xref: /openbmc/linux/mm/memblock.c (revision cd991db8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 
20 #include <asm/sections.h>
21 #include <linux/io.h>
22 
23 #include "internal.h"
24 
25 #define INIT_MEMBLOCK_REGIONS			128
26 #define INIT_PHYSMEM_REGIONS			4
27 
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30 #endif
31 
32 /**
33  * DOC: memblock overview
34  *
35  * Memblock is a method of managing memory regions during the early
36  * boot period when the usual kernel memory allocators are not up and
37  * running.
38  *
39  * Memblock views the system memory as collections of contiguous
40  * regions. There are several types of these collections:
41  *
42  * * ``memory`` - describes the physical memory available to the
43  *   kernel; this may differ from the actual physical memory installed
44  *   in the system, for instance when the memory is restricted with
45  *   ``mem=`` command line parameter
46  * * ``reserved`` - describes the regions that were allocated
47  * * ``physmem`` - describes the actual physical memory available during
48  *   boot regardless of the possible restrictions and memory hot(un)plug;
49  *   the ``physmem`` type is only available on some architectures.
50  *
51  * Each region is represented by :c:type:`struct memblock_region` that
52  * defines the region extents, its attributes and NUMA node id on NUMA
53  * systems. Every memory type is described by the :c:type:`struct
54  * memblock_type` which contains an array of memory regions along with
55  * the allocator metadata. The "memory" and "reserved" types are nicely
56  * wrapped with :c:type:`struct memblock`. This structure is statically
57  * initialized at build time. The region arrays are initially sized to
58  * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59  * for "reserved". The region array for "physmem" is initially sized to
60  * %INIT_PHYSMEM_REGIONS.
61  * The memblock_allow_resize() enables automatic resizing of the region
62  * arrays during addition of new regions. This feature should be used
63  * with care so that memory allocated for the region array will not
64  * overlap with areas that should be reserved, for example initrd.
65  *
66  * The early architecture setup should tell memblock what the physical
67  * memory layout is by using memblock_add() or memblock_add_node()
68  * functions. The first function does not assign the region to a NUMA
69  * node and it is appropriate for UMA systems. Yet, it is possible to
70  * use it on NUMA systems as well and assign the region to a NUMA node
71  * later in the setup process using memblock_set_node(). The
72  * memblock_add_node() performs such an assignment directly.
73  *
74  * Once memblock is setup the memory can be allocated using one of the
75  * API variants:
76  *
77  * * memblock_phys_alloc*() - these functions return the **physical**
78  *   address of the allocated memory
79  * * memblock_alloc*() - these functions return the **virtual** address
80  *   of the allocated memory.
81  *
82  * Note, that both API variants use implicit assumptions about allowed
83  * memory ranges and the fallback methods. Consult the documentation
84  * of memblock_alloc_internal() and memblock_alloc_range_nid()
85  * functions for more elaborate description.
86  *
87  * As the system boot progresses, the architecture specific mem_init()
88  * function frees all the memory to the buddy page allocator.
89  *
90  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91  * memblock data structures (except "physmem") will be discarded after the
92  * system initialization completes.
93  */
94 
95 #ifndef CONFIG_NEED_MULTIPLE_NODES
96 struct pglist_data __refdata contig_page_data;
97 EXPORT_SYMBOL(contig_page_data);
98 #endif
99 
100 unsigned long max_low_pfn;
101 unsigned long min_low_pfn;
102 unsigned long max_pfn;
103 unsigned long long max_possible_pfn;
104 
105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109 #endif
110 
111 struct memblock memblock __initdata_memblock = {
112 	.memory.regions		= memblock_memory_init_regions,
113 	.memory.cnt		= 1,	/* empty dummy entry */
114 	.memory.max		= INIT_MEMBLOCK_REGIONS,
115 	.memory.name		= "memory",
116 
117 	.reserved.regions	= memblock_reserved_init_regions,
118 	.reserved.cnt		= 1,	/* empty dummy entry */
119 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
120 	.reserved.name		= "reserved",
121 
122 	.bottom_up		= false,
123 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
124 };
125 
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem = {
128 	.regions		= memblock_physmem_init_regions,
129 	.cnt			= 1,	/* empty dummy entry */
130 	.max			= INIT_PHYSMEM_REGIONS,
131 	.name			= "physmem",
132 };
133 #endif
134 
135 #define for_each_memblock_type(i, memblock_type, rgn)			\
136 	for (i = 0, rgn = &memblock_type->regions[0];			\
137 	     i < memblock_type->cnt;					\
138 	     i++, rgn = &memblock_type->regions[i])
139 
140 int memblock_debug __initdata_memblock;
141 static bool system_has_some_mirror __initdata_memblock = false;
142 static int memblock_can_resize __initdata_memblock;
143 static int memblock_memory_in_slab __initdata_memblock = 0;
144 static int memblock_reserved_in_slab __initdata_memblock = 0;
145 
146 static enum memblock_flags __init_memblock choose_memblock_flags(void)
147 {
148 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
149 }
150 
151 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
152 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
153 {
154 	return *size = min(*size, PHYS_ADDR_MAX - base);
155 }
156 
157 /*
158  * Address comparison utilities
159  */
160 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
161 				       phys_addr_t base2, phys_addr_t size2)
162 {
163 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
164 }
165 
166 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
167 					phys_addr_t base, phys_addr_t size)
168 {
169 	unsigned long i;
170 
171 	for (i = 0; i < type->cnt; i++)
172 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
173 					   type->regions[i].size))
174 			break;
175 	return i < type->cnt;
176 }
177 
178 /**
179  * __memblock_find_range_bottom_up - find free area utility in bottom-up
180  * @start: start of candidate range
181  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
182  *       %MEMBLOCK_ALLOC_ACCESSIBLE
183  * @size: size of free area to find
184  * @align: alignment of free area to find
185  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
186  * @flags: pick from blocks based on memory attributes
187  *
188  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
189  *
190  * Return:
191  * Found address on success, 0 on failure.
192  */
193 static phys_addr_t __init_memblock
194 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
195 				phys_addr_t size, phys_addr_t align, int nid,
196 				enum memblock_flags flags)
197 {
198 	phys_addr_t this_start, this_end, cand;
199 	u64 i;
200 
201 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
202 		this_start = clamp(this_start, start, end);
203 		this_end = clamp(this_end, start, end);
204 
205 		cand = round_up(this_start, align);
206 		if (cand < this_end && this_end - cand >= size)
207 			return cand;
208 	}
209 
210 	return 0;
211 }
212 
213 /**
214  * __memblock_find_range_top_down - find free area utility, in top-down
215  * @start: start of candidate range
216  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
217  *       %MEMBLOCK_ALLOC_ACCESSIBLE
218  * @size: size of free area to find
219  * @align: alignment of free area to find
220  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
221  * @flags: pick from blocks based on memory attributes
222  *
223  * Utility called from memblock_find_in_range_node(), find free area top-down.
224  *
225  * Return:
226  * Found address on success, 0 on failure.
227  */
228 static phys_addr_t __init_memblock
229 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
230 			       phys_addr_t size, phys_addr_t align, int nid,
231 			       enum memblock_flags flags)
232 {
233 	phys_addr_t this_start, this_end, cand;
234 	u64 i;
235 
236 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
237 					NULL) {
238 		this_start = clamp(this_start, start, end);
239 		this_end = clamp(this_end, start, end);
240 
241 		if (this_end < size)
242 			continue;
243 
244 		cand = round_down(this_end - size, align);
245 		if (cand >= this_start)
246 			return cand;
247 	}
248 
249 	return 0;
250 }
251 
252 /**
253  * memblock_find_in_range_node - find free area in given range and node
254  * @size: size of free area to find
255  * @align: alignment of free area to find
256  * @start: start of candidate range
257  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
258  *       %MEMBLOCK_ALLOC_ACCESSIBLE
259  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
260  * @flags: pick from blocks based on memory attributes
261  *
262  * Find @size free area aligned to @align in the specified range and node.
263  *
264  * When allocation direction is bottom-up, the @start should be greater
265  * than the end of the kernel image. Otherwise, it will be trimmed. The
266  * reason is that we want the bottom-up allocation just near the kernel
267  * image so it is highly likely that the allocated memory and the kernel
268  * will reside in the same node.
269  *
270  * If bottom-up allocation failed, will try to allocate memory top-down.
271  *
272  * Return:
273  * Found address on success, 0 on failure.
274  */
275 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
276 					phys_addr_t align, phys_addr_t start,
277 					phys_addr_t end, int nid,
278 					enum memblock_flags flags)
279 {
280 	phys_addr_t kernel_end, ret;
281 
282 	/* pump up @end */
283 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
284 	    end == MEMBLOCK_ALLOC_KASAN)
285 		end = memblock.current_limit;
286 
287 	/* avoid allocating the first page */
288 	start = max_t(phys_addr_t, start, PAGE_SIZE);
289 	end = max(start, end);
290 	kernel_end = __pa_symbol(_end);
291 
292 	/*
293 	 * try bottom-up allocation only when bottom-up mode
294 	 * is set and @end is above the kernel image.
295 	 */
296 	if (memblock_bottom_up() && end > kernel_end) {
297 		phys_addr_t bottom_up_start;
298 
299 		/* make sure we will allocate above the kernel */
300 		bottom_up_start = max(start, kernel_end);
301 
302 		/* ok, try bottom-up allocation first */
303 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
304 						      size, align, nid, flags);
305 		if (ret)
306 			return ret;
307 
308 		/*
309 		 * we always limit bottom-up allocation above the kernel,
310 		 * but top-down allocation doesn't have the limit, so
311 		 * retrying top-down allocation may succeed when bottom-up
312 		 * allocation failed.
313 		 *
314 		 * bottom-up allocation is expected to be fail very rarely,
315 		 * so we use WARN_ONCE() here to see the stack trace if
316 		 * fail happens.
317 		 */
318 		WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
319 			  "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
320 	}
321 
322 	return __memblock_find_range_top_down(start, end, size, align, nid,
323 					      flags);
324 }
325 
326 /**
327  * memblock_find_in_range - find free area in given range
328  * @start: start of candidate range
329  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
330  *       %MEMBLOCK_ALLOC_ACCESSIBLE
331  * @size: size of free area to find
332  * @align: alignment of free area to find
333  *
334  * Find @size free area aligned to @align in the specified range.
335  *
336  * Return:
337  * Found address on success, 0 on failure.
338  */
339 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
340 					phys_addr_t end, phys_addr_t size,
341 					phys_addr_t align)
342 {
343 	phys_addr_t ret;
344 	enum memblock_flags flags = choose_memblock_flags();
345 
346 again:
347 	ret = memblock_find_in_range_node(size, align, start, end,
348 					    NUMA_NO_NODE, flags);
349 
350 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
351 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
352 			&size);
353 		flags &= ~MEMBLOCK_MIRROR;
354 		goto again;
355 	}
356 
357 	return ret;
358 }
359 
360 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
361 {
362 	type->total_size -= type->regions[r].size;
363 	memmove(&type->regions[r], &type->regions[r + 1],
364 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
365 	type->cnt--;
366 
367 	/* Special case for empty arrays */
368 	if (type->cnt == 0) {
369 		WARN_ON(type->total_size != 0);
370 		type->cnt = 1;
371 		type->regions[0].base = 0;
372 		type->regions[0].size = 0;
373 		type->regions[0].flags = 0;
374 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
375 	}
376 }
377 
378 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
379 /**
380  * memblock_discard - discard memory and reserved arrays if they were allocated
381  */
382 void __init memblock_discard(void)
383 {
384 	phys_addr_t addr, size;
385 
386 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
387 		addr = __pa(memblock.reserved.regions);
388 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
389 				  memblock.reserved.max);
390 		__memblock_free_late(addr, size);
391 	}
392 
393 	if (memblock.memory.regions != memblock_memory_init_regions) {
394 		addr = __pa(memblock.memory.regions);
395 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
396 				  memblock.memory.max);
397 		__memblock_free_late(addr, size);
398 	}
399 }
400 #endif
401 
402 /**
403  * memblock_double_array - double the size of the memblock regions array
404  * @type: memblock type of the regions array being doubled
405  * @new_area_start: starting address of memory range to avoid overlap with
406  * @new_area_size: size of memory range to avoid overlap with
407  *
408  * Double the size of the @type regions array. If memblock is being used to
409  * allocate memory for a new reserved regions array and there is a previously
410  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
411  * waiting to be reserved, ensure the memory used by the new array does
412  * not overlap.
413  *
414  * Return:
415  * 0 on success, -1 on failure.
416  */
417 static int __init_memblock memblock_double_array(struct memblock_type *type,
418 						phys_addr_t new_area_start,
419 						phys_addr_t new_area_size)
420 {
421 	struct memblock_region *new_array, *old_array;
422 	phys_addr_t old_alloc_size, new_alloc_size;
423 	phys_addr_t old_size, new_size, addr, new_end;
424 	int use_slab = slab_is_available();
425 	int *in_slab;
426 
427 	/* We don't allow resizing until we know about the reserved regions
428 	 * of memory that aren't suitable for allocation
429 	 */
430 	if (!memblock_can_resize)
431 		return -1;
432 
433 	/* Calculate new doubled size */
434 	old_size = type->max * sizeof(struct memblock_region);
435 	new_size = old_size << 1;
436 	/*
437 	 * We need to allocated new one align to PAGE_SIZE,
438 	 *   so we can free them completely later.
439 	 */
440 	old_alloc_size = PAGE_ALIGN(old_size);
441 	new_alloc_size = PAGE_ALIGN(new_size);
442 
443 	/* Retrieve the slab flag */
444 	if (type == &memblock.memory)
445 		in_slab = &memblock_memory_in_slab;
446 	else
447 		in_slab = &memblock_reserved_in_slab;
448 
449 	/* Try to find some space for it */
450 	if (use_slab) {
451 		new_array = kmalloc(new_size, GFP_KERNEL);
452 		addr = new_array ? __pa(new_array) : 0;
453 	} else {
454 		/* only exclude range when trying to double reserved.regions */
455 		if (type != &memblock.reserved)
456 			new_area_start = new_area_size = 0;
457 
458 		addr = memblock_find_in_range(new_area_start + new_area_size,
459 						memblock.current_limit,
460 						new_alloc_size, PAGE_SIZE);
461 		if (!addr && new_area_size)
462 			addr = memblock_find_in_range(0,
463 				min(new_area_start, memblock.current_limit),
464 				new_alloc_size, PAGE_SIZE);
465 
466 		new_array = addr ? __va(addr) : NULL;
467 	}
468 	if (!addr) {
469 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
470 		       type->name, type->max, type->max * 2);
471 		return -1;
472 	}
473 
474 	new_end = addr + new_size - 1;
475 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
476 			type->name, type->max * 2, &addr, &new_end);
477 
478 	/*
479 	 * Found space, we now need to move the array over before we add the
480 	 * reserved region since it may be our reserved array itself that is
481 	 * full.
482 	 */
483 	memcpy(new_array, type->regions, old_size);
484 	memset(new_array + type->max, 0, old_size);
485 	old_array = type->regions;
486 	type->regions = new_array;
487 	type->max <<= 1;
488 
489 	/* Free old array. We needn't free it if the array is the static one */
490 	if (*in_slab)
491 		kfree(old_array);
492 	else if (old_array != memblock_memory_init_regions &&
493 		 old_array != memblock_reserved_init_regions)
494 		memblock_free(__pa(old_array), old_alloc_size);
495 
496 	/*
497 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
498 	 * needn't do it
499 	 */
500 	if (!use_slab)
501 		BUG_ON(memblock_reserve(addr, new_alloc_size));
502 
503 	/* Update slab flag */
504 	*in_slab = use_slab;
505 
506 	return 0;
507 }
508 
509 /**
510  * memblock_merge_regions - merge neighboring compatible regions
511  * @type: memblock type to scan
512  *
513  * Scan @type and merge neighboring compatible regions.
514  */
515 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
516 {
517 	int i = 0;
518 
519 	/* cnt never goes below 1 */
520 	while (i < type->cnt - 1) {
521 		struct memblock_region *this = &type->regions[i];
522 		struct memblock_region *next = &type->regions[i + 1];
523 
524 		if (this->base + this->size != next->base ||
525 		    memblock_get_region_node(this) !=
526 		    memblock_get_region_node(next) ||
527 		    this->flags != next->flags) {
528 			BUG_ON(this->base + this->size > next->base);
529 			i++;
530 			continue;
531 		}
532 
533 		this->size += next->size;
534 		/* move forward from next + 1, index of which is i + 2 */
535 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
536 		type->cnt--;
537 	}
538 }
539 
540 /**
541  * memblock_insert_region - insert new memblock region
542  * @type:	memblock type to insert into
543  * @idx:	index for the insertion point
544  * @base:	base address of the new region
545  * @size:	size of the new region
546  * @nid:	node id of the new region
547  * @flags:	flags of the new region
548  *
549  * Insert new memblock region [@base, @base + @size) into @type at @idx.
550  * @type must already have extra room to accommodate the new region.
551  */
552 static void __init_memblock memblock_insert_region(struct memblock_type *type,
553 						   int idx, phys_addr_t base,
554 						   phys_addr_t size,
555 						   int nid,
556 						   enum memblock_flags flags)
557 {
558 	struct memblock_region *rgn = &type->regions[idx];
559 
560 	BUG_ON(type->cnt >= type->max);
561 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
562 	rgn->base = base;
563 	rgn->size = size;
564 	rgn->flags = flags;
565 	memblock_set_region_node(rgn, nid);
566 	type->cnt++;
567 	type->total_size += size;
568 }
569 
570 /**
571  * memblock_add_range - add new memblock region
572  * @type: memblock type to add new region into
573  * @base: base address of the new region
574  * @size: size of the new region
575  * @nid: nid of the new region
576  * @flags: flags of the new region
577  *
578  * Add new memblock region [@base, @base + @size) into @type.  The new region
579  * is allowed to overlap with existing ones - overlaps don't affect already
580  * existing regions.  @type is guaranteed to be minimal (all neighbouring
581  * compatible regions are merged) after the addition.
582  *
583  * Return:
584  * 0 on success, -errno on failure.
585  */
586 static int __init_memblock memblock_add_range(struct memblock_type *type,
587 				phys_addr_t base, phys_addr_t size,
588 				int nid, enum memblock_flags flags)
589 {
590 	bool insert = false;
591 	phys_addr_t obase = base;
592 	phys_addr_t end = base + memblock_cap_size(base, &size);
593 	int idx, nr_new;
594 	struct memblock_region *rgn;
595 
596 	if (!size)
597 		return 0;
598 
599 	/* special case for empty array */
600 	if (type->regions[0].size == 0) {
601 		WARN_ON(type->cnt != 1 || type->total_size);
602 		type->regions[0].base = base;
603 		type->regions[0].size = size;
604 		type->regions[0].flags = flags;
605 		memblock_set_region_node(&type->regions[0], nid);
606 		type->total_size = size;
607 		return 0;
608 	}
609 repeat:
610 	/*
611 	 * The following is executed twice.  Once with %false @insert and
612 	 * then with %true.  The first counts the number of regions needed
613 	 * to accommodate the new area.  The second actually inserts them.
614 	 */
615 	base = obase;
616 	nr_new = 0;
617 
618 	for_each_memblock_type(idx, type, rgn) {
619 		phys_addr_t rbase = rgn->base;
620 		phys_addr_t rend = rbase + rgn->size;
621 
622 		if (rbase >= end)
623 			break;
624 		if (rend <= base)
625 			continue;
626 		/*
627 		 * @rgn overlaps.  If it separates the lower part of new
628 		 * area, insert that portion.
629 		 */
630 		if (rbase > base) {
631 #ifdef CONFIG_NEED_MULTIPLE_NODES
632 			WARN_ON(nid != memblock_get_region_node(rgn));
633 #endif
634 			WARN_ON(flags != rgn->flags);
635 			nr_new++;
636 			if (insert)
637 				memblock_insert_region(type, idx++, base,
638 						       rbase - base, nid,
639 						       flags);
640 		}
641 		/* area below @rend is dealt with, forget about it */
642 		base = min(rend, end);
643 	}
644 
645 	/* insert the remaining portion */
646 	if (base < end) {
647 		nr_new++;
648 		if (insert)
649 			memblock_insert_region(type, idx, base, end - base,
650 					       nid, flags);
651 	}
652 
653 	if (!nr_new)
654 		return 0;
655 
656 	/*
657 	 * If this was the first round, resize array and repeat for actual
658 	 * insertions; otherwise, merge and return.
659 	 */
660 	if (!insert) {
661 		while (type->cnt + nr_new > type->max)
662 			if (memblock_double_array(type, obase, size) < 0)
663 				return -ENOMEM;
664 		insert = true;
665 		goto repeat;
666 	} else {
667 		memblock_merge_regions(type);
668 		return 0;
669 	}
670 }
671 
672 /**
673  * memblock_add_node - add new memblock region within a NUMA node
674  * @base: base address of the new region
675  * @size: size of the new region
676  * @nid: nid of the new region
677  *
678  * Add new memblock region [@base, @base + @size) to the "memory"
679  * type. See memblock_add_range() description for mode details
680  *
681  * Return:
682  * 0 on success, -errno on failure.
683  */
684 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
685 				       int nid)
686 {
687 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
688 }
689 
690 /**
691  * memblock_add - add new memblock region
692  * @base: base address of the new region
693  * @size: size of the new region
694  *
695  * Add new memblock region [@base, @base + @size) to the "memory"
696  * type. See memblock_add_range() description for mode details
697  *
698  * Return:
699  * 0 on success, -errno on failure.
700  */
701 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
702 {
703 	phys_addr_t end = base + size - 1;
704 
705 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
706 		     &base, &end, (void *)_RET_IP_);
707 
708 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
709 }
710 
711 /**
712  * memblock_isolate_range - isolate given range into disjoint memblocks
713  * @type: memblock type to isolate range for
714  * @base: base of range to isolate
715  * @size: size of range to isolate
716  * @start_rgn: out parameter for the start of isolated region
717  * @end_rgn: out parameter for the end of isolated region
718  *
719  * Walk @type and ensure that regions don't cross the boundaries defined by
720  * [@base, @base + @size).  Crossing regions are split at the boundaries,
721  * which may create at most two more regions.  The index of the first
722  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
723  *
724  * Return:
725  * 0 on success, -errno on failure.
726  */
727 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
728 					phys_addr_t base, phys_addr_t size,
729 					int *start_rgn, int *end_rgn)
730 {
731 	phys_addr_t end = base + memblock_cap_size(base, &size);
732 	int idx;
733 	struct memblock_region *rgn;
734 
735 	*start_rgn = *end_rgn = 0;
736 
737 	if (!size)
738 		return 0;
739 
740 	/* we'll create at most two more regions */
741 	while (type->cnt + 2 > type->max)
742 		if (memblock_double_array(type, base, size) < 0)
743 			return -ENOMEM;
744 
745 	for_each_memblock_type(idx, type, rgn) {
746 		phys_addr_t rbase = rgn->base;
747 		phys_addr_t rend = rbase + rgn->size;
748 
749 		if (rbase >= end)
750 			break;
751 		if (rend <= base)
752 			continue;
753 
754 		if (rbase < base) {
755 			/*
756 			 * @rgn intersects from below.  Split and continue
757 			 * to process the next region - the new top half.
758 			 */
759 			rgn->base = base;
760 			rgn->size -= base - rbase;
761 			type->total_size -= base - rbase;
762 			memblock_insert_region(type, idx, rbase, base - rbase,
763 					       memblock_get_region_node(rgn),
764 					       rgn->flags);
765 		} else if (rend > end) {
766 			/*
767 			 * @rgn intersects from above.  Split and redo the
768 			 * current region - the new bottom half.
769 			 */
770 			rgn->base = end;
771 			rgn->size -= end - rbase;
772 			type->total_size -= end - rbase;
773 			memblock_insert_region(type, idx--, rbase, end - rbase,
774 					       memblock_get_region_node(rgn),
775 					       rgn->flags);
776 		} else {
777 			/* @rgn is fully contained, record it */
778 			if (!*end_rgn)
779 				*start_rgn = idx;
780 			*end_rgn = idx + 1;
781 		}
782 	}
783 
784 	return 0;
785 }
786 
787 static int __init_memblock memblock_remove_range(struct memblock_type *type,
788 					  phys_addr_t base, phys_addr_t size)
789 {
790 	int start_rgn, end_rgn;
791 	int i, ret;
792 
793 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
794 	if (ret)
795 		return ret;
796 
797 	for (i = end_rgn - 1; i >= start_rgn; i--)
798 		memblock_remove_region(type, i);
799 	return 0;
800 }
801 
802 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
803 {
804 	phys_addr_t end = base + size - 1;
805 
806 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
807 		     &base, &end, (void *)_RET_IP_);
808 
809 	return memblock_remove_range(&memblock.memory, base, size);
810 }
811 
812 /**
813  * memblock_free - free boot memory block
814  * @base: phys starting address of the  boot memory block
815  * @size: size of the boot memory block in bytes
816  *
817  * Free boot memory block previously allocated by memblock_alloc_xx() API.
818  * The freeing memory will not be released to the buddy allocator.
819  */
820 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
821 {
822 	phys_addr_t end = base + size - 1;
823 
824 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
825 		     &base, &end, (void *)_RET_IP_);
826 
827 	kmemleak_free_part_phys(base, size);
828 	return memblock_remove_range(&memblock.reserved, base, size);
829 }
830 
831 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
832 {
833 	phys_addr_t end = base + size - 1;
834 
835 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
836 		     &base, &end, (void *)_RET_IP_);
837 
838 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
839 }
840 
841 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
842 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
843 {
844 	phys_addr_t end = base + size - 1;
845 
846 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
847 		     &base, &end, (void *)_RET_IP_);
848 
849 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
850 }
851 #endif
852 
853 /**
854  * memblock_setclr_flag - set or clear flag for a memory region
855  * @base: base address of the region
856  * @size: size of the region
857  * @set: set or clear the flag
858  * @flag: the flag to udpate
859  *
860  * This function isolates region [@base, @base + @size), and sets/clears flag
861  *
862  * Return: 0 on success, -errno on failure.
863  */
864 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
865 				phys_addr_t size, int set, int flag)
866 {
867 	struct memblock_type *type = &memblock.memory;
868 	int i, ret, start_rgn, end_rgn;
869 
870 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
871 	if (ret)
872 		return ret;
873 
874 	for (i = start_rgn; i < end_rgn; i++) {
875 		struct memblock_region *r = &type->regions[i];
876 
877 		if (set)
878 			r->flags |= flag;
879 		else
880 			r->flags &= ~flag;
881 	}
882 
883 	memblock_merge_regions(type);
884 	return 0;
885 }
886 
887 /**
888  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
889  * @base: the base phys addr of the region
890  * @size: the size of the region
891  *
892  * Return: 0 on success, -errno on failure.
893  */
894 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
895 {
896 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
897 }
898 
899 /**
900  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
901  * @base: the base phys addr of the region
902  * @size: the size of the region
903  *
904  * Return: 0 on success, -errno on failure.
905  */
906 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
907 {
908 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
909 }
910 
911 /**
912  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
913  * @base: the base phys addr of the region
914  * @size: the size of the region
915  *
916  * Return: 0 on success, -errno on failure.
917  */
918 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
919 {
920 	system_has_some_mirror = true;
921 
922 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
923 }
924 
925 /**
926  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
927  * @base: the base phys addr of the region
928  * @size: the size of the region
929  *
930  * Return: 0 on success, -errno on failure.
931  */
932 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
933 {
934 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
935 }
936 
937 /**
938  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
939  * @base: the base phys addr of the region
940  * @size: the size of the region
941  *
942  * Return: 0 on success, -errno on failure.
943  */
944 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
945 {
946 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
947 }
948 
949 /**
950  * __next_reserved_mem_region - next function for for_each_reserved_region()
951  * @idx: pointer to u64 loop variable
952  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
953  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
954  *
955  * Iterate over all reserved memory regions.
956  */
957 void __init_memblock __next_reserved_mem_region(u64 *idx,
958 					   phys_addr_t *out_start,
959 					   phys_addr_t *out_end)
960 {
961 	struct memblock_type *type = &memblock.reserved;
962 
963 	if (*idx < type->cnt) {
964 		struct memblock_region *r = &type->regions[*idx];
965 		phys_addr_t base = r->base;
966 		phys_addr_t size = r->size;
967 
968 		if (out_start)
969 			*out_start = base;
970 		if (out_end)
971 			*out_end = base + size - 1;
972 
973 		*idx += 1;
974 		return;
975 	}
976 
977 	/* signal end of iteration */
978 	*idx = ULLONG_MAX;
979 }
980 
981 static bool should_skip_region(struct memblock_region *m, int nid, int flags)
982 {
983 	int m_nid = memblock_get_region_node(m);
984 
985 	/* only memory regions are associated with nodes, check it */
986 	if (nid != NUMA_NO_NODE && nid != m_nid)
987 		return true;
988 
989 	/* skip hotpluggable memory regions if needed */
990 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
991 		return true;
992 
993 	/* if we want mirror memory skip non-mirror memory regions */
994 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
995 		return true;
996 
997 	/* skip nomap memory unless we were asked for it explicitly */
998 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
999 		return true;
1000 
1001 	return false;
1002 }
1003 
1004 /**
1005  * __next_mem_range - next function for for_each_free_mem_range() etc.
1006  * @idx: pointer to u64 loop variable
1007  * @nid: node selector, %NUMA_NO_NODE for all nodes
1008  * @flags: pick from blocks based on memory attributes
1009  * @type_a: pointer to memblock_type from where the range is taken
1010  * @type_b: pointer to memblock_type which excludes memory from being taken
1011  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1012  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1013  * @out_nid: ptr to int for nid of the range, can be %NULL
1014  *
1015  * Find the first area from *@idx which matches @nid, fill the out
1016  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1017  * *@idx contains index into type_a and the upper 32bit indexes the
1018  * areas before each region in type_b.	For example, if type_b regions
1019  * look like the following,
1020  *
1021  *	0:[0-16), 1:[32-48), 2:[128-130)
1022  *
1023  * The upper 32bit indexes the following regions.
1024  *
1025  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1026  *
1027  * As both region arrays are sorted, the function advances the two indices
1028  * in lockstep and returns each intersection.
1029  */
1030 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1031 		      struct memblock_type *type_a,
1032 		      struct memblock_type *type_b, phys_addr_t *out_start,
1033 		      phys_addr_t *out_end, int *out_nid)
1034 {
1035 	int idx_a = *idx & 0xffffffff;
1036 	int idx_b = *idx >> 32;
1037 
1038 	if (WARN_ONCE(nid == MAX_NUMNODES,
1039 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1040 		nid = NUMA_NO_NODE;
1041 
1042 	for (; idx_a < type_a->cnt; idx_a++) {
1043 		struct memblock_region *m = &type_a->regions[idx_a];
1044 
1045 		phys_addr_t m_start = m->base;
1046 		phys_addr_t m_end = m->base + m->size;
1047 		int	    m_nid = memblock_get_region_node(m);
1048 
1049 		if (should_skip_region(m, nid, flags))
1050 			continue;
1051 
1052 		if (!type_b) {
1053 			if (out_start)
1054 				*out_start = m_start;
1055 			if (out_end)
1056 				*out_end = m_end;
1057 			if (out_nid)
1058 				*out_nid = m_nid;
1059 			idx_a++;
1060 			*idx = (u32)idx_a | (u64)idx_b << 32;
1061 			return;
1062 		}
1063 
1064 		/* scan areas before each reservation */
1065 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1066 			struct memblock_region *r;
1067 			phys_addr_t r_start;
1068 			phys_addr_t r_end;
1069 
1070 			r = &type_b->regions[idx_b];
1071 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1072 			r_end = idx_b < type_b->cnt ?
1073 				r->base : PHYS_ADDR_MAX;
1074 
1075 			/*
1076 			 * if idx_b advanced past idx_a,
1077 			 * break out to advance idx_a
1078 			 */
1079 			if (r_start >= m_end)
1080 				break;
1081 			/* if the two regions intersect, we're done */
1082 			if (m_start < r_end) {
1083 				if (out_start)
1084 					*out_start =
1085 						max(m_start, r_start);
1086 				if (out_end)
1087 					*out_end = min(m_end, r_end);
1088 				if (out_nid)
1089 					*out_nid = m_nid;
1090 				/*
1091 				 * The region which ends first is
1092 				 * advanced for the next iteration.
1093 				 */
1094 				if (m_end <= r_end)
1095 					idx_a++;
1096 				else
1097 					idx_b++;
1098 				*idx = (u32)idx_a | (u64)idx_b << 32;
1099 				return;
1100 			}
1101 		}
1102 	}
1103 
1104 	/* signal end of iteration */
1105 	*idx = ULLONG_MAX;
1106 }
1107 
1108 /**
1109  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1110  *
1111  * @idx: pointer to u64 loop variable
1112  * @nid: node selector, %NUMA_NO_NODE for all nodes
1113  * @flags: pick from blocks based on memory attributes
1114  * @type_a: pointer to memblock_type from where the range is taken
1115  * @type_b: pointer to memblock_type which excludes memory from being taken
1116  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1117  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1118  * @out_nid: ptr to int for nid of the range, can be %NULL
1119  *
1120  * Finds the next range from type_a which is not marked as unsuitable
1121  * in type_b.
1122  *
1123  * Reverse of __next_mem_range().
1124  */
1125 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1126 					  enum memblock_flags flags,
1127 					  struct memblock_type *type_a,
1128 					  struct memblock_type *type_b,
1129 					  phys_addr_t *out_start,
1130 					  phys_addr_t *out_end, int *out_nid)
1131 {
1132 	int idx_a = *idx & 0xffffffff;
1133 	int idx_b = *idx >> 32;
1134 
1135 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1136 		nid = NUMA_NO_NODE;
1137 
1138 	if (*idx == (u64)ULLONG_MAX) {
1139 		idx_a = type_a->cnt - 1;
1140 		if (type_b != NULL)
1141 			idx_b = type_b->cnt;
1142 		else
1143 			idx_b = 0;
1144 	}
1145 
1146 	for (; idx_a >= 0; idx_a--) {
1147 		struct memblock_region *m = &type_a->regions[idx_a];
1148 
1149 		phys_addr_t m_start = m->base;
1150 		phys_addr_t m_end = m->base + m->size;
1151 		int m_nid = memblock_get_region_node(m);
1152 
1153 		if (should_skip_region(m, nid, flags))
1154 			continue;
1155 
1156 		if (!type_b) {
1157 			if (out_start)
1158 				*out_start = m_start;
1159 			if (out_end)
1160 				*out_end = m_end;
1161 			if (out_nid)
1162 				*out_nid = m_nid;
1163 			idx_a--;
1164 			*idx = (u32)idx_a | (u64)idx_b << 32;
1165 			return;
1166 		}
1167 
1168 		/* scan areas before each reservation */
1169 		for (; idx_b >= 0; idx_b--) {
1170 			struct memblock_region *r;
1171 			phys_addr_t r_start;
1172 			phys_addr_t r_end;
1173 
1174 			r = &type_b->regions[idx_b];
1175 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1176 			r_end = idx_b < type_b->cnt ?
1177 				r->base : PHYS_ADDR_MAX;
1178 			/*
1179 			 * if idx_b advanced past idx_a,
1180 			 * break out to advance idx_a
1181 			 */
1182 
1183 			if (r_end <= m_start)
1184 				break;
1185 			/* if the two regions intersect, we're done */
1186 			if (m_end > r_start) {
1187 				if (out_start)
1188 					*out_start = max(m_start, r_start);
1189 				if (out_end)
1190 					*out_end = min(m_end, r_end);
1191 				if (out_nid)
1192 					*out_nid = m_nid;
1193 				if (m_start >= r_start)
1194 					idx_a--;
1195 				else
1196 					idx_b--;
1197 				*idx = (u32)idx_a | (u64)idx_b << 32;
1198 				return;
1199 			}
1200 		}
1201 	}
1202 	/* signal end of iteration */
1203 	*idx = ULLONG_MAX;
1204 }
1205 
1206 /*
1207  * Common iterator interface used to define for_each_mem_pfn_range().
1208  */
1209 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1210 				unsigned long *out_start_pfn,
1211 				unsigned long *out_end_pfn, int *out_nid)
1212 {
1213 	struct memblock_type *type = &memblock.memory;
1214 	struct memblock_region *r;
1215 	int r_nid;
1216 
1217 	while (++*idx < type->cnt) {
1218 		r = &type->regions[*idx];
1219 		r_nid = memblock_get_region_node(r);
1220 
1221 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1222 			continue;
1223 		if (nid == MAX_NUMNODES || nid == r_nid)
1224 			break;
1225 	}
1226 	if (*idx >= type->cnt) {
1227 		*idx = -1;
1228 		return;
1229 	}
1230 
1231 	if (out_start_pfn)
1232 		*out_start_pfn = PFN_UP(r->base);
1233 	if (out_end_pfn)
1234 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1235 	if (out_nid)
1236 		*out_nid = r_nid;
1237 }
1238 
1239 /**
1240  * memblock_set_node - set node ID on memblock regions
1241  * @base: base of area to set node ID for
1242  * @size: size of area to set node ID for
1243  * @type: memblock type to set node ID for
1244  * @nid: node ID to set
1245  *
1246  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1247  * Regions which cross the area boundaries are split as necessary.
1248  *
1249  * Return:
1250  * 0 on success, -errno on failure.
1251  */
1252 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1253 				      struct memblock_type *type, int nid)
1254 {
1255 #ifdef CONFIG_NEED_MULTIPLE_NODES
1256 	int start_rgn, end_rgn;
1257 	int i, ret;
1258 
1259 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1260 	if (ret)
1261 		return ret;
1262 
1263 	for (i = start_rgn; i < end_rgn; i++)
1264 		memblock_set_region_node(&type->regions[i], nid);
1265 
1266 	memblock_merge_regions(type);
1267 #endif
1268 	return 0;
1269 }
1270 
1271 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1272 /**
1273  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1274  *
1275  * @idx: pointer to u64 loop variable
1276  * @zone: zone in which all of the memory blocks reside
1277  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1278  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1279  *
1280  * This function is meant to be a zone/pfn specific wrapper for the
1281  * for_each_mem_range type iterators. Specifically they are used in the
1282  * deferred memory init routines and as such we were duplicating much of
1283  * this logic throughout the code. So instead of having it in multiple
1284  * locations it seemed like it would make more sense to centralize this to
1285  * one new iterator that does everything they need.
1286  */
1287 void __init_memblock
1288 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1289 			     unsigned long *out_spfn, unsigned long *out_epfn)
1290 {
1291 	int zone_nid = zone_to_nid(zone);
1292 	phys_addr_t spa, epa;
1293 	int nid;
1294 
1295 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1296 			 &memblock.memory, &memblock.reserved,
1297 			 &spa, &epa, &nid);
1298 
1299 	while (*idx != U64_MAX) {
1300 		unsigned long epfn = PFN_DOWN(epa);
1301 		unsigned long spfn = PFN_UP(spa);
1302 
1303 		/*
1304 		 * Verify the end is at least past the start of the zone and
1305 		 * that we have at least one PFN to initialize.
1306 		 */
1307 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1308 			/* if we went too far just stop searching */
1309 			if (zone_end_pfn(zone) <= spfn) {
1310 				*idx = U64_MAX;
1311 				break;
1312 			}
1313 
1314 			if (out_spfn)
1315 				*out_spfn = max(zone->zone_start_pfn, spfn);
1316 			if (out_epfn)
1317 				*out_epfn = min(zone_end_pfn(zone), epfn);
1318 
1319 			return;
1320 		}
1321 
1322 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1323 				 &memblock.memory, &memblock.reserved,
1324 				 &spa, &epa, &nid);
1325 	}
1326 
1327 	/* signal end of iteration */
1328 	if (out_spfn)
1329 		*out_spfn = ULONG_MAX;
1330 	if (out_epfn)
1331 		*out_epfn = 0;
1332 }
1333 
1334 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1335 
1336 /**
1337  * memblock_alloc_range_nid - allocate boot memory block
1338  * @size: size of memory block to be allocated in bytes
1339  * @align: alignment of the region and block's size
1340  * @start: the lower bound of the memory region to allocate (phys address)
1341  * @end: the upper bound of the memory region to allocate (phys address)
1342  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1343  * @exact_nid: control the allocation fall back to other nodes
1344  *
1345  * The allocation is performed from memory region limited by
1346  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1347  *
1348  * If the specified node can not hold the requested memory and @exact_nid
1349  * is false, the allocation falls back to any node in the system.
1350  *
1351  * For systems with memory mirroring, the allocation is attempted first
1352  * from the regions with mirroring enabled and then retried from any
1353  * memory region.
1354  *
1355  * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1356  * allocated boot memory block, so that it is never reported as leaks.
1357  *
1358  * Return:
1359  * Physical address of allocated memory block on success, %0 on failure.
1360  */
1361 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1362 					phys_addr_t align, phys_addr_t start,
1363 					phys_addr_t end, int nid,
1364 					bool exact_nid)
1365 {
1366 	enum memblock_flags flags = choose_memblock_flags();
1367 	phys_addr_t found;
1368 
1369 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1370 		nid = NUMA_NO_NODE;
1371 
1372 	if (!align) {
1373 		/* Can't use WARNs this early in boot on powerpc */
1374 		dump_stack();
1375 		align = SMP_CACHE_BYTES;
1376 	}
1377 
1378 again:
1379 	found = memblock_find_in_range_node(size, align, start, end, nid,
1380 					    flags);
1381 	if (found && !memblock_reserve(found, size))
1382 		goto done;
1383 
1384 	if (nid != NUMA_NO_NODE && !exact_nid) {
1385 		found = memblock_find_in_range_node(size, align, start,
1386 						    end, NUMA_NO_NODE,
1387 						    flags);
1388 		if (found && !memblock_reserve(found, size))
1389 			goto done;
1390 	}
1391 
1392 	if (flags & MEMBLOCK_MIRROR) {
1393 		flags &= ~MEMBLOCK_MIRROR;
1394 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1395 			&size);
1396 		goto again;
1397 	}
1398 
1399 	return 0;
1400 
1401 done:
1402 	/* Skip kmemleak for kasan_init() due to high volume. */
1403 	if (end != MEMBLOCK_ALLOC_KASAN)
1404 		/*
1405 		 * The min_count is set to 0 so that memblock allocated
1406 		 * blocks are never reported as leaks. This is because many
1407 		 * of these blocks are only referred via the physical
1408 		 * address which is not looked up by kmemleak.
1409 		 */
1410 		kmemleak_alloc_phys(found, size, 0, 0);
1411 
1412 	return found;
1413 }
1414 
1415 /**
1416  * memblock_phys_alloc_range - allocate a memory block inside specified range
1417  * @size: size of memory block to be allocated in bytes
1418  * @align: alignment of the region and block's size
1419  * @start: the lower bound of the memory region to allocate (physical address)
1420  * @end: the upper bound of the memory region to allocate (physical address)
1421  *
1422  * Allocate @size bytes in the between @start and @end.
1423  *
1424  * Return: physical address of the allocated memory block on success,
1425  * %0 on failure.
1426  */
1427 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1428 					     phys_addr_t align,
1429 					     phys_addr_t start,
1430 					     phys_addr_t end)
1431 {
1432 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1433 					false);
1434 }
1435 
1436 /**
1437  * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1438  * @size: size of memory block to be allocated in bytes
1439  * @align: alignment of the region and block's size
1440  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1441  *
1442  * Allocates memory block from the specified NUMA node. If the node
1443  * has no available memory, attempts to allocated from any node in the
1444  * system.
1445  *
1446  * Return: physical address of the allocated memory block on success,
1447  * %0 on failure.
1448  */
1449 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1450 {
1451 	return memblock_alloc_range_nid(size, align, 0,
1452 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1453 }
1454 
1455 /**
1456  * memblock_alloc_internal - allocate boot memory block
1457  * @size: size of memory block to be allocated in bytes
1458  * @align: alignment of the region and block's size
1459  * @min_addr: the lower bound of the memory region to allocate (phys address)
1460  * @max_addr: the upper bound of the memory region to allocate (phys address)
1461  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1462  * @exact_nid: control the allocation fall back to other nodes
1463  *
1464  * Allocates memory block using memblock_alloc_range_nid() and
1465  * converts the returned physical address to virtual.
1466  *
1467  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1468  * will fall back to memory below @min_addr. Other constraints, such
1469  * as node and mirrored memory will be handled again in
1470  * memblock_alloc_range_nid().
1471  *
1472  * Return:
1473  * Virtual address of allocated memory block on success, NULL on failure.
1474  */
1475 static void * __init memblock_alloc_internal(
1476 				phys_addr_t size, phys_addr_t align,
1477 				phys_addr_t min_addr, phys_addr_t max_addr,
1478 				int nid, bool exact_nid)
1479 {
1480 	phys_addr_t alloc;
1481 
1482 	/*
1483 	 * Detect any accidental use of these APIs after slab is ready, as at
1484 	 * this moment memblock may be deinitialized already and its
1485 	 * internal data may be destroyed (after execution of memblock_free_all)
1486 	 */
1487 	if (WARN_ON_ONCE(slab_is_available()))
1488 		return kzalloc_node(size, GFP_NOWAIT, nid);
1489 
1490 	if (max_addr > memblock.current_limit)
1491 		max_addr = memblock.current_limit;
1492 
1493 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1494 					exact_nid);
1495 
1496 	/* retry allocation without lower limit */
1497 	if (!alloc && min_addr)
1498 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1499 						exact_nid);
1500 
1501 	if (!alloc)
1502 		return NULL;
1503 
1504 	return phys_to_virt(alloc);
1505 }
1506 
1507 /**
1508  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1509  * without zeroing memory
1510  * @size: size of memory block to be allocated in bytes
1511  * @align: alignment of the region and block's size
1512  * @min_addr: the lower bound of the memory region from where the allocation
1513  *	  is preferred (phys address)
1514  * @max_addr: the upper bound of the memory region from where the allocation
1515  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1516  *	      allocate only from memory limited by memblock.current_limit value
1517  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1518  *
1519  * Public function, provides additional debug information (including caller
1520  * info), if enabled. Does not zero allocated memory.
1521  *
1522  * Return:
1523  * Virtual address of allocated memory block on success, NULL on failure.
1524  */
1525 void * __init memblock_alloc_exact_nid_raw(
1526 			phys_addr_t size, phys_addr_t align,
1527 			phys_addr_t min_addr, phys_addr_t max_addr,
1528 			int nid)
1529 {
1530 	void *ptr;
1531 
1532 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1533 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1534 		     &max_addr, (void *)_RET_IP_);
1535 
1536 	ptr = memblock_alloc_internal(size, align,
1537 					   min_addr, max_addr, nid, true);
1538 	if (ptr && size > 0)
1539 		page_init_poison(ptr, size);
1540 
1541 	return ptr;
1542 }
1543 
1544 /**
1545  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1546  * memory and without panicking
1547  * @size: size of memory block to be allocated in bytes
1548  * @align: alignment of the region and block's size
1549  * @min_addr: the lower bound of the memory region from where the allocation
1550  *	  is preferred (phys address)
1551  * @max_addr: the upper bound of the memory region from where the allocation
1552  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1553  *	      allocate only from memory limited by memblock.current_limit value
1554  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1555  *
1556  * Public function, provides additional debug information (including caller
1557  * info), if enabled. Does not zero allocated memory, does not panic if request
1558  * cannot be satisfied.
1559  *
1560  * Return:
1561  * Virtual address of allocated memory block on success, NULL on failure.
1562  */
1563 void * __init memblock_alloc_try_nid_raw(
1564 			phys_addr_t size, phys_addr_t align,
1565 			phys_addr_t min_addr, phys_addr_t max_addr,
1566 			int nid)
1567 {
1568 	void *ptr;
1569 
1570 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1571 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1572 		     &max_addr, (void *)_RET_IP_);
1573 
1574 	ptr = memblock_alloc_internal(size, align,
1575 					   min_addr, max_addr, nid, false);
1576 	if (ptr && size > 0)
1577 		page_init_poison(ptr, size);
1578 
1579 	return ptr;
1580 }
1581 
1582 /**
1583  * memblock_alloc_try_nid - allocate boot memory block
1584  * @size: size of memory block to be allocated in bytes
1585  * @align: alignment of the region and block's size
1586  * @min_addr: the lower bound of the memory region from where the allocation
1587  *	  is preferred (phys address)
1588  * @max_addr: the upper bound of the memory region from where the allocation
1589  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1590  *	      allocate only from memory limited by memblock.current_limit value
1591  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1592  *
1593  * Public function, provides additional debug information (including caller
1594  * info), if enabled. This function zeroes the allocated memory.
1595  *
1596  * Return:
1597  * Virtual address of allocated memory block on success, NULL on failure.
1598  */
1599 void * __init memblock_alloc_try_nid(
1600 			phys_addr_t size, phys_addr_t align,
1601 			phys_addr_t min_addr, phys_addr_t max_addr,
1602 			int nid)
1603 {
1604 	void *ptr;
1605 
1606 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1607 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1608 		     &max_addr, (void *)_RET_IP_);
1609 	ptr = memblock_alloc_internal(size, align,
1610 					   min_addr, max_addr, nid, false);
1611 	if (ptr)
1612 		memset(ptr, 0, size);
1613 
1614 	return ptr;
1615 }
1616 
1617 /**
1618  * __memblock_free_late - free pages directly to buddy allocator
1619  * @base: phys starting address of the  boot memory block
1620  * @size: size of the boot memory block in bytes
1621  *
1622  * This is only useful when the memblock allocator has already been torn
1623  * down, but we are still initializing the system.  Pages are released directly
1624  * to the buddy allocator.
1625  */
1626 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1627 {
1628 	phys_addr_t cursor, end;
1629 
1630 	end = base + size - 1;
1631 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1632 		     __func__, &base, &end, (void *)_RET_IP_);
1633 	kmemleak_free_part_phys(base, size);
1634 	cursor = PFN_UP(base);
1635 	end = PFN_DOWN(base + size);
1636 
1637 	for (; cursor < end; cursor++) {
1638 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1639 		totalram_pages_inc();
1640 	}
1641 }
1642 
1643 /*
1644  * Remaining API functions
1645  */
1646 
1647 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1648 {
1649 	return memblock.memory.total_size;
1650 }
1651 
1652 phys_addr_t __init_memblock memblock_reserved_size(void)
1653 {
1654 	return memblock.reserved.total_size;
1655 }
1656 
1657 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1658 {
1659 	unsigned long pages = 0;
1660 	struct memblock_region *r;
1661 	unsigned long start_pfn, end_pfn;
1662 
1663 	for_each_memblock(memory, r) {
1664 		start_pfn = memblock_region_memory_base_pfn(r);
1665 		end_pfn = memblock_region_memory_end_pfn(r);
1666 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1667 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1668 		pages += end_pfn - start_pfn;
1669 	}
1670 
1671 	return PFN_PHYS(pages);
1672 }
1673 
1674 /* lowest address */
1675 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1676 {
1677 	return memblock.memory.regions[0].base;
1678 }
1679 
1680 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1681 {
1682 	int idx = memblock.memory.cnt - 1;
1683 
1684 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1685 }
1686 
1687 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1688 {
1689 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1690 	struct memblock_region *r;
1691 
1692 	/*
1693 	 * translate the memory @limit size into the max address within one of
1694 	 * the memory memblock regions, if the @limit exceeds the total size
1695 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1696 	 */
1697 	for_each_memblock(memory, r) {
1698 		if (limit <= r->size) {
1699 			max_addr = r->base + limit;
1700 			break;
1701 		}
1702 		limit -= r->size;
1703 	}
1704 
1705 	return max_addr;
1706 }
1707 
1708 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1709 {
1710 	phys_addr_t max_addr;
1711 
1712 	if (!limit)
1713 		return;
1714 
1715 	max_addr = __find_max_addr(limit);
1716 
1717 	/* @limit exceeds the total size of the memory, do nothing */
1718 	if (max_addr == PHYS_ADDR_MAX)
1719 		return;
1720 
1721 	/* truncate both memory and reserved regions */
1722 	memblock_remove_range(&memblock.memory, max_addr,
1723 			      PHYS_ADDR_MAX);
1724 	memblock_remove_range(&memblock.reserved, max_addr,
1725 			      PHYS_ADDR_MAX);
1726 }
1727 
1728 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1729 {
1730 	int start_rgn, end_rgn;
1731 	int i, ret;
1732 
1733 	if (!size)
1734 		return;
1735 
1736 	ret = memblock_isolate_range(&memblock.memory, base, size,
1737 						&start_rgn, &end_rgn);
1738 	if (ret)
1739 		return;
1740 
1741 	/* remove all the MAP regions */
1742 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1743 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1744 			memblock_remove_region(&memblock.memory, i);
1745 
1746 	for (i = start_rgn - 1; i >= 0; i--)
1747 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1748 			memblock_remove_region(&memblock.memory, i);
1749 
1750 	/* truncate the reserved regions */
1751 	memblock_remove_range(&memblock.reserved, 0, base);
1752 	memblock_remove_range(&memblock.reserved,
1753 			base + size, PHYS_ADDR_MAX);
1754 }
1755 
1756 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1757 {
1758 	phys_addr_t max_addr;
1759 
1760 	if (!limit)
1761 		return;
1762 
1763 	max_addr = __find_max_addr(limit);
1764 
1765 	/* @limit exceeds the total size of the memory, do nothing */
1766 	if (max_addr == PHYS_ADDR_MAX)
1767 		return;
1768 
1769 	memblock_cap_memory_range(0, max_addr);
1770 }
1771 
1772 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1773 {
1774 	unsigned int left = 0, right = type->cnt;
1775 
1776 	do {
1777 		unsigned int mid = (right + left) / 2;
1778 
1779 		if (addr < type->regions[mid].base)
1780 			right = mid;
1781 		else if (addr >= (type->regions[mid].base +
1782 				  type->regions[mid].size))
1783 			left = mid + 1;
1784 		else
1785 			return mid;
1786 	} while (left < right);
1787 	return -1;
1788 }
1789 
1790 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1791 {
1792 	return memblock_search(&memblock.reserved, addr) != -1;
1793 }
1794 
1795 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1796 {
1797 	return memblock_search(&memblock.memory, addr) != -1;
1798 }
1799 
1800 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1801 {
1802 	int i = memblock_search(&memblock.memory, addr);
1803 
1804 	if (i == -1)
1805 		return false;
1806 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1807 }
1808 
1809 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1810 			 unsigned long *start_pfn, unsigned long *end_pfn)
1811 {
1812 	struct memblock_type *type = &memblock.memory;
1813 	int mid = memblock_search(type, PFN_PHYS(pfn));
1814 
1815 	if (mid == -1)
1816 		return -1;
1817 
1818 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1819 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1820 
1821 	return memblock_get_region_node(&type->regions[mid]);
1822 }
1823 
1824 /**
1825  * memblock_is_region_memory - check if a region is a subset of memory
1826  * @base: base of region to check
1827  * @size: size of region to check
1828  *
1829  * Check if the region [@base, @base + @size) is a subset of a memory block.
1830  *
1831  * Return:
1832  * 0 if false, non-zero if true
1833  */
1834 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1835 {
1836 	int idx = memblock_search(&memblock.memory, base);
1837 	phys_addr_t end = base + memblock_cap_size(base, &size);
1838 
1839 	if (idx == -1)
1840 		return false;
1841 	return (memblock.memory.regions[idx].base +
1842 		 memblock.memory.regions[idx].size) >= end;
1843 }
1844 
1845 /**
1846  * memblock_is_region_reserved - check if a region intersects reserved memory
1847  * @base: base of region to check
1848  * @size: size of region to check
1849  *
1850  * Check if the region [@base, @base + @size) intersects a reserved
1851  * memory block.
1852  *
1853  * Return:
1854  * True if they intersect, false if not.
1855  */
1856 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1857 {
1858 	memblock_cap_size(base, &size);
1859 	return memblock_overlaps_region(&memblock.reserved, base, size);
1860 }
1861 
1862 void __init_memblock memblock_trim_memory(phys_addr_t align)
1863 {
1864 	phys_addr_t start, end, orig_start, orig_end;
1865 	struct memblock_region *r;
1866 
1867 	for_each_memblock(memory, r) {
1868 		orig_start = r->base;
1869 		orig_end = r->base + r->size;
1870 		start = round_up(orig_start, align);
1871 		end = round_down(orig_end, align);
1872 
1873 		if (start == orig_start && end == orig_end)
1874 			continue;
1875 
1876 		if (start < end) {
1877 			r->base = start;
1878 			r->size = end - start;
1879 		} else {
1880 			memblock_remove_region(&memblock.memory,
1881 					       r - memblock.memory.regions);
1882 			r--;
1883 		}
1884 	}
1885 }
1886 
1887 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1888 {
1889 	memblock.current_limit = limit;
1890 }
1891 
1892 phys_addr_t __init_memblock memblock_get_current_limit(void)
1893 {
1894 	return memblock.current_limit;
1895 }
1896 
1897 static void __init_memblock memblock_dump(struct memblock_type *type)
1898 {
1899 	phys_addr_t base, end, size;
1900 	enum memblock_flags flags;
1901 	int idx;
1902 	struct memblock_region *rgn;
1903 
1904 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1905 
1906 	for_each_memblock_type(idx, type, rgn) {
1907 		char nid_buf[32] = "";
1908 
1909 		base = rgn->base;
1910 		size = rgn->size;
1911 		end = base + size - 1;
1912 		flags = rgn->flags;
1913 #ifdef CONFIG_NEED_MULTIPLE_NODES
1914 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1915 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1916 				 memblock_get_region_node(rgn));
1917 #endif
1918 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1919 			type->name, idx, &base, &end, &size, nid_buf, flags);
1920 	}
1921 }
1922 
1923 void __init_memblock __memblock_dump_all(void)
1924 {
1925 	pr_info("MEMBLOCK configuration:\n");
1926 	pr_info(" memory size = %pa reserved size = %pa\n",
1927 		&memblock.memory.total_size,
1928 		&memblock.reserved.total_size);
1929 
1930 	memblock_dump(&memblock.memory);
1931 	memblock_dump(&memblock.reserved);
1932 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1933 	memblock_dump(&physmem);
1934 #endif
1935 }
1936 
1937 void __init memblock_allow_resize(void)
1938 {
1939 	memblock_can_resize = 1;
1940 }
1941 
1942 static int __init early_memblock(char *p)
1943 {
1944 	if (p && strstr(p, "debug"))
1945 		memblock_debug = 1;
1946 	return 0;
1947 }
1948 early_param("memblock", early_memblock);
1949 
1950 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1951 {
1952 	int order;
1953 
1954 	while (start < end) {
1955 		order = min(MAX_ORDER - 1UL, __ffs(start));
1956 
1957 		while (start + (1UL << order) > end)
1958 			order--;
1959 
1960 		memblock_free_pages(pfn_to_page(start), start, order);
1961 
1962 		start += (1UL << order);
1963 	}
1964 }
1965 
1966 static unsigned long __init __free_memory_core(phys_addr_t start,
1967 				 phys_addr_t end)
1968 {
1969 	unsigned long start_pfn = PFN_UP(start);
1970 	unsigned long end_pfn = min_t(unsigned long,
1971 				      PFN_DOWN(end), max_low_pfn);
1972 
1973 	if (start_pfn >= end_pfn)
1974 		return 0;
1975 
1976 	__free_pages_memory(start_pfn, end_pfn);
1977 
1978 	return end_pfn - start_pfn;
1979 }
1980 
1981 static unsigned long __init free_low_memory_core_early(void)
1982 {
1983 	unsigned long count = 0;
1984 	phys_addr_t start, end;
1985 	u64 i;
1986 
1987 	memblock_clear_hotplug(0, -1);
1988 
1989 	for_each_reserved_mem_region(i, &start, &end)
1990 		reserve_bootmem_region(start, end);
1991 
1992 	/*
1993 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1994 	 *  because in some case like Node0 doesn't have RAM installed
1995 	 *  low ram will be on Node1
1996 	 */
1997 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1998 				NULL)
1999 		count += __free_memory_core(start, end);
2000 
2001 	return count;
2002 }
2003 
2004 static int reset_managed_pages_done __initdata;
2005 
2006 void reset_node_managed_pages(pg_data_t *pgdat)
2007 {
2008 	struct zone *z;
2009 
2010 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2011 		atomic_long_set(&z->managed_pages, 0);
2012 }
2013 
2014 void __init reset_all_zones_managed_pages(void)
2015 {
2016 	struct pglist_data *pgdat;
2017 
2018 	if (reset_managed_pages_done)
2019 		return;
2020 
2021 	for_each_online_pgdat(pgdat)
2022 		reset_node_managed_pages(pgdat);
2023 
2024 	reset_managed_pages_done = 1;
2025 }
2026 
2027 /**
2028  * memblock_free_all - release free pages to the buddy allocator
2029  *
2030  * Return: the number of pages actually released.
2031  */
2032 unsigned long __init memblock_free_all(void)
2033 {
2034 	unsigned long pages;
2035 
2036 	reset_all_zones_managed_pages();
2037 
2038 	pages = free_low_memory_core_early();
2039 	totalram_pages_add(pages);
2040 
2041 	return pages;
2042 }
2043 
2044 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2045 
2046 static int memblock_debug_show(struct seq_file *m, void *private)
2047 {
2048 	struct memblock_type *type = m->private;
2049 	struct memblock_region *reg;
2050 	int i;
2051 	phys_addr_t end;
2052 
2053 	for (i = 0; i < type->cnt; i++) {
2054 		reg = &type->regions[i];
2055 		end = reg->base + reg->size - 1;
2056 
2057 		seq_printf(m, "%4d: ", i);
2058 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2059 	}
2060 	return 0;
2061 }
2062 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2063 
2064 static int __init memblock_init_debugfs(void)
2065 {
2066 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2067 
2068 	debugfs_create_file("memory", 0444, root,
2069 			    &memblock.memory, &memblock_debug_fops);
2070 	debugfs_create_file("reserved", 0444, root,
2071 			    &memblock.reserved, &memblock_debug_fops);
2072 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2073 	debugfs_create_file("physmem", 0444, root, &physmem,
2074 			    &memblock_debug_fops);
2075 #endif
2076 
2077 	return 0;
2078 }
2079 __initcall(memblock_init_debugfs);
2080 
2081 #endif /* CONFIG_DEBUG_FS */
2082