xref: /openbmc/linux/mm/memblock.c (revision c9118e6c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 
20 #include <asm/sections.h>
21 #include <linux/io.h>
22 
23 #include "internal.h"
24 
25 #define INIT_MEMBLOCK_REGIONS			128
26 #define INIT_PHYSMEM_REGIONS			4
27 
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30 #endif
31 
32 /**
33  * DOC: memblock overview
34  *
35  * Memblock is a method of managing memory regions during the early
36  * boot period when the usual kernel memory allocators are not up and
37  * running.
38  *
39  * Memblock views the system memory as collections of contiguous
40  * regions. There are several types of these collections:
41  *
42  * * ``memory`` - describes the physical memory available to the
43  *   kernel; this may differ from the actual physical memory installed
44  *   in the system, for instance when the memory is restricted with
45  *   ``mem=`` command line parameter
46  * * ``reserved`` - describes the regions that were allocated
47  * * ``physmem`` - describes the actual physical memory available during
48  *   boot regardless of the possible restrictions and memory hot(un)plug;
49  *   the ``physmem`` type is only available on some architectures.
50  *
51  * Each region is represented by :c:type:`struct memblock_region` that
52  * defines the region extents, its attributes and NUMA node id on NUMA
53  * systems. Every memory type is described by the :c:type:`struct
54  * memblock_type` which contains an array of memory regions along with
55  * the allocator metadata. The "memory" and "reserved" types are nicely
56  * wrapped with :c:type:`struct memblock`. This structure is statically
57  * initialized at build time. The region arrays are initially sized to
58  * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59  * for "reserved". The region array for "physmem" is initially sized to
60  * %INIT_PHYSMEM_REGIONS.
61  * The memblock_allow_resize() enables automatic resizing of the region
62  * arrays during addition of new regions. This feature should be used
63  * with care so that memory allocated for the region array will not
64  * overlap with areas that should be reserved, for example initrd.
65  *
66  * The early architecture setup should tell memblock what the physical
67  * memory layout is by using memblock_add() or memblock_add_node()
68  * functions. The first function does not assign the region to a NUMA
69  * node and it is appropriate for UMA systems. Yet, it is possible to
70  * use it on NUMA systems as well and assign the region to a NUMA node
71  * later in the setup process using memblock_set_node(). The
72  * memblock_add_node() performs such an assignment directly.
73  *
74  * Once memblock is setup the memory can be allocated using one of the
75  * API variants:
76  *
77  * * memblock_phys_alloc*() - these functions return the **physical**
78  *   address of the allocated memory
79  * * memblock_alloc*() - these functions return the **virtual** address
80  *   of the allocated memory.
81  *
82  * Note, that both API variants use implicit assumptions about allowed
83  * memory ranges and the fallback methods. Consult the documentation
84  * of memblock_alloc_internal() and memblock_alloc_range_nid()
85  * functions for more elaborate description.
86  *
87  * As the system boot progresses, the architecture specific mem_init()
88  * function frees all the memory to the buddy page allocator.
89  *
90  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91  * memblock data structures (except "physmem") will be discarded after the
92  * system initialization completes.
93  */
94 
95 #ifndef CONFIG_NEED_MULTIPLE_NODES
96 struct pglist_data __refdata contig_page_data;
97 EXPORT_SYMBOL(contig_page_data);
98 #endif
99 
100 unsigned long max_low_pfn;
101 unsigned long min_low_pfn;
102 unsigned long max_pfn;
103 unsigned long long max_possible_pfn;
104 
105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109 #endif
110 
111 struct memblock memblock __initdata_memblock = {
112 	.memory.regions		= memblock_memory_init_regions,
113 	.memory.cnt		= 1,	/* empty dummy entry */
114 	.memory.max		= INIT_MEMBLOCK_REGIONS,
115 	.memory.name		= "memory",
116 
117 	.reserved.regions	= memblock_reserved_init_regions,
118 	.reserved.cnt		= 1,	/* empty dummy entry */
119 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
120 	.reserved.name		= "reserved",
121 
122 	.bottom_up		= false,
123 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
124 };
125 
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem = {
128 	.regions		= memblock_physmem_init_regions,
129 	.cnt			= 1,	/* empty dummy entry */
130 	.max			= INIT_PHYSMEM_REGIONS,
131 	.name			= "physmem",
132 };
133 #endif
134 
135 #define for_each_memblock_type(i, memblock_type, rgn)			\
136 	for (i = 0, rgn = &memblock_type->regions[0];			\
137 	     i < memblock_type->cnt;					\
138 	     i++, rgn = &memblock_type->regions[i])
139 
140 #define memblock_dbg(fmt, ...)						\
141 	do {								\
142 		if (memblock_debug)					\
143 			pr_info(fmt, ##__VA_ARGS__);			\
144 	} while (0)
145 
146 static int memblock_debug __initdata_memblock;
147 static bool system_has_some_mirror __initdata_memblock = false;
148 static int memblock_can_resize __initdata_memblock;
149 static int memblock_memory_in_slab __initdata_memblock = 0;
150 static int memblock_reserved_in_slab __initdata_memblock = 0;
151 
152 static enum memblock_flags __init_memblock choose_memblock_flags(void)
153 {
154 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
155 }
156 
157 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
158 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
159 {
160 	return *size = min(*size, PHYS_ADDR_MAX - base);
161 }
162 
163 /*
164  * Address comparison utilities
165  */
166 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
167 				       phys_addr_t base2, phys_addr_t size2)
168 {
169 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
170 }
171 
172 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
173 					phys_addr_t base, phys_addr_t size)
174 {
175 	unsigned long i;
176 
177 	for (i = 0; i < type->cnt; i++)
178 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
179 					   type->regions[i].size))
180 			break;
181 	return i < type->cnt;
182 }
183 
184 /**
185  * __memblock_find_range_bottom_up - find free area utility in bottom-up
186  * @start: start of candidate range
187  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
188  *       %MEMBLOCK_ALLOC_ACCESSIBLE
189  * @size: size of free area to find
190  * @align: alignment of free area to find
191  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
192  * @flags: pick from blocks based on memory attributes
193  *
194  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
195  *
196  * Return:
197  * Found address on success, 0 on failure.
198  */
199 static phys_addr_t __init_memblock
200 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
201 				phys_addr_t size, phys_addr_t align, int nid,
202 				enum memblock_flags flags)
203 {
204 	phys_addr_t this_start, this_end, cand;
205 	u64 i;
206 
207 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
208 		this_start = clamp(this_start, start, end);
209 		this_end = clamp(this_end, start, end);
210 
211 		cand = round_up(this_start, align);
212 		if (cand < this_end && this_end - cand >= size)
213 			return cand;
214 	}
215 
216 	return 0;
217 }
218 
219 /**
220  * __memblock_find_range_top_down - find free area utility, in top-down
221  * @start: start of candidate range
222  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
223  *       %MEMBLOCK_ALLOC_ACCESSIBLE
224  * @size: size of free area to find
225  * @align: alignment of free area to find
226  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
227  * @flags: pick from blocks based on memory attributes
228  *
229  * Utility called from memblock_find_in_range_node(), find free area top-down.
230  *
231  * Return:
232  * Found address on success, 0 on failure.
233  */
234 static phys_addr_t __init_memblock
235 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
236 			       phys_addr_t size, phys_addr_t align, int nid,
237 			       enum memblock_flags flags)
238 {
239 	phys_addr_t this_start, this_end, cand;
240 	u64 i;
241 
242 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
243 					NULL) {
244 		this_start = clamp(this_start, start, end);
245 		this_end = clamp(this_end, start, end);
246 
247 		if (this_end < size)
248 			continue;
249 
250 		cand = round_down(this_end - size, align);
251 		if (cand >= this_start)
252 			return cand;
253 	}
254 
255 	return 0;
256 }
257 
258 /**
259  * memblock_find_in_range_node - find free area in given range and node
260  * @size: size of free area to find
261  * @align: alignment of free area to find
262  * @start: start of candidate range
263  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
264  *       %MEMBLOCK_ALLOC_ACCESSIBLE
265  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
266  * @flags: pick from blocks based on memory attributes
267  *
268  * Find @size free area aligned to @align in the specified range and node.
269  *
270  * When allocation direction is bottom-up, the @start should be greater
271  * than the end of the kernel image. Otherwise, it will be trimmed. The
272  * reason is that we want the bottom-up allocation just near the kernel
273  * image so it is highly likely that the allocated memory and the kernel
274  * will reside in the same node.
275  *
276  * If bottom-up allocation failed, will try to allocate memory top-down.
277  *
278  * Return:
279  * Found address on success, 0 on failure.
280  */
281 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
282 					phys_addr_t align, phys_addr_t start,
283 					phys_addr_t end, int nid,
284 					enum memblock_flags flags)
285 {
286 	phys_addr_t kernel_end, ret;
287 
288 	/* pump up @end */
289 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
290 	    end == MEMBLOCK_ALLOC_KASAN)
291 		end = memblock.current_limit;
292 
293 	/* avoid allocating the first page */
294 	start = max_t(phys_addr_t, start, PAGE_SIZE);
295 	end = max(start, end);
296 	kernel_end = __pa_symbol(_end);
297 
298 	/*
299 	 * try bottom-up allocation only when bottom-up mode
300 	 * is set and @end is above the kernel image.
301 	 */
302 	if (memblock_bottom_up() && end > kernel_end) {
303 		phys_addr_t bottom_up_start;
304 
305 		/* make sure we will allocate above the kernel */
306 		bottom_up_start = max(start, kernel_end);
307 
308 		/* ok, try bottom-up allocation first */
309 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
310 						      size, align, nid, flags);
311 		if (ret)
312 			return ret;
313 
314 		/*
315 		 * we always limit bottom-up allocation above the kernel,
316 		 * but top-down allocation doesn't have the limit, so
317 		 * retrying top-down allocation may succeed when bottom-up
318 		 * allocation failed.
319 		 *
320 		 * bottom-up allocation is expected to be fail very rarely,
321 		 * so we use WARN_ONCE() here to see the stack trace if
322 		 * fail happens.
323 		 */
324 		WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
325 			  "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
326 	}
327 
328 	return __memblock_find_range_top_down(start, end, size, align, nid,
329 					      flags);
330 }
331 
332 /**
333  * memblock_find_in_range - find free area in given range
334  * @start: start of candidate range
335  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
336  *       %MEMBLOCK_ALLOC_ACCESSIBLE
337  * @size: size of free area to find
338  * @align: alignment of free area to find
339  *
340  * Find @size free area aligned to @align in the specified range.
341  *
342  * Return:
343  * Found address on success, 0 on failure.
344  */
345 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
346 					phys_addr_t end, phys_addr_t size,
347 					phys_addr_t align)
348 {
349 	phys_addr_t ret;
350 	enum memblock_flags flags = choose_memblock_flags();
351 
352 again:
353 	ret = memblock_find_in_range_node(size, align, start, end,
354 					    NUMA_NO_NODE, flags);
355 
356 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
357 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
358 			&size);
359 		flags &= ~MEMBLOCK_MIRROR;
360 		goto again;
361 	}
362 
363 	return ret;
364 }
365 
366 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
367 {
368 	type->total_size -= type->regions[r].size;
369 	memmove(&type->regions[r], &type->regions[r + 1],
370 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
371 	type->cnt--;
372 
373 	/* Special case for empty arrays */
374 	if (type->cnt == 0) {
375 		WARN_ON(type->total_size != 0);
376 		type->cnt = 1;
377 		type->regions[0].base = 0;
378 		type->regions[0].size = 0;
379 		type->regions[0].flags = 0;
380 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
381 	}
382 }
383 
384 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
385 /**
386  * memblock_discard - discard memory and reserved arrays if they were allocated
387  */
388 void __init memblock_discard(void)
389 {
390 	phys_addr_t addr, size;
391 
392 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
393 		addr = __pa(memblock.reserved.regions);
394 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
395 				  memblock.reserved.max);
396 		__memblock_free_late(addr, size);
397 	}
398 
399 	if (memblock.memory.regions != memblock_memory_init_regions) {
400 		addr = __pa(memblock.memory.regions);
401 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
402 				  memblock.memory.max);
403 		__memblock_free_late(addr, size);
404 	}
405 }
406 #endif
407 
408 /**
409  * memblock_double_array - double the size of the memblock regions array
410  * @type: memblock type of the regions array being doubled
411  * @new_area_start: starting address of memory range to avoid overlap with
412  * @new_area_size: size of memory range to avoid overlap with
413  *
414  * Double the size of the @type regions array. If memblock is being used to
415  * allocate memory for a new reserved regions array and there is a previously
416  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
417  * waiting to be reserved, ensure the memory used by the new array does
418  * not overlap.
419  *
420  * Return:
421  * 0 on success, -1 on failure.
422  */
423 static int __init_memblock memblock_double_array(struct memblock_type *type,
424 						phys_addr_t new_area_start,
425 						phys_addr_t new_area_size)
426 {
427 	struct memblock_region *new_array, *old_array;
428 	phys_addr_t old_alloc_size, new_alloc_size;
429 	phys_addr_t old_size, new_size, addr, new_end;
430 	int use_slab = slab_is_available();
431 	int *in_slab;
432 
433 	/* We don't allow resizing until we know about the reserved regions
434 	 * of memory that aren't suitable for allocation
435 	 */
436 	if (!memblock_can_resize)
437 		return -1;
438 
439 	/* Calculate new doubled size */
440 	old_size = type->max * sizeof(struct memblock_region);
441 	new_size = old_size << 1;
442 	/*
443 	 * We need to allocated new one align to PAGE_SIZE,
444 	 *   so we can free them completely later.
445 	 */
446 	old_alloc_size = PAGE_ALIGN(old_size);
447 	new_alloc_size = PAGE_ALIGN(new_size);
448 
449 	/* Retrieve the slab flag */
450 	if (type == &memblock.memory)
451 		in_slab = &memblock_memory_in_slab;
452 	else
453 		in_slab = &memblock_reserved_in_slab;
454 
455 	/* Try to find some space for it */
456 	if (use_slab) {
457 		new_array = kmalloc(new_size, GFP_KERNEL);
458 		addr = new_array ? __pa(new_array) : 0;
459 	} else {
460 		/* only exclude range when trying to double reserved.regions */
461 		if (type != &memblock.reserved)
462 			new_area_start = new_area_size = 0;
463 
464 		addr = memblock_find_in_range(new_area_start + new_area_size,
465 						memblock.current_limit,
466 						new_alloc_size, PAGE_SIZE);
467 		if (!addr && new_area_size)
468 			addr = memblock_find_in_range(0,
469 				min(new_area_start, memblock.current_limit),
470 				new_alloc_size, PAGE_SIZE);
471 
472 		new_array = addr ? __va(addr) : NULL;
473 	}
474 	if (!addr) {
475 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
476 		       type->name, type->max, type->max * 2);
477 		return -1;
478 	}
479 
480 	new_end = addr + new_size - 1;
481 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
482 			type->name, type->max * 2, &addr, &new_end);
483 
484 	/*
485 	 * Found space, we now need to move the array over before we add the
486 	 * reserved region since it may be our reserved array itself that is
487 	 * full.
488 	 */
489 	memcpy(new_array, type->regions, old_size);
490 	memset(new_array + type->max, 0, old_size);
491 	old_array = type->regions;
492 	type->regions = new_array;
493 	type->max <<= 1;
494 
495 	/* Free old array. We needn't free it if the array is the static one */
496 	if (*in_slab)
497 		kfree(old_array);
498 	else if (old_array != memblock_memory_init_regions &&
499 		 old_array != memblock_reserved_init_regions)
500 		memblock_free(__pa(old_array), old_alloc_size);
501 
502 	/*
503 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
504 	 * needn't do it
505 	 */
506 	if (!use_slab)
507 		BUG_ON(memblock_reserve(addr, new_alloc_size));
508 
509 	/* Update slab flag */
510 	*in_slab = use_slab;
511 
512 	return 0;
513 }
514 
515 /**
516  * memblock_merge_regions - merge neighboring compatible regions
517  * @type: memblock type to scan
518  *
519  * Scan @type and merge neighboring compatible regions.
520  */
521 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
522 {
523 	int i = 0;
524 
525 	/* cnt never goes below 1 */
526 	while (i < type->cnt - 1) {
527 		struct memblock_region *this = &type->regions[i];
528 		struct memblock_region *next = &type->regions[i + 1];
529 
530 		if (this->base + this->size != next->base ||
531 		    memblock_get_region_node(this) !=
532 		    memblock_get_region_node(next) ||
533 		    this->flags != next->flags) {
534 			BUG_ON(this->base + this->size > next->base);
535 			i++;
536 			continue;
537 		}
538 
539 		this->size += next->size;
540 		/* move forward from next + 1, index of which is i + 2 */
541 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
542 		type->cnt--;
543 	}
544 }
545 
546 /**
547  * memblock_insert_region - insert new memblock region
548  * @type:	memblock type to insert into
549  * @idx:	index for the insertion point
550  * @base:	base address of the new region
551  * @size:	size of the new region
552  * @nid:	node id of the new region
553  * @flags:	flags of the new region
554  *
555  * Insert new memblock region [@base, @base + @size) into @type at @idx.
556  * @type must already have extra room to accommodate the new region.
557  */
558 static void __init_memblock memblock_insert_region(struct memblock_type *type,
559 						   int idx, phys_addr_t base,
560 						   phys_addr_t size,
561 						   int nid,
562 						   enum memblock_flags flags)
563 {
564 	struct memblock_region *rgn = &type->regions[idx];
565 
566 	BUG_ON(type->cnt >= type->max);
567 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
568 	rgn->base = base;
569 	rgn->size = size;
570 	rgn->flags = flags;
571 	memblock_set_region_node(rgn, nid);
572 	type->cnt++;
573 	type->total_size += size;
574 }
575 
576 /**
577  * memblock_add_range - add new memblock region
578  * @type: memblock type to add new region into
579  * @base: base address of the new region
580  * @size: size of the new region
581  * @nid: nid of the new region
582  * @flags: flags of the new region
583  *
584  * Add new memblock region [@base, @base + @size) into @type.  The new region
585  * is allowed to overlap with existing ones - overlaps don't affect already
586  * existing regions.  @type is guaranteed to be minimal (all neighbouring
587  * compatible regions are merged) after the addition.
588  *
589  * Return:
590  * 0 on success, -errno on failure.
591  */
592 static int __init_memblock memblock_add_range(struct memblock_type *type,
593 				phys_addr_t base, phys_addr_t size,
594 				int nid, enum memblock_flags flags)
595 {
596 	bool insert = false;
597 	phys_addr_t obase = base;
598 	phys_addr_t end = base + memblock_cap_size(base, &size);
599 	int idx, nr_new;
600 	struct memblock_region *rgn;
601 
602 	if (!size)
603 		return 0;
604 
605 	/* special case for empty array */
606 	if (type->regions[0].size == 0) {
607 		WARN_ON(type->cnt != 1 || type->total_size);
608 		type->regions[0].base = base;
609 		type->regions[0].size = size;
610 		type->regions[0].flags = flags;
611 		memblock_set_region_node(&type->regions[0], nid);
612 		type->total_size = size;
613 		return 0;
614 	}
615 repeat:
616 	/*
617 	 * The following is executed twice.  Once with %false @insert and
618 	 * then with %true.  The first counts the number of regions needed
619 	 * to accommodate the new area.  The second actually inserts them.
620 	 */
621 	base = obase;
622 	nr_new = 0;
623 
624 	for_each_memblock_type(idx, type, rgn) {
625 		phys_addr_t rbase = rgn->base;
626 		phys_addr_t rend = rbase + rgn->size;
627 
628 		if (rbase >= end)
629 			break;
630 		if (rend <= base)
631 			continue;
632 		/*
633 		 * @rgn overlaps.  If it separates the lower part of new
634 		 * area, insert that portion.
635 		 */
636 		if (rbase > base) {
637 #ifdef CONFIG_NEED_MULTIPLE_NODES
638 			WARN_ON(nid != memblock_get_region_node(rgn));
639 #endif
640 			WARN_ON(flags != rgn->flags);
641 			nr_new++;
642 			if (insert)
643 				memblock_insert_region(type, idx++, base,
644 						       rbase - base, nid,
645 						       flags);
646 		}
647 		/* area below @rend is dealt with, forget about it */
648 		base = min(rend, end);
649 	}
650 
651 	/* insert the remaining portion */
652 	if (base < end) {
653 		nr_new++;
654 		if (insert)
655 			memblock_insert_region(type, idx, base, end - base,
656 					       nid, flags);
657 	}
658 
659 	if (!nr_new)
660 		return 0;
661 
662 	/*
663 	 * If this was the first round, resize array and repeat for actual
664 	 * insertions; otherwise, merge and return.
665 	 */
666 	if (!insert) {
667 		while (type->cnt + nr_new > type->max)
668 			if (memblock_double_array(type, obase, size) < 0)
669 				return -ENOMEM;
670 		insert = true;
671 		goto repeat;
672 	} else {
673 		memblock_merge_regions(type);
674 		return 0;
675 	}
676 }
677 
678 /**
679  * memblock_add_node - add new memblock region within a NUMA node
680  * @base: base address of the new region
681  * @size: size of the new region
682  * @nid: nid of the new region
683  *
684  * Add new memblock region [@base, @base + @size) to the "memory"
685  * type. See memblock_add_range() description for mode details
686  *
687  * Return:
688  * 0 on success, -errno on failure.
689  */
690 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
691 				       int nid)
692 {
693 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
694 }
695 
696 /**
697  * memblock_add - add new memblock region
698  * @base: base address of the new region
699  * @size: size of the new region
700  *
701  * Add new memblock region [@base, @base + @size) to the "memory"
702  * type. See memblock_add_range() description for mode details
703  *
704  * Return:
705  * 0 on success, -errno on failure.
706  */
707 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
708 {
709 	phys_addr_t end = base + size - 1;
710 
711 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
712 		     &base, &end, (void *)_RET_IP_);
713 
714 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
715 }
716 
717 /**
718  * memblock_isolate_range - isolate given range into disjoint memblocks
719  * @type: memblock type to isolate range for
720  * @base: base of range to isolate
721  * @size: size of range to isolate
722  * @start_rgn: out parameter for the start of isolated region
723  * @end_rgn: out parameter for the end of isolated region
724  *
725  * Walk @type and ensure that regions don't cross the boundaries defined by
726  * [@base, @base + @size).  Crossing regions are split at the boundaries,
727  * which may create at most two more regions.  The index of the first
728  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
729  *
730  * Return:
731  * 0 on success, -errno on failure.
732  */
733 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
734 					phys_addr_t base, phys_addr_t size,
735 					int *start_rgn, int *end_rgn)
736 {
737 	phys_addr_t end = base + memblock_cap_size(base, &size);
738 	int idx;
739 	struct memblock_region *rgn;
740 
741 	*start_rgn = *end_rgn = 0;
742 
743 	if (!size)
744 		return 0;
745 
746 	/* we'll create at most two more regions */
747 	while (type->cnt + 2 > type->max)
748 		if (memblock_double_array(type, base, size) < 0)
749 			return -ENOMEM;
750 
751 	for_each_memblock_type(idx, type, rgn) {
752 		phys_addr_t rbase = rgn->base;
753 		phys_addr_t rend = rbase + rgn->size;
754 
755 		if (rbase >= end)
756 			break;
757 		if (rend <= base)
758 			continue;
759 
760 		if (rbase < base) {
761 			/*
762 			 * @rgn intersects from below.  Split and continue
763 			 * to process the next region - the new top half.
764 			 */
765 			rgn->base = base;
766 			rgn->size -= base - rbase;
767 			type->total_size -= base - rbase;
768 			memblock_insert_region(type, idx, rbase, base - rbase,
769 					       memblock_get_region_node(rgn),
770 					       rgn->flags);
771 		} else if (rend > end) {
772 			/*
773 			 * @rgn intersects from above.  Split and redo the
774 			 * current region - the new bottom half.
775 			 */
776 			rgn->base = end;
777 			rgn->size -= end - rbase;
778 			type->total_size -= end - rbase;
779 			memblock_insert_region(type, idx--, rbase, end - rbase,
780 					       memblock_get_region_node(rgn),
781 					       rgn->flags);
782 		} else {
783 			/* @rgn is fully contained, record it */
784 			if (!*end_rgn)
785 				*start_rgn = idx;
786 			*end_rgn = idx + 1;
787 		}
788 	}
789 
790 	return 0;
791 }
792 
793 static int __init_memblock memblock_remove_range(struct memblock_type *type,
794 					  phys_addr_t base, phys_addr_t size)
795 {
796 	int start_rgn, end_rgn;
797 	int i, ret;
798 
799 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
800 	if (ret)
801 		return ret;
802 
803 	for (i = end_rgn - 1; i >= start_rgn; i--)
804 		memblock_remove_region(type, i);
805 	return 0;
806 }
807 
808 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
809 {
810 	phys_addr_t end = base + size - 1;
811 
812 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
813 		     &base, &end, (void *)_RET_IP_);
814 
815 	return memblock_remove_range(&memblock.memory, base, size);
816 }
817 
818 /**
819  * memblock_free - free boot memory block
820  * @base: phys starting address of the  boot memory block
821  * @size: size of the boot memory block in bytes
822  *
823  * Free boot memory block previously allocated by memblock_alloc_xx() API.
824  * The freeing memory will not be released to the buddy allocator.
825  */
826 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
827 {
828 	phys_addr_t end = base + size - 1;
829 
830 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
831 		     &base, &end, (void *)_RET_IP_);
832 
833 	kmemleak_free_part_phys(base, size);
834 	return memblock_remove_range(&memblock.reserved, base, size);
835 }
836 
837 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
838 {
839 	phys_addr_t end = base + size - 1;
840 
841 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
842 		     &base, &end, (void *)_RET_IP_);
843 
844 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
845 }
846 
847 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
848 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
849 {
850 	phys_addr_t end = base + size - 1;
851 
852 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
853 		     &base, &end, (void *)_RET_IP_);
854 
855 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
856 }
857 #endif
858 
859 /**
860  * memblock_setclr_flag - set or clear flag for a memory region
861  * @base: base address of the region
862  * @size: size of the region
863  * @set: set or clear the flag
864  * @flag: the flag to udpate
865  *
866  * This function isolates region [@base, @base + @size), and sets/clears flag
867  *
868  * Return: 0 on success, -errno on failure.
869  */
870 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
871 				phys_addr_t size, int set, int flag)
872 {
873 	struct memblock_type *type = &memblock.memory;
874 	int i, ret, start_rgn, end_rgn;
875 
876 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
877 	if (ret)
878 		return ret;
879 
880 	for (i = start_rgn; i < end_rgn; i++) {
881 		struct memblock_region *r = &type->regions[i];
882 
883 		if (set)
884 			r->flags |= flag;
885 		else
886 			r->flags &= ~flag;
887 	}
888 
889 	memblock_merge_regions(type);
890 	return 0;
891 }
892 
893 /**
894  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
895  * @base: the base phys addr of the region
896  * @size: the size of the region
897  *
898  * Return: 0 on success, -errno on failure.
899  */
900 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
901 {
902 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
903 }
904 
905 /**
906  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
907  * @base: the base phys addr of the region
908  * @size: the size of the region
909  *
910  * Return: 0 on success, -errno on failure.
911  */
912 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
913 {
914 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
915 }
916 
917 /**
918  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
919  * @base: the base phys addr of the region
920  * @size: the size of the region
921  *
922  * Return: 0 on success, -errno on failure.
923  */
924 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
925 {
926 	system_has_some_mirror = true;
927 
928 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
929 }
930 
931 /**
932  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
933  * @base: the base phys addr of the region
934  * @size: the size of the region
935  *
936  * Return: 0 on success, -errno on failure.
937  */
938 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
939 {
940 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
941 }
942 
943 /**
944  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
945  * @base: the base phys addr of the region
946  * @size: the size of the region
947  *
948  * Return: 0 on success, -errno on failure.
949  */
950 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
951 {
952 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
953 }
954 
955 /**
956  * __next_reserved_mem_region - next function for for_each_reserved_region()
957  * @idx: pointer to u64 loop variable
958  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
959  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
960  *
961  * Iterate over all reserved memory regions.
962  */
963 void __init_memblock __next_reserved_mem_region(u64 *idx,
964 					   phys_addr_t *out_start,
965 					   phys_addr_t *out_end)
966 {
967 	struct memblock_type *type = &memblock.reserved;
968 
969 	if (*idx < type->cnt) {
970 		struct memblock_region *r = &type->regions[*idx];
971 		phys_addr_t base = r->base;
972 		phys_addr_t size = r->size;
973 
974 		if (out_start)
975 			*out_start = base;
976 		if (out_end)
977 			*out_end = base + size - 1;
978 
979 		*idx += 1;
980 		return;
981 	}
982 
983 	/* signal end of iteration */
984 	*idx = ULLONG_MAX;
985 }
986 
987 static bool should_skip_region(struct memblock_region *m, int nid, int flags)
988 {
989 	int m_nid = memblock_get_region_node(m);
990 
991 	/* only memory regions are associated with nodes, check it */
992 	if (nid != NUMA_NO_NODE && nid != m_nid)
993 		return true;
994 
995 	/* skip hotpluggable memory regions if needed */
996 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
997 		return true;
998 
999 	/* if we want mirror memory skip non-mirror memory regions */
1000 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1001 		return true;
1002 
1003 	/* skip nomap memory unless we were asked for it explicitly */
1004 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1005 		return true;
1006 
1007 	return false;
1008 }
1009 
1010 /**
1011  * __next_mem_range - next function for for_each_free_mem_range() etc.
1012  * @idx: pointer to u64 loop variable
1013  * @nid: node selector, %NUMA_NO_NODE for all nodes
1014  * @flags: pick from blocks based on memory attributes
1015  * @type_a: pointer to memblock_type from where the range is taken
1016  * @type_b: pointer to memblock_type which excludes memory from being taken
1017  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1018  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1019  * @out_nid: ptr to int for nid of the range, can be %NULL
1020  *
1021  * Find the first area from *@idx which matches @nid, fill the out
1022  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1023  * *@idx contains index into type_a and the upper 32bit indexes the
1024  * areas before each region in type_b.	For example, if type_b regions
1025  * look like the following,
1026  *
1027  *	0:[0-16), 1:[32-48), 2:[128-130)
1028  *
1029  * The upper 32bit indexes the following regions.
1030  *
1031  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1032  *
1033  * As both region arrays are sorted, the function advances the two indices
1034  * in lockstep and returns each intersection.
1035  */
1036 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1037 		      struct memblock_type *type_a,
1038 		      struct memblock_type *type_b, phys_addr_t *out_start,
1039 		      phys_addr_t *out_end, int *out_nid)
1040 {
1041 	int idx_a = *idx & 0xffffffff;
1042 	int idx_b = *idx >> 32;
1043 
1044 	if (WARN_ONCE(nid == MAX_NUMNODES,
1045 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1046 		nid = NUMA_NO_NODE;
1047 
1048 	for (; idx_a < type_a->cnt; idx_a++) {
1049 		struct memblock_region *m = &type_a->regions[idx_a];
1050 
1051 		phys_addr_t m_start = m->base;
1052 		phys_addr_t m_end = m->base + m->size;
1053 		int	    m_nid = memblock_get_region_node(m);
1054 
1055 		if (should_skip_region(m, nid, flags))
1056 			continue;
1057 
1058 		if (!type_b) {
1059 			if (out_start)
1060 				*out_start = m_start;
1061 			if (out_end)
1062 				*out_end = m_end;
1063 			if (out_nid)
1064 				*out_nid = m_nid;
1065 			idx_a++;
1066 			*idx = (u32)idx_a | (u64)idx_b << 32;
1067 			return;
1068 		}
1069 
1070 		/* scan areas before each reservation */
1071 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1072 			struct memblock_region *r;
1073 			phys_addr_t r_start;
1074 			phys_addr_t r_end;
1075 
1076 			r = &type_b->regions[idx_b];
1077 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1078 			r_end = idx_b < type_b->cnt ?
1079 				r->base : PHYS_ADDR_MAX;
1080 
1081 			/*
1082 			 * if idx_b advanced past idx_a,
1083 			 * break out to advance idx_a
1084 			 */
1085 			if (r_start >= m_end)
1086 				break;
1087 			/* if the two regions intersect, we're done */
1088 			if (m_start < r_end) {
1089 				if (out_start)
1090 					*out_start =
1091 						max(m_start, r_start);
1092 				if (out_end)
1093 					*out_end = min(m_end, r_end);
1094 				if (out_nid)
1095 					*out_nid = m_nid;
1096 				/*
1097 				 * The region which ends first is
1098 				 * advanced for the next iteration.
1099 				 */
1100 				if (m_end <= r_end)
1101 					idx_a++;
1102 				else
1103 					idx_b++;
1104 				*idx = (u32)idx_a | (u64)idx_b << 32;
1105 				return;
1106 			}
1107 		}
1108 	}
1109 
1110 	/* signal end of iteration */
1111 	*idx = ULLONG_MAX;
1112 }
1113 
1114 /**
1115  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1116  *
1117  * @idx: pointer to u64 loop variable
1118  * @nid: node selector, %NUMA_NO_NODE for all nodes
1119  * @flags: pick from blocks based on memory attributes
1120  * @type_a: pointer to memblock_type from where the range is taken
1121  * @type_b: pointer to memblock_type which excludes memory from being taken
1122  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1123  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1124  * @out_nid: ptr to int for nid of the range, can be %NULL
1125  *
1126  * Finds the next range from type_a which is not marked as unsuitable
1127  * in type_b.
1128  *
1129  * Reverse of __next_mem_range().
1130  */
1131 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1132 					  enum memblock_flags flags,
1133 					  struct memblock_type *type_a,
1134 					  struct memblock_type *type_b,
1135 					  phys_addr_t *out_start,
1136 					  phys_addr_t *out_end, int *out_nid)
1137 {
1138 	int idx_a = *idx & 0xffffffff;
1139 	int idx_b = *idx >> 32;
1140 
1141 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1142 		nid = NUMA_NO_NODE;
1143 
1144 	if (*idx == (u64)ULLONG_MAX) {
1145 		idx_a = type_a->cnt - 1;
1146 		if (type_b != NULL)
1147 			idx_b = type_b->cnt;
1148 		else
1149 			idx_b = 0;
1150 	}
1151 
1152 	for (; idx_a >= 0; idx_a--) {
1153 		struct memblock_region *m = &type_a->regions[idx_a];
1154 
1155 		phys_addr_t m_start = m->base;
1156 		phys_addr_t m_end = m->base + m->size;
1157 		int m_nid = memblock_get_region_node(m);
1158 
1159 		if (should_skip_region(m, nid, flags))
1160 			continue;
1161 
1162 		if (!type_b) {
1163 			if (out_start)
1164 				*out_start = m_start;
1165 			if (out_end)
1166 				*out_end = m_end;
1167 			if (out_nid)
1168 				*out_nid = m_nid;
1169 			idx_a--;
1170 			*idx = (u32)idx_a | (u64)idx_b << 32;
1171 			return;
1172 		}
1173 
1174 		/* scan areas before each reservation */
1175 		for (; idx_b >= 0; idx_b--) {
1176 			struct memblock_region *r;
1177 			phys_addr_t r_start;
1178 			phys_addr_t r_end;
1179 
1180 			r = &type_b->regions[idx_b];
1181 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1182 			r_end = idx_b < type_b->cnt ?
1183 				r->base : PHYS_ADDR_MAX;
1184 			/*
1185 			 * if idx_b advanced past idx_a,
1186 			 * break out to advance idx_a
1187 			 */
1188 
1189 			if (r_end <= m_start)
1190 				break;
1191 			/* if the two regions intersect, we're done */
1192 			if (m_end > r_start) {
1193 				if (out_start)
1194 					*out_start = max(m_start, r_start);
1195 				if (out_end)
1196 					*out_end = min(m_end, r_end);
1197 				if (out_nid)
1198 					*out_nid = m_nid;
1199 				if (m_start >= r_start)
1200 					idx_a--;
1201 				else
1202 					idx_b--;
1203 				*idx = (u32)idx_a | (u64)idx_b << 32;
1204 				return;
1205 			}
1206 		}
1207 	}
1208 	/* signal end of iteration */
1209 	*idx = ULLONG_MAX;
1210 }
1211 
1212 /*
1213  * Common iterator interface used to define for_each_mem_pfn_range().
1214  */
1215 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1216 				unsigned long *out_start_pfn,
1217 				unsigned long *out_end_pfn, int *out_nid)
1218 {
1219 	struct memblock_type *type = &memblock.memory;
1220 	struct memblock_region *r;
1221 	int r_nid;
1222 
1223 	while (++*idx < type->cnt) {
1224 		r = &type->regions[*idx];
1225 		r_nid = memblock_get_region_node(r);
1226 
1227 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1228 			continue;
1229 		if (nid == MAX_NUMNODES || nid == r_nid)
1230 			break;
1231 	}
1232 	if (*idx >= type->cnt) {
1233 		*idx = -1;
1234 		return;
1235 	}
1236 
1237 	if (out_start_pfn)
1238 		*out_start_pfn = PFN_UP(r->base);
1239 	if (out_end_pfn)
1240 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1241 	if (out_nid)
1242 		*out_nid = r_nid;
1243 }
1244 
1245 /**
1246  * memblock_set_node - set node ID on memblock regions
1247  * @base: base of area to set node ID for
1248  * @size: size of area to set node ID for
1249  * @type: memblock type to set node ID for
1250  * @nid: node ID to set
1251  *
1252  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1253  * Regions which cross the area boundaries are split as necessary.
1254  *
1255  * Return:
1256  * 0 on success, -errno on failure.
1257  */
1258 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1259 				      struct memblock_type *type, int nid)
1260 {
1261 #ifdef CONFIG_NEED_MULTIPLE_NODES
1262 	int start_rgn, end_rgn;
1263 	int i, ret;
1264 
1265 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1266 	if (ret)
1267 		return ret;
1268 
1269 	for (i = start_rgn; i < end_rgn; i++)
1270 		memblock_set_region_node(&type->regions[i], nid);
1271 
1272 	memblock_merge_regions(type);
1273 #endif
1274 	return 0;
1275 }
1276 
1277 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1278 /**
1279  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1280  *
1281  * @idx: pointer to u64 loop variable
1282  * @zone: zone in which all of the memory blocks reside
1283  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1284  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1285  *
1286  * This function is meant to be a zone/pfn specific wrapper for the
1287  * for_each_mem_range type iterators. Specifically they are used in the
1288  * deferred memory init routines and as such we were duplicating much of
1289  * this logic throughout the code. So instead of having it in multiple
1290  * locations it seemed like it would make more sense to centralize this to
1291  * one new iterator that does everything they need.
1292  */
1293 void __init_memblock
1294 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1295 			     unsigned long *out_spfn, unsigned long *out_epfn)
1296 {
1297 	int zone_nid = zone_to_nid(zone);
1298 	phys_addr_t spa, epa;
1299 	int nid;
1300 
1301 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1302 			 &memblock.memory, &memblock.reserved,
1303 			 &spa, &epa, &nid);
1304 
1305 	while (*idx != U64_MAX) {
1306 		unsigned long epfn = PFN_DOWN(epa);
1307 		unsigned long spfn = PFN_UP(spa);
1308 
1309 		/*
1310 		 * Verify the end is at least past the start of the zone and
1311 		 * that we have at least one PFN to initialize.
1312 		 */
1313 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1314 			/* if we went too far just stop searching */
1315 			if (zone_end_pfn(zone) <= spfn) {
1316 				*idx = U64_MAX;
1317 				break;
1318 			}
1319 
1320 			if (out_spfn)
1321 				*out_spfn = max(zone->zone_start_pfn, spfn);
1322 			if (out_epfn)
1323 				*out_epfn = min(zone_end_pfn(zone), epfn);
1324 
1325 			return;
1326 		}
1327 
1328 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1329 				 &memblock.memory, &memblock.reserved,
1330 				 &spa, &epa, &nid);
1331 	}
1332 
1333 	/* signal end of iteration */
1334 	if (out_spfn)
1335 		*out_spfn = ULONG_MAX;
1336 	if (out_epfn)
1337 		*out_epfn = 0;
1338 }
1339 
1340 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1341 
1342 /**
1343  * memblock_alloc_range_nid - allocate boot memory block
1344  * @size: size of memory block to be allocated in bytes
1345  * @align: alignment of the region and block's size
1346  * @start: the lower bound of the memory region to allocate (phys address)
1347  * @end: the upper bound of the memory region to allocate (phys address)
1348  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1349  * @exact_nid: control the allocation fall back to other nodes
1350  *
1351  * The allocation is performed from memory region limited by
1352  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1353  *
1354  * If the specified node can not hold the requested memory and @exact_nid
1355  * is false, the allocation falls back to any node in the system.
1356  *
1357  * For systems with memory mirroring, the allocation is attempted first
1358  * from the regions with mirroring enabled and then retried from any
1359  * memory region.
1360  *
1361  * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1362  * allocated boot memory block, so that it is never reported as leaks.
1363  *
1364  * Return:
1365  * Physical address of allocated memory block on success, %0 on failure.
1366  */
1367 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1368 					phys_addr_t align, phys_addr_t start,
1369 					phys_addr_t end, int nid,
1370 					bool exact_nid)
1371 {
1372 	enum memblock_flags flags = choose_memblock_flags();
1373 	phys_addr_t found;
1374 
1375 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1376 		nid = NUMA_NO_NODE;
1377 
1378 	if (!align) {
1379 		/* Can't use WARNs this early in boot on powerpc */
1380 		dump_stack();
1381 		align = SMP_CACHE_BYTES;
1382 	}
1383 
1384 again:
1385 	found = memblock_find_in_range_node(size, align, start, end, nid,
1386 					    flags);
1387 	if (found && !memblock_reserve(found, size))
1388 		goto done;
1389 
1390 	if (nid != NUMA_NO_NODE && !exact_nid) {
1391 		found = memblock_find_in_range_node(size, align, start,
1392 						    end, NUMA_NO_NODE,
1393 						    flags);
1394 		if (found && !memblock_reserve(found, size))
1395 			goto done;
1396 	}
1397 
1398 	if (flags & MEMBLOCK_MIRROR) {
1399 		flags &= ~MEMBLOCK_MIRROR;
1400 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1401 			&size);
1402 		goto again;
1403 	}
1404 
1405 	return 0;
1406 
1407 done:
1408 	/* Skip kmemleak for kasan_init() due to high volume. */
1409 	if (end != MEMBLOCK_ALLOC_KASAN)
1410 		/*
1411 		 * The min_count is set to 0 so that memblock allocated
1412 		 * blocks are never reported as leaks. This is because many
1413 		 * of these blocks are only referred via the physical
1414 		 * address which is not looked up by kmemleak.
1415 		 */
1416 		kmemleak_alloc_phys(found, size, 0, 0);
1417 
1418 	return found;
1419 }
1420 
1421 /**
1422  * memblock_phys_alloc_range - allocate a memory block inside specified range
1423  * @size: size of memory block to be allocated in bytes
1424  * @align: alignment of the region and block's size
1425  * @start: the lower bound of the memory region to allocate (physical address)
1426  * @end: the upper bound of the memory region to allocate (physical address)
1427  *
1428  * Allocate @size bytes in the between @start and @end.
1429  *
1430  * Return: physical address of the allocated memory block on success,
1431  * %0 on failure.
1432  */
1433 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1434 					     phys_addr_t align,
1435 					     phys_addr_t start,
1436 					     phys_addr_t end)
1437 {
1438 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1439 					false);
1440 }
1441 
1442 /**
1443  * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1444  * @size: size of memory block to be allocated in bytes
1445  * @align: alignment of the region and block's size
1446  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1447  *
1448  * Allocates memory block from the specified NUMA node. If the node
1449  * has no available memory, attempts to allocated from any node in the
1450  * system.
1451  *
1452  * Return: physical address of the allocated memory block on success,
1453  * %0 on failure.
1454  */
1455 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1456 {
1457 	return memblock_alloc_range_nid(size, align, 0,
1458 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1459 }
1460 
1461 /**
1462  * memblock_alloc_internal - allocate boot memory block
1463  * @size: size of memory block to be allocated in bytes
1464  * @align: alignment of the region and block's size
1465  * @min_addr: the lower bound of the memory region to allocate (phys address)
1466  * @max_addr: the upper bound of the memory region to allocate (phys address)
1467  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1468  * @exact_nid: control the allocation fall back to other nodes
1469  *
1470  * Allocates memory block using memblock_alloc_range_nid() and
1471  * converts the returned physical address to virtual.
1472  *
1473  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1474  * will fall back to memory below @min_addr. Other constraints, such
1475  * as node and mirrored memory will be handled again in
1476  * memblock_alloc_range_nid().
1477  *
1478  * Return:
1479  * Virtual address of allocated memory block on success, NULL on failure.
1480  */
1481 static void * __init memblock_alloc_internal(
1482 				phys_addr_t size, phys_addr_t align,
1483 				phys_addr_t min_addr, phys_addr_t max_addr,
1484 				int nid, bool exact_nid)
1485 {
1486 	phys_addr_t alloc;
1487 
1488 	/*
1489 	 * Detect any accidental use of these APIs after slab is ready, as at
1490 	 * this moment memblock may be deinitialized already and its
1491 	 * internal data may be destroyed (after execution of memblock_free_all)
1492 	 */
1493 	if (WARN_ON_ONCE(slab_is_available()))
1494 		return kzalloc_node(size, GFP_NOWAIT, nid);
1495 
1496 	if (max_addr > memblock.current_limit)
1497 		max_addr = memblock.current_limit;
1498 
1499 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1500 					exact_nid);
1501 
1502 	/* retry allocation without lower limit */
1503 	if (!alloc && min_addr)
1504 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1505 						exact_nid);
1506 
1507 	if (!alloc)
1508 		return NULL;
1509 
1510 	return phys_to_virt(alloc);
1511 }
1512 
1513 /**
1514  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1515  * without zeroing memory
1516  * @size: size of memory block to be allocated in bytes
1517  * @align: alignment of the region and block's size
1518  * @min_addr: the lower bound of the memory region from where the allocation
1519  *	  is preferred (phys address)
1520  * @max_addr: the upper bound of the memory region from where the allocation
1521  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1522  *	      allocate only from memory limited by memblock.current_limit value
1523  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1524  *
1525  * Public function, provides additional debug information (including caller
1526  * info), if enabled. Does not zero allocated memory.
1527  *
1528  * Return:
1529  * Virtual address of allocated memory block on success, NULL on failure.
1530  */
1531 void * __init memblock_alloc_exact_nid_raw(
1532 			phys_addr_t size, phys_addr_t align,
1533 			phys_addr_t min_addr, phys_addr_t max_addr,
1534 			int nid)
1535 {
1536 	void *ptr;
1537 
1538 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1539 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1540 		     &max_addr, (void *)_RET_IP_);
1541 
1542 	ptr = memblock_alloc_internal(size, align,
1543 					   min_addr, max_addr, nid, true);
1544 	if (ptr && size > 0)
1545 		page_init_poison(ptr, size);
1546 
1547 	return ptr;
1548 }
1549 
1550 /**
1551  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1552  * memory and without panicking
1553  * @size: size of memory block to be allocated in bytes
1554  * @align: alignment of the region and block's size
1555  * @min_addr: the lower bound of the memory region from where the allocation
1556  *	  is preferred (phys address)
1557  * @max_addr: the upper bound of the memory region from where the allocation
1558  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1559  *	      allocate only from memory limited by memblock.current_limit value
1560  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1561  *
1562  * Public function, provides additional debug information (including caller
1563  * info), if enabled. Does not zero allocated memory, does not panic if request
1564  * cannot be satisfied.
1565  *
1566  * Return:
1567  * Virtual address of allocated memory block on success, NULL on failure.
1568  */
1569 void * __init memblock_alloc_try_nid_raw(
1570 			phys_addr_t size, phys_addr_t align,
1571 			phys_addr_t min_addr, phys_addr_t max_addr,
1572 			int nid)
1573 {
1574 	void *ptr;
1575 
1576 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1577 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1578 		     &max_addr, (void *)_RET_IP_);
1579 
1580 	ptr = memblock_alloc_internal(size, align,
1581 					   min_addr, max_addr, nid, false);
1582 	if (ptr && size > 0)
1583 		page_init_poison(ptr, size);
1584 
1585 	return ptr;
1586 }
1587 
1588 /**
1589  * memblock_alloc_try_nid - allocate boot memory block
1590  * @size: size of memory block to be allocated in bytes
1591  * @align: alignment of the region and block's size
1592  * @min_addr: the lower bound of the memory region from where the allocation
1593  *	  is preferred (phys address)
1594  * @max_addr: the upper bound of the memory region from where the allocation
1595  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1596  *	      allocate only from memory limited by memblock.current_limit value
1597  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1598  *
1599  * Public function, provides additional debug information (including caller
1600  * info), if enabled. This function zeroes the allocated memory.
1601  *
1602  * Return:
1603  * Virtual address of allocated memory block on success, NULL on failure.
1604  */
1605 void * __init memblock_alloc_try_nid(
1606 			phys_addr_t size, phys_addr_t align,
1607 			phys_addr_t min_addr, phys_addr_t max_addr,
1608 			int nid)
1609 {
1610 	void *ptr;
1611 
1612 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1613 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1614 		     &max_addr, (void *)_RET_IP_);
1615 	ptr = memblock_alloc_internal(size, align,
1616 					   min_addr, max_addr, nid, false);
1617 	if (ptr)
1618 		memset(ptr, 0, size);
1619 
1620 	return ptr;
1621 }
1622 
1623 /**
1624  * __memblock_free_late - free pages directly to buddy allocator
1625  * @base: phys starting address of the  boot memory block
1626  * @size: size of the boot memory block in bytes
1627  *
1628  * This is only useful when the memblock allocator has already been torn
1629  * down, but we are still initializing the system.  Pages are released directly
1630  * to the buddy allocator.
1631  */
1632 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1633 {
1634 	phys_addr_t cursor, end;
1635 
1636 	end = base + size - 1;
1637 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1638 		     __func__, &base, &end, (void *)_RET_IP_);
1639 	kmemleak_free_part_phys(base, size);
1640 	cursor = PFN_UP(base);
1641 	end = PFN_DOWN(base + size);
1642 
1643 	for (; cursor < end; cursor++) {
1644 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1645 		totalram_pages_inc();
1646 	}
1647 }
1648 
1649 /*
1650  * Remaining API functions
1651  */
1652 
1653 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1654 {
1655 	return memblock.memory.total_size;
1656 }
1657 
1658 phys_addr_t __init_memblock memblock_reserved_size(void)
1659 {
1660 	return memblock.reserved.total_size;
1661 }
1662 
1663 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1664 {
1665 	unsigned long pages = 0;
1666 	unsigned long start_pfn, end_pfn;
1667 	int i;
1668 
1669 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1670 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1671 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1672 		pages += end_pfn - start_pfn;
1673 	}
1674 
1675 	return PFN_PHYS(pages);
1676 }
1677 
1678 /* lowest address */
1679 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1680 {
1681 	return memblock.memory.regions[0].base;
1682 }
1683 
1684 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1685 {
1686 	int idx = memblock.memory.cnt - 1;
1687 
1688 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1689 }
1690 
1691 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1692 {
1693 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1694 	struct memblock_region *r;
1695 
1696 	/*
1697 	 * translate the memory @limit size into the max address within one of
1698 	 * the memory memblock regions, if the @limit exceeds the total size
1699 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1700 	 */
1701 	for_each_memblock(memory, r) {
1702 		if (limit <= r->size) {
1703 			max_addr = r->base + limit;
1704 			break;
1705 		}
1706 		limit -= r->size;
1707 	}
1708 
1709 	return max_addr;
1710 }
1711 
1712 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1713 {
1714 	phys_addr_t max_addr;
1715 
1716 	if (!limit)
1717 		return;
1718 
1719 	max_addr = __find_max_addr(limit);
1720 
1721 	/* @limit exceeds the total size of the memory, do nothing */
1722 	if (max_addr == PHYS_ADDR_MAX)
1723 		return;
1724 
1725 	/* truncate both memory and reserved regions */
1726 	memblock_remove_range(&memblock.memory, max_addr,
1727 			      PHYS_ADDR_MAX);
1728 	memblock_remove_range(&memblock.reserved, max_addr,
1729 			      PHYS_ADDR_MAX);
1730 }
1731 
1732 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1733 {
1734 	int start_rgn, end_rgn;
1735 	int i, ret;
1736 
1737 	if (!size)
1738 		return;
1739 
1740 	ret = memblock_isolate_range(&memblock.memory, base, size,
1741 						&start_rgn, &end_rgn);
1742 	if (ret)
1743 		return;
1744 
1745 	/* remove all the MAP regions */
1746 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1747 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1748 			memblock_remove_region(&memblock.memory, i);
1749 
1750 	for (i = start_rgn - 1; i >= 0; i--)
1751 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1752 			memblock_remove_region(&memblock.memory, i);
1753 
1754 	/* truncate the reserved regions */
1755 	memblock_remove_range(&memblock.reserved, 0, base);
1756 	memblock_remove_range(&memblock.reserved,
1757 			base + size, PHYS_ADDR_MAX);
1758 }
1759 
1760 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1761 {
1762 	phys_addr_t max_addr;
1763 
1764 	if (!limit)
1765 		return;
1766 
1767 	max_addr = __find_max_addr(limit);
1768 
1769 	/* @limit exceeds the total size of the memory, do nothing */
1770 	if (max_addr == PHYS_ADDR_MAX)
1771 		return;
1772 
1773 	memblock_cap_memory_range(0, max_addr);
1774 }
1775 
1776 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1777 {
1778 	unsigned int left = 0, right = type->cnt;
1779 
1780 	do {
1781 		unsigned int mid = (right + left) / 2;
1782 
1783 		if (addr < type->regions[mid].base)
1784 			right = mid;
1785 		else if (addr >= (type->regions[mid].base +
1786 				  type->regions[mid].size))
1787 			left = mid + 1;
1788 		else
1789 			return mid;
1790 	} while (left < right);
1791 	return -1;
1792 }
1793 
1794 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1795 {
1796 	return memblock_search(&memblock.reserved, addr) != -1;
1797 }
1798 
1799 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1800 {
1801 	return memblock_search(&memblock.memory, addr) != -1;
1802 }
1803 
1804 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1805 {
1806 	int i = memblock_search(&memblock.memory, addr);
1807 
1808 	if (i == -1)
1809 		return false;
1810 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1811 }
1812 
1813 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1814 			 unsigned long *start_pfn, unsigned long *end_pfn)
1815 {
1816 	struct memblock_type *type = &memblock.memory;
1817 	int mid = memblock_search(type, PFN_PHYS(pfn));
1818 
1819 	if (mid == -1)
1820 		return -1;
1821 
1822 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1823 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1824 
1825 	return memblock_get_region_node(&type->regions[mid]);
1826 }
1827 
1828 /**
1829  * memblock_is_region_memory - check if a region is a subset of memory
1830  * @base: base of region to check
1831  * @size: size of region to check
1832  *
1833  * Check if the region [@base, @base + @size) is a subset of a memory block.
1834  *
1835  * Return:
1836  * 0 if false, non-zero if true
1837  */
1838 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1839 {
1840 	int idx = memblock_search(&memblock.memory, base);
1841 	phys_addr_t end = base + memblock_cap_size(base, &size);
1842 
1843 	if (idx == -1)
1844 		return false;
1845 	return (memblock.memory.regions[idx].base +
1846 		 memblock.memory.regions[idx].size) >= end;
1847 }
1848 
1849 /**
1850  * memblock_is_region_reserved - check if a region intersects reserved memory
1851  * @base: base of region to check
1852  * @size: size of region to check
1853  *
1854  * Check if the region [@base, @base + @size) intersects a reserved
1855  * memory block.
1856  *
1857  * Return:
1858  * True if they intersect, false if not.
1859  */
1860 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1861 {
1862 	memblock_cap_size(base, &size);
1863 	return memblock_overlaps_region(&memblock.reserved, base, size);
1864 }
1865 
1866 void __init_memblock memblock_trim_memory(phys_addr_t align)
1867 {
1868 	phys_addr_t start, end, orig_start, orig_end;
1869 	struct memblock_region *r;
1870 
1871 	for_each_memblock(memory, r) {
1872 		orig_start = r->base;
1873 		orig_end = r->base + r->size;
1874 		start = round_up(orig_start, align);
1875 		end = round_down(orig_end, align);
1876 
1877 		if (start == orig_start && end == orig_end)
1878 			continue;
1879 
1880 		if (start < end) {
1881 			r->base = start;
1882 			r->size = end - start;
1883 		} else {
1884 			memblock_remove_region(&memblock.memory,
1885 					       r - memblock.memory.regions);
1886 			r--;
1887 		}
1888 	}
1889 }
1890 
1891 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1892 {
1893 	memblock.current_limit = limit;
1894 }
1895 
1896 phys_addr_t __init_memblock memblock_get_current_limit(void)
1897 {
1898 	return memblock.current_limit;
1899 }
1900 
1901 static void __init_memblock memblock_dump(struct memblock_type *type)
1902 {
1903 	phys_addr_t base, end, size;
1904 	enum memblock_flags flags;
1905 	int idx;
1906 	struct memblock_region *rgn;
1907 
1908 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1909 
1910 	for_each_memblock_type(idx, type, rgn) {
1911 		char nid_buf[32] = "";
1912 
1913 		base = rgn->base;
1914 		size = rgn->size;
1915 		end = base + size - 1;
1916 		flags = rgn->flags;
1917 #ifdef CONFIG_NEED_MULTIPLE_NODES
1918 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1919 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1920 				 memblock_get_region_node(rgn));
1921 #endif
1922 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1923 			type->name, idx, &base, &end, &size, nid_buf, flags);
1924 	}
1925 }
1926 
1927 static void __init_memblock __memblock_dump_all(void)
1928 {
1929 	pr_info("MEMBLOCK configuration:\n");
1930 	pr_info(" memory size = %pa reserved size = %pa\n",
1931 		&memblock.memory.total_size,
1932 		&memblock.reserved.total_size);
1933 
1934 	memblock_dump(&memblock.memory);
1935 	memblock_dump(&memblock.reserved);
1936 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1937 	memblock_dump(&physmem);
1938 #endif
1939 }
1940 
1941 void __init_memblock memblock_dump_all(void)
1942 {
1943 	if (memblock_debug)
1944 		__memblock_dump_all();
1945 }
1946 
1947 void __init memblock_allow_resize(void)
1948 {
1949 	memblock_can_resize = 1;
1950 }
1951 
1952 static int __init early_memblock(char *p)
1953 {
1954 	if (p && strstr(p, "debug"))
1955 		memblock_debug = 1;
1956 	return 0;
1957 }
1958 early_param("memblock", early_memblock);
1959 
1960 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1961 {
1962 	int order;
1963 
1964 	while (start < end) {
1965 		order = min(MAX_ORDER - 1UL, __ffs(start));
1966 
1967 		while (start + (1UL << order) > end)
1968 			order--;
1969 
1970 		memblock_free_pages(pfn_to_page(start), start, order);
1971 
1972 		start += (1UL << order);
1973 	}
1974 }
1975 
1976 static unsigned long __init __free_memory_core(phys_addr_t start,
1977 				 phys_addr_t end)
1978 {
1979 	unsigned long start_pfn = PFN_UP(start);
1980 	unsigned long end_pfn = min_t(unsigned long,
1981 				      PFN_DOWN(end), max_low_pfn);
1982 
1983 	if (start_pfn >= end_pfn)
1984 		return 0;
1985 
1986 	__free_pages_memory(start_pfn, end_pfn);
1987 
1988 	return end_pfn - start_pfn;
1989 }
1990 
1991 static unsigned long __init free_low_memory_core_early(void)
1992 {
1993 	unsigned long count = 0;
1994 	phys_addr_t start, end;
1995 	u64 i;
1996 
1997 	memblock_clear_hotplug(0, -1);
1998 
1999 	for_each_reserved_mem_region(i, &start, &end)
2000 		reserve_bootmem_region(start, end);
2001 
2002 	/*
2003 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2004 	 *  because in some case like Node0 doesn't have RAM installed
2005 	 *  low ram will be on Node1
2006 	 */
2007 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2008 				NULL)
2009 		count += __free_memory_core(start, end);
2010 
2011 	return count;
2012 }
2013 
2014 static int reset_managed_pages_done __initdata;
2015 
2016 void reset_node_managed_pages(pg_data_t *pgdat)
2017 {
2018 	struct zone *z;
2019 
2020 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2021 		atomic_long_set(&z->managed_pages, 0);
2022 }
2023 
2024 void __init reset_all_zones_managed_pages(void)
2025 {
2026 	struct pglist_data *pgdat;
2027 
2028 	if (reset_managed_pages_done)
2029 		return;
2030 
2031 	for_each_online_pgdat(pgdat)
2032 		reset_node_managed_pages(pgdat);
2033 
2034 	reset_managed_pages_done = 1;
2035 }
2036 
2037 /**
2038  * memblock_free_all - release free pages to the buddy allocator
2039  *
2040  * Return: the number of pages actually released.
2041  */
2042 unsigned long __init memblock_free_all(void)
2043 {
2044 	unsigned long pages;
2045 
2046 	reset_all_zones_managed_pages();
2047 
2048 	pages = free_low_memory_core_early();
2049 	totalram_pages_add(pages);
2050 
2051 	return pages;
2052 }
2053 
2054 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2055 
2056 static int memblock_debug_show(struct seq_file *m, void *private)
2057 {
2058 	struct memblock_type *type = m->private;
2059 	struct memblock_region *reg;
2060 	int i;
2061 	phys_addr_t end;
2062 
2063 	for (i = 0; i < type->cnt; i++) {
2064 		reg = &type->regions[i];
2065 		end = reg->base + reg->size - 1;
2066 
2067 		seq_printf(m, "%4d: ", i);
2068 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2069 	}
2070 	return 0;
2071 }
2072 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2073 
2074 static int __init memblock_init_debugfs(void)
2075 {
2076 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2077 
2078 	debugfs_create_file("memory", 0444, root,
2079 			    &memblock.memory, &memblock_debug_fops);
2080 	debugfs_create_file("reserved", 0444, root,
2081 			    &memblock.reserved, &memblock_debug_fops);
2082 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2083 	debugfs_create_file("physmem", 0444, root, &physmem,
2084 			    &memblock_debug_fops);
2085 #endif
2086 
2087 	return 0;
2088 }
2089 __initcall(memblock_init_debugfs);
2090 
2091 #endif /* CONFIG_DEBUG_FS */
2092