1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/seq_file.h> 21 #include <linux/memblock.h> 22 23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 25 26 struct memblock memblock __initdata_memblock = { 27 .memory.regions = memblock_memory_init_regions, 28 .memory.cnt = 1, /* empty dummy entry */ 29 .memory.max = INIT_MEMBLOCK_REGIONS, 30 31 .reserved.regions = memblock_reserved_init_regions, 32 .reserved.cnt = 1, /* empty dummy entry */ 33 .reserved.max = INIT_MEMBLOCK_REGIONS, 34 35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 36 }; 37 38 int memblock_debug __initdata_memblock; 39 static int memblock_can_resize __initdata_memblock; 40 static int memblock_memory_in_slab __initdata_memblock = 0; 41 static int memblock_reserved_in_slab __initdata_memblock = 0; 42 43 /* inline so we don't get a warning when pr_debug is compiled out */ 44 static __init_memblock const char * 45 memblock_type_name(struct memblock_type *type) 46 { 47 if (type == &memblock.memory) 48 return "memory"; 49 else if (type == &memblock.reserved) 50 return "reserved"; 51 else 52 return "unknown"; 53 } 54 55 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 56 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 57 { 58 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); 59 } 60 61 /* 62 * Address comparison utilities 63 */ 64 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 65 phys_addr_t base2, phys_addr_t size2) 66 { 67 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 68 } 69 70 static long __init_memblock memblock_overlaps_region(struct memblock_type *type, 71 phys_addr_t base, phys_addr_t size) 72 { 73 unsigned long i; 74 75 for (i = 0; i < type->cnt; i++) { 76 phys_addr_t rgnbase = type->regions[i].base; 77 phys_addr_t rgnsize = type->regions[i].size; 78 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) 79 break; 80 } 81 82 return (i < type->cnt) ? i : -1; 83 } 84 85 /** 86 * memblock_find_in_range_node - find free area in given range and node 87 * @start: start of candidate range 88 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 89 * @size: size of free area to find 90 * @align: alignment of free area to find 91 * @nid: nid of the free area to find, %MAX_NUMNODES for any node 92 * 93 * Find @size free area aligned to @align in the specified range and node. 94 * 95 * RETURNS: 96 * Found address on success, %0 on failure. 97 */ 98 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start, 99 phys_addr_t end, phys_addr_t size, 100 phys_addr_t align, int nid) 101 { 102 phys_addr_t this_start, this_end, cand; 103 u64 i; 104 105 /* pump up @end */ 106 if (end == MEMBLOCK_ALLOC_ACCESSIBLE) 107 end = memblock.current_limit; 108 109 /* avoid allocating the first page */ 110 start = max_t(phys_addr_t, start, PAGE_SIZE); 111 end = max(start, end); 112 113 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) { 114 this_start = clamp(this_start, start, end); 115 this_end = clamp(this_end, start, end); 116 117 if (this_end < size) 118 continue; 119 120 cand = round_down(this_end - size, align); 121 if (cand >= this_start) 122 return cand; 123 } 124 return 0; 125 } 126 127 /** 128 * memblock_find_in_range - find free area in given range 129 * @start: start of candidate range 130 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 131 * @size: size of free area to find 132 * @align: alignment of free area to find 133 * 134 * Find @size free area aligned to @align in the specified range. 135 * 136 * RETURNS: 137 * Found address on success, %0 on failure. 138 */ 139 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 140 phys_addr_t end, phys_addr_t size, 141 phys_addr_t align) 142 { 143 return memblock_find_in_range_node(start, end, size, align, 144 MAX_NUMNODES); 145 } 146 147 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 148 { 149 type->total_size -= type->regions[r].size; 150 memmove(&type->regions[r], &type->regions[r + 1], 151 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 152 type->cnt--; 153 154 /* Special case for empty arrays */ 155 if (type->cnt == 0) { 156 WARN_ON(type->total_size != 0); 157 type->cnt = 1; 158 type->regions[0].base = 0; 159 type->regions[0].size = 0; 160 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 161 } 162 } 163 164 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( 165 phys_addr_t *addr) 166 { 167 if (memblock.reserved.regions == memblock_reserved_init_regions) 168 return 0; 169 170 *addr = __pa(memblock.reserved.regions); 171 172 return PAGE_ALIGN(sizeof(struct memblock_region) * 173 memblock.reserved.max); 174 } 175 176 /** 177 * memblock_double_array - double the size of the memblock regions array 178 * @type: memblock type of the regions array being doubled 179 * @new_area_start: starting address of memory range to avoid overlap with 180 * @new_area_size: size of memory range to avoid overlap with 181 * 182 * Double the size of the @type regions array. If memblock is being used to 183 * allocate memory for a new reserved regions array and there is a previously 184 * allocated memory range [@new_area_start,@new_area_start+@new_area_size] 185 * waiting to be reserved, ensure the memory used by the new array does 186 * not overlap. 187 * 188 * RETURNS: 189 * 0 on success, -1 on failure. 190 */ 191 static int __init_memblock memblock_double_array(struct memblock_type *type, 192 phys_addr_t new_area_start, 193 phys_addr_t new_area_size) 194 { 195 struct memblock_region *new_array, *old_array; 196 phys_addr_t old_alloc_size, new_alloc_size; 197 phys_addr_t old_size, new_size, addr; 198 int use_slab = slab_is_available(); 199 int *in_slab; 200 201 /* We don't allow resizing until we know about the reserved regions 202 * of memory that aren't suitable for allocation 203 */ 204 if (!memblock_can_resize) 205 return -1; 206 207 /* Calculate new doubled size */ 208 old_size = type->max * sizeof(struct memblock_region); 209 new_size = old_size << 1; 210 /* 211 * We need to allocated new one align to PAGE_SIZE, 212 * so we can free them completely later. 213 */ 214 old_alloc_size = PAGE_ALIGN(old_size); 215 new_alloc_size = PAGE_ALIGN(new_size); 216 217 /* Retrieve the slab flag */ 218 if (type == &memblock.memory) 219 in_slab = &memblock_memory_in_slab; 220 else 221 in_slab = &memblock_reserved_in_slab; 222 223 /* Try to find some space for it. 224 * 225 * WARNING: We assume that either slab_is_available() and we use it or 226 * we use MEMBLOCK for allocations. That means that this is unsafe to 227 * use when bootmem is currently active (unless bootmem itself is 228 * implemented on top of MEMBLOCK which isn't the case yet) 229 * 230 * This should however not be an issue for now, as we currently only 231 * call into MEMBLOCK while it's still active, or much later when slab 232 * is active for memory hotplug operations 233 */ 234 if (use_slab) { 235 new_array = kmalloc(new_size, GFP_KERNEL); 236 addr = new_array ? __pa(new_array) : 0; 237 } else { 238 /* only exclude range when trying to double reserved.regions */ 239 if (type != &memblock.reserved) 240 new_area_start = new_area_size = 0; 241 242 addr = memblock_find_in_range(new_area_start + new_area_size, 243 memblock.current_limit, 244 new_alloc_size, PAGE_SIZE); 245 if (!addr && new_area_size) 246 addr = memblock_find_in_range(0, 247 min(new_area_start, memblock.current_limit), 248 new_alloc_size, PAGE_SIZE); 249 250 new_array = addr ? __va(addr) : NULL; 251 } 252 if (!addr) { 253 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 254 memblock_type_name(type), type->max, type->max * 2); 255 return -1; 256 } 257 258 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]", 259 memblock_type_name(type), type->max * 2, (u64)addr, 260 (u64)addr + new_size - 1); 261 262 /* 263 * Found space, we now need to move the array over before we add the 264 * reserved region since it may be our reserved array itself that is 265 * full. 266 */ 267 memcpy(new_array, type->regions, old_size); 268 memset(new_array + type->max, 0, old_size); 269 old_array = type->regions; 270 type->regions = new_array; 271 type->max <<= 1; 272 273 /* Free old array. We needn't free it if the array is the static one */ 274 if (*in_slab) 275 kfree(old_array); 276 else if (old_array != memblock_memory_init_regions && 277 old_array != memblock_reserved_init_regions) 278 memblock_free(__pa(old_array), old_alloc_size); 279 280 /* 281 * Reserve the new array if that comes from the memblock. Otherwise, we 282 * needn't do it 283 */ 284 if (!use_slab) 285 BUG_ON(memblock_reserve(addr, new_alloc_size)); 286 287 /* Update slab flag */ 288 *in_slab = use_slab; 289 290 return 0; 291 } 292 293 /** 294 * memblock_merge_regions - merge neighboring compatible regions 295 * @type: memblock type to scan 296 * 297 * Scan @type and merge neighboring compatible regions. 298 */ 299 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 300 { 301 int i = 0; 302 303 /* cnt never goes below 1 */ 304 while (i < type->cnt - 1) { 305 struct memblock_region *this = &type->regions[i]; 306 struct memblock_region *next = &type->regions[i + 1]; 307 308 if (this->base + this->size != next->base || 309 memblock_get_region_node(this) != 310 memblock_get_region_node(next)) { 311 BUG_ON(this->base + this->size > next->base); 312 i++; 313 continue; 314 } 315 316 this->size += next->size; 317 /* move forward from next + 1, index of which is i + 2 */ 318 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 319 type->cnt--; 320 } 321 } 322 323 /** 324 * memblock_insert_region - insert new memblock region 325 * @type: memblock type to insert into 326 * @idx: index for the insertion point 327 * @base: base address of the new region 328 * @size: size of the new region 329 * @nid: node id of the new region 330 * 331 * Insert new memblock region [@base,@base+@size) into @type at @idx. 332 * @type must already have extra room to accomodate the new region. 333 */ 334 static void __init_memblock memblock_insert_region(struct memblock_type *type, 335 int idx, phys_addr_t base, 336 phys_addr_t size, int nid) 337 { 338 struct memblock_region *rgn = &type->regions[idx]; 339 340 BUG_ON(type->cnt >= type->max); 341 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 342 rgn->base = base; 343 rgn->size = size; 344 memblock_set_region_node(rgn, nid); 345 type->cnt++; 346 type->total_size += size; 347 } 348 349 /** 350 * memblock_add_region - add new memblock region 351 * @type: memblock type to add new region into 352 * @base: base address of the new region 353 * @size: size of the new region 354 * @nid: nid of the new region 355 * 356 * Add new memblock region [@base,@base+@size) into @type. The new region 357 * is allowed to overlap with existing ones - overlaps don't affect already 358 * existing regions. @type is guaranteed to be minimal (all neighbouring 359 * compatible regions are merged) after the addition. 360 * 361 * RETURNS: 362 * 0 on success, -errno on failure. 363 */ 364 static int __init_memblock memblock_add_region(struct memblock_type *type, 365 phys_addr_t base, phys_addr_t size, int nid) 366 { 367 bool insert = false; 368 phys_addr_t obase = base; 369 phys_addr_t end = base + memblock_cap_size(base, &size); 370 int i, nr_new; 371 372 if (!size) 373 return 0; 374 375 /* special case for empty array */ 376 if (type->regions[0].size == 0) { 377 WARN_ON(type->cnt != 1 || type->total_size); 378 type->regions[0].base = base; 379 type->regions[0].size = size; 380 memblock_set_region_node(&type->regions[0], nid); 381 type->total_size = size; 382 return 0; 383 } 384 repeat: 385 /* 386 * The following is executed twice. Once with %false @insert and 387 * then with %true. The first counts the number of regions needed 388 * to accomodate the new area. The second actually inserts them. 389 */ 390 base = obase; 391 nr_new = 0; 392 393 for (i = 0; i < type->cnt; i++) { 394 struct memblock_region *rgn = &type->regions[i]; 395 phys_addr_t rbase = rgn->base; 396 phys_addr_t rend = rbase + rgn->size; 397 398 if (rbase >= end) 399 break; 400 if (rend <= base) 401 continue; 402 /* 403 * @rgn overlaps. If it separates the lower part of new 404 * area, insert that portion. 405 */ 406 if (rbase > base) { 407 nr_new++; 408 if (insert) 409 memblock_insert_region(type, i++, base, 410 rbase - base, nid); 411 } 412 /* area below @rend is dealt with, forget about it */ 413 base = min(rend, end); 414 } 415 416 /* insert the remaining portion */ 417 if (base < end) { 418 nr_new++; 419 if (insert) 420 memblock_insert_region(type, i, base, end - base, nid); 421 } 422 423 /* 424 * If this was the first round, resize array and repeat for actual 425 * insertions; otherwise, merge and return. 426 */ 427 if (!insert) { 428 while (type->cnt + nr_new > type->max) 429 if (memblock_double_array(type, obase, size) < 0) 430 return -ENOMEM; 431 insert = true; 432 goto repeat; 433 } else { 434 memblock_merge_regions(type); 435 return 0; 436 } 437 } 438 439 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 440 int nid) 441 { 442 return memblock_add_region(&memblock.memory, base, size, nid); 443 } 444 445 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 446 { 447 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES); 448 } 449 450 /** 451 * memblock_isolate_range - isolate given range into disjoint memblocks 452 * @type: memblock type to isolate range for 453 * @base: base of range to isolate 454 * @size: size of range to isolate 455 * @start_rgn: out parameter for the start of isolated region 456 * @end_rgn: out parameter for the end of isolated region 457 * 458 * Walk @type and ensure that regions don't cross the boundaries defined by 459 * [@base,@base+@size). Crossing regions are split at the boundaries, 460 * which may create at most two more regions. The index of the first 461 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 462 * 463 * RETURNS: 464 * 0 on success, -errno on failure. 465 */ 466 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 467 phys_addr_t base, phys_addr_t size, 468 int *start_rgn, int *end_rgn) 469 { 470 phys_addr_t end = base + memblock_cap_size(base, &size); 471 int i; 472 473 *start_rgn = *end_rgn = 0; 474 475 if (!size) 476 return 0; 477 478 /* we'll create at most two more regions */ 479 while (type->cnt + 2 > type->max) 480 if (memblock_double_array(type, base, size) < 0) 481 return -ENOMEM; 482 483 for (i = 0; i < type->cnt; i++) { 484 struct memblock_region *rgn = &type->regions[i]; 485 phys_addr_t rbase = rgn->base; 486 phys_addr_t rend = rbase + rgn->size; 487 488 if (rbase >= end) 489 break; 490 if (rend <= base) 491 continue; 492 493 if (rbase < base) { 494 /* 495 * @rgn intersects from below. Split and continue 496 * to process the next region - the new top half. 497 */ 498 rgn->base = base; 499 rgn->size -= base - rbase; 500 type->total_size -= base - rbase; 501 memblock_insert_region(type, i, rbase, base - rbase, 502 memblock_get_region_node(rgn)); 503 } else if (rend > end) { 504 /* 505 * @rgn intersects from above. Split and redo the 506 * current region - the new bottom half. 507 */ 508 rgn->base = end; 509 rgn->size -= end - rbase; 510 type->total_size -= end - rbase; 511 memblock_insert_region(type, i--, rbase, end - rbase, 512 memblock_get_region_node(rgn)); 513 } else { 514 /* @rgn is fully contained, record it */ 515 if (!*end_rgn) 516 *start_rgn = i; 517 *end_rgn = i + 1; 518 } 519 } 520 521 return 0; 522 } 523 524 static int __init_memblock __memblock_remove(struct memblock_type *type, 525 phys_addr_t base, phys_addr_t size) 526 { 527 int start_rgn, end_rgn; 528 int i, ret; 529 530 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 531 if (ret) 532 return ret; 533 534 for (i = end_rgn - 1; i >= start_rgn; i--) 535 memblock_remove_region(type, i); 536 return 0; 537 } 538 539 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 540 { 541 return __memblock_remove(&memblock.memory, base, size); 542 } 543 544 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 545 { 546 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", 547 (unsigned long long)base, 548 (unsigned long long)base + size, 549 (void *)_RET_IP_); 550 551 return __memblock_remove(&memblock.reserved, base, size); 552 } 553 554 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 555 { 556 struct memblock_type *_rgn = &memblock.reserved; 557 558 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n", 559 (unsigned long long)base, 560 (unsigned long long)base + size, 561 (void *)_RET_IP_); 562 563 return memblock_add_region(_rgn, base, size, MAX_NUMNODES); 564 } 565 566 /** 567 * __next_free_mem_range - next function for for_each_free_mem_range() 568 * @idx: pointer to u64 loop variable 569 * @nid: node selector, %MAX_NUMNODES for all nodes 570 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 571 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 572 * @out_nid: ptr to int for nid of the range, can be %NULL 573 * 574 * Find the first free area from *@idx which matches @nid, fill the out 575 * parameters, and update *@idx for the next iteration. The lower 32bit of 576 * *@idx contains index into memory region and the upper 32bit indexes the 577 * areas before each reserved region. For example, if reserved regions 578 * look like the following, 579 * 580 * 0:[0-16), 1:[32-48), 2:[128-130) 581 * 582 * The upper 32bit indexes the following regions. 583 * 584 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 585 * 586 * As both region arrays are sorted, the function advances the two indices 587 * in lockstep and returns each intersection. 588 */ 589 void __init_memblock __next_free_mem_range(u64 *idx, int nid, 590 phys_addr_t *out_start, 591 phys_addr_t *out_end, int *out_nid) 592 { 593 struct memblock_type *mem = &memblock.memory; 594 struct memblock_type *rsv = &memblock.reserved; 595 int mi = *idx & 0xffffffff; 596 int ri = *idx >> 32; 597 598 for ( ; mi < mem->cnt; mi++) { 599 struct memblock_region *m = &mem->regions[mi]; 600 phys_addr_t m_start = m->base; 601 phys_addr_t m_end = m->base + m->size; 602 603 /* only memory regions are associated with nodes, check it */ 604 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) 605 continue; 606 607 /* scan areas before each reservation for intersection */ 608 for ( ; ri < rsv->cnt + 1; ri++) { 609 struct memblock_region *r = &rsv->regions[ri]; 610 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; 611 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; 612 613 /* if ri advanced past mi, break out to advance mi */ 614 if (r_start >= m_end) 615 break; 616 /* if the two regions intersect, we're done */ 617 if (m_start < r_end) { 618 if (out_start) 619 *out_start = max(m_start, r_start); 620 if (out_end) 621 *out_end = min(m_end, r_end); 622 if (out_nid) 623 *out_nid = memblock_get_region_node(m); 624 /* 625 * The region which ends first is advanced 626 * for the next iteration. 627 */ 628 if (m_end <= r_end) 629 mi++; 630 else 631 ri++; 632 *idx = (u32)mi | (u64)ri << 32; 633 return; 634 } 635 } 636 } 637 638 /* signal end of iteration */ 639 *idx = ULLONG_MAX; 640 } 641 642 /** 643 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse() 644 * @idx: pointer to u64 loop variable 645 * @nid: nid: node selector, %MAX_NUMNODES for all nodes 646 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 647 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 648 * @out_nid: ptr to int for nid of the range, can be %NULL 649 * 650 * Reverse of __next_free_mem_range(). 651 */ 652 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid, 653 phys_addr_t *out_start, 654 phys_addr_t *out_end, int *out_nid) 655 { 656 struct memblock_type *mem = &memblock.memory; 657 struct memblock_type *rsv = &memblock.reserved; 658 int mi = *idx & 0xffffffff; 659 int ri = *idx >> 32; 660 661 if (*idx == (u64)ULLONG_MAX) { 662 mi = mem->cnt - 1; 663 ri = rsv->cnt; 664 } 665 666 for ( ; mi >= 0; mi--) { 667 struct memblock_region *m = &mem->regions[mi]; 668 phys_addr_t m_start = m->base; 669 phys_addr_t m_end = m->base + m->size; 670 671 /* only memory regions are associated with nodes, check it */ 672 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) 673 continue; 674 675 /* scan areas before each reservation for intersection */ 676 for ( ; ri >= 0; ri--) { 677 struct memblock_region *r = &rsv->regions[ri]; 678 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; 679 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; 680 681 /* if ri advanced past mi, break out to advance mi */ 682 if (r_end <= m_start) 683 break; 684 /* if the two regions intersect, we're done */ 685 if (m_end > r_start) { 686 if (out_start) 687 *out_start = max(m_start, r_start); 688 if (out_end) 689 *out_end = min(m_end, r_end); 690 if (out_nid) 691 *out_nid = memblock_get_region_node(m); 692 693 if (m_start >= r_start) 694 mi--; 695 else 696 ri--; 697 *idx = (u32)mi | (u64)ri << 32; 698 return; 699 } 700 } 701 } 702 703 *idx = ULLONG_MAX; 704 } 705 706 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 707 /* 708 * Common iterator interface used to define for_each_mem_range(). 709 */ 710 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 711 unsigned long *out_start_pfn, 712 unsigned long *out_end_pfn, int *out_nid) 713 { 714 struct memblock_type *type = &memblock.memory; 715 struct memblock_region *r; 716 717 while (++*idx < type->cnt) { 718 r = &type->regions[*idx]; 719 720 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 721 continue; 722 if (nid == MAX_NUMNODES || nid == r->nid) 723 break; 724 } 725 if (*idx >= type->cnt) { 726 *idx = -1; 727 return; 728 } 729 730 if (out_start_pfn) 731 *out_start_pfn = PFN_UP(r->base); 732 if (out_end_pfn) 733 *out_end_pfn = PFN_DOWN(r->base + r->size); 734 if (out_nid) 735 *out_nid = r->nid; 736 } 737 738 /** 739 * memblock_set_node - set node ID on memblock regions 740 * @base: base of area to set node ID for 741 * @size: size of area to set node ID for 742 * @nid: node ID to set 743 * 744 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid. 745 * Regions which cross the area boundaries are split as necessary. 746 * 747 * RETURNS: 748 * 0 on success, -errno on failure. 749 */ 750 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 751 int nid) 752 { 753 struct memblock_type *type = &memblock.memory; 754 int start_rgn, end_rgn; 755 int i, ret; 756 757 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 758 if (ret) 759 return ret; 760 761 for (i = start_rgn; i < end_rgn; i++) 762 memblock_set_region_node(&type->regions[i], nid); 763 764 memblock_merge_regions(type); 765 return 0; 766 } 767 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 768 769 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, 770 phys_addr_t align, phys_addr_t max_addr, 771 int nid) 772 { 773 phys_addr_t found; 774 775 if (WARN_ON(!align)) 776 align = __alignof__(long long); 777 778 /* align @size to avoid excessive fragmentation on reserved array */ 779 size = round_up(size, align); 780 781 found = memblock_find_in_range_node(0, max_addr, size, align, nid); 782 if (found && !memblock_reserve(found, size)) 783 return found; 784 785 return 0; 786 } 787 788 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 789 { 790 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 791 } 792 793 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 794 { 795 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES); 796 } 797 798 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 799 { 800 phys_addr_t alloc; 801 802 alloc = __memblock_alloc_base(size, align, max_addr); 803 804 if (alloc == 0) 805 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", 806 (unsigned long long) size, (unsigned long long) max_addr); 807 808 return alloc; 809 } 810 811 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) 812 { 813 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 814 } 815 816 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 817 { 818 phys_addr_t res = memblock_alloc_nid(size, align, nid); 819 820 if (res) 821 return res; 822 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 823 } 824 825 826 /* 827 * Remaining API functions 828 */ 829 830 phys_addr_t __init memblock_phys_mem_size(void) 831 { 832 return memblock.memory.total_size; 833 } 834 835 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) 836 { 837 unsigned long pages = 0; 838 struct memblock_region *r; 839 unsigned long start_pfn, end_pfn; 840 841 for_each_memblock(memory, r) { 842 start_pfn = memblock_region_memory_base_pfn(r); 843 end_pfn = memblock_region_memory_end_pfn(r); 844 start_pfn = min_t(unsigned long, start_pfn, limit_pfn); 845 end_pfn = min_t(unsigned long, end_pfn, limit_pfn); 846 pages += end_pfn - start_pfn; 847 } 848 849 return (phys_addr_t)pages << PAGE_SHIFT; 850 } 851 852 /* lowest address */ 853 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 854 { 855 return memblock.memory.regions[0].base; 856 } 857 858 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 859 { 860 int idx = memblock.memory.cnt - 1; 861 862 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 863 } 864 865 void __init memblock_enforce_memory_limit(phys_addr_t limit) 866 { 867 unsigned long i; 868 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 869 870 if (!limit) 871 return; 872 873 /* find out max address */ 874 for (i = 0; i < memblock.memory.cnt; i++) { 875 struct memblock_region *r = &memblock.memory.regions[i]; 876 877 if (limit <= r->size) { 878 max_addr = r->base + limit; 879 break; 880 } 881 limit -= r->size; 882 } 883 884 /* truncate both memory and reserved regions */ 885 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX); 886 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX); 887 } 888 889 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 890 { 891 unsigned int left = 0, right = type->cnt; 892 893 do { 894 unsigned int mid = (right + left) / 2; 895 896 if (addr < type->regions[mid].base) 897 right = mid; 898 else if (addr >= (type->regions[mid].base + 899 type->regions[mid].size)) 900 left = mid + 1; 901 else 902 return mid; 903 } while (left < right); 904 return -1; 905 } 906 907 int __init memblock_is_reserved(phys_addr_t addr) 908 { 909 return memblock_search(&memblock.reserved, addr) != -1; 910 } 911 912 int __init_memblock memblock_is_memory(phys_addr_t addr) 913 { 914 return memblock_search(&memblock.memory, addr) != -1; 915 } 916 917 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 918 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 919 unsigned long *start_pfn, unsigned long *end_pfn) 920 { 921 struct memblock_type *type = &memblock.memory; 922 int mid = memblock_search(type, (phys_addr_t)pfn << PAGE_SHIFT); 923 924 if (mid == -1) 925 return -1; 926 927 *start_pfn = type->regions[mid].base >> PAGE_SHIFT; 928 *end_pfn = (type->regions[mid].base + type->regions[mid].size) 929 >> PAGE_SHIFT; 930 931 return type->regions[mid].nid; 932 } 933 #endif 934 935 /** 936 * memblock_is_region_memory - check if a region is a subset of memory 937 * @base: base of region to check 938 * @size: size of region to check 939 * 940 * Check if the region [@base, @base+@size) is a subset of a memory block. 941 * 942 * RETURNS: 943 * 0 if false, non-zero if true 944 */ 945 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 946 { 947 int idx = memblock_search(&memblock.memory, base); 948 phys_addr_t end = base + memblock_cap_size(base, &size); 949 950 if (idx == -1) 951 return 0; 952 return memblock.memory.regions[idx].base <= base && 953 (memblock.memory.regions[idx].base + 954 memblock.memory.regions[idx].size) >= end; 955 } 956 957 /** 958 * memblock_is_region_reserved - check if a region intersects reserved memory 959 * @base: base of region to check 960 * @size: size of region to check 961 * 962 * Check if the region [@base, @base+@size) intersects a reserved memory block. 963 * 964 * RETURNS: 965 * 0 if false, non-zero if true 966 */ 967 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 968 { 969 memblock_cap_size(base, &size); 970 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; 971 } 972 973 void __init_memblock memblock_trim_memory(phys_addr_t align) 974 { 975 int i; 976 phys_addr_t start, end, orig_start, orig_end; 977 struct memblock_type *mem = &memblock.memory; 978 979 for (i = 0; i < mem->cnt; i++) { 980 orig_start = mem->regions[i].base; 981 orig_end = mem->regions[i].base + mem->regions[i].size; 982 start = round_up(orig_start, align); 983 end = round_down(orig_end, align); 984 985 if (start == orig_start && end == orig_end) 986 continue; 987 988 if (start < end) { 989 mem->regions[i].base = start; 990 mem->regions[i].size = end - start; 991 } else { 992 memblock_remove_region(mem, i); 993 i--; 994 } 995 } 996 } 997 998 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 999 { 1000 memblock.current_limit = limit; 1001 } 1002 1003 static void __init_memblock memblock_dump(struct memblock_type *type, char *name) 1004 { 1005 unsigned long long base, size; 1006 int i; 1007 1008 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); 1009 1010 for (i = 0; i < type->cnt; i++) { 1011 struct memblock_region *rgn = &type->regions[i]; 1012 char nid_buf[32] = ""; 1013 1014 base = rgn->base; 1015 size = rgn->size; 1016 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1017 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1018 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1019 memblock_get_region_node(rgn)); 1020 #endif 1021 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n", 1022 name, i, base, base + size - 1, size, nid_buf); 1023 } 1024 } 1025 1026 void __init_memblock __memblock_dump_all(void) 1027 { 1028 pr_info("MEMBLOCK configuration:\n"); 1029 pr_info(" memory size = %#llx reserved size = %#llx\n", 1030 (unsigned long long)memblock.memory.total_size, 1031 (unsigned long long)memblock.reserved.total_size); 1032 1033 memblock_dump(&memblock.memory, "memory"); 1034 memblock_dump(&memblock.reserved, "reserved"); 1035 } 1036 1037 void __init memblock_allow_resize(void) 1038 { 1039 memblock_can_resize = 1; 1040 } 1041 1042 static int __init early_memblock(char *p) 1043 { 1044 if (p && strstr(p, "debug")) 1045 memblock_debug = 1; 1046 return 0; 1047 } 1048 early_param("memblock", early_memblock); 1049 1050 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) 1051 1052 static int memblock_debug_show(struct seq_file *m, void *private) 1053 { 1054 struct memblock_type *type = m->private; 1055 struct memblock_region *reg; 1056 int i; 1057 1058 for (i = 0; i < type->cnt; i++) { 1059 reg = &type->regions[i]; 1060 seq_printf(m, "%4d: ", i); 1061 if (sizeof(phys_addr_t) == 4) 1062 seq_printf(m, "0x%08lx..0x%08lx\n", 1063 (unsigned long)reg->base, 1064 (unsigned long)(reg->base + reg->size - 1)); 1065 else 1066 seq_printf(m, "0x%016llx..0x%016llx\n", 1067 (unsigned long long)reg->base, 1068 (unsigned long long)(reg->base + reg->size - 1)); 1069 1070 } 1071 return 0; 1072 } 1073 1074 static int memblock_debug_open(struct inode *inode, struct file *file) 1075 { 1076 return single_open(file, memblock_debug_show, inode->i_private); 1077 } 1078 1079 static const struct file_operations memblock_debug_fops = { 1080 .open = memblock_debug_open, 1081 .read = seq_read, 1082 .llseek = seq_lseek, 1083 .release = single_release, 1084 }; 1085 1086 static int __init memblock_init_debugfs(void) 1087 { 1088 struct dentry *root = debugfs_create_dir("memblock", NULL); 1089 if (!root) 1090 return -ENXIO; 1091 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); 1092 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); 1093 1094 return 0; 1095 } 1096 __initcall(memblock_init_debugfs); 1097 1098 #endif /* CONFIG_DEBUG_FS */ 1099