-down. 238 * 239 * Return: 240 * Found address on success, 0 on failure. 241 */ 242 static phys_addr_t __init_memblock 243 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 244 phys_addr_t size, phys_addr_t align, int nid, 245 enum memblock_flags flags) 246 { 247 phys_addr_t this_start, this_end, cand; 248 u64 i; 249 250 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 251 NULL) { 252 this_start = clamp(this_start, start, end); 253 this_end = clamp(this_end, start, end); 254 255 if (this_end < size) 256 continue; 257 258 cand = round_down(this_end - size, align); 259 if (cand >= this_start) 260 return cand; 261 } 262 263 return 0; 264 } 265 266 /** 267 * memblock_find_in_range_node - find free area in given range and node 268 * @size: size of free area to find 269 * @align: alignment of free area to find 270 * @start: start of candidate range 271 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 272 * %MEMBLOCK_ALLOC_ACCESSIBLE 273 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 274 * @flags: pick from blocks based on memory attributes 275 * 276 * Find @size free area aligned to @align in the specified range and node. 277 * 278 * When allocation direction is bottom-up, the @start should be greater 279 * than the end of the kernel image. Otherwise, it will be trimmed. The 280 * reason is that we want the bottom-up allocation just near the kernel 281 * image so it is highly likely that the allocated memory and the kernel 282 * will reside in the same node. 283 * 284 * If bottom-up allocation failed, will try to allocate memory top-down. 285 * 286 * Return: 287 * Found address on success, 0 on failure. 288 */ 289 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 290 phys_addr_t align, phys_addr_t start, 291 phys_addr_t end, int nid, 292 enum memblock_flags flags) 293 { 294 phys_addr_t kernel_end, ret; 295 296 /* pump up @end */ 297 if (end == MEMBLOCK_ALLOC_ACCESSIBLE || 298 end == MEMBLOCK_ALLOC_KASAN) 299 end = memblock.current_limit; 300 301 /* avoid allocating the first page */ 302 start = max_t(phys_addr_t, start, PAGE_SIZE); 303 end = max(start, end); 304 kernel_end = __pa_symbol(_end); 305 306 /* 307 * try bottom-up allocation only when bottom-up mode 308 * is set and @end is above the kernel image. 309 */ 310 if (memblock_bottom_up() && end > kernel_end) { 311 phys_addr_t bottom_up_start; 312 313 /* make sure we will allocate above the kernel */ 314 bottom_up_start = max(start, kernel_end); 315 316 /* ok, try bottom-up allocation first */ 317 ret = __memblock_find_range_bottom_up(bottom_up_start, end, 318 size, align, nid, flags); 319 if (ret) 320 return ret; 321 322 /* 323 * we always limit bottom-up allocation above the kernel, 324 * but top-down allocation doesn't have the limit, so 325 * retrying top-down allocation may succeed when bottom-up 326 * allocation failed. 327 * 328 * bottom-up allocation is expected to be fail very rarely, 329 * so we use WARN_ONCE() here to see the stack trace if 330 * fail happens. 331 */ 332 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE), 333 "memblock: bottom-up allocation failed, memory hotremove may be affected\n"); 334 } 335 336 return __memblock_find_range_top_down(start, end, size, align, nid, 337 flags); 338 } 339 340 /** 341 * memblock_find_in_range - find free area in given range 342 * @start: start of candidate range 343 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 344 * %MEMBLOCK_ALLOC_ACCESSIBLE 345 * @size: size of free area to find 346 * @align: alignment of free area to find 347 * 348 * Find @size free area aligned to @align in the specified range. 349 * 350 * Return: 351 * Found address on success, 0 on failure. 352 */ 353 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 354 phys_addr_t end, phys_addr_t size, 355 phys_addr_t align) 356 { 357 phys_addr_t ret; 358 enum memblock_flags flags = choose_memblock_flags(); 359 360 again: 361 ret = memblock_find_in_range_node(size, align, start, end, 362 NUMA_NO_NODE, flags); 363 364 if (!ret && (flags & MEMBLOCK_MIRROR)) { 365 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 366 &size); 367 flags &= ~MEMBLOCK_MIRROR; 368 goto again; 369 } 370 371 return ret; 372 } 373 374 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 375 { 376 type->total_size -= type->regions[r].size; 377 memmove(&type->regions[r], &type->regions[r + 1], 378 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 379 type->cnt--; 380 381 /* Special case for empty arrays */ 382 if (type->cnt == 0) { 383 WARN_ON(type->total_size != 0); 384 type->cnt = 1; 385 type->regions[0].base = 0; 386 type->regions[0].size = 0; 387 type->regions[0].flags = 0; 388 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 389 } 390 } 391 392 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK 393 /** 394 * memblock_discard - discard memory and reserved arrays if they were allocated 395 */ 396 void __init memblock_discard(void) 397 { 398 phys_addr_t addr, size; 399 400 if (memblock.reserved.regions != memblock_reserved_init_regions) { 401 addr = __pa(memblock.reserved.regions); 402 size = PAGE_ALIGN(sizeof(struct memblock_region) * 403 memblock.reserved.max); 404 __memblock_free_late(addr, size); 405 } 406 407 if (memblock.memory.regions != memblock_memory_init_regions) { 408 addr = __pa(memblock.memory.regions); 409 size = PAGE_ALIGN(sizeof(struct memblock_region) * 410 memblock.memory.max); 411 __memblock_free_late(addr, size); 412 } 413 414 memblock_memory = NULL; 415 } 416 #endif 417 418 /** 419 * memblock_double_array - double the size of the memblock regions array 420 * @type: memblock type of the regions array being doubled 421 * @new_area_start: starting address of memory range to avoid overlap with 422 * @new_area_size: size of memory range to avoid overlap with 423 * 424 * Double the size of the @type regions array. If memblock is being used to 425 * allocate memory for a new reserved regions array and there is a previously 426 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 427 * waiting to be reserved, ensure the memory used by the new array does 428 * not overlap. 429 * 430 * Return: 431 * 0 on success, -1 on failure. 432 */ 433 static int __init_memblock memblock_double_array(struct memblock_type *type, 434 phys_addr_t new_area_start, 435 phys_addr_t new_area_size) 436 { 437 struct memblock_region *new_array, *old_array; 438 phys_addr_t old_alloc_size, new_alloc_size; 439 phys_addr_t old_size, new_size, addr, new_end; 440 int use_slab = slab_is_available(); 441 int *in_slab; 442 443 /* We don't allow resizing until we know about the reserved regions 444 * of memory that aren't suitable for allocation 445 */ 446 if (!memblock_can_resize) 447 return -1; 448 449 /* Calculate new doubled size */ 450 old_size = type->max * sizeof(struct memblock_region); 451 new_size = old_size << 1; 452 /* 453 * We need to allocated new one align to PAGE_SIZE, 454 * so we can free them completely later. 455 */ 456 old_alloc_size = PAGE_ALIGN(old_size); 457 new_alloc_size = PAGE_ALIGN(new_size); 458 459 /* Retrieve the slab flag */ 460 if (type == &memblock.memory) 461 in_slab = &memblock_memory_in_slab; 462 else 463 in_slab = &memblock_reserved_in_slab; 464 465 /* Try to find some space for it */ 466 if (use_slab) { 467 new_array = kmalloc(new_size, GFP_KERNEL); 468 addr = new_array ? __pa(new_array) : 0; 469 } else { 470 /* only exclude range when trying to double reserved.regions */ 471 if (type != &memblock.reserved) 472 new_area_start = new_area_size = 0; 473 474 addr = memblock_find_in_range(new_area_start + new_area_size, 475 memblock.current_limit, 476 new_alloc_size, PAGE_SIZE); 477 if (!addr && new_area_size) 478 addr = memblock_find_in_range(0, 479 min(new_area_start, memblock.current_limit), 480 new_alloc_size, PAGE_SIZE); 481 482 new_array = addr ? __va(addr) : NULL; 483 } 484 if (!addr) { 485 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 486 type->name, type->max, type->max * 2); 487 return -1; 488 } 489 490 new_end = addr + new_size - 1; 491 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 492 type->name, type->max * 2, &addr, &new_end); 493 494 /* 495 * Found space, we now need to move the array over before we add the 496 * reserved region since it may be our reserved array itself that is 497 * full. 498 */ 499 memcpy(new_array, type->regions, old_size); 500 memset(new_array + type->max, 0, old_size); 501 old_array = type->regions; 502 type->regions = new_array; 503 type->max <<= 1; 504 505 /* Free old array. We needn't free it if the array is the static one */ 506 if (*in_slab) 507 kfree(old_array); 508 else if (old_array != memblock_memory_init_regions && 509 old_array != memblock_reserved_init_regions) 510 memblock_free(__pa(old_array), old_alloc_size); 511 512 /* 513 * Reserve the new array if that comes from the memblock. Otherwise, we 514 * needn't do it 515 */ 516 if (!use_slab) 517 BUG_ON(memblock_reserve(addr, new_alloc_size)); 518 519 /* Update slab flag */ 520 *in_slab = use_slab; 521 522 return 0; 523 } 524 525 /** 526 * memblock_merge_regions - merge neighboring compatible regions 527 * @type: memblock type to scan 528 * 529 * Scan @type and merge neighboring compatible regions. 530 */ 531 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 532 { 533 int i = 0; 534 535 /* cnt never goes below 1 */ 536 while (i < type->cnt - 1) { 537 struct memblock_region *this = &type->regions[i]; 538 struct memblock_region *next = &type->regions[i + 1]; 539 540 if (this->base + this->size != next->base || 541 memblock_get_region_node(this) != 542 memblock_get_region_node(next) || 543 this->flags != next->flags) { 544 BUG_ON(this->base + this->size > next->base); 545 i++; 546 continue; 547 } 548 549 this->size += next->size; 550 /* move forward from next + 1, index of which is i + 2 */ 551 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 552 type->cnt--; 553 } 554 } 555 556 /** 557 * memblock_insert_region - insert new memblock region 558 * @type: memblock type to insert into 559 * @idx: index for the insertion point 560 * @base: base address of the new region 561 * @size: size of the new region 562 * @nid: node id of the new region 563 * @flags: flags of the new region 564 * 565 * Insert new memblock region [@base, @base + @size) into @type at @idx. 566 * @type must already have extra room to accommodate the new region. 567 */ 568 static void __init_memblock memblock_insert_region(struct memblock_type *type, 569 int idx, phys_addr_t base, 570 phys_addr_t size, 571 int nid, 572 enum memblock_flags flags) 573 { 574 struct memblock_region *rgn = &type->regions[idx]; 575 576 BUG_ON(type->cnt >= type->max); 577 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 578 rgn->base = base; 579 rgn->size = size; 580 rgn->flags = flags; 581 memblock_set_region_node(rgn, nid); 582 type->cnt++; 583 type->total_size += size; 584 } 585 586 /** 587 * memblock_add_range - add new memblock region 588 * @type: memblock type to add new region into 589 * @base: base address of the new region 590 * @size: size of the new region 591 * @nid: nid of the new region 592 * @flags: flags of the new region 593 * 594 * Add new memblock region [@base, @base + @size) into @type. The new region 595 * is allowed to overlap with existing ones - overlaps don't affect already 596 * existing regions. @type is guaranteed to be minimal (all neighbouring 597 * compatible regions are merged) after the addition. 598 * 599 * Return: 600 * 0 on success, -errno on failure. 601 */ 602 static int __init_memblock memblock_add_range(struct memblock_type *type, 603 phys_addr_t base, phys_addr_t size, 604 int nid, enum memblock_flags flags) 605 { 606 bool insert = false; 607 phys_addr_t obase = base; 608 phys_addr_t end = base + memblock_cap_size(base, &size); 609 int idx, nr_new; 610 struct memblock_region *rgn; 611 612 if (!size) 613 return 0; 614 615 /* special case for empty array */ 616 if (type->regions[0].size == 0) { 617 WARN_ON(type->cnt != 1 || type->total_size); 618 type->regions[0].base = base; 619 type->regions[0].size = size; 620 type->regions[0].flags = flags; 621 memblock_set_region_node(&type->regions[0], nid); 622 type->total_size = size; 623 return 0; 624 } 625 repeat: 626 /* 627 * The following is executed twice. Once with %false @insert and 628 * then with %true. The first counts the number of regions needed 629 * to accommodate the new area. The second actually inserts them. 630 */ 631 base = obase; 632 nr_new = 0; 633 634 for_each_memblock_type(idx, type, rgn) { 635 phys_addr_t rbase = rgn->base; 636 phys_addr_t rend = rbase + rgn->size; 637 638 if (rbase >= end) 639 break; 640 if (rend <= base) 641 continue; 642 /* 643 * @rgn overlaps. If it separates the lower part of new 644 * area, insert that portion. 645 */ 646 if (rbase > base) { 647 #ifdef CONFIG_NEED_MULTIPLE_NODES 648 WARN_ON(nid != memblock_get_region_node(rgn)); 649 #endif 650 WARN_ON(flags != rgn->flags); 651 nr_new++; 652 if (insert) 653 memblock_insert_region(type, idx++, base, 654 rbase - base, nid, 655 flags); 656 } 657 /* area below @rend is dealt with, forget about it */ 658 base = min(rend, end); 659 } 660 661 /* insert the remaining portion */ 662 if (base < end) { 663 nr_new++; 664 if (insert) 665 memblock_insert_region(type, idx, base, end - base, 666 nid, flags); 667 } 668 669 if (!nr_new) 670 return 0; 671 672 /* 673 * If this was the first round, resize array and repeat for actual 674 * insertions; otherwise, merge and return. 675 */ 676 if (!insert) { 677 while (type->cnt + nr_new > type->max) 678 if (memblock_double_array(type, obase, size) < 0) 679 return -ENOMEM; 680 insert = true; 681 goto repeat; 682 } else { 683 memblock_merge_regions(type); 684 return 0; 685 } 686 } 687 688 /** 689 * memblock_add_node - add new memblock region within a NUMA node 690 * @base: base address of the new region 691 * @size: size of the new region 692 * @nid: nid of the new region 693 * 694 * Add new memblock region [@base, @base + @size) to the "memory" 695 * type. See memblock_add_range() description for mode details 696 * 697 * Return: 698 * 0 on success, -errno on failure. 699 */ 700 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 701 int nid) 702 { 703 return memblock_add_range(&memblock.memory, base, size, nid, 0); 704 } 705 706 /** 707 * memblock_add - add new memblock region 708 * @base: base address of the new region 709 * @size: size of the new region 710 * 711 * Add new memblock region [@base, @base + @size) to the "memory" 712 * type. See memblock_add_range() description for mode details 713 * 714 * Return: 715 * 0 on success, -errno on failure. 716 */ 717 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 718 { 719 phys_addr_t end = base + size - 1; 720 721 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 722 &base, &end, (void *)_RET_IP_); 723 724 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 725 } 726 727 /** 728 * memblock_isolate_range - isolate given range into disjoint memblocks 729 * @type: memblock type to isolate range for 730 * @base: base of range to isolate 731 * @size: size of range to isolate 732 * @start_rgn: out parameter for the start of isolated region 733 * @end_rgn: out parameter for the end of isolated region 734 * 735 * Walk @type and ensure that regions don't cross the boundaries defined by 736 * [@base, @base + @size). Crossing regions are split at the boundaries, 737 * which may create at most two more regions. The index of the first 738 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 739 * 740 * Return: 741 * 0 on success, -errno on failure. 742 */ 743 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 744 phys_addr_t base, phys_addr_t size, 745 int *start_rgn, int *end_rgn) 746 { 747 phys_addr_t end = base + memblock_cap_size(base, &size); 748 int idx; 749 struct memblock_region *rgn; 750 751 *start_rgn = *end_rgn = 0; 752 753 if (!size) 754 return 0; 755 756 /* we'll create at most two more regions */ 757 while (type->cnt + 2 > type->max) 758 if (memblock_double_array(type, base, size) < 0) 759 return -ENOMEM; 760 761 for_each_memblock_type(idx, type, rgn) { 762 phys_addr_t rbase = rgn->base; 763 phys_addr_t rend = rbase + rgn->size; 764 765 if (rbase >= end) 766 break; 767 if (rend <= base) 768 continue; 769 770 if (rbase < base) { 771 /* 772 * @rgn intersects from below. Split and continue 773 * to process the next region - the new top half. 774 */ 775 rgn->base = base; 776 rgn->size -= base - rbase; 777 type->total_size -= base - rbase; 778 memblock_insert_region(type, idx, rbase, base - rbase, 779 memblock_get_region_node(rgn), 780 rgn->flags); 781 } else if (rend > end) { 782 /* 783 * @rgn intersects from above. Split and redo the 784 * current region - the new bottom half. 785 */ 786 rgn->base = end; 787 rgn->size -= end - rbase; 788 type->total_size -= end - rbase; 789 memblock_insert_region(type, idx--, rbase, end - rbase, 790 memblock_get_region_node(rgn), 791 rgn->flags); 792 } else { 793 /* @rgn is fully contained, record it */ 794 if (!*end_rgn) 795 *start_rgn = idx; 796 *end_rgn = idx + 1; 797 } 798 } 799 800 return 0; 801 } 802 803 static int __init_memblock memblock_remove_range(struct memblock_type *type, 804 phys_addr_t base, phys_addr_t size) 805 { 806 int start_rgn, end_rgn; 807 int i, ret; 808 809 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 810 if (ret) 811 return ret; 812 813 for (i = end_rgn - 1; i >= start_rgn; i--) 814 memblock_remove_region(type, i); 815 return 0; 816 } 817 818 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 819 { 820 phys_addr_t end = base + size - 1; 821 822 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 823 &base, &end, (void *)_RET_IP_); 824 825 return memblock_remove_range(&memblock.memory, base, size); 826 } 827 828 /** 829 * memblock_free - free boot memory block 830 * @base: phys starting address of the boot memory block 831 * @size: size of the boot memory block in bytes 832 * 833 * Free boot memory block previously allocated by memblock_alloc_xx() API. 834 * The freeing memory will not be released to the buddy allocator. 835 */ 836 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 837 { 838 phys_addr_t end = base + size - 1; 839 840 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 841 &base, &end, (void *)_RET_IP_); 842 843 kmemleak_free_part_phys(base, size); 844 return memblock_remove_range(&memblock.reserved, base, size); 845 } 846 847 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 848 { 849 phys_addr_t end = base + size - 1; 850 851 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 852 &base, &end, (void *)_RET_IP_); 853 854 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 855 } 856 857 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 858 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) 859 { 860 phys_addr_t end = base + size - 1; 861 862 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 863 &base, &end, (void *)_RET_IP_); 864 865 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); 866 } 867 #endif 868 869 /** 870 * memblock_setclr_flag - set or clear flag for a memory region 871 * @base: base address of the region 872 * @size: size of the region 873 * @set: set or clear the flag 874 * @flag: the flag to udpate 875 * 876 * This function isolates region [@base, @base + @size), and sets/clears flag 877 * 878 * Return: 0 on success, -errno on failure. 879 */ 880 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 881 phys_addr_t size, int set, int flag) 882 { 883 struct memblock_type *type = &memblock.memory; 884 int i, ret, start_rgn, end_rgn; 885 886 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 887 if (ret) 888 return ret; 889 890 for (i = start_rgn; i < end_rgn; i++) { 891 struct memblock_region *r = &type->regions[i]; 892 893 if (set) 894 r->flags |= flag; 895 else 896 r->flags &= ~flag; 897 } 898 899 memblock_merge_regions(type); 900 return 0; 901 } 902 903 /** 904 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 905 * @base: the base phys addr of the region 906 * @size: the size of the region 907 * 908 * Return: 0 on success, -errno on failure. 909 */ 910 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 911 { 912 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 913 } 914 915 /** 916 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 917 * @base: the base phys addr of the region 918 * @size: the size of the region 919 * 920 * Return: 0 on success, -errno on failure. 921 */ 922 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 923 { 924 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 925 } 926 927 /** 928 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 929 * @base: the base phys addr of the region 930 * @size: the size of the region 931 * 932 * Return: 0 on success, -errno on failure. 933 */ 934 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 935 { 936 system_has_some_mirror = true; 937 938 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 939 } 940 941 /** 942 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 943 * @base: the base phys addr of the region 944 * @size: the size of the region 945 * 946 * Return: 0 on success, -errno on failure. 947 */ 948 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 949 { 950 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 951 } 952 953 /** 954 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 955 * @base: the base phys addr of the region 956 * @size: the size of the region 957 * 958 * Return: 0 on success, -errno on failure. 959 */ 960 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 961 { 962 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 963 } 964 965 static bool should_skip_region(struct memblock_type *type, 966 struct memblock_region *m, 967 int nid, int flags) 968 { 969 int m_nid = memblock_get_region_node(m); 970 971 /* we never skip regions when iterating memblock.reserved or physmem */ 972 if (type != memblock_memory) 973 return false; 974 975 /* only memory regions are associated with nodes, check it */ 976 if (nid != NUMA_NO_NODE && nid != m_nid) 977 return true; 978 979 /* skip hotpluggable memory regions if needed */ 980 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 981 return true; 982 983 /* if we want mirror memory skip non-mirror memory regions */ 984 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 985 return true; 986 987 /* skip nomap memory unless we were asked for it explicitly */ 988 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 989 return true; 990 991 return false; 992 } 993 994 /** 995 * __next_mem_range - next function for for_each_free_mem_range() etc. 996 * @idx: pointer to u64 loop variable 997 * @nid: node selector, %NUMA_NO_NODE for all nodes 998 * @flags: pick from blocks based on memory attributes 999 * @type_a: pointer to memblock_type from where the range is taken 1000 * @type_b: pointer to memblock_type which excludes memory from being taken 1001 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1002 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1003 * @out_nid: ptr to int for nid of the range, can be %NULL 1004 * 1005 * Find the first area from *@idx which matches @nid, fill the out 1006 * parameters, and update *@idx for the next iteration. The lower 32bit of 1007 * *@idx contains index into type_a and the upper 32bit indexes the 1008 * areas before each region in type_b. For example, if type_b regions 1009 * look like the following, 1010 * 1011 * 0:[0-16), 1:[32-48), 2:[128-130) 1012 * 1013 * The upper 32bit indexes the following regions. 1014 * 1015 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 1016 * 1017 * As both region arrays are sorted, the function advances the two indices 1018 * in lockstep and returns each intersection. 1019 */ 1020 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, 1021 struct memblock_type *type_a, 1022 struct memblock_type *type_b, phys_addr_t *out_start, 1023 phys_addr_t *out_end, int *out_nid) 1024 { 1025 int idx_a = *idx & 0xffffffff; 1026 int idx_b = *idx >> 32; 1027 1028 if (WARN_ONCE(nid == MAX_NUMNODES, 1029 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1030 nid = NUMA_NO_NODE; 1031 1032 for (; idx_a < type_a->cnt; idx_a++) { 1033 struct memblock_region *m = &type_a->regions[idx_a]; 1034 1035 phys_addr_t m_start = m->base; 1036 phys_addr_t m_end = m->base + m->size; 1037 int m_nid = memblock_get_region_node(m); 1038 1039 if (should_skip_region(type_a, m, nid, flags)) 1040 continue; 1041 1042 if (!type_b) { 1043 if (out_start) 1044 *out_start = m_start; 1045 if (out_end) 1046 *out_end = m_end; 1047 if (out_nid) 1048 *out_nid = m_nid; 1049 idx_a++; 1050 *idx = (u32)idx_a | (u64)idx_b << 32; 1051 return; 1052 } 1053 1054 /* scan areas before each reservation */ 1055 for (; idx_b < type_b->cnt + 1; idx_b++) { 1056 struct memblock_region *r; 1057 phys_addr_t r_start; 1058 phys_addr_t r_end; 1059 1060 r = &type_b->regions[idx_b]; 1061 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1062 r_end = idx_b < type_b->cnt ? 1063 r->base : PHYS_ADDR_MAX; 1064 1065 /* 1066 * if idx_b advanced past idx_a, 1067 * break out to advance idx_a 1068 */ 1069 if (r_start >= m_end) 1070 break; 1071 /* if the two regions intersect, we're done */ 1072 if (m_start < r_end) { 1073 if (out_start) 1074 *out_start = 1075 max(m_start, r_start); 1076 if (out_end) 1077 *out_end = min(m_end, r_end); 1078 if (out_nid) 1079 *out_nid = m_nid; 1080 /* 1081 * The region which ends first is 1082 * advanced for the next iteration. 1083 */ 1084 if (m_end <= r_end) 1085 idx_a++; 1086 else 1087 idx_b++; 1088 *idx = (u32)idx_a | (u64)idx_b << 32; 1089 return; 1090 } 1091 } 1092 } 1093 1094 /* signal end of iteration */ 1095 *idx = ULLONG_MAX; 1096 } 1097 1098 /** 1099 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1100 * 1101 * @idx: pointer to u64 loop variable 1102 * @nid: node selector, %NUMA_NO_NODE for all nodes 1103 * @flags: pick from blocks based on memory attributes 1104 * @type_a: pointer to memblock_type from where the range is taken 1105 * @type_b: pointer to memblock_type which excludes memory from being taken 1106 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1107 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1108 * @out_nid: ptr to int for nid of the range, can be %NULL 1109 * 1110 * Finds the next range from type_a which is not marked as unsuitable 1111 * in type_b. 1112 * 1113 * Reverse of __next_mem_range(). 1114 */ 1115 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1116 enum memblock_flags flags, 1117 struct memblock_type *type_a, 1118 struct memblock_type *type_b, 1119 phys_addr_t *out_start, 1120 phys_addr_t *out_end, int *out_nid) 1121 { 1122 int idx_a = *idx & 0xffffffff; 1123 int idx_b = *idx >> 32; 1124 1125 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1126 nid = NUMA_NO_NODE; 1127 1128 if (*idx == (u64)ULLONG_MAX) { 1129 idx_a = type_a->cnt - 1; 1130 if (type_b != NULL) 1131 idx_b = type_b->cnt; 1132 else 1133 idx_b = 0; 1134 } 1135 1136 for (; idx_a >= 0; idx_a--) { 1137 struct memblock_region *m = &type_a->regions[idx_a]; 1138 1139 phys_addr_t m_start = m->base; 1140 phys_addr_t m_end = m->base + m->size; 1141 int m_nid = memblock_get_region_node(m); 1142 1143 if (should_skip_region(type_a, m, nid, flags)) 1144 continue; 1145 1146 if (!type_b) { 1147 if (out_start) 1148 *out_start = m_start; 1149 if (out_end) 1150 *out_end = m_end; 1151 if (out_nid) 1152 *out_nid = m_nid; 1153 idx_a--; 1154 *idx = (u32)idx_a | (u64)idx_b << 32; 1155 return; 1156 } 1157 1158 /* scan areas before each reservation */ 1159 for (; idx_b >= 0; idx_b--) { 1160 struct memblock_region *r; 1161 phys_addr_t r_start; 1162 phys_addr_t r_end; 1163 1164 r = &type_b->regions[idx_b]; 1165 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1166 r_end = idx_b < type_b->cnt ? 1167 r->base : PHYS_ADDR_MAX; 1168 /* 1169 * if idx_b advanced past idx_a, 1170 * break out to advance idx_a 1171 */ 1172 1173 if (r_end <= m_start) 1174 break; 1175 /* if the two regions intersect, we're done */ 1176 if (m_end > r_start) { 1177 if (out_start) 1178 *out_start = max(m_start, r_start); 1179 if (out_end) 1180 *out_end = min(m_end, r_end); 1181 if (out_nid) 1182 *out_nid = m_nid; 1183 if (m_start >= r_start) 1184 idx_a--; 1185 else 1186 idx_b--; 1187 *idx = (u32)idx_a | (u64)idx_b << 32; 1188 return; 1189 } 1190 } 1191 } 1192 /* signal end of iteration */ 1193 *idx = ULLONG_MAX; 1194 } 1195 1196 /* 1197 * Common iterator interface used to define for_each_mem_pfn_range(). 1198 */ 1199 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1200 unsigned long *out_start_pfn, 1201 unsigned long *out_end_pfn, int *out_nid) 1202 { 1203 struct memblock_type *type = &memblock.memory; 1204 struct memblock_region *r; 1205 int r_nid; 1206 1207 while (++*idx < type->cnt) { 1208 r = &type->regions[*idx]; 1209 r_nid = memblock_get_region_node(r); 1210 1211 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1212 continue; 1213 if (nid == MAX_NUMNODES || nid == r_nid) 1214 break; 1215 } 1216 if (*idx >= type->cnt) { 1217 *idx = -1; 1218 return; 1219 } 1220 1221 if (out_start_pfn) 1222 *out_start_pfn = PFN_UP(r->base); 1223 if (out_end_pfn) 1224 *out_end_pfn = PFN_DOWN(r->base + r->size); 1225 if (out_nid) 1226 *out_nid = r_nid; 1227 } 1228 1229 /** 1230 * memblock_set_node - set node ID on memblock regions 1231 * @base: base of area to set node ID for 1232 * @size: size of area to set node ID for 1233 * @type: memblock type to set node ID for 1234 * @nid: node ID to set 1235 * 1236 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1237 * Regions which cross the area boundaries are split as necessary. 1238 * 1239 * Return: 1240 * 0 on success, -errno on failure. 1241 */ 1242 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1243 struct memblock_type *type, int nid) 1244 { 1245 #ifdef CONFIG_NEED_MULTIPLE_NODES 1246 int start_rgn, end_rgn; 1247 int i, ret; 1248 1249 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1250 if (ret) 1251 return ret; 1252 1253 for (i = start_rgn; i < end_rgn; i++) 1254 memblock_set_region_node(&type->regions[i], nid); 1255 1256 memblock_merge_regions(type); 1257 #endif 1258 return 0; 1259 } 1260 1261 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1262 /** 1263 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() 1264 * 1265 * @idx: pointer to u64 loop variable 1266 * @zone: zone in which all of the memory blocks reside 1267 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL 1268 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL 1269 * 1270 * This function is meant to be a zone/pfn specific wrapper for the 1271 * for_each_mem_range type iterators. Specifically they are used in the 1272 * deferred memory init routines and as such we were duplicating much of 1273 * this logic throughout the code. So instead of having it in multiple 1274 * locations it seemed like it would make more sense to centralize this to 1275 * one new iterator that does everything they need. 1276 */ 1277 void __init_memblock 1278 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 1279 unsigned long *out_spfn, unsigned long *out_epfn) 1280 { 1281 int zone_nid = zone_to_nid(zone); 1282 phys_addr_t spa, epa; 1283 int nid; 1284 1285 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1286 &memblock.memory, &memblock.reserved, 1287 &spa, &epa, &nid); 1288 1289 while (*idx != U64_MAX) { 1290 unsigned long epfn = PFN_DOWN(epa); 1291 unsigned long spfn = PFN_UP(spa); 1292 1293 /* 1294 * Verify the end is at least past the start of the zone and 1295 * that we have at least one PFN to initialize. 1296 */ 1297 if (zone->zone_start_pfn < epfn && spfn < epfn) { 1298 /* if we went too far just stop searching */ 1299 if (zone_end_pfn(zone) <= spfn) { 1300 *idx = U64_MAX; 1301 break; 1302 } 1303 1304 if (out_spfn) 1305 *out_spfn = max(zone->zone_start_pfn, spfn); 1306 if (out_epfn) 1307 *out_epfn = min(zone_end_pfn(zone), epfn); 1308 1309 return; 1310 } 1311 1312 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1313 &memblock.memory, &memblock.reserved, 1314 &spa, &epa, &nid); 1315 } 1316 1317 /* signal end of iteration */ 1318 if (out_spfn) 1319 *out_spfn = ULONG_MAX; 1320 if (out_epfn) 1321 *out_epfn = 0; 1322 } 1323 1324 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1325 1326 /** 1327 * memblock_alloc_range_nid - allocate boot memory block 1328 * @size: size of memory block to be allocated in bytes 1329 * @align: alignment of the region and block's size 1330 * @start: the lower bound of the memory region to allocate (phys address) 1331 * @end: the upper bound of the memory region to allocate (phys address) 1332 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1333 * @exact_nid: control the allocation fall back to other nodes 1334 * 1335 * The allocation is performed from memory region limited by 1336 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. 1337 * 1338 * If the specified node can not hold the requested memory and @exact_nid 1339 * is false, the allocation falls back to any node in the system. 1340 * 1341 * For systems with memory mirroring, the allocation is attempted first 1342 * from the regions with mirroring enabled and then retried from any 1343 * memory region. 1344 * 1345 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for 1346 * allocated boot memory block, so that it is never reported as leaks. 1347 * 1348 * Return: 1349 * Physical address of allocated memory block on success, %0 on failure. 1350 */ 1351 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1352 phys_addr_t align, phys_addr_t start, 1353 phys_addr_t end, int nid, 1354 bool exact_nid) 1355 { 1356 enum memblock_flags flags = choose_memblock_flags(); 1357 phys_addr_t found; 1358 1359 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1360 nid = NUMA_NO_NODE; 1361 1362 if (!align) { 1363 /* Can't use WARNs this early in boot on powerpc */ 1364 dump_stack(); 1365 align = SMP_CACHE_BYTES; 1366 } 1367 1368 again: 1369 found = memblock_find_in_range_node(size, align, start, end, nid, 1370 flags); 1371 if (found && !memblock_reserve(found, size)) 1372 goto done; 1373 1374 if (nid != NUMA_NO_NODE && !exact_nid) { 1375 found = memblock_find_in_range_node(size, align, start, 1376 end, NUMA_NO_NODE, 1377 flags); 1378 if (found && !memblock_reserve(found, size)) 1379 goto done; 1380 } 1381 1382 if (flags & MEMBLOCK_MIRROR) { 1383 flags &= ~MEMBLOCK_MIRROR; 1384 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1385 &size); 1386 goto again; 1387 } 1388 1389 return 0; 1390 1391 done: 1392 /* Skip kmemleak for kasan_init() due to high volume. */ 1393 if (end != MEMBLOCK_ALLOC_KASAN) 1394 /* 1395 * The min_count is set to 0 so that memblock allocated 1396 * blocks are never reported as leaks. This is because many 1397 * of these blocks are only referred via the physical 1398 * address which is not looked up by kmemleak. 1399 */ 1400 kmemleak_alloc_phys(found, size, 0, 0); 1401 1402 return found; 1403 } 1404 1405 /** 1406 * memblock_phys_alloc_range - allocate a memory block inside specified range 1407 * @size: size of memory block to be allocated in bytes 1408 * @align: alignment of the region and block's size 1409 * @start: the lower bound of the memory region to allocate (physical address) 1410 * @end: the upper bound of the memory region to allocate (physical address) 1411 * 1412 * Allocate @size bytes in the between @start and @end. 1413 * 1414 * Return: physical address of the allocated memory block on success, 1415 * %0 on failure. 1416 */ 1417 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, 1418 phys_addr_t align, 1419 phys_addr_t start, 1420 phys_addr_t end) 1421 { 1422 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1423 false); 1424 } 1425 1426 /** 1427 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node 1428 * @size: size of memory block to be allocated in bytes 1429 * @align: alignment of the region and block's size 1430 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1431 * 1432 * Allocates memory block from the specified NUMA node. If the node 1433 * has no available memory, attempts to allocated from any node in the 1434 * system. 1435 * 1436 * Return: physical address of the allocated memory block on success, 1437 * %0 on failure. 1438 */ 1439 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1440 { 1441 return memblock_alloc_range_nid(size, align, 0, 1442 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); 1443 } 1444 1445 /** 1446 * memblock_alloc_internal - allocate boot memory block 1447 * @size: size of memory block to be allocated in bytes 1448 * @align: alignment of the region and block's size 1449 * @min_addr: the lower bound of the memory region to allocate (phys address) 1450 * @max_addr: the upper bound of the memory region to allocate (phys address) 1451 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1452 * @exact_nid: control the allocation fall back to other nodes 1453 * 1454 * Allocates memory block using memblock_alloc_range_nid() and 1455 * converts the returned physical address to virtual. 1456 * 1457 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1458 * will fall back to memory below @min_addr. Other constraints, such 1459 * as node and mirrored memory will be handled again in 1460 * memblock_alloc_range_nid(). 1461 * 1462 * Return: 1463 * Virtual address of allocated memory block on success, NULL on failure. 1464 */ 1465 static void * __init memblock_alloc_internal( 1466 phys_addr_t size, phys_addr_t align, 1467 phys_addr_t min_addr, phys_addr_t max_addr, 1468 int nid, bool exact_nid) 1469 { 1470 phys_addr_t alloc; 1471 1472 /* 1473 * Detect any accidental use of these APIs after slab is ready, as at 1474 * this moment memblock may be deinitialized already and its 1475 * internal data may be destroyed (after execution of memblock_free_all) 1476 */ 1477 if (WARN_ON_ONCE(slab_is_available())) 1478 return kzalloc_node(size, GFP_NOWAIT, nid); 1479 1480 if (max_addr > memblock.current_limit) 1481 max_addr = memblock.current_limit; 1482 1483 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, 1484 exact_nid); 1485 1486 /* retry allocation without lower limit */ 1487 if (!alloc && min_addr) 1488 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, 1489 exact_nid); 1490 1491 if (!alloc) 1492 return NULL; 1493 1494 return phys_to_virt(alloc); 1495 } 1496 1497 /** 1498 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node 1499 * without zeroing memory 1500 * @size: size of memory block to be allocated in bytes 1501 * @align: alignment of the region and block's size 1502 * @min_addr: the lower bound of the memory region from where the allocation 1503 * is preferred (phys address) 1504 * @max_addr: the upper bound of the memory region from where the allocation 1505 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1506 * allocate only from memory limited by memblock.current_limit value 1507 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1508 * 1509 * Public function, provides additional debug information (including caller 1510 * info), if enabled. Does not zero allocated memory. 1511 * 1512 * Return: 1513 * Virtual address of allocated memory block on success, NULL on failure. 1514 */ 1515 void * __init memblock_alloc_exact_nid_raw( 1516 phys_addr_t size, phys_addr_t align, 1517 phys_addr_t min_addr, phys_addr_t max_addr, 1518 int nid) 1519 { 1520 void *ptr; 1521 1522 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1523 __func__, (u64)size, (u64)align, nid, &min_addr, 1524 &max_addr, (void *)_RET_IP_); 1525 1526 ptr = memblock_alloc_internal(size, align, 1527 min_addr, max_addr, nid, true); 1528 if (ptr && size > 0) 1529 page_init_poison(ptr, size); 1530 1531 return ptr; 1532 } 1533 1534 /** 1535 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing 1536 * memory and without panicking 1537 * @size: size of memory block to be allocated in bytes 1538 * @align: alignment of the region and block's size 1539 * @min_addr: the lower bound of the memory region from where the allocation 1540 * is preferred (phys address) 1541 * @max_addr: the upper bound of the memory region from where the allocation 1542 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1543 * allocate only from memory limited by memblock.current_limit value 1544 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1545 * 1546 * Public function, provides additional debug information (including caller 1547 * info), if enabled. Does not zero allocated memory, does not panic if request 1548 * cannot be satisfied. 1549 * 1550 * Return: 1551 * Virtual address of allocated memory block on success, NULL on failure. 1552 */ 1553 void * __init memblock_alloc_try_nid_raw( 1554 phys_addr_t size, phys_addr_t align, 1555 phys_addr_t min_addr, phys_addr_t max_addr, 1556 int nid) 1557 { 1558 void *ptr; 1559 1560 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1561 __func__, (u64)size, (u64)align, nid, &min_addr, 1562 &max_addr, (void *)_RET_IP_); 1563 1564 ptr = memblock_alloc_internal(size, align, 1565 min_addr, max_addr, nid, false); 1566 if (ptr && size > 0) 1567 page_init_poison(ptr, size); 1568 1569 return ptr; 1570 } 1571 1572 /** 1573 * memblock_alloc_try_nid - allocate boot memory block 1574 * @size: size of memory block to be allocated in bytes 1575 * @align: alignment of the region and block's size 1576 * @min_addr: the lower bound of the memory region from where the allocation 1577 * is preferred (phys address) 1578 * @max_addr: the upper bound of the memory region from where the allocation 1579 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1580 * allocate only from memory limited by memblock.current_limit value 1581 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1582 * 1583 * Public function, provides additional debug information (including caller 1584 * info), if enabled. This function zeroes the allocated memory. 1585 * 1586 * Return: 1587 * Virtual address of allocated memory block on success, NULL on failure. 1588 */ 1589 void * __init memblock_alloc_try_nid( 1590 phys_addr_t size, phys_addr_t align, 1591 phys_addr_t min_addr, phys_addr_t max_addr, 1592 int nid) 1593 { 1594 void *ptr; 1595 1596 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1597 __func__, (u64)size, (u64)align, nid, &min_addr, 1598 &max_addr, (void *)_RET_IP_); 1599 ptr = memblock_alloc_internal(size, align, 1600 min_addr, max_addr, nid, false); 1601 if (ptr) 1602 memset(ptr, 0, size); 1603 1604 return ptr; 1605 } 1606 1607 /** 1608 * __memblock_free_late - free pages directly to buddy allocator 1609 * @base: phys starting address of the boot memory block 1610 * @size: size of the boot memory block in bytes 1611 * 1612 * This is only useful when the memblock allocator has already been torn 1613 * down, but we are still initializing the system. Pages are released directly 1614 * to the buddy allocator. 1615 */ 1616 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1617 { 1618 phys_addr_t cursor, end; 1619 1620 end = base + size - 1; 1621 memblock_dbg("%s: [%pa-%pa] %pS\n", 1622 __func__, &base, &end, (void *)_RET_IP_); 1623 kmemleak_free_part_phys(base, size); 1624 cursor = PFN_UP(base); 1625 end = PFN_DOWN(base + size); 1626 1627 for (; cursor < end; cursor++) { 1628 memblock_free_pages(pfn_to_page(cursor), cursor, 0); 1629 totalram_pages_inc(); 1630 } 1631 } 1632 1633 /* 1634 * Remaining API functions 1635 */ 1636 1637 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1638 { 1639 return memblock.memory.total_size; 1640 } 1641 1642 phys_addr_t __init_memblock memblock_reserved_size(void) 1643 { 1644 return memblock.reserved.total_size; 1645 } 1646 1647 /* lowest address */ 1648 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1649 { 1650 return memblock.memory.regions[0].base; 1651 } 1652 1653 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1654 { 1655 int idx = memblock.memory.cnt - 1; 1656 1657 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1658 } 1659 1660 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1661 { 1662 phys_addr_t max_addr = PHYS_ADDR_MAX; 1663 struct memblock_region *r; 1664 1665 /* 1666 * translate the memory @limit size into the max address within one of 1667 * the memory memblock regions, if the @limit exceeds the total size 1668 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1669 */ 1670 for_each_mem_region(r) { 1671 if (limit <= r->size) { 1672 max_addr = r->base + limit; 1673 break; 1674 } 1675 limit -= r->size; 1676 } 1677 1678 return max_addr; 1679 } 1680 1681 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1682 { 1683 phys_addr_t max_addr; 1684 1685 if (!limit) 1686 return; 1687 1688 max_addr = __find_max_addr(limit); 1689 1690 /* @limit exceeds the total size of the memory, do nothing */ 1691 if (max_addr == PHYS_ADDR_MAX) 1692 return; 1693 1694 /* truncate both memory and reserved regions */ 1695 memblock_remove_range(&memblock.memory, max_addr, 1696 PHYS_ADDR_MAX); 1697 memblock_remove_range(&memblock.reserved, max_addr, 1698 PHYS_ADDR_MAX); 1699 } 1700 1701 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1702 { 1703 int start_rgn, end_rgn; 1704 int i, ret; 1705 1706 if (!size) 1707 return; 1708 1709 ret = memblock_isolate_range(&memblock.memory, base, size, 1710 &start_rgn, &end_rgn); 1711 if (ret) 1712 return; 1713 1714 /* remove all the MAP regions */ 1715 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1716 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1717 memblock_remove_region(&memblock.memory, i); 1718 1719 for (i = start_rgn - 1; i >= 0; i--) 1720 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1721 memblock_remove_region(&memblock.memory, i); 1722 1723 /* truncate the reserved regions */ 1724 memblock_remove_range(&memblock.reserved, 0, base); 1725 memblock_remove_range(&memblock.reserved, 1726 base + size, PHYS_ADDR_MAX); 1727 } 1728 1729 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1730 { 1731 phys_addr_t max_addr; 1732 1733 if (!limit) 1734 return; 1735 1736 max_addr = __find_max_addr(limit); 1737 1738 /* @limit exceeds the total size of the memory, do nothing */ 1739 if (max_addr == PHYS_ADDR_MAX) 1740 return; 1741 1742 memblock_cap_memory_range(0, max_addr); 1743 } 1744 1745 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1746 { 1747 unsigned int left = 0, right = type->cnt; 1748 1749 do { 1750 unsigned int mid = (right + left) / 2; 1751 1752 if (addr < type->regions[mid].base) 1753 right = mid; 1754 else if (addr >= (type->regions[mid].base + 1755 type->regions[mid].size)) 1756 left = mid + 1; 1757 else 1758 return mid; 1759 } while (left < right); 1760 return -1; 1761 } 1762 1763 bool __init_memblock memblock_is_reserved(phys_addr_t addr) 1764 { 1765 return memblock_search(&memblock.reserved, addr) != -1; 1766 } 1767 1768 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1769 { 1770 return memblock_search(&memblock.memory, addr) != -1; 1771 } 1772 1773 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1774 { 1775 int i = memblock_search(&memblock.memory, addr); 1776 1777 if (i == -1) 1778 return false; 1779 return !memblock_is_nomap(&memblock.memory.regions[i]); 1780 } 1781 1782 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1783 unsigned long *start_pfn, unsigned long *end_pfn) 1784 { 1785 struct memblock_type *type = &memblock.memory; 1786 int mid = memblock_search(type, PFN_PHYS(pfn)); 1787 1788 if (mid == -1) 1789 return -1; 1790 1791 *start_pfn = PFN_DOWN(type->regions[mid].base); 1792 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1793 1794 return memblock_get_region_node(&type->regions[mid]); 1795 } 1796 1797 /** 1798 * memblock_is_region_memory - check if a region is a subset of memory 1799 * @base: base of region to check 1800 * @size: size of region to check 1801 * 1802 * Check if the region [@base, @base + @size) is a subset of a memory block. 1803 * 1804 * Return: 1805 * 0 if false, non-zero if true 1806 */ 1807 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1808 { 1809 int idx = memblock_search(&memblock.memory, base); 1810 phys_addr_t end = base + memblock_cap_size(base, &size); 1811 1812 if (idx == -1) 1813 return false; 1814 return (memblock.memory.regions[idx].base + 1815 memblock.memory.regions[idx].size) >= end; 1816 } 1817 1818 /** 1819 * memblock_is_region_reserved - check if a region intersects reserved memory 1820 * @base: base of region to check 1821 * @size: size of region to check 1822 * 1823 * Check if the region [@base, @base + @size) intersects a reserved 1824 * memory block. 1825 * 1826 * Return: 1827 * True if they intersect, false if not. 1828 */ 1829 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1830 { 1831 memblock_cap_size(base, &size); 1832 return memblock_overlaps_region(&memblock.reserved, base, size); 1833 } 1834 1835 void __init_memblock memblock_trim_memory(phys_addr_t align) 1836 { 1837 phys_addr_t start, end, orig_start, orig_end; 1838 struct memblock_region *r; 1839 1840 for_each_mem_region(r) { 1841 orig_start = r->base; 1842 orig_end = r->base + r->size; 1843 start = round_up(orig_start, align); 1844 end = round_down(orig_end, align); 1845 1846 if (start == orig_start && end == orig_end) 1847 continue; 1848 1849 if (start < end) { 1850 r->base = start; 1851 r->size = end - start; 1852 } else { 1853 memblock_remove_region(&memblock.memory, 1854 r - memblock.memory.regions); 1855 r--; 1856 } 1857 } 1858 } 1859 1860 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1861 { 1862 memblock.current_limit = limit; 1863 } 1864 1865 phys_addr_t __init_memblock memblock_get_current_limit(void) 1866 { 1867 return memblock.current_limit; 1868 } 1869 1870 static void __init_memblock memblock_dump(struct memblock_type *type) 1871 { 1872 phys_addr_t base, end, size; 1873 enum memblock_flags flags; 1874 int idx; 1875 struct memblock_region *rgn; 1876 1877 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1878 1879 for_each_memblock_type(idx, type, rgn) { 1880 char nid_buf[32] = ""; 1881 1882 base = rgn->base; 1883 size = rgn->size; 1884 end = base + size - 1; 1885 flags = rgn->flags; 1886 #ifdef CONFIG_NEED_MULTIPLE_NODES 1887 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1888 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1889 memblock_get_region_node(rgn)); 1890 #endif 1891 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 1892 type->name, idx, &base, &end, &size, nid_buf, flags); 1893 } 1894 } 1895 1896 static void __init_memblock __memblock_dump_all(void) 1897 { 1898 pr_info("MEMBLOCK configuration:\n"); 1899 pr_info(" memory size = %pa reserved size = %pa\n", 1900 &memblock.memory.total_size, 1901 &memblock.reserved.total_size); 1902 1903 memblock_dump(&memblock.memory); 1904 memblock_dump(&memblock.reserved); 1905 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1906 memblock_dump(&physmem); 1907 #endif 1908 } 1909 1910 void __init_memblock memblock_dump_all(void) 1911 { 1912 if (memblock_debug) 1913 __memblock_dump_all(); 1914 } 1915 1916 void __init memblock_allow_resize(void) 1917 { 1918 memblock_can_resize = 1; 1919 } 1920 1921 static int __init early_memblock(char *p) 1922 { 1923 if (p && strstr(p, "debug")) 1924 memblock_debug = 1; 1925 return 0; 1926 } 1927 early_param("memblock", early_memblock); 1928 1929 static void __init __free_pages_memory(unsigned long start, unsigned long end) 1930 { 1931 int order; 1932 1933 while (start < end) { 1934 order = min(MAX_ORDER - 1UL, __ffs(start)); 1935 1936 while (start + (1UL << order) > end) 1937 order--; 1938 1939 memblock_free_pages(pfn_to_page(start), start, order); 1940 1941 start += (1UL << order); 1942 } 1943 } 1944 1945 static unsigned long __init __free_memory_core(phys_addr_t start, 1946 phys_addr_t end) 1947 { 1948 unsigned long start_pfn = PFN_UP(start); 1949 unsigned long end_pfn = min_t(unsigned long, 1950 PFN_DOWN(end), max_low_pfn); 1951 1952 if (start_pfn >= end_pfn) 1953 return 0; 1954 1955 __free_pages_memory(start_pfn, end_pfn); 1956 1957 return end_pfn - start_pfn; 1958 } 1959 1960 static unsigned long __init free_low_memory_core_early(void) 1961 { 1962 unsigned long count = 0; 1963 phys_addr_t start, end; 1964 u64 i; 1965 1966 memblock_clear_hotplug(0, -1); 1967 1968 for_each_reserved_mem_range(i, &start, &end) 1969 reserve_bootmem_region(start, end); 1970 1971 /* 1972 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id 1973 * because in some case like Node0 doesn't have RAM installed 1974 * low ram will be on Node1 1975 */ 1976 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, 1977 NULL) 1978 count += __free_memory_core(start, end); 1979 1980 return count; 1981 } 1982 1983 static int reset_managed_pages_done __initdata; 1984 1985 void reset_node_managed_pages(pg_data_t *pgdat) 1986 { 1987 struct zone *z; 1988 1989 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1990 atomic_long_set(&z->managed_pages, 0); 1991 } 1992 1993 void __init reset_all_zones_managed_pages(void) 1994 { 1995 struct pglist_data *pgdat; 1996 1997 if (reset_managed_pages_done) 1998 return; 1999 2000 for_each_online_pgdat(pgdat) 2001 reset_node_managed_pages(pgdat); 2002 2003 reset_managed_pages_done = 1; 2004 } 2005 2006 /** 2007 * memblock_free_all - release free pages to the buddy allocator 2008 * 2009 * Return: the number of pages actually released. 2010 */ 2011 unsigned long __init memblock_free_all(void) 2012 { 2013 unsigned long pages; 2014 2015 reset_all_zones_managed_pages(); 2016 2017 pages = free_low_memory_core_early(); 2018 totalram_pages_add(pages); 2019 2020 return pages; 2021 } 2022 2023 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) 2024 2025 static int memblock_debug_show(struct seq_file *m, void *private) 2026 { 2027 struct memblock_type *type = m->private; 2028 struct memblock_region *reg; 2029 int i; 2030 phys_addr_t end; 2031 2032 for (i = 0; i < type->cnt; i++) { 2033 reg = &type->regions[i]; 2034 end = reg->base + reg->size - 1; 2035 2036 seq_printf(m, "%4d: ", i); 2037 seq_printf(m, "%pa..%pa\n", ®->base, &end); 2038 } 2039 return 0; 2040 } 2041 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 2042 2043 static int __init memblock_init_debugfs(void) 2044 { 2045 struct dentry *root = debugfs_create_dir("memblock", NULL); 2046 2047 debugfs_create_file("memory", 0444, root, 2048 &memblock.memory, &memblock_debug_fops); 2049 debugfs_create_file("reserved", 0444, root, 2050 &memblock.reserved, &memblock_debug_fops); 2051 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2052 debugfs_create_file("physmem", 0444, root, &physmem, 2053 &memblock_debug_fops); 2054 #endif 2055 2056 return 0; 2057 } 2058 __initcall(memblock_init_debugfs); 2059 2060 #endif /* CONFIG_DEBUG_FS */ 2061