xref: /openbmc/linux/mm/memblock.c (revision faa16bc4)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/kmemleak.h>
21 #include <linux/seq_file.h>
22 #include <linux/memblock.h>
23 #include <linux/bootmem.h>
24 
25 #include <asm/sections.h>
26 #include <linux/io.h>
27 
28 #include "internal.h"
29 
30 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
31 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
32 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
33 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
34 #endif
35 
36 struct memblock memblock __initdata_memblock = {
37 	.memory.regions		= memblock_memory_init_regions,
38 	.memory.cnt		= 1,	/* empty dummy entry */
39 	.memory.max		= INIT_MEMBLOCK_REGIONS,
40 	.memory.name		= "memory",
41 
42 	.reserved.regions	= memblock_reserved_init_regions,
43 	.reserved.cnt		= 1,	/* empty dummy entry */
44 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
45 	.reserved.name		= "reserved",
46 
47 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
48 	.physmem.regions	= memblock_physmem_init_regions,
49 	.physmem.cnt		= 1,	/* empty dummy entry */
50 	.physmem.max		= INIT_PHYSMEM_REGIONS,
51 	.physmem.name		= "physmem",
52 #endif
53 
54 	.bottom_up		= false,
55 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
56 };
57 
58 int memblock_debug __initdata_memblock;
59 static bool system_has_some_mirror __initdata_memblock = false;
60 static int memblock_can_resize __initdata_memblock;
61 static int memblock_memory_in_slab __initdata_memblock = 0;
62 static int memblock_reserved_in_slab __initdata_memblock = 0;
63 
64 ulong __init_memblock choose_memblock_flags(void)
65 {
66 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
67 }
68 
69 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
70 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
71 {
72 	return *size = min(*size, PHYS_ADDR_MAX - base);
73 }
74 
75 /*
76  * Address comparison utilities
77  */
78 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
79 				       phys_addr_t base2, phys_addr_t size2)
80 {
81 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
82 }
83 
84 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
85 					phys_addr_t base, phys_addr_t size)
86 {
87 	unsigned long i;
88 
89 	for (i = 0; i < type->cnt; i++)
90 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
91 					   type->regions[i].size))
92 			break;
93 	return i < type->cnt;
94 }
95 
96 /*
97  * __memblock_find_range_bottom_up - find free area utility in bottom-up
98  * @start: start of candidate range
99  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
100  * @size: size of free area to find
101  * @align: alignment of free area to find
102  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
103  * @flags: pick from blocks based on memory attributes
104  *
105  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
106  *
107  * RETURNS:
108  * Found address on success, 0 on failure.
109  */
110 static phys_addr_t __init_memblock
111 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
112 				phys_addr_t size, phys_addr_t align, int nid,
113 				ulong flags)
114 {
115 	phys_addr_t this_start, this_end, cand;
116 	u64 i;
117 
118 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
119 		this_start = clamp(this_start, start, end);
120 		this_end = clamp(this_end, start, end);
121 
122 		cand = round_up(this_start, align);
123 		if (cand < this_end && this_end - cand >= size)
124 			return cand;
125 	}
126 
127 	return 0;
128 }
129 
130 /**
131  * __memblock_find_range_top_down - find free area utility, in top-down
132  * @start: start of candidate range
133  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
134  * @size: size of free area to find
135  * @align: alignment of free area to find
136  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
137  * @flags: pick from blocks based on memory attributes
138  *
139  * Utility called from memblock_find_in_range_node(), find free area top-down.
140  *
141  * RETURNS:
142  * Found address on success, 0 on failure.
143  */
144 static phys_addr_t __init_memblock
145 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
146 			       phys_addr_t size, phys_addr_t align, int nid,
147 			       ulong flags)
148 {
149 	phys_addr_t this_start, this_end, cand;
150 	u64 i;
151 
152 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
153 					NULL) {
154 		this_start = clamp(this_start, start, end);
155 		this_end = clamp(this_end, start, end);
156 
157 		if (this_end < size)
158 			continue;
159 
160 		cand = round_down(this_end - size, align);
161 		if (cand >= this_start)
162 			return cand;
163 	}
164 
165 	return 0;
166 }
167 
168 /**
169  * memblock_find_in_range_node - find free area in given range and node
170  * @size: size of free area to find
171  * @align: alignment of free area to find
172  * @start: start of candidate range
173  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
174  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
175  * @flags: pick from blocks based on memory attributes
176  *
177  * Find @size free area aligned to @align in the specified range and node.
178  *
179  * When allocation direction is bottom-up, the @start should be greater
180  * than the end of the kernel image. Otherwise, it will be trimmed. The
181  * reason is that we want the bottom-up allocation just near the kernel
182  * image so it is highly likely that the allocated memory and the kernel
183  * will reside in the same node.
184  *
185  * If bottom-up allocation failed, will try to allocate memory top-down.
186  *
187  * RETURNS:
188  * Found address on success, 0 on failure.
189  */
190 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
191 					phys_addr_t align, phys_addr_t start,
192 					phys_addr_t end, int nid, ulong flags)
193 {
194 	phys_addr_t kernel_end, ret;
195 
196 	/* pump up @end */
197 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
198 		end = memblock.current_limit;
199 
200 	/* avoid allocating the first page */
201 	start = max_t(phys_addr_t, start, PAGE_SIZE);
202 	end = max(start, end);
203 	kernel_end = __pa_symbol(_end);
204 
205 	/*
206 	 * try bottom-up allocation only when bottom-up mode
207 	 * is set and @end is above the kernel image.
208 	 */
209 	if (memblock_bottom_up() && end > kernel_end) {
210 		phys_addr_t bottom_up_start;
211 
212 		/* make sure we will allocate above the kernel */
213 		bottom_up_start = max(start, kernel_end);
214 
215 		/* ok, try bottom-up allocation first */
216 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
217 						      size, align, nid, flags);
218 		if (ret)
219 			return ret;
220 
221 		/*
222 		 * we always limit bottom-up allocation above the kernel,
223 		 * but top-down allocation doesn't have the limit, so
224 		 * retrying top-down allocation may succeed when bottom-up
225 		 * allocation failed.
226 		 *
227 		 * bottom-up allocation is expected to be fail very rarely,
228 		 * so we use WARN_ONCE() here to see the stack trace if
229 		 * fail happens.
230 		 */
231 		WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
232 	}
233 
234 	return __memblock_find_range_top_down(start, end, size, align, nid,
235 					      flags);
236 }
237 
238 /**
239  * memblock_find_in_range - find free area in given range
240  * @start: start of candidate range
241  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
242  * @size: size of free area to find
243  * @align: alignment of free area to find
244  *
245  * Find @size free area aligned to @align in the specified range.
246  *
247  * RETURNS:
248  * Found address on success, 0 on failure.
249  */
250 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
251 					phys_addr_t end, phys_addr_t size,
252 					phys_addr_t align)
253 {
254 	phys_addr_t ret;
255 	ulong flags = choose_memblock_flags();
256 
257 again:
258 	ret = memblock_find_in_range_node(size, align, start, end,
259 					    NUMA_NO_NODE, flags);
260 
261 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
262 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
263 			&size);
264 		flags &= ~MEMBLOCK_MIRROR;
265 		goto again;
266 	}
267 
268 	return ret;
269 }
270 
271 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
272 {
273 	type->total_size -= type->regions[r].size;
274 	memmove(&type->regions[r], &type->regions[r + 1],
275 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
276 	type->cnt--;
277 
278 	/* Special case for empty arrays */
279 	if (type->cnt == 0) {
280 		WARN_ON(type->total_size != 0);
281 		type->cnt = 1;
282 		type->regions[0].base = 0;
283 		type->regions[0].size = 0;
284 		type->regions[0].flags = 0;
285 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
286 	}
287 }
288 
289 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
290 /**
291  * Discard memory and reserved arrays if they were allocated
292  */
293 void __init memblock_discard(void)
294 {
295 	phys_addr_t addr, size;
296 
297 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
298 		addr = __pa(memblock.reserved.regions);
299 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
300 				  memblock.reserved.max);
301 		__memblock_free_late(addr, size);
302 	}
303 
304 	if (memblock.memory.regions != memblock_memory_init_regions) {
305 		addr = __pa(memblock.memory.regions);
306 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
307 				  memblock.memory.max);
308 		__memblock_free_late(addr, size);
309 	}
310 }
311 #endif
312 
313 /**
314  * memblock_double_array - double the size of the memblock regions array
315  * @type: memblock type of the regions array being doubled
316  * @new_area_start: starting address of memory range to avoid overlap with
317  * @new_area_size: size of memory range to avoid overlap with
318  *
319  * Double the size of the @type regions array. If memblock is being used to
320  * allocate memory for a new reserved regions array and there is a previously
321  * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
322  * waiting to be reserved, ensure the memory used by the new array does
323  * not overlap.
324  *
325  * RETURNS:
326  * 0 on success, -1 on failure.
327  */
328 static int __init_memblock memblock_double_array(struct memblock_type *type,
329 						phys_addr_t new_area_start,
330 						phys_addr_t new_area_size)
331 {
332 	struct memblock_region *new_array, *old_array;
333 	phys_addr_t old_alloc_size, new_alloc_size;
334 	phys_addr_t old_size, new_size, addr;
335 	int use_slab = slab_is_available();
336 	int *in_slab;
337 
338 	/* We don't allow resizing until we know about the reserved regions
339 	 * of memory that aren't suitable for allocation
340 	 */
341 	if (!memblock_can_resize)
342 		return -1;
343 
344 	/* Calculate new doubled size */
345 	old_size = type->max * sizeof(struct memblock_region);
346 	new_size = old_size << 1;
347 	/*
348 	 * We need to allocated new one align to PAGE_SIZE,
349 	 *   so we can free them completely later.
350 	 */
351 	old_alloc_size = PAGE_ALIGN(old_size);
352 	new_alloc_size = PAGE_ALIGN(new_size);
353 
354 	/* Retrieve the slab flag */
355 	if (type == &memblock.memory)
356 		in_slab = &memblock_memory_in_slab;
357 	else
358 		in_slab = &memblock_reserved_in_slab;
359 
360 	/* Try to find some space for it.
361 	 *
362 	 * WARNING: We assume that either slab_is_available() and we use it or
363 	 * we use MEMBLOCK for allocations. That means that this is unsafe to
364 	 * use when bootmem is currently active (unless bootmem itself is
365 	 * implemented on top of MEMBLOCK which isn't the case yet)
366 	 *
367 	 * This should however not be an issue for now, as we currently only
368 	 * call into MEMBLOCK while it's still active, or much later when slab
369 	 * is active for memory hotplug operations
370 	 */
371 	if (use_slab) {
372 		new_array = kmalloc(new_size, GFP_KERNEL);
373 		addr = new_array ? __pa(new_array) : 0;
374 	} else {
375 		/* only exclude range when trying to double reserved.regions */
376 		if (type != &memblock.reserved)
377 			new_area_start = new_area_size = 0;
378 
379 		addr = memblock_find_in_range(new_area_start + new_area_size,
380 						memblock.current_limit,
381 						new_alloc_size, PAGE_SIZE);
382 		if (!addr && new_area_size)
383 			addr = memblock_find_in_range(0,
384 				min(new_area_start, memblock.current_limit),
385 				new_alloc_size, PAGE_SIZE);
386 
387 		new_array = addr ? __va(addr) : NULL;
388 	}
389 	if (!addr) {
390 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
391 		       type->name, type->max, type->max * 2);
392 		return -1;
393 	}
394 
395 	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
396 			type->name, type->max * 2, (u64)addr,
397 			(u64)addr + new_size - 1);
398 
399 	/*
400 	 * Found space, we now need to move the array over before we add the
401 	 * reserved region since it may be our reserved array itself that is
402 	 * full.
403 	 */
404 	memcpy(new_array, type->regions, old_size);
405 	memset(new_array + type->max, 0, old_size);
406 	old_array = type->regions;
407 	type->regions = new_array;
408 	type->max <<= 1;
409 
410 	/* Free old array. We needn't free it if the array is the static one */
411 	if (*in_slab)
412 		kfree(old_array);
413 	else if (old_array != memblock_memory_init_regions &&
414 		 old_array != memblock_reserved_init_regions)
415 		memblock_free(__pa(old_array), old_alloc_size);
416 
417 	/*
418 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
419 	 * needn't do it
420 	 */
421 	if (!use_slab)
422 		BUG_ON(memblock_reserve(addr, new_alloc_size));
423 
424 	/* Update slab flag */
425 	*in_slab = use_slab;
426 
427 	return 0;
428 }
429 
430 /**
431  * memblock_merge_regions - merge neighboring compatible regions
432  * @type: memblock type to scan
433  *
434  * Scan @type and merge neighboring compatible regions.
435  */
436 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
437 {
438 	int i = 0;
439 
440 	/* cnt never goes below 1 */
441 	while (i < type->cnt - 1) {
442 		struct memblock_region *this = &type->regions[i];
443 		struct memblock_region *next = &type->regions[i + 1];
444 
445 		if (this->base + this->size != next->base ||
446 		    memblock_get_region_node(this) !=
447 		    memblock_get_region_node(next) ||
448 		    this->flags != next->flags) {
449 			BUG_ON(this->base + this->size > next->base);
450 			i++;
451 			continue;
452 		}
453 
454 		this->size += next->size;
455 		/* move forward from next + 1, index of which is i + 2 */
456 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
457 		type->cnt--;
458 	}
459 }
460 
461 /**
462  * memblock_insert_region - insert new memblock region
463  * @type:	memblock type to insert into
464  * @idx:	index for the insertion point
465  * @base:	base address of the new region
466  * @size:	size of the new region
467  * @nid:	node id of the new region
468  * @flags:	flags of the new region
469  *
470  * Insert new memblock region [@base,@base+@size) into @type at @idx.
471  * @type must already have extra room to accommodate the new region.
472  */
473 static void __init_memblock memblock_insert_region(struct memblock_type *type,
474 						   int idx, phys_addr_t base,
475 						   phys_addr_t size,
476 						   int nid, unsigned long flags)
477 {
478 	struct memblock_region *rgn = &type->regions[idx];
479 
480 	BUG_ON(type->cnt >= type->max);
481 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
482 	rgn->base = base;
483 	rgn->size = size;
484 	rgn->flags = flags;
485 	memblock_set_region_node(rgn, nid);
486 	type->cnt++;
487 	type->total_size += size;
488 }
489 
490 /**
491  * memblock_add_range - add new memblock region
492  * @type: memblock type to add new region into
493  * @base: base address of the new region
494  * @size: size of the new region
495  * @nid: nid of the new region
496  * @flags: flags of the new region
497  *
498  * Add new memblock region [@base,@base+@size) into @type.  The new region
499  * is allowed to overlap with existing ones - overlaps don't affect already
500  * existing regions.  @type is guaranteed to be minimal (all neighbouring
501  * compatible regions are merged) after the addition.
502  *
503  * RETURNS:
504  * 0 on success, -errno on failure.
505  */
506 int __init_memblock memblock_add_range(struct memblock_type *type,
507 				phys_addr_t base, phys_addr_t size,
508 				int nid, unsigned long flags)
509 {
510 	bool insert = false;
511 	phys_addr_t obase = base;
512 	phys_addr_t end = base + memblock_cap_size(base, &size);
513 	int idx, nr_new;
514 	struct memblock_region *rgn;
515 
516 	if (!size)
517 		return 0;
518 
519 	/* special case for empty array */
520 	if (type->regions[0].size == 0) {
521 		WARN_ON(type->cnt != 1 || type->total_size);
522 		type->regions[0].base = base;
523 		type->regions[0].size = size;
524 		type->regions[0].flags = flags;
525 		memblock_set_region_node(&type->regions[0], nid);
526 		type->total_size = size;
527 		return 0;
528 	}
529 repeat:
530 	/*
531 	 * The following is executed twice.  Once with %false @insert and
532 	 * then with %true.  The first counts the number of regions needed
533 	 * to accommodate the new area.  The second actually inserts them.
534 	 */
535 	base = obase;
536 	nr_new = 0;
537 
538 	for_each_memblock_type(idx, type, rgn) {
539 		phys_addr_t rbase = rgn->base;
540 		phys_addr_t rend = rbase + rgn->size;
541 
542 		if (rbase >= end)
543 			break;
544 		if (rend <= base)
545 			continue;
546 		/*
547 		 * @rgn overlaps.  If it separates the lower part of new
548 		 * area, insert that portion.
549 		 */
550 		if (rbase > base) {
551 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
552 			WARN_ON(nid != memblock_get_region_node(rgn));
553 #endif
554 			WARN_ON(flags != rgn->flags);
555 			nr_new++;
556 			if (insert)
557 				memblock_insert_region(type, idx++, base,
558 						       rbase - base, nid,
559 						       flags);
560 		}
561 		/* area below @rend is dealt with, forget about it */
562 		base = min(rend, end);
563 	}
564 
565 	/* insert the remaining portion */
566 	if (base < end) {
567 		nr_new++;
568 		if (insert)
569 			memblock_insert_region(type, idx, base, end - base,
570 					       nid, flags);
571 	}
572 
573 	if (!nr_new)
574 		return 0;
575 
576 	/*
577 	 * If this was the first round, resize array and repeat for actual
578 	 * insertions; otherwise, merge and return.
579 	 */
580 	if (!insert) {
581 		while (type->cnt + nr_new > type->max)
582 			if (memblock_double_array(type, obase, size) < 0)
583 				return -ENOMEM;
584 		insert = true;
585 		goto repeat;
586 	} else {
587 		memblock_merge_regions(type);
588 		return 0;
589 	}
590 }
591 
592 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
593 				       int nid)
594 {
595 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
596 }
597 
598 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
599 {
600 	phys_addr_t end = base + size - 1;
601 
602 	memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
603 		     &base, &end, (void *)_RET_IP_);
604 
605 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
606 }
607 
608 /**
609  * memblock_isolate_range - isolate given range into disjoint memblocks
610  * @type: memblock type to isolate range for
611  * @base: base of range to isolate
612  * @size: size of range to isolate
613  * @start_rgn: out parameter for the start of isolated region
614  * @end_rgn: out parameter for the end of isolated region
615  *
616  * Walk @type and ensure that regions don't cross the boundaries defined by
617  * [@base,@base+@size).  Crossing regions are split at the boundaries,
618  * which may create at most two more regions.  The index of the first
619  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
620  *
621  * RETURNS:
622  * 0 on success, -errno on failure.
623  */
624 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
625 					phys_addr_t base, phys_addr_t size,
626 					int *start_rgn, int *end_rgn)
627 {
628 	phys_addr_t end = base + memblock_cap_size(base, &size);
629 	int idx;
630 	struct memblock_region *rgn;
631 
632 	*start_rgn = *end_rgn = 0;
633 
634 	if (!size)
635 		return 0;
636 
637 	/* we'll create at most two more regions */
638 	while (type->cnt + 2 > type->max)
639 		if (memblock_double_array(type, base, size) < 0)
640 			return -ENOMEM;
641 
642 	for_each_memblock_type(idx, type, rgn) {
643 		phys_addr_t rbase = rgn->base;
644 		phys_addr_t rend = rbase + rgn->size;
645 
646 		if (rbase >= end)
647 			break;
648 		if (rend <= base)
649 			continue;
650 
651 		if (rbase < base) {
652 			/*
653 			 * @rgn intersects from below.  Split and continue
654 			 * to process the next region - the new top half.
655 			 */
656 			rgn->base = base;
657 			rgn->size -= base - rbase;
658 			type->total_size -= base - rbase;
659 			memblock_insert_region(type, idx, rbase, base - rbase,
660 					       memblock_get_region_node(rgn),
661 					       rgn->flags);
662 		} else if (rend > end) {
663 			/*
664 			 * @rgn intersects from above.  Split and redo the
665 			 * current region - the new bottom half.
666 			 */
667 			rgn->base = end;
668 			rgn->size -= end - rbase;
669 			type->total_size -= end - rbase;
670 			memblock_insert_region(type, idx--, rbase, end - rbase,
671 					       memblock_get_region_node(rgn),
672 					       rgn->flags);
673 		} else {
674 			/* @rgn is fully contained, record it */
675 			if (!*end_rgn)
676 				*start_rgn = idx;
677 			*end_rgn = idx + 1;
678 		}
679 	}
680 
681 	return 0;
682 }
683 
684 static int __init_memblock memblock_remove_range(struct memblock_type *type,
685 					  phys_addr_t base, phys_addr_t size)
686 {
687 	int start_rgn, end_rgn;
688 	int i, ret;
689 
690 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
691 	if (ret)
692 		return ret;
693 
694 	for (i = end_rgn - 1; i >= start_rgn; i--)
695 		memblock_remove_region(type, i);
696 	return 0;
697 }
698 
699 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
700 {
701 	phys_addr_t end = base + size - 1;
702 
703 	memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
704 		     &base, &end, (void *)_RET_IP_);
705 
706 	return memblock_remove_range(&memblock.memory, base, size);
707 }
708 
709 
710 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
711 {
712 	phys_addr_t end = base + size - 1;
713 
714 	memblock_dbg("   memblock_free: [%pa-%pa] %pF\n",
715 		     &base, &end, (void *)_RET_IP_);
716 
717 	kmemleak_free_part_phys(base, size);
718 	return memblock_remove_range(&memblock.reserved, base, size);
719 }
720 
721 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
722 {
723 	phys_addr_t end = base + size - 1;
724 
725 	memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
726 		     &base, &end, (void *)_RET_IP_);
727 
728 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
729 }
730 
731 /**
732  *
733  * This function isolates region [@base, @base + @size), and sets/clears flag
734  *
735  * Return 0 on success, -errno on failure.
736  */
737 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
738 				phys_addr_t size, int set, int flag)
739 {
740 	struct memblock_type *type = &memblock.memory;
741 	int i, ret, start_rgn, end_rgn;
742 
743 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
744 	if (ret)
745 		return ret;
746 
747 	for (i = start_rgn; i < end_rgn; i++)
748 		if (set)
749 			memblock_set_region_flags(&type->regions[i], flag);
750 		else
751 			memblock_clear_region_flags(&type->regions[i], flag);
752 
753 	memblock_merge_regions(type);
754 	return 0;
755 }
756 
757 /**
758  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
759  * @base: the base phys addr of the region
760  * @size: the size of the region
761  *
762  * Return 0 on success, -errno on failure.
763  */
764 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
765 {
766 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
767 }
768 
769 /**
770  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
771  * @base: the base phys addr of the region
772  * @size: the size of the region
773  *
774  * Return 0 on success, -errno on failure.
775  */
776 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
777 {
778 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
779 }
780 
781 /**
782  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
783  * @base: the base phys addr of the region
784  * @size: the size of the region
785  *
786  * Return 0 on success, -errno on failure.
787  */
788 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
789 {
790 	system_has_some_mirror = true;
791 
792 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
793 }
794 
795 /**
796  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
797  * @base: the base phys addr of the region
798  * @size: the size of the region
799  *
800  * Return 0 on success, -errno on failure.
801  */
802 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
803 {
804 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
805 }
806 
807 /**
808  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
809  * @base: the base phys addr of the region
810  * @size: the size of the region
811  *
812  * Return 0 on success, -errno on failure.
813  */
814 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
815 {
816 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
817 }
818 
819 /**
820  * __next_reserved_mem_region - next function for for_each_reserved_region()
821  * @idx: pointer to u64 loop variable
822  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
823  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
824  *
825  * Iterate over all reserved memory regions.
826  */
827 void __init_memblock __next_reserved_mem_region(u64 *idx,
828 					   phys_addr_t *out_start,
829 					   phys_addr_t *out_end)
830 {
831 	struct memblock_type *type = &memblock.reserved;
832 
833 	if (*idx < type->cnt) {
834 		struct memblock_region *r = &type->regions[*idx];
835 		phys_addr_t base = r->base;
836 		phys_addr_t size = r->size;
837 
838 		if (out_start)
839 			*out_start = base;
840 		if (out_end)
841 			*out_end = base + size - 1;
842 
843 		*idx += 1;
844 		return;
845 	}
846 
847 	/* signal end of iteration */
848 	*idx = ULLONG_MAX;
849 }
850 
851 /**
852  * __next__mem_range - next function for for_each_free_mem_range() etc.
853  * @idx: pointer to u64 loop variable
854  * @nid: node selector, %NUMA_NO_NODE for all nodes
855  * @flags: pick from blocks based on memory attributes
856  * @type_a: pointer to memblock_type from where the range is taken
857  * @type_b: pointer to memblock_type which excludes memory from being taken
858  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
859  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
860  * @out_nid: ptr to int for nid of the range, can be %NULL
861  *
862  * Find the first area from *@idx which matches @nid, fill the out
863  * parameters, and update *@idx for the next iteration.  The lower 32bit of
864  * *@idx contains index into type_a and the upper 32bit indexes the
865  * areas before each region in type_b.	For example, if type_b regions
866  * look like the following,
867  *
868  *	0:[0-16), 1:[32-48), 2:[128-130)
869  *
870  * The upper 32bit indexes the following regions.
871  *
872  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
873  *
874  * As both region arrays are sorted, the function advances the two indices
875  * in lockstep and returns each intersection.
876  */
877 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
878 				      struct memblock_type *type_a,
879 				      struct memblock_type *type_b,
880 				      phys_addr_t *out_start,
881 				      phys_addr_t *out_end, int *out_nid)
882 {
883 	int idx_a = *idx & 0xffffffff;
884 	int idx_b = *idx >> 32;
885 
886 	if (WARN_ONCE(nid == MAX_NUMNODES,
887 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
888 		nid = NUMA_NO_NODE;
889 
890 	for (; idx_a < type_a->cnt; idx_a++) {
891 		struct memblock_region *m = &type_a->regions[idx_a];
892 
893 		phys_addr_t m_start = m->base;
894 		phys_addr_t m_end = m->base + m->size;
895 		int	    m_nid = memblock_get_region_node(m);
896 
897 		/* only memory regions are associated with nodes, check it */
898 		if (nid != NUMA_NO_NODE && nid != m_nid)
899 			continue;
900 
901 		/* skip hotpluggable memory regions if needed */
902 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
903 			continue;
904 
905 		/* if we want mirror memory skip non-mirror memory regions */
906 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
907 			continue;
908 
909 		/* skip nomap memory unless we were asked for it explicitly */
910 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
911 			continue;
912 
913 		if (!type_b) {
914 			if (out_start)
915 				*out_start = m_start;
916 			if (out_end)
917 				*out_end = m_end;
918 			if (out_nid)
919 				*out_nid = m_nid;
920 			idx_a++;
921 			*idx = (u32)idx_a | (u64)idx_b << 32;
922 			return;
923 		}
924 
925 		/* scan areas before each reservation */
926 		for (; idx_b < type_b->cnt + 1; idx_b++) {
927 			struct memblock_region *r;
928 			phys_addr_t r_start;
929 			phys_addr_t r_end;
930 
931 			r = &type_b->regions[idx_b];
932 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
933 			r_end = idx_b < type_b->cnt ?
934 				r->base : PHYS_ADDR_MAX;
935 
936 			/*
937 			 * if idx_b advanced past idx_a,
938 			 * break out to advance idx_a
939 			 */
940 			if (r_start >= m_end)
941 				break;
942 			/* if the two regions intersect, we're done */
943 			if (m_start < r_end) {
944 				if (out_start)
945 					*out_start =
946 						max(m_start, r_start);
947 				if (out_end)
948 					*out_end = min(m_end, r_end);
949 				if (out_nid)
950 					*out_nid = m_nid;
951 				/*
952 				 * The region which ends first is
953 				 * advanced for the next iteration.
954 				 */
955 				if (m_end <= r_end)
956 					idx_a++;
957 				else
958 					idx_b++;
959 				*idx = (u32)idx_a | (u64)idx_b << 32;
960 				return;
961 			}
962 		}
963 	}
964 
965 	/* signal end of iteration */
966 	*idx = ULLONG_MAX;
967 }
968 
969 /**
970  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
971  *
972  * Finds the next range from type_a which is not marked as unsuitable
973  * in type_b.
974  *
975  * @idx: pointer to u64 loop variable
976  * @nid: node selector, %NUMA_NO_NODE for all nodes
977  * @flags: pick from blocks based on memory attributes
978  * @type_a: pointer to memblock_type from where the range is taken
979  * @type_b: pointer to memblock_type which excludes memory from being taken
980  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
981  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
982  * @out_nid: ptr to int for nid of the range, can be %NULL
983  *
984  * Reverse of __next_mem_range().
985  */
986 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
987 					  struct memblock_type *type_a,
988 					  struct memblock_type *type_b,
989 					  phys_addr_t *out_start,
990 					  phys_addr_t *out_end, int *out_nid)
991 {
992 	int idx_a = *idx & 0xffffffff;
993 	int idx_b = *idx >> 32;
994 
995 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
996 		nid = NUMA_NO_NODE;
997 
998 	if (*idx == (u64)ULLONG_MAX) {
999 		idx_a = type_a->cnt - 1;
1000 		if (type_b != NULL)
1001 			idx_b = type_b->cnt;
1002 		else
1003 			idx_b = 0;
1004 	}
1005 
1006 	for (; idx_a >= 0; idx_a--) {
1007 		struct memblock_region *m = &type_a->regions[idx_a];
1008 
1009 		phys_addr_t m_start = m->base;
1010 		phys_addr_t m_end = m->base + m->size;
1011 		int m_nid = memblock_get_region_node(m);
1012 
1013 		/* only memory regions are associated with nodes, check it */
1014 		if (nid != NUMA_NO_NODE && nid != m_nid)
1015 			continue;
1016 
1017 		/* skip hotpluggable memory regions if needed */
1018 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1019 			continue;
1020 
1021 		/* if we want mirror memory skip non-mirror memory regions */
1022 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1023 			continue;
1024 
1025 		/* skip nomap memory unless we were asked for it explicitly */
1026 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1027 			continue;
1028 
1029 		if (!type_b) {
1030 			if (out_start)
1031 				*out_start = m_start;
1032 			if (out_end)
1033 				*out_end = m_end;
1034 			if (out_nid)
1035 				*out_nid = m_nid;
1036 			idx_a--;
1037 			*idx = (u32)idx_a | (u64)idx_b << 32;
1038 			return;
1039 		}
1040 
1041 		/* scan areas before each reservation */
1042 		for (; idx_b >= 0; idx_b--) {
1043 			struct memblock_region *r;
1044 			phys_addr_t r_start;
1045 			phys_addr_t r_end;
1046 
1047 			r = &type_b->regions[idx_b];
1048 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1049 			r_end = idx_b < type_b->cnt ?
1050 				r->base : PHYS_ADDR_MAX;
1051 			/*
1052 			 * if idx_b advanced past idx_a,
1053 			 * break out to advance idx_a
1054 			 */
1055 
1056 			if (r_end <= m_start)
1057 				break;
1058 			/* if the two regions intersect, we're done */
1059 			if (m_end > r_start) {
1060 				if (out_start)
1061 					*out_start = max(m_start, r_start);
1062 				if (out_end)
1063 					*out_end = min(m_end, r_end);
1064 				if (out_nid)
1065 					*out_nid = m_nid;
1066 				if (m_start >= r_start)
1067 					idx_a--;
1068 				else
1069 					idx_b--;
1070 				*idx = (u32)idx_a | (u64)idx_b << 32;
1071 				return;
1072 			}
1073 		}
1074 	}
1075 	/* signal end of iteration */
1076 	*idx = ULLONG_MAX;
1077 }
1078 
1079 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1080 /*
1081  * Common iterator interface used to define for_each_mem_range().
1082  */
1083 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1084 				unsigned long *out_start_pfn,
1085 				unsigned long *out_end_pfn, int *out_nid)
1086 {
1087 	struct memblock_type *type = &memblock.memory;
1088 	struct memblock_region *r;
1089 
1090 	while (++*idx < type->cnt) {
1091 		r = &type->regions[*idx];
1092 
1093 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1094 			continue;
1095 		if (nid == MAX_NUMNODES || nid == r->nid)
1096 			break;
1097 	}
1098 	if (*idx >= type->cnt) {
1099 		*idx = -1;
1100 		return;
1101 	}
1102 
1103 	if (out_start_pfn)
1104 		*out_start_pfn = PFN_UP(r->base);
1105 	if (out_end_pfn)
1106 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1107 	if (out_nid)
1108 		*out_nid = r->nid;
1109 }
1110 
1111 /**
1112  * memblock_set_node - set node ID on memblock regions
1113  * @base: base of area to set node ID for
1114  * @size: size of area to set node ID for
1115  * @type: memblock type to set node ID for
1116  * @nid: node ID to set
1117  *
1118  * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1119  * Regions which cross the area boundaries are split as necessary.
1120  *
1121  * RETURNS:
1122  * 0 on success, -errno on failure.
1123  */
1124 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1125 				      struct memblock_type *type, int nid)
1126 {
1127 	int start_rgn, end_rgn;
1128 	int i, ret;
1129 
1130 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1131 	if (ret)
1132 		return ret;
1133 
1134 	for (i = start_rgn; i < end_rgn; i++)
1135 		memblock_set_region_node(&type->regions[i], nid);
1136 
1137 	memblock_merge_regions(type);
1138 	return 0;
1139 }
1140 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1141 
1142 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1143 					phys_addr_t align, phys_addr_t start,
1144 					phys_addr_t end, int nid, ulong flags)
1145 {
1146 	phys_addr_t found;
1147 
1148 	if (!align)
1149 		align = SMP_CACHE_BYTES;
1150 
1151 	found = memblock_find_in_range_node(size, align, start, end, nid,
1152 					    flags);
1153 	if (found && !memblock_reserve(found, size)) {
1154 		/*
1155 		 * The min_count is set to 0 so that memblock allocations are
1156 		 * never reported as leaks.
1157 		 */
1158 		kmemleak_alloc_phys(found, size, 0, 0);
1159 		return found;
1160 	}
1161 	return 0;
1162 }
1163 
1164 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1165 					phys_addr_t start, phys_addr_t end,
1166 					ulong flags)
1167 {
1168 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1169 					flags);
1170 }
1171 
1172 phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1173 					phys_addr_t align, phys_addr_t max_addr,
1174 					int nid, ulong flags)
1175 {
1176 	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1177 }
1178 
1179 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1180 {
1181 	ulong flags = choose_memblock_flags();
1182 	phys_addr_t ret;
1183 
1184 again:
1185 	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1186 				      nid, flags);
1187 
1188 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1189 		flags &= ~MEMBLOCK_MIRROR;
1190 		goto again;
1191 	}
1192 	return ret;
1193 }
1194 
1195 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1196 {
1197 	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1198 				       MEMBLOCK_NONE);
1199 }
1200 
1201 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1202 {
1203 	phys_addr_t alloc;
1204 
1205 	alloc = __memblock_alloc_base(size, align, max_addr);
1206 
1207 	if (alloc == 0)
1208 		panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1209 		      &size, &max_addr);
1210 
1211 	return alloc;
1212 }
1213 
1214 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1215 {
1216 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1217 }
1218 
1219 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1220 {
1221 	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1222 
1223 	if (res)
1224 		return res;
1225 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1226 }
1227 
1228 /**
1229  * memblock_virt_alloc_internal - allocate boot memory block
1230  * @size: size of memory block to be allocated in bytes
1231  * @align: alignment of the region and block's size
1232  * @min_addr: the lower bound of the memory region to allocate (phys address)
1233  * @max_addr: the upper bound of the memory region to allocate (phys address)
1234  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1235  *
1236  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1237  * will fall back to memory below @min_addr. Also, allocation may fall back
1238  * to any node in the system if the specified node can not
1239  * hold the requested memory.
1240  *
1241  * The allocation is performed from memory region limited by
1242  * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1243  *
1244  * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1245  *
1246  * The phys address of allocated boot memory block is converted to virtual and
1247  * allocated memory is reset to 0.
1248  *
1249  * In addition, function sets the min_count to 0 using kmemleak_alloc for
1250  * allocated boot memory block, so that it is never reported as leaks.
1251  *
1252  * RETURNS:
1253  * Virtual address of allocated memory block on success, NULL on failure.
1254  */
1255 static void * __init memblock_virt_alloc_internal(
1256 				phys_addr_t size, phys_addr_t align,
1257 				phys_addr_t min_addr, phys_addr_t max_addr,
1258 				int nid)
1259 {
1260 	phys_addr_t alloc;
1261 	void *ptr;
1262 	ulong flags = choose_memblock_flags();
1263 
1264 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1265 		nid = NUMA_NO_NODE;
1266 
1267 	/*
1268 	 * Detect any accidental use of these APIs after slab is ready, as at
1269 	 * this moment memblock may be deinitialized already and its
1270 	 * internal data may be destroyed (after execution of free_all_bootmem)
1271 	 */
1272 	if (WARN_ON_ONCE(slab_is_available()))
1273 		return kzalloc_node(size, GFP_NOWAIT, nid);
1274 
1275 	if (!align)
1276 		align = SMP_CACHE_BYTES;
1277 
1278 	if (max_addr > memblock.current_limit)
1279 		max_addr = memblock.current_limit;
1280 again:
1281 	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1282 					    nid, flags);
1283 	if (alloc && !memblock_reserve(alloc, size))
1284 		goto done;
1285 
1286 	if (nid != NUMA_NO_NODE) {
1287 		alloc = memblock_find_in_range_node(size, align, min_addr,
1288 						    max_addr, NUMA_NO_NODE,
1289 						    flags);
1290 		if (alloc && !memblock_reserve(alloc, size))
1291 			goto done;
1292 	}
1293 
1294 	if (min_addr) {
1295 		min_addr = 0;
1296 		goto again;
1297 	}
1298 
1299 	if (flags & MEMBLOCK_MIRROR) {
1300 		flags &= ~MEMBLOCK_MIRROR;
1301 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1302 			&size);
1303 		goto again;
1304 	}
1305 
1306 	return NULL;
1307 done:
1308 	ptr = phys_to_virt(alloc);
1309 
1310 	/*
1311 	 * The min_count is set to 0 so that bootmem allocated blocks
1312 	 * are never reported as leaks. This is because many of these blocks
1313 	 * are only referred via the physical address which is not
1314 	 * looked up by kmemleak.
1315 	 */
1316 	kmemleak_alloc(ptr, size, 0, 0);
1317 
1318 	return ptr;
1319 }
1320 
1321 /**
1322  * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1323  * memory and without panicking
1324  * @size: size of memory block to be allocated in bytes
1325  * @align: alignment of the region and block's size
1326  * @min_addr: the lower bound of the memory region from where the allocation
1327  *	  is preferred (phys address)
1328  * @max_addr: the upper bound of the memory region from where the allocation
1329  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1330  *	      allocate only from memory limited by memblock.current_limit value
1331  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1332  *
1333  * Public function, provides additional debug information (including caller
1334  * info), if enabled. Does not zero allocated memory, does not panic if request
1335  * cannot be satisfied.
1336  *
1337  * RETURNS:
1338  * Virtual address of allocated memory block on success, NULL on failure.
1339  */
1340 void * __init memblock_virt_alloc_try_nid_raw(
1341 			phys_addr_t size, phys_addr_t align,
1342 			phys_addr_t min_addr, phys_addr_t max_addr,
1343 			int nid)
1344 {
1345 	void *ptr;
1346 
1347 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1348 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1349 		     (u64)max_addr, (void *)_RET_IP_);
1350 
1351 	ptr = memblock_virt_alloc_internal(size, align,
1352 					   min_addr, max_addr, nid);
1353 #ifdef CONFIG_DEBUG_VM
1354 	if (ptr && size > 0)
1355 		memset(ptr, PAGE_POISON_PATTERN, size);
1356 #endif
1357 	return ptr;
1358 }
1359 
1360 /**
1361  * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1362  * @size: size of memory block to be allocated in bytes
1363  * @align: alignment of the region and block's size
1364  * @min_addr: the lower bound of the memory region from where the allocation
1365  *	  is preferred (phys address)
1366  * @max_addr: the upper bound of the memory region from where the allocation
1367  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1368  *	      allocate only from memory limited by memblock.current_limit value
1369  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1370  *
1371  * Public function, provides additional debug information (including caller
1372  * info), if enabled. This function zeroes the allocated memory.
1373  *
1374  * RETURNS:
1375  * Virtual address of allocated memory block on success, NULL on failure.
1376  */
1377 void * __init memblock_virt_alloc_try_nid_nopanic(
1378 				phys_addr_t size, phys_addr_t align,
1379 				phys_addr_t min_addr, phys_addr_t max_addr,
1380 				int nid)
1381 {
1382 	void *ptr;
1383 
1384 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1385 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1386 		     (u64)max_addr, (void *)_RET_IP_);
1387 
1388 	ptr = memblock_virt_alloc_internal(size, align,
1389 					   min_addr, max_addr, nid);
1390 	if (ptr)
1391 		memset(ptr, 0, size);
1392 	return ptr;
1393 }
1394 
1395 /**
1396  * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1397  * @size: size of memory block to be allocated in bytes
1398  * @align: alignment of the region and block's size
1399  * @min_addr: the lower bound of the memory region from where the allocation
1400  *	  is preferred (phys address)
1401  * @max_addr: the upper bound of the memory region from where the allocation
1402  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1403  *	      allocate only from memory limited by memblock.current_limit value
1404  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1405  *
1406  * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1407  * which provides debug information (including caller info), if enabled,
1408  * and panics if the request can not be satisfied.
1409  *
1410  * RETURNS:
1411  * Virtual address of allocated memory block on success, NULL on failure.
1412  */
1413 void * __init memblock_virt_alloc_try_nid(
1414 			phys_addr_t size, phys_addr_t align,
1415 			phys_addr_t min_addr, phys_addr_t max_addr,
1416 			int nid)
1417 {
1418 	void *ptr;
1419 
1420 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1421 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1422 		     (u64)max_addr, (void *)_RET_IP_);
1423 	ptr = memblock_virt_alloc_internal(size, align,
1424 					   min_addr, max_addr, nid);
1425 	if (ptr) {
1426 		memset(ptr, 0, size);
1427 		return ptr;
1428 	}
1429 
1430 	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1431 	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1432 	      (u64)max_addr);
1433 	return NULL;
1434 }
1435 
1436 /**
1437  * __memblock_free_early - free boot memory block
1438  * @base: phys starting address of the  boot memory block
1439  * @size: size of the boot memory block in bytes
1440  *
1441  * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1442  * The freeing memory will not be released to the buddy allocator.
1443  */
1444 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1445 {
1446 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1447 		     __func__, (u64)base, (u64)base + size - 1,
1448 		     (void *)_RET_IP_);
1449 	kmemleak_free_part_phys(base, size);
1450 	memblock_remove_range(&memblock.reserved, base, size);
1451 }
1452 
1453 /*
1454  * __memblock_free_late - free bootmem block pages directly to buddy allocator
1455  * @addr: phys starting address of the  boot memory block
1456  * @size: size of the boot memory block in bytes
1457  *
1458  * This is only useful when the bootmem allocator has already been torn
1459  * down, but we are still initializing the system.  Pages are released directly
1460  * to the buddy allocator, no bootmem metadata is updated because it is gone.
1461  */
1462 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1463 {
1464 	u64 cursor, end;
1465 
1466 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1467 		     __func__, (u64)base, (u64)base + size - 1,
1468 		     (void *)_RET_IP_);
1469 	kmemleak_free_part_phys(base, size);
1470 	cursor = PFN_UP(base);
1471 	end = PFN_DOWN(base + size);
1472 
1473 	for (; cursor < end; cursor++) {
1474 		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1475 		totalram_pages++;
1476 	}
1477 }
1478 
1479 /*
1480  * Remaining API functions
1481  */
1482 
1483 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1484 {
1485 	return memblock.memory.total_size;
1486 }
1487 
1488 phys_addr_t __init_memblock memblock_reserved_size(void)
1489 {
1490 	return memblock.reserved.total_size;
1491 }
1492 
1493 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1494 {
1495 	unsigned long pages = 0;
1496 	struct memblock_region *r;
1497 	unsigned long start_pfn, end_pfn;
1498 
1499 	for_each_memblock(memory, r) {
1500 		start_pfn = memblock_region_memory_base_pfn(r);
1501 		end_pfn = memblock_region_memory_end_pfn(r);
1502 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1503 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1504 		pages += end_pfn - start_pfn;
1505 	}
1506 
1507 	return PFN_PHYS(pages);
1508 }
1509 
1510 /* lowest address */
1511 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1512 {
1513 	return memblock.memory.regions[0].base;
1514 }
1515 
1516 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1517 {
1518 	int idx = memblock.memory.cnt - 1;
1519 
1520 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1521 }
1522 
1523 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1524 {
1525 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1526 	struct memblock_region *r;
1527 
1528 	/*
1529 	 * translate the memory @limit size into the max address within one of
1530 	 * the memory memblock regions, if the @limit exceeds the total size
1531 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1532 	 */
1533 	for_each_memblock(memory, r) {
1534 		if (limit <= r->size) {
1535 			max_addr = r->base + limit;
1536 			break;
1537 		}
1538 		limit -= r->size;
1539 	}
1540 
1541 	return max_addr;
1542 }
1543 
1544 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1545 {
1546 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1547 
1548 	if (!limit)
1549 		return;
1550 
1551 	max_addr = __find_max_addr(limit);
1552 
1553 	/* @limit exceeds the total size of the memory, do nothing */
1554 	if (max_addr == PHYS_ADDR_MAX)
1555 		return;
1556 
1557 	/* truncate both memory and reserved regions */
1558 	memblock_remove_range(&memblock.memory, max_addr,
1559 			      PHYS_ADDR_MAX);
1560 	memblock_remove_range(&memblock.reserved, max_addr,
1561 			      PHYS_ADDR_MAX);
1562 }
1563 
1564 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1565 {
1566 	int start_rgn, end_rgn;
1567 	int i, ret;
1568 
1569 	if (!size)
1570 		return;
1571 
1572 	ret = memblock_isolate_range(&memblock.memory, base, size,
1573 						&start_rgn, &end_rgn);
1574 	if (ret)
1575 		return;
1576 
1577 	/* remove all the MAP regions */
1578 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1579 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1580 			memblock_remove_region(&memblock.memory, i);
1581 
1582 	for (i = start_rgn - 1; i >= 0; i--)
1583 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1584 			memblock_remove_region(&memblock.memory, i);
1585 
1586 	/* truncate the reserved regions */
1587 	memblock_remove_range(&memblock.reserved, 0, base);
1588 	memblock_remove_range(&memblock.reserved,
1589 			base + size, PHYS_ADDR_MAX);
1590 }
1591 
1592 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1593 {
1594 	phys_addr_t max_addr;
1595 
1596 	if (!limit)
1597 		return;
1598 
1599 	max_addr = __find_max_addr(limit);
1600 
1601 	/* @limit exceeds the total size of the memory, do nothing */
1602 	if (max_addr == PHYS_ADDR_MAX)
1603 		return;
1604 
1605 	memblock_cap_memory_range(0, max_addr);
1606 }
1607 
1608 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1609 {
1610 	unsigned int left = 0, right = type->cnt;
1611 
1612 	do {
1613 		unsigned int mid = (right + left) / 2;
1614 
1615 		if (addr < type->regions[mid].base)
1616 			right = mid;
1617 		else if (addr >= (type->regions[mid].base +
1618 				  type->regions[mid].size))
1619 			left = mid + 1;
1620 		else
1621 			return mid;
1622 	} while (left < right);
1623 	return -1;
1624 }
1625 
1626 bool __init memblock_is_reserved(phys_addr_t addr)
1627 {
1628 	return memblock_search(&memblock.reserved, addr) != -1;
1629 }
1630 
1631 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1632 {
1633 	return memblock_search(&memblock.memory, addr) != -1;
1634 }
1635 
1636 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1637 {
1638 	int i = memblock_search(&memblock.memory, addr);
1639 
1640 	if (i == -1)
1641 		return false;
1642 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1643 }
1644 
1645 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1646 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1647 			 unsigned long *start_pfn, unsigned long *end_pfn)
1648 {
1649 	struct memblock_type *type = &memblock.memory;
1650 	int mid = memblock_search(type, PFN_PHYS(pfn));
1651 
1652 	if (mid == -1)
1653 		return -1;
1654 
1655 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1656 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1657 
1658 	return type->regions[mid].nid;
1659 }
1660 #endif
1661 
1662 /**
1663  * memblock_is_region_memory - check if a region is a subset of memory
1664  * @base: base of region to check
1665  * @size: size of region to check
1666  *
1667  * Check if the region [@base, @base+@size) is a subset of a memory block.
1668  *
1669  * RETURNS:
1670  * 0 if false, non-zero if true
1671  */
1672 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1673 {
1674 	int idx = memblock_search(&memblock.memory, base);
1675 	phys_addr_t end = base + memblock_cap_size(base, &size);
1676 
1677 	if (idx == -1)
1678 		return false;
1679 	return (memblock.memory.regions[idx].base +
1680 		 memblock.memory.regions[idx].size) >= end;
1681 }
1682 
1683 /**
1684  * memblock_is_region_reserved - check if a region intersects reserved memory
1685  * @base: base of region to check
1686  * @size: size of region to check
1687  *
1688  * Check if the region [@base, @base+@size) intersects a reserved memory block.
1689  *
1690  * RETURNS:
1691  * True if they intersect, false if not.
1692  */
1693 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1694 {
1695 	memblock_cap_size(base, &size);
1696 	return memblock_overlaps_region(&memblock.reserved, base, size);
1697 }
1698 
1699 void __init_memblock memblock_trim_memory(phys_addr_t align)
1700 {
1701 	phys_addr_t start, end, orig_start, orig_end;
1702 	struct memblock_region *r;
1703 
1704 	for_each_memblock(memory, r) {
1705 		orig_start = r->base;
1706 		orig_end = r->base + r->size;
1707 		start = round_up(orig_start, align);
1708 		end = round_down(orig_end, align);
1709 
1710 		if (start == orig_start && end == orig_end)
1711 			continue;
1712 
1713 		if (start < end) {
1714 			r->base = start;
1715 			r->size = end - start;
1716 		} else {
1717 			memblock_remove_region(&memblock.memory,
1718 					       r - memblock.memory.regions);
1719 			r--;
1720 		}
1721 	}
1722 }
1723 
1724 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1725 {
1726 	memblock.current_limit = limit;
1727 }
1728 
1729 phys_addr_t __init_memblock memblock_get_current_limit(void)
1730 {
1731 	return memblock.current_limit;
1732 }
1733 
1734 static void __init_memblock memblock_dump(struct memblock_type *type)
1735 {
1736 	phys_addr_t base, end, size;
1737 	unsigned long flags;
1738 	int idx;
1739 	struct memblock_region *rgn;
1740 
1741 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1742 
1743 	for_each_memblock_type(idx, type, rgn) {
1744 		char nid_buf[32] = "";
1745 
1746 		base = rgn->base;
1747 		size = rgn->size;
1748 		end = base + size - 1;
1749 		flags = rgn->flags;
1750 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1751 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1752 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1753 				 memblock_get_region_node(rgn));
1754 #endif
1755 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1756 			type->name, idx, &base, &end, &size, nid_buf, flags);
1757 	}
1758 }
1759 
1760 void __init_memblock __memblock_dump_all(void)
1761 {
1762 	pr_info("MEMBLOCK configuration:\n");
1763 	pr_info(" memory size = %pa reserved size = %pa\n",
1764 		&memblock.memory.total_size,
1765 		&memblock.reserved.total_size);
1766 
1767 	memblock_dump(&memblock.memory);
1768 	memblock_dump(&memblock.reserved);
1769 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1770 	memblock_dump(&memblock.physmem);
1771 #endif
1772 }
1773 
1774 void __init memblock_allow_resize(void)
1775 {
1776 	memblock_can_resize = 1;
1777 }
1778 
1779 static int __init early_memblock(char *p)
1780 {
1781 	if (p && strstr(p, "debug"))
1782 		memblock_debug = 1;
1783 	return 0;
1784 }
1785 early_param("memblock", early_memblock);
1786 
1787 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1788 
1789 static int memblock_debug_show(struct seq_file *m, void *private)
1790 {
1791 	struct memblock_type *type = m->private;
1792 	struct memblock_region *reg;
1793 	int i;
1794 	phys_addr_t end;
1795 
1796 	for (i = 0; i < type->cnt; i++) {
1797 		reg = &type->regions[i];
1798 		end = reg->base + reg->size - 1;
1799 
1800 		seq_printf(m, "%4d: ", i);
1801 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1802 	}
1803 	return 0;
1804 }
1805 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
1806 
1807 static int __init memblock_init_debugfs(void)
1808 {
1809 	struct dentry *root = debugfs_create_dir("memblock", NULL);
1810 	if (!root)
1811 		return -ENXIO;
1812 	debugfs_create_file("memory", 0444, root,
1813 			    &memblock.memory, &memblock_debug_fops);
1814 	debugfs_create_file("reserved", 0444, root,
1815 			    &memblock.reserved, &memblock_debug_fops);
1816 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1817 	debugfs_create_file("physmem", 0444, root,
1818 			    &memblock.physmem, &memblock_debug_fops);
1819 #endif
1820 
1821 	return 0;
1822 }
1823 __initcall(memblock_init_debugfs);
1824 
1825 #endif /* CONFIG_DEBUG_FS */
1826