1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for maintaining information about logical memory blocks. 4 * 5 * Peter Bergner, IBM Corp. June 2001. 6 * Copyright (C) 2001 Peter Bergner. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/init.h> 12 #include <linux/bitops.h> 13 #include <linux/poison.h> 14 #include <linux/pfn.h> 15 #include <linux/debugfs.h> 16 #include <linux/kmemleak.h> 17 #include <linux/seq_file.h> 18 #include <linux/memblock.h> 19 20 #include <asm/sections.h> 21 #include <linux/io.h> 22 23 #include "internal.h" 24 25 #define INIT_MEMBLOCK_REGIONS 128 26 #define INIT_PHYSMEM_REGIONS 4 27 28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS 29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS 30 #endif 31 32 /** 33 * DOC: memblock overview 34 * 35 * Memblock is a method of managing memory regions during the early 36 * boot period when the usual kernel memory allocators are not up and 37 * running. 38 * 39 * Memblock views the system memory as collections of contiguous 40 * regions. There are several types of these collections: 41 * 42 * * ``memory`` - describes the physical memory available to the 43 * kernel; this may differ from the actual physical memory installed 44 * in the system, for instance when the memory is restricted with 45 * ``mem=`` command line parameter 46 * * ``reserved`` - describes the regions that were allocated 47 * * ``physmap`` - describes the actual physical memory regardless of 48 * the possible restrictions; the ``physmap`` type is only available 49 * on some architectures. 50 * 51 * Each region is represented by :c:type:`struct memblock_region` that 52 * defines the region extents, its attributes and NUMA node id on NUMA 53 * systems. Every memory type is described by the :c:type:`struct 54 * memblock_type` which contains an array of memory regions along with 55 * the allocator metadata. The memory types are nicely wrapped with 56 * :c:type:`struct memblock`. This structure is statically initialzed 57 * at build time. The region arrays for the "memory" and "reserved" 58 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the 59 * "physmap" type to %INIT_PHYSMEM_REGIONS. 60 * The memblock_allow_resize() enables automatic resizing of the region 61 * arrays during addition of new regions. This feature should be used 62 * with care so that memory allocated for the region array will not 63 * overlap with areas that should be reserved, for example initrd. 64 * 65 * The early architecture setup should tell memblock what the physical 66 * memory layout is by using memblock_add() or memblock_add_node() 67 * functions. The first function does not assign the region to a NUMA 68 * node and it is appropriate for UMA systems. Yet, it is possible to 69 * use it on NUMA systems as well and assign the region to a NUMA node 70 * later in the setup process using memblock_set_node(). The 71 * memblock_add_node() performs such an assignment directly. 72 * 73 * Once memblock is setup the memory can be allocated using one of the 74 * API variants: 75 * 76 * * memblock_phys_alloc*() - these functions return the **physical** 77 * address of the allocated memory 78 * * memblock_alloc*() - these functions return the **virtual** address 79 * of the allocated memory. 80 * 81 * Note, that both API variants use implict assumptions about allowed 82 * memory ranges and the fallback methods. Consult the documentation 83 * of memblock_alloc_internal() and memblock_alloc_range_nid() 84 * functions for more elaborate description. 85 * 86 * As the system boot progresses, the architecture specific mem_init() 87 * function frees all the memory to the buddy page allocator. 88 * 89 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the 90 * memblock data structures will be discarded after the system 91 * initialization completes. 92 */ 93 94 #ifndef CONFIG_NEED_MULTIPLE_NODES 95 struct pglist_data __refdata contig_page_data; 96 EXPORT_SYMBOL(contig_page_data); 97 #endif 98 99 unsigned long max_low_pfn; 100 unsigned long min_low_pfn; 101 unsigned long max_pfn; 102 unsigned long long max_possible_pfn; 103 104 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 105 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; 106 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 107 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock; 108 #endif 109 110 struct memblock memblock __initdata_memblock = { 111 .memory.regions = memblock_memory_init_regions, 112 .memory.cnt = 1, /* empty dummy entry */ 113 .memory.max = INIT_MEMBLOCK_REGIONS, 114 .memory.name = "memory", 115 116 .reserved.regions = memblock_reserved_init_regions, 117 .reserved.cnt = 1, /* empty dummy entry */ 118 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, 119 .reserved.name = "reserved", 120 121 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 122 .physmem.regions = memblock_physmem_init_regions, 123 .physmem.cnt = 1, /* empty dummy entry */ 124 .physmem.max = INIT_PHYSMEM_REGIONS, 125 .physmem.name = "physmem", 126 #endif 127 128 .bottom_up = false, 129 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 130 }; 131 132 int memblock_debug __initdata_memblock; 133 static bool system_has_some_mirror __initdata_memblock = false; 134 static int memblock_can_resize __initdata_memblock; 135 static int memblock_memory_in_slab __initdata_memblock = 0; 136 static int memblock_reserved_in_slab __initdata_memblock = 0; 137 138 static enum memblock_flags __init_memblock choose_memblock_flags(void) 139 { 140 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 141 } 142 143 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 144 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 145 { 146 return *size = min(*size, PHYS_ADDR_MAX - base); 147 } 148 149 /* 150 * Address comparison utilities 151 */ 152 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 153 phys_addr_t base2, phys_addr_t size2) 154 { 155 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 156 } 157 158 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 159 phys_addr_t base, phys_addr_t size) 160 { 161 unsigned long i; 162 163 for (i = 0; i < type->cnt; i++) 164 if (memblock_addrs_overlap(base, size, type->regions[i].base, 165 type->regions[i].size)) 166 break; 167 return i < type->cnt; 168 } 169 170 /** 171 * __memblock_find_range_bottom_up - find free area utility in bottom-up 172 * @start: start of candidate range 173 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 174 * %MEMBLOCK_ALLOC_ACCESSIBLE 175 * @size: size of free area to find 176 * @align: alignment of free area to find 177 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 178 * @flags: pick from blocks based on memory attributes 179 * 180 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 181 * 182 * Return: 183 * Found address on success, 0 on failure. 184 */ 185 static phys_addr_t __init_memblock 186 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 187 phys_addr_t size, phys_addr_t align, int nid, 188 enum memblock_flags flags) 189 { 190 phys_addr_t this_start, this_end, cand; 191 u64 i; 192 193 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 194 this_start = clamp(this_start, start, end); 195 this_end = clamp(this_end, start, end); 196 197 cand = round_up(this_start, align); 198 if (cand < this_end && this_end - cand >= size) 199 return cand; 200 } 201 202 return 0; 203 } 204 205 /** 206 * __memblock_find_range_top_down - find free area utility, in top-down 207 * @start: start of candidate range 208 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 209 * %MEMBLOCK_ALLOC_ACCESSIBLE 210 * @size: size of free area to find 211 * @align: alignment of free area to find 212 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 213 * @flags: pick from blocks based on memory attributes 214 * 215 * Utility called from memblock_find_in_range_node(), find free area top-down. 216 * 217 * Return: 218 * Found address on success, 0 on failure. 219 */ 220 static phys_addr_t __init_memblock 221 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 222 phys_addr_t size, phys_addr_t align, int nid, 223 enum memblock_flags flags) 224 { 225 phys_addr_t this_start, this_end, cand; 226 u64 i; 227 228 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 229 NULL) { 230 this_start = clamp(this_start, start, end); 231 this_end = clamp(this_end, start, end); 232 233 if (this_end < size) 234 continue; 235 236 cand = round_down(this_end - size, align); 237 if (cand >= this_start) 238 return cand; 239 } 240 241 return 0; 242 } 243 244 /** 245 * memblock_find_in_range_node - find free area in given range and node 246 * @size: size of free area to find 247 * @align: alignment of free area to find 248 * @start: start of candidate range 249 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 250 * %MEMBLOCK_ALLOC_ACCESSIBLE 251 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 252 * @flags: pick from blocks based on memory attributes 253 * 254 * Find @size free area aligned to @align in the specified range and node. 255 * 256 * When allocation direction is bottom-up, the @start should be greater 257 * than the end of the kernel image. Otherwise, it will be trimmed. The 258 * reason is that we want the bottom-up allocation just near the kernel 259 * image so it is highly likely that the allocated memory and the kernel 260 * will reside in the same node. 261 * 262 * If bottom-up allocation failed, will try to allocate memory top-down. 263 * 264 * Return: 265 * Found address on success, 0 on failure. 266 */ 267 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 268 phys_addr_t align, phys_addr_t start, 269 phys_addr_t end, int nid, 270 enum memblock_flags flags) 271 { 272 phys_addr_t kernel_end, ret; 273 274 /* pump up @end */ 275 if (end == MEMBLOCK_ALLOC_ACCESSIBLE || 276 end == MEMBLOCK_ALLOC_KASAN) 277 end = memblock.current_limit; 278 279 /* avoid allocating the first page */ 280 start = max_t(phys_addr_t, start, PAGE_SIZE); 281 end = max(start, end); 282 kernel_end = __pa_symbol(_end); 283 284 /* 285 * try bottom-up allocation only when bottom-up mode 286 * is set and @end is above the kernel image. 287 */ 288 if (memblock_bottom_up() && end > kernel_end) { 289 phys_addr_t bottom_up_start; 290 291 /* make sure we will allocate above the kernel */ 292 bottom_up_start = max(start, kernel_end); 293 294 /* ok, try bottom-up allocation first */ 295 ret = __memblock_find_range_bottom_up(bottom_up_start, end, 296 size, align, nid, flags); 297 if (ret) 298 return ret; 299 300 /* 301 * we always limit bottom-up allocation above the kernel, 302 * but top-down allocation doesn't have the limit, so 303 * retrying top-down allocation may succeed when bottom-up 304 * allocation failed. 305 * 306 * bottom-up allocation is expected to be fail very rarely, 307 * so we use WARN_ONCE() here to see the stack trace if 308 * fail happens. 309 */ 310 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE), 311 "memblock: bottom-up allocation failed, memory hotremove may be affected\n"); 312 } 313 314 return __memblock_find_range_top_down(start, end, size, align, nid, 315 flags); 316 } 317 318 /** 319 * memblock_find_in_range - find free area in given range 320 * @start: start of candidate range 321 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 322 * %MEMBLOCK_ALLOC_ACCESSIBLE 323 * @size: size of free area to find 324 * @align: alignment of free area to find 325 * 326 * Find @size free area aligned to @align in the specified range. 327 * 328 * Return: 329 * Found address on success, 0 on failure. 330 */ 331 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 332 phys_addr_t end, phys_addr_t size, 333 phys_addr_t align) 334 { 335 phys_addr_t ret; 336 enum memblock_flags flags = choose_memblock_flags(); 337 338 again: 339 ret = memblock_find_in_range_node(size, align, start, end, 340 NUMA_NO_NODE, flags); 341 342 if (!ret && (flags & MEMBLOCK_MIRROR)) { 343 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 344 &size); 345 flags &= ~MEMBLOCK_MIRROR; 346 goto again; 347 } 348 349 return ret; 350 } 351 352 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 353 { 354 type->total_size -= type->regions[r].size; 355 memmove(&type->regions[r], &type->regions[r + 1], 356 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 357 type->cnt--; 358 359 /* Special case for empty arrays */ 360 if (type->cnt == 0) { 361 WARN_ON(type->total_size != 0); 362 type->cnt = 1; 363 type->regions[0].base = 0; 364 type->regions[0].size = 0; 365 type->regions[0].flags = 0; 366 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 367 } 368 } 369 370 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK 371 /** 372 * memblock_discard - discard memory and reserved arrays if they were allocated 373 */ 374 void __init memblock_discard(void) 375 { 376 phys_addr_t addr, size; 377 378 if (memblock.reserved.regions != memblock_reserved_init_regions) { 379 addr = __pa(memblock.reserved.regions); 380 size = PAGE_ALIGN(sizeof(struct memblock_region) * 381 memblock.reserved.max); 382 __memblock_free_late(addr, size); 383 } 384 385 if (memblock.memory.regions != memblock_memory_init_regions) { 386 addr = __pa(memblock.memory.regions); 387 size = PAGE_ALIGN(sizeof(struct memblock_region) * 388 memblock.memory.max); 389 __memblock_free_late(addr, size); 390 } 391 } 392 #endif 393 394 /** 395 * memblock_double_array - double the size of the memblock regions array 396 * @type: memblock type of the regions array being doubled 397 * @new_area_start: starting address of memory range to avoid overlap with 398 * @new_area_size: size of memory range to avoid overlap with 399 * 400 * Double the size of the @type regions array. If memblock is being used to 401 * allocate memory for a new reserved regions array and there is a previously 402 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 403 * waiting to be reserved, ensure the memory used by the new array does 404 * not overlap. 405 * 406 * Return: 407 * 0 on success, -1 on failure. 408 */ 409 static int __init_memblock memblock_double_array(struct memblock_type *type, 410 phys_addr_t new_area_start, 411 phys_addr_t new_area_size) 412 { 413 struct memblock_region *new_array, *old_array; 414 phys_addr_t old_alloc_size, new_alloc_size; 415 phys_addr_t old_size, new_size, addr, new_end; 416 int use_slab = slab_is_available(); 417 int *in_slab; 418 419 /* We don't allow resizing until we know about the reserved regions 420 * of memory that aren't suitable for allocation 421 */ 422 if (!memblock_can_resize) 423 return -1; 424 425 /* Calculate new doubled size */ 426 old_size = type->max * sizeof(struct memblock_region); 427 new_size = old_size << 1; 428 /* 429 * We need to allocated new one align to PAGE_SIZE, 430 * so we can free them completely later. 431 */ 432 old_alloc_size = PAGE_ALIGN(old_size); 433 new_alloc_size = PAGE_ALIGN(new_size); 434 435 /* Retrieve the slab flag */ 436 if (type == &memblock.memory) 437 in_slab = &memblock_memory_in_slab; 438 else 439 in_slab = &memblock_reserved_in_slab; 440 441 /* Try to find some space for it */ 442 if (use_slab) { 443 new_array = kmalloc(new_size, GFP_KERNEL); 444 addr = new_array ? __pa(new_array) : 0; 445 } else { 446 /* only exclude range when trying to double reserved.regions */ 447 if (type != &memblock.reserved) 448 new_area_start = new_area_size = 0; 449 450 addr = memblock_find_in_range(new_area_start + new_area_size, 451 memblock.current_limit, 452 new_alloc_size, PAGE_SIZE); 453 if (!addr && new_area_size) 454 addr = memblock_find_in_range(0, 455 min(new_area_start, memblock.current_limit), 456 new_alloc_size, PAGE_SIZE); 457 458 new_array = addr ? __va(addr) : NULL; 459 } 460 if (!addr) { 461 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 462 type->name, type->max, type->max * 2); 463 return -1; 464 } 465 466 new_end = addr + new_size - 1; 467 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 468 type->name, type->max * 2, &addr, &new_end); 469 470 /* 471 * Found space, we now need to move the array over before we add the 472 * reserved region since it may be our reserved array itself that is 473 * full. 474 */ 475 memcpy(new_array, type->regions, old_size); 476 memset(new_array + type->max, 0, old_size); 477 old_array = type->regions; 478 type->regions = new_array; 479 type->max <<= 1; 480 481 /* Free old array. We needn't free it if the array is the static one */ 482 if (*in_slab) 483 kfree(old_array); 484 else if (old_array != memblock_memory_init_regions && 485 old_array != memblock_reserved_init_regions) 486 memblock_free(__pa(old_array), old_alloc_size); 487 488 /* 489 * Reserve the new array if that comes from the memblock. Otherwise, we 490 * needn't do it 491 */ 492 if (!use_slab) 493 BUG_ON(memblock_reserve(addr, new_alloc_size)); 494 495 /* Update slab flag */ 496 *in_slab = use_slab; 497 498 return 0; 499 } 500 501 /** 502 * memblock_merge_regions - merge neighboring compatible regions 503 * @type: memblock type to scan 504 * 505 * Scan @type and merge neighboring compatible regions. 506 */ 507 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 508 { 509 int i = 0; 510 511 /* cnt never goes below 1 */ 512 while (i < type->cnt - 1) { 513 struct memblock_region *this = &type->regions[i]; 514 struct memblock_region *next = &type->regions[i + 1]; 515 516 if (this->base + this->size != next->base || 517 memblock_get_region_node(this) != 518 memblock_get_region_node(next) || 519 this->flags != next->flags) { 520 BUG_ON(this->base + this->size > next->base); 521 i++; 522 continue; 523 } 524 525 this->size += next->size; 526 /* move forward from next + 1, index of which is i + 2 */ 527 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 528 type->cnt--; 529 } 530 } 531 532 /** 533 * memblock_insert_region - insert new memblock region 534 * @type: memblock type to insert into 535 * @idx: index for the insertion point 536 * @base: base address of the new region 537 * @size: size of the new region 538 * @nid: node id of the new region 539 * @flags: flags of the new region 540 * 541 * Insert new memblock region [@base, @base + @size) into @type at @idx. 542 * @type must already have extra room to accommodate the new region. 543 */ 544 static void __init_memblock memblock_insert_region(struct memblock_type *type, 545 int idx, phys_addr_t base, 546 phys_addr_t size, 547 int nid, 548 enum memblock_flags flags) 549 { 550 struct memblock_region *rgn = &type->regions[idx]; 551 552 BUG_ON(type->cnt >= type->max); 553 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 554 rgn->base = base; 555 rgn->size = size; 556 rgn->flags = flags; 557 memblock_set_region_node(rgn, nid); 558 type->cnt++; 559 type->total_size += size; 560 } 561 562 /** 563 * memblock_add_range - add new memblock region 564 * @type: memblock type to add new region into 565 * @base: base address of the new region 566 * @size: size of the new region 567 * @nid: nid of the new region 568 * @flags: flags of the new region 569 * 570 * Add new memblock region [@base, @base + @size) into @type. The new region 571 * is allowed to overlap with existing ones - overlaps don't affect already 572 * existing regions. @type is guaranteed to be minimal (all neighbouring 573 * compatible regions are merged) after the addition. 574 * 575 * Return: 576 * 0 on success, -errno on failure. 577 */ 578 int __init_memblock memblock_add_range(struct memblock_type *type, 579 phys_addr_t base, phys_addr_t size, 580 int nid, enum memblock_flags flags) 581 { 582 bool insert = false; 583 phys_addr_t obase = base; 584 phys_addr_t end = base + memblock_cap_size(base, &size); 585 int idx, nr_new; 586 struct memblock_region *rgn; 587 588 if (!size) 589 return 0; 590 591 /* special case for empty array */ 592 if (type->regions[0].size == 0) { 593 WARN_ON(type->cnt != 1 || type->total_size); 594 type->regions[0].base = base; 595 type->regions[0].size = size; 596 type->regions[0].flags = flags; 597 memblock_set_region_node(&type->regions[0], nid); 598 type->total_size = size; 599 return 0; 600 } 601 repeat: 602 /* 603 * The following is executed twice. Once with %false @insert and 604 * then with %true. The first counts the number of regions needed 605 * to accommodate the new area. The second actually inserts them. 606 */ 607 base = obase; 608 nr_new = 0; 609 610 for_each_memblock_type(idx, type, rgn) { 611 phys_addr_t rbase = rgn->base; 612 phys_addr_t rend = rbase + rgn->size; 613 614 if (rbase >= end) 615 break; 616 if (rend <= base) 617 continue; 618 /* 619 * @rgn overlaps. If it separates the lower part of new 620 * area, insert that portion. 621 */ 622 if (rbase > base) { 623 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 624 WARN_ON(nid != memblock_get_region_node(rgn)); 625 #endif 626 WARN_ON(flags != rgn->flags); 627 nr_new++; 628 if (insert) 629 memblock_insert_region(type, idx++, base, 630 rbase - base, nid, 631 flags); 632 } 633 /* area below @rend is dealt with, forget about it */ 634 base = min(rend, end); 635 } 636 637 /* insert the remaining portion */ 638 if (base < end) { 639 nr_new++; 640 if (insert) 641 memblock_insert_region(type, idx, base, end - base, 642 nid, flags); 643 } 644 645 if (!nr_new) 646 return 0; 647 648 /* 649 * If this was the first round, resize array and repeat for actual 650 * insertions; otherwise, merge and return. 651 */ 652 if (!insert) { 653 while (type->cnt + nr_new > type->max) 654 if (memblock_double_array(type, obase, size) < 0) 655 return -ENOMEM; 656 insert = true; 657 goto repeat; 658 } else { 659 memblock_merge_regions(type); 660 return 0; 661 } 662 } 663 664 /** 665 * memblock_add_node - add new memblock region within a NUMA node 666 * @base: base address of the new region 667 * @size: size of the new region 668 * @nid: nid of the new region 669 * 670 * Add new memblock region [@base, @base + @size) to the "memory" 671 * type. See memblock_add_range() description for mode details 672 * 673 * Return: 674 * 0 on success, -errno on failure. 675 */ 676 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 677 int nid) 678 { 679 return memblock_add_range(&memblock.memory, base, size, nid, 0); 680 } 681 682 /** 683 * memblock_add - add new memblock region 684 * @base: base address of the new region 685 * @size: size of the new region 686 * 687 * Add new memblock region [@base, @base + @size) to the "memory" 688 * type. See memblock_add_range() description for mode details 689 * 690 * Return: 691 * 0 on success, -errno on failure. 692 */ 693 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 694 { 695 phys_addr_t end = base + size - 1; 696 697 memblock_dbg("memblock_add: [%pa-%pa] %pS\n", 698 &base, &end, (void *)_RET_IP_); 699 700 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 701 } 702 703 /** 704 * memblock_isolate_range - isolate given range into disjoint memblocks 705 * @type: memblock type to isolate range for 706 * @base: base of range to isolate 707 * @size: size of range to isolate 708 * @start_rgn: out parameter for the start of isolated region 709 * @end_rgn: out parameter for the end of isolated region 710 * 711 * Walk @type and ensure that regions don't cross the boundaries defined by 712 * [@base, @base + @size). Crossing regions are split at the boundaries, 713 * which may create at most two more regions. The index of the first 714 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 715 * 716 * Return: 717 * 0 on success, -errno on failure. 718 */ 719 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 720 phys_addr_t base, phys_addr_t size, 721 int *start_rgn, int *end_rgn) 722 { 723 phys_addr_t end = base + memblock_cap_size(base, &size); 724 int idx; 725 struct memblock_region *rgn; 726 727 *start_rgn = *end_rgn = 0; 728 729 if (!size) 730 return 0; 731 732 /* we'll create at most two more regions */ 733 while (type->cnt + 2 > type->max) 734 if (memblock_double_array(type, base, size) < 0) 735 return -ENOMEM; 736 737 for_each_memblock_type(idx, type, rgn) { 738 phys_addr_t rbase = rgn->base; 739 phys_addr_t rend = rbase + rgn->size; 740 741 if (rbase >= end) 742 break; 743 if (rend <= base) 744 continue; 745 746 if (rbase < base) { 747 /* 748 * @rgn intersects from below. Split and continue 749 * to process the next region - the new top half. 750 */ 751 rgn->base = base; 752 rgn->size -= base - rbase; 753 type->total_size -= base - rbase; 754 memblock_insert_region(type, idx, rbase, base - rbase, 755 memblock_get_region_node(rgn), 756 rgn->flags); 757 } else if (rend > end) { 758 /* 759 * @rgn intersects from above. Split and redo the 760 * current region - the new bottom half. 761 */ 762 rgn->base = end; 763 rgn->size -= end - rbase; 764 type->total_size -= end - rbase; 765 memblock_insert_region(type, idx--, rbase, end - rbase, 766 memblock_get_region_node(rgn), 767 rgn->flags); 768 } else { 769 /* @rgn is fully contained, record it */ 770 if (!*end_rgn) 771 *start_rgn = idx; 772 *end_rgn = idx + 1; 773 } 774 } 775 776 return 0; 777 } 778 779 static int __init_memblock memblock_remove_range(struct memblock_type *type, 780 phys_addr_t base, phys_addr_t size) 781 { 782 int start_rgn, end_rgn; 783 int i, ret; 784 785 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 786 if (ret) 787 return ret; 788 789 for (i = end_rgn - 1; i >= start_rgn; i--) 790 memblock_remove_region(type, i); 791 return 0; 792 } 793 794 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 795 { 796 phys_addr_t end = base + size - 1; 797 798 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n", 799 &base, &end, (void *)_RET_IP_); 800 801 return memblock_remove_range(&memblock.memory, base, size); 802 } 803 804 /** 805 * memblock_free - free boot memory block 806 * @base: phys starting address of the boot memory block 807 * @size: size of the boot memory block in bytes 808 * 809 * Free boot memory block previously allocated by memblock_alloc_xx() API. 810 * The freeing memory will not be released to the buddy allocator. 811 */ 812 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 813 { 814 phys_addr_t end = base + size - 1; 815 816 memblock_dbg(" memblock_free: [%pa-%pa] %pS\n", 817 &base, &end, (void *)_RET_IP_); 818 819 kmemleak_free_part_phys(base, size); 820 return memblock_remove_range(&memblock.reserved, base, size); 821 } 822 823 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 824 { 825 phys_addr_t end = base + size - 1; 826 827 memblock_dbg("memblock_reserve: [%pa-%pa] %pS\n", 828 &base, &end, (void *)_RET_IP_); 829 830 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 831 } 832 833 /** 834 * memblock_setclr_flag - set or clear flag for a memory region 835 * @base: base address of the region 836 * @size: size of the region 837 * @set: set or clear the flag 838 * @flag: the flag to udpate 839 * 840 * This function isolates region [@base, @base + @size), and sets/clears flag 841 * 842 * Return: 0 on success, -errno on failure. 843 */ 844 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 845 phys_addr_t size, int set, int flag) 846 { 847 struct memblock_type *type = &memblock.memory; 848 int i, ret, start_rgn, end_rgn; 849 850 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 851 if (ret) 852 return ret; 853 854 for (i = start_rgn; i < end_rgn; i++) { 855 struct memblock_region *r = &type->regions[i]; 856 857 if (set) 858 r->flags |= flag; 859 else 860 r->flags &= ~flag; 861 } 862 863 memblock_merge_regions(type); 864 return 0; 865 } 866 867 /** 868 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 869 * @base: the base phys addr of the region 870 * @size: the size of the region 871 * 872 * Return: 0 on success, -errno on failure. 873 */ 874 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 875 { 876 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 877 } 878 879 /** 880 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 881 * @base: the base phys addr of the region 882 * @size: the size of the region 883 * 884 * Return: 0 on success, -errno on failure. 885 */ 886 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 887 { 888 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 889 } 890 891 /** 892 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 893 * @base: the base phys addr of the region 894 * @size: the size of the region 895 * 896 * Return: 0 on success, -errno on failure. 897 */ 898 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 899 { 900 system_has_some_mirror = true; 901 902 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 903 } 904 905 /** 906 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 907 * @base: the base phys addr of the region 908 * @size: the size of the region 909 * 910 * Return: 0 on success, -errno on failure. 911 */ 912 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 913 { 914 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 915 } 916 917 /** 918 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 919 * @base: the base phys addr of the region 920 * @size: the size of the region 921 * 922 * Return: 0 on success, -errno on failure. 923 */ 924 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 925 { 926 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 927 } 928 929 /** 930 * __next_reserved_mem_region - next function for for_each_reserved_region() 931 * @idx: pointer to u64 loop variable 932 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL 933 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL 934 * 935 * Iterate over all reserved memory regions. 936 */ 937 void __init_memblock __next_reserved_mem_region(u64 *idx, 938 phys_addr_t *out_start, 939 phys_addr_t *out_end) 940 { 941 struct memblock_type *type = &memblock.reserved; 942 943 if (*idx < type->cnt) { 944 struct memblock_region *r = &type->regions[*idx]; 945 phys_addr_t base = r->base; 946 phys_addr_t size = r->size; 947 948 if (out_start) 949 *out_start = base; 950 if (out_end) 951 *out_end = base + size - 1; 952 953 *idx += 1; 954 return; 955 } 956 957 /* signal end of iteration */ 958 *idx = ULLONG_MAX; 959 } 960 961 static bool should_skip_region(struct memblock_region *m, int nid, int flags) 962 { 963 int m_nid = memblock_get_region_node(m); 964 965 /* only memory regions are associated with nodes, check it */ 966 if (nid != NUMA_NO_NODE && nid != m_nid) 967 return true; 968 969 /* skip hotpluggable memory regions if needed */ 970 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 971 return true; 972 973 /* if we want mirror memory skip non-mirror memory regions */ 974 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 975 return true; 976 977 /* skip nomap memory unless we were asked for it explicitly */ 978 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 979 return true; 980 981 return false; 982 } 983 984 /** 985 * __next_mem_range - next function for for_each_free_mem_range() etc. 986 * @idx: pointer to u64 loop variable 987 * @nid: node selector, %NUMA_NO_NODE for all nodes 988 * @flags: pick from blocks based on memory attributes 989 * @type_a: pointer to memblock_type from where the range is taken 990 * @type_b: pointer to memblock_type which excludes memory from being taken 991 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 992 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 993 * @out_nid: ptr to int for nid of the range, can be %NULL 994 * 995 * Find the first area from *@idx which matches @nid, fill the out 996 * parameters, and update *@idx for the next iteration. The lower 32bit of 997 * *@idx contains index into type_a and the upper 32bit indexes the 998 * areas before each region in type_b. For example, if type_b regions 999 * look like the following, 1000 * 1001 * 0:[0-16), 1:[32-48), 2:[128-130) 1002 * 1003 * The upper 32bit indexes the following regions. 1004 * 1005 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 1006 * 1007 * As both region arrays are sorted, the function advances the two indices 1008 * in lockstep and returns each intersection. 1009 */ 1010 void __init_memblock __next_mem_range(u64 *idx, int nid, 1011 enum memblock_flags flags, 1012 struct memblock_type *type_a, 1013 struct memblock_type *type_b, 1014 phys_addr_t *out_start, 1015 phys_addr_t *out_end, int *out_nid) 1016 { 1017 int idx_a = *idx & 0xffffffff; 1018 int idx_b = *idx >> 32; 1019 1020 if (WARN_ONCE(nid == MAX_NUMNODES, 1021 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1022 nid = NUMA_NO_NODE; 1023 1024 for (; idx_a < type_a->cnt; idx_a++) { 1025 struct memblock_region *m = &type_a->regions[idx_a]; 1026 1027 phys_addr_t m_start = m->base; 1028 phys_addr_t m_end = m->base + m->size; 1029 int m_nid = memblock_get_region_node(m); 1030 1031 if (should_skip_region(m, nid, flags)) 1032 continue; 1033 1034 if (!type_b) { 1035 if (out_start) 1036 *out_start = m_start; 1037 if (out_end) 1038 *out_end = m_end; 1039 if (out_nid) 1040 *out_nid = m_nid; 1041 idx_a++; 1042 *idx = (u32)idx_a | (u64)idx_b << 32; 1043 return; 1044 } 1045 1046 /* scan areas before each reservation */ 1047 for (; idx_b < type_b->cnt + 1; idx_b++) { 1048 struct memblock_region *r; 1049 phys_addr_t r_start; 1050 phys_addr_t r_end; 1051 1052 r = &type_b->regions[idx_b]; 1053 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1054 r_end = idx_b < type_b->cnt ? 1055 r->base : PHYS_ADDR_MAX; 1056 1057 /* 1058 * if idx_b advanced past idx_a, 1059 * break out to advance idx_a 1060 */ 1061 if (r_start >= m_end) 1062 break; 1063 /* if the two regions intersect, we're done */ 1064 if (m_start < r_end) { 1065 if (out_start) 1066 *out_start = 1067 max(m_start, r_start); 1068 if (out_end) 1069 *out_end = min(m_end, r_end); 1070 if (out_nid) 1071 *out_nid = m_nid; 1072 /* 1073 * The region which ends first is 1074 * advanced for the next iteration. 1075 */ 1076 if (m_end <= r_end) 1077 idx_a++; 1078 else 1079 idx_b++; 1080 *idx = (u32)idx_a | (u64)idx_b << 32; 1081 return; 1082 } 1083 } 1084 } 1085 1086 /* signal end of iteration */ 1087 *idx = ULLONG_MAX; 1088 } 1089 1090 /** 1091 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1092 * 1093 * @idx: pointer to u64 loop variable 1094 * @nid: node selector, %NUMA_NO_NODE for all nodes 1095 * @flags: pick from blocks based on memory attributes 1096 * @type_a: pointer to memblock_type from where the range is taken 1097 * @type_b: pointer to memblock_type which excludes memory from being taken 1098 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1099 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1100 * @out_nid: ptr to int for nid of the range, can be %NULL 1101 * 1102 * Finds the next range from type_a which is not marked as unsuitable 1103 * in type_b. 1104 * 1105 * Reverse of __next_mem_range(). 1106 */ 1107 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1108 enum memblock_flags flags, 1109 struct memblock_type *type_a, 1110 struct memblock_type *type_b, 1111 phys_addr_t *out_start, 1112 phys_addr_t *out_end, int *out_nid) 1113 { 1114 int idx_a = *idx & 0xffffffff; 1115 int idx_b = *idx >> 32; 1116 1117 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1118 nid = NUMA_NO_NODE; 1119 1120 if (*idx == (u64)ULLONG_MAX) { 1121 idx_a = type_a->cnt - 1; 1122 if (type_b != NULL) 1123 idx_b = type_b->cnt; 1124 else 1125 idx_b = 0; 1126 } 1127 1128 for (; idx_a >= 0; idx_a--) { 1129 struct memblock_region *m = &type_a->regions[idx_a]; 1130 1131 phys_addr_t m_start = m->base; 1132 phys_addr_t m_end = m->base + m->size; 1133 int m_nid = memblock_get_region_node(m); 1134 1135 if (should_skip_region(m, nid, flags)) 1136 continue; 1137 1138 if (!type_b) { 1139 if (out_start) 1140 *out_start = m_start; 1141 if (out_end) 1142 *out_end = m_end; 1143 if (out_nid) 1144 *out_nid = m_nid; 1145 idx_a--; 1146 *idx = (u32)idx_a | (u64)idx_b << 32; 1147 return; 1148 } 1149 1150 /* scan areas before each reservation */ 1151 for (; idx_b >= 0; idx_b--) { 1152 struct memblock_region *r; 1153 phys_addr_t r_start; 1154 phys_addr_t r_end; 1155 1156 r = &type_b->regions[idx_b]; 1157 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1158 r_end = idx_b < type_b->cnt ? 1159 r->base : PHYS_ADDR_MAX; 1160 /* 1161 * if idx_b advanced past idx_a, 1162 * break out to advance idx_a 1163 */ 1164 1165 if (r_end <= m_start) 1166 break; 1167 /* if the two regions intersect, we're done */ 1168 if (m_end > r_start) { 1169 if (out_start) 1170 *out_start = max(m_start, r_start); 1171 if (out_end) 1172 *out_end = min(m_end, r_end); 1173 if (out_nid) 1174 *out_nid = m_nid; 1175 if (m_start >= r_start) 1176 idx_a--; 1177 else 1178 idx_b--; 1179 *idx = (u32)idx_a | (u64)idx_b << 32; 1180 return; 1181 } 1182 } 1183 } 1184 /* signal end of iteration */ 1185 *idx = ULLONG_MAX; 1186 } 1187 1188 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1189 /* 1190 * Common iterator interface used to define for_each_mem_pfn_range(). 1191 */ 1192 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1193 unsigned long *out_start_pfn, 1194 unsigned long *out_end_pfn, int *out_nid) 1195 { 1196 struct memblock_type *type = &memblock.memory; 1197 struct memblock_region *r; 1198 1199 while (++*idx < type->cnt) { 1200 r = &type->regions[*idx]; 1201 1202 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1203 continue; 1204 if (nid == MAX_NUMNODES || nid == r->nid) 1205 break; 1206 } 1207 if (*idx >= type->cnt) { 1208 *idx = -1; 1209 return; 1210 } 1211 1212 if (out_start_pfn) 1213 *out_start_pfn = PFN_UP(r->base); 1214 if (out_end_pfn) 1215 *out_end_pfn = PFN_DOWN(r->base + r->size); 1216 if (out_nid) 1217 *out_nid = r->nid; 1218 } 1219 1220 /** 1221 * memblock_set_node - set node ID on memblock regions 1222 * @base: base of area to set node ID for 1223 * @size: size of area to set node ID for 1224 * @type: memblock type to set node ID for 1225 * @nid: node ID to set 1226 * 1227 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1228 * Regions which cross the area boundaries are split as necessary. 1229 * 1230 * Return: 1231 * 0 on success, -errno on failure. 1232 */ 1233 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1234 struct memblock_type *type, int nid) 1235 { 1236 int start_rgn, end_rgn; 1237 int i, ret; 1238 1239 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1240 if (ret) 1241 return ret; 1242 1243 for (i = start_rgn; i < end_rgn; i++) 1244 memblock_set_region_node(&type->regions[i], nid); 1245 1246 memblock_merge_regions(type); 1247 return 0; 1248 } 1249 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1250 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1251 /** 1252 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() 1253 * 1254 * @idx: pointer to u64 loop variable 1255 * @zone: zone in which all of the memory blocks reside 1256 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL 1257 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL 1258 * 1259 * This function is meant to be a zone/pfn specific wrapper for the 1260 * for_each_mem_range type iterators. Specifically they are used in the 1261 * deferred memory init routines and as such we were duplicating much of 1262 * this logic throughout the code. So instead of having it in multiple 1263 * locations it seemed like it would make more sense to centralize this to 1264 * one new iterator that does everything they need. 1265 */ 1266 void __init_memblock 1267 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 1268 unsigned long *out_spfn, unsigned long *out_epfn) 1269 { 1270 int zone_nid = zone_to_nid(zone); 1271 phys_addr_t spa, epa; 1272 int nid; 1273 1274 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1275 &memblock.memory, &memblock.reserved, 1276 &spa, &epa, &nid); 1277 1278 while (*idx != U64_MAX) { 1279 unsigned long epfn = PFN_DOWN(epa); 1280 unsigned long spfn = PFN_UP(spa); 1281 1282 /* 1283 * Verify the end is at least past the start of the zone and 1284 * that we have at least one PFN to initialize. 1285 */ 1286 if (zone->zone_start_pfn < epfn && spfn < epfn) { 1287 /* if we went too far just stop searching */ 1288 if (zone_end_pfn(zone) <= spfn) { 1289 *idx = U64_MAX; 1290 break; 1291 } 1292 1293 if (out_spfn) 1294 *out_spfn = max(zone->zone_start_pfn, spfn); 1295 if (out_epfn) 1296 *out_epfn = min(zone_end_pfn(zone), epfn); 1297 1298 return; 1299 } 1300 1301 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1302 &memblock.memory, &memblock.reserved, 1303 &spa, &epa, &nid); 1304 } 1305 1306 /* signal end of iteration */ 1307 if (out_spfn) 1308 *out_spfn = ULONG_MAX; 1309 if (out_epfn) 1310 *out_epfn = 0; 1311 } 1312 1313 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1314 1315 /** 1316 * memblock_alloc_range_nid - allocate boot memory block 1317 * @size: size of memory block to be allocated in bytes 1318 * @align: alignment of the region and block's size 1319 * @start: the lower bound of the memory region to allocate (phys address) 1320 * @end: the upper bound of the memory region to allocate (phys address) 1321 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1322 * @exact_nid: control the allocation fall back to other nodes 1323 * 1324 * The allocation is performed from memory region limited by 1325 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. 1326 * 1327 * If the specified node can not hold the requested memory and @exact_nid 1328 * is false, the allocation falls back to any node in the system. 1329 * 1330 * For systems with memory mirroring, the allocation is attempted first 1331 * from the regions with mirroring enabled and then retried from any 1332 * memory region. 1333 * 1334 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for 1335 * allocated boot memory block, so that it is never reported as leaks. 1336 * 1337 * Return: 1338 * Physical address of allocated memory block on success, %0 on failure. 1339 */ 1340 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1341 phys_addr_t align, phys_addr_t start, 1342 phys_addr_t end, int nid, 1343 bool exact_nid) 1344 { 1345 enum memblock_flags flags = choose_memblock_flags(); 1346 phys_addr_t found; 1347 1348 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1349 nid = NUMA_NO_NODE; 1350 1351 if (!align) { 1352 /* Can't use WARNs this early in boot on powerpc */ 1353 dump_stack(); 1354 align = SMP_CACHE_BYTES; 1355 } 1356 1357 again: 1358 found = memblock_find_in_range_node(size, align, start, end, nid, 1359 flags); 1360 if (found && !memblock_reserve(found, size)) 1361 goto done; 1362 1363 if (nid != NUMA_NO_NODE && !exact_nid) { 1364 found = memblock_find_in_range_node(size, align, start, 1365 end, NUMA_NO_NODE, 1366 flags); 1367 if (found && !memblock_reserve(found, size)) 1368 goto done; 1369 } 1370 1371 if (flags & MEMBLOCK_MIRROR) { 1372 flags &= ~MEMBLOCK_MIRROR; 1373 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1374 &size); 1375 goto again; 1376 } 1377 1378 return 0; 1379 1380 done: 1381 /* Skip kmemleak for kasan_init() due to high volume. */ 1382 if (end != MEMBLOCK_ALLOC_KASAN) 1383 /* 1384 * The min_count is set to 0 so that memblock allocated 1385 * blocks are never reported as leaks. This is because many 1386 * of these blocks are only referred via the physical 1387 * address which is not looked up by kmemleak. 1388 */ 1389 kmemleak_alloc_phys(found, size, 0, 0); 1390 1391 return found; 1392 } 1393 1394 /** 1395 * memblock_phys_alloc_range - allocate a memory block inside specified range 1396 * @size: size of memory block to be allocated in bytes 1397 * @align: alignment of the region and block's size 1398 * @start: the lower bound of the memory region to allocate (physical address) 1399 * @end: the upper bound of the memory region to allocate (physical address) 1400 * 1401 * Allocate @size bytes in the between @start and @end. 1402 * 1403 * Return: physical address of the allocated memory block on success, 1404 * %0 on failure. 1405 */ 1406 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, 1407 phys_addr_t align, 1408 phys_addr_t start, 1409 phys_addr_t end) 1410 { 1411 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1412 false); 1413 } 1414 1415 /** 1416 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node 1417 * @size: size of memory block to be allocated in bytes 1418 * @align: alignment of the region and block's size 1419 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1420 * 1421 * Allocates memory block from the specified NUMA node. If the node 1422 * has no available memory, attempts to allocated from any node in the 1423 * system. 1424 * 1425 * Return: physical address of the allocated memory block on success, 1426 * %0 on failure. 1427 */ 1428 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1429 { 1430 return memblock_alloc_range_nid(size, align, 0, 1431 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); 1432 } 1433 1434 /** 1435 * memblock_alloc_internal - allocate boot memory block 1436 * @size: size of memory block to be allocated in bytes 1437 * @align: alignment of the region and block's size 1438 * @min_addr: the lower bound of the memory region to allocate (phys address) 1439 * @max_addr: the upper bound of the memory region to allocate (phys address) 1440 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1441 * @exact_nid: control the allocation fall back to other nodes 1442 * 1443 * Allocates memory block using memblock_alloc_range_nid() and 1444 * converts the returned physical address to virtual. 1445 * 1446 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1447 * will fall back to memory below @min_addr. Other constraints, such 1448 * as node and mirrored memory will be handled again in 1449 * memblock_alloc_range_nid(). 1450 * 1451 * Return: 1452 * Virtual address of allocated memory block on success, NULL on failure. 1453 */ 1454 static void * __init memblock_alloc_internal( 1455 phys_addr_t size, phys_addr_t align, 1456 phys_addr_t min_addr, phys_addr_t max_addr, 1457 int nid, bool exact_nid) 1458 { 1459 phys_addr_t alloc; 1460 1461 /* 1462 * Detect any accidental use of these APIs after slab is ready, as at 1463 * this moment memblock may be deinitialized already and its 1464 * internal data may be destroyed (after execution of memblock_free_all) 1465 */ 1466 if (WARN_ON_ONCE(slab_is_available())) 1467 return kzalloc_node(size, GFP_NOWAIT, nid); 1468 1469 if (max_addr > memblock.current_limit) 1470 max_addr = memblock.current_limit; 1471 1472 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, 1473 exact_nid); 1474 1475 /* retry allocation without lower limit */ 1476 if (!alloc && min_addr) 1477 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, 1478 exact_nid); 1479 1480 if (!alloc) 1481 return NULL; 1482 1483 return phys_to_virt(alloc); 1484 } 1485 1486 /** 1487 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node 1488 * without zeroing memory 1489 * @size: size of memory block to be allocated in bytes 1490 * @align: alignment of the region and block's size 1491 * @min_addr: the lower bound of the memory region from where the allocation 1492 * is preferred (phys address) 1493 * @max_addr: the upper bound of the memory region from where the allocation 1494 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1495 * allocate only from memory limited by memblock.current_limit value 1496 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1497 * 1498 * Public function, provides additional debug information (including caller 1499 * info), if enabled. Does not zero allocated memory. 1500 * 1501 * Return: 1502 * Virtual address of allocated memory block on success, NULL on failure. 1503 */ 1504 void * __init memblock_alloc_exact_nid_raw( 1505 phys_addr_t size, phys_addr_t align, 1506 phys_addr_t min_addr, phys_addr_t max_addr, 1507 int nid) 1508 { 1509 void *ptr; 1510 1511 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1512 __func__, (u64)size, (u64)align, nid, &min_addr, 1513 &max_addr, (void *)_RET_IP_); 1514 1515 ptr = memblock_alloc_internal(size, align, 1516 min_addr, max_addr, nid, true); 1517 if (ptr && size > 0) 1518 page_init_poison(ptr, size); 1519 1520 return ptr; 1521 } 1522 1523 /** 1524 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing 1525 * memory and without panicking 1526 * @size: size of memory block to be allocated in bytes 1527 * @align: alignment of the region and block's size 1528 * @min_addr: the lower bound of the memory region from where the allocation 1529 * is preferred (phys address) 1530 * @max_addr: the upper bound of the memory region from where the allocation 1531 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1532 * allocate only from memory limited by memblock.current_limit value 1533 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1534 * 1535 * Public function, provides additional debug information (including caller 1536 * info), if enabled. Does not zero allocated memory, does not panic if request 1537 * cannot be satisfied. 1538 * 1539 * Return: 1540 * Virtual address of allocated memory block on success, NULL on failure. 1541 */ 1542 void * __init memblock_alloc_try_nid_raw( 1543 phys_addr_t size, phys_addr_t align, 1544 phys_addr_t min_addr, phys_addr_t max_addr, 1545 int nid) 1546 { 1547 void *ptr; 1548 1549 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1550 __func__, (u64)size, (u64)align, nid, &min_addr, 1551 &max_addr, (void *)_RET_IP_); 1552 1553 ptr = memblock_alloc_internal(size, align, 1554 min_addr, max_addr, nid, false); 1555 if (ptr && size > 0) 1556 page_init_poison(ptr, size); 1557 1558 return ptr; 1559 } 1560 1561 /** 1562 * memblock_alloc_try_nid - allocate boot memory block 1563 * @size: size of memory block to be allocated in bytes 1564 * @align: alignment of the region and block's size 1565 * @min_addr: the lower bound of the memory region from where the allocation 1566 * is preferred (phys address) 1567 * @max_addr: the upper bound of the memory region from where the allocation 1568 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1569 * allocate only from memory limited by memblock.current_limit value 1570 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1571 * 1572 * Public function, provides additional debug information (including caller 1573 * info), if enabled. This function zeroes the allocated memory. 1574 * 1575 * Return: 1576 * Virtual address of allocated memory block on success, NULL on failure. 1577 */ 1578 void * __init memblock_alloc_try_nid( 1579 phys_addr_t size, phys_addr_t align, 1580 phys_addr_t min_addr, phys_addr_t max_addr, 1581 int nid) 1582 { 1583 void *ptr; 1584 1585 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1586 __func__, (u64)size, (u64)align, nid, &min_addr, 1587 &max_addr, (void *)_RET_IP_); 1588 ptr = memblock_alloc_internal(size, align, 1589 min_addr, max_addr, nid, false); 1590 if (ptr) 1591 memset(ptr, 0, size); 1592 1593 return ptr; 1594 } 1595 1596 /** 1597 * __memblock_free_late - free pages directly to buddy allocator 1598 * @base: phys starting address of the boot memory block 1599 * @size: size of the boot memory block in bytes 1600 * 1601 * This is only useful when the memblock allocator has already been torn 1602 * down, but we are still initializing the system. Pages are released directly 1603 * to the buddy allocator. 1604 */ 1605 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1606 { 1607 phys_addr_t cursor, end; 1608 1609 end = base + size - 1; 1610 memblock_dbg("%s: [%pa-%pa] %pS\n", 1611 __func__, &base, &end, (void *)_RET_IP_); 1612 kmemleak_free_part_phys(base, size); 1613 cursor = PFN_UP(base); 1614 end = PFN_DOWN(base + size); 1615 1616 for (; cursor < end; cursor++) { 1617 memblock_free_pages(pfn_to_page(cursor), cursor, 0); 1618 totalram_pages_inc(); 1619 } 1620 } 1621 1622 /* 1623 * Remaining API functions 1624 */ 1625 1626 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1627 { 1628 return memblock.memory.total_size; 1629 } 1630 1631 phys_addr_t __init_memblock memblock_reserved_size(void) 1632 { 1633 return memblock.reserved.total_size; 1634 } 1635 1636 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) 1637 { 1638 unsigned long pages = 0; 1639 struct memblock_region *r; 1640 unsigned long start_pfn, end_pfn; 1641 1642 for_each_memblock(memory, r) { 1643 start_pfn = memblock_region_memory_base_pfn(r); 1644 end_pfn = memblock_region_memory_end_pfn(r); 1645 start_pfn = min_t(unsigned long, start_pfn, limit_pfn); 1646 end_pfn = min_t(unsigned long, end_pfn, limit_pfn); 1647 pages += end_pfn - start_pfn; 1648 } 1649 1650 return PFN_PHYS(pages); 1651 } 1652 1653 /* lowest address */ 1654 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1655 { 1656 return memblock.memory.regions[0].base; 1657 } 1658 1659 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1660 { 1661 int idx = memblock.memory.cnt - 1; 1662 1663 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1664 } 1665 1666 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1667 { 1668 phys_addr_t max_addr = PHYS_ADDR_MAX; 1669 struct memblock_region *r; 1670 1671 /* 1672 * translate the memory @limit size into the max address within one of 1673 * the memory memblock regions, if the @limit exceeds the total size 1674 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1675 */ 1676 for_each_memblock(memory, r) { 1677 if (limit <= r->size) { 1678 max_addr = r->base + limit; 1679 break; 1680 } 1681 limit -= r->size; 1682 } 1683 1684 return max_addr; 1685 } 1686 1687 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1688 { 1689 phys_addr_t max_addr = PHYS_ADDR_MAX; 1690 1691 if (!limit) 1692 return; 1693 1694 max_addr = __find_max_addr(limit); 1695 1696 /* @limit exceeds the total size of the memory, do nothing */ 1697 if (max_addr == PHYS_ADDR_MAX) 1698 return; 1699 1700 /* truncate both memory and reserved regions */ 1701 memblock_remove_range(&memblock.memory, max_addr, 1702 PHYS_ADDR_MAX); 1703 memblock_remove_range(&memblock.reserved, max_addr, 1704 PHYS_ADDR_MAX); 1705 } 1706 1707 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1708 { 1709 int start_rgn, end_rgn; 1710 int i, ret; 1711 1712 if (!size) 1713 return; 1714 1715 ret = memblock_isolate_range(&memblock.memory, base, size, 1716 &start_rgn, &end_rgn); 1717 if (ret) 1718 return; 1719 1720 /* remove all the MAP regions */ 1721 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1722 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1723 memblock_remove_region(&memblock.memory, i); 1724 1725 for (i = start_rgn - 1; i >= 0; i--) 1726 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1727 memblock_remove_region(&memblock.memory, i); 1728 1729 /* truncate the reserved regions */ 1730 memblock_remove_range(&memblock.reserved, 0, base); 1731 memblock_remove_range(&memblock.reserved, 1732 base + size, PHYS_ADDR_MAX); 1733 } 1734 1735 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1736 { 1737 phys_addr_t max_addr; 1738 1739 if (!limit) 1740 return; 1741 1742 max_addr = __find_max_addr(limit); 1743 1744 /* @limit exceeds the total size of the memory, do nothing */ 1745 if (max_addr == PHYS_ADDR_MAX) 1746 return; 1747 1748 memblock_cap_memory_range(0, max_addr); 1749 } 1750 1751 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1752 { 1753 unsigned int left = 0, right = type->cnt; 1754 1755 do { 1756 unsigned int mid = (right + left) / 2; 1757 1758 if (addr < type->regions[mid].base) 1759 right = mid; 1760 else if (addr >= (type->regions[mid].base + 1761 type->regions[mid].size)) 1762 left = mid + 1; 1763 else 1764 return mid; 1765 } while (left < right); 1766 return -1; 1767 } 1768 1769 bool __init_memblock memblock_is_reserved(phys_addr_t addr) 1770 { 1771 return memblock_search(&memblock.reserved, addr) != -1; 1772 } 1773 1774 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1775 { 1776 return memblock_search(&memblock.memory, addr) != -1; 1777 } 1778 1779 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1780 { 1781 int i = memblock_search(&memblock.memory, addr); 1782 1783 if (i == -1) 1784 return false; 1785 return !memblock_is_nomap(&memblock.memory.regions[i]); 1786 } 1787 1788 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1789 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1790 unsigned long *start_pfn, unsigned long *end_pfn) 1791 { 1792 struct memblock_type *type = &memblock.memory; 1793 int mid = memblock_search(type, PFN_PHYS(pfn)); 1794 1795 if (mid == -1) 1796 return -1; 1797 1798 *start_pfn = PFN_DOWN(type->regions[mid].base); 1799 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1800 1801 return type->regions[mid].nid; 1802 } 1803 #endif 1804 1805 /** 1806 * memblock_is_region_memory - check if a region is a subset of memory 1807 * @base: base of region to check 1808 * @size: size of region to check 1809 * 1810 * Check if the region [@base, @base + @size) is a subset of a memory block. 1811 * 1812 * Return: 1813 * 0 if false, non-zero if true 1814 */ 1815 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1816 { 1817 int idx = memblock_search(&memblock.memory, base); 1818 phys_addr_t end = base + memblock_cap_size(base, &size); 1819 1820 if (idx == -1) 1821 return false; 1822 return (memblock.memory.regions[idx].base + 1823 memblock.memory.regions[idx].size) >= end; 1824 } 1825 1826 /** 1827 * memblock_is_region_reserved - check if a region intersects reserved memory 1828 * @base: base of region to check 1829 * @size: size of region to check 1830 * 1831 * Check if the region [@base, @base + @size) intersects a reserved 1832 * memory block. 1833 * 1834 * Return: 1835 * True if they intersect, false if not. 1836 */ 1837 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1838 { 1839 memblock_cap_size(base, &size); 1840 return memblock_overlaps_region(&memblock.reserved, base, size); 1841 } 1842 1843 void __init_memblock memblock_trim_memory(phys_addr_t align) 1844 { 1845 phys_addr_t start, end, orig_start, orig_end; 1846 struct memblock_region *r; 1847 1848 for_each_memblock(memory, r) { 1849 orig_start = r->base; 1850 orig_end = r->base + r->size; 1851 start = round_up(orig_start, align); 1852 end = round_down(orig_end, align); 1853 1854 if (start == orig_start && end == orig_end) 1855 continue; 1856 1857 if (start < end) { 1858 r->base = start; 1859 r->size = end - start; 1860 } else { 1861 memblock_remove_region(&memblock.memory, 1862 r - memblock.memory.regions); 1863 r--; 1864 } 1865 } 1866 } 1867 1868 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1869 { 1870 memblock.current_limit = limit; 1871 } 1872 1873 phys_addr_t __init_memblock memblock_get_current_limit(void) 1874 { 1875 return memblock.current_limit; 1876 } 1877 1878 static void __init_memblock memblock_dump(struct memblock_type *type) 1879 { 1880 phys_addr_t base, end, size; 1881 enum memblock_flags flags; 1882 int idx; 1883 struct memblock_region *rgn; 1884 1885 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1886 1887 for_each_memblock_type(idx, type, rgn) { 1888 char nid_buf[32] = ""; 1889 1890 base = rgn->base; 1891 size = rgn->size; 1892 end = base + size - 1; 1893 flags = rgn->flags; 1894 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1895 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1896 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1897 memblock_get_region_node(rgn)); 1898 #endif 1899 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 1900 type->name, idx, &base, &end, &size, nid_buf, flags); 1901 } 1902 } 1903 1904 void __init_memblock __memblock_dump_all(void) 1905 { 1906 pr_info("MEMBLOCK configuration:\n"); 1907 pr_info(" memory size = %pa reserved size = %pa\n", 1908 &memblock.memory.total_size, 1909 &memblock.reserved.total_size); 1910 1911 memblock_dump(&memblock.memory); 1912 memblock_dump(&memblock.reserved); 1913 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1914 memblock_dump(&memblock.physmem); 1915 #endif 1916 } 1917 1918 void __init memblock_allow_resize(void) 1919 { 1920 memblock_can_resize = 1; 1921 } 1922 1923 static int __init early_memblock(char *p) 1924 { 1925 if (p && strstr(p, "debug")) 1926 memblock_debug = 1; 1927 return 0; 1928 } 1929 early_param("memblock", early_memblock); 1930 1931 static void __init __free_pages_memory(unsigned long start, unsigned long end) 1932 { 1933 int order; 1934 1935 while (start < end) { 1936 order = min(MAX_ORDER - 1UL, __ffs(start)); 1937 1938 while (start + (1UL << order) > end) 1939 order--; 1940 1941 memblock_free_pages(pfn_to_page(start), start, order); 1942 1943 start += (1UL << order); 1944 } 1945 } 1946 1947 static unsigned long __init __free_memory_core(phys_addr_t start, 1948 phys_addr_t end) 1949 { 1950 unsigned long start_pfn = PFN_UP(start); 1951 unsigned long end_pfn = min_t(unsigned long, 1952 PFN_DOWN(end), max_low_pfn); 1953 1954 if (start_pfn >= end_pfn) 1955 return 0; 1956 1957 __free_pages_memory(start_pfn, end_pfn); 1958 1959 return end_pfn - start_pfn; 1960 } 1961 1962 static unsigned long __init free_low_memory_core_early(void) 1963 { 1964 unsigned long count = 0; 1965 phys_addr_t start, end; 1966 u64 i; 1967 1968 memblock_clear_hotplug(0, -1); 1969 1970 for_each_reserved_mem_region(i, &start, &end) 1971 reserve_bootmem_region(start, end); 1972 1973 /* 1974 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id 1975 * because in some case like Node0 doesn't have RAM installed 1976 * low ram will be on Node1 1977 */ 1978 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, 1979 NULL) 1980 count += __free_memory_core(start, end); 1981 1982 return count; 1983 } 1984 1985 static int reset_managed_pages_done __initdata; 1986 1987 void reset_node_managed_pages(pg_data_t *pgdat) 1988 { 1989 struct zone *z; 1990 1991 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1992 atomic_long_set(&z->managed_pages, 0); 1993 } 1994 1995 void __init reset_all_zones_managed_pages(void) 1996 { 1997 struct pglist_data *pgdat; 1998 1999 if (reset_managed_pages_done) 2000 return; 2001 2002 for_each_online_pgdat(pgdat) 2003 reset_node_managed_pages(pgdat); 2004 2005 reset_managed_pages_done = 1; 2006 } 2007 2008 /** 2009 * memblock_free_all - release free pages to the buddy allocator 2010 * 2011 * Return: the number of pages actually released. 2012 */ 2013 unsigned long __init memblock_free_all(void) 2014 { 2015 unsigned long pages; 2016 2017 reset_all_zones_managed_pages(); 2018 2019 pages = free_low_memory_core_early(); 2020 totalram_pages_add(pages); 2021 2022 return pages; 2023 } 2024 2025 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) 2026 2027 static int memblock_debug_show(struct seq_file *m, void *private) 2028 { 2029 struct memblock_type *type = m->private; 2030 struct memblock_region *reg; 2031 int i; 2032 phys_addr_t end; 2033 2034 for (i = 0; i < type->cnt; i++) { 2035 reg = &type->regions[i]; 2036 end = reg->base + reg->size - 1; 2037 2038 seq_printf(m, "%4d: ", i); 2039 seq_printf(m, "%pa..%pa\n", ®->base, &end); 2040 } 2041 return 0; 2042 } 2043 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 2044 2045 static int __init memblock_init_debugfs(void) 2046 { 2047 struct dentry *root = debugfs_create_dir("memblock", NULL); 2048 2049 debugfs_create_file("memory", 0444, root, 2050 &memblock.memory, &memblock_debug_fops); 2051 debugfs_create_file("reserved", 0444, root, 2052 &memblock.reserved, &memblock_debug_fops); 2053 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2054 debugfs_create_file("physmem", 0444, root, 2055 &memblock.physmem, &memblock_debug_fops); 2056 #endif 2057 2058 return 0; 2059 } 2060 __initcall(memblock_init_debugfs); 2061 2062 #endif /* CONFIG_DEBUG_FS */ 2063