xref: /openbmc/linux/mm/memblock.c (revision e1f7c9ee)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22 
23 #include <asm-generic/sections.h>
24 #include <linux/io.h>
25 
26 #include "internal.h"
27 
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33 
34 struct memblock memblock __initdata_memblock = {
35 	.memory.regions		= memblock_memory_init_regions,
36 	.memory.cnt		= 1,	/* empty dummy entry */
37 	.memory.max		= INIT_MEMBLOCK_REGIONS,
38 
39 	.reserved.regions	= memblock_reserved_init_regions,
40 	.reserved.cnt		= 1,	/* empty dummy entry */
41 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
42 
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 	.physmem.regions	= memblock_physmem_init_regions,
45 	.physmem.cnt		= 1,	/* empty dummy entry */
46 	.physmem.max		= INIT_PHYSMEM_REGIONS,
47 #endif
48 
49 	.bottom_up		= false,
50 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
51 };
52 
53 int memblock_debug __initdata_memblock;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock = false;
56 #endif
57 static int memblock_can_resize __initdata_memblock;
58 static int memblock_memory_in_slab __initdata_memblock = 0;
59 static int memblock_reserved_in_slab __initdata_memblock = 0;
60 
61 /* inline so we don't get a warning when pr_debug is compiled out */
62 static __init_memblock const char *
63 memblock_type_name(struct memblock_type *type)
64 {
65 	if (type == &memblock.memory)
66 		return "memory";
67 	else if (type == &memblock.reserved)
68 		return "reserved";
69 	else
70 		return "unknown";
71 }
72 
73 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
74 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
75 {
76 	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
77 }
78 
79 /*
80  * Address comparison utilities
81  */
82 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
83 				       phys_addr_t base2, phys_addr_t size2)
84 {
85 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
86 }
87 
88 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
89 					phys_addr_t base, phys_addr_t size)
90 {
91 	unsigned long i;
92 
93 	for (i = 0; i < type->cnt; i++) {
94 		phys_addr_t rgnbase = type->regions[i].base;
95 		phys_addr_t rgnsize = type->regions[i].size;
96 		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
97 			break;
98 	}
99 
100 	return (i < type->cnt) ? i : -1;
101 }
102 
103 /*
104  * __memblock_find_range_bottom_up - find free area utility in bottom-up
105  * @start: start of candidate range
106  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
107  * @size: size of free area to find
108  * @align: alignment of free area to find
109  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
110  *
111  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
112  *
113  * RETURNS:
114  * Found address on success, 0 on failure.
115  */
116 static phys_addr_t __init_memblock
117 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
118 				phys_addr_t size, phys_addr_t align, int nid)
119 {
120 	phys_addr_t this_start, this_end, cand;
121 	u64 i;
122 
123 	for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) {
124 		this_start = clamp(this_start, start, end);
125 		this_end = clamp(this_end, start, end);
126 
127 		cand = round_up(this_start, align);
128 		if (cand < this_end && this_end - cand >= size)
129 			return cand;
130 	}
131 
132 	return 0;
133 }
134 
135 /**
136  * __memblock_find_range_top_down - find free area utility, in top-down
137  * @start: start of candidate range
138  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
139  * @size: size of free area to find
140  * @align: alignment of free area to find
141  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
142  *
143  * Utility called from memblock_find_in_range_node(), find free area top-down.
144  *
145  * RETURNS:
146  * Found address on success, 0 on failure.
147  */
148 static phys_addr_t __init_memblock
149 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
150 			       phys_addr_t size, phys_addr_t align, int nid)
151 {
152 	phys_addr_t this_start, this_end, cand;
153 	u64 i;
154 
155 	for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
156 		this_start = clamp(this_start, start, end);
157 		this_end = clamp(this_end, start, end);
158 
159 		if (this_end < size)
160 			continue;
161 
162 		cand = round_down(this_end - size, align);
163 		if (cand >= this_start)
164 			return cand;
165 	}
166 
167 	return 0;
168 }
169 
170 /**
171  * memblock_find_in_range_node - find free area in given range and node
172  * @size: size of free area to find
173  * @align: alignment of free area to find
174  * @start: start of candidate range
175  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
176  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
177  *
178  * Find @size free area aligned to @align in the specified range and node.
179  *
180  * When allocation direction is bottom-up, the @start should be greater
181  * than the end of the kernel image. Otherwise, it will be trimmed. The
182  * reason is that we want the bottom-up allocation just near the kernel
183  * image so it is highly likely that the allocated memory and the kernel
184  * will reside in the same node.
185  *
186  * If bottom-up allocation failed, will try to allocate memory top-down.
187  *
188  * RETURNS:
189  * Found address on success, 0 on failure.
190  */
191 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
192 					phys_addr_t align, phys_addr_t start,
193 					phys_addr_t end, int nid)
194 {
195 	phys_addr_t kernel_end, ret;
196 
197 	/* pump up @end */
198 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
199 		end = memblock.current_limit;
200 
201 	/* avoid allocating the first page */
202 	start = max_t(phys_addr_t, start, PAGE_SIZE);
203 	end = max(start, end);
204 	kernel_end = __pa_symbol(_end);
205 
206 	/*
207 	 * try bottom-up allocation only when bottom-up mode
208 	 * is set and @end is above the kernel image.
209 	 */
210 	if (memblock_bottom_up() && end > kernel_end) {
211 		phys_addr_t bottom_up_start;
212 
213 		/* make sure we will allocate above the kernel */
214 		bottom_up_start = max(start, kernel_end);
215 
216 		/* ok, try bottom-up allocation first */
217 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
218 						      size, align, nid);
219 		if (ret)
220 			return ret;
221 
222 		/*
223 		 * we always limit bottom-up allocation above the kernel,
224 		 * but top-down allocation doesn't have the limit, so
225 		 * retrying top-down allocation may succeed when bottom-up
226 		 * allocation failed.
227 		 *
228 		 * bottom-up allocation is expected to be fail very rarely,
229 		 * so we use WARN_ONCE() here to see the stack trace if
230 		 * fail happens.
231 		 */
232 		WARN_ONCE(1, "memblock: bottom-up allocation failed, "
233 			     "memory hotunplug may be affected\n");
234 	}
235 
236 	return __memblock_find_range_top_down(start, end, size, align, nid);
237 }
238 
239 /**
240  * memblock_find_in_range - find free area in given range
241  * @start: start of candidate range
242  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
243  * @size: size of free area to find
244  * @align: alignment of free area to find
245  *
246  * Find @size free area aligned to @align in the specified range.
247  *
248  * RETURNS:
249  * Found address on success, 0 on failure.
250  */
251 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
252 					phys_addr_t end, phys_addr_t size,
253 					phys_addr_t align)
254 {
255 	return memblock_find_in_range_node(size, align, start, end,
256 					    NUMA_NO_NODE);
257 }
258 
259 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
260 {
261 	type->total_size -= type->regions[r].size;
262 	memmove(&type->regions[r], &type->regions[r + 1],
263 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
264 	type->cnt--;
265 
266 	/* Special case for empty arrays */
267 	if (type->cnt == 0) {
268 		WARN_ON(type->total_size != 0);
269 		type->cnt = 1;
270 		type->regions[0].base = 0;
271 		type->regions[0].size = 0;
272 		type->regions[0].flags = 0;
273 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
274 	}
275 }
276 
277 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
278 
279 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
280 					phys_addr_t *addr)
281 {
282 	if (memblock.reserved.regions == memblock_reserved_init_regions)
283 		return 0;
284 
285 	*addr = __pa(memblock.reserved.regions);
286 
287 	return PAGE_ALIGN(sizeof(struct memblock_region) *
288 			  memblock.reserved.max);
289 }
290 
291 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
292 					phys_addr_t *addr)
293 {
294 	if (memblock.memory.regions == memblock_memory_init_regions)
295 		return 0;
296 
297 	*addr = __pa(memblock.memory.regions);
298 
299 	return PAGE_ALIGN(sizeof(struct memblock_region) *
300 			  memblock.memory.max);
301 }
302 
303 #endif
304 
305 /**
306  * memblock_double_array - double the size of the memblock regions array
307  * @type: memblock type of the regions array being doubled
308  * @new_area_start: starting address of memory range to avoid overlap with
309  * @new_area_size: size of memory range to avoid overlap with
310  *
311  * Double the size of the @type regions array. If memblock is being used to
312  * allocate memory for a new reserved regions array and there is a previously
313  * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
314  * waiting to be reserved, ensure the memory used by the new array does
315  * not overlap.
316  *
317  * RETURNS:
318  * 0 on success, -1 on failure.
319  */
320 static int __init_memblock memblock_double_array(struct memblock_type *type,
321 						phys_addr_t new_area_start,
322 						phys_addr_t new_area_size)
323 {
324 	struct memblock_region *new_array, *old_array;
325 	phys_addr_t old_alloc_size, new_alloc_size;
326 	phys_addr_t old_size, new_size, addr;
327 	int use_slab = slab_is_available();
328 	int *in_slab;
329 
330 	/* We don't allow resizing until we know about the reserved regions
331 	 * of memory that aren't suitable for allocation
332 	 */
333 	if (!memblock_can_resize)
334 		return -1;
335 
336 	/* Calculate new doubled size */
337 	old_size = type->max * sizeof(struct memblock_region);
338 	new_size = old_size << 1;
339 	/*
340 	 * We need to allocated new one align to PAGE_SIZE,
341 	 *   so we can free them completely later.
342 	 */
343 	old_alloc_size = PAGE_ALIGN(old_size);
344 	new_alloc_size = PAGE_ALIGN(new_size);
345 
346 	/* Retrieve the slab flag */
347 	if (type == &memblock.memory)
348 		in_slab = &memblock_memory_in_slab;
349 	else
350 		in_slab = &memblock_reserved_in_slab;
351 
352 	/* Try to find some space for it.
353 	 *
354 	 * WARNING: We assume that either slab_is_available() and we use it or
355 	 * we use MEMBLOCK for allocations. That means that this is unsafe to
356 	 * use when bootmem is currently active (unless bootmem itself is
357 	 * implemented on top of MEMBLOCK which isn't the case yet)
358 	 *
359 	 * This should however not be an issue for now, as we currently only
360 	 * call into MEMBLOCK while it's still active, or much later when slab
361 	 * is active for memory hotplug operations
362 	 */
363 	if (use_slab) {
364 		new_array = kmalloc(new_size, GFP_KERNEL);
365 		addr = new_array ? __pa(new_array) : 0;
366 	} else {
367 		/* only exclude range when trying to double reserved.regions */
368 		if (type != &memblock.reserved)
369 			new_area_start = new_area_size = 0;
370 
371 		addr = memblock_find_in_range(new_area_start + new_area_size,
372 						memblock.current_limit,
373 						new_alloc_size, PAGE_SIZE);
374 		if (!addr && new_area_size)
375 			addr = memblock_find_in_range(0,
376 				min(new_area_start, memblock.current_limit),
377 				new_alloc_size, PAGE_SIZE);
378 
379 		new_array = addr ? __va(addr) : NULL;
380 	}
381 	if (!addr) {
382 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
383 		       memblock_type_name(type), type->max, type->max * 2);
384 		return -1;
385 	}
386 
387 	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
388 			memblock_type_name(type), type->max * 2, (u64)addr,
389 			(u64)addr + new_size - 1);
390 
391 	/*
392 	 * Found space, we now need to move the array over before we add the
393 	 * reserved region since it may be our reserved array itself that is
394 	 * full.
395 	 */
396 	memcpy(new_array, type->regions, old_size);
397 	memset(new_array + type->max, 0, old_size);
398 	old_array = type->regions;
399 	type->regions = new_array;
400 	type->max <<= 1;
401 
402 	/* Free old array. We needn't free it if the array is the static one */
403 	if (*in_slab)
404 		kfree(old_array);
405 	else if (old_array != memblock_memory_init_regions &&
406 		 old_array != memblock_reserved_init_regions)
407 		memblock_free(__pa(old_array), old_alloc_size);
408 
409 	/*
410 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
411 	 * needn't do it
412 	 */
413 	if (!use_slab)
414 		BUG_ON(memblock_reserve(addr, new_alloc_size));
415 
416 	/* Update slab flag */
417 	*in_slab = use_slab;
418 
419 	return 0;
420 }
421 
422 /**
423  * memblock_merge_regions - merge neighboring compatible regions
424  * @type: memblock type to scan
425  *
426  * Scan @type and merge neighboring compatible regions.
427  */
428 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
429 {
430 	int i = 0;
431 
432 	/* cnt never goes below 1 */
433 	while (i < type->cnt - 1) {
434 		struct memblock_region *this = &type->regions[i];
435 		struct memblock_region *next = &type->regions[i + 1];
436 
437 		if (this->base + this->size != next->base ||
438 		    memblock_get_region_node(this) !=
439 		    memblock_get_region_node(next) ||
440 		    this->flags != next->flags) {
441 			BUG_ON(this->base + this->size > next->base);
442 			i++;
443 			continue;
444 		}
445 
446 		this->size += next->size;
447 		/* move forward from next + 1, index of which is i + 2 */
448 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
449 		type->cnt--;
450 	}
451 }
452 
453 /**
454  * memblock_insert_region - insert new memblock region
455  * @type:	memblock type to insert into
456  * @idx:	index for the insertion point
457  * @base:	base address of the new region
458  * @size:	size of the new region
459  * @nid:	node id of the new region
460  * @flags:	flags of the new region
461  *
462  * Insert new memblock region [@base,@base+@size) into @type at @idx.
463  * @type must already have extra room to accomodate the new region.
464  */
465 static void __init_memblock memblock_insert_region(struct memblock_type *type,
466 						   int idx, phys_addr_t base,
467 						   phys_addr_t size,
468 						   int nid, unsigned long flags)
469 {
470 	struct memblock_region *rgn = &type->regions[idx];
471 
472 	BUG_ON(type->cnt >= type->max);
473 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
474 	rgn->base = base;
475 	rgn->size = size;
476 	rgn->flags = flags;
477 	memblock_set_region_node(rgn, nid);
478 	type->cnt++;
479 	type->total_size += size;
480 }
481 
482 /**
483  * memblock_add_range - add new memblock region
484  * @type: memblock type to add new region into
485  * @base: base address of the new region
486  * @size: size of the new region
487  * @nid: nid of the new region
488  * @flags: flags of the new region
489  *
490  * Add new memblock region [@base,@base+@size) into @type.  The new region
491  * is allowed to overlap with existing ones - overlaps don't affect already
492  * existing regions.  @type is guaranteed to be minimal (all neighbouring
493  * compatible regions are merged) after the addition.
494  *
495  * RETURNS:
496  * 0 on success, -errno on failure.
497  */
498 int __init_memblock memblock_add_range(struct memblock_type *type,
499 				phys_addr_t base, phys_addr_t size,
500 				int nid, unsigned long flags)
501 {
502 	bool insert = false;
503 	phys_addr_t obase = base;
504 	phys_addr_t end = base + memblock_cap_size(base, &size);
505 	int i, nr_new;
506 
507 	if (!size)
508 		return 0;
509 
510 	/* special case for empty array */
511 	if (type->regions[0].size == 0) {
512 		WARN_ON(type->cnt != 1 || type->total_size);
513 		type->regions[0].base = base;
514 		type->regions[0].size = size;
515 		type->regions[0].flags = flags;
516 		memblock_set_region_node(&type->regions[0], nid);
517 		type->total_size = size;
518 		return 0;
519 	}
520 repeat:
521 	/*
522 	 * The following is executed twice.  Once with %false @insert and
523 	 * then with %true.  The first counts the number of regions needed
524 	 * to accomodate the new area.  The second actually inserts them.
525 	 */
526 	base = obase;
527 	nr_new = 0;
528 
529 	for (i = 0; i < type->cnt; i++) {
530 		struct memblock_region *rgn = &type->regions[i];
531 		phys_addr_t rbase = rgn->base;
532 		phys_addr_t rend = rbase + rgn->size;
533 
534 		if (rbase >= end)
535 			break;
536 		if (rend <= base)
537 			continue;
538 		/*
539 		 * @rgn overlaps.  If it separates the lower part of new
540 		 * area, insert that portion.
541 		 */
542 		if (rbase > base) {
543 			nr_new++;
544 			if (insert)
545 				memblock_insert_region(type, i++, base,
546 						       rbase - base, nid,
547 						       flags);
548 		}
549 		/* area below @rend is dealt with, forget about it */
550 		base = min(rend, end);
551 	}
552 
553 	/* insert the remaining portion */
554 	if (base < end) {
555 		nr_new++;
556 		if (insert)
557 			memblock_insert_region(type, i, base, end - base,
558 					       nid, flags);
559 	}
560 
561 	/*
562 	 * If this was the first round, resize array and repeat for actual
563 	 * insertions; otherwise, merge and return.
564 	 */
565 	if (!insert) {
566 		while (type->cnt + nr_new > type->max)
567 			if (memblock_double_array(type, obase, size) < 0)
568 				return -ENOMEM;
569 		insert = true;
570 		goto repeat;
571 	} else {
572 		memblock_merge_regions(type);
573 		return 0;
574 	}
575 }
576 
577 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
578 				       int nid)
579 {
580 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
581 }
582 
583 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
584 {
585 	return memblock_add_range(&memblock.memory, base, size,
586 				   MAX_NUMNODES, 0);
587 }
588 
589 /**
590  * memblock_isolate_range - isolate given range into disjoint memblocks
591  * @type: memblock type to isolate range for
592  * @base: base of range to isolate
593  * @size: size of range to isolate
594  * @start_rgn: out parameter for the start of isolated region
595  * @end_rgn: out parameter for the end of isolated region
596  *
597  * Walk @type and ensure that regions don't cross the boundaries defined by
598  * [@base,@base+@size).  Crossing regions are split at the boundaries,
599  * which may create at most two more regions.  The index of the first
600  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
601  *
602  * RETURNS:
603  * 0 on success, -errno on failure.
604  */
605 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
606 					phys_addr_t base, phys_addr_t size,
607 					int *start_rgn, int *end_rgn)
608 {
609 	phys_addr_t end = base + memblock_cap_size(base, &size);
610 	int i;
611 
612 	*start_rgn = *end_rgn = 0;
613 
614 	if (!size)
615 		return 0;
616 
617 	/* we'll create at most two more regions */
618 	while (type->cnt + 2 > type->max)
619 		if (memblock_double_array(type, base, size) < 0)
620 			return -ENOMEM;
621 
622 	for (i = 0; i < type->cnt; i++) {
623 		struct memblock_region *rgn = &type->regions[i];
624 		phys_addr_t rbase = rgn->base;
625 		phys_addr_t rend = rbase + rgn->size;
626 
627 		if (rbase >= end)
628 			break;
629 		if (rend <= base)
630 			continue;
631 
632 		if (rbase < base) {
633 			/*
634 			 * @rgn intersects from below.  Split and continue
635 			 * to process the next region - the new top half.
636 			 */
637 			rgn->base = base;
638 			rgn->size -= base - rbase;
639 			type->total_size -= base - rbase;
640 			memblock_insert_region(type, i, rbase, base - rbase,
641 					       memblock_get_region_node(rgn),
642 					       rgn->flags);
643 		} else if (rend > end) {
644 			/*
645 			 * @rgn intersects from above.  Split and redo the
646 			 * current region - the new bottom half.
647 			 */
648 			rgn->base = end;
649 			rgn->size -= end - rbase;
650 			type->total_size -= end - rbase;
651 			memblock_insert_region(type, i--, rbase, end - rbase,
652 					       memblock_get_region_node(rgn),
653 					       rgn->flags);
654 		} else {
655 			/* @rgn is fully contained, record it */
656 			if (!*end_rgn)
657 				*start_rgn = i;
658 			*end_rgn = i + 1;
659 		}
660 	}
661 
662 	return 0;
663 }
664 
665 int __init_memblock memblock_remove_range(struct memblock_type *type,
666 					  phys_addr_t base, phys_addr_t size)
667 {
668 	int start_rgn, end_rgn;
669 	int i, ret;
670 
671 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
672 	if (ret)
673 		return ret;
674 
675 	for (i = end_rgn - 1; i >= start_rgn; i--)
676 		memblock_remove_region(type, i);
677 	return 0;
678 }
679 
680 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
681 {
682 	return memblock_remove_range(&memblock.memory, base, size);
683 }
684 
685 
686 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
687 {
688 	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
689 		     (unsigned long long)base,
690 		     (unsigned long long)base + size - 1,
691 		     (void *)_RET_IP_);
692 
693 	kmemleak_free_part(__va(base), size);
694 	return memblock_remove_range(&memblock.reserved, base, size);
695 }
696 
697 static int __init_memblock memblock_reserve_region(phys_addr_t base,
698 						   phys_addr_t size,
699 						   int nid,
700 						   unsigned long flags)
701 {
702 	struct memblock_type *_rgn = &memblock.reserved;
703 
704 	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
705 		     (unsigned long long)base,
706 		     (unsigned long long)base + size - 1,
707 		     flags, (void *)_RET_IP_);
708 
709 	return memblock_add_range(_rgn, base, size, nid, flags);
710 }
711 
712 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
713 {
714 	return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
715 }
716 
717 /**
718  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
719  * @base: the base phys addr of the region
720  * @size: the size of the region
721  *
722  * This function isolates region [@base, @base + @size), and mark it with flag
723  * MEMBLOCK_HOTPLUG.
724  *
725  * Return 0 on succees, -errno on failure.
726  */
727 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
728 {
729 	struct memblock_type *type = &memblock.memory;
730 	int i, ret, start_rgn, end_rgn;
731 
732 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
733 	if (ret)
734 		return ret;
735 
736 	for (i = start_rgn; i < end_rgn; i++)
737 		memblock_set_region_flags(&type->regions[i], MEMBLOCK_HOTPLUG);
738 
739 	memblock_merge_regions(type);
740 	return 0;
741 }
742 
743 /**
744  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
745  * @base: the base phys addr of the region
746  * @size: the size of the region
747  *
748  * This function isolates region [@base, @base + @size), and clear flag
749  * MEMBLOCK_HOTPLUG for the isolated regions.
750  *
751  * Return 0 on succees, -errno on failure.
752  */
753 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
754 {
755 	struct memblock_type *type = &memblock.memory;
756 	int i, ret, start_rgn, end_rgn;
757 
758 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
759 	if (ret)
760 		return ret;
761 
762 	for (i = start_rgn; i < end_rgn; i++)
763 		memblock_clear_region_flags(&type->regions[i],
764 					    MEMBLOCK_HOTPLUG);
765 
766 	memblock_merge_regions(type);
767 	return 0;
768 }
769 
770 /**
771  * __next__mem_range - next function for for_each_free_mem_range() etc.
772  * @idx: pointer to u64 loop variable
773  * @nid: node selector, %NUMA_NO_NODE for all nodes
774  * @type_a: pointer to memblock_type from where the range is taken
775  * @type_b: pointer to memblock_type which excludes memory from being taken
776  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
777  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
778  * @out_nid: ptr to int for nid of the range, can be %NULL
779  *
780  * Find the first area from *@idx which matches @nid, fill the out
781  * parameters, and update *@idx for the next iteration.  The lower 32bit of
782  * *@idx contains index into type_a and the upper 32bit indexes the
783  * areas before each region in type_b.	For example, if type_b regions
784  * look like the following,
785  *
786  *	0:[0-16), 1:[32-48), 2:[128-130)
787  *
788  * The upper 32bit indexes the following regions.
789  *
790  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
791  *
792  * As both region arrays are sorted, the function advances the two indices
793  * in lockstep and returns each intersection.
794  */
795 void __init_memblock __next_mem_range(u64 *idx, int nid,
796 				      struct memblock_type *type_a,
797 				      struct memblock_type *type_b,
798 				      phys_addr_t *out_start,
799 				      phys_addr_t *out_end, int *out_nid)
800 {
801 	int idx_a = *idx & 0xffffffff;
802 	int idx_b = *idx >> 32;
803 
804 	if (WARN_ONCE(nid == MAX_NUMNODES,
805 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
806 		nid = NUMA_NO_NODE;
807 
808 	for (; idx_a < type_a->cnt; idx_a++) {
809 		struct memblock_region *m = &type_a->regions[idx_a];
810 
811 		phys_addr_t m_start = m->base;
812 		phys_addr_t m_end = m->base + m->size;
813 		int	    m_nid = memblock_get_region_node(m);
814 
815 		/* only memory regions are associated with nodes, check it */
816 		if (nid != NUMA_NO_NODE && nid != m_nid)
817 			continue;
818 
819 		/* skip hotpluggable memory regions if needed */
820 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
821 			continue;
822 
823 		if (!type_b) {
824 			if (out_start)
825 				*out_start = m_start;
826 			if (out_end)
827 				*out_end = m_end;
828 			if (out_nid)
829 				*out_nid = m_nid;
830 			idx_a++;
831 			*idx = (u32)idx_a | (u64)idx_b << 32;
832 			return;
833 		}
834 
835 		/* scan areas before each reservation */
836 		for (; idx_b < type_b->cnt + 1; idx_b++) {
837 			struct memblock_region *r;
838 			phys_addr_t r_start;
839 			phys_addr_t r_end;
840 
841 			r = &type_b->regions[idx_b];
842 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
843 			r_end = idx_b < type_b->cnt ?
844 				r->base : ULLONG_MAX;
845 
846 			/*
847 			 * if idx_b advanced past idx_a,
848 			 * break out to advance idx_a
849 			 */
850 			if (r_start >= m_end)
851 				break;
852 			/* if the two regions intersect, we're done */
853 			if (m_start < r_end) {
854 				if (out_start)
855 					*out_start =
856 						max(m_start, r_start);
857 				if (out_end)
858 					*out_end = min(m_end, r_end);
859 				if (out_nid)
860 					*out_nid = m_nid;
861 				/*
862 				 * The region which ends first is
863 				 * advanced for the next iteration.
864 				 */
865 				if (m_end <= r_end)
866 					idx_a++;
867 				else
868 					idx_b++;
869 				*idx = (u32)idx_a | (u64)idx_b << 32;
870 				return;
871 			}
872 		}
873 	}
874 
875 	/* signal end of iteration */
876 	*idx = ULLONG_MAX;
877 }
878 
879 /**
880  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
881  *
882  * Finds the next range from type_a which is not marked as unsuitable
883  * in type_b.
884  *
885  * @idx: pointer to u64 loop variable
886  * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
887  * @type_a: pointer to memblock_type from where the range is taken
888  * @type_b: pointer to memblock_type which excludes memory from being taken
889  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
890  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
891  * @out_nid: ptr to int for nid of the range, can be %NULL
892  *
893  * Reverse of __next_mem_range().
894  */
895 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
896 					  struct memblock_type *type_a,
897 					  struct memblock_type *type_b,
898 					  phys_addr_t *out_start,
899 					  phys_addr_t *out_end, int *out_nid)
900 {
901 	int idx_a = *idx & 0xffffffff;
902 	int idx_b = *idx >> 32;
903 
904 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
905 		nid = NUMA_NO_NODE;
906 
907 	if (*idx == (u64)ULLONG_MAX) {
908 		idx_a = type_a->cnt - 1;
909 		idx_b = type_b->cnt;
910 	}
911 
912 	for (; idx_a >= 0; idx_a--) {
913 		struct memblock_region *m = &type_a->regions[idx_a];
914 
915 		phys_addr_t m_start = m->base;
916 		phys_addr_t m_end = m->base + m->size;
917 		int m_nid = memblock_get_region_node(m);
918 
919 		/* only memory regions are associated with nodes, check it */
920 		if (nid != NUMA_NO_NODE && nid != m_nid)
921 			continue;
922 
923 		/* skip hotpluggable memory regions if needed */
924 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
925 			continue;
926 
927 		if (!type_b) {
928 			if (out_start)
929 				*out_start = m_start;
930 			if (out_end)
931 				*out_end = m_end;
932 			if (out_nid)
933 				*out_nid = m_nid;
934 			idx_a++;
935 			*idx = (u32)idx_a | (u64)idx_b << 32;
936 			return;
937 		}
938 
939 		/* scan areas before each reservation */
940 		for (; idx_b >= 0; idx_b--) {
941 			struct memblock_region *r;
942 			phys_addr_t r_start;
943 			phys_addr_t r_end;
944 
945 			r = &type_b->regions[idx_b];
946 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
947 			r_end = idx_b < type_b->cnt ?
948 				r->base : ULLONG_MAX;
949 			/*
950 			 * if idx_b advanced past idx_a,
951 			 * break out to advance idx_a
952 			 */
953 
954 			if (r_end <= m_start)
955 				break;
956 			/* if the two regions intersect, we're done */
957 			if (m_end > r_start) {
958 				if (out_start)
959 					*out_start = max(m_start, r_start);
960 				if (out_end)
961 					*out_end = min(m_end, r_end);
962 				if (out_nid)
963 					*out_nid = m_nid;
964 				if (m_start >= r_start)
965 					idx_a--;
966 				else
967 					idx_b--;
968 				*idx = (u32)idx_a | (u64)idx_b << 32;
969 				return;
970 			}
971 		}
972 	}
973 	/* signal end of iteration */
974 	*idx = ULLONG_MAX;
975 }
976 
977 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
978 /*
979  * Common iterator interface used to define for_each_mem_range().
980  */
981 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
982 				unsigned long *out_start_pfn,
983 				unsigned long *out_end_pfn, int *out_nid)
984 {
985 	struct memblock_type *type = &memblock.memory;
986 	struct memblock_region *r;
987 
988 	while (++*idx < type->cnt) {
989 		r = &type->regions[*idx];
990 
991 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
992 			continue;
993 		if (nid == MAX_NUMNODES || nid == r->nid)
994 			break;
995 	}
996 	if (*idx >= type->cnt) {
997 		*idx = -1;
998 		return;
999 	}
1000 
1001 	if (out_start_pfn)
1002 		*out_start_pfn = PFN_UP(r->base);
1003 	if (out_end_pfn)
1004 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1005 	if (out_nid)
1006 		*out_nid = r->nid;
1007 }
1008 
1009 /**
1010  * memblock_set_node - set node ID on memblock regions
1011  * @base: base of area to set node ID for
1012  * @size: size of area to set node ID for
1013  * @type: memblock type to set node ID for
1014  * @nid: node ID to set
1015  *
1016  * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1017  * Regions which cross the area boundaries are split as necessary.
1018  *
1019  * RETURNS:
1020  * 0 on success, -errno on failure.
1021  */
1022 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1023 				      struct memblock_type *type, int nid)
1024 {
1025 	int start_rgn, end_rgn;
1026 	int i, ret;
1027 
1028 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1029 	if (ret)
1030 		return ret;
1031 
1032 	for (i = start_rgn; i < end_rgn; i++)
1033 		memblock_set_region_node(&type->regions[i], nid);
1034 
1035 	memblock_merge_regions(type);
1036 	return 0;
1037 }
1038 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1039 
1040 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1041 					phys_addr_t align, phys_addr_t start,
1042 					phys_addr_t end, int nid)
1043 {
1044 	phys_addr_t found;
1045 
1046 	if (!align)
1047 		align = SMP_CACHE_BYTES;
1048 
1049 	found = memblock_find_in_range_node(size, align, start, end, nid);
1050 	if (found && !memblock_reserve(found, size)) {
1051 		/*
1052 		 * The min_count is set to 0 so that memblock allocations are
1053 		 * never reported as leaks.
1054 		 */
1055 		kmemleak_alloc(__va(found), size, 0, 0);
1056 		return found;
1057 	}
1058 	return 0;
1059 }
1060 
1061 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1062 					phys_addr_t start, phys_addr_t end)
1063 {
1064 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE);
1065 }
1066 
1067 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1068 					phys_addr_t align, phys_addr_t max_addr,
1069 					int nid)
1070 {
1071 	return memblock_alloc_range_nid(size, align, 0, max_addr, nid);
1072 }
1073 
1074 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1075 {
1076 	return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
1077 }
1078 
1079 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1080 {
1081 	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE);
1082 }
1083 
1084 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1085 {
1086 	phys_addr_t alloc;
1087 
1088 	alloc = __memblock_alloc_base(size, align, max_addr);
1089 
1090 	if (alloc == 0)
1091 		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1092 		      (unsigned long long) size, (unsigned long long) max_addr);
1093 
1094 	return alloc;
1095 }
1096 
1097 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1098 {
1099 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1100 }
1101 
1102 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1103 {
1104 	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1105 
1106 	if (res)
1107 		return res;
1108 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1109 }
1110 
1111 /**
1112  * memblock_virt_alloc_internal - allocate boot memory block
1113  * @size: size of memory block to be allocated in bytes
1114  * @align: alignment of the region and block's size
1115  * @min_addr: the lower bound of the memory region to allocate (phys address)
1116  * @max_addr: the upper bound of the memory region to allocate (phys address)
1117  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1118  *
1119  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1120  * will fall back to memory below @min_addr. Also, allocation may fall back
1121  * to any node in the system if the specified node can not
1122  * hold the requested memory.
1123  *
1124  * The allocation is performed from memory region limited by
1125  * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1126  *
1127  * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1128  *
1129  * The phys address of allocated boot memory block is converted to virtual and
1130  * allocated memory is reset to 0.
1131  *
1132  * In addition, function sets the min_count to 0 using kmemleak_alloc for
1133  * allocated boot memory block, so that it is never reported as leaks.
1134  *
1135  * RETURNS:
1136  * Virtual address of allocated memory block on success, NULL on failure.
1137  */
1138 static void * __init memblock_virt_alloc_internal(
1139 				phys_addr_t size, phys_addr_t align,
1140 				phys_addr_t min_addr, phys_addr_t max_addr,
1141 				int nid)
1142 {
1143 	phys_addr_t alloc;
1144 	void *ptr;
1145 
1146 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1147 		nid = NUMA_NO_NODE;
1148 
1149 	/*
1150 	 * Detect any accidental use of these APIs after slab is ready, as at
1151 	 * this moment memblock may be deinitialized already and its
1152 	 * internal data may be destroyed (after execution of free_all_bootmem)
1153 	 */
1154 	if (WARN_ON_ONCE(slab_is_available()))
1155 		return kzalloc_node(size, GFP_NOWAIT, nid);
1156 
1157 	if (!align)
1158 		align = SMP_CACHE_BYTES;
1159 
1160 	if (max_addr > memblock.current_limit)
1161 		max_addr = memblock.current_limit;
1162 
1163 again:
1164 	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1165 					    nid);
1166 	if (alloc)
1167 		goto done;
1168 
1169 	if (nid != NUMA_NO_NODE) {
1170 		alloc = memblock_find_in_range_node(size, align, min_addr,
1171 						    max_addr,  NUMA_NO_NODE);
1172 		if (alloc)
1173 			goto done;
1174 	}
1175 
1176 	if (min_addr) {
1177 		min_addr = 0;
1178 		goto again;
1179 	} else {
1180 		goto error;
1181 	}
1182 
1183 done:
1184 	memblock_reserve(alloc, size);
1185 	ptr = phys_to_virt(alloc);
1186 	memset(ptr, 0, size);
1187 
1188 	/*
1189 	 * The min_count is set to 0 so that bootmem allocated blocks
1190 	 * are never reported as leaks. This is because many of these blocks
1191 	 * are only referred via the physical address which is not
1192 	 * looked up by kmemleak.
1193 	 */
1194 	kmemleak_alloc(ptr, size, 0, 0);
1195 
1196 	return ptr;
1197 
1198 error:
1199 	return NULL;
1200 }
1201 
1202 /**
1203  * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1204  * @size: size of memory block to be allocated in bytes
1205  * @align: alignment of the region and block's size
1206  * @min_addr: the lower bound of the memory region from where the allocation
1207  *	  is preferred (phys address)
1208  * @max_addr: the upper bound of the memory region from where the allocation
1209  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1210  *	      allocate only from memory limited by memblock.current_limit value
1211  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1212  *
1213  * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1214  * additional debug information (including caller info), if enabled.
1215  *
1216  * RETURNS:
1217  * Virtual address of allocated memory block on success, NULL on failure.
1218  */
1219 void * __init memblock_virt_alloc_try_nid_nopanic(
1220 				phys_addr_t size, phys_addr_t align,
1221 				phys_addr_t min_addr, phys_addr_t max_addr,
1222 				int nid)
1223 {
1224 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1225 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1226 		     (u64)max_addr, (void *)_RET_IP_);
1227 	return memblock_virt_alloc_internal(size, align, min_addr,
1228 					     max_addr, nid);
1229 }
1230 
1231 /**
1232  * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1233  * @size: size of memory block to be allocated in bytes
1234  * @align: alignment of the region and block's size
1235  * @min_addr: the lower bound of the memory region from where the allocation
1236  *	  is preferred (phys address)
1237  * @max_addr: the upper bound of the memory region from where the allocation
1238  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1239  *	      allocate only from memory limited by memblock.current_limit value
1240  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1241  *
1242  * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1243  * which provides debug information (including caller info), if enabled,
1244  * and panics if the request can not be satisfied.
1245  *
1246  * RETURNS:
1247  * Virtual address of allocated memory block on success, NULL on failure.
1248  */
1249 void * __init memblock_virt_alloc_try_nid(
1250 			phys_addr_t size, phys_addr_t align,
1251 			phys_addr_t min_addr, phys_addr_t max_addr,
1252 			int nid)
1253 {
1254 	void *ptr;
1255 
1256 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1257 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1258 		     (u64)max_addr, (void *)_RET_IP_);
1259 	ptr = memblock_virt_alloc_internal(size, align,
1260 					   min_addr, max_addr, nid);
1261 	if (ptr)
1262 		return ptr;
1263 
1264 	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1265 	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1266 	      (u64)max_addr);
1267 	return NULL;
1268 }
1269 
1270 /**
1271  * __memblock_free_early - free boot memory block
1272  * @base: phys starting address of the  boot memory block
1273  * @size: size of the boot memory block in bytes
1274  *
1275  * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1276  * The freeing memory will not be released to the buddy allocator.
1277  */
1278 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1279 {
1280 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1281 		     __func__, (u64)base, (u64)base + size - 1,
1282 		     (void *)_RET_IP_);
1283 	kmemleak_free_part(__va(base), size);
1284 	memblock_remove_range(&memblock.reserved, base, size);
1285 }
1286 
1287 /*
1288  * __memblock_free_late - free bootmem block pages directly to buddy allocator
1289  * @addr: phys starting address of the  boot memory block
1290  * @size: size of the boot memory block in bytes
1291  *
1292  * This is only useful when the bootmem allocator has already been torn
1293  * down, but we are still initializing the system.  Pages are released directly
1294  * to the buddy allocator, no bootmem metadata is updated because it is gone.
1295  */
1296 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1297 {
1298 	u64 cursor, end;
1299 
1300 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1301 		     __func__, (u64)base, (u64)base + size - 1,
1302 		     (void *)_RET_IP_);
1303 	kmemleak_free_part(__va(base), size);
1304 	cursor = PFN_UP(base);
1305 	end = PFN_DOWN(base + size);
1306 
1307 	for (; cursor < end; cursor++) {
1308 		__free_pages_bootmem(pfn_to_page(cursor), 0);
1309 		totalram_pages++;
1310 	}
1311 }
1312 
1313 /*
1314  * Remaining API functions
1315  */
1316 
1317 phys_addr_t __init memblock_phys_mem_size(void)
1318 {
1319 	return memblock.memory.total_size;
1320 }
1321 
1322 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1323 {
1324 	unsigned long pages = 0;
1325 	struct memblock_region *r;
1326 	unsigned long start_pfn, end_pfn;
1327 
1328 	for_each_memblock(memory, r) {
1329 		start_pfn = memblock_region_memory_base_pfn(r);
1330 		end_pfn = memblock_region_memory_end_pfn(r);
1331 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1332 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1333 		pages += end_pfn - start_pfn;
1334 	}
1335 
1336 	return PFN_PHYS(pages);
1337 }
1338 
1339 /* lowest address */
1340 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1341 {
1342 	return memblock.memory.regions[0].base;
1343 }
1344 
1345 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1346 {
1347 	int idx = memblock.memory.cnt - 1;
1348 
1349 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1350 }
1351 
1352 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1353 {
1354 	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1355 	struct memblock_region *r;
1356 
1357 	if (!limit)
1358 		return;
1359 
1360 	/* find out max address */
1361 	for_each_memblock(memory, r) {
1362 		if (limit <= r->size) {
1363 			max_addr = r->base + limit;
1364 			break;
1365 		}
1366 		limit -= r->size;
1367 	}
1368 
1369 	/* truncate both memory and reserved regions */
1370 	memblock_remove_range(&memblock.memory, max_addr,
1371 			      (phys_addr_t)ULLONG_MAX);
1372 	memblock_remove_range(&memblock.reserved, max_addr,
1373 			      (phys_addr_t)ULLONG_MAX);
1374 }
1375 
1376 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1377 {
1378 	unsigned int left = 0, right = type->cnt;
1379 
1380 	do {
1381 		unsigned int mid = (right + left) / 2;
1382 
1383 		if (addr < type->regions[mid].base)
1384 			right = mid;
1385 		else if (addr >= (type->regions[mid].base +
1386 				  type->regions[mid].size))
1387 			left = mid + 1;
1388 		else
1389 			return mid;
1390 	} while (left < right);
1391 	return -1;
1392 }
1393 
1394 int __init memblock_is_reserved(phys_addr_t addr)
1395 {
1396 	return memblock_search(&memblock.reserved, addr) != -1;
1397 }
1398 
1399 int __init_memblock memblock_is_memory(phys_addr_t addr)
1400 {
1401 	return memblock_search(&memblock.memory, addr) != -1;
1402 }
1403 
1404 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1405 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1406 			 unsigned long *start_pfn, unsigned long *end_pfn)
1407 {
1408 	struct memblock_type *type = &memblock.memory;
1409 	int mid = memblock_search(type, PFN_PHYS(pfn));
1410 
1411 	if (mid == -1)
1412 		return -1;
1413 
1414 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1415 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1416 
1417 	return type->regions[mid].nid;
1418 }
1419 #endif
1420 
1421 /**
1422  * memblock_is_region_memory - check if a region is a subset of memory
1423  * @base: base of region to check
1424  * @size: size of region to check
1425  *
1426  * Check if the region [@base, @base+@size) is a subset of a memory block.
1427  *
1428  * RETURNS:
1429  * 0 if false, non-zero if true
1430  */
1431 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1432 {
1433 	int idx = memblock_search(&memblock.memory, base);
1434 	phys_addr_t end = base + memblock_cap_size(base, &size);
1435 
1436 	if (idx == -1)
1437 		return 0;
1438 	return memblock.memory.regions[idx].base <= base &&
1439 		(memblock.memory.regions[idx].base +
1440 		 memblock.memory.regions[idx].size) >= end;
1441 }
1442 
1443 /**
1444  * memblock_is_region_reserved - check if a region intersects reserved memory
1445  * @base: base of region to check
1446  * @size: size of region to check
1447  *
1448  * Check if the region [@base, @base+@size) intersects a reserved memory block.
1449  *
1450  * RETURNS:
1451  * 0 if false, non-zero if true
1452  */
1453 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1454 {
1455 	memblock_cap_size(base, &size);
1456 	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
1457 }
1458 
1459 void __init_memblock memblock_trim_memory(phys_addr_t align)
1460 {
1461 	phys_addr_t start, end, orig_start, orig_end;
1462 	struct memblock_region *r;
1463 
1464 	for_each_memblock(memory, r) {
1465 		orig_start = r->base;
1466 		orig_end = r->base + r->size;
1467 		start = round_up(orig_start, align);
1468 		end = round_down(orig_end, align);
1469 
1470 		if (start == orig_start && end == orig_end)
1471 			continue;
1472 
1473 		if (start < end) {
1474 			r->base = start;
1475 			r->size = end - start;
1476 		} else {
1477 			memblock_remove_region(&memblock.memory,
1478 					       r - memblock.memory.regions);
1479 			r--;
1480 		}
1481 	}
1482 }
1483 
1484 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1485 {
1486 	memblock.current_limit = limit;
1487 }
1488 
1489 phys_addr_t __init_memblock memblock_get_current_limit(void)
1490 {
1491 	return memblock.current_limit;
1492 }
1493 
1494 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1495 {
1496 	unsigned long long base, size;
1497 	unsigned long flags;
1498 	int i;
1499 
1500 	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
1501 
1502 	for (i = 0; i < type->cnt; i++) {
1503 		struct memblock_region *rgn = &type->regions[i];
1504 		char nid_buf[32] = "";
1505 
1506 		base = rgn->base;
1507 		size = rgn->size;
1508 		flags = rgn->flags;
1509 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1510 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1511 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1512 				 memblock_get_region_node(rgn));
1513 #endif
1514 		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1515 			name, i, base, base + size - 1, size, nid_buf, flags);
1516 	}
1517 }
1518 
1519 void __init_memblock __memblock_dump_all(void)
1520 {
1521 	pr_info("MEMBLOCK configuration:\n");
1522 	pr_info(" memory size = %#llx reserved size = %#llx\n",
1523 		(unsigned long long)memblock.memory.total_size,
1524 		(unsigned long long)memblock.reserved.total_size);
1525 
1526 	memblock_dump(&memblock.memory, "memory");
1527 	memblock_dump(&memblock.reserved, "reserved");
1528 }
1529 
1530 void __init memblock_allow_resize(void)
1531 {
1532 	memblock_can_resize = 1;
1533 }
1534 
1535 static int __init early_memblock(char *p)
1536 {
1537 	if (p && strstr(p, "debug"))
1538 		memblock_debug = 1;
1539 	return 0;
1540 }
1541 early_param("memblock", early_memblock);
1542 
1543 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1544 
1545 static int memblock_debug_show(struct seq_file *m, void *private)
1546 {
1547 	struct memblock_type *type = m->private;
1548 	struct memblock_region *reg;
1549 	int i;
1550 
1551 	for (i = 0; i < type->cnt; i++) {
1552 		reg = &type->regions[i];
1553 		seq_printf(m, "%4d: ", i);
1554 		if (sizeof(phys_addr_t) == 4)
1555 			seq_printf(m, "0x%08lx..0x%08lx\n",
1556 				   (unsigned long)reg->base,
1557 				   (unsigned long)(reg->base + reg->size - 1));
1558 		else
1559 			seq_printf(m, "0x%016llx..0x%016llx\n",
1560 				   (unsigned long long)reg->base,
1561 				   (unsigned long long)(reg->base + reg->size - 1));
1562 
1563 	}
1564 	return 0;
1565 }
1566 
1567 static int memblock_debug_open(struct inode *inode, struct file *file)
1568 {
1569 	return single_open(file, memblock_debug_show, inode->i_private);
1570 }
1571 
1572 static const struct file_operations memblock_debug_fops = {
1573 	.open = memblock_debug_open,
1574 	.read = seq_read,
1575 	.llseek = seq_lseek,
1576 	.release = single_release,
1577 };
1578 
1579 static int __init memblock_init_debugfs(void)
1580 {
1581 	struct dentry *root = debugfs_create_dir("memblock", NULL);
1582 	if (!root)
1583 		return -ENXIO;
1584 	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1585 	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1586 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1587 	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1588 #endif
1589 
1590 	return 0;
1591 }
1592 __initcall(memblock_init_debugfs);
1593 
1594 #endif /* CONFIG_DEBUG_FS */
1595