1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for maintaining information about logical memory blocks. 4 * 5 * Peter Bergner, IBM Corp. June 2001. 6 * Copyright (C) 2001 Peter Bergner. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/init.h> 12 #include <linux/bitops.h> 13 #include <linux/poison.h> 14 #include <linux/pfn.h> 15 #include <linux/debugfs.h> 16 #include <linux/kmemleak.h> 17 #include <linux/seq_file.h> 18 #include <linux/memblock.h> 19 20 #include <asm/sections.h> 21 #include <linux/io.h> 22 23 #include "internal.h" 24 25 #define INIT_MEMBLOCK_REGIONS 128 26 #define INIT_PHYSMEM_REGIONS 4 27 28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS 29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS 30 #endif 31 32 /** 33 * DOC: memblock overview 34 * 35 * Memblock is a method of managing memory regions during the early 36 * boot period when the usual kernel memory allocators are not up and 37 * running. 38 * 39 * Memblock views the system memory as collections of contiguous 40 * regions. There are several types of these collections: 41 * 42 * * ``memory`` - describes the physical memory available to the 43 * kernel; this may differ from the actual physical memory installed 44 * in the system, for instance when the memory is restricted with 45 * ``mem=`` command line parameter 46 * * ``reserved`` - describes the regions that were allocated 47 * * ``physmem`` - describes the actual physical memory available during 48 * boot regardless of the possible restrictions and memory hot(un)plug; 49 * the ``physmem`` type is only available on some architectures. 50 * 51 * Each region is represented by struct memblock_region that 52 * defines the region extents, its attributes and NUMA node id on NUMA 53 * systems. Every memory type is described by the struct memblock_type 54 * which contains an array of memory regions along with 55 * the allocator metadata. The "memory" and "reserved" types are nicely 56 * wrapped with struct memblock. This structure is statically 57 * initialized at build time. The region arrays are initially sized to 58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS 59 * for "reserved". The region array for "physmem" is initially sized to 60 * %INIT_PHYSMEM_REGIONS. 61 * The memblock_allow_resize() enables automatic resizing of the region 62 * arrays during addition of new regions. This feature should be used 63 * with care so that memory allocated for the region array will not 64 * overlap with areas that should be reserved, for example initrd. 65 * 66 * The early architecture setup should tell memblock what the physical 67 * memory layout is by using memblock_add() or memblock_add_node() 68 * functions. The first function does not assign the region to a NUMA 69 * node and it is appropriate for UMA systems. Yet, it is possible to 70 * use it on NUMA systems as well and assign the region to a NUMA node 71 * later in the setup process using memblock_set_node(). The 72 * memblock_add_node() performs such an assignment directly. 73 * 74 * Once memblock is setup the memory can be allocated using one of the 75 * API variants: 76 * 77 * * memblock_phys_alloc*() - these functions return the **physical** 78 * address of the allocated memory 79 * * memblock_alloc*() - these functions return the **virtual** address 80 * of the allocated memory. 81 * 82 * Note, that both API variants use implicit assumptions about allowed 83 * memory ranges and the fallback methods. Consult the documentation 84 * of memblock_alloc_internal() and memblock_alloc_range_nid() 85 * functions for more elaborate description. 86 * 87 * As the system boot progresses, the architecture specific mem_init() 88 * function frees all the memory to the buddy page allocator. 89 * 90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the 91 * memblock data structures (except "physmem") will be discarded after the 92 * system initialization completes. 93 */ 94 95 #ifndef CONFIG_NUMA 96 struct pglist_data __refdata contig_page_data; 97 EXPORT_SYMBOL(contig_page_data); 98 #endif 99 100 unsigned long max_low_pfn; 101 unsigned long min_low_pfn; 102 unsigned long max_pfn; 103 unsigned long long max_possible_pfn; 104 105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; 107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; 109 #endif 110 111 struct memblock memblock __initdata_memblock = { 112 .memory.regions = memblock_memory_init_regions, 113 .memory.cnt = 1, /* empty dummy entry */ 114 .memory.max = INIT_MEMBLOCK_REGIONS, 115 .memory.name = "memory", 116 117 .reserved.regions = memblock_reserved_init_regions, 118 .reserved.cnt = 1, /* empty dummy entry */ 119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, 120 .reserved.name = "reserved", 121 122 .bottom_up = false, 123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 124 }; 125 126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 127 struct memblock_type physmem = { 128 .regions = memblock_physmem_init_regions, 129 .cnt = 1, /* empty dummy entry */ 130 .max = INIT_PHYSMEM_REGIONS, 131 .name = "physmem", 132 }; 133 #endif 134 135 /* 136 * keep a pointer to &memblock.memory in the text section to use it in 137 * __next_mem_range() and its helpers. 138 * For architectures that do not keep memblock data after init, this 139 * pointer will be reset to NULL at memblock_discard() 140 */ 141 static __refdata struct memblock_type *memblock_memory = &memblock.memory; 142 143 #define for_each_memblock_type(i, memblock_type, rgn) \ 144 for (i = 0, rgn = &memblock_type->regions[0]; \ 145 i < memblock_type->cnt; \ 146 i++, rgn = &memblock_type->regions[i]) 147 148 #define memblock_dbg(fmt, ...) \ 149 do { \ 150 if (memblock_debug) \ 151 pr_info(fmt, ##__VA_ARGS__); \ 152 } while (0) 153 154 static int memblock_debug __initdata_memblock; 155 static bool system_has_some_mirror __initdata_memblock = false; 156 static int memblock_can_resize __initdata_memblock; 157 static int memblock_memory_in_slab __initdata_memblock = 0; 158 static int memblock_reserved_in_slab __initdata_memblock = 0; 159 160 static enum memblock_flags __init_memblock choose_memblock_flags(void) 161 { 162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 163 } 164 165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 167 { 168 return *size = min(*size, PHYS_ADDR_MAX - base); 169 } 170 171 /* 172 * Address comparison utilities 173 */ 174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 175 phys_addr_t base2, phys_addr_t size2) 176 { 177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 178 } 179 180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 181 phys_addr_t base, phys_addr_t size) 182 { 183 unsigned long i; 184 185 memblock_cap_size(base, &size); 186 187 for (i = 0; i < type->cnt; i++) 188 if (memblock_addrs_overlap(base, size, type->regions[i].base, 189 type->regions[i].size)) 190 break; 191 return i < type->cnt; 192 } 193 194 /** 195 * __memblock_find_range_bottom_up - find free area utility in bottom-up 196 * @start: start of candidate range 197 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 198 * %MEMBLOCK_ALLOC_ACCESSIBLE 199 * @size: size of free area to find 200 * @align: alignment of free area to find 201 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 202 * @flags: pick from blocks based on memory attributes 203 * 204 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 205 * 206 * Return: 207 * Found address on success, 0 on failure. 208 */ 209 static phys_addr_t __init_memblock 210 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 211 phys_addr_t size, phys_addr_t align, int nid, 212 enum memblock_flags flags) 213 { 214 phys_addr_t this_start, this_end, cand; 215 u64 i; 216 217 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 218 this_start = clamp(this_start, start, end); 219 this_end = clamp(this_end, start, end); 220 221 cand = round_up(this_start, align); 222 if (cand < this_end && this_end - cand >= size) 223 return cand; 224 } 225 226 return 0; 227 } 228 229 /** 230 * __memblock_find_range_top_down - find free area utility, in top-down 231 * @start: start of candidate range 232 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 233 * %MEMBLOCK_ALLOC_ACCESSIBLE 234 * @size: size of free area to find 235 * @align: alignment of free area to find 236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 237 * @flags: pick from blocks based on memory attributes 238 * 239 * Utility called from memblock_find_in_range_node(), find free area top-down. 240 * 241 * Return: 242 * Found address on success, 0 on failure. 243 */ 244 static phys_addr_t __init_memblock 245 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 246 phys_addr_t size, phys_addr_t align, int nid, 247 enum memblock_flags flags) 248 { 249 phys_addr_t this_start, this_end, cand; 250 u64 i; 251 252 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 253 NULL) { 254 this_start = clamp(this_start, start, end); 255 this_end = clamp(this_end, start, end); 256 257 if (this_end < size) 258 continue; 259 260 cand = round_down(this_end - size, align); 261 if (cand >= this_start) 262 return cand; 263 } 264 265 return 0; 266 } 267 268 /** 269 * memblock_find_in_range_node - find free area in given range and node 270 * @size: size of free area to find 271 * @align: alignment of free area to find 272 * @start: start of candidate range 273 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 274 * %MEMBLOCK_ALLOC_ACCESSIBLE 275 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 276 * @flags: pick from blocks based on memory attributes 277 * 278 * Find @size free area aligned to @align in the specified range and node. 279 * 280 * Return: 281 * Found address on success, 0 on failure. 282 */ 283 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 284 phys_addr_t align, phys_addr_t start, 285 phys_addr_t end, int nid, 286 enum memblock_flags flags) 287 { 288 /* pump up @end */ 289 if (end == MEMBLOCK_ALLOC_ACCESSIBLE || 290 end == MEMBLOCK_ALLOC_NOLEAKTRACE) 291 end = memblock.current_limit; 292 293 /* avoid allocating the first page */ 294 start = max_t(phys_addr_t, start, PAGE_SIZE); 295 end = max(start, end); 296 297 if (memblock_bottom_up()) 298 return __memblock_find_range_bottom_up(start, end, size, align, 299 nid, flags); 300 else 301 return __memblock_find_range_top_down(start, end, size, align, 302 nid, flags); 303 } 304 305 /** 306 * memblock_find_in_range - find free area in given range 307 * @start: start of candidate range 308 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 309 * %MEMBLOCK_ALLOC_ACCESSIBLE 310 * @size: size of free area to find 311 * @align: alignment of free area to find 312 * 313 * Find @size free area aligned to @align in the specified range. 314 * 315 * Return: 316 * Found address on success, 0 on failure. 317 */ 318 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 319 phys_addr_t end, phys_addr_t size, 320 phys_addr_t align) 321 { 322 phys_addr_t ret; 323 enum memblock_flags flags = choose_memblock_flags(); 324 325 again: 326 ret = memblock_find_in_range_node(size, align, start, end, 327 NUMA_NO_NODE, flags); 328 329 if (!ret && (flags & MEMBLOCK_MIRROR)) { 330 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 331 &size); 332 flags &= ~MEMBLOCK_MIRROR; 333 goto again; 334 } 335 336 return ret; 337 } 338 339 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 340 { 341 type->total_size -= type->regions[r].size; 342 memmove(&type->regions[r], &type->regions[r + 1], 343 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 344 type->cnt--; 345 346 /* Special case for empty arrays */ 347 if (type->cnt == 0) { 348 WARN_ON(type->total_size != 0); 349 type->cnt = 1; 350 type->regions[0].base = 0; 351 type->regions[0].size = 0; 352 type->regions[0].flags = 0; 353 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 354 } 355 } 356 357 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK 358 /** 359 * memblock_discard - discard memory and reserved arrays if they were allocated 360 */ 361 void __init memblock_discard(void) 362 { 363 phys_addr_t addr, size; 364 365 if (memblock.reserved.regions != memblock_reserved_init_regions) { 366 addr = __pa(memblock.reserved.regions); 367 size = PAGE_ALIGN(sizeof(struct memblock_region) * 368 memblock.reserved.max); 369 if (memblock_reserved_in_slab) 370 kfree(memblock.reserved.regions); 371 else 372 memblock_free_late(addr, size); 373 } 374 375 if (memblock.memory.regions != memblock_memory_init_regions) { 376 addr = __pa(memblock.memory.regions); 377 size = PAGE_ALIGN(sizeof(struct memblock_region) * 378 memblock.memory.max); 379 if (memblock_memory_in_slab) 380 kfree(memblock.memory.regions); 381 else 382 memblock_free_late(addr, size); 383 } 384 385 memblock_memory = NULL; 386 } 387 #endif 388 389 /** 390 * memblock_double_array - double the size of the memblock regions array 391 * @type: memblock type of the regions array being doubled 392 * @new_area_start: starting address of memory range to avoid overlap with 393 * @new_area_size: size of memory range to avoid overlap with 394 * 395 * Double the size of the @type regions array. If memblock is being used to 396 * allocate memory for a new reserved regions array and there is a previously 397 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 398 * waiting to be reserved, ensure the memory used by the new array does 399 * not overlap. 400 * 401 * Return: 402 * 0 on success, -1 on failure. 403 */ 404 static int __init_memblock memblock_double_array(struct memblock_type *type, 405 phys_addr_t new_area_start, 406 phys_addr_t new_area_size) 407 { 408 struct memblock_region *new_array, *old_array; 409 phys_addr_t old_alloc_size, new_alloc_size; 410 phys_addr_t old_size, new_size, addr, new_end; 411 int use_slab = slab_is_available(); 412 int *in_slab; 413 414 /* We don't allow resizing until we know about the reserved regions 415 * of memory that aren't suitable for allocation 416 */ 417 if (!memblock_can_resize) 418 return -1; 419 420 /* Calculate new doubled size */ 421 old_size = type->max * sizeof(struct memblock_region); 422 new_size = old_size << 1; 423 /* 424 * We need to allocated new one align to PAGE_SIZE, 425 * so we can free them completely later. 426 */ 427 old_alloc_size = PAGE_ALIGN(old_size); 428 new_alloc_size = PAGE_ALIGN(new_size); 429 430 /* Retrieve the slab flag */ 431 if (type == &memblock.memory) 432 in_slab = &memblock_memory_in_slab; 433 else 434 in_slab = &memblock_reserved_in_slab; 435 436 /* Try to find some space for it */ 437 if (use_slab) { 438 new_array = kmalloc(new_size, GFP_KERNEL); 439 addr = new_array ? __pa(new_array) : 0; 440 } else { 441 /* only exclude range when trying to double reserved.regions */ 442 if (type != &memblock.reserved) 443 new_area_start = new_area_size = 0; 444 445 addr = memblock_find_in_range(new_area_start + new_area_size, 446 memblock.current_limit, 447 new_alloc_size, PAGE_SIZE); 448 if (!addr && new_area_size) 449 addr = memblock_find_in_range(0, 450 min(new_area_start, memblock.current_limit), 451 new_alloc_size, PAGE_SIZE); 452 453 new_array = addr ? __va(addr) : NULL; 454 } 455 if (!addr) { 456 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 457 type->name, type->max, type->max * 2); 458 return -1; 459 } 460 461 new_end = addr + new_size - 1; 462 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 463 type->name, type->max * 2, &addr, &new_end); 464 465 /* 466 * Found space, we now need to move the array over before we add the 467 * reserved region since it may be our reserved array itself that is 468 * full. 469 */ 470 memcpy(new_array, type->regions, old_size); 471 memset(new_array + type->max, 0, old_size); 472 old_array = type->regions; 473 type->regions = new_array; 474 type->max <<= 1; 475 476 /* Free old array. We needn't free it if the array is the static one */ 477 if (*in_slab) 478 kfree(old_array); 479 else if (old_array != memblock_memory_init_regions && 480 old_array != memblock_reserved_init_regions) 481 memblock_free(old_array, old_alloc_size); 482 483 /* 484 * Reserve the new array if that comes from the memblock. Otherwise, we 485 * needn't do it 486 */ 487 if (!use_slab) 488 BUG_ON(memblock_reserve(addr, new_alloc_size)); 489 490 /* Update slab flag */ 491 *in_slab = use_slab; 492 493 return 0; 494 } 495 496 /** 497 * memblock_merge_regions - merge neighboring compatible regions 498 * @type: memblock type to scan 499 * 500 * Scan @type and merge neighboring compatible regions. 501 */ 502 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 503 { 504 int i = 0; 505 506 /* cnt never goes below 1 */ 507 while (i < type->cnt - 1) { 508 struct memblock_region *this = &type->regions[i]; 509 struct memblock_region *next = &type->regions[i + 1]; 510 511 if (this->base + this->size != next->base || 512 memblock_get_region_node(this) != 513 memblock_get_region_node(next) || 514 this->flags != next->flags) { 515 BUG_ON(this->base + this->size > next->base); 516 i++; 517 continue; 518 } 519 520 this->size += next->size; 521 /* move forward from next + 1, index of which is i + 2 */ 522 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 523 type->cnt--; 524 } 525 } 526 527 /** 528 * memblock_insert_region - insert new memblock region 529 * @type: memblock type to insert into 530 * @idx: index for the insertion point 531 * @base: base address of the new region 532 * @size: size of the new region 533 * @nid: node id of the new region 534 * @flags: flags of the new region 535 * 536 * Insert new memblock region [@base, @base + @size) into @type at @idx. 537 * @type must already have extra room to accommodate the new region. 538 */ 539 static void __init_memblock memblock_insert_region(struct memblock_type *type, 540 int idx, phys_addr_t base, 541 phys_addr_t size, 542 int nid, 543 enum memblock_flags flags) 544 { 545 struct memblock_region *rgn = &type->regions[idx]; 546 547 BUG_ON(type->cnt >= type->max); 548 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 549 rgn->base = base; 550 rgn->size = size; 551 rgn->flags = flags; 552 memblock_set_region_node(rgn, nid); 553 type->cnt++; 554 type->total_size += size; 555 } 556 557 /** 558 * memblock_add_range - add new memblock region 559 * @type: memblock type to add new region into 560 * @base: base address of the new region 561 * @size: size of the new region 562 * @nid: nid of the new region 563 * @flags: flags of the new region 564 * 565 * Add new memblock region [@base, @base + @size) into @type. The new region 566 * is allowed to overlap with existing ones - overlaps don't affect already 567 * existing regions. @type is guaranteed to be minimal (all neighbouring 568 * compatible regions are merged) after the addition. 569 * 570 * Return: 571 * 0 on success, -errno on failure. 572 */ 573 static int __init_memblock memblock_add_range(struct memblock_type *type, 574 phys_addr_t base, phys_addr_t size, 575 int nid, enum memblock_flags flags) 576 { 577 bool insert = false; 578 phys_addr_t obase = base; 579 phys_addr_t end = base + memblock_cap_size(base, &size); 580 int idx, nr_new; 581 struct memblock_region *rgn; 582 583 if (!size) 584 return 0; 585 586 /* special case for empty array */ 587 if (type->regions[0].size == 0) { 588 WARN_ON(type->cnt != 1 || type->total_size); 589 type->regions[0].base = base; 590 type->regions[0].size = size; 591 type->regions[0].flags = flags; 592 memblock_set_region_node(&type->regions[0], nid); 593 type->total_size = size; 594 return 0; 595 } 596 repeat: 597 /* 598 * The following is executed twice. Once with %false @insert and 599 * then with %true. The first counts the number of regions needed 600 * to accommodate the new area. The second actually inserts them. 601 */ 602 base = obase; 603 nr_new = 0; 604 605 for_each_memblock_type(idx, type, rgn) { 606 phys_addr_t rbase = rgn->base; 607 phys_addr_t rend = rbase + rgn->size; 608 609 if (rbase >= end) 610 break; 611 if (rend <= base) 612 continue; 613 /* 614 * @rgn overlaps. If it separates the lower part of new 615 * area, insert that portion. 616 */ 617 if (rbase > base) { 618 #ifdef CONFIG_NUMA 619 WARN_ON(nid != memblock_get_region_node(rgn)); 620 #endif 621 WARN_ON(flags != rgn->flags); 622 nr_new++; 623 if (insert) 624 memblock_insert_region(type, idx++, base, 625 rbase - base, nid, 626 flags); 627 } 628 /* area below @rend is dealt with, forget about it */ 629 base = min(rend, end); 630 } 631 632 /* insert the remaining portion */ 633 if (base < end) { 634 nr_new++; 635 if (insert) 636 memblock_insert_region(type, idx, base, end - base, 637 nid, flags); 638 } 639 640 if (!nr_new) 641 return 0; 642 643 /* 644 * If this was the first round, resize array and repeat for actual 645 * insertions; otherwise, merge and return. 646 */ 647 if (!insert) { 648 while (type->cnt + nr_new > type->max) 649 if (memblock_double_array(type, obase, size) < 0) 650 return -ENOMEM; 651 insert = true; 652 goto repeat; 653 } else { 654 memblock_merge_regions(type); 655 return 0; 656 } 657 } 658 659 /** 660 * memblock_add_node - add new memblock region within a NUMA node 661 * @base: base address of the new region 662 * @size: size of the new region 663 * @nid: nid of the new region 664 * @flags: flags of the new region 665 * 666 * Add new memblock region [@base, @base + @size) to the "memory" 667 * type. See memblock_add_range() description for mode details 668 * 669 * Return: 670 * 0 on success, -errno on failure. 671 */ 672 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 673 int nid, enum memblock_flags flags) 674 { 675 phys_addr_t end = base + size - 1; 676 677 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__, 678 &base, &end, nid, flags, (void *)_RET_IP_); 679 680 return memblock_add_range(&memblock.memory, base, size, nid, flags); 681 } 682 683 /** 684 * memblock_add - add new memblock region 685 * @base: base address of the new region 686 * @size: size of the new region 687 * 688 * Add new memblock region [@base, @base + @size) to the "memory" 689 * type. See memblock_add_range() description for mode details 690 * 691 * Return: 692 * 0 on success, -errno on failure. 693 */ 694 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 695 { 696 phys_addr_t end = base + size - 1; 697 698 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 699 &base, &end, (void *)_RET_IP_); 700 701 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 702 } 703 704 /** 705 * memblock_isolate_range - isolate given range into disjoint memblocks 706 * @type: memblock type to isolate range for 707 * @base: base of range to isolate 708 * @size: size of range to isolate 709 * @start_rgn: out parameter for the start of isolated region 710 * @end_rgn: out parameter for the end of isolated region 711 * 712 * Walk @type and ensure that regions don't cross the boundaries defined by 713 * [@base, @base + @size). Crossing regions are split at the boundaries, 714 * which may create at most two more regions. The index of the first 715 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 716 * 717 * Return: 718 * 0 on success, -errno on failure. 719 */ 720 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 721 phys_addr_t base, phys_addr_t size, 722 int *start_rgn, int *end_rgn) 723 { 724 phys_addr_t end = base + memblock_cap_size(base, &size); 725 int idx; 726 struct memblock_region *rgn; 727 728 *start_rgn = *end_rgn = 0; 729 730 if (!size) 731 return 0; 732 733 /* we'll create at most two more regions */ 734 while (type->cnt + 2 > type->max) 735 if (memblock_double_array(type, base, size) < 0) 736 return -ENOMEM; 737 738 for_each_memblock_type(idx, type, rgn) { 739 phys_addr_t rbase = rgn->base; 740 phys_addr_t rend = rbase + rgn->size; 741 742 if (rbase >= end) 743 break; 744 if (rend <= base) 745 continue; 746 747 if (rbase < base) { 748 /* 749 * @rgn intersects from below. Split and continue 750 * to process the next region - the new top half. 751 */ 752 rgn->base = base; 753 rgn->size -= base - rbase; 754 type->total_size -= base - rbase; 755 memblock_insert_region(type, idx, rbase, base - rbase, 756 memblock_get_region_node(rgn), 757 rgn->flags); 758 } else if (rend > end) { 759 /* 760 * @rgn intersects from above. Split and redo the 761 * current region - the new bottom half. 762 */ 763 rgn->base = end; 764 rgn->size -= end - rbase; 765 type->total_size -= end - rbase; 766 memblock_insert_region(type, idx--, rbase, end - rbase, 767 memblock_get_region_node(rgn), 768 rgn->flags); 769 } else { 770 /* @rgn is fully contained, record it */ 771 if (!*end_rgn) 772 *start_rgn = idx; 773 *end_rgn = idx + 1; 774 } 775 } 776 777 return 0; 778 } 779 780 static int __init_memblock memblock_remove_range(struct memblock_type *type, 781 phys_addr_t base, phys_addr_t size) 782 { 783 int start_rgn, end_rgn; 784 int i, ret; 785 786 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 787 if (ret) 788 return ret; 789 790 for (i = end_rgn - 1; i >= start_rgn; i--) 791 memblock_remove_region(type, i); 792 return 0; 793 } 794 795 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 796 { 797 phys_addr_t end = base + size - 1; 798 799 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 800 &base, &end, (void *)_RET_IP_); 801 802 return memblock_remove_range(&memblock.memory, base, size); 803 } 804 805 /** 806 * memblock_free - free boot memory allocation 807 * @ptr: starting address of the boot memory allocation 808 * @size: size of the boot memory block in bytes 809 * 810 * Free boot memory block previously allocated by memblock_alloc_xx() API. 811 * The freeing memory will not be released to the buddy allocator. 812 */ 813 void __init_memblock memblock_free(void *ptr, size_t size) 814 { 815 if (ptr) 816 memblock_phys_free(__pa(ptr), size); 817 } 818 819 /** 820 * memblock_phys_free - free boot memory block 821 * @base: phys starting address of the boot memory block 822 * @size: size of the boot memory block in bytes 823 * 824 * Free boot memory block previously allocated by memblock_alloc_xx() API. 825 * The freeing memory will not be released to the buddy allocator. 826 */ 827 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size) 828 { 829 phys_addr_t end = base + size - 1; 830 831 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 832 &base, &end, (void *)_RET_IP_); 833 834 kmemleak_free_part_phys(base, size); 835 return memblock_remove_range(&memblock.reserved, base, size); 836 } 837 838 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 839 { 840 phys_addr_t end = base + size - 1; 841 842 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 843 &base, &end, (void *)_RET_IP_); 844 845 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 846 } 847 848 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 849 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) 850 { 851 phys_addr_t end = base + size - 1; 852 853 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 854 &base, &end, (void *)_RET_IP_); 855 856 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); 857 } 858 #endif 859 860 /** 861 * memblock_setclr_flag - set or clear flag for a memory region 862 * @base: base address of the region 863 * @size: size of the region 864 * @set: set or clear the flag 865 * @flag: the flag to update 866 * 867 * This function isolates region [@base, @base + @size), and sets/clears flag 868 * 869 * Return: 0 on success, -errno on failure. 870 */ 871 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 872 phys_addr_t size, int set, int flag) 873 { 874 struct memblock_type *type = &memblock.memory; 875 int i, ret, start_rgn, end_rgn; 876 877 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 878 if (ret) 879 return ret; 880 881 for (i = start_rgn; i < end_rgn; i++) { 882 struct memblock_region *r = &type->regions[i]; 883 884 if (set) 885 r->flags |= flag; 886 else 887 r->flags &= ~flag; 888 } 889 890 memblock_merge_regions(type); 891 return 0; 892 } 893 894 /** 895 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 896 * @base: the base phys addr of the region 897 * @size: the size of the region 898 * 899 * Return: 0 on success, -errno on failure. 900 */ 901 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 902 { 903 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 904 } 905 906 /** 907 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 908 * @base: the base phys addr of the region 909 * @size: the size of the region 910 * 911 * Return: 0 on success, -errno on failure. 912 */ 913 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 914 { 915 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 916 } 917 918 /** 919 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 920 * @base: the base phys addr of the region 921 * @size: the size of the region 922 * 923 * Return: 0 on success, -errno on failure. 924 */ 925 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 926 { 927 system_has_some_mirror = true; 928 929 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 930 } 931 932 /** 933 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 934 * @base: the base phys addr of the region 935 * @size: the size of the region 936 * 937 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the 938 * direct mapping of the physical memory. These regions will still be 939 * covered by the memory map. The struct page representing NOMAP memory 940 * frames in the memory map will be PageReserved() 941 * 942 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from 943 * memblock, the caller must inform kmemleak to ignore that memory 944 * 945 * Return: 0 on success, -errno on failure. 946 */ 947 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 948 { 949 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 950 } 951 952 /** 953 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 954 * @base: the base phys addr of the region 955 * @size: the size of the region 956 * 957 * Return: 0 on success, -errno on failure. 958 */ 959 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 960 { 961 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 962 } 963 964 static bool should_skip_region(struct memblock_type *type, 965 struct memblock_region *m, 966 int nid, int flags) 967 { 968 int m_nid = memblock_get_region_node(m); 969 970 /* we never skip regions when iterating memblock.reserved or physmem */ 971 if (type != memblock_memory) 972 return false; 973 974 /* only memory regions are associated with nodes, check it */ 975 if (nid != NUMA_NO_NODE && nid != m_nid) 976 return true; 977 978 /* skip hotpluggable memory regions if needed */ 979 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) && 980 !(flags & MEMBLOCK_HOTPLUG)) 981 return true; 982 983 /* if we want mirror memory skip non-mirror memory regions */ 984 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 985 return true; 986 987 /* skip nomap memory unless we were asked for it explicitly */ 988 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 989 return true; 990 991 /* skip driver-managed memory unless we were asked for it explicitly */ 992 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m)) 993 return true; 994 995 return false; 996 } 997 998 /** 999 * __next_mem_range - next function for for_each_free_mem_range() etc. 1000 * @idx: pointer to u64 loop variable 1001 * @nid: node selector, %NUMA_NO_NODE for all nodes 1002 * @flags: pick from blocks based on memory attributes 1003 * @type_a: pointer to memblock_type from where the range is taken 1004 * @type_b: pointer to memblock_type which excludes memory from being taken 1005 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1006 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1007 * @out_nid: ptr to int for nid of the range, can be %NULL 1008 * 1009 * Find the first area from *@idx which matches @nid, fill the out 1010 * parameters, and update *@idx for the next iteration. The lower 32bit of 1011 * *@idx contains index into type_a and the upper 32bit indexes the 1012 * areas before each region in type_b. For example, if type_b regions 1013 * look like the following, 1014 * 1015 * 0:[0-16), 1:[32-48), 2:[128-130) 1016 * 1017 * The upper 32bit indexes the following regions. 1018 * 1019 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 1020 * 1021 * As both region arrays are sorted, the function advances the two indices 1022 * in lockstep and returns each intersection. 1023 */ 1024 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, 1025 struct memblock_type *type_a, 1026 struct memblock_type *type_b, phys_addr_t *out_start, 1027 phys_addr_t *out_end, int *out_nid) 1028 { 1029 int idx_a = *idx & 0xffffffff; 1030 int idx_b = *idx >> 32; 1031 1032 if (WARN_ONCE(nid == MAX_NUMNODES, 1033 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1034 nid = NUMA_NO_NODE; 1035 1036 for (; idx_a < type_a->cnt; idx_a++) { 1037 struct memblock_region *m = &type_a->regions[idx_a]; 1038 1039 phys_addr_t m_start = m->base; 1040 phys_addr_t m_end = m->base + m->size; 1041 int m_nid = memblock_get_region_node(m); 1042 1043 if (should_skip_region(type_a, m, nid, flags)) 1044 continue; 1045 1046 if (!type_b) { 1047 if (out_start) 1048 *out_start = m_start; 1049 if (out_end) 1050 *out_end = m_end; 1051 if (out_nid) 1052 *out_nid = m_nid; 1053 idx_a++; 1054 *idx = (u32)idx_a | (u64)idx_b << 32; 1055 return; 1056 } 1057 1058 /* scan areas before each reservation */ 1059 for (; idx_b < type_b->cnt + 1; idx_b++) { 1060 struct memblock_region *r; 1061 phys_addr_t r_start; 1062 phys_addr_t r_end; 1063 1064 r = &type_b->regions[idx_b]; 1065 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1066 r_end = idx_b < type_b->cnt ? 1067 r->base : PHYS_ADDR_MAX; 1068 1069 /* 1070 * if idx_b advanced past idx_a, 1071 * break out to advance idx_a 1072 */ 1073 if (r_start >= m_end) 1074 break; 1075 /* if the two regions intersect, we're done */ 1076 if (m_start < r_end) { 1077 if (out_start) 1078 *out_start = 1079 max(m_start, r_start); 1080 if (out_end) 1081 *out_end = min(m_end, r_end); 1082 if (out_nid) 1083 *out_nid = m_nid; 1084 /* 1085 * The region which ends first is 1086 * advanced for the next iteration. 1087 */ 1088 if (m_end <= r_end) 1089 idx_a++; 1090 else 1091 idx_b++; 1092 *idx = (u32)idx_a | (u64)idx_b << 32; 1093 return; 1094 } 1095 } 1096 } 1097 1098 /* signal end of iteration */ 1099 *idx = ULLONG_MAX; 1100 } 1101 1102 /** 1103 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1104 * 1105 * @idx: pointer to u64 loop variable 1106 * @nid: node selector, %NUMA_NO_NODE for all nodes 1107 * @flags: pick from blocks based on memory attributes 1108 * @type_a: pointer to memblock_type from where the range is taken 1109 * @type_b: pointer to memblock_type which excludes memory from being taken 1110 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1111 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1112 * @out_nid: ptr to int for nid of the range, can be %NULL 1113 * 1114 * Finds the next range from type_a which is not marked as unsuitable 1115 * in type_b. 1116 * 1117 * Reverse of __next_mem_range(). 1118 */ 1119 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1120 enum memblock_flags flags, 1121 struct memblock_type *type_a, 1122 struct memblock_type *type_b, 1123 phys_addr_t *out_start, 1124 phys_addr_t *out_end, int *out_nid) 1125 { 1126 int idx_a = *idx & 0xffffffff; 1127 int idx_b = *idx >> 32; 1128 1129 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1130 nid = NUMA_NO_NODE; 1131 1132 if (*idx == (u64)ULLONG_MAX) { 1133 idx_a = type_a->cnt - 1; 1134 if (type_b != NULL) 1135 idx_b = type_b->cnt; 1136 else 1137 idx_b = 0; 1138 } 1139 1140 for (; idx_a >= 0; idx_a--) { 1141 struct memblock_region *m = &type_a->regions[idx_a]; 1142 1143 phys_addr_t m_start = m->base; 1144 phys_addr_t m_end = m->base + m->size; 1145 int m_nid = memblock_get_region_node(m); 1146 1147 if (should_skip_region(type_a, m, nid, flags)) 1148 continue; 1149 1150 if (!type_b) { 1151 if (out_start) 1152 *out_start = m_start; 1153 if (out_end) 1154 *out_end = m_end; 1155 if (out_nid) 1156 *out_nid = m_nid; 1157 idx_a--; 1158 *idx = (u32)idx_a | (u64)idx_b << 32; 1159 return; 1160 } 1161 1162 /* scan areas before each reservation */ 1163 for (; idx_b >= 0; idx_b--) { 1164 struct memblock_region *r; 1165 phys_addr_t r_start; 1166 phys_addr_t r_end; 1167 1168 r = &type_b->regions[idx_b]; 1169 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1170 r_end = idx_b < type_b->cnt ? 1171 r->base : PHYS_ADDR_MAX; 1172 /* 1173 * if idx_b advanced past idx_a, 1174 * break out to advance idx_a 1175 */ 1176 1177 if (r_end <= m_start) 1178 break; 1179 /* if the two regions intersect, we're done */ 1180 if (m_end > r_start) { 1181 if (out_start) 1182 *out_start = max(m_start, r_start); 1183 if (out_end) 1184 *out_end = min(m_end, r_end); 1185 if (out_nid) 1186 *out_nid = m_nid; 1187 if (m_start >= r_start) 1188 idx_a--; 1189 else 1190 idx_b--; 1191 *idx = (u32)idx_a | (u64)idx_b << 32; 1192 return; 1193 } 1194 } 1195 } 1196 /* signal end of iteration */ 1197 *idx = ULLONG_MAX; 1198 } 1199 1200 /* 1201 * Common iterator interface used to define for_each_mem_pfn_range(). 1202 */ 1203 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1204 unsigned long *out_start_pfn, 1205 unsigned long *out_end_pfn, int *out_nid) 1206 { 1207 struct memblock_type *type = &memblock.memory; 1208 struct memblock_region *r; 1209 int r_nid; 1210 1211 while (++*idx < type->cnt) { 1212 r = &type->regions[*idx]; 1213 r_nid = memblock_get_region_node(r); 1214 1215 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1216 continue; 1217 if (nid == MAX_NUMNODES || nid == r_nid) 1218 break; 1219 } 1220 if (*idx >= type->cnt) { 1221 *idx = -1; 1222 return; 1223 } 1224 1225 if (out_start_pfn) 1226 *out_start_pfn = PFN_UP(r->base); 1227 if (out_end_pfn) 1228 *out_end_pfn = PFN_DOWN(r->base + r->size); 1229 if (out_nid) 1230 *out_nid = r_nid; 1231 } 1232 1233 /** 1234 * memblock_set_node - set node ID on memblock regions 1235 * @base: base of area to set node ID for 1236 * @size: size of area to set node ID for 1237 * @type: memblock type to set node ID for 1238 * @nid: node ID to set 1239 * 1240 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1241 * Regions which cross the area boundaries are split as necessary. 1242 * 1243 * Return: 1244 * 0 on success, -errno on failure. 1245 */ 1246 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1247 struct memblock_type *type, int nid) 1248 { 1249 #ifdef CONFIG_NUMA 1250 int start_rgn, end_rgn; 1251 int i, ret; 1252 1253 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1254 if (ret) 1255 return ret; 1256 1257 for (i = start_rgn; i < end_rgn; i++) 1258 memblock_set_region_node(&type->regions[i], nid); 1259 1260 memblock_merge_regions(type); 1261 #endif 1262 return 0; 1263 } 1264 1265 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1266 /** 1267 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() 1268 * 1269 * @idx: pointer to u64 loop variable 1270 * @zone: zone in which all of the memory blocks reside 1271 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL 1272 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL 1273 * 1274 * This function is meant to be a zone/pfn specific wrapper for the 1275 * for_each_mem_range type iterators. Specifically they are used in the 1276 * deferred memory init routines and as such we were duplicating much of 1277 * this logic throughout the code. So instead of having it in multiple 1278 * locations it seemed like it would make more sense to centralize this to 1279 * one new iterator that does everything they need. 1280 */ 1281 void __init_memblock 1282 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 1283 unsigned long *out_spfn, unsigned long *out_epfn) 1284 { 1285 int zone_nid = zone_to_nid(zone); 1286 phys_addr_t spa, epa; 1287 int nid; 1288 1289 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1290 &memblock.memory, &memblock.reserved, 1291 &spa, &epa, &nid); 1292 1293 while (*idx != U64_MAX) { 1294 unsigned long epfn = PFN_DOWN(epa); 1295 unsigned long spfn = PFN_UP(spa); 1296 1297 /* 1298 * Verify the end is at least past the start of the zone and 1299 * that we have at least one PFN to initialize. 1300 */ 1301 if (zone->zone_start_pfn < epfn && spfn < epfn) { 1302 /* if we went too far just stop searching */ 1303 if (zone_end_pfn(zone) <= spfn) { 1304 *idx = U64_MAX; 1305 break; 1306 } 1307 1308 if (out_spfn) 1309 *out_spfn = max(zone->zone_start_pfn, spfn); 1310 if (out_epfn) 1311 *out_epfn = min(zone_end_pfn(zone), epfn); 1312 1313 return; 1314 } 1315 1316 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1317 &memblock.memory, &memblock.reserved, 1318 &spa, &epa, &nid); 1319 } 1320 1321 /* signal end of iteration */ 1322 if (out_spfn) 1323 *out_spfn = ULONG_MAX; 1324 if (out_epfn) 1325 *out_epfn = 0; 1326 } 1327 1328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1329 1330 /** 1331 * memblock_alloc_range_nid - allocate boot memory block 1332 * @size: size of memory block to be allocated in bytes 1333 * @align: alignment of the region and block's size 1334 * @start: the lower bound of the memory region to allocate (phys address) 1335 * @end: the upper bound of the memory region to allocate (phys address) 1336 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1337 * @exact_nid: control the allocation fall back to other nodes 1338 * 1339 * The allocation is performed from memory region limited by 1340 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. 1341 * 1342 * If the specified node can not hold the requested memory and @exact_nid 1343 * is false, the allocation falls back to any node in the system. 1344 * 1345 * For systems with memory mirroring, the allocation is attempted first 1346 * from the regions with mirroring enabled and then retried from any 1347 * memory region. 1348 * 1349 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for 1350 * allocated boot memory block, so that it is never reported as leaks. 1351 * 1352 * Return: 1353 * Physical address of allocated memory block on success, %0 on failure. 1354 */ 1355 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1356 phys_addr_t align, phys_addr_t start, 1357 phys_addr_t end, int nid, 1358 bool exact_nid) 1359 { 1360 enum memblock_flags flags = choose_memblock_flags(); 1361 phys_addr_t found; 1362 1363 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1364 nid = NUMA_NO_NODE; 1365 1366 if (!align) { 1367 /* Can't use WARNs this early in boot on powerpc */ 1368 dump_stack(); 1369 align = SMP_CACHE_BYTES; 1370 } 1371 1372 again: 1373 found = memblock_find_in_range_node(size, align, start, end, nid, 1374 flags); 1375 if (found && !memblock_reserve(found, size)) 1376 goto done; 1377 1378 if (nid != NUMA_NO_NODE && !exact_nid) { 1379 found = memblock_find_in_range_node(size, align, start, 1380 end, NUMA_NO_NODE, 1381 flags); 1382 if (found && !memblock_reserve(found, size)) 1383 goto done; 1384 } 1385 1386 if (flags & MEMBLOCK_MIRROR) { 1387 flags &= ~MEMBLOCK_MIRROR; 1388 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1389 &size); 1390 goto again; 1391 } 1392 1393 return 0; 1394 1395 done: 1396 /* 1397 * Skip kmemleak for those places like kasan_init() and 1398 * early_pgtable_alloc() due to high volume. 1399 */ 1400 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE) 1401 /* 1402 * The min_count is set to 0 so that memblock allocated 1403 * blocks are never reported as leaks. This is because many 1404 * of these blocks are only referred via the physical 1405 * address which is not looked up by kmemleak. 1406 */ 1407 kmemleak_alloc_phys(found, size, 0, 0); 1408 1409 return found; 1410 } 1411 1412 /** 1413 * memblock_phys_alloc_range - allocate a memory block inside specified range 1414 * @size: size of memory block to be allocated in bytes 1415 * @align: alignment of the region and block's size 1416 * @start: the lower bound of the memory region to allocate (physical address) 1417 * @end: the upper bound of the memory region to allocate (physical address) 1418 * 1419 * Allocate @size bytes in the between @start and @end. 1420 * 1421 * Return: physical address of the allocated memory block on success, 1422 * %0 on failure. 1423 */ 1424 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, 1425 phys_addr_t align, 1426 phys_addr_t start, 1427 phys_addr_t end) 1428 { 1429 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n", 1430 __func__, (u64)size, (u64)align, &start, &end, 1431 (void *)_RET_IP_); 1432 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1433 false); 1434 } 1435 1436 /** 1437 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node 1438 * @size: size of memory block to be allocated in bytes 1439 * @align: alignment of the region and block's size 1440 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1441 * 1442 * Allocates memory block from the specified NUMA node. If the node 1443 * has no available memory, attempts to allocated from any node in the 1444 * system. 1445 * 1446 * Return: physical address of the allocated memory block on success, 1447 * %0 on failure. 1448 */ 1449 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1450 { 1451 return memblock_alloc_range_nid(size, align, 0, 1452 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); 1453 } 1454 1455 /** 1456 * memblock_alloc_internal - allocate boot memory block 1457 * @size: size of memory block to be allocated in bytes 1458 * @align: alignment of the region and block's size 1459 * @min_addr: the lower bound of the memory region to allocate (phys address) 1460 * @max_addr: the upper bound of the memory region to allocate (phys address) 1461 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1462 * @exact_nid: control the allocation fall back to other nodes 1463 * 1464 * Allocates memory block using memblock_alloc_range_nid() and 1465 * converts the returned physical address to virtual. 1466 * 1467 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1468 * will fall back to memory below @min_addr. Other constraints, such 1469 * as node and mirrored memory will be handled again in 1470 * memblock_alloc_range_nid(). 1471 * 1472 * Return: 1473 * Virtual address of allocated memory block on success, NULL on failure. 1474 */ 1475 static void * __init memblock_alloc_internal( 1476 phys_addr_t size, phys_addr_t align, 1477 phys_addr_t min_addr, phys_addr_t max_addr, 1478 int nid, bool exact_nid) 1479 { 1480 phys_addr_t alloc; 1481 1482 /* 1483 * Detect any accidental use of these APIs after slab is ready, as at 1484 * this moment memblock may be deinitialized already and its 1485 * internal data may be destroyed (after execution of memblock_free_all) 1486 */ 1487 if (WARN_ON_ONCE(slab_is_available())) 1488 return kzalloc_node(size, GFP_NOWAIT, nid); 1489 1490 if (max_addr > memblock.current_limit) 1491 max_addr = memblock.current_limit; 1492 1493 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, 1494 exact_nid); 1495 1496 /* retry allocation without lower limit */ 1497 if (!alloc && min_addr) 1498 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, 1499 exact_nid); 1500 1501 if (!alloc) 1502 return NULL; 1503 1504 return phys_to_virt(alloc); 1505 } 1506 1507 /** 1508 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node 1509 * without zeroing memory 1510 * @size: size of memory block to be allocated in bytes 1511 * @align: alignment of the region and block's size 1512 * @min_addr: the lower bound of the memory region from where the allocation 1513 * is preferred (phys address) 1514 * @max_addr: the upper bound of the memory region from where the allocation 1515 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1516 * allocate only from memory limited by memblock.current_limit value 1517 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1518 * 1519 * Public function, provides additional debug information (including caller 1520 * info), if enabled. Does not zero allocated memory. 1521 * 1522 * Return: 1523 * Virtual address of allocated memory block on success, NULL on failure. 1524 */ 1525 void * __init memblock_alloc_exact_nid_raw( 1526 phys_addr_t size, phys_addr_t align, 1527 phys_addr_t min_addr, phys_addr_t max_addr, 1528 int nid) 1529 { 1530 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1531 __func__, (u64)size, (u64)align, nid, &min_addr, 1532 &max_addr, (void *)_RET_IP_); 1533 1534 return memblock_alloc_internal(size, align, min_addr, max_addr, nid, 1535 true); 1536 } 1537 1538 /** 1539 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing 1540 * memory and without panicking 1541 * @size: size of memory block to be allocated in bytes 1542 * @align: alignment of the region and block's size 1543 * @min_addr: the lower bound of the memory region from where the allocation 1544 * is preferred (phys address) 1545 * @max_addr: the upper bound of the memory region from where the allocation 1546 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1547 * allocate only from memory limited by memblock.current_limit value 1548 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1549 * 1550 * Public function, provides additional debug information (including caller 1551 * info), if enabled. Does not zero allocated memory, does not panic if request 1552 * cannot be satisfied. 1553 * 1554 * Return: 1555 * Virtual address of allocated memory block on success, NULL on failure. 1556 */ 1557 void * __init memblock_alloc_try_nid_raw( 1558 phys_addr_t size, phys_addr_t align, 1559 phys_addr_t min_addr, phys_addr_t max_addr, 1560 int nid) 1561 { 1562 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1563 __func__, (u64)size, (u64)align, nid, &min_addr, 1564 &max_addr, (void *)_RET_IP_); 1565 1566 return memblock_alloc_internal(size, align, min_addr, max_addr, nid, 1567 false); 1568 } 1569 1570 /** 1571 * memblock_alloc_try_nid - allocate boot memory block 1572 * @size: size of memory block to be allocated in bytes 1573 * @align: alignment of the region and block's size 1574 * @min_addr: the lower bound of the memory region from where the allocation 1575 * is preferred (phys address) 1576 * @max_addr: the upper bound of the memory region from where the allocation 1577 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1578 * allocate only from memory limited by memblock.current_limit value 1579 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1580 * 1581 * Public function, provides additional debug information (including caller 1582 * info), if enabled. This function zeroes the allocated memory. 1583 * 1584 * Return: 1585 * Virtual address of allocated memory block on success, NULL on failure. 1586 */ 1587 void * __init memblock_alloc_try_nid( 1588 phys_addr_t size, phys_addr_t align, 1589 phys_addr_t min_addr, phys_addr_t max_addr, 1590 int nid) 1591 { 1592 void *ptr; 1593 1594 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1595 __func__, (u64)size, (u64)align, nid, &min_addr, 1596 &max_addr, (void *)_RET_IP_); 1597 ptr = memblock_alloc_internal(size, align, 1598 min_addr, max_addr, nid, false); 1599 if (ptr) 1600 memset(ptr, 0, size); 1601 1602 return ptr; 1603 } 1604 1605 /** 1606 * memblock_free_late - free pages directly to buddy allocator 1607 * @base: phys starting address of the boot memory block 1608 * @size: size of the boot memory block in bytes 1609 * 1610 * This is only useful when the memblock allocator has already been torn 1611 * down, but we are still initializing the system. Pages are released directly 1612 * to the buddy allocator. 1613 */ 1614 void __init memblock_free_late(phys_addr_t base, phys_addr_t size) 1615 { 1616 phys_addr_t cursor, end; 1617 1618 end = base + size - 1; 1619 memblock_dbg("%s: [%pa-%pa] %pS\n", 1620 __func__, &base, &end, (void *)_RET_IP_); 1621 kmemleak_free_part_phys(base, size); 1622 cursor = PFN_UP(base); 1623 end = PFN_DOWN(base + size); 1624 1625 for (; cursor < end; cursor++) { 1626 memblock_free_pages(pfn_to_page(cursor), cursor, 0); 1627 totalram_pages_inc(); 1628 } 1629 } 1630 1631 /* 1632 * Remaining API functions 1633 */ 1634 1635 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1636 { 1637 return memblock.memory.total_size; 1638 } 1639 1640 phys_addr_t __init_memblock memblock_reserved_size(void) 1641 { 1642 return memblock.reserved.total_size; 1643 } 1644 1645 /* lowest address */ 1646 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1647 { 1648 return memblock.memory.regions[0].base; 1649 } 1650 1651 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1652 { 1653 int idx = memblock.memory.cnt - 1; 1654 1655 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1656 } 1657 1658 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1659 { 1660 phys_addr_t max_addr = PHYS_ADDR_MAX; 1661 struct memblock_region *r; 1662 1663 /* 1664 * translate the memory @limit size into the max address within one of 1665 * the memory memblock regions, if the @limit exceeds the total size 1666 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1667 */ 1668 for_each_mem_region(r) { 1669 if (limit <= r->size) { 1670 max_addr = r->base + limit; 1671 break; 1672 } 1673 limit -= r->size; 1674 } 1675 1676 return max_addr; 1677 } 1678 1679 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1680 { 1681 phys_addr_t max_addr; 1682 1683 if (!limit) 1684 return; 1685 1686 max_addr = __find_max_addr(limit); 1687 1688 /* @limit exceeds the total size of the memory, do nothing */ 1689 if (max_addr == PHYS_ADDR_MAX) 1690 return; 1691 1692 /* truncate both memory and reserved regions */ 1693 memblock_remove_range(&memblock.memory, max_addr, 1694 PHYS_ADDR_MAX); 1695 memblock_remove_range(&memblock.reserved, max_addr, 1696 PHYS_ADDR_MAX); 1697 } 1698 1699 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1700 { 1701 int start_rgn, end_rgn; 1702 int i, ret; 1703 1704 if (!size) 1705 return; 1706 1707 if (!memblock_memory->total_size) { 1708 pr_warn("%s: No memory registered yet\n", __func__); 1709 return; 1710 } 1711 1712 ret = memblock_isolate_range(&memblock.memory, base, size, 1713 &start_rgn, &end_rgn); 1714 if (ret) 1715 return; 1716 1717 /* remove all the MAP regions */ 1718 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1719 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1720 memblock_remove_region(&memblock.memory, i); 1721 1722 for (i = start_rgn - 1; i >= 0; i--) 1723 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1724 memblock_remove_region(&memblock.memory, i); 1725 1726 /* truncate the reserved regions */ 1727 memblock_remove_range(&memblock.reserved, 0, base); 1728 memblock_remove_range(&memblock.reserved, 1729 base + size, PHYS_ADDR_MAX); 1730 } 1731 1732 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1733 { 1734 phys_addr_t max_addr; 1735 1736 if (!limit) 1737 return; 1738 1739 max_addr = __find_max_addr(limit); 1740 1741 /* @limit exceeds the total size of the memory, do nothing */ 1742 if (max_addr == PHYS_ADDR_MAX) 1743 return; 1744 1745 memblock_cap_memory_range(0, max_addr); 1746 } 1747 1748 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1749 { 1750 unsigned int left = 0, right = type->cnt; 1751 1752 do { 1753 unsigned int mid = (right + left) / 2; 1754 1755 if (addr < type->regions[mid].base) 1756 right = mid; 1757 else if (addr >= (type->regions[mid].base + 1758 type->regions[mid].size)) 1759 left = mid + 1; 1760 else 1761 return mid; 1762 } while (left < right); 1763 return -1; 1764 } 1765 1766 bool __init_memblock memblock_is_reserved(phys_addr_t addr) 1767 { 1768 return memblock_search(&memblock.reserved, addr) != -1; 1769 } 1770 1771 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1772 { 1773 return memblock_search(&memblock.memory, addr) != -1; 1774 } 1775 1776 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1777 { 1778 int i = memblock_search(&memblock.memory, addr); 1779 1780 if (i == -1) 1781 return false; 1782 return !memblock_is_nomap(&memblock.memory.regions[i]); 1783 } 1784 1785 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1786 unsigned long *start_pfn, unsigned long *end_pfn) 1787 { 1788 struct memblock_type *type = &memblock.memory; 1789 int mid = memblock_search(type, PFN_PHYS(pfn)); 1790 1791 if (mid == -1) 1792 return -1; 1793 1794 *start_pfn = PFN_DOWN(type->regions[mid].base); 1795 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1796 1797 return memblock_get_region_node(&type->regions[mid]); 1798 } 1799 1800 /** 1801 * memblock_is_region_memory - check if a region is a subset of memory 1802 * @base: base of region to check 1803 * @size: size of region to check 1804 * 1805 * Check if the region [@base, @base + @size) is a subset of a memory block. 1806 * 1807 * Return: 1808 * 0 if false, non-zero if true 1809 */ 1810 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1811 { 1812 int idx = memblock_search(&memblock.memory, base); 1813 phys_addr_t end = base + memblock_cap_size(base, &size); 1814 1815 if (idx == -1) 1816 return false; 1817 return (memblock.memory.regions[idx].base + 1818 memblock.memory.regions[idx].size) >= end; 1819 } 1820 1821 /** 1822 * memblock_is_region_reserved - check if a region intersects reserved memory 1823 * @base: base of region to check 1824 * @size: size of region to check 1825 * 1826 * Check if the region [@base, @base + @size) intersects a reserved 1827 * memory block. 1828 * 1829 * Return: 1830 * True if they intersect, false if not. 1831 */ 1832 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1833 { 1834 return memblock_overlaps_region(&memblock.reserved, base, size); 1835 } 1836 1837 void __init_memblock memblock_trim_memory(phys_addr_t align) 1838 { 1839 phys_addr_t start, end, orig_start, orig_end; 1840 struct memblock_region *r; 1841 1842 for_each_mem_region(r) { 1843 orig_start = r->base; 1844 orig_end = r->base + r->size; 1845 start = round_up(orig_start, align); 1846 end = round_down(orig_end, align); 1847 1848 if (start == orig_start && end == orig_end) 1849 continue; 1850 1851 if (start < end) { 1852 r->base = start; 1853 r->size = end - start; 1854 } else { 1855 memblock_remove_region(&memblock.memory, 1856 r - memblock.memory.regions); 1857 r--; 1858 } 1859 } 1860 } 1861 1862 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1863 { 1864 memblock.current_limit = limit; 1865 } 1866 1867 phys_addr_t __init_memblock memblock_get_current_limit(void) 1868 { 1869 return memblock.current_limit; 1870 } 1871 1872 static void __init_memblock memblock_dump(struct memblock_type *type) 1873 { 1874 phys_addr_t base, end, size; 1875 enum memblock_flags flags; 1876 int idx; 1877 struct memblock_region *rgn; 1878 1879 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1880 1881 for_each_memblock_type(idx, type, rgn) { 1882 char nid_buf[32] = ""; 1883 1884 base = rgn->base; 1885 size = rgn->size; 1886 end = base + size - 1; 1887 flags = rgn->flags; 1888 #ifdef CONFIG_NUMA 1889 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1890 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1891 memblock_get_region_node(rgn)); 1892 #endif 1893 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 1894 type->name, idx, &base, &end, &size, nid_buf, flags); 1895 } 1896 } 1897 1898 static void __init_memblock __memblock_dump_all(void) 1899 { 1900 pr_info("MEMBLOCK configuration:\n"); 1901 pr_info(" memory size = %pa reserved size = %pa\n", 1902 &memblock.memory.total_size, 1903 &memblock.reserved.total_size); 1904 1905 memblock_dump(&memblock.memory); 1906 memblock_dump(&memblock.reserved); 1907 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1908 memblock_dump(&physmem); 1909 #endif 1910 } 1911 1912 void __init_memblock memblock_dump_all(void) 1913 { 1914 if (memblock_debug) 1915 __memblock_dump_all(); 1916 } 1917 1918 void __init memblock_allow_resize(void) 1919 { 1920 memblock_can_resize = 1; 1921 } 1922 1923 static int __init early_memblock(char *p) 1924 { 1925 if (p && strstr(p, "debug")) 1926 memblock_debug = 1; 1927 return 0; 1928 } 1929 early_param("memblock", early_memblock); 1930 1931 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn) 1932 { 1933 struct page *start_pg, *end_pg; 1934 phys_addr_t pg, pgend; 1935 1936 /* 1937 * Convert start_pfn/end_pfn to a struct page pointer. 1938 */ 1939 start_pg = pfn_to_page(start_pfn - 1) + 1; 1940 end_pg = pfn_to_page(end_pfn - 1) + 1; 1941 1942 /* 1943 * Convert to physical addresses, and round start upwards and end 1944 * downwards. 1945 */ 1946 pg = PAGE_ALIGN(__pa(start_pg)); 1947 pgend = __pa(end_pg) & PAGE_MASK; 1948 1949 /* 1950 * If there are free pages between these, free the section of the 1951 * memmap array. 1952 */ 1953 if (pg < pgend) 1954 memblock_phys_free(pg, pgend - pg); 1955 } 1956 1957 /* 1958 * The mem_map array can get very big. Free the unused area of the memory map. 1959 */ 1960 static void __init free_unused_memmap(void) 1961 { 1962 unsigned long start, end, prev_end = 0; 1963 int i; 1964 1965 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) || 1966 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 1967 return; 1968 1969 /* 1970 * This relies on each bank being in address order. 1971 * The banks are sorted previously in bootmem_init(). 1972 */ 1973 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { 1974 #ifdef CONFIG_SPARSEMEM 1975 /* 1976 * Take care not to free memmap entries that don't exist 1977 * due to SPARSEMEM sections which aren't present. 1978 */ 1979 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 1980 #endif 1981 /* 1982 * Align down here since many operations in VM subsystem 1983 * presume that there are no holes in the memory map inside 1984 * a pageblock 1985 */ 1986 start = round_down(start, pageblock_nr_pages); 1987 1988 /* 1989 * If we had a previous bank, and there is a space 1990 * between the current bank and the previous, free it. 1991 */ 1992 if (prev_end && prev_end < start) 1993 free_memmap(prev_end, start); 1994 1995 /* 1996 * Align up here since many operations in VM subsystem 1997 * presume that there are no holes in the memory map inside 1998 * a pageblock 1999 */ 2000 prev_end = ALIGN(end, pageblock_nr_pages); 2001 } 2002 2003 #ifdef CONFIG_SPARSEMEM 2004 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) { 2005 prev_end = ALIGN(end, pageblock_nr_pages); 2006 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 2007 } 2008 #endif 2009 } 2010 2011 static void __init __free_pages_memory(unsigned long start, unsigned long end) 2012 { 2013 int order; 2014 2015 while (start < end) { 2016 order = min(MAX_ORDER - 1UL, __ffs(start)); 2017 2018 while (start + (1UL << order) > end) 2019 order--; 2020 2021 memblock_free_pages(pfn_to_page(start), start, order); 2022 2023 start += (1UL << order); 2024 } 2025 } 2026 2027 static unsigned long __init __free_memory_core(phys_addr_t start, 2028 phys_addr_t end) 2029 { 2030 unsigned long start_pfn = PFN_UP(start); 2031 unsigned long end_pfn = min_t(unsigned long, 2032 PFN_DOWN(end), max_low_pfn); 2033 2034 if (start_pfn >= end_pfn) 2035 return 0; 2036 2037 __free_pages_memory(start_pfn, end_pfn); 2038 2039 return end_pfn - start_pfn; 2040 } 2041 2042 static void __init memmap_init_reserved_pages(void) 2043 { 2044 struct memblock_region *region; 2045 phys_addr_t start, end; 2046 u64 i; 2047 2048 /* initialize struct pages for the reserved regions */ 2049 for_each_reserved_mem_range(i, &start, &end) 2050 reserve_bootmem_region(start, end); 2051 2052 /* and also treat struct pages for the NOMAP regions as PageReserved */ 2053 for_each_mem_region(region) { 2054 if (memblock_is_nomap(region)) { 2055 start = region->base; 2056 end = start + region->size; 2057 reserve_bootmem_region(start, end); 2058 } 2059 } 2060 } 2061 2062 static unsigned long __init free_low_memory_core_early(void) 2063 { 2064 unsigned long count = 0; 2065 phys_addr_t start, end; 2066 u64 i; 2067 2068 memblock_clear_hotplug(0, -1); 2069 2070 memmap_init_reserved_pages(); 2071 2072 /* 2073 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id 2074 * because in some case like Node0 doesn't have RAM installed 2075 * low ram will be on Node1 2076 */ 2077 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, 2078 NULL) 2079 count += __free_memory_core(start, end); 2080 2081 return count; 2082 } 2083 2084 static int reset_managed_pages_done __initdata; 2085 2086 void reset_node_managed_pages(pg_data_t *pgdat) 2087 { 2088 struct zone *z; 2089 2090 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 2091 atomic_long_set(&z->managed_pages, 0); 2092 } 2093 2094 void __init reset_all_zones_managed_pages(void) 2095 { 2096 struct pglist_data *pgdat; 2097 2098 if (reset_managed_pages_done) 2099 return; 2100 2101 for_each_online_pgdat(pgdat) 2102 reset_node_managed_pages(pgdat); 2103 2104 reset_managed_pages_done = 1; 2105 } 2106 2107 /** 2108 * memblock_free_all - release free pages to the buddy allocator 2109 */ 2110 void __init memblock_free_all(void) 2111 { 2112 unsigned long pages; 2113 2114 free_unused_memmap(); 2115 reset_all_zones_managed_pages(); 2116 2117 pages = free_low_memory_core_early(); 2118 totalram_pages_add(pages); 2119 } 2120 2121 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) 2122 2123 static int memblock_debug_show(struct seq_file *m, void *private) 2124 { 2125 struct memblock_type *type = m->private; 2126 struct memblock_region *reg; 2127 int i; 2128 phys_addr_t end; 2129 2130 for (i = 0; i < type->cnt; i++) { 2131 reg = &type->regions[i]; 2132 end = reg->base + reg->size - 1; 2133 2134 seq_printf(m, "%4d: ", i); 2135 seq_printf(m, "%pa..%pa\n", ®->base, &end); 2136 } 2137 return 0; 2138 } 2139 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 2140 2141 static int __init memblock_init_debugfs(void) 2142 { 2143 struct dentry *root = debugfs_create_dir("memblock", NULL); 2144 2145 debugfs_create_file("memory", 0444, root, 2146 &memblock.memory, &memblock_debug_fops); 2147 debugfs_create_file("reserved", 0444, root, 2148 &memblock.reserved, &memblock_debug_fops); 2149 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2150 debugfs_create_file("physmem", 0444, root, &physmem, 2151 &memblock_debug_fops); 2152 #endif 2153 2154 return 0; 2155 } 2156 __initcall(memblock_init_debugfs); 2157 2158 #endif /* CONFIG_DEBUG_FS */ 2159