1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for maintaining information about logical memory blocks. 4 * 5 * Peter Bergner, IBM Corp. June 2001. 6 * Copyright (C) 2001 Peter Bergner. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/init.h> 12 #include <linux/bitops.h> 13 #include <linux/poison.h> 14 #include <linux/pfn.h> 15 #include <linux/debugfs.h> 16 #include <linux/kmemleak.h> 17 #include <linux/seq_file.h> 18 #include <linux/memblock.h> 19 20 #include <asm/sections.h> 21 #include <linux/io.h> 22 23 #include "internal.h" 24 25 #define INIT_MEMBLOCK_REGIONS 128 26 #define INIT_PHYSMEM_REGIONS 4 27 28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS 29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS 30 #endif 31 32 /** 33 * DOC: memblock overview 34 * 35 * Memblock is a method of managing memory regions during the early 36 * boot period when the usual kernel memory allocators are not up and 37 * running. 38 * 39 * Memblock views the system memory as collections of contiguous 40 * regions. There are several types of these collections: 41 * 42 * * ``memory`` - describes the physical memory available to the 43 * kernel; this may differ from the actual physical memory installed 44 * in the system, for instance when the memory is restricted with 45 * ``mem=`` command line parameter 46 * * ``reserved`` - describes the regions that were allocated 47 * * ``physmap`` - describes the actual physical memory regardless of 48 * the possible restrictions; the ``physmap`` type is only available 49 * on some architectures. 50 * 51 * Each region is represented by :c:type:`struct memblock_region` that 52 * defines the region extents, its attributes and NUMA node id on NUMA 53 * systems. Every memory type is described by the :c:type:`struct 54 * memblock_type` which contains an array of memory regions along with 55 * the allocator metadata. The memory types are nicely wrapped with 56 * :c:type:`struct memblock`. This structure is statically initialzed 57 * at build time. The region arrays for the "memory" and "reserved" 58 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the 59 * "physmap" type to %INIT_PHYSMEM_REGIONS. 60 * The :c:func:`memblock_allow_resize` enables automatic resizing of 61 * the region arrays during addition of new regions. This feature 62 * should be used with care so that memory allocated for the region 63 * array will not overlap with areas that should be reserved, for 64 * example initrd. 65 * 66 * The early architecture setup should tell memblock what the physical 67 * memory layout is by using :c:func:`memblock_add` or 68 * :c:func:`memblock_add_node` functions. The first function does not 69 * assign the region to a NUMA node and it is appropriate for UMA 70 * systems. Yet, it is possible to use it on NUMA systems as well and 71 * assign the region to a NUMA node later in the setup process using 72 * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node` 73 * performs such an assignment directly. 74 * 75 * Once memblock is setup the memory can be allocated using one of the 76 * API variants: 77 * 78 * * :c:func:`memblock_phys_alloc*` - these functions return the 79 * **physical** address of the allocated memory 80 * * :c:func:`memblock_alloc*` - these functions return the **virtual** 81 * address of the allocated memory. 82 * 83 * Note, that both API variants use implict assumptions about allowed 84 * memory ranges and the fallback methods. Consult the documentation 85 * of :c:func:`memblock_alloc_internal` and 86 * :c:func:`memblock_alloc_range_nid` functions for more elaboarte 87 * description. 88 * 89 * As the system boot progresses, the architecture specific 90 * :c:func:`mem_init` function frees all the memory to the buddy page 91 * allocator. 92 * 93 * Unless an architecure enables %CONFIG_ARCH_KEEP_MEMBLOCK, the 94 * memblock data structures will be discarded after the system 95 * initialization compltes. 96 */ 97 98 #ifndef CONFIG_NEED_MULTIPLE_NODES 99 struct pglist_data __refdata contig_page_data; 100 EXPORT_SYMBOL(contig_page_data); 101 #endif 102 103 unsigned long max_low_pfn; 104 unsigned long min_low_pfn; 105 unsigned long max_pfn; 106 unsigned long long max_possible_pfn; 107 108 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 109 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; 110 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 111 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock; 112 #endif 113 114 struct memblock memblock __initdata_memblock = { 115 .memory.regions = memblock_memory_init_regions, 116 .memory.cnt = 1, /* empty dummy entry */ 117 .memory.max = INIT_MEMBLOCK_REGIONS, 118 .memory.name = "memory", 119 120 .reserved.regions = memblock_reserved_init_regions, 121 .reserved.cnt = 1, /* empty dummy entry */ 122 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, 123 .reserved.name = "reserved", 124 125 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 126 .physmem.regions = memblock_physmem_init_regions, 127 .physmem.cnt = 1, /* empty dummy entry */ 128 .physmem.max = INIT_PHYSMEM_REGIONS, 129 .physmem.name = "physmem", 130 #endif 131 132 .bottom_up = false, 133 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 134 }; 135 136 int memblock_debug __initdata_memblock; 137 static bool system_has_some_mirror __initdata_memblock = false; 138 static int memblock_can_resize __initdata_memblock; 139 static int memblock_memory_in_slab __initdata_memblock = 0; 140 static int memblock_reserved_in_slab __initdata_memblock = 0; 141 142 static enum memblock_flags __init_memblock choose_memblock_flags(void) 143 { 144 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 145 } 146 147 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 148 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 149 { 150 return *size = min(*size, PHYS_ADDR_MAX - base); 151 } 152 153 /* 154 * Address comparison utilities 155 */ 156 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 157 phys_addr_t base2, phys_addr_t size2) 158 { 159 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 160 } 161 162 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 163 phys_addr_t base, phys_addr_t size) 164 { 165 unsigned long i; 166 167 for (i = 0; i < type->cnt; i++) 168 if (memblock_addrs_overlap(base, size, type->regions[i].base, 169 type->regions[i].size)) 170 break; 171 return i < type->cnt; 172 } 173 174 /** 175 * __memblock_find_range_bottom_up - find free area utility in bottom-up 176 * @start: start of candidate range 177 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 178 * %MEMBLOCK_ALLOC_ACCESSIBLE 179 * @size: size of free area to find 180 * @align: alignment of free area to find 181 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 182 * @flags: pick from blocks based on memory attributes 183 * 184 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 185 * 186 * Return: 187 * Found address on success, 0 on failure. 188 */ 189 static phys_addr_t __init_memblock 190 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 191 phys_addr_t size, phys_addr_t align, int nid, 192 enum memblock_flags flags) 193 { 194 phys_addr_t this_start, this_end, cand; 195 u64 i; 196 197 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 198 this_start = clamp(this_start, start, end); 199 this_end = clamp(this_end, start, end); 200 201 cand = round_up(this_start, align); 202 if (cand < this_end && this_end - cand >= size) 203 return cand; 204 } 205 206 return 0; 207 } 208 209 /** 210 * __memblock_find_range_top_down - find free area utility, in top-down 211 * @start: start of candidate range 212 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 213 * %MEMBLOCK_ALLOC_ACCESSIBLE 214 * @size: size of free area to find 215 * @align: alignment of free area to find 216 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 217 * @flags: pick from blocks based on memory attributes 218 * 219 * Utility called from memblock_find_in_range_node(), find free area top-down. 220 * 221 * Return: 222 * Found address on success, 0 on failure. 223 */ 224 static phys_addr_t __init_memblock 225 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 226 phys_addr_t size, phys_addr_t align, int nid, 227 enum memblock_flags flags) 228 { 229 phys_addr_t this_start, this_end, cand; 230 u64 i; 231 232 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 233 NULL) { 234 this_start = clamp(this_start, start, end); 235 this_end = clamp(this_end, start, end); 236 237 if (this_end < size) 238 continue; 239 240 cand = round_down(this_end - size, align); 241 if (cand >= this_start) 242 return cand; 243 } 244 245 return 0; 246 } 247 248 /** 249 * memblock_find_in_range_node - find free area in given range and node 250 * @size: size of free area to find 251 * @align: alignment of free area to find 252 * @start: start of candidate range 253 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 254 * %MEMBLOCK_ALLOC_ACCESSIBLE 255 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 256 * @flags: pick from blocks based on memory attributes 257 * 258 * Find @size free area aligned to @align in the specified range and node. 259 * 260 * When allocation direction is bottom-up, the @start should be greater 261 * than the end of the kernel image. Otherwise, it will be trimmed. The 262 * reason is that we want the bottom-up allocation just near the kernel 263 * image so it is highly likely that the allocated memory and the kernel 264 * will reside in the same node. 265 * 266 * If bottom-up allocation failed, will try to allocate memory top-down. 267 * 268 * Return: 269 * Found address on success, 0 on failure. 270 */ 271 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 272 phys_addr_t align, phys_addr_t start, 273 phys_addr_t end, int nid, 274 enum memblock_flags flags) 275 { 276 phys_addr_t kernel_end, ret; 277 278 /* pump up @end */ 279 if (end == MEMBLOCK_ALLOC_ACCESSIBLE || 280 end == MEMBLOCK_ALLOC_KASAN) 281 end = memblock.current_limit; 282 283 /* avoid allocating the first page */ 284 start = max_t(phys_addr_t, start, PAGE_SIZE); 285 end = max(start, end); 286 kernel_end = __pa_symbol(_end); 287 288 /* 289 * try bottom-up allocation only when bottom-up mode 290 * is set and @end is above the kernel image. 291 */ 292 if (memblock_bottom_up() && end > kernel_end) { 293 phys_addr_t bottom_up_start; 294 295 /* make sure we will allocate above the kernel */ 296 bottom_up_start = max(start, kernel_end); 297 298 /* ok, try bottom-up allocation first */ 299 ret = __memblock_find_range_bottom_up(bottom_up_start, end, 300 size, align, nid, flags); 301 if (ret) 302 return ret; 303 304 /* 305 * we always limit bottom-up allocation above the kernel, 306 * but top-down allocation doesn't have the limit, so 307 * retrying top-down allocation may succeed when bottom-up 308 * allocation failed. 309 * 310 * bottom-up allocation is expected to be fail very rarely, 311 * so we use WARN_ONCE() here to see the stack trace if 312 * fail happens. 313 */ 314 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE), 315 "memblock: bottom-up allocation failed, memory hotremove may be affected\n"); 316 } 317 318 return __memblock_find_range_top_down(start, end, size, align, nid, 319 flags); 320 } 321 322 /** 323 * memblock_find_in_range - find free area in given range 324 * @start: start of candidate range 325 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 326 * %MEMBLOCK_ALLOC_ACCESSIBLE 327 * @size: size of free area to find 328 * @align: alignment of free area to find 329 * 330 * Find @size free area aligned to @align in the specified range. 331 * 332 * Return: 333 * Found address on success, 0 on failure. 334 */ 335 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 336 phys_addr_t end, phys_addr_t size, 337 phys_addr_t align) 338 { 339 phys_addr_t ret; 340 enum memblock_flags flags = choose_memblock_flags(); 341 342 again: 343 ret = memblock_find_in_range_node(size, align, start, end, 344 NUMA_NO_NODE, flags); 345 346 if (!ret && (flags & MEMBLOCK_MIRROR)) { 347 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 348 &size); 349 flags &= ~MEMBLOCK_MIRROR; 350 goto again; 351 } 352 353 return ret; 354 } 355 356 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 357 { 358 type->total_size -= type->regions[r].size; 359 memmove(&type->regions[r], &type->regions[r + 1], 360 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 361 type->cnt--; 362 363 /* Special case for empty arrays */ 364 if (type->cnt == 0) { 365 WARN_ON(type->total_size != 0); 366 type->cnt = 1; 367 type->regions[0].base = 0; 368 type->regions[0].size = 0; 369 type->regions[0].flags = 0; 370 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 371 } 372 } 373 374 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK 375 /** 376 * memblock_discard - discard memory and reserved arrays if they were allocated 377 */ 378 void __init memblock_discard(void) 379 { 380 phys_addr_t addr, size; 381 382 if (memblock.reserved.regions != memblock_reserved_init_regions) { 383 addr = __pa(memblock.reserved.regions); 384 size = PAGE_ALIGN(sizeof(struct memblock_region) * 385 memblock.reserved.max); 386 __memblock_free_late(addr, size); 387 } 388 389 if (memblock.memory.regions != memblock_memory_init_regions) { 390 addr = __pa(memblock.memory.regions); 391 size = PAGE_ALIGN(sizeof(struct memblock_region) * 392 memblock.memory.max); 393 __memblock_free_late(addr, size); 394 } 395 } 396 #endif 397 398 /** 399 * memblock_double_array - double the size of the memblock regions array 400 * @type: memblock type of the regions array being doubled 401 * @new_area_start: starting address of memory range to avoid overlap with 402 * @new_area_size: size of memory range to avoid overlap with 403 * 404 * Double the size of the @type regions array. If memblock is being used to 405 * allocate memory for a new reserved regions array and there is a previously 406 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 407 * waiting to be reserved, ensure the memory used by the new array does 408 * not overlap. 409 * 410 * Return: 411 * 0 on success, -1 on failure. 412 */ 413 static int __init_memblock memblock_double_array(struct memblock_type *type, 414 phys_addr_t new_area_start, 415 phys_addr_t new_area_size) 416 { 417 struct memblock_region *new_array, *old_array; 418 phys_addr_t old_alloc_size, new_alloc_size; 419 phys_addr_t old_size, new_size, addr, new_end; 420 int use_slab = slab_is_available(); 421 int *in_slab; 422 423 /* We don't allow resizing until we know about the reserved regions 424 * of memory that aren't suitable for allocation 425 */ 426 if (!memblock_can_resize) 427 return -1; 428 429 /* Calculate new doubled size */ 430 old_size = type->max * sizeof(struct memblock_region); 431 new_size = old_size << 1; 432 /* 433 * We need to allocated new one align to PAGE_SIZE, 434 * so we can free them completely later. 435 */ 436 old_alloc_size = PAGE_ALIGN(old_size); 437 new_alloc_size = PAGE_ALIGN(new_size); 438 439 /* Retrieve the slab flag */ 440 if (type == &memblock.memory) 441 in_slab = &memblock_memory_in_slab; 442 else 443 in_slab = &memblock_reserved_in_slab; 444 445 /* Try to find some space for it */ 446 if (use_slab) { 447 new_array = kmalloc(new_size, GFP_KERNEL); 448 addr = new_array ? __pa(new_array) : 0; 449 } else { 450 /* only exclude range when trying to double reserved.regions */ 451 if (type != &memblock.reserved) 452 new_area_start = new_area_size = 0; 453 454 addr = memblock_find_in_range(new_area_start + new_area_size, 455 memblock.current_limit, 456 new_alloc_size, PAGE_SIZE); 457 if (!addr && new_area_size) 458 addr = memblock_find_in_range(0, 459 min(new_area_start, memblock.current_limit), 460 new_alloc_size, PAGE_SIZE); 461 462 new_array = addr ? __va(addr) : NULL; 463 } 464 if (!addr) { 465 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 466 type->name, type->max, type->max * 2); 467 return -1; 468 } 469 470 new_end = addr + new_size - 1; 471 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 472 type->name, type->max * 2, &addr, &new_end); 473 474 /* 475 * Found space, we now need to move the array over before we add the 476 * reserved region since it may be our reserved array itself that is 477 * full. 478 */ 479 memcpy(new_array, type->regions, old_size); 480 memset(new_array + type->max, 0, old_size); 481 old_array = type->regions; 482 type->regions = new_array; 483 type->max <<= 1; 484 485 /* Free old array. We needn't free it if the array is the static one */ 486 if (*in_slab) 487 kfree(old_array); 488 else if (old_array != memblock_memory_init_regions && 489 old_array != memblock_reserved_init_regions) 490 memblock_free(__pa(old_array), old_alloc_size); 491 492 /* 493 * Reserve the new array if that comes from the memblock. Otherwise, we 494 * needn't do it 495 */ 496 if (!use_slab) 497 BUG_ON(memblock_reserve(addr, new_alloc_size)); 498 499 /* Update slab flag */ 500 *in_slab = use_slab; 501 502 return 0; 503 } 504 505 /** 506 * memblock_merge_regions - merge neighboring compatible regions 507 * @type: memblock type to scan 508 * 509 * Scan @type and merge neighboring compatible regions. 510 */ 511 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 512 { 513 int i = 0; 514 515 /* cnt never goes below 1 */ 516 while (i < type->cnt - 1) { 517 struct memblock_region *this = &type->regions[i]; 518 struct memblock_region *next = &type->regions[i + 1]; 519 520 if (this->base + this->size != next->base || 521 memblock_get_region_node(this) != 522 memblock_get_region_node(next) || 523 this->flags != next->flags) { 524 BUG_ON(this->base + this->size > next->base); 525 i++; 526 continue; 527 } 528 529 this->size += next->size; 530 /* move forward from next + 1, index of which is i + 2 */ 531 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 532 type->cnt--; 533 } 534 } 535 536 /** 537 * memblock_insert_region - insert new memblock region 538 * @type: memblock type to insert into 539 * @idx: index for the insertion point 540 * @base: base address of the new region 541 * @size: size of the new region 542 * @nid: node id of the new region 543 * @flags: flags of the new region 544 * 545 * Insert new memblock region [@base, @base + @size) into @type at @idx. 546 * @type must already have extra room to accommodate the new region. 547 */ 548 static void __init_memblock memblock_insert_region(struct memblock_type *type, 549 int idx, phys_addr_t base, 550 phys_addr_t size, 551 int nid, 552 enum memblock_flags flags) 553 { 554 struct memblock_region *rgn = &type->regions[idx]; 555 556 BUG_ON(type->cnt >= type->max); 557 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 558 rgn->base = base; 559 rgn->size = size; 560 rgn->flags = flags; 561 memblock_set_region_node(rgn, nid); 562 type->cnt++; 563 type->total_size += size; 564 } 565 566 /** 567 * memblock_add_range - add new memblock region 568 * @type: memblock type to add new region into 569 * @base: base address of the new region 570 * @size: size of the new region 571 * @nid: nid of the new region 572 * @flags: flags of the new region 573 * 574 * Add new memblock region [@base, @base + @size) into @type. The new region 575 * is allowed to overlap with existing ones - overlaps don't affect already 576 * existing regions. @type is guaranteed to be minimal (all neighbouring 577 * compatible regions are merged) after the addition. 578 * 579 * Return: 580 * 0 on success, -errno on failure. 581 */ 582 int __init_memblock memblock_add_range(struct memblock_type *type, 583 phys_addr_t base, phys_addr_t size, 584 int nid, enum memblock_flags flags) 585 { 586 bool insert = false; 587 phys_addr_t obase = base; 588 phys_addr_t end = base + memblock_cap_size(base, &size); 589 int idx, nr_new; 590 struct memblock_region *rgn; 591 592 if (!size) 593 return 0; 594 595 /* special case for empty array */ 596 if (type->regions[0].size == 0) { 597 WARN_ON(type->cnt != 1 || type->total_size); 598 type->regions[0].base = base; 599 type->regions[0].size = size; 600 type->regions[0].flags = flags; 601 memblock_set_region_node(&type->regions[0], nid); 602 type->total_size = size; 603 return 0; 604 } 605 repeat: 606 /* 607 * The following is executed twice. Once with %false @insert and 608 * then with %true. The first counts the number of regions needed 609 * to accommodate the new area. The second actually inserts them. 610 */ 611 base = obase; 612 nr_new = 0; 613 614 for_each_memblock_type(idx, type, rgn) { 615 phys_addr_t rbase = rgn->base; 616 phys_addr_t rend = rbase + rgn->size; 617 618 if (rbase >= end) 619 break; 620 if (rend <= base) 621 continue; 622 /* 623 * @rgn overlaps. If it separates the lower part of new 624 * area, insert that portion. 625 */ 626 if (rbase > base) { 627 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 628 WARN_ON(nid != memblock_get_region_node(rgn)); 629 #endif 630 WARN_ON(flags != rgn->flags); 631 nr_new++; 632 if (insert) 633 memblock_insert_region(type, idx++, base, 634 rbase - base, nid, 635 flags); 636 } 637 /* area below @rend is dealt with, forget about it */ 638 base = min(rend, end); 639 } 640 641 /* insert the remaining portion */ 642 if (base < end) { 643 nr_new++; 644 if (insert) 645 memblock_insert_region(type, idx, base, end - base, 646 nid, flags); 647 } 648 649 if (!nr_new) 650 return 0; 651 652 /* 653 * If this was the first round, resize array and repeat for actual 654 * insertions; otherwise, merge and return. 655 */ 656 if (!insert) { 657 while (type->cnt + nr_new > type->max) 658 if (memblock_double_array(type, obase, size) < 0) 659 return -ENOMEM; 660 insert = true; 661 goto repeat; 662 } else { 663 memblock_merge_regions(type); 664 return 0; 665 } 666 } 667 668 /** 669 * memblock_add_node - add new memblock region within a NUMA node 670 * @base: base address of the new region 671 * @size: size of the new region 672 * @nid: nid of the new region 673 * 674 * Add new memblock region [@base, @base + @size) to the "memory" 675 * type. See memblock_add_range() description for mode details 676 * 677 * Return: 678 * 0 on success, -errno on failure. 679 */ 680 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 681 int nid) 682 { 683 return memblock_add_range(&memblock.memory, base, size, nid, 0); 684 } 685 686 /** 687 * memblock_add - add new memblock region 688 * @base: base address of the new region 689 * @size: size of the new region 690 * 691 * Add new memblock region [@base, @base + @size) to the "memory" 692 * type. See memblock_add_range() description for mode details 693 * 694 * Return: 695 * 0 on success, -errno on failure. 696 */ 697 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 698 { 699 phys_addr_t end = base + size - 1; 700 701 memblock_dbg("memblock_add: [%pa-%pa] %pS\n", 702 &base, &end, (void *)_RET_IP_); 703 704 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 705 } 706 707 /** 708 * memblock_isolate_range - isolate given range into disjoint memblocks 709 * @type: memblock type to isolate range for 710 * @base: base of range to isolate 711 * @size: size of range to isolate 712 * @start_rgn: out parameter for the start of isolated region 713 * @end_rgn: out parameter for the end of isolated region 714 * 715 * Walk @type and ensure that regions don't cross the boundaries defined by 716 * [@base, @base + @size). Crossing regions are split at the boundaries, 717 * which may create at most two more regions. The index of the first 718 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 719 * 720 * Return: 721 * 0 on success, -errno on failure. 722 */ 723 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 724 phys_addr_t base, phys_addr_t size, 725 int *start_rgn, int *end_rgn) 726 { 727 phys_addr_t end = base + memblock_cap_size(base, &size); 728 int idx; 729 struct memblock_region *rgn; 730 731 *start_rgn = *end_rgn = 0; 732 733 if (!size) 734 return 0; 735 736 /* we'll create at most two more regions */ 737 while (type->cnt + 2 > type->max) 738 if (memblock_double_array(type, base, size) < 0) 739 return -ENOMEM; 740 741 for_each_memblock_type(idx, type, rgn) { 742 phys_addr_t rbase = rgn->base; 743 phys_addr_t rend = rbase + rgn->size; 744 745 if (rbase >= end) 746 break; 747 if (rend <= base) 748 continue; 749 750 if (rbase < base) { 751 /* 752 * @rgn intersects from below. Split and continue 753 * to process the next region - the new top half. 754 */ 755 rgn->base = base; 756 rgn->size -= base - rbase; 757 type->total_size -= base - rbase; 758 memblock_insert_region(type, idx, rbase, base - rbase, 759 memblock_get_region_node(rgn), 760 rgn->flags); 761 } else if (rend > end) { 762 /* 763 * @rgn intersects from above. Split and redo the 764 * current region - the new bottom half. 765 */ 766 rgn->base = end; 767 rgn->size -= end - rbase; 768 type->total_size -= end - rbase; 769 memblock_insert_region(type, idx--, rbase, end - rbase, 770 memblock_get_region_node(rgn), 771 rgn->flags); 772 } else { 773 /* @rgn is fully contained, record it */ 774 if (!*end_rgn) 775 *start_rgn = idx; 776 *end_rgn = idx + 1; 777 } 778 } 779 780 return 0; 781 } 782 783 static int __init_memblock memblock_remove_range(struct memblock_type *type, 784 phys_addr_t base, phys_addr_t size) 785 { 786 int start_rgn, end_rgn; 787 int i, ret; 788 789 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 790 if (ret) 791 return ret; 792 793 for (i = end_rgn - 1; i >= start_rgn; i--) 794 memblock_remove_region(type, i); 795 return 0; 796 } 797 798 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 799 { 800 phys_addr_t end = base + size - 1; 801 802 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n", 803 &base, &end, (void *)_RET_IP_); 804 805 return memblock_remove_range(&memblock.memory, base, size); 806 } 807 808 /** 809 * memblock_free - free boot memory block 810 * @base: phys starting address of the boot memory block 811 * @size: size of the boot memory block in bytes 812 * 813 * Free boot memory block previously allocated by memblock_alloc_xx() API. 814 * The freeing memory will not be released to the buddy allocator. 815 */ 816 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 817 { 818 phys_addr_t end = base + size - 1; 819 820 memblock_dbg(" memblock_free: [%pa-%pa] %pS\n", 821 &base, &end, (void *)_RET_IP_); 822 823 kmemleak_free_part_phys(base, size); 824 return memblock_remove_range(&memblock.reserved, base, size); 825 } 826 827 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 828 { 829 phys_addr_t end = base + size - 1; 830 831 memblock_dbg("memblock_reserve: [%pa-%pa] %pS\n", 832 &base, &end, (void *)_RET_IP_); 833 834 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 835 } 836 837 /** 838 * memblock_setclr_flag - set or clear flag for a memory region 839 * @base: base address of the region 840 * @size: size of the region 841 * @set: set or clear the flag 842 * @flag: the flag to udpate 843 * 844 * This function isolates region [@base, @base + @size), and sets/clears flag 845 * 846 * Return: 0 on success, -errno on failure. 847 */ 848 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 849 phys_addr_t size, int set, int flag) 850 { 851 struct memblock_type *type = &memblock.memory; 852 int i, ret, start_rgn, end_rgn; 853 854 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 855 if (ret) 856 return ret; 857 858 for (i = start_rgn; i < end_rgn; i++) { 859 struct memblock_region *r = &type->regions[i]; 860 861 if (set) 862 r->flags |= flag; 863 else 864 r->flags &= ~flag; 865 } 866 867 memblock_merge_regions(type); 868 return 0; 869 } 870 871 /** 872 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 873 * @base: the base phys addr of the region 874 * @size: the size of the region 875 * 876 * Return: 0 on success, -errno on failure. 877 */ 878 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 879 { 880 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 881 } 882 883 /** 884 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 885 * @base: the base phys addr of the region 886 * @size: the size of the region 887 * 888 * Return: 0 on success, -errno on failure. 889 */ 890 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 891 { 892 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 893 } 894 895 /** 896 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 897 * @base: the base phys addr of the region 898 * @size: the size of the region 899 * 900 * Return: 0 on success, -errno on failure. 901 */ 902 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 903 { 904 system_has_some_mirror = true; 905 906 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 907 } 908 909 /** 910 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 911 * @base: the base phys addr of the region 912 * @size: the size of the region 913 * 914 * Return: 0 on success, -errno on failure. 915 */ 916 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 917 { 918 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 919 } 920 921 /** 922 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 923 * @base: the base phys addr of the region 924 * @size: the size of the region 925 * 926 * Return: 0 on success, -errno on failure. 927 */ 928 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 929 { 930 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 931 } 932 933 /** 934 * __next_reserved_mem_region - next function for for_each_reserved_region() 935 * @idx: pointer to u64 loop variable 936 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL 937 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL 938 * 939 * Iterate over all reserved memory regions. 940 */ 941 void __init_memblock __next_reserved_mem_region(u64 *idx, 942 phys_addr_t *out_start, 943 phys_addr_t *out_end) 944 { 945 struct memblock_type *type = &memblock.reserved; 946 947 if (*idx < type->cnt) { 948 struct memblock_region *r = &type->regions[*idx]; 949 phys_addr_t base = r->base; 950 phys_addr_t size = r->size; 951 952 if (out_start) 953 *out_start = base; 954 if (out_end) 955 *out_end = base + size - 1; 956 957 *idx += 1; 958 return; 959 } 960 961 /* signal end of iteration */ 962 *idx = ULLONG_MAX; 963 } 964 965 static bool should_skip_region(struct memblock_region *m, int nid, int flags) 966 { 967 int m_nid = memblock_get_region_node(m); 968 969 /* only memory regions are associated with nodes, check it */ 970 if (nid != NUMA_NO_NODE && nid != m_nid) 971 return true; 972 973 /* skip hotpluggable memory regions if needed */ 974 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 975 return true; 976 977 /* if we want mirror memory skip non-mirror memory regions */ 978 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 979 return true; 980 981 /* skip nomap memory unless we were asked for it explicitly */ 982 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 983 return true; 984 985 return false; 986 } 987 988 /** 989 * __next_mem_range - next function for for_each_free_mem_range() etc. 990 * @idx: pointer to u64 loop variable 991 * @nid: node selector, %NUMA_NO_NODE for all nodes 992 * @flags: pick from blocks based on memory attributes 993 * @type_a: pointer to memblock_type from where the range is taken 994 * @type_b: pointer to memblock_type which excludes memory from being taken 995 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 996 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 997 * @out_nid: ptr to int for nid of the range, can be %NULL 998 * 999 * Find the first area from *@idx which matches @nid, fill the out 1000 * parameters, and update *@idx for the next iteration. The lower 32bit of 1001 * *@idx contains index into type_a and the upper 32bit indexes the 1002 * areas before each region in type_b. For example, if type_b regions 1003 * look like the following, 1004 * 1005 * 0:[0-16), 1:[32-48), 2:[128-130) 1006 * 1007 * The upper 32bit indexes the following regions. 1008 * 1009 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 1010 * 1011 * As both region arrays are sorted, the function advances the two indices 1012 * in lockstep and returns each intersection. 1013 */ 1014 void __init_memblock __next_mem_range(u64 *idx, int nid, 1015 enum memblock_flags flags, 1016 struct memblock_type *type_a, 1017 struct memblock_type *type_b, 1018 phys_addr_t *out_start, 1019 phys_addr_t *out_end, int *out_nid) 1020 { 1021 int idx_a = *idx & 0xffffffff; 1022 int idx_b = *idx >> 32; 1023 1024 if (WARN_ONCE(nid == MAX_NUMNODES, 1025 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1026 nid = NUMA_NO_NODE; 1027 1028 for (; idx_a < type_a->cnt; idx_a++) { 1029 struct memblock_region *m = &type_a->regions[idx_a]; 1030 1031 phys_addr_t m_start = m->base; 1032 phys_addr_t m_end = m->base + m->size; 1033 int m_nid = memblock_get_region_node(m); 1034 1035 if (should_skip_region(m, nid, flags)) 1036 continue; 1037 1038 if (!type_b) { 1039 if (out_start) 1040 *out_start = m_start; 1041 if (out_end) 1042 *out_end = m_end; 1043 if (out_nid) 1044 *out_nid = m_nid; 1045 idx_a++; 1046 *idx = (u32)idx_a | (u64)idx_b << 32; 1047 return; 1048 } 1049 1050 /* scan areas before each reservation */ 1051 for (; idx_b < type_b->cnt + 1; idx_b++) { 1052 struct memblock_region *r; 1053 phys_addr_t r_start; 1054 phys_addr_t r_end; 1055 1056 r = &type_b->regions[idx_b]; 1057 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1058 r_end = idx_b < type_b->cnt ? 1059 r->base : PHYS_ADDR_MAX; 1060 1061 /* 1062 * if idx_b advanced past idx_a, 1063 * break out to advance idx_a 1064 */ 1065 if (r_start >= m_end) 1066 break; 1067 /* if the two regions intersect, we're done */ 1068 if (m_start < r_end) { 1069 if (out_start) 1070 *out_start = 1071 max(m_start, r_start); 1072 if (out_end) 1073 *out_end = min(m_end, r_end); 1074 if (out_nid) 1075 *out_nid = m_nid; 1076 /* 1077 * The region which ends first is 1078 * advanced for the next iteration. 1079 */ 1080 if (m_end <= r_end) 1081 idx_a++; 1082 else 1083 idx_b++; 1084 *idx = (u32)idx_a | (u64)idx_b << 32; 1085 return; 1086 } 1087 } 1088 } 1089 1090 /* signal end of iteration */ 1091 *idx = ULLONG_MAX; 1092 } 1093 1094 /** 1095 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1096 * 1097 * @idx: pointer to u64 loop variable 1098 * @nid: node selector, %NUMA_NO_NODE for all nodes 1099 * @flags: pick from blocks based on memory attributes 1100 * @type_a: pointer to memblock_type from where the range is taken 1101 * @type_b: pointer to memblock_type which excludes memory from being taken 1102 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1103 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1104 * @out_nid: ptr to int for nid of the range, can be %NULL 1105 * 1106 * Finds the next range from type_a which is not marked as unsuitable 1107 * in type_b. 1108 * 1109 * Reverse of __next_mem_range(). 1110 */ 1111 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1112 enum memblock_flags flags, 1113 struct memblock_type *type_a, 1114 struct memblock_type *type_b, 1115 phys_addr_t *out_start, 1116 phys_addr_t *out_end, int *out_nid) 1117 { 1118 int idx_a = *idx & 0xffffffff; 1119 int idx_b = *idx >> 32; 1120 1121 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1122 nid = NUMA_NO_NODE; 1123 1124 if (*idx == (u64)ULLONG_MAX) { 1125 idx_a = type_a->cnt - 1; 1126 if (type_b != NULL) 1127 idx_b = type_b->cnt; 1128 else 1129 idx_b = 0; 1130 } 1131 1132 for (; idx_a >= 0; idx_a--) { 1133 struct memblock_region *m = &type_a->regions[idx_a]; 1134 1135 phys_addr_t m_start = m->base; 1136 phys_addr_t m_end = m->base + m->size; 1137 int m_nid = memblock_get_region_node(m); 1138 1139 if (should_skip_region(m, nid, flags)) 1140 continue; 1141 1142 if (!type_b) { 1143 if (out_start) 1144 *out_start = m_start; 1145 if (out_end) 1146 *out_end = m_end; 1147 if (out_nid) 1148 *out_nid = m_nid; 1149 idx_a--; 1150 *idx = (u32)idx_a | (u64)idx_b << 32; 1151 return; 1152 } 1153 1154 /* scan areas before each reservation */ 1155 for (; idx_b >= 0; idx_b--) { 1156 struct memblock_region *r; 1157 phys_addr_t r_start; 1158 phys_addr_t r_end; 1159 1160 r = &type_b->regions[idx_b]; 1161 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1162 r_end = idx_b < type_b->cnt ? 1163 r->base : PHYS_ADDR_MAX; 1164 /* 1165 * if idx_b advanced past idx_a, 1166 * break out to advance idx_a 1167 */ 1168 1169 if (r_end <= m_start) 1170 break; 1171 /* if the two regions intersect, we're done */ 1172 if (m_end > r_start) { 1173 if (out_start) 1174 *out_start = max(m_start, r_start); 1175 if (out_end) 1176 *out_end = min(m_end, r_end); 1177 if (out_nid) 1178 *out_nid = m_nid; 1179 if (m_start >= r_start) 1180 idx_a--; 1181 else 1182 idx_b--; 1183 *idx = (u32)idx_a | (u64)idx_b << 32; 1184 return; 1185 } 1186 } 1187 } 1188 /* signal end of iteration */ 1189 *idx = ULLONG_MAX; 1190 } 1191 1192 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1193 /* 1194 * Common iterator interface used to define for_each_mem_pfn_range(). 1195 */ 1196 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1197 unsigned long *out_start_pfn, 1198 unsigned long *out_end_pfn, int *out_nid) 1199 { 1200 struct memblock_type *type = &memblock.memory; 1201 struct memblock_region *r; 1202 1203 while (++*idx < type->cnt) { 1204 r = &type->regions[*idx]; 1205 1206 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1207 continue; 1208 if (nid == MAX_NUMNODES || nid == r->nid) 1209 break; 1210 } 1211 if (*idx >= type->cnt) { 1212 *idx = -1; 1213 return; 1214 } 1215 1216 if (out_start_pfn) 1217 *out_start_pfn = PFN_UP(r->base); 1218 if (out_end_pfn) 1219 *out_end_pfn = PFN_DOWN(r->base + r->size); 1220 if (out_nid) 1221 *out_nid = r->nid; 1222 } 1223 1224 /** 1225 * memblock_set_node - set node ID on memblock regions 1226 * @base: base of area to set node ID for 1227 * @size: size of area to set node ID for 1228 * @type: memblock type to set node ID for 1229 * @nid: node ID to set 1230 * 1231 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1232 * Regions which cross the area boundaries are split as necessary. 1233 * 1234 * Return: 1235 * 0 on success, -errno on failure. 1236 */ 1237 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1238 struct memblock_type *type, int nid) 1239 { 1240 int start_rgn, end_rgn; 1241 int i, ret; 1242 1243 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1244 if (ret) 1245 return ret; 1246 1247 for (i = start_rgn; i < end_rgn; i++) 1248 memblock_set_region_node(&type->regions[i], nid); 1249 1250 memblock_merge_regions(type); 1251 return 0; 1252 } 1253 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1254 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1255 /** 1256 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() 1257 * 1258 * @idx: pointer to u64 loop variable 1259 * @zone: zone in which all of the memory blocks reside 1260 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL 1261 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL 1262 * 1263 * This function is meant to be a zone/pfn specific wrapper for the 1264 * for_each_mem_range type iterators. Specifically they are used in the 1265 * deferred memory init routines and as such we were duplicating much of 1266 * this logic throughout the code. So instead of having it in multiple 1267 * locations it seemed like it would make more sense to centralize this to 1268 * one new iterator that does everything they need. 1269 */ 1270 void __init_memblock 1271 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 1272 unsigned long *out_spfn, unsigned long *out_epfn) 1273 { 1274 int zone_nid = zone_to_nid(zone); 1275 phys_addr_t spa, epa; 1276 int nid; 1277 1278 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1279 &memblock.memory, &memblock.reserved, 1280 &spa, &epa, &nid); 1281 1282 while (*idx != U64_MAX) { 1283 unsigned long epfn = PFN_DOWN(epa); 1284 unsigned long spfn = PFN_UP(spa); 1285 1286 /* 1287 * Verify the end is at least past the start of the zone and 1288 * that we have at least one PFN to initialize. 1289 */ 1290 if (zone->zone_start_pfn < epfn && spfn < epfn) { 1291 /* if we went too far just stop searching */ 1292 if (zone_end_pfn(zone) <= spfn) { 1293 *idx = U64_MAX; 1294 break; 1295 } 1296 1297 if (out_spfn) 1298 *out_spfn = max(zone->zone_start_pfn, spfn); 1299 if (out_epfn) 1300 *out_epfn = min(zone_end_pfn(zone), epfn); 1301 1302 return; 1303 } 1304 1305 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1306 &memblock.memory, &memblock.reserved, 1307 &spa, &epa, &nid); 1308 } 1309 1310 /* signal end of iteration */ 1311 if (out_spfn) 1312 *out_spfn = ULONG_MAX; 1313 if (out_epfn) 1314 *out_epfn = 0; 1315 } 1316 1317 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1318 1319 /** 1320 * memblock_alloc_range_nid - allocate boot memory block 1321 * @size: size of memory block to be allocated in bytes 1322 * @align: alignment of the region and block's size 1323 * @start: the lower bound of the memory region to allocate (phys address) 1324 * @end: the upper bound of the memory region to allocate (phys address) 1325 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1326 * 1327 * The allocation is performed from memory region limited by 1328 * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE. 1329 * 1330 * If the specified node can not hold the requested memory the 1331 * allocation falls back to any node in the system 1332 * 1333 * For systems with memory mirroring, the allocation is attempted first 1334 * from the regions with mirroring enabled and then retried from any 1335 * memory region. 1336 * 1337 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for 1338 * allocated boot memory block, so that it is never reported as leaks. 1339 * 1340 * Return: 1341 * Physical address of allocated memory block on success, %0 on failure. 1342 */ 1343 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1344 phys_addr_t align, phys_addr_t start, 1345 phys_addr_t end, int nid) 1346 { 1347 enum memblock_flags flags = choose_memblock_flags(); 1348 phys_addr_t found; 1349 1350 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1351 nid = NUMA_NO_NODE; 1352 1353 if (!align) { 1354 /* Can't use WARNs this early in boot on powerpc */ 1355 dump_stack(); 1356 align = SMP_CACHE_BYTES; 1357 } 1358 1359 again: 1360 found = memblock_find_in_range_node(size, align, start, end, nid, 1361 flags); 1362 if (found && !memblock_reserve(found, size)) 1363 goto done; 1364 1365 if (nid != NUMA_NO_NODE) { 1366 found = memblock_find_in_range_node(size, align, start, 1367 end, NUMA_NO_NODE, 1368 flags); 1369 if (found && !memblock_reserve(found, size)) 1370 goto done; 1371 } 1372 1373 if (flags & MEMBLOCK_MIRROR) { 1374 flags &= ~MEMBLOCK_MIRROR; 1375 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1376 &size); 1377 goto again; 1378 } 1379 1380 return 0; 1381 1382 done: 1383 /* Skip kmemleak for kasan_init() due to high volume. */ 1384 if (end != MEMBLOCK_ALLOC_KASAN) 1385 /* 1386 * The min_count is set to 0 so that memblock allocated 1387 * blocks are never reported as leaks. This is because many 1388 * of these blocks are only referred via the physical 1389 * address which is not looked up by kmemleak. 1390 */ 1391 kmemleak_alloc_phys(found, size, 0, 0); 1392 1393 return found; 1394 } 1395 1396 /** 1397 * memblock_phys_alloc_range - allocate a memory block inside specified range 1398 * @size: size of memory block to be allocated in bytes 1399 * @align: alignment of the region and block's size 1400 * @start: the lower bound of the memory region to allocate (physical address) 1401 * @end: the upper bound of the memory region to allocate (physical address) 1402 * 1403 * Allocate @size bytes in the between @start and @end. 1404 * 1405 * Return: physical address of the allocated memory block on success, 1406 * %0 on failure. 1407 */ 1408 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, 1409 phys_addr_t align, 1410 phys_addr_t start, 1411 phys_addr_t end) 1412 { 1413 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE); 1414 } 1415 1416 /** 1417 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node 1418 * @size: size of memory block to be allocated in bytes 1419 * @align: alignment of the region and block's size 1420 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1421 * 1422 * Allocates memory block from the specified NUMA node. If the node 1423 * has no available memory, attempts to allocated from any node in the 1424 * system. 1425 * 1426 * Return: physical address of the allocated memory block on success, 1427 * %0 on failure. 1428 */ 1429 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1430 { 1431 return memblock_alloc_range_nid(size, align, 0, 1432 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 1433 } 1434 1435 /** 1436 * memblock_alloc_internal - allocate boot memory block 1437 * @size: size of memory block to be allocated in bytes 1438 * @align: alignment of the region and block's size 1439 * @min_addr: the lower bound of the memory region to allocate (phys address) 1440 * @max_addr: the upper bound of the memory region to allocate (phys address) 1441 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1442 * 1443 * Allocates memory block using memblock_alloc_range_nid() and 1444 * converts the returned physical address to virtual. 1445 * 1446 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1447 * will fall back to memory below @min_addr. Other constraints, such 1448 * as node and mirrored memory will be handled again in 1449 * memblock_alloc_range_nid(). 1450 * 1451 * Return: 1452 * Virtual address of allocated memory block on success, NULL on failure. 1453 */ 1454 static void * __init memblock_alloc_internal( 1455 phys_addr_t size, phys_addr_t align, 1456 phys_addr_t min_addr, phys_addr_t max_addr, 1457 int nid) 1458 { 1459 phys_addr_t alloc; 1460 1461 /* 1462 * Detect any accidental use of these APIs after slab is ready, as at 1463 * this moment memblock may be deinitialized already and its 1464 * internal data may be destroyed (after execution of memblock_free_all) 1465 */ 1466 if (WARN_ON_ONCE(slab_is_available())) 1467 return kzalloc_node(size, GFP_NOWAIT, nid); 1468 1469 if (max_addr > memblock.current_limit) 1470 max_addr = memblock.current_limit; 1471 1472 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid); 1473 1474 /* retry allocation without lower limit */ 1475 if (!alloc && min_addr) 1476 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid); 1477 1478 if (!alloc) 1479 return NULL; 1480 1481 return phys_to_virt(alloc); 1482 } 1483 1484 /** 1485 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing 1486 * memory and without panicking 1487 * @size: size of memory block to be allocated in bytes 1488 * @align: alignment of the region and block's size 1489 * @min_addr: the lower bound of the memory region from where the allocation 1490 * is preferred (phys address) 1491 * @max_addr: the upper bound of the memory region from where the allocation 1492 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1493 * allocate only from memory limited by memblock.current_limit value 1494 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1495 * 1496 * Public function, provides additional debug information (including caller 1497 * info), if enabled. Does not zero allocated memory, does not panic if request 1498 * cannot be satisfied. 1499 * 1500 * Return: 1501 * Virtual address of allocated memory block on success, NULL on failure. 1502 */ 1503 void * __init memblock_alloc_try_nid_raw( 1504 phys_addr_t size, phys_addr_t align, 1505 phys_addr_t min_addr, phys_addr_t max_addr, 1506 int nid) 1507 { 1508 void *ptr; 1509 1510 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1511 __func__, (u64)size, (u64)align, nid, &min_addr, 1512 &max_addr, (void *)_RET_IP_); 1513 1514 ptr = memblock_alloc_internal(size, align, 1515 min_addr, max_addr, nid); 1516 if (ptr && size > 0) 1517 page_init_poison(ptr, size); 1518 1519 return ptr; 1520 } 1521 1522 /** 1523 * memblock_alloc_try_nid - allocate boot memory block 1524 * @size: size of memory block to be allocated in bytes 1525 * @align: alignment of the region and block's size 1526 * @min_addr: the lower bound of the memory region from where the allocation 1527 * is preferred (phys address) 1528 * @max_addr: the upper bound of the memory region from where the allocation 1529 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1530 * allocate only from memory limited by memblock.current_limit value 1531 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1532 * 1533 * Public function, provides additional debug information (including caller 1534 * info), if enabled. This function zeroes the allocated memory. 1535 * 1536 * Return: 1537 * Virtual address of allocated memory block on success, NULL on failure. 1538 */ 1539 void * __init memblock_alloc_try_nid( 1540 phys_addr_t size, phys_addr_t align, 1541 phys_addr_t min_addr, phys_addr_t max_addr, 1542 int nid) 1543 { 1544 void *ptr; 1545 1546 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1547 __func__, (u64)size, (u64)align, nid, &min_addr, 1548 &max_addr, (void *)_RET_IP_); 1549 ptr = memblock_alloc_internal(size, align, 1550 min_addr, max_addr, nid); 1551 if (ptr) 1552 memset(ptr, 0, size); 1553 1554 return ptr; 1555 } 1556 1557 /** 1558 * __memblock_free_late - free pages directly to buddy allocator 1559 * @base: phys starting address of the boot memory block 1560 * @size: size of the boot memory block in bytes 1561 * 1562 * This is only useful when the memblock allocator has already been torn 1563 * down, but we are still initializing the system. Pages are released directly 1564 * to the buddy allocator. 1565 */ 1566 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1567 { 1568 phys_addr_t cursor, end; 1569 1570 end = base + size - 1; 1571 memblock_dbg("%s: [%pa-%pa] %pS\n", 1572 __func__, &base, &end, (void *)_RET_IP_); 1573 kmemleak_free_part_phys(base, size); 1574 cursor = PFN_UP(base); 1575 end = PFN_DOWN(base + size); 1576 1577 for (; cursor < end; cursor++) { 1578 memblock_free_pages(pfn_to_page(cursor), cursor, 0); 1579 totalram_pages_inc(); 1580 } 1581 } 1582 1583 /* 1584 * Remaining API functions 1585 */ 1586 1587 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1588 { 1589 return memblock.memory.total_size; 1590 } 1591 1592 phys_addr_t __init_memblock memblock_reserved_size(void) 1593 { 1594 return memblock.reserved.total_size; 1595 } 1596 1597 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) 1598 { 1599 unsigned long pages = 0; 1600 struct memblock_region *r; 1601 unsigned long start_pfn, end_pfn; 1602 1603 for_each_memblock(memory, r) { 1604 start_pfn = memblock_region_memory_base_pfn(r); 1605 end_pfn = memblock_region_memory_end_pfn(r); 1606 start_pfn = min_t(unsigned long, start_pfn, limit_pfn); 1607 end_pfn = min_t(unsigned long, end_pfn, limit_pfn); 1608 pages += end_pfn - start_pfn; 1609 } 1610 1611 return PFN_PHYS(pages); 1612 } 1613 1614 /* lowest address */ 1615 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1616 { 1617 return memblock.memory.regions[0].base; 1618 } 1619 1620 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1621 { 1622 int idx = memblock.memory.cnt - 1; 1623 1624 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1625 } 1626 1627 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1628 { 1629 phys_addr_t max_addr = PHYS_ADDR_MAX; 1630 struct memblock_region *r; 1631 1632 /* 1633 * translate the memory @limit size into the max address within one of 1634 * the memory memblock regions, if the @limit exceeds the total size 1635 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1636 */ 1637 for_each_memblock(memory, r) { 1638 if (limit <= r->size) { 1639 max_addr = r->base + limit; 1640 break; 1641 } 1642 limit -= r->size; 1643 } 1644 1645 return max_addr; 1646 } 1647 1648 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1649 { 1650 phys_addr_t max_addr = PHYS_ADDR_MAX; 1651 1652 if (!limit) 1653 return; 1654 1655 max_addr = __find_max_addr(limit); 1656 1657 /* @limit exceeds the total size of the memory, do nothing */ 1658 if (max_addr == PHYS_ADDR_MAX) 1659 return; 1660 1661 /* truncate both memory and reserved regions */ 1662 memblock_remove_range(&memblock.memory, max_addr, 1663 PHYS_ADDR_MAX); 1664 memblock_remove_range(&memblock.reserved, max_addr, 1665 PHYS_ADDR_MAX); 1666 } 1667 1668 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1669 { 1670 int start_rgn, end_rgn; 1671 int i, ret; 1672 1673 if (!size) 1674 return; 1675 1676 ret = memblock_isolate_range(&memblock.memory, base, size, 1677 &start_rgn, &end_rgn); 1678 if (ret) 1679 return; 1680 1681 /* remove all the MAP regions */ 1682 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1683 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1684 memblock_remove_region(&memblock.memory, i); 1685 1686 for (i = start_rgn - 1; i >= 0; i--) 1687 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1688 memblock_remove_region(&memblock.memory, i); 1689 1690 /* truncate the reserved regions */ 1691 memblock_remove_range(&memblock.reserved, 0, base); 1692 memblock_remove_range(&memblock.reserved, 1693 base + size, PHYS_ADDR_MAX); 1694 } 1695 1696 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1697 { 1698 phys_addr_t max_addr; 1699 1700 if (!limit) 1701 return; 1702 1703 max_addr = __find_max_addr(limit); 1704 1705 /* @limit exceeds the total size of the memory, do nothing */ 1706 if (max_addr == PHYS_ADDR_MAX) 1707 return; 1708 1709 memblock_cap_memory_range(0, max_addr); 1710 } 1711 1712 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1713 { 1714 unsigned int left = 0, right = type->cnt; 1715 1716 do { 1717 unsigned int mid = (right + left) / 2; 1718 1719 if (addr < type->regions[mid].base) 1720 right = mid; 1721 else if (addr >= (type->regions[mid].base + 1722 type->regions[mid].size)) 1723 left = mid + 1; 1724 else 1725 return mid; 1726 } while (left < right); 1727 return -1; 1728 } 1729 1730 bool __init_memblock memblock_is_reserved(phys_addr_t addr) 1731 { 1732 return memblock_search(&memblock.reserved, addr) != -1; 1733 } 1734 1735 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1736 { 1737 return memblock_search(&memblock.memory, addr) != -1; 1738 } 1739 1740 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1741 { 1742 int i = memblock_search(&memblock.memory, addr); 1743 1744 if (i == -1) 1745 return false; 1746 return !memblock_is_nomap(&memblock.memory.regions[i]); 1747 } 1748 1749 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1750 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1751 unsigned long *start_pfn, unsigned long *end_pfn) 1752 { 1753 struct memblock_type *type = &memblock.memory; 1754 int mid = memblock_search(type, PFN_PHYS(pfn)); 1755 1756 if (mid == -1) 1757 return -1; 1758 1759 *start_pfn = PFN_DOWN(type->regions[mid].base); 1760 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1761 1762 return type->regions[mid].nid; 1763 } 1764 #endif 1765 1766 /** 1767 * memblock_is_region_memory - check if a region is a subset of memory 1768 * @base: base of region to check 1769 * @size: size of region to check 1770 * 1771 * Check if the region [@base, @base + @size) is a subset of a memory block. 1772 * 1773 * Return: 1774 * 0 if false, non-zero if true 1775 */ 1776 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1777 { 1778 int idx = memblock_search(&memblock.memory, base); 1779 phys_addr_t end = base + memblock_cap_size(base, &size); 1780 1781 if (idx == -1) 1782 return false; 1783 return (memblock.memory.regions[idx].base + 1784 memblock.memory.regions[idx].size) >= end; 1785 } 1786 1787 /** 1788 * memblock_is_region_reserved - check if a region intersects reserved memory 1789 * @base: base of region to check 1790 * @size: size of region to check 1791 * 1792 * Check if the region [@base, @base + @size) intersects a reserved 1793 * memory block. 1794 * 1795 * Return: 1796 * True if they intersect, false if not. 1797 */ 1798 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1799 { 1800 memblock_cap_size(base, &size); 1801 return memblock_overlaps_region(&memblock.reserved, base, size); 1802 } 1803 1804 void __init_memblock memblock_trim_memory(phys_addr_t align) 1805 { 1806 phys_addr_t start, end, orig_start, orig_end; 1807 struct memblock_region *r; 1808 1809 for_each_memblock(memory, r) { 1810 orig_start = r->base; 1811 orig_end = r->base + r->size; 1812 start = round_up(orig_start, align); 1813 end = round_down(orig_end, align); 1814 1815 if (start == orig_start && end == orig_end) 1816 continue; 1817 1818 if (start < end) { 1819 r->base = start; 1820 r->size = end - start; 1821 } else { 1822 memblock_remove_region(&memblock.memory, 1823 r - memblock.memory.regions); 1824 r--; 1825 } 1826 } 1827 } 1828 1829 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1830 { 1831 memblock.current_limit = limit; 1832 } 1833 1834 phys_addr_t __init_memblock memblock_get_current_limit(void) 1835 { 1836 return memblock.current_limit; 1837 } 1838 1839 static void __init_memblock memblock_dump(struct memblock_type *type) 1840 { 1841 phys_addr_t base, end, size; 1842 enum memblock_flags flags; 1843 int idx; 1844 struct memblock_region *rgn; 1845 1846 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1847 1848 for_each_memblock_type(idx, type, rgn) { 1849 char nid_buf[32] = ""; 1850 1851 base = rgn->base; 1852 size = rgn->size; 1853 end = base + size - 1; 1854 flags = rgn->flags; 1855 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1856 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1857 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1858 memblock_get_region_node(rgn)); 1859 #endif 1860 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 1861 type->name, idx, &base, &end, &size, nid_buf, flags); 1862 } 1863 } 1864 1865 void __init_memblock __memblock_dump_all(void) 1866 { 1867 pr_info("MEMBLOCK configuration:\n"); 1868 pr_info(" memory size = %pa reserved size = %pa\n", 1869 &memblock.memory.total_size, 1870 &memblock.reserved.total_size); 1871 1872 memblock_dump(&memblock.memory); 1873 memblock_dump(&memblock.reserved); 1874 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1875 memblock_dump(&memblock.physmem); 1876 #endif 1877 } 1878 1879 void __init memblock_allow_resize(void) 1880 { 1881 memblock_can_resize = 1; 1882 } 1883 1884 static int __init early_memblock(char *p) 1885 { 1886 if (p && strstr(p, "debug")) 1887 memblock_debug = 1; 1888 return 0; 1889 } 1890 early_param("memblock", early_memblock); 1891 1892 static void __init __free_pages_memory(unsigned long start, unsigned long end) 1893 { 1894 int order; 1895 1896 while (start < end) { 1897 order = min(MAX_ORDER - 1UL, __ffs(start)); 1898 1899 while (start + (1UL << order) > end) 1900 order--; 1901 1902 memblock_free_pages(pfn_to_page(start), start, order); 1903 1904 start += (1UL << order); 1905 } 1906 } 1907 1908 static unsigned long __init __free_memory_core(phys_addr_t start, 1909 phys_addr_t end) 1910 { 1911 unsigned long start_pfn = PFN_UP(start); 1912 unsigned long end_pfn = min_t(unsigned long, 1913 PFN_DOWN(end), max_low_pfn); 1914 1915 if (start_pfn >= end_pfn) 1916 return 0; 1917 1918 __free_pages_memory(start_pfn, end_pfn); 1919 1920 return end_pfn - start_pfn; 1921 } 1922 1923 static unsigned long __init free_low_memory_core_early(void) 1924 { 1925 unsigned long count = 0; 1926 phys_addr_t start, end; 1927 u64 i; 1928 1929 memblock_clear_hotplug(0, -1); 1930 1931 for_each_reserved_mem_region(i, &start, &end) 1932 reserve_bootmem_region(start, end); 1933 1934 /* 1935 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id 1936 * because in some case like Node0 doesn't have RAM installed 1937 * low ram will be on Node1 1938 */ 1939 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, 1940 NULL) 1941 count += __free_memory_core(start, end); 1942 1943 return count; 1944 } 1945 1946 static int reset_managed_pages_done __initdata; 1947 1948 void reset_node_managed_pages(pg_data_t *pgdat) 1949 { 1950 struct zone *z; 1951 1952 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1953 atomic_long_set(&z->managed_pages, 0); 1954 } 1955 1956 void __init reset_all_zones_managed_pages(void) 1957 { 1958 struct pglist_data *pgdat; 1959 1960 if (reset_managed_pages_done) 1961 return; 1962 1963 for_each_online_pgdat(pgdat) 1964 reset_node_managed_pages(pgdat); 1965 1966 reset_managed_pages_done = 1; 1967 } 1968 1969 /** 1970 * memblock_free_all - release free pages to the buddy allocator 1971 * 1972 * Return: the number of pages actually released. 1973 */ 1974 unsigned long __init memblock_free_all(void) 1975 { 1976 unsigned long pages; 1977 1978 reset_all_zones_managed_pages(); 1979 1980 pages = free_low_memory_core_early(); 1981 totalram_pages_add(pages); 1982 1983 return pages; 1984 } 1985 1986 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) 1987 1988 static int memblock_debug_show(struct seq_file *m, void *private) 1989 { 1990 struct memblock_type *type = m->private; 1991 struct memblock_region *reg; 1992 int i; 1993 phys_addr_t end; 1994 1995 for (i = 0; i < type->cnt; i++) { 1996 reg = &type->regions[i]; 1997 end = reg->base + reg->size - 1; 1998 1999 seq_printf(m, "%4d: ", i); 2000 seq_printf(m, "%pa..%pa\n", ®->base, &end); 2001 } 2002 return 0; 2003 } 2004 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 2005 2006 static int __init memblock_init_debugfs(void) 2007 { 2008 struct dentry *root = debugfs_create_dir("memblock", NULL); 2009 2010 debugfs_create_file("memory", 0444, root, 2011 &memblock.memory, &memblock_debug_fops); 2012 debugfs_create_file("reserved", 0444, root, 2013 &memblock.reserved, &memblock_debug_fops); 2014 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2015 debugfs_create_file("physmem", 0444, root, 2016 &memblock.physmem, &memblock_debug_fops); 2017 #endif 2018 2019 return 0; 2020 } 2021 __initcall(memblock_init_debugfs); 2022 2023 #endif /* CONFIG_DEBUG_FS */ 2024