xref: /openbmc/linux/mm/memblock.c (revision e58e871b)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22 
23 #include <asm/sections.h>
24 #include <linux/io.h>
25 
26 #include "internal.h"
27 
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33 
34 struct memblock memblock __initdata_memblock = {
35 	.memory.regions		= memblock_memory_init_regions,
36 	.memory.cnt		= 1,	/* empty dummy entry */
37 	.memory.max		= INIT_MEMBLOCK_REGIONS,
38 	.memory.name		= "memory",
39 
40 	.reserved.regions	= memblock_reserved_init_regions,
41 	.reserved.cnt		= 1,	/* empty dummy entry */
42 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
43 	.reserved.name		= "reserved",
44 
45 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
46 	.physmem.regions	= memblock_physmem_init_regions,
47 	.physmem.cnt		= 1,	/* empty dummy entry */
48 	.physmem.max		= INIT_PHYSMEM_REGIONS,
49 	.physmem.name		= "physmem",
50 #endif
51 
52 	.bottom_up		= false,
53 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
54 };
55 
56 int memblock_debug __initdata_memblock;
57 #ifdef CONFIG_MOVABLE_NODE
58 bool movable_node_enabled __initdata_memblock = false;
59 #endif
60 static bool system_has_some_mirror __initdata_memblock = false;
61 static int memblock_can_resize __initdata_memblock;
62 static int memblock_memory_in_slab __initdata_memblock = 0;
63 static int memblock_reserved_in_slab __initdata_memblock = 0;
64 
65 ulong __init_memblock choose_memblock_flags(void)
66 {
67 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
68 }
69 
70 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
71 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
72 {
73 	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
74 }
75 
76 /*
77  * Address comparison utilities
78  */
79 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
80 				       phys_addr_t base2, phys_addr_t size2)
81 {
82 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
83 }
84 
85 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
86 					phys_addr_t base, phys_addr_t size)
87 {
88 	unsigned long i;
89 
90 	for (i = 0; i < type->cnt; i++)
91 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
92 					   type->regions[i].size))
93 			break;
94 	return i < type->cnt;
95 }
96 
97 /*
98  * __memblock_find_range_bottom_up - find free area utility in bottom-up
99  * @start: start of candidate range
100  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
101  * @size: size of free area to find
102  * @align: alignment of free area to find
103  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
104  * @flags: pick from blocks based on memory attributes
105  *
106  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
107  *
108  * RETURNS:
109  * Found address on success, 0 on failure.
110  */
111 static phys_addr_t __init_memblock
112 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
113 				phys_addr_t size, phys_addr_t align, int nid,
114 				ulong flags)
115 {
116 	phys_addr_t this_start, this_end, cand;
117 	u64 i;
118 
119 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
120 		this_start = clamp(this_start, start, end);
121 		this_end = clamp(this_end, start, end);
122 
123 		cand = round_up(this_start, align);
124 		if (cand < this_end && this_end - cand >= size)
125 			return cand;
126 	}
127 
128 	return 0;
129 }
130 
131 /**
132  * __memblock_find_range_top_down - find free area utility, in top-down
133  * @start: start of candidate range
134  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
135  * @size: size of free area to find
136  * @align: alignment of free area to find
137  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
138  * @flags: pick from blocks based on memory attributes
139  *
140  * Utility called from memblock_find_in_range_node(), find free area top-down.
141  *
142  * RETURNS:
143  * Found address on success, 0 on failure.
144  */
145 static phys_addr_t __init_memblock
146 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
147 			       phys_addr_t size, phys_addr_t align, int nid,
148 			       ulong flags)
149 {
150 	phys_addr_t this_start, this_end, cand;
151 	u64 i;
152 
153 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
154 					NULL) {
155 		this_start = clamp(this_start, start, end);
156 		this_end = clamp(this_end, start, end);
157 
158 		if (this_end < size)
159 			continue;
160 
161 		cand = round_down(this_end - size, align);
162 		if (cand >= this_start)
163 			return cand;
164 	}
165 
166 	return 0;
167 }
168 
169 /**
170  * memblock_find_in_range_node - find free area in given range and node
171  * @size: size of free area to find
172  * @align: alignment of free area to find
173  * @start: start of candidate range
174  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
175  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
176  * @flags: pick from blocks based on memory attributes
177  *
178  * Find @size free area aligned to @align in the specified range and node.
179  *
180  * When allocation direction is bottom-up, the @start should be greater
181  * than the end of the kernel image. Otherwise, it will be trimmed. The
182  * reason is that we want the bottom-up allocation just near the kernel
183  * image so it is highly likely that the allocated memory and the kernel
184  * will reside in the same node.
185  *
186  * If bottom-up allocation failed, will try to allocate memory top-down.
187  *
188  * RETURNS:
189  * Found address on success, 0 on failure.
190  */
191 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
192 					phys_addr_t align, phys_addr_t start,
193 					phys_addr_t end, int nid, ulong flags)
194 {
195 	phys_addr_t kernel_end, ret;
196 
197 	/* pump up @end */
198 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
199 		end = memblock.current_limit;
200 
201 	/* avoid allocating the first page */
202 	start = max_t(phys_addr_t, start, PAGE_SIZE);
203 	end = max(start, end);
204 	kernel_end = __pa_symbol(_end);
205 
206 	/*
207 	 * try bottom-up allocation only when bottom-up mode
208 	 * is set and @end is above the kernel image.
209 	 */
210 	if (memblock_bottom_up() && end > kernel_end) {
211 		phys_addr_t bottom_up_start;
212 
213 		/* make sure we will allocate above the kernel */
214 		bottom_up_start = max(start, kernel_end);
215 
216 		/* ok, try bottom-up allocation first */
217 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
218 						      size, align, nid, flags);
219 		if (ret)
220 			return ret;
221 
222 		/*
223 		 * we always limit bottom-up allocation above the kernel,
224 		 * but top-down allocation doesn't have the limit, so
225 		 * retrying top-down allocation may succeed when bottom-up
226 		 * allocation failed.
227 		 *
228 		 * bottom-up allocation is expected to be fail very rarely,
229 		 * so we use WARN_ONCE() here to see the stack trace if
230 		 * fail happens.
231 		 */
232 		WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
233 	}
234 
235 	return __memblock_find_range_top_down(start, end, size, align, nid,
236 					      flags);
237 }
238 
239 /**
240  * memblock_find_in_range - find free area in given range
241  * @start: start of candidate range
242  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
243  * @size: size of free area to find
244  * @align: alignment of free area to find
245  *
246  * Find @size free area aligned to @align in the specified range.
247  *
248  * RETURNS:
249  * Found address on success, 0 on failure.
250  */
251 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
252 					phys_addr_t end, phys_addr_t size,
253 					phys_addr_t align)
254 {
255 	phys_addr_t ret;
256 	ulong flags = choose_memblock_flags();
257 
258 again:
259 	ret = memblock_find_in_range_node(size, align, start, end,
260 					    NUMA_NO_NODE, flags);
261 
262 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
263 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
264 			&size);
265 		flags &= ~MEMBLOCK_MIRROR;
266 		goto again;
267 	}
268 
269 	return ret;
270 }
271 
272 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
273 {
274 	type->total_size -= type->regions[r].size;
275 	memmove(&type->regions[r], &type->regions[r + 1],
276 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
277 	type->cnt--;
278 
279 	/* Special case for empty arrays */
280 	if (type->cnt == 0) {
281 		WARN_ON(type->total_size != 0);
282 		type->cnt = 1;
283 		type->regions[0].base = 0;
284 		type->regions[0].size = 0;
285 		type->regions[0].flags = 0;
286 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
287 	}
288 }
289 
290 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
291 
292 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
293 					phys_addr_t *addr)
294 {
295 	if (memblock.reserved.regions == memblock_reserved_init_regions)
296 		return 0;
297 
298 	*addr = __pa(memblock.reserved.regions);
299 
300 	return PAGE_ALIGN(sizeof(struct memblock_region) *
301 			  memblock.reserved.max);
302 }
303 
304 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
305 					phys_addr_t *addr)
306 {
307 	if (memblock.memory.regions == memblock_memory_init_regions)
308 		return 0;
309 
310 	*addr = __pa(memblock.memory.regions);
311 
312 	return PAGE_ALIGN(sizeof(struct memblock_region) *
313 			  memblock.memory.max);
314 }
315 
316 #endif
317 
318 /**
319  * memblock_double_array - double the size of the memblock regions array
320  * @type: memblock type of the regions array being doubled
321  * @new_area_start: starting address of memory range to avoid overlap with
322  * @new_area_size: size of memory range to avoid overlap with
323  *
324  * Double the size of the @type regions array. If memblock is being used to
325  * allocate memory for a new reserved regions array and there is a previously
326  * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
327  * waiting to be reserved, ensure the memory used by the new array does
328  * not overlap.
329  *
330  * RETURNS:
331  * 0 on success, -1 on failure.
332  */
333 static int __init_memblock memblock_double_array(struct memblock_type *type,
334 						phys_addr_t new_area_start,
335 						phys_addr_t new_area_size)
336 {
337 	struct memblock_region *new_array, *old_array;
338 	phys_addr_t old_alloc_size, new_alloc_size;
339 	phys_addr_t old_size, new_size, addr;
340 	int use_slab = slab_is_available();
341 	int *in_slab;
342 
343 	/* We don't allow resizing until we know about the reserved regions
344 	 * of memory that aren't suitable for allocation
345 	 */
346 	if (!memblock_can_resize)
347 		return -1;
348 
349 	/* Calculate new doubled size */
350 	old_size = type->max * sizeof(struct memblock_region);
351 	new_size = old_size << 1;
352 	/*
353 	 * We need to allocated new one align to PAGE_SIZE,
354 	 *   so we can free them completely later.
355 	 */
356 	old_alloc_size = PAGE_ALIGN(old_size);
357 	new_alloc_size = PAGE_ALIGN(new_size);
358 
359 	/* Retrieve the slab flag */
360 	if (type == &memblock.memory)
361 		in_slab = &memblock_memory_in_slab;
362 	else
363 		in_slab = &memblock_reserved_in_slab;
364 
365 	/* Try to find some space for it.
366 	 *
367 	 * WARNING: We assume that either slab_is_available() and we use it or
368 	 * we use MEMBLOCK for allocations. That means that this is unsafe to
369 	 * use when bootmem is currently active (unless bootmem itself is
370 	 * implemented on top of MEMBLOCK which isn't the case yet)
371 	 *
372 	 * This should however not be an issue for now, as we currently only
373 	 * call into MEMBLOCK while it's still active, or much later when slab
374 	 * is active for memory hotplug operations
375 	 */
376 	if (use_slab) {
377 		new_array = kmalloc(new_size, GFP_KERNEL);
378 		addr = new_array ? __pa(new_array) : 0;
379 	} else {
380 		/* only exclude range when trying to double reserved.regions */
381 		if (type != &memblock.reserved)
382 			new_area_start = new_area_size = 0;
383 
384 		addr = memblock_find_in_range(new_area_start + new_area_size,
385 						memblock.current_limit,
386 						new_alloc_size, PAGE_SIZE);
387 		if (!addr && new_area_size)
388 			addr = memblock_find_in_range(0,
389 				min(new_area_start, memblock.current_limit),
390 				new_alloc_size, PAGE_SIZE);
391 
392 		new_array = addr ? __va(addr) : NULL;
393 	}
394 	if (!addr) {
395 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
396 		       type->name, type->max, type->max * 2);
397 		return -1;
398 	}
399 
400 	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
401 			type->name, type->max * 2, (u64)addr,
402 			(u64)addr + new_size - 1);
403 
404 	/*
405 	 * Found space, we now need to move the array over before we add the
406 	 * reserved region since it may be our reserved array itself that is
407 	 * full.
408 	 */
409 	memcpy(new_array, type->regions, old_size);
410 	memset(new_array + type->max, 0, old_size);
411 	old_array = type->regions;
412 	type->regions = new_array;
413 	type->max <<= 1;
414 
415 	/* Free old array. We needn't free it if the array is the static one */
416 	if (*in_slab)
417 		kfree(old_array);
418 	else if (old_array != memblock_memory_init_regions &&
419 		 old_array != memblock_reserved_init_regions)
420 		memblock_free(__pa(old_array), old_alloc_size);
421 
422 	/*
423 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
424 	 * needn't do it
425 	 */
426 	if (!use_slab)
427 		BUG_ON(memblock_reserve(addr, new_alloc_size));
428 
429 	/* Update slab flag */
430 	*in_slab = use_slab;
431 
432 	return 0;
433 }
434 
435 /**
436  * memblock_merge_regions - merge neighboring compatible regions
437  * @type: memblock type to scan
438  *
439  * Scan @type and merge neighboring compatible regions.
440  */
441 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
442 {
443 	int i = 0;
444 
445 	/* cnt never goes below 1 */
446 	while (i < type->cnt - 1) {
447 		struct memblock_region *this = &type->regions[i];
448 		struct memblock_region *next = &type->regions[i + 1];
449 
450 		if (this->base + this->size != next->base ||
451 		    memblock_get_region_node(this) !=
452 		    memblock_get_region_node(next) ||
453 		    this->flags != next->flags) {
454 			BUG_ON(this->base + this->size > next->base);
455 			i++;
456 			continue;
457 		}
458 
459 		this->size += next->size;
460 		/* move forward from next + 1, index of which is i + 2 */
461 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
462 		type->cnt--;
463 	}
464 }
465 
466 /**
467  * memblock_insert_region - insert new memblock region
468  * @type:	memblock type to insert into
469  * @idx:	index for the insertion point
470  * @base:	base address of the new region
471  * @size:	size of the new region
472  * @nid:	node id of the new region
473  * @flags:	flags of the new region
474  *
475  * Insert new memblock region [@base,@base+@size) into @type at @idx.
476  * @type must already have extra room to accommodate the new region.
477  */
478 static void __init_memblock memblock_insert_region(struct memblock_type *type,
479 						   int idx, phys_addr_t base,
480 						   phys_addr_t size,
481 						   int nid, unsigned long flags)
482 {
483 	struct memblock_region *rgn = &type->regions[idx];
484 
485 	BUG_ON(type->cnt >= type->max);
486 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
487 	rgn->base = base;
488 	rgn->size = size;
489 	rgn->flags = flags;
490 	memblock_set_region_node(rgn, nid);
491 	type->cnt++;
492 	type->total_size += size;
493 }
494 
495 /**
496  * memblock_add_range - add new memblock region
497  * @type: memblock type to add new region into
498  * @base: base address of the new region
499  * @size: size of the new region
500  * @nid: nid of the new region
501  * @flags: flags of the new region
502  *
503  * Add new memblock region [@base,@base+@size) into @type.  The new region
504  * is allowed to overlap with existing ones - overlaps don't affect already
505  * existing regions.  @type is guaranteed to be minimal (all neighbouring
506  * compatible regions are merged) after the addition.
507  *
508  * RETURNS:
509  * 0 on success, -errno on failure.
510  */
511 int __init_memblock memblock_add_range(struct memblock_type *type,
512 				phys_addr_t base, phys_addr_t size,
513 				int nid, unsigned long flags)
514 {
515 	bool insert = false;
516 	phys_addr_t obase = base;
517 	phys_addr_t end = base + memblock_cap_size(base, &size);
518 	int idx, nr_new;
519 	struct memblock_region *rgn;
520 
521 	if (!size)
522 		return 0;
523 
524 	/* special case for empty array */
525 	if (type->regions[0].size == 0) {
526 		WARN_ON(type->cnt != 1 || type->total_size);
527 		type->regions[0].base = base;
528 		type->regions[0].size = size;
529 		type->regions[0].flags = flags;
530 		memblock_set_region_node(&type->regions[0], nid);
531 		type->total_size = size;
532 		return 0;
533 	}
534 repeat:
535 	/*
536 	 * The following is executed twice.  Once with %false @insert and
537 	 * then with %true.  The first counts the number of regions needed
538 	 * to accommodate the new area.  The second actually inserts them.
539 	 */
540 	base = obase;
541 	nr_new = 0;
542 
543 	for_each_memblock_type(type, rgn) {
544 		phys_addr_t rbase = rgn->base;
545 		phys_addr_t rend = rbase + rgn->size;
546 
547 		if (rbase >= end)
548 			break;
549 		if (rend <= base)
550 			continue;
551 		/*
552 		 * @rgn overlaps.  If it separates the lower part of new
553 		 * area, insert that portion.
554 		 */
555 		if (rbase > base) {
556 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
557 			WARN_ON(nid != memblock_get_region_node(rgn));
558 #endif
559 			WARN_ON(flags != rgn->flags);
560 			nr_new++;
561 			if (insert)
562 				memblock_insert_region(type, idx++, base,
563 						       rbase - base, nid,
564 						       flags);
565 		}
566 		/* area below @rend is dealt with, forget about it */
567 		base = min(rend, end);
568 	}
569 
570 	/* insert the remaining portion */
571 	if (base < end) {
572 		nr_new++;
573 		if (insert)
574 			memblock_insert_region(type, idx, base, end - base,
575 					       nid, flags);
576 	}
577 
578 	if (!nr_new)
579 		return 0;
580 
581 	/*
582 	 * If this was the first round, resize array and repeat for actual
583 	 * insertions; otherwise, merge and return.
584 	 */
585 	if (!insert) {
586 		while (type->cnt + nr_new > type->max)
587 			if (memblock_double_array(type, obase, size) < 0)
588 				return -ENOMEM;
589 		insert = true;
590 		goto repeat;
591 	} else {
592 		memblock_merge_regions(type);
593 		return 0;
594 	}
595 }
596 
597 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
598 				       int nid)
599 {
600 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
601 }
602 
603 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
604 {
605 	phys_addr_t end = base + size - 1;
606 
607 	memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
608 		     &base, &end, (void *)_RET_IP_);
609 
610 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
611 }
612 
613 /**
614  * memblock_isolate_range - isolate given range into disjoint memblocks
615  * @type: memblock type to isolate range for
616  * @base: base of range to isolate
617  * @size: size of range to isolate
618  * @start_rgn: out parameter for the start of isolated region
619  * @end_rgn: out parameter for the end of isolated region
620  *
621  * Walk @type and ensure that regions don't cross the boundaries defined by
622  * [@base,@base+@size).  Crossing regions are split at the boundaries,
623  * which may create at most two more regions.  The index of the first
624  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
625  *
626  * RETURNS:
627  * 0 on success, -errno on failure.
628  */
629 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
630 					phys_addr_t base, phys_addr_t size,
631 					int *start_rgn, int *end_rgn)
632 {
633 	phys_addr_t end = base + memblock_cap_size(base, &size);
634 	int idx;
635 	struct memblock_region *rgn;
636 
637 	*start_rgn = *end_rgn = 0;
638 
639 	if (!size)
640 		return 0;
641 
642 	/* we'll create at most two more regions */
643 	while (type->cnt + 2 > type->max)
644 		if (memblock_double_array(type, base, size) < 0)
645 			return -ENOMEM;
646 
647 	for_each_memblock_type(type, rgn) {
648 		phys_addr_t rbase = rgn->base;
649 		phys_addr_t rend = rbase + rgn->size;
650 
651 		if (rbase >= end)
652 			break;
653 		if (rend <= base)
654 			continue;
655 
656 		if (rbase < base) {
657 			/*
658 			 * @rgn intersects from below.  Split and continue
659 			 * to process the next region - the new top half.
660 			 */
661 			rgn->base = base;
662 			rgn->size -= base - rbase;
663 			type->total_size -= base - rbase;
664 			memblock_insert_region(type, idx, rbase, base - rbase,
665 					       memblock_get_region_node(rgn),
666 					       rgn->flags);
667 		} else if (rend > end) {
668 			/*
669 			 * @rgn intersects from above.  Split and redo the
670 			 * current region - the new bottom half.
671 			 */
672 			rgn->base = end;
673 			rgn->size -= end - rbase;
674 			type->total_size -= end - rbase;
675 			memblock_insert_region(type, idx--, rbase, end - rbase,
676 					       memblock_get_region_node(rgn),
677 					       rgn->flags);
678 		} else {
679 			/* @rgn is fully contained, record it */
680 			if (!*end_rgn)
681 				*start_rgn = idx;
682 			*end_rgn = idx + 1;
683 		}
684 	}
685 
686 	return 0;
687 }
688 
689 static int __init_memblock memblock_remove_range(struct memblock_type *type,
690 					  phys_addr_t base, phys_addr_t size)
691 {
692 	int start_rgn, end_rgn;
693 	int i, ret;
694 
695 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
696 	if (ret)
697 		return ret;
698 
699 	for (i = end_rgn - 1; i >= start_rgn; i--)
700 		memblock_remove_region(type, i);
701 	return 0;
702 }
703 
704 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
705 {
706 	return memblock_remove_range(&memblock.memory, base, size);
707 }
708 
709 
710 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
711 {
712 	phys_addr_t end = base + size - 1;
713 
714 	memblock_dbg("   memblock_free: [%pa-%pa] %pF\n",
715 		     &base, &end, (void *)_RET_IP_);
716 
717 	kmemleak_free_part_phys(base, size);
718 	return memblock_remove_range(&memblock.reserved, base, size);
719 }
720 
721 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
722 {
723 	phys_addr_t end = base + size - 1;
724 
725 	memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
726 		     &base, &end, (void *)_RET_IP_);
727 
728 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
729 }
730 
731 /**
732  *
733  * This function isolates region [@base, @base + @size), and sets/clears flag
734  *
735  * Return 0 on success, -errno on failure.
736  */
737 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
738 				phys_addr_t size, int set, int flag)
739 {
740 	struct memblock_type *type = &memblock.memory;
741 	int i, ret, start_rgn, end_rgn;
742 
743 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
744 	if (ret)
745 		return ret;
746 
747 	for (i = start_rgn; i < end_rgn; i++)
748 		if (set)
749 			memblock_set_region_flags(&type->regions[i], flag);
750 		else
751 			memblock_clear_region_flags(&type->regions[i], flag);
752 
753 	memblock_merge_regions(type);
754 	return 0;
755 }
756 
757 /**
758  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
759  * @base: the base phys addr of the region
760  * @size: the size of the region
761  *
762  * Return 0 on success, -errno on failure.
763  */
764 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
765 {
766 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
767 }
768 
769 /**
770  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
771  * @base: the base phys addr of the region
772  * @size: the size of the region
773  *
774  * Return 0 on success, -errno on failure.
775  */
776 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
777 {
778 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
779 }
780 
781 /**
782  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
783  * @base: the base phys addr of the region
784  * @size: the size of the region
785  *
786  * Return 0 on success, -errno on failure.
787  */
788 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
789 {
790 	system_has_some_mirror = true;
791 
792 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
793 }
794 
795 /**
796  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
797  * @base: the base phys addr of the region
798  * @size: the size of the region
799  *
800  * Return 0 on success, -errno on failure.
801  */
802 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
803 {
804 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
805 }
806 
807 /**
808  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
809  * @base: the base phys addr of the region
810  * @size: the size of the region
811  *
812  * Return 0 on success, -errno on failure.
813  */
814 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
815 {
816 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
817 }
818 
819 /**
820  * __next_reserved_mem_region - next function for for_each_reserved_region()
821  * @idx: pointer to u64 loop variable
822  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
823  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
824  *
825  * Iterate over all reserved memory regions.
826  */
827 void __init_memblock __next_reserved_mem_region(u64 *idx,
828 					   phys_addr_t *out_start,
829 					   phys_addr_t *out_end)
830 {
831 	struct memblock_type *type = &memblock.reserved;
832 
833 	if (*idx < type->cnt) {
834 		struct memblock_region *r = &type->regions[*idx];
835 		phys_addr_t base = r->base;
836 		phys_addr_t size = r->size;
837 
838 		if (out_start)
839 			*out_start = base;
840 		if (out_end)
841 			*out_end = base + size - 1;
842 
843 		*idx += 1;
844 		return;
845 	}
846 
847 	/* signal end of iteration */
848 	*idx = ULLONG_MAX;
849 }
850 
851 /**
852  * __next__mem_range - next function for for_each_free_mem_range() etc.
853  * @idx: pointer to u64 loop variable
854  * @nid: node selector, %NUMA_NO_NODE for all nodes
855  * @flags: pick from blocks based on memory attributes
856  * @type_a: pointer to memblock_type from where the range is taken
857  * @type_b: pointer to memblock_type which excludes memory from being taken
858  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
859  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
860  * @out_nid: ptr to int for nid of the range, can be %NULL
861  *
862  * Find the first area from *@idx which matches @nid, fill the out
863  * parameters, and update *@idx for the next iteration.  The lower 32bit of
864  * *@idx contains index into type_a and the upper 32bit indexes the
865  * areas before each region in type_b.	For example, if type_b regions
866  * look like the following,
867  *
868  *	0:[0-16), 1:[32-48), 2:[128-130)
869  *
870  * The upper 32bit indexes the following regions.
871  *
872  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
873  *
874  * As both region arrays are sorted, the function advances the two indices
875  * in lockstep and returns each intersection.
876  */
877 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
878 				      struct memblock_type *type_a,
879 				      struct memblock_type *type_b,
880 				      phys_addr_t *out_start,
881 				      phys_addr_t *out_end, int *out_nid)
882 {
883 	int idx_a = *idx & 0xffffffff;
884 	int idx_b = *idx >> 32;
885 
886 	if (WARN_ONCE(nid == MAX_NUMNODES,
887 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
888 		nid = NUMA_NO_NODE;
889 
890 	for (; idx_a < type_a->cnt; idx_a++) {
891 		struct memblock_region *m = &type_a->regions[idx_a];
892 
893 		phys_addr_t m_start = m->base;
894 		phys_addr_t m_end = m->base + m->size;
895 		int	    m_nid = memblock_get_region_node(m);
896 
897 		/* only memory regions are associated with nodes, check it */
898 		if (nid != NUMA_NO_NODE && nid != m_nid)
899 			continue;
900 
901 		/* skip hotpluggable memory regions if needed */
902 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
903 			continue;
904 
905 		/* if we want mirror memory skip non-mirror memory regions */
906 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
907 			continue;
908 
909 		/* skip nomap memory unless we were asked for it explicitly */
910 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
911 			continue;
912 
913 		if (!type_b) {
914 			if (out_start)
915 				*out_start = m_start;
916 			if (out_end)
917 				*out_end = m_end;
918 			if (out_nid)
919 				*out_nid = m_nid;
920 			idx_a++;
921 			*idx = (u32)idx_a | (u64)idx_b << 32;
922 			return;
923 		}
924 
925 		/* scan areas before each reservation */
926 		for (; idx_b < type_b->cnt + 1; idx_b++) {
927 			struct memblock_region *r;
928 			phys_addr_t r_start;
929 			phys_addr_t r_end;
930 
931 			r = &type_b->regions[idx_b];
932 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
933 			r_end = idx_b < type_b->cnt ?
934 				r->base : ULLONG_MAX;
935 
936 			/*
937 			 * if idx_b advanced past idx_a,
938 			 * break out to advance idx_a
939 			 */
940 			if (r_start >= m_end)
941 				break;
942 			/* if the two regions intersect, we're done */
943 			if (m_start < r_end) {
944 				if (out_start)
945 					*out_start =
946 						max(m_start, r_start);
947 				if (out_end)
948 					*out_end = min(m_end, r_end);
949 				if (out_nid)
950 					*out_nid = m_nid;
951 				/*
952 				 * The region which ends first is
953 				 * advanced for the next iteration.
954 				 */
955 				if (m_end <= r_end)
956 					idx_a++;
957 				else
958 					idx_b++;
959 				*idx = (u32)idx_a | (u64)idx_b << 32;
960 				return;
961 			}
962 		}
963 	}
964 
965 	/* signal end of iteration */
966 	*idx = ULLONG_MAX;
967 }
968 
969 /**
970  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
971  *
972  * Finds the next range from type_a which is not marked as unsuitable
973  * in type_b.
974  *
975  * @idx: pointer to u64 loop variable
976  * @nid: node selector, %NUMA_NO_NODE for all nodes
977  * @flags: pick from blocks based on memory attributes
978  * @type_a: pointer to memblock_type from where the range is taken
979  * @type_b: pointer to memblock_type which excludes memory from being taken
980  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
981  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
982  * @out_nid: ptr to int for nid of the range, can be %NULL
983  *
984  * Reverse of __next_mem_range().
985  */
986 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
987 					  struct memblock_type *type_a,
988 					  struct memblock_type *type_b,
989 					  phys_addr_t *out_start,
990 					  phys_addr_t *out_end, int *out_nid)
991 {
992 	int idx_a = *idx & 0xffffffff;
993 	int idx_b = *idx >> 32;
994 
995 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
996 		nid = NUMA_NO_NODE;
997 
998 	if (*idx == (u64)ULLONG_MAX) {
999 		idx_a = type_a->cnt - 1;
1000 		if (type_b != NULL)
1001 			idx_b = type_b->cnt;
1002 		else
1003 			idx_b = 0;
1004 	}
1005 
1006 	for (; idx_a >= 0; idx_a--) {
1007 		struct memblock_region *m = &type_a->regions[idx_a];
1008 
1009 		phys_addr_t m_start = m->base;
1010 		phys_addr_t m_end = m->base + m->size;
1011 		int m_nid = memblock_get_region_node(m);
1012 
1013 		/* only memory regions are associated with nodes, check it */
1014 		if (nid != NUMA_NO_NODE && nid != m_nid)
1015 			continue;
1016 
1017 		/* skip hotpluggable memory regions if needed */
1018 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1019 			continue;
1020 
1021 		/* if we want mirror memory skip non-mirror memory regions */
1022 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1023 			continue;
1024 
1025 		/* skip nomap memory unless we were asked for it explicitly */
1026 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1027 			continue;
1028 
1029 		if (!type_b) {
1030 			if (out_start)
1031 				*out_start = m_start;
1032 			if (out_end)
1033 				*out_end = m_end;
1034 			if (out_nid)
1035 				*out_nid = m_nid;
1036 			idx_a--;
1037 			*idx = (u32)idx_a | (u64)idx_b << 32;
1038 			return;
1039 		}
1040 
1041 		/* scan areas before each reservation */
1042 		for (; idx_b >= 0; idx_b--) {
1043 			struct memblock_region *r;
1044 			phys_addr_t r_start;
1045 			phys_addr_t r_end;
1046 
1047 			r = &type_b->regions[idx_b];
1048 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1049 			r_end = idx_b < type_b->cnt ?
1050 				r->base : ULLONG_MAX;
1051 			/*
1052 			 * if idx_b advanced past idx_a,
1053 			 * break out to advance idx_a
1054 			 */
1055 
1056 			if (r_end <= m_start)
1057 				break;
1058 			/* if the two regions intersect, we're done */
1059 			if (m_end > r_start) {
1060 				if (out_start)
1061 					*out_start = max(m_start, r_start);
1062 				if (out_end)
1063 					*out_end = min(m_end, r_end);
1064 				if (out_nid)
1065 					*out_nid = m_nid;
1066 				if (m_start >= r_start)
1067 					idx_a--;
1068 				else
1069 					idx_b--;
1070 				*idx = (u32)idx_a | (u64)idx_b << 32;
1071 				return;
1072 			}
1073 		}
1074 	}
1075 	/* signal end of iteration */
1076 	*idx = ULLONG_MAX;
1077 }
1078 
1079 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1080 /*
1081  * Common iterator interface used to define for_each_mem_range().
1082  */
1083 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1084 				unsigned long *out_start_pfn,
1085 				unsigned long *out_end_pfn, int *out_nid)
1086 {
1087 	struct memblock_type *type = &memblock.memory;
1088 	struct memblock_region *r;
1089 
1090 	while (++*idx < type->cnt) {
1091 		r = &type->regions[*idx];
1092 
1093 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1094 			continue;
1095 		if (nid == MAX_NUMNODES || nid == r->nid)
1096 			break;
1097 	}
1098 	if (*idx >= type->cnt) {
1099 		*idx = -1;
1100 		return;
1101 	}
1102 
1103 	if (out_start_pfn)
1104 		*out_start_pfn = PFN_UP(r->base);
1105 	if (out_end_pfn)
1106 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1107 	if (out_nid)
1108 		*out_nid = r->nid;
1109 }
1110 
1111 unsigned long __init_memblock memblock_next_valid_pfn(unsigned long pfn,
1112 						      unsigned long max_pfn)
1113 {
1114 	struct memblock_type *type = &memblock.memory;
1115 	unsigned int right = type->cnt;
1116 	unsigned int mid, left = 0;
1117 	phys_addr_t addr = PFN_PHYS(pfn + 1);
1118 
1119 	do {
1120 		mid = (right + left) / 2;
1121 
1122 		if (addr < type->regions[mid].base)
1123 			right = mid;
1124 		else if (addr >= (type->regions[mid].base +
1125 				  type->regions[mid].size))
1126 			left = mid + 1;
1127 		else {
1128 			/* addr is within the region, so pfn + 1 is valid */
1129 			return min(pfn + 1, max_pfn);
1130 		}
1131 	} while (left < right);
1132 
1133 	if (right == type->cnt)
1134 		return max_pfn;
1135 	else
1136 		return min(PHYS_PFN(type->regions[right].base), max_pfn);
1137 }
1138 
1139 /**
1140  * memblock_set_node - set node ID on memblock regions
1141  * @base: base of area to set node ID for
1142  * @size: size of area to set node ID for
1143  * @type: memblock type to set node ID for
1144  * @nid: node ID to set
1145  *
1146  * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1147  * Regions which cross the area boundaries are split as necessary.
1148  *
1149  * RETURNS:
1150  * 0 on success, -errno on failure.
1151  */
1152 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1153 				      struct memblock_type *type, int nid)
1154 {
1155 	int start_rgn, end_rgn;
1156 	int i, ret;
1157 
1158 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1159 	if (ret)
1160 		return ret;
1161 
1162 	for (i = start_rgn; i < end_rgn; i++)
1163 		memblock_set_region_node(&type->regions[i], nid);
1164 
1165 	memblock_merge_regions(type);
1166 	return 0;
1167 }
1168 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1169 
1170 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1171 					phys_addr_t align, phys_addr_t start,
1172 					phys_addr_t end, int nid, ulong flags)
1173 {
1174 	phys_addr_t found;
1175 
1176 	if (!align)
1177 		align = SMP_CACHE_BYTES;
1178 
1179 	found = memblock_find_in_range_node(size, align, start, end, nid,
1180 					    flags);
1181 	if (found && !memblock_reserve(found, size)) {
1182 		/*
1183 		 * The min_count is set to 0 so that memblock allocations are
1184 		 * never reported as leaks.
1185 		 */
1186 		kmemleak_alloc_phys(found, size, 0, 0);
1187 		return found;
1188 	}
1189 	return 0;
1190 }
1191 
1192 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1193 					phys_addr_t start, phys_addr_t end,
1194 					ulong flags)
1195 {
1196 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1197 					flags);
1198 }
1199 
1200 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1201 					phys_addr_t align, phys_addr_t max_addr,
1202 					int nid, ulong flags)
1203 {
1204 	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1205 }
1206 
1207 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1208 {
1209 	ulong flags = choose_memblock_flags();
1210 	phys_addr_t ret;
1211 
1212 again:
1213 	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1214 				      nid, flags);
1215 
1216 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1217 		flags &= ~MEMBLOCK_MIRROR;
1218 		goto again;
1219 	}
1220 	return ret;
1221 }
1222 
1223 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1224 {
1225 	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1226 				       MEMBLOCK_NONE);
1227 }
1228 
1229 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1230 {
1231 	phys_addr_t alloc;
1232 
1233 	alloc = __memblock_alloc_base(size, align, max_addr);
1234 
1235 	if (alloc == 0)
1236 		panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1237 		      &size, &max_addr);
1238 
1239 	return alloc;
1240 }
1241 
1242 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1243 {
1244 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1245 }
1246 
1247 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1248 {
1249 	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1250 
1251 	if (res)
1252 		return res;
1253 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1254 }
1255 
1256 /**
1257  * memblock_virt_alloc_internal - allocate boot memory block
1258  * @size: size of memory block to be allocated in bytes
1259  * @align: alignment of the region and block's size
1260  * @min_addr: the lower bound of the memory region to allocate (phys address)
1261  * @max_addr: the upper bound of the memory region to allocate (phys address)
1262  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1263  *
1264  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1265  * will fall back to memory below @min_addr. Also, allocation may fall back
1266  * to any node in the system if the specified node can not
1267  * hold the requested memory.
1268  *
1269  * The allocation is performed from memory region limited by
1270  * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1271  *
1272  * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1273  *
1274  * The phys address of allocated boot memory block is converted to virtual and
1275  * allocated memory is reset to 0.
1276  *
1277  * In addition, function sets the min_count to 0 using kmemleak_alloc for
1278  * allocated boot memory block, so that it is never reported as leaks.
1279  *
1280  * RETURNS:
1281  * Virtual address of allocated memory block on success, NULL on failure.
1282  */
1283 static void * __init memblock_virt_alloc_internal(
1284 				phys_addr_t size, phys_addr_t align,
1285 				phys_addr_t min_addr, phys_addr_t max_addr,
1286 				int nid)
1287 {
1288 	phys_addr_t alloc;
1289 	void *ptr;
1290 	ulong flags = choose_memblock_flags();
1291 
1292 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1293 		nid = NUMA_NO_NODE;
1294 
1295 	/*
1296 	 * Detect any accidental use of these APIs after slab is ready, as at
1297 	 * this moment memblock may be deinitialized already and its
1298 	 * internal data may be destroyed (after execution of free_all_bootmem)
1299 	 */
1300 	if (WARN_ON_ONCE(slab_is_available()))
1301 		return kzalloc_node(size, GFP_NOWAIT, nid);
1302 
1303 	if (!align)
1304 		align = SMP_CACHE_BYTES;
1305 
1306 	if (max_addr > memblock.current_limit)
1307 		max_addr = memblock.current_limit;
1308 again:
1309 	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1310 					    nid, flags);
1311 	if (alloc && !memblock_reserve(alloc, size))
1312 		goto done;
1313 
1314 	if (nid != NUMA_NO_NODE) {
1315 		alloc = memblock_find_in_range_node(size, align, min_addr,
1316 						    max_addr, NUMA_NO_NODE,
1317 						    flags);
1318 		if (alloc && !memblock_reserve(alloc, size))
1319 			goto done;
1320 	}
1321 
1322 	if (min_addr) {
1323 		min_addr = 0;
1324 		goto again;
1325 	}
1326 
1327 	if (flags & MEMBLOCK_MIRROR) {
1328 		flags &= ~MEMBLOCK_MIRROR;
1329 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1330 			&size);
1331 		goto again;
1332 	}
1333 
1334 	return NULL;
1335 done:
1336 	ptr = phys_to_virt(alloc);
1337 	memset(ptr, 0, size);
1338 
1339 	/*
1340 	 * The min_count is set to 0 so that bootmem allocated blocks
1341 	 * are never reported as leaks. This is because many of these blocks
1342 	 * are only referred via the physical address which is not
1343 	 * looked up by kmemleak.
1344 	 */
1345 	kmemleak_alloc(ptr, size, 0, 0);
1346 
1347 	return ptr;
1348 }
1349 
1350 /**
1351  * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1352  * @size: size of memory block to be allocated in bytes
1353  * @align: alignment of the region and block's size
1354  * @min_addr: the lower bound of the memory region from where the allocation
1355  *	  is preferred (phys address)
1356  * @max_addr: the upper bound of the memory region from where the allocation
1357  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1358  *	      allocate only from memory limited by memblock.current_limit value
1359  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1360  *
1361  * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1362  * additional debug information (including caller info), if enabled.
1363  *
1364  * RETURNS:
1365  * Virtual address of allocated memory block on success, NULL on failure.
1366  */
1367 void * __init memblock_virt_alloc_try_nid_nopanic(
1368 				phys_addr_t size, phys_addr_t align,
1369 				phys_addr_t min_addr, phys_addr_t max_addr,
1370 				int nid)
1371 {
1372 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1373 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1374 		     (u64)max_addr, (void *)_RET_IP_);
1375 	return memblock_virt_alloc_internal(size, align, min_addr,
1376 					     max_addr, nid);
1377 }
1378 
1379 /**
1380  * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1381  * @size: size of memory block to be allocated in bytes
1382  * @align: alignment of the region and block's size
1383  * @min_addr: the lower bound of the memory region from where the allocation
1384  *	  is preferred (phys address)
1385  * @max_addr: the upper bound of the memory region from where the allocation
1386  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1387  *	      allocate only from memory limited by memblock.current_limit value
1388  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1389  *
1390  * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1391  * which provides debug information (including caller info), if enabled,
1392  * and panics if the request can not be satisfied.
1393  *
1394  * RETURNS:
1395  * Virtual address of allocated memory block on success, NULL on failure.
1396  */
1397 void * __init memblock_virt_alloc_try_nid(
1398 			phys_addr_t size, phys_addr_t align,
1399 			phys_addr_t min_addr, phys_addr_t max_addr,
1400 			int nid)
1401 {
1402 	void *ptr;
1403 
1404 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1405 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1406 		     (u64)max_addr, (void *)_RET_IP_);
1407 	ptr = memblock_virt_alloc_internal(size, align,
1408 					   min_addr, max_addr, nid);
1409 	if (ptr)
1410 		return ptr;
1411 
1412 	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1413 	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1414 	      (u64)max_addr);
1415 	return NULL;
1416 }
1417 
1418 /**
1419  * __memblock_free_early - free boot memory block
1420  * @base: phys starting address of the  boot memory block
1421  * @size: size of the boot memory block in bytes
1422  *
1423  * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1424  * The freeing memory will not be released to the buddy allocator.
1425  */
1426 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1427 {
1428 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1429 		     __func__, (u64)base, (u64)base + size - 1,
1430 		     (void *)_RET_IP_);
1431 	kmemleak_free_part_phys(base, size);
1432 	memblock_remove_range(&memblock.reserved, base, size);
1433 }
1434 
1435 /*
1436  * __memblock_free_late - free bootmem block pages directly to buddy allocator
1437  * @addr: phys starting address of the  boot memory block
1438  * @size: size of the boot memory block in bytes
1439  *
1440  * This is only useful when the bootmem allocator has already been torn
1441  * down, but we are still initializing the system.  Pages are released directly
1442  * to the buddy allocator, no bootmem metadata is updated because it is gone.
1443  */
1444 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1445 {
1446 	u64 cursor, end;
1447 
1448 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1449 		     __func__, (u64)base, (u64)base + size - 1,
1450 		     (void *)_RET_IP_);
1451 	kmemleak_free_part_phys(base, size);
1452 	cursor = PFN_UP(base);
1453 	end = PFN_DOWN(base + size);
1454 
1455 	for (; cursor < end; cursor++) {
1456 		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1457 		totalram_pages++;
1458 	}
1459 }
1460 
1461 /*
1462  * Remaining API functions
1463  */
1464 
1465 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1466 {
1467 	return memblock.memory.total_size;
1468 }
1469 
1470 phys_addr_t __init_memblock memblock_reserved_size(void)
1471 {
1472 	return memblock.reserved.total_size;
1473 }
1474 
1475 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1476 {
1477 	unsigned long pages = 0;
1478 	struct memblock_region *r;
1479 	unsigned long start_pfn, end_pfn;
1480 
1481 	for_each_memblock(memory, r) {
1482 		start_pfn = memblock_region_memory_base_pfn(r);
1483 		end_pfn = memblock_region_memory_end_pfn(r);
1484 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1485 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1486 		pages += end_pfn - start_pfn;
1487 	}
1488 
1489 	return PFN_PHYS(pages);
1490 }
1491 
1492 /* lowest address */
1493 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1494 {
1495 	return memblock.memory.regions[0].base;
1496 }
1497 
1498 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1499 {
1500 	int idx = memblock.memory.cnt - 1;
1501 
1502 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1503 }
1504 
1505 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1506 {
1507 	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1508 	struct memblock_region *r;
1509 
1510 	/*
1511 	 * translate the memory @limit size into the max address within one of
1512 	 * the memory memblock regions, if the @limit exceeds the total size
1513 	 * of those regions, max_addr will keep original value ULLONG_MAX
1514 	 */
1515 	for_each_memblock(memory, r) {
1516 		if (limit <= r->size) {
1517 			max_addr = r->base + limit;
1518 			break;
1519 		}
1520 		limit -= r->size;
1521 	}
1522 
1523 	return max_addr;
1524 }
1525 
1526 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1527 {
1528 	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1529 
1530 	if (!limit)
1531 		return;
1532 
1533 	max_addr = __find_max_addr(limit);
1534 
1535 	/* @limit exceeds the total size of the memory, do nothing */
1536 	if (max_addr == (phys_addr_t)ULLONG_MAX)
1537 		return;
1538 
1539 	/* truncate both memory and reserved regions */
1540 	memblock_remove_range(&memblock.memory, max_addr,
1541 			      (phys_addr_t)ULLONG_MAX);
1542 	memblock_remove_range(&memblock.reserved, max_addr,
1543 			      (phys_addr_t)ULLONG_MAX);
1544 }
1545 
1546 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1547 {
1548 	int start_rgn, end_rgn;
1549 	int i, ret;
1550 
1551 	if (!size)
1552 		return;
1553 
1554 	ret = memblock_isolate_range(&memblock.memory, base, size,
1555 						&start_rgn, &end_rgn);
1556 	if (ret)
1557 		return;
1558 
1559 	/* remove all the MAP regions */
1560 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1561 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1562 			memblock_remove_region(&memblock.memory, i);
1563 
1564 	for (i = start_rgn - 1; i >= 0; i--)
1565 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1566 			memblock_remove_region(&memblock.memory, i);
1567 
1568 	/* truncate the reserved regions */
1569 	memblock_remove_range(&memblock.reserved, 0, base);
1570 	memblock_remove_range(&memblock.reserved,
1571 			base + size, (phys_addr_t)ULLONG_MAX);
1572 }
1573 
1574 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1575 {
1576 	phys_addr_t max_addr;
1577 
1578 	if (!limit)
1579 		return;
1580 
1581 	max_addr = __find_max_addr(limit);
1582 
1583 	/* @limit exceeds the total size of the memory, do nothing */
1584 	if (max_addr == (phys_addr_t)ULLONG_MAX)
1585 		return;
1586 
1587 	memblock_cap_memory_range(0, max_addr);
1588 }
1589 
1590 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1591 {
1592 	unsigned int left = 0, right = type->cnt;
1593 
1594 	do {
1595 		unsigned int mid = (right + left) / 2;
1596 
1597 		if (addr < type->regions[mid].base)
1598 			right = mid;
1599 		else if (addr >= (type->regions[mid].base +
1600 				  type->regions[mid].size))
1601 			left = mid + 1;
1602 		else
1603 			return mid;
1604 	} while (left < right);
1605 	return -1;
1606 }
1607 
1608 bool __init memblock_is_reserved(phys_addr_t addr)
1609 {
1610 	return memblock_search(&memblock.reserved, addr) != -1;
1611 }
1612 
1613 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1614 {
1615 	return memblock_search(&memblock.memory, addr) != -1;
1616 }
1617 
1618 int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1619 {
1620 	int i = memblock_search(&memblock.memory, addr);
1621 
1622 	if (i == -1)
1623 		return false;
1624 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1625 }
1626 
1627 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1628 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1629 			 unsigned long *start_pfn, unsigned long *end_pfn)
1630 {
1631 	struct memblock_type *type = &memblock.memory;
1632 	int mid = memblock_search(type, PFN_PHYS(pfn));
1633 
1634 	if (mid == -1)
1635 		return -1;
1636 
1637 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1638 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1639 
1640 	return type->regions[mid].nid;
1641 }
1642 #endif
1643 
1644 /**
1645  * memblock_is_region_memory - check if a region is a subset of memory
1646  * @base: base of region to check
1647  * @size: size of region to check
1648  *
1649  * Check if the region [@base, @base+@size) is a subset of a memory block.
1650  *
1651  * RETURNS:
1652  * 0 if false, non-zero if true
1653  */
1654 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1655 {
1656 	int idx = memblock_search(&memblock.memory, base);
1657 	phys_addr_t end = base + memblock_cap_size(base, &size);
1658 
1659 	if (idx == -1)
1660 		return 0;
1661 	return (memblock.memory.regions[idx].base +
1662 		 memblock.memory.regions[idx].size) >= end;
1663 }
1664 
1665 /**
1666  * memblock_is_region_reserved - check if a region intersects reserved memory
1667  * @base: base of region to check
1668  * @size: size of region to check
1669  *
1670  * Check if the region [@base, @base+@size) intersects a reserved memory block.
1671  *
1672  * RETURNS:
1673  * True if they intersect, false if not.
1674  */
1675 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1676 {
1677 	memblock_cap_size(base, &size);
1678 	return memblock_overlaps_region(&memblock.reserved, base, size);
1679 }
1680 
1681 void __init_memblock memblock_trim_memory(phys_addr_t align)
1682 {
1683 	phys_addr_t start, end, orig_start, orig_end;
1684 	struct memblock_region *r;
1685 
1686 	for_each_memblock(memory, r) {
1687 		orig_start = r->base;
1688 		orig_end = r->base + r->size;
1689 		start = round_up(orig_start, align);
1690 		end = round_down(orig_end, align);
1691 
1692 		if (start == orig_start && end == orig_end)
1693 			continue;
1694 
1695 		if (start < end) {
1696 			r->base = start;
1697 			r->size = end - start;
1698 		} else {
1699 			memblock_remove_region(&memblock.memory,
1700 					       r - memblock.memory.regions);
1701 			r--;
1702 		}
1703 	}
1704 }
1705 
1706 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1707 {
1708 	memblock.current_limit = limit;
1709 }
1710 
1711 phys_addr_t __init_memblock memblock_get_current_limit(void)
1712 {
1713 	return memblock.current_limit;
1714 }
1715 
1716 static void __init_memblock memblock_dump(struct memblock_type *type)
1717 {
1718 	phys_addr_t base, end, size;
1719 	unsigned long flags;
1720 	int idx;
1721 	struct memblock_region *rgn;
1722 
1723 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1724 
1725 	for_each_memblock_type(type, rgn) {
1726 		char nid_buf[32] = "";
1727 
1728 		base = rgn->base;
1729 		size = rgn->size;
1730 		end = base + size - 1;
1731 		flags = rgn->flags;
1732 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1733 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1734 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1735 				 memblock_get_region_node(rgn));
1736 #endif
1737 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1738 			type->name, idx, &base, &end, &size, nid_buf, flags);
1739 	}
1740 }
1741 
1742 extern unsigned long __init_memblock
1743 memblock_reserved_memory_within(phys_addr_t start_addr, phys_addr_t end_addr)
1744 {
1745 	struct memblock_region *rgn;
1746 	unsigned long size = 0;
1747 	int idx;
1748 
1749 	for_each_memblock_type((&memblock.reserved), rgn) {
1750 		phys_addr_t start, end;
1751 
1752 		if (rgn->base + rgn->size < start_addr)
1753 			continue;
1754 		if (rgn->base > end_addr)
1755 			continue;
1756 
1757 		start = rgn->base;
1758 		end = start + rgn->size;
1759 		size += end - start;
1760 	}
1761 
1762 	return size;
1763 }
1764 
1765 void __init_memblock __memblock_dump_all(void)
1766 {
1767 	pr_info("MEMBLOCK configuration:\n");
1768 	pr_info(" memory size = %pa reserved size = %pa\n",
1769 		&memblock.memory.total_size,
1770 		&memblock.reserved.total_size);
1771 
1772 	memblock_dump(&memblock.memory);
1773 	memblock_dump(&memblock.reserved);
1774 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1775 	memblock_dump(&memblock.physmem);
1776 #endif
1777 }
1778 
1779 void __init memblock_allow_resize(void)
1780 {
1781 	memblock_can_resize = 1;
1782 }
1783 
1784 static int __init early_memblock(char *p)
1785 {
1786 	if (p && strstr(p, "debug"))
1787 		memblock_debug = 1;
1788 	return 0;
1789 }
1790 early_param("memblock", early_memblock);
1791 
1792 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1793 
1794 static int memblock_debug_show(struct seq_file *m, void *private)
1795 {
1796 	struct memblock_type *type = m->private;
1797 	struct memblock_region *reg;
1798 	int i;
1799 	phys_addr_t end;
1800 
1801 	for (i = 0; i < type->cnt; i++) {
1802 		reg = &type->regions[i];
1803 		end = reg->base + reg->size - 1;
1804 
1805 		seq_printf(m, "%4d: ", i);
1806 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1807 	}
1808 	return 0;
1809 }
1810 
1811 static int memblock_debug_open(struct inode *inode, struct file *file)
1812 {
1813 	return single_open(file, memblock_debug_show, inode->i_private);
1814 }
1815 
1816 static const struct file_operations memblock_debug_fops = {
1817 	.open = memblock_debug_open,
1818 	.read = seq_read,
1819 	.llseek = seq_lseek,
1820 	.release = single_release,
1821 };
1822 
1823 static int __init memblock_init_debugfs(void)
1824 {
1825 	struct dentry *root = debugfs_create_dir("memblock", NULL);
1826 	if (!root)
1827 		return -ENXIO;
1828 	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1829 	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1830 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1831 	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1832 #endif
1833 
1834 	return 0;
1835 }
1836 __initcall(memblock_init_debugfs);
1837 
1838 #endif /* CONFIG_DEBUG_FS */
1839