xref: /openbmc/linux/mm/memblock.c (revision e6dec923)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22 
23 #include <asm/sections.h>
24 #include <linux/io.h>
25 
26 #include "internal.h"
27 
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33 
34 struct memblock memblock __initdata_memblock = {
35 	.memory.regions		= memblock_memory_init_regions,
36 	.memory.cnt		= 1,	/* empty dummy entry */
37 	.memory.max		= INIT_MEMBLOCK_REGIONS,
38 	.memory.name		= "memory",
39 
40 	.reserved.regions	= memblock_reserved_init_regions,
41 	.reserved.cnt		= 1,	/* empty dummy entry */
42 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
43 	.reserved.name		= "reserved",
44 
45 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
46 	.physmem.regions	= memblock_physmem_init_regions,
47 	.physmem.cnt		= 1,	/* empty dummy entry */
48 	.physmem.max		= INIT_PHYSMEM_REGIONS,
49 	.physmem.name		= "physmem",
50 #endif
51 
52 	.bottom_up		= false,
53 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
54 };
55 
56 int memblock_debug __initdata_memblock;
57 static bool system_has_some_mirror __initdata_memblock = false;
58 static int memblock_can_resize __initdata_memblock;
59 static int memblock_memory_in_slab __initdata_memblock = 0;
60 static int memblock_reserved_in_slab __initdata_memblock = 0;
61 
62 ulong __init_memblock choose_memblock_flags(void)
63 {
64 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
65 }
66 
67 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
68 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
69 {
70 	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
71 }
72 
73 /*
74  * Address comparison utilities
75  */
76 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
77 				       phys_addr_t base2, phys_addr_t size2)
78 {
79 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
80 }
81 
82 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
83 					phys_addr_t base, phys_addr_t size)
84 {
85 	unsigned long i;
86 
87 	for (i = 0; i < type->cnt; i++)
88 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
89 					   type->regions[i].size))
90 			break;
91 	return i < type->cnt;
92 }
93 
94 /*
95  * __memblock_find_range_bottom_up - find free area utility in bottom-up
96  * @start: start of candidate range
97  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
98  * @size: size of free area to find
99  * @align: alignment of free area to find
100  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
101  * @flags: pick from blocks based on memory attributes
102  *
103  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
104  *
105  * RETURNS:
106  * Found address on success, 0 on failure.
107  */
108 static phys_addr_t __init_memblock
109 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
110 				phys_addr_t size, phys_addr_t align, int nid,
111 				ulong flags)
112 {
113 	phys_addr_t this_start, this_end, cand;
114 	u64 i;
115 
116 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
117 		this_start = clamp(this_start, start, end);
118 		this_end = clamp(this_end, start, end);
119 
120 		cand = round_up(this_start, align);
121 		if (cand < this_end && this_end - cand >= size)
122 			return cand;
123 	}
124 
125 	return 0;
126 }
127 
128 /**
129  * __memblock_find_range_top_down - find free area utility, in top-down
130  * @start: start of candidate range
131  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
132  * @size: size of free area to find
133  * @align: alignment of free area to find
134  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
135  * @flags: pick from blocks based on memory attributes
136  *
137  * Utility called from memblock_find_in_range_node(), find free area top-down.
138  *
139  * RETURNS:
140  * Found address on success, 0 on failure.
141  */
142 static phys_addr_t __init_memblock
143 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
144 			       phys_addr_t size, phys_addr_t align, int nid,
145 			       ulong flags)
146 {
147 	phys_addr_t this_start, this_end, cand;
148 	u64 i;
149 
150 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
151 					NULL) {
152 		this_start = clamp(this_start, start, end);
153 		this_end = clamp(this_end, start, end);
154 
155 		if (this_end < size)
156 			continue;
157 
158 		cand = round_down(this_end - size, align);
159 		if (cand >= this_start)
160 			return cand;
161 	}
162 
163 	return 0;
164 }
165 
166 /**
167  * memblock_find_in_range_node - find free area in given range and node
168  * @size: size of free area to find
169  * @align: alignment of free area to find
170  * @start: start of candidate range
171  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
172  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
173  * @flags: pick from blocks based on memory attributes
174  *
175  * Find @size free area aligned to @align in the specified range and node.
176  *
177  * When allocation direction is bottom-up, the @start should be greater
178  * than the end of the kernel image. Otherwise, it will be trimmed. The
179  * reason is that we want the bottom-up allocation just near the kernel
180  * image so it is highly likely that the allocated memory and the kernel
181  * will reside in the same node.
182  *
183  * If bottom-up allocation failed, will try to allocate memory top-down.
184  *
185  * RETURNS:
186  * Found address on success, 0 on failure.
187  */
188 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
189 					phys_addr_t align, phys_addr_t start,
190 					phys_addr_t end, int nid, ulong flags)
191 {
192 	phys_addr_t kernel_end, ret;
193 
194 	/* pump up @end */
195 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
196 		end = memblock.current_limit;
197 
198 	/* avoid allocating the first page */
199 	start = max_t(phys_addr_t, start, PAGE_SIZE);
200 	end = max(start, end);
201 	kernel_end = __pa_symbol(_end);
202 
203 	/*
204 	 * try bottom-up allocation only when bottom-up mode
205 	 * is set and @end is above the kernel image.
206 	 */
207 	if (memblock_bottom_up() && end > kernel_end) {
208 		phys_addr_t bottom_up_start;
209 
210 		/* make sure we will allocate above the kernel */
211 		bottom_up_start = max(start, kernel_end);
212 
213 		/* ok, try bottom-up allocation first */
214 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
215 						      size, align, nid, flags);
216 		if (ret)
217 			return ret;
218 
219 		/*
220 		 * we always limit bottom-up allocation above the kernel,
221 		 * but top-down allocation doesn't have the limit, so
222 		 * retrying top-down allocation may succeed when bottom-up
223 		 * allocation failed.
224 		 *
225 		 * bottom-up allocation is expected to be fail very rarely,
226 		 * so we use WARN_ONCE() here to see the stack trace if
227 		 * fail happens.
228 		 */
229 		WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
230 	}
231 
232 	return __memblock_find_range_top_down(start, end, size, align, nid,
233 					      flags);
234 }
235 
236 /**
237  * memblock_find_in_range - find free area in given range
238  * @start: start of candidate range
239  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
240  * @size: size of free area to find
241  * @align: alignment of free area to find
242  *
243  * Find @size free area aligned to @align in the specified range.
244  *
245  * RETURNS:
246  * Found address on success, 0 on failure.
247  */
248 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
249 					phys_addr_t end, phys_addr_t size,
250 					phys_addr_t align)
251 {
252 	phys_addr_t ret;
253 	ulong flags = choose_memblock_flags();
254 
255 again:
256 	ret = memblock_find_in_range_node(size, align, start, end,
257 					    NUMA_NO_NODE, flags);
258 
259 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
260 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
261 			&size);
262 		flags &= ~MEMBLOCK_MIRROR;
263 		goto again;
264 	}
265 
266 	return ret;
267 }
268 
269 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
270 {
271 	type->total_size -= type->regions[r].size;
272 	memmove(&type->regions[r], &type->regions[r + 1],
273 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
274 	type->cnt--;
275 
276 	/* Special case for empty arrays */
277 	if (type->cnt == 0) {
278 		WARN_ON(type->total_size != 0);
279 		type->cnt = 1;
280 		type->regions[0].base = 0;
281 		type->regions[0].size = 0;
282 		type->regions[0].flags = 0;
283 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
284 	}
285 }
286 
287 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
288 
289 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
290 					phys_addr_t *addr)
291 {
292 	if (memblock.reserved.regions == memblock_reserved_init_regions)
293 		return 0;
294 
295 	*addr = __pa(memblock.reserved.regions);
296 
297 	return PAGE_ALIGN(sizeof(struct memblock_region) *
298 			  memblock.reserved.max);
299 }
300 
301 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
302 					phys_addr_t *addr)
303 {
304 	if (memblock.memory.regions == memblock_memory_init_regions)
305 		return 0;
306 
307 	*addr = __pa(memblock.memory.regions);
308 
309 	return PAGE_ALIGN(sizeof(struct memblock_region) *
310 			  memblock.memory.max);
311 }
312 
313 #endif
314 
315 /**
316  * memblock_double_array - double the size of the memblock regions array
317  * @type: memblock type of the regions array being doubled
318  * @new_area_start: starting address of memory range to avoid overlap with
319  * @new_area_size: size of memory range to avoid overlap with
320  *
321  * Double the size of the @type regions array. If memblock is being used to
322  * allocate memory for a new reserved regions array and there is a previously
323  * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
324  * waiting to be reserved, ensure the memory used by the new array does
325  * not overlap.
326  *
327  * RETURNS:
328  * 0 on success, -1 on failure.
329  */
330 static int __init_memblock memblock_double_array(struct memblock_type *type,
331 						phys_addr_t new_area_start,
332 						phys_addr_t new_area_size)
333 {
334 	struct memblock_region *new_array, *old_array;
335 	phys_addr_t old_alloc_size, new_alloc_size;
336 	phys_addr_t old_size, new_size, addr;
337 	int use_slab = slab_is_available();
338 	int *in_slab;
339 
340 	/* We don't allow resizing until we know about the reserved regions
341 	 * of memory that aren't suitable for allocation
342 	 */
343 	if (!memblock_can_resize)
344 		return -1;
345 
346 	/* Calculate new doubled size */
347 	old_size = type->max * sizeof(struct memblock_region);
348 	new_size = old_size << 1;
349 	/*
350 	 * We need to allocated new one align to PAGE_SIZE,
351 	 *   so we can free them completely later.
352 	 */
353 	old_alloc_size = PAGE_ALIGN(old_size);
354 	new_alloc_size = PAGE_ALIGN(new_size);
355 
356 	/* Retrieve the slab flag */
357 	if (type == &memblock.memory)
358 		in_slab = &memblock_memory_in_slab;
359 	else
360 		in_slab = &memblock_reserved_in_slab;
361 
362 	/* Try to find some space for it.
363 	 *
364 	 * WARNING: We assume that either slab_is_available() and we use it or
365 	 * we use MEMBLOCK for allocations. That means that this is unsafe to
366 	 * use when bootmem is currently active (unless bootmem itself is
367 	 * implemented on top of MEMBLOCK which isn't the case yet)
368 	 *
369 	 * This should however not be an issue for now, as we currently only
370 	 * call into MEMBLOCK while it's still active, or much later when slab
371 	 * is active for memory hotplug operations
372 	 */
373 	if (use_slab) {
374 		new_array = kmalloc(new_size, GFP_KERNEL);
375 		addr = new_array ? __pa(new_array) : 0;
376 	} else {
377 		/* only exclude range when trying to double reserved.regions */
378 		if (type != &memblock.reserved)
379 			new_area_start = new_area_size = 0;
380 
381 		addr = memblock_find_in_range(new_area_start + new_area_size,
382 						memblock.current_limit,
383 						new_alloc_size, PAGE_SIZE);
384 		if (!addr && new_area_size)
385 			addr = memblock_find_in_range(0,
386 				min(new_area_start, memblock.current_limit),
387 				new_alloc_size, PAGE_SIZE);
388 
389 		new_array = addr ? __va(addr) : NULL;
390 	}
391 	if (!addr) {
392 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
393 		       type->name, type->max, type->max * 2);
394 		return -1;
395 	}
396 
397 	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
398 			type->name, type->max * 2, (u64)addr,
399 			(u64)addr + new_size - 1);
400 
401 	/*
402 	 * Found space, we now need to move the array over before we add the
403 	 * reserved region since it may be our reserved array itself that is
404 	 * full.
405 	 */
406 	memcpy(new_array, type->regions, old_size);
407 	memset(new_array + type->max, 0, old_size);
408 	old_array = type->regions;
409 	type->regions = new_array;
410 	type->max <<= 1;
411 
412 	/* Free old array. We needn't free it if the array is the static one */
413 	if (*in_slab)
414 		kfree(old_array);
415 	else if (old_array != memblock_memory_init_regions &&
416 		 old_array != memblock_reserved_init_regions)
417 		memblock_free(__pa(old_array), old_alloc_size);
418 
419 	/*
420 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
421 	 * needn't do it
422 	 */
423 	if (!use_slab)
424 		BUG_ON(memblock_reserve(addr, new_alloc_size));
425 
426 	/* Update slab flag */
427 	*in_slab = use_slab;
428 
429 	return 0;
430 }
431 
432 /**
433  * memblock_merge_regions - merge neighboring compatible regions
434  * @type: memblock type to scan
435  *
436  * Scan @type and merge neighboring compatible regions.
437  */
438 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
439 {
440 	int i = 0;
441 
442 	/* cnt never goes below 1 */
443 	while (i < type->cnt - 1) {
444 		struct memblock_region *this = &type->regions[i];
445 		struct memblock_region *next = &type->regions[i + 1];
446 
447 		if (this->base + this->size != next->base ||
448 		    memblock_get_region_node(this) !=
449 		    memblock_get_region_node(next) ||
450 		    this->flags != next->flags) {
451 			BUG_ON(this->base + this->size > next->base);
452 			i++;
453 			continue;
454 		}
455 
456 		this->size += next->size;
457 		/* move forward from next + 1, index of which is i + 2 */
458 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
459 		type->cnt--;
460 	}
461 }
462 
463 /**
464  * memblock_insert_region - insert new memblock region
465  * @type:	memblock type to insert into
466  * @idx:	index for the insertion point
467  * @base:	base address of the new region
468  * @size:	size of the new region
469  * @nid:	node id of the new region
470  * @flags:	flags of the new region
471  *
472  * Insert new memblock region [@base,@base+@size) into @type at @idx.
473  * @type must already have extra room to accommodate the new region.
474  */
475 static void __init_memblock memblock_insert_region(struct memblock_type *type,
476 						   int idx, phys_addr_t base,
477 						   phys_addr_t size,
478 						   int nid, unsigned long flags)
479 {
480 	struct memblock_region *rgn = &type->regions[idx];
481 
482 	BUG_ON(type->cnt >= type->max);
483 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
484 	rgn->base = base;
485 	rgn->size = size;
486 	rgn->flags = flags;
487 	memblock_set_region_node(rgn, nid);
488 	type->cnt++;
489 	type->total_size += size;
490 }
491 
492 /**
493  * memblock_add_range - add new memblock region
494  * @type: memblock type to add new region into
495  * @base: base address of the new region
496  * @size: size of the new region
497  * @nid: nid of the new region
498  * @flags: flags of the new region
499  *
500  * Add new memblock region [@base,@base+@size) into @type.  The new region
501  * is allowed to overlap with existing ones - overlaps don't affect already
502  * existing regions.  @type is guaranteed to be minimal (all neighbouring
503  * compatible regions are merged) after the addition.
504  *
505  * RETURNS:
506  * 0 on success, -errno on failure.
507  */
508 int __init_memblock memblock_add_range(struct memblock_type *type,
509 				phys_addr_t base, phys_addr_t size,
510 				int nid, unsigned long flags)
511 {
512 	bool insert = false;
513 	phys_addr_t obase = base;
514 	phys_addr_t end = base + memblock_cap_size(base, &size);
515 	int idx, nr_new;
516 	struct memblock_region *rgn;
517 
518 	if (!size)
519 		return 0;
520 
521 	/* special case for empty array */
522 	if (type->regions[0].size == 0) {
523 		WARN_ON(type->cnt != 1 || type->total_size);
524 		type->regions[0].base = base;
525 		type->regions[0].size = size;
526 		type->regions[0].flags = flags;
527 		memblock_set_region_node(&type->regions[0], nid);
528 		type->total_size = size;
529 		return 0;
530 	}
531 repeat:
532 	/*
533 	 * The following is executed twice.  Once with %false @insert and
534 	 * then with %true.  The first counts the number of regions needed
535 	 * to accommodate the new area.  The second actually inserts them.
536 	 */
537 	base = obase;
538 	nr_new = 0;
539 
540 	for_each_memblock_type(type, rgn) {
541 		phys_addr_t rbase = rgn->base;
542 		phys_addr_t rend = rbase + rgn->size;
543 
544 		if (rbase >= end)
545 			break;
546 		if (rend <= base)
547 			continue;
548 		/*
549 		 * @rgn overlaps.  If it separates the lower part of new
550 		 * area, insert that portion.
551 		 */
552 		if (rbase > base) {
553 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
554 			WARN_ON(nid != memblock_get_region_node(rgn));
555 #endif
556 			WARN_ON(flags != rgn->flags);
557 			nr_new++;
558 			if (insert)
559 				memblock_insert_region(type, idx++, base,
560 						       rbase - base, nid,
561 						       flags);
562 		}
563 		/* area below @rend is dealt with, forget about it */
564 		base = min(rend, end);
565 	}
566 
567 	/* insert the remaining portion */
568 	if (base < end) {
569 		nr_new++;
570 		if (insert)
571 			memblock_insert_region(type, idx, base, end - base,
572 					       nid, flags);
573 	}
574 
575 	if (!nr_new)
576 		return 0;
577 
578 	/*
579 	 * If this was the first round, resize array and repeat for actual
580 	 * insertions; otherwise, merge and return.
581 	 */
582 	if (!insert) {
583 		while (type->cnt + nr_new > type->max)
584 			if (memblock_double_array(type, obase, size) < 0)
585 				return -ENOMEM;
586 		insert = true;
587 		goto repeat;
588 	} else {
589 		memblock_merge_regions(type);
590 		return 0;
591 	}
592 }
593 
594 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
595 				       int nid)
596 {
597 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
598 }
599 
600 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
601 {
602 	phys_addr_t end = base + size - 1;
603 
604 	memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
605 		     &base, &end, (void *)_RET_IP_);
606 
607 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
608 }
609 
610 /**
611  * memblock_isolate_range - isolate given range into disjoint memblocks
612  * @type: memblock type to isolate range for
613  * @base: base of range to isolate
614  * @size: size of range to isolate
615  * @start_rgn: out parameter for the start of isolated region
616  * @end_rgn: out parameter for the end of isolated region
617  *
618  * Walk @type and ensure that regions don't cross the boundaries defined by
619  * [@base,@base+@size).  Crossing regions are split at the boundaries,
620  * which may create at most two more regions.  The index of the first
621  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
622  *
623  * RETURNS:
624  * 0 on success, -errno on failure.
625  */
626 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
627 					phys_addr_t base, phys_addr_t size,
628 					int *start_rgn, int *end_rgn)
629 {
630 	phys_addr_t end = base + memblock_cap_size(base, &size);
631 	int idx;
632 	struct memblock_region *rgn;
633 
634 	*start_rgn = *end_rgn = 0;
635 
636 	if (!size)
637 		return 0;
638 
639 	/* we'll create at most two more regions */
640 	while (type->cnt + 2 > type->max)
641 		if (memblock_double_array(type, base, size) < 0)
642 			return -ENOMEM;
643 
644 	for_each_memblock_type(type, rgn) {
645 		phys_addr_t rbase = rgn->base;
646 		phys_addr_t rend = rbase + rgn->size;
647 
648 		if (rbase >= end)
649 			break;
650 		if (rend <= base)
651 			continue;
652 
653 		if (rbase < base) {
654 			/*
655 			 * @rgn intersects from below.  Split and continue
656 			 * to process the next region - the new top half.
657 			 */
658 			rgn->base = base;
659 			rgn->size -= base - rbase;
660 			type->total_size -= base - rbase;
661 			memblock_insert_region(type, idx, rbase, base - rbase,
662 					       memblock_get_region_node(rgn),
663 					       rgn->flags);
664 		} else if (rend > end) {
665 			/*
666 			 * @rgn intersects from above.  Split and redo the
667 			 * current region - the new bottom half.
668 			 */
669 			rgn->base = end;
670 			rgn->size -= end - rbase;
671 			type->total_size -= end - rbase;
672 			memblock_insert_region(type, idx--, rbase, end - rbase,
673 					       memblock_get_region_node(rgn),
674 					       rgn->flags);
675 		} else {
676 			/* @rgn is fully contained, record it */
677 			if (!*end_rgn)
678 				*start_rgn = idx;
679 			*end_rgn = idx + 1;
680 		}
681 	}
682 
683 	return 0;
684 }
685 
686 static int __init_memblock memblock_remove_range(struct memblock_type *type,
687 					  phys_addr_t base, phys_addr_t size)
688 {
689 	int start_rgn, end_rgn;
690 	int i, ret;
691 
692 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
693 	if (ret)
694 		return ret;
695 
696 	for (i = end_rgn - 1; i >= start_rgn; i--)
697 		memblock_remove_region(type, i);
698 	return 0;
699 }
700 
701 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
702 {
703 	return memblock_remove_range(&memblock.memory, base, size);
704 }
705 
706 
707 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
708 {
709 	phys_addr_t end = base + size - 1;
710 
711 	memblock_dbg("   memblock_free: [%pa-%pa] %pF\n",
712 		     &base, &end, (void *)_RET_IP_);
713 
714 	kmemleak_free_part_phys(base, size);
715 	return memblock_remove_range(&memblock.reserved, base, size);
716 }
717 
718 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
719 {
720 	phys_addr_t end = base + size - 1;
721 
722 	memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
723 		     &base, &end, (void *)_RET_IP_);
724 
725 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
726 }
727 
728 /**
729  *
730  * This function isolates region [@base, @base + @size), and sets/clears flag
731  *
732  * Return 0 on success, -errno on failure.
733  */
734 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
735 				phys_addr_t size, int set, int flag)
736 {
737 	struct memblock_type *type = &memblock.memory;
738 	int i, ret, start_rgn, end_rgn;
739 
740 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
741 	if (ret)
742 		return ret;
743 
744 	for (i = start_rgn; i < end_rgn; i++)
745 		if (set)
746 			memblock_set_region_flags(&type->regions[i], flag);
747 		else
748 			memblock_clear_region_flags(&type->regions[i], flag);
749 
750 	memblock_merge_regions(type);
751 	return 0;
752 }
753 
754 /**
755  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
756  * @base: the base phys addr of the region
757  * @size: the size of the region
758  *
759  * Return 0 on success, -errno on failure.
760  */
761 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
762 {
763 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
764 }
765 
766 /**
767  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
768  * @base: the base phys addr of the region
769  * @size: the size of the region
770  *
771  * Return 0 on success, -errno on failure.
772  */
773 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
774 {
775 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
776 }
777 
778 /**
779  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
780  * @base: the base phys addr of the region
781  * @size: the size of the region
782  *
783  * Return 0 on success, -errno on failure.
784  */
785 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
786 {
787 	system_has_some_mirror = true;
788 
789 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
790 }
791 
792 /**
793  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
794  * @base: the base phys addr of the region
795  * @size: the size of the region
796  *
797  * Return 0 on success, -errno on failure.
798  */
799 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
800 {
801 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
802 }
803 
804 /**
805  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
806  * @base: the base phys addr of the region
807  * @size: the size of the region
808  *
809  * Return 0 on success, -errno on failure.
810  */
811 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
812 {
813 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
814 }
815 
816 /**
817  * __next_reserved_mem_region - next function for for_each_reserved_region()
818  * @idx: pointer to u64 loop variable
819  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
820  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
821  *
822  * Iterate over all reserved memory regions.
823  */
824 void __init_memblock __next_reserved_mem_region(u64 *idx,
825 					   phys_addr_t *out_start,
826 					   phys_addr_t *out_end)
827 {
828 	struct memblock_type *type = &memblock.reserved;
829 
830 	if (*idx < type->cnt) {
831 		struct memblock_region *r = &type->regions[*idx];
832 		phys_addr_t base = r->base;
833 		phys_addr_t size = r->size;
834 
835 		if (out_start)
836 			*out_start = base;
837 		if (out_end)
838 			*out_end = base + size - 1;
839 
840 		*idx += 1;
841 		return;
842 	}
843 
844 	/* signal end of iteration */
845 	*idx = ULLONG_MAX;
846 }
847 
848 /**
849  * __next__mem_range - next function for for_each_free_mem_range() etc.
850  * @idx: pointer to u64 loop variable
851  * @nid: node selector, %NUMA_NO_NODE for all nodes
852  * @flags: pick from blocks based on memory attributes
853  * @type_a: pointer to memblock_type from where the range is taken
854  * @type_b: pointer to memblock_type which excludes memory from being taken
855  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
856  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
857  * @out_nid: ptr to int for nid of the range, can be %NULL
858  *
859  * Find the first area from *@idx which matches @nid, fill the out
860  * parameters, and update *@idx for the next iteration.  The lower 32bit of
861  * *@idx contains index into type_a and the upper 32bit indexes the
862  * areas before each region in type_b.	For example, if type_b regions
863  * look like the following,
864  *
865  *	0:[0-16), 1:[32-48), 2:[128-130)
866  *
867  * The upper 32bit indexes the following regions.
868  *
869  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
870  *
871  * As both region arrays are sorted, the function advances the two indices
872  * in lockstep and returns each intersection.
873  */
874 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
875 				      struct memblock_type *type_a,
876 				      struct memblock_type *type_b,
877 				      phys_addr_t *out_start,
878 				      phys_addr_t *out_end, int *out_nid)
879 {
880 	int idx_a = *idx & 0xffffffff;
881 	int idx_b = *idx >> 32;
882 
883 	if (WARN_ONCE(nid == MAX_NUMNODES,
884 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
885 		nid = NUMA_NO_NODE;
886 
887 	for (; idx_a < type_a->cnt; idx_a++) {
888 		struct memblock_region *m = &type_a->regions[idx_a];
889 
890 		phys_addr_t m_start = m->base;
891 		phys_addr_t m_end = m->base + m->size;
892 		int	    m_nid = memblock_get_region_node(m);
893 
894 		/* only memory regions are associated with nodes, check it */
895 		if (nid != NUMA_NO_NODE && nid != m_nid)
896 			continue;
897 
898 		/* skip hotpluggable memory regions if needed */
899 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
900 			continue;
901 
902 		/* if we want mirror memory skip non-mirror memory regions */
903 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
904 			continue;
905 
906 		/* skip nomap memory unless we were asked for it explicitly */
907 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
908 			continue;
909 
910 		if (!type_b) {
911 			if (out_start)
912 				*out_start = m_start;
913 			if (out_end)
914 				*out_end = m_end;
915 			if (out_nid)
916 				*out_nid = m_nid;
917 			idx_a++;
918 			*idx = (u32)idx_a | (u64)idx_b << 32;
919 			return;
920 		}
921 
922 		/* scan areas before each reservation */
923 		for (; idx_b < type_b->cnt + 1; idx_b++) {
924 			struct memblock_region *r;
925 			phys_addr_t r_start;
926 			phys_addr_t r_end;
927 
928 			r = &type_b->regions[idx_b];
929 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
930 			r_end = idx_b < type_b->cnt ?
931 				r->base : ULLONG_MAX;
932 
933 			/*
934 			 * if idx_b advanced past idx_a,
935 			 * break out to advance idx_a
936 			 */
937 			if (r_start >= m_end)
938 				break;
939 			/* if the two regions intersect, we're done */
940 			if (m_start < r_end) {
941 				if (out_start)
942 					*out_start =
943 						max(m_start, r_start);
944 				if (out_end)
945 					*out_end = min(m_end, r_end);
946 				if (out_nid)
947 					*out_nid = m_nid;
948 				/*
949 				 * The region which ends first is
950 				 * advanced for the next iteration.
951 				 */
952 				if (m_end <= r_end)
953 					idx_a++;
954 				else
955 					idx_b++;
956 				*idx = (u32)idx_a | (u64)idx_b << 32;
957 				return;
958 			}
959 		}
960 	}
961 
962 	/* signal end of iteration */
963 	*idx = ULLONG_MAX;
964 }
965 
966 /**
967  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
968  *
969  * Finds the next range from type_a which is not marked as unsuitable
970  * in type_b.
971  *
972  * @idx: pointer to u64 loop variable
973  * @nid: node selector, %NUMA_NO_NODE for all nodes
974  * @flags: pick from blocks based on memory attributes
975  * @type_a: pointer to memblock_type from where the range is taken
976  * @type_b: pointer to memblock_type which excludes memory from being taken
977  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
978  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
979  * @out_nid: ptr to int for nid of the range, can be %NULL
980  *
981  * Reverse of __next_mem_range().
982  */
983 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
984 					  struct memblock_type *type_a,
985 					  struct memblock_type *type_b,
986 					  phys_addr_t *out_start,
987 					  phys_addr_t *out_end, int *out_nid)
988 {
989 	int idx_a = *idx & 0xffffffff;
990 	int idx_b = *idx >> 32;
991 
992 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
993 		nid = NUMA_NO_NODE;
994 
995 	if (*idx == (u64)ULLONG_MAX) {
996 		idx_a = type_a->cnt - 1;
997 		if (type_b != NULL)
998 			idx_b = type_b->cnt;
999 		else
1000 			idx_b = 0;
1001 	}
1002 
1003 	for (; idx_a >= 0; idx_a--) {
1004 		struct memblock_region *m = &type_a->regions[idx_a];
1005 
1006 		phys_addr_t m_start = m->base;
1007 		phys_addr_t m_end = m->base + m->size;
1008 		int m_nid = memblock_get_region_node(m);
1009 
1010 		/* only memory regions are associated with nodes, check it */
1011 		if (nid != NUMA_NO_NODE && nid != m_nid)
1012 			continue;
1013 
1014 		/* skip hotpluggable memory regions if needed */
1015 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1016 			continue;
1017 
1018 		/* if we want mirror memory skip non-mirror memory regions */
1019 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1020 			continue;
1021 
1022 		/* skip nomap memory unless we were asked for it explicitly */
1023 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1024 			continue;
1025 
1026 		if (!type_b) {
1027 			if (out_start)
1028 				*out_start = m_start;
1029 			if (out_end)
1030 				*out_end = m_end;
1031 			if (out_nid)
1032 				*out_nid = m_nid;
1033 			idx_a--;
1034 			*idx = (u32)idx_a | (u64)idx_b << 32;
1035 			return;
1036 		}
1037 
1038 		/* scan areas before each reservation */
1039 		for (; idx_b >= 0; idx_b--) {
1040 			struct memblock_region *r;
1041 			phys_addr_t r_start;
1042 			phys_addr_t r_end;
1043 
1044 			r = &type_b->regions[idx_b];
1045 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1046 			r_end = idx_b < type_b->cnt ?
1047 				r->base : ULLONG_MAX;
1048 			/*
1049 			 * if idx_b advanced past idx_a,
1050 			 * break out to advance idx_a
1051 			 */
1052 
1053 			if (r_end <= m_start)
1054 				break;
1055 			/* if the two regions intersect, we're done */
1056 			if (m_end > r_start) {
1057 				if (out_start)
1058 					*out_start = max(m_start, r_start);
1059 				if (out_end)
1060 					*out_end = min(m_end, r_end);
1061 				if (out_nid)
1062 					*out_nid = m_nid;
1063 				if (m_start >= r_start)
1064 					idx_a--;
1065 				else
1066 					idx_b--;
1067 				*idx = (u32)idx_a | (u64)idx_b << 32;
1068 				return;
1069 			}
1070 		}
1071 	}
1072 	/* signal end of iteration */
1073 	*idx = ULLONG_MAX;
1074 }
1075 
1076 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1077 /*
1078  * Common iterator interface used to define for_each_mem_range().
1079  */
1080 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1081 				unsigned long *out_start_pfn,
1082 				unsigned long *out_end_pfn, int *out_nid)
1083 {
1084 	struct memblock_type *type = &memblock.memory;
1085 	struct memblock_region *r;
1086 
1087 	while (++*idx < type->cnt) {
1088 		r = &type->regions[*idx];
1089 
1090 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1091 			continue;
1092 		if (nid == MAX_NUMNODES || nid == r->nid)
1093 			break;
1094 	}
1095 	if (*idx >= type->cnt) {
1096 		*idx = -1;
1097 		return;
1098 	}
1099 
1100 	if (out_start_pfn)
1101 		*out_start_pfn = PFN_UP(r->base);
1102 	if (out_end_pfn)
1103 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1104 	if (out_nid)
1105 		*out_nid = r->nid;
1106 }
1107 
1108 unsigned long __init_memblock memblock_next_valid_pfn(unsigned long pfn,
1109 						      unsigned long max_pfn)
1110 {
1111 	struct memblock_type *type = &memblock.memory;
1112 	unsigned int right = type->cnt;
1113 	unsigned int mid, left = 0;
1114 	phys_addr_t addr = PFN_PHYS(pfn + 1);
1115 
1116 	do {
1117 		mid = (right + left) / 2;
1118 
1119 		if (addr < type->regions[mid].base)
1120 			right = mid;
1121 		else if (addr >= (type->regions[mid].base +
1122 				  type->regions[mid].size))
1123 			left = mid + 1;
1124 		else {
1125 			/* addr is within the region, so pfn + 1 is valid */
1126 			return min(pfn + 1, max_pfn);
1127 		}
1128 	} while (left < right);
1129 
1130 	if (right == type->cnt)
1131 		return max_pfn;
1132 	else
1133 		return min(PHYS_PFN(type->regions[right].base), max_pfn);
1134 }
1135 
1136 /**
1137  * memblock_set_node - set node ID on memblock regions
1138  * @base: base of area to set node ID for
1139  * @size: size of area to set node ID for
1140  * @type: memblock type to set node ID for
1141  * @nid: node ID to set
1142  *
1143  * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1144  * Regions which cross the area boundaries are split as necessary.
1145  *
1146  * RETURNS:
1147  * 0 on success, -errno on failure.
1148  */
1149 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1150 				      struct memblock_type *type, int nid)
1151 {
1152 	int start_rgn, end_rgn;
1153 	int i, ret;
1154 
1155 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1156 	if (ret)
1157 		return ret;
1158 
1159 	for (i = start_rgn; i < end_rgn; i++)
1160 		memblock_set_region_node(&type->regions[i], nid);
1161 
1162 	memblock_merge_regions(type);
1163 	return 0;
1164 }
1165 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1166 
1167 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1168 					phys_addr_t align, phys_addr_t start,
1169 					phys_addr_t end, int nid, ulong flags)
1170 {
1171 	phys_addr_t found;
1172 
1173 	if (!align)
1174 		align = SMP_CACHE_BYTES;
1175 
1176 	found = memblock_find_in_range_node(size, align, start, end, nid,
1177 					    flags);
1178 	if (found && !memblock_reserve(found, size)) {
1179 		/*
1180 		 * The min_count is set to 0 so that memblock allocations are
1181 		 * never reported as leaks.
1182 		 */
1183 		kmemleak_alloc_phys(found, size, 0, 0);
1184 		return found;
1185 	}
1186 	return 0;
1187 }
1188 
1189 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1190 					phys_addr_t start, phys_addr_t end,
1191 					ulong flags)
1192 {
1193 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1194 					flags);
1195 }
1196 
1197 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1198 					phys_addr_t align, phys_addr_t max_addr,
1199 					int nid, ulong flags)
1200 {
1201 	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1202 }
1203 
1204 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1205 {
1206 	ulong flags = choose_memblock_flags();
1207 	phys_addr_t ret;
1208 
1209 again:
1210 	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1211 				      nid, flags);
1212 
1213 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1214 		flags &= ~MEMBLOCK_MIRROR;
1215 		goto again;
1216 	}
1217 	return ret;
1218 }
1219 
1220 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1221 {
1222 	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1223 				       MEMBLOCK_NONE);
1224 }
1225 
1226 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1227 {
1228 	phys_addr_t alloc;
1229 
1230 	alloc = __memblock_alloc_base(size, align, max_addr);
1231 
1232 	if (alloc == 0)
1233 		panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1234 		      &size, &max_addr);
1235 
1236 	return alloc;
1237 }
1238 
1239 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1240 {
1241 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1242 }
1243 
1244 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1245 {
1246 	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1247 
1248 	if (res)
1249 		return res;
1250 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1251 }
1252 
1253 /**
1254  * memblock_virt_alloc_internal - allocate boot memory block
1255  * @size: size of memory block to be allocated in bytes
1256  * @align: alignment of the region and block's size
1257  * @min_addr: the lower bound of the memory region to allocate (phys address)
1258  * @max_addr: the upper bound of the memory region to allocate (phys address)
1259  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1260  *
1261  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1262  * will fall back to memory below @min_addr. Also, allocation may fall back
1263  * to any node in the system if the specified node can not
1264  * hold the requested memory.
1265  *
1266  * The allocation is performed from memory region limited by
1267  * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1268  *
1269  * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1270  *
1271  * The phys address of allocated boot memory block is converted to virtual and
1272  * allocated memory is reset to 0.
1273  *
1274  * In addition, function sets the min_count to 0 using kmemleak_alloc for
1275  * allocated boot memory block, so that it is never reported as leaks.
1276  *
1277  * RETURNS:
1278  * Virtual address of allocated memory block on success, NULL on failure.
1279  */
1280 static void * __init memblock_virt_alloc_internal(
1281 				phys_addr_t size, phys_addr_t align,
1282 				phys_addr_t min_addr, phys_addr_t max_addr,
1283 				int nid)
1284 {
1285 	phys_addr_t alloc;
1286 	void *ptr;
1287 	ulong flags = choose_memblock_flags();
1288 
1289 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1290 		nid = NUMA_NO_NODE;
1291 
1292 	/*
1293 	 * Detect any accidental use of these APIs after slab is ready, as at
1294 	 * this moment memblock may be deinitialized already and its
1295 	 * internal data may be destroyed (after execution of free_all_bootmem)
1296 	 */
1297 	if (WARN_ON_ONCE(slab_is_available()))
1298 		return kzalloc_node(size, GFP_NOWAIT, nid);
1299 
1300 	if (!align)
1301 		align = SMP_CACHE_BYTES;
1302 
1303 	if (max_addr > memblock.current_limit)
1304 		max_addr = memblock.current_limit;
1305 again:
1306 	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1307 					    nid, flags);
1308 	if (alloc && !memblock_reserve(alloc, size))
1309 		goto done;
1310 
1311 	if (nid != NUMA_NO_NODE) {
1312 		alloc = memblock_find_in_range_node(size, align, min_addr,
1313 						    max_addr, NUMA_NO_NODE,
1314 						    flags);
1315 		if (alloc && !memblock_reserve(alloc, size))
1316 			goto done;
1317 	}
1318 
1319 	if (min_addr) {
1320 		min_addr = 0;
1321 		goto again;
1322 	}
1323 
1324 	if (flags & MEMBLOCK_MIRROR) {
1325 		flags &= ~MEMBLOCK_MIRROR;
1326 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1327 			&size);
1328 		goto again;
1329 	}
1330 
1331 	return NULL;
1332 done:
1333 	ptr = phys_to_virt(alloc);
1334 	memset(ptr, 0, size);
1335 
1336 	/*
1337 	 * The min_count is set to 0 so that bootmem allocated blocks
1338 	 * are never reported as leaks. This is because many of these blocks
1339 	 * are only referred via the physical address which is not
1340 	 * looked up by kmemleak.
1341 	 */
1342 	kmemleak_alloc(ptr, size, 0, 0);
1343 
1344 	return ptr;
1345 }
1346 
1347 /**
1348  * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1349  * @size: size of memory block to be allocated in bytes
1350  * @align: alignment of the region and block's size
1351  * @min_addr: the lower bound of the memory region from where the allocation
1352  *	  is preferred (phys address)
1353  * @max_addr: the upper bound of the memory region from where the allocation
1354  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1355  *	      allocate only from memory limited by memblock.current_limit value
1356  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1357  *
1358  * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1359  * additional debug information (including caller info), if enabled.
1360  *
1361  * RETURNS:
1362  * Virtual address of allocated memory block on success, NULL on failure.
1363  */
1364 void * __init memblock_virt_alloc_try_nid_nopanic(
1365 				phys_addr_t size, phys_addr_t align,
1366 				phys_addr_t min_addr, phys_addr_t max_addr,
1367 				int nid)
1368 {
1369 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1370 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1371 		     (u64)max_addr, (void *)_RET_IP_);
1372 	return memblock_virt_alloc_internal(size, align, min_addr,
1373 					     max_addr, nid);
1374 }
1375 
1376 /**
1377  * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1378  * @size: size of memory block to be allocated in bytes
1379  * @align: alignment of the region and block's size
1380  * @min_addr: the lower bound of the memory region from where the allocation
1381  *	  is preferred (phys address)
1382  * @max_addr: the upper bound of the memory region from where the allocation
1383  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1384  *	      allocate only from memory limited by memblock.current_limit value
1385  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1386  *
1387  * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1388  * which provides debug information (including caller info), if enabled,
1389  * and panics if the request can not be satisfied.
1390  *
1391  * RETURNS:
1392  * Virtual address of allocated memory block on success, NULL on failure.
1393  */
1394 void * __init memblock_virt_alloc_try_nid(
1395 			phys_addr_t size, phys_addr_t align,
1396 			phys_addr_t min_addr, phys_addr_t max_addr,
1397 			int nid)
1398 {
1399 	void *ptr;
1400 
1401 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1402 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1403 		     (u64)max_addr, (void *)_RET_IP_);
1404 	ptr = memblock_virt_alloc_internal(size, align,
1405 					   min_addr, max_addr, nid);
1406 	if (ptr)
1407 		return ptr;
1408 
1409 	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1410 	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1411 	      (u64)max_addr);
1412 	return NULL;
1413 }
1414 
1415 /**
1416  * __memblock_free_early - free boot memory block
1417  * @base: phys starting address of the  boot memory block
1418  * @size: size of the boot memory block in bytes
1419  *
1420  * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1421  * The freeing memory will not be released to the buddy allocator.
1422  */
1423 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1424 {
1425 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1426 		     __func__, (u64)base, (u64)base + size - 1,
1427 		     (void *)_RET_IP_);
1428 	kmemleak_free_part_phys(base, size);
1429 	memblock_remove_range(&memblock.reserved, base, size);
1430 }
1431 
1432 /*
1433  * __memblock_free_late - free bootmem block pages directly to buddy allocator
1434  * @addr: phys starting address of the  boot memory block
1435  * @size: size of the boot memory block in bytes
1436  *
1437  * This is only useful when the bootmem allocator has already been torn
1438  * down, but we are still initializing the system.  Pages are released directly
1439  * to the buddy allocator, no bootmem metadata is updated because it is gone.
1440  */
1441 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1442 {
1443 	u64 cursor, end;
1444 
1445 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1446 		     __func__, (u64)base, (u64)base + size - 1,
1447 		     (void *)_RET_IP_);
1448 	kmemleak_free_part_phys(base, size);
1449 	cursor = PFN_UP(base);
1450 	end = PFN_DOWN(base + size);
1451 
1452 	for (; cursor < end; cursor++) {
1453 		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1454 		totalram_pages++;
1455 	}
1456 }
1457 
1458 /*
1459  * Remaining API functions
1460  */
1461 
1462 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1463 {
1464 	return memblock.memory.total_size;
1465 }
1466 
1467 phys_addr_t __init_memblock memblock_reserved_size(void)
1468 {
1469 	return memblock.reserved.total_size;
1470 }
1471 
1472 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1473 {
1474 	unsigned long pages = 0;
1475 	struct memblock_region *r;
1476 	unsigned long start_pfn, end_pfn;
1477 
1478 	for_each_memblock(memory, r) {
1479 		start_pfn = memblock_region_memory_base_pfn(r);
1480 		end_pfn = memblock_region_memory_end_pfn(r);
1481 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1482 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1483 		pages += end_pfn - start_pfn;
1484 	}
1485 
1486 	return PFN_PHYS(pages);
1487 }
1488 
1489 /* lowest address */
1490 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1491 {
1492 	return memblock.memory.regions[0].base;
1493 }
1494 
1495 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1496 {
1497 	int idx = memblock.memory.cnt - 1;
1498 
1499 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1500 }
1501 
1502 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1503 {
1504 	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1505 	struct memblock_region *r;
1506 
1507 	/*
1508 	 * translate the memory @limit size into the max address within one of
1509 	 * the memory memblock regions, if the @limit exceeds the total size
1510 	 * of those regions, max_addr will keep original value ULLONG_MAX
1511 	 */
1512 	for_each_memblock(memory, r) {
1513 		if (limit <= r->size) {
1514 			max_addr = r->base + limit;
1515 			break;
1516 		}
1517 		limit -= r->size;
1518 	}
1519 
1520 	return max_addr;
1521 }
1522 
1523 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1524 {
1525 	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1526 
1527 	if (!limit)
1528 		return;
1529 
1530 	max_addr = __find_max_addr(limit);
1531 
1532 	/* @limit exceeds the total size of the memory, do nothing */
1533 	if (max_addr == (phys_addr_t)ULLONG_MAX)
1534 		return;
1535 
1536 	/* truncate both memory and reserved regions */
1537 	memblock_remove_range(&memblock.memory, max_addr,
1538 			      (phys_addr_t)ULLONG_MAX);
1539 	memblock_remove_range(&memblock.reserved, max_addr,
1540 			      (phys_addr_t)ULLONG_MAX);
1541 }
1542 
1543 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1544 {
1545 	int start_rgn, end_rgn;
1546 	int i, ret;
1547 
1548 	if (!size)
1549 		return;
1550 
1551 	ret = memblock_isolate_range(&memblock.memory, base, size,
1552 						&start_rgn, &end_rgn);
1553 	if (ret)
1554 		return;
1555 
1556 	/* remove all the MAP regions */
1557 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1558 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1559 			memblock_remove_region(&memblock.memory, i);
1560 
1561 	for (i = start_rgn - 1; i >= 0; i--)
1562 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1563 			memblock_remove_region(&memblock.memory, i);
1564 
1565 	/* truncate the reserved regions */
1566 	memblock_remove_range(&memblock.reserved, 0, base);
1567 	memblock_remove_range(&memblock.reserved,
1568 			base + size, (phys_addr_t)ULLONG_MAX);
1569 }
1570 
1571 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1572 {
1573 	phys_addr_t max_addr;
1574 
1575 	if (!limit)
1576 		return;
1577 
1578 	max_addr = __find_max_addr(limit);
1579 
1580 	/* @limit exceeds the total size of the memory, do nothing */
1581 	if (max_addr == (phys_addr_t)ULLONG_MAX)
1582 		return;
1583 
1584 	memblock_cap_memory_range(0, max_addr);
1585 }
1586 
1587 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1588 {
1589 	unsigned int left = 0, right = type->cnt;
1590 
1591 	do {
1592 		unsigned int mid = (right + left) / 2;
1593 
1594 		if (addr < type->regions[mid].base)
1595 			right = mid;
1596 		else if (addr >= (type->regions[mid].base +
1597 				  type->regions[mid].size))
1598 			left = mid + 1;
1599 		else
1600 			return mid;
1601 	} while (left < right);
1602 	return -1;
1603 }
1604 
1605 bool __init memblock_is_reserved(phys_addr_t addr)
1606 {
1607 	return memblock_search(&memblock.reserved, addr) != -1;
1608 }
1609 
1610 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1611 {
1612 	return memblock_search(&memblock.memory, addr) != -1;
1613 }
1614 
1615 int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1616 {
1617 	int i = memblock_search(&memblock.memory, addr);
1618 
1619 	if (i == -1)
1620 		return false;
1621 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1622 }
1623 
1624 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1625 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1626 			 unsigned long *start_pfn, unsigned long *end_pfn)
1627 {
1628 	struct memblock_type *type = &memblock.memory;
1629 	int mid = memblock_search(type, PFN_PHYS(pfn));
1630 
1631 	if (mid == -1)
1632 		return -1;
1633 
1634 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1635 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1636 
1637 	return type->regions[mid].nid;
1638 }
1639 #endif
1640 
1641 /**
1642  * memblock_is_region_memory - check if a region is a subset of memory
1643  * @base: base of region to check
1644  * @size: size of region to check
1645  *
1646  * Check if the region [@base, @base+@size) is a subset of a memory block.
1647  *
1648  * RETURNS:
1649  * 0 if false, non-zero if true
1650  */
1651 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1652 {
1653 	int idx = memblock_search(&memblock.memory, base);
1654 	phys_addr_t end = base + memblock_cap_size(base, &size);
1655 
1656 	if (idx == -1)
1657 		return 0;
1658 	return (memblock.memory.regions[idx].base +
1659 		 memblock.memory.regions[idx].size) >= end;
1660 }
1661 
1662 /**
1663  * memblock_is_region_reserved - check if a region intersects reserved memory
1664  * @base: base of region to check
1665  * @size: size of region to check
1666  *
1667  * Check if the region [@base, @base+@size) intersects a reserved memory block.
1668  *
1669  * RETURNS:
1670  * True if they intersect, false if not.
1671  */
1672 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1673 {
1674 	memblock_cap_size(base, &size);
1675 	return memblock_overlaps_region(&memblock.reserved, base, size);
1676 }
1677 
1678 void __init_memblock memblock_trim_memory(phys_addr_t align)
1679 {
1680 	phys_addr_t start, end, orig_start, orig_end;
1681 	struct memblock_region *r;
1682 
1683 	for_each_memblock(memory, r) {
1684 		orig_start = r->base;
1685 		orig_end = r->base + r->size;
1686 		start = round_up(orig_start, align);
1687 		end = round_down(orig_end, align);
1688 
1689 		if (start == orig_start && end == orig_end)
1690 			continue;
1691 
1692 		if (start < end) {
1693 			r->base = start;
1694 			r->size = end - start;
1695 		} else {
1696 			memblock_remove_region(&memblock.memory,
1697 					       r - memblock.memory.regions);
1698 			r--;
1699 		}
1700 	}
1701 }
1702 
1703 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1704 {
1705 	memblock.current_limit = limit;
1706 }
1707 
1708 phys_addr_t __init_memblock memblock_get_current_limit(void)
1709 {
1710 	return memblock.current_limit;
1711 }
1712 
1713 static void __init_memblock memblock_dump(struct memblock_type *type)
1714 {
1715 	phys_addr_t base, end, size;
1716 	unsigned long flags;
1717 	int idx;
1718 	struct memblock_region *rgn;
1719 
1720 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1721 
1722 	for_each_memblock_type(type, rgn) {
1723 		char nid_buf[32] = "";
1724 
1725 		base = rgn->base;
1726 		size = rgn->size;
1727 		end = base + size - 1;
1728 		flags = rgn->flags;
1729 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1730 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1731 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1732 				 memblock_get_region_node(rgn));
1733 #endif
1734 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1735 			type->name, idx, &base, &end, &size, nid_buf, flags);
1736 	}
1737 }
1738 
1739 extern unsigned long __init_memblock
1740 memblock_reserved_memory_within(phys_addr_t start_addr, phys_addr_t end_addr)
1741 {
1742 	struct memblock_region *rgn;
1743 	unsigned long size = 0;
1744 	int idx;
1745 
1746 	for_each_memblock_type((&memblock.reserved), rgn) {
1747 		phys_addr_t start, end;
1748 
1749 		if (rgn->base + rgn->size < start_addr)
1750 			continue;
1751 		if (rgn->base > end_addr)
1752 			continue;
1753 
1754 		start = rgn->base;
1755 		end = start + rgn->size;
1756 		size += end - start;
1757 	}
1758 
1759 	return size;
1760 }
1761 
1762 void __init_memblock __memblock_dump_all(void)
1763 {
1764 	pr_info("MEMBLOCK configuration:\n");
1765 	pr_info(" memory size = %pa reserved size = %pa\n",
1766 		&memblock.memory.total_size,
1767 		&memblock.reserved.total_size);
1768 
1769 	memblock_dump(&memblock.memory);
1770 	memblock_dump(&memblock.reserved);
1771 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1772 	memblock_dump(&memblock.physmem);
1773 #endif
1774 }
1775 
1776 void __init memblock_allow_resize(void)
1777 {
1778 	memblock_can_resize = 1;
1779 }
1780 
1781 static int __init early_memblock(char *p)
1782 {
1783 	if (p && strstr(p, "debug"))
1784 		memblock_debug = 1;
1785 	return 0;
1786 }
1787 early_param("memblock", early_memblock);
1788 
1789 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1790 
1791 static int memblock_debug_show(struct seq_file *m, void *private)
1792 {
1793 	struct memblock_type *type = m->private;
1794 	struct memblock_region *reg;
1795 	int i;
1796 	phys_addr_t end;
1797 
1798 	for (i = 0; i < type->cnt; i++) {
1799 		reg = &type->regions[i];
1800 		end = reg->base + reg->size - 1;
1801 
1802 		seq_printf(m, "%4d: ", i);
1803 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1804 	}
1805 	return 0;
1806 }
1807 
1808 static int memblock_debug_open(struct inode *inode, struct file *file)
1809 {
1810 	return single_open(file, memblock_debug_show, inode->i_private);
1811 }
1812 
1813 static const struct file_operations memblock_debug_fops = {
1814 	.open = memblock_debug_open,
1815 	.read = seq_read,
1816 	.llseek = seq_lseek,
1817 	.release = single_release,
1818 };
1819 
1820 static int __init memblock_init_debugfs(void)
1821 {
1822 	struct dentry *root = debugfs_create_dir("memblock", NULL);
1823 	if (!root)
1824 		return -ENXIO;
1825 	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1826 	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1827 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1828 	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1829 #endif
1830 
1831 	return 0;
1832 }
1833 __initcall(memblock_init_debugfs);
1834 
1835 #endif /* CONFIG_DEBUG_FS */
1836