xref: /openbmc/linux/mm/memblock.c (revision b755c25f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 
20 #include <asm/sections.h>
21 #include <linux/io.h>
22 
23 #include "internal.h"
24 
25 #define INIT_MEMBLOCK_REGIONS			128
26 #define INIT_PHYSMEM_REGIONS			4
27 
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30 #endif
31 
32 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33 #define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
34 #endif
35 
36 /**
37  * DOC: memblock overview
38  *
39  * Memblock is a method of managing memory regions during the early
40  * boot period when the usual kernel memory allocators are not up and
41  * running.
42  *
43  * Memblock views the system memory as collections of contiguous
44  * regions. There are several types of these collections:
45  *
46  * * ``memory`` - describes the physical memory available to the
47  *   kernel; this may differ from the actual physical memory installed
48  *   in the system, for instance when the memory is restricted with
49  *   ``mem=`` command line parameter
50  * * ``reserved`` - describes the regions that were allocated
51  * * ``physmem`` - describes the actual physical memory available during
52  *   boot regardless of the possible restrictions and memory hot(un)plug;
53  *   the ``physmem`` type is only available on some architectures.
54  *
55  * Each region is represented by struct memblock_region that
56  * defines the region extents, its attributes and NUMA node id on NUMA
57  * systems. Every memory type is described by the struct memblock_type
58  * which contains an array of memory regions along with
59  * the allocator metadata. The "memory" and "reserved" types are nicely
60  * wrapped with struct memblock. This structure is statically
61  * initialized at build time. The region arrays are initially sized to
62  * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63  * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64  * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65  * The memblock_allow_resize() enables automatic resizing of the region
66  * arrays during addition of new regions. This feature should be used
67  * with care so that memory allocated for the region array will not
68  * overlap with areas that should be reserved, for example initrd.
69  *
70  * The early architecture setup should tell memblock what the physical
71  * memory layout is by using memblock_add() or memblock_add_node()
72  * functions. The first function does not assign the region to a NUMA
73  * node and it is appropriate for UMA systems. Yet, it is possible to
74  * use it on NUMA systems as well and assign the region to a NUMA node
75  * later in the setup process using memblock_set_node(). The
76  * memblock_add_node() performs such an assignment directly.
77  *
78  * Once memblock is setup the memory can be allocated using one of the
79  * API variants:
80  *
81  * * memblock_phys_alloc*() - these functions return the **physical**
82  *   address of the allocated memory
83  * * memblock_alloc*() - these functions return the **virtual** address
84  *   of the allocated memory.
85  *
86  * Note, that both API variants use implicit assumptions about allowed
87  * memory ranges and the fallback methods. Consult the documentation
88  * of memblock_alloc_internal() and memblock_alloc_range_nid()
89  * functions for more elaborate description.
90  *
91  * As the system boot progresses, the architecture specific mem_init()
92  * function frees all the memory to the buddy page allocator.
93  *
94  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95  * memblock data structures (except "physmem") will be discarded after the
96  * system initialization completes.
97  */
98 
99 #ifndef CONFIG_NUMA
100 struct pglist_data __refdata contig_page_data;
101 EXPORT_SYMBOL(contig_page_data);
102 #endif
103 
104 unsigned long max_low_pfn;
105 unsigned long min_low_pfn;
106 unsigned long max_pfn;
107 unsigned long long max_possible_pfn;
108 
109 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113 #endif
114 
115 struct memblock memblock __initdata_memblock = {
116 	.memory.regions		= memblock_memory_init_regions,
117 	.memory.cnt		= 1,	/* empty dummy entry */
118 	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
119 	.memory.name		= "memory",
120 
121 	.reserved.regions	= memblock_reserved_init_regions,
122 	.reserved.cnt		= 1,	/* empty dummy entry */
123 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
124 	.reserved.name		= "reserved",
125 
126 	.bottom_up		= false,
127 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
128 };
129 
130 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131 struct memblock_type physmem = {
132 	.regions		= memblock_physmem_init_regions,
133 	.cnt			= 1,	/* empty dummy entry */
134 	.max			= INIT_PHYSMEM_REGIONS,
135 	.name			= "physmem",
136 };
137 #endif
138 
139 /*
140  * keep a pointer to &memblock.memory in the text section to use it in
141  * __next_mem_range() and its helpers.
142  *  For architectures that do not keep memblock data after init, this
143  * pointer will be reset to NULL at memblock_discard()
144  */
145 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146 
147 #define for_each_memblock_type(i, memblock_type, rgn)			\
148 	for (i = 0, rgn = &memblock_type->regions[0];			\
149 	     i < memblock_type->cnt;					\
150 	     i++, rgn = &memblock_type->regions[i])
151 
152 #define memblock_dbg(fmt, ...)						\
153 	do {								\
154 		if (memblock_debug)					\
155 			pr_info(fmt, ##__VA_ARGS__);			\
156 	} while (0)
157 
158 static int memblock_debug __initdata_memblock;
159 static bool system_has_some_mirror __initdata_memblock;
160 static int memblock_can_resize __initdata_memblock;
161 static int memblock_memory_in_slab __initdata_memblock;
162 static int memblock_reserved_in_slab __initdata_memblock;
163 
164 static enum memblock_flags __init_memblock choose_memblock_flags(void)
165 {
166 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
167 }
168 
169 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
170 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
171 {
172 	return *size = min(*size, PHYS_ADDR_MAX - base);
173 }
174 
175 /*
176  * Address comparison utilities
177  */
178 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
179 				       phys_addr_t base2, phys_addr_t size2)
180 {
181 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
182 }
183 
184 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
185 					phys_addr_t base, phys_addr_t size)
186 {
187 	unsigned long i;
188 
189 	memblock_cap_size(base, &size);
190 
191 	for (i = 0; i < type->cnt; i++)
192 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
193 					   type->regions[i].size))
194 			break;
195 	return i < type->cnt;
196 }
197 
198 /**
199  * __memblock_find_range_bottom_up - find free area utility in bottom-up
200  * @start: start of candidate range
201  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
202  *       %MEMBLOCK_ALLOC_ACCESSIBLE
203  * @size: size of free area to find
204  * @align: alignment of free area to find
205  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
206  * @flags: pick from blocks based on memory attributes
207  *
208  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
209  *
210  * Return:
211  * Found address on success, 0 on failure.
212  */
213 static phys_addr_t __init_memblock
214 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
215 				phys_addr_t size, phys_addr_t align, int nid,
216 				enum memblock_flags flags)
217 {
218 	phys_addr_t this_start, this_end, cand;
219 	u64 i;
220 
221 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
222 		this_start = clamp(this_start, start, end);
223 		this_end = clamp(this_end, start, end);
224 
225 		cand = round_up(this_start, align);
226 		if (cand < this_end && this_end - cand >= size)
227 			return cand;
228 	}
229 
230 	return 0;
231 }
232 
233 /**
234  * __memblock_find_range_top_down - find free area utility, in top-down
235  * @start: start of candidate range
236  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
237  *       %MEMBLOCK_ALLOC_ACCESSIBLE
238  * @size: size of free area to find
239  * @align: alignment of free area to find
240  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
241  * @flags: pick from blocks based on memory attributes
242  *
243  * Utility called from memblock_find_in_range_node(), find free area top-down.
244  *
245  * Return:
246  * Found address on success, 0 on failure.
247  */
248 static phys_addr_t __init_memblock
249 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
250 			       phys_addr_t size, phys_addr_t align, int nid,
251 			       enum memblock_flags flags)
252 {
253 	phys_addr_t this_start, this_end, cand;
254 	u64 i;
255 
256 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
257 					NULL) {
258 		this_start = clamp(this_start, start, end);
259 		this_end = clamp(this_end, start, end);
260 
261 		if (this_end < size)
262 			continue;
263 
264 		cand = round_down(this_end - size, align);
265 		if (cand >= this_start)
266 			return cand;
267 	}
268 
269 	return 0;
270 }
271 
272 /**
273  * memblock_find_in_range_node - find free area in given range and node
274  * @size: size of free area to find
275  * @align: alignment of free area to find
276  * @start: start of candidate range
277  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
278  *       %MEMBLOCK_ALLOC_ACCESSIBLE
279  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
280  * @flags: pick from blocks based on memory attributes
281  *
282  * Find @size free area aligned to @align in the specified range and node.
283  *
284  * Return:
285  * Found address on success, 0 on failure.
286  */
287 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
288 					phys_addr_t align, phys_addr_t start,
289 					phys_addr_t end, int nid,
290 					enum memblock_flags flags)
291 {
292 	/* pump up @end */
293 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
294 	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
295 		end = memblock.current_limit;
296 
297 	/* avoid allocating the first page */
298 	start = max_t(phys_addr_t, start, PAGE_SIZE);
299 	end = max(start, end);
300 
301 	if (memblock_bottom_up())
302 		return __memblock_find_range_bottom_up(start, end, size, align,
303 						       nid, flags);
304 	else
305 		return __memblock_find_range_top_down(start, end, size, align,
306 						      nid, flags);
307 }
308 
309 /**
310  * memblock_find_in_range - find free area in given range
311  * @start: start of candidate range
312  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
313  *       %MEMBLOCK_ALLOC_ACCESSIBLE
314  * @size: size of free area to find
315  * @align: alignment of free area to find
316  *
317  * Find @size free area aligned to @align in the specified range.
318  *
319  * Return:
320  * Found address on success, 0 on failure.
321  */
322 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
323 					phys_addr_t end, phys_addr_t size,
324 					phys_addr_t align)
325 {
326 	phys_addr_t ret;
327 	enum memblock_flags flags = choose_memblock_flags();
328 
329 again:
330 	ret = memblock_find_in_range_node(size, align, start, end,
331 					    NUMA_NO_NODE, flags);
332 
333 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
334 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
335 			&size);
336 		flags &= ~MEMBLOCK_MIRROR;
337 		goto again;
338 	}
339 
340 	return ret;
341 }
342 
343 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
344 {
345 	type->total_size -= type->regions[r].size;
346 	memmove(&type->regions[r], &type->regions[r + 1],
347 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
348 	type->cnt--;
349 
350 	/* Special case for empty arrays */
351 	if (type->cnt == 0) {
352 		WARN_ON(type->total_size != 0);
353 		type->cnt = 1;
354 		type->regions[0].base = 0;
355 		type->regions[0].size = 0;
356 		type->regions[0].flags = 0;
357 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
358 	}
359 }
360 
361 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
362 /**
363  * memblock_discard - discard memory and reserved arrays if they were allocated
364  */
365 void __init memblock_discard(void)
366 {
367 	phys_addr_t addr, size;
368 
369 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
370 		addr = __pa(memblock.reserved.regions);
371 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
372 				  memblock.reserved.max);
373 		if (memblock_reserved_in_slab)
374 			kfree(memblock.reserved.regions);
375 		else
376 			memblock_free_late(addr, size);
377 		/* Reset to prevent UAF from stray frees. */
378 		memblock.reserved.regions = memblock_reserved_init_regions;
379 		memblock.reserved.cnt = 1;
380 		memblock_remove_region(&memblock.reserved, 0);
381 	}
382 
383 	if (memblock.memory.regions != memblock_memory_init_regions) {
384 		addr = __pa(memblock.memory.regions);
385 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
386 				  memblock.memory.max);
387 		if (memblock_memory_in_slab)
388 			kfree(memblock.memory.regions);
389 		else
390 			memblock_free_late(addr, size);
391 	}
392 
393 	memblock_memory = NULL;
394 }
395 #endif
396 
397 /**
398  * memblock_double_array - double the size of the memblock regions array
399  * @type: memblock type of the regions array being doubled
400  * @new_area_start: starting address of memory range to avoid overlap with
401  * @new_area_size: size of memory range to avoid overlap with
402  *
403  * Double the size of the @type regions array. If memblock is being used to
404  * allocate memory for a new reserved regions array and there is a previously
405  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
406  * waiting to be reserved, ensure the memory used by the new array does
407  * not overlap.
408  *
409  * Return:
410  * 0 on success, -1 on failure.
411  */
412 static int __init_memblock memblock_double_array(struct memblock_type *type,
413 						phys_addr_t new_area_start,
414 						phys_addr_t new_area_size)
415 {
416 	struct memblock_region *new_array, *old_array;
417 	phys_addr_t old_alloc_size, new_alloc_size;
418 	phys_addr_t old_size, new_size, addr, new_end;
419 	int use_slab = slab_is_available();
420 	int *in_slab;
421 
422 	/* We don't allow resizing until we know about the reserved regions
423 	 * of memory that aren't suitable for allocation
424 	 */
425 	if (!memblock_can_resize)
426 		return -1;
427 
428 	/* Calculate new doubled size */
429 	old_size = type->max * sizeof(struct memblock_region);
430 	new_size = old_size << 1;
431 	/*
432 	 * We need to allocated new one align to PAGE_SIZE,
433 	 *   so we can free them completely later.
434 	 */
435 	old_alloc_size = PAGE_ALIGN(old_size);
436 	new_alloc_size = PAGE_ALIGN(new_size);
437 
438 	/* Retrieve the slab flag */
439 	if (type == &memblock.memory)
440 		in_slab = &memblock_memory_in_slab;
441 	else
442 		in_slab = &memblock_reserved_in_slab;
443 
444 	/* Try to find some space for it */
445 	if (use_slab) {
446 		new_array = kmalloc(new_size, GFP_KERNEL);
447 		addr = new_array ? __pa(new_array) : 0;
448 	} else {
449 		/* only exclude range when trying to double reserved.regions */
450 		if (type != &memblock.reserved)
451 			new_area_start = new_area_size = 0;
452 
453 		addr = memblock_find_in_range(new_area_start + new_area_size,
454 						memblock.current_limit,
455 						new_alloc_size, PAGE_SIZE);
456 		if (!addr && new_area_size)
457 			addr = memblock_find_in_range(0,
458 				min(new_area_start, memblock.current_limit),
459 				new_alloc_size, PAGE_SIZE);
460 
461 		new_array = addr ? __va(addr) : NULL;
462 	}
463 	if (!addr) {
464 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
465 		       type->name, type->max, type->max * 2);
466 		return -1;
467 	}
468 
469 	new_end = addr + new_size - 1;
470 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
471 			type->name, type->max * 2, &addr, &new_end);
472 
473 	/*
474 	 * Found space, we now need to move the array over before we add the
475 	 * reserved region since it may be our reserved array itself that is
476 	 * full.
477 	 */
478 	memcpy(new_array, type->regions, old_size);
479 	memset(new_array + type->max, 0, old_size);
480 	old_array = type->regions;
481 	type->regions = new_array;
482 	type->max <<= 1;
483 
484 	/* Free old array. We needn't free it if the array is the static one */
485 	if (*in_slab)
486 		kfree(old_array);
487 	else if (old_array != memblock_memory_init_regions &&
488 		 old_array != memblock_reserved_init_regions)
489 		memblock_free(old_array, old_alloc_size);
490 
491 	/*
492 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
493 	 * needn't do it
494 	 */
495 	if (!use_slab)
496 		BUG_ON(memblock_reserve(addr, new_alloc_size));
497 
498 	/* Update slab flag */
499 	*in_slab = use_slab;
500 
501 	return 0;
502 }
503 
504 /**
505  * memblock_merge_regions - merge neighboring compatible regions
506  * @type: memblock type to scan
507  * @start_rgn: start scanning from (@start_rgn - 1)
508  * @end_rgn: end scanning at (@end_rgn - 1)
509  * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
510  */
511 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
512 						   unsigned long start_rgn,
513 						   unsigned long end_rgn)
514 {
515 	int i = 0;
516 	if (start_rgn)
517 		i = start_rgn - 1;
518 	end_rgn = min(end_rgn, type->cnt - 1);
519 	while (i < end_rgn) {
520 		struct memblock_region *this = &type->regions[i];
521 		struct memblock_region *next = &type->regions[i + 1];
522 
523 		if (this->base + this->size != next->base ||
524 		    memblock_get_region_node(this) !=
525 		    memblock_get_region_node(next) ||
526 		    this->flags != next->flags) {
527 			BUG_ON(this->base + this->size > next->base);
528 			i++;
529 			continue;
530 		}
531 
532 		this->size += next->size;
533 		/* move forward from next + 1, index of which is i + 2 */
534 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
535 		type->cnt--;
536 		end_rgn--;
537 	}
538 }
539 
540 /**
541  * memblock_insert_region - insert new memblock region
542  * @type:	memblock type to insert into
543  * @idx:	index for the insertion point
544  * @base:	base address of the new region
545  * @size:	size of the new region
546  * @nid:	node id of the new region
547  * @flags:	flags of the new region
548  *
549  * Insert new memblock region [@base, @base + @size) into @type at @idx.
550  * @type must already have extra room to accommodate the new region.
551  */
552 static void __init_memblock memblock_insert_region(struct memblock_type *type,
553 						   int idx, phys_addr_t base,
554 						   phys_addr_t size,
555 						   int nid,
556 						   enum memblock_flags flags)
557 {
558 	struct memblock_region *rgn = &type->regions[idx];
559 
560 	BUG_ON(type->cnt >= type->max);
561 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
562 	rgn->base = base;
563 	rgn->size = size;
564 	rgn->flags = flags;
565 	memblock_set_region_node(rgn, nid);
566 	type->cnt++;
567 	type->total_size += size;
568 }
569 
570 /**
571  * memblock_add_range - add new memblock region
572  * @type: memblock type to add new region into
573  * @base: base address of the new region
574  * @size: size of the new region
575  * @nid: nid of the new region
576  * @flags: flags of the new region
577  *
578  * Add new memblock region [@base, @base + @size) into @type.  The new region
579  * is allowed to overlap with existing ones - overlaps don't affect already
580  * existing regions.  @type is guaranteed to be minimal (all neighbouring
581  * compatible regions are merged) after the addition.
582  *
583  * Return:
584  * 0 on success, -errno on failure.
585  */
586 static int __init_memblock memblock_add_range(struct memblock_type *type,
587 				phys_addr_t base, phys_addr_t size,
588 				int nid, enum memblock_flags flags)
589 {
590 	bool insert = false;
591 	phys_addr_t obase = base;
592 	phys_addr_t end = base + memblock_cap_size(base, &size);
593 	int idx, nr_new, start_rgn = -1, end_rgn;
594 	struct memblock_region *rgn;
595 
596 	if (!size)
597 		return 0;
598 
599 	/* special case for empty array */
600 	if (type->regions[0].size == 0) {
601 		WARN_ON(type->cnt != 1 || type->total_size);
602 		type->regions[0].base = base;
603 		type->regions[0].size = size;
604 		type->regions[0].flags = flags;
605 		memblock_set_region_node(&type->regions[0], nid);
606 		type->total_size = size;
607 		return 0;
608 	}
609 
610 	/*
611 	 * The worst case is when new range overlaps all existing regions,
612 	 * then we'll need type->cnt + 1 empty regions in @type. So if
613 	 * type->cnt * 2 + 1 is less than or equal to type->max, we know
614 	 * that there is enough empty regions in @type, and we can insert
615 	 * regions directly.
616 	 */
617 	if (type->cnt * 2 + 1 <= type->max)
618 		insert = true;
619 
620 repeat:
621 	/*
622 	 * The following is executed twice.  Once with %false @insert and
623 	 * then with %true.  The first counts the number of regions needed
624 	 * to accommodate the new area.  The second actually inserts them.
625 	 */
626 	base = obase;
627 	nr_new = 0;
628 
629 	for_each_memblock_type(idx, type, rgn) {
630 		phys_addr_t rbase = rgn->base;
631 		phys_addr_t rend = rbase + rgn->size;
632 
633 		if (rbase >= end)
634 			break;
635 		if (rend <= base)
636 			continue;
637 		/*
638 		 * @rgn overlaps.  If it separates the lower part of new
639 		 * area, insert that portion.
640 		 */
641 		if (rbase > base) {
642 #ifdef CONFIG_NUMA
643 			WARN_ON(nid != memblock_get_region_node(rgn));
644 #endif
645 			WARN_ON(flags != rgn->flags);
646 			nr_new++;
647 			if (insert) {
648 				if (start_rgn == -1)
649 					start_rgn = idx;
650 				end_rgn = idx + 1;
651 				memblock_insert_region(type, idx++, base,
652 						       rbase - base, nid,
653 						       flags);
654 			}
655 		}
656 		/* area below @rend is dealt with, forget about it */
657 		base = min(rend, end);
658 	}
659 
660 	/* insert the remaining portion */
661 	if (base < end) {
662 		nr_new++;
663 		if (insert) {
664 			if (start_rgn == -1)
665 				start_rgn = idx;
666 			end_rgn = idx + 1;
667 			memblock_insert_region(type, idx, base, end - base,
668 					       nid, flags);
669 		}
670 	}
671 
672 	if (!nr_new)
673 		return 0;
674 
675 	/*
676 	 * If this was the first round, resize array and repeat for actual
677 	 * insertions; otherwise, merge and return.
678 	 */
679 	if (!insert) {
680 		while (type->cnt + nr_new > type->max)
681 			if (memblock_double_array(type, obase, size) < 0)
682 				return -ENOMEM;
683 		insert = true;
684 		goto repeat;
685 	} else {
686 		memblock_merge_regions(type, start_rgn, end_rgn);
687 		return 0;
688 	}
689 }
690 
691 /**
692  * memblock_add_node - add new memblock region within a NUMA node
693  * @base: base address of the new region
694  * @size: size of the new region
695  * @nid: nid of the new region
696  * @flags: flags of the new region
697  *
698  * Add new memblock region [@base, @base + @size) to the "memory"
699  * type. See memblock_add_range() description for mode details
700  *
701  * Return:
702  * 0 on success, -errno on failure.
703  */
704 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
705 				      int nid, enum memblock_flags flags)
706 {
707 	phys_addr_t end = base + size - 1;
708 
709 	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
710 		     &base, &end, nid, flags, (void *)_RET_IP_);
711 
712 	return memblock_add_range(&memblock.memory, base, size, nid, flags);
713 }
714 
715 /**
716  * memblock_add - add new memblock region
717  * @base: base address of the new region
718  * @size: size of the new region
719  *
720  * Add new memblock region [@base, @base + @size) to the "memory"
721  * type. See memblock_add_range() description for mode details
722  *
723  * Return:
724  * 0 on success, -errno on failure.
725  */
726 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
727 {
728 	phys_addr_t end = base + size - 1;
729 
730 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
731 		     &base, &end, (void *)_RET_IP_);
732 
733 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
734 }
735 
736 /**
737  * memblock_isolate_range - isolate given range into disjoint memblocks
738  * @type: memblock type to isolate range for
739  * @base: base of range to isolate
740  * @size: size of range to isolate
741  * @start_rgn: out parameter for the start of isolated region
742  * @end_rgn: out parameter for the end of isolated region
743  *
744  * Walk @type and ensure that regions don't cross the boundaries defined by
745  * [@base, @base + @size).  Crossing regions are split at the boundaries,
746  * which may create at most two more regions.  The index of the first
747  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
748  *
749  * Return:
750  * 0 on success, -errno on failure.
751  */
752 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
753 					phys_addr_t base, phys_addr_t size,
754 					int *start_rgn, int *end_rgn)
755 {
756 	phys_addr_t end = base + memblock_cap_size(base, &size);
757 	int idx;
758 	struct memblock_region *rgn;
759 
760 	*start_rgn = *end_rgn = 0;
761 
762 	if (!size)
763 		return 0;
764 
765 	/* we'll create at most two more regions */
766 	while (type->cnt + 2 > type->max)
767 		if (memblock_double_array(type, base, size) < 0)
768 			return -ENOMEM;
769 
770 	for_each_memblock_type(idx, type, rgn) {
771 		phys_addr_t rbase = rgn->base;
772 		phys_addr_t rend = rbase + rgn->size;
773 
774 		if (rbase >= end)
775 			break;
776 		if (rend <= base)
777 			continue;
778 
779 		if (rbase < base) {
780 			/*
781 			 * @rgn intersects from below.  Split and continue
782 			 * to process the next region - the new top half.
783 			 */
784 			rgn->base = base;
785 			rgn->size -= base - rbase;
786 			type->total_size -= base - rbase;
787 			memblock_insert_region(type, idx, rbase, base - rbase,
788 					       memblock_get_region_node(rgn),
789 					       rgn->flags);
790 		} else if (rend > end) {
791 			/*
792 			 * @rgn intersects from above.  Split and redo the
793 			 * current region - the new bottom half.
794 			 */
795 			rgn->base = end;
796 			rgn->size -= end - rbase;
797 			type->total_size -= end - rbase;
798 			memblock_insert_region(type, idx--, rbase, end - rbase,
799 					       memblock_get_region_node(rgn),
800 					       rgn->flags);
801 		} else {
802 			/* @rgn is fully contained, record it */
803 			if (!*end_rgn)
804 				*start_rgn = idx;
805 			*end_rgn = idx + 1;
806 		}
807 	}
808 
809 	return 0;
810 }
811 
812 static int __init_memblock memblock_remove_range(struct memblock_type *type,
813 					  phys_addr_t base, phys_addr_t size)
814 {
815 	int start_rgn, end_rgn;
816 	int i, ret;
817 
818 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
819 	if (ret)
820 		return ret;
821 
822 	for (i = end_rgn - 1; i >= start_rgn; i--)
823 		memblock_remove_region(type, i);
824 	return 0;
825 }
826 
827 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
828 {
829 	phys_addr_t end = base + size - 1;
830 
831 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
832 		     &base, &end, (void *)_RET_IP_);
833 
834 	return memblock_remove_range(&memblock.memory, base, size);
835 }
836 
837 /**
838  * memblock_free - free boot memory allocation
839  * @ptr: starting address of the  boot memory allocation
840  * @size: size of the boot memory block in bytes
841  *
842  * Free boot memory block previously allocated by memblock_alloc_xx() API.
843  * The freeing memory will not be released to the buddy allocator.
844  */
845 void __init_memblock memblock_free(void *ptr, size_t size)
846 {
847 	if (ptr)
848 		memblock_phys_free(__pa(ptr), size);
849 }
850 
851 /**
852  * memblock_phys_free - free boot memory block
853  * @base: phys starting address of the  boot memory block
854  * @size: size of the boot memory block in bytes
855  *
856  * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
857  * The freeing memory will not be released to the buddy allocator.
858  */
859 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
860 {
861 	phys_addr_t end = base + size - 1;
862 
863 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
864 		     &base, &end, (void *)_RET_IP_);
865 
866 	kmemleak_free_part_phys(base, size);
867 	return memblock_remove_range(&memblock.reserved, base, size);
868 }
869 
870 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
871 {
872 	phys_addr_t end = base + size - 1;
873 
874 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
875 		     &base, &end, (void *)_RET_IP_);
876 
877 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
878 }
879 
880 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
881 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
882 {
883 	phys_addr_t end = base + size - 1;
884 
885 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
886 		     &base, &end, (void *)_RET_IP_);
887 
888 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
889 }
890 #endif
891 
892 /**
893  * memblock_setclr_flag - set or clear flag for a memory region
894  * @base: base address of the region
895  * @size: size of the region
896  * @set: set or clear the flag
897  * @flag: the flag to update
898  *
899  * This function isolates region [@base, @base + @size), and sets/clears flag
900  *
901  * Return: 0 on success, -errno on failure.
902  */
903 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
904 				phys_addr_t size, int set, int flag)
905 {
906 	struct memblock_type *type = &memblock.memory;
907 	int i, ret, start_rgn, end_rgn;
908 
909 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
910 	if (ret)
911 		return ret;
912 
913 	for (i = start_rgn; i < end_rgn; i++) {
914 		struct memblock_region *r = &type->regions[i];
915 
916 		if (set)
917 			r->flags |= flag;
918 		else
919 			r->flags &= ~flag;
920 	}
921 
922 	memblock_merge_regions(type, start_rgn, end_rgn);
923 	return 0;
924 }
925 
926 /**
927  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
928  * @base: the base phys addr of the region
929  * @size: the size of the region
930  *
931  * Return: 0 on success, -errno on failure.
932  */
933 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
934 {
935 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
936 }
937 
938 /**
939  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
940  * @base: the base phys addr of the region
941  * @size: the size of the region
942  *
943  * Return: 0 on success, -errno on failure.
944  */
945 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
946 {
947 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
948 }
949 
950 /**
951  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
952  * @base: the base phys addr of the region
953  * @size: the size of the region
954  *
955  * Return: 0 on success, -errno on failure.
956  */
957 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
958 {
959 	if (!mirrored_kernelcore)
960 		return 0;
961 
962 	system_has_some_mirror = true;
963 
964 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
965 }
966 
967 /**
968  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
969  * @base: the base phys addr of the region
970  * @size: the size of the region
971  *
972  * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
973  * direct mapping of the physical memory. These regions will still be
974  * covered by the memory map. The struct page representing NOMAP memory
975  * frames in the memory map will be PageReserved()
976  *
977  * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
978  * memblock, the caller must inform kmemleak to ignore that memory
979  *
980  * Return: 0 on success, -errno on failure.
981  */
982 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
983 {
984 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
985 }
986 
987 /**
988  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
989  * @base: the base phys addr of the region
990  * @size: the size of the region
991  *
992  * Return: 0 on success, -errno on failure.
993  */
994 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
995 {
996 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
997 }
998 
999 static bool should_skip_region(struct memblock_type *type,
1000 			       struct memblock_region *m,
1001 			       int nid, int flags)
1002 {
1003 	int m_nid = memblock_get_region_node(m);
1004 
1005 	/* we never skip regions when iterating memblock.reserved or physmem */
1006 	if (type != memblock_memory)
1007 		return false;
1008 
1009 	/* only memory regions are associated with nodes, check it */
1010 	if (nid != NUMA_NO_NODE && nid != m_nid)
1011 		return true;
1012 
1013 	/* skip hotpluggable memory regions if needed */
1014 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1015 	    !(flags & MEMBLOCK_HOTPLUG))
1016 		return true;
1017 
1018 	/* if we want mirror memory skip non-mirror memory regions */
1019 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1020 		return true;
1021 
1022 	/* skip nomap memory unless we were asked for it explicitly */
1023 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1024 		return true;
1025 
1026 	/* skip driver-managed memory unless we were asked for it explicitly */
1027 	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1028 		return true;
1029 
1030 	return false;
1031 }
1032 
1033 /**
1034  * __next_mem_range - next function for for_each_free_mem_range() etc.
1035  * @idx: pointer to u64 loop variable
1036  * @nid: node selector, %NUMA_NO_NODE for all nodes
1037  * @flags: pick from blocks based on memory attributes
1038  * @type_a: pointer to memblock_type from where the range is taken
1039  * @type_b: pointer to memblock_type which excludes memory from being taken
1040  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1041  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1042  * @out_nid: ptr to int for nid of the range, can be %NULL
1043  *
1044  * Find the first area from *@idx which matches @nid, fill the out
1045  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1046  * *@idx contains index into type_a and the upper 32bit indexes the
1047  * areas before each region in type_b.	For example, if type_b regions
1048  * look like the following,
1049  *
1050  *	0:[0-16), 1:[32-48), 2:[128-130)
1051  *
1052  * The upper 32bit indexes the following regions.
1053  *
1054  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1055  *
1056  * As both region arrays are sorted, the function advances the two indices
1057  * in lockstep and returns each intersection.
1058  */
1059 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1060 		      struct memblock_type *type_a,
1061 		      struct memblock_type *type_b, phys_addr_t *out_start,
1062 		      phys_addr_t *out_end, int *out_nid)
1063 {
1064 	int idx_a = *idx & 0xffffffff;
1065 	int idx_b = *idx >> 32;
1066 
1067 	if (WARN_ONCE(nid == MAX_NUMNODES,
1068 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1069 		nid = NUMA_NO_NODE;
1070 
1071 	for (; idx_a < type_a->cnt; idx_a++) {
1072 		struct memblock_region *m = &type_a->regions[idx_a];
1073 
1074 		phys_addr_t m_start = m->base;
1075 		phys_addr_t m_end = m->base + m->size;
1076 		int	    m_nid = memblock_get_region_node(m);
1077 
1078 		if (should_skip_region(type_a, m, nid, flags))
1079 			continue;
1080 
1081 		if (!type_b) {
1082 			if (out_start)
1083 				*out_start = m_start;
1084 			if (out_end)
1085 				*out_end = m_end;
1086 			if (out_nid)
1087 				*out_nid = m_nid;
1088 			idx_a++;
1089 			*idx = (u32)idx_a | (u64)idx_b << 32;
1090 			return;
1091 		}
1092 
1093 		/* scan areas before each reservation */
1094 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1095 			struct memblock_region *r;
1096 			phys_addr_t r_start;
1097 			phys_addr_t r_end;
1098 
1099 			r = &type_b->regions[idx_b];
1100 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1101 			r_end = idx_b < type_b->cnt ?
1102 				r->base : PHYS_ADDR_MAX;
1103 
1104 			/*
1105 			 * if idx_b advanced past idx_a,
1106 			 * break out to advance idx_a
1107 			 */
1108 			if (r_start >= m_end)
1109 				break;
1110 			/* if the two regions intersect, we're done */
1111 			if (m_start < r_end) {
1112 				if (out_start)
1113 					*out_start =
1114 						max(m_start, r_start);
1115 				if (out_end)
1116 					*out_end = min(m_end, r_end);
1117 				if (out_nid)
1118 					*out_nid = m_nid;
1119 				/*
1120 				 * The region which ends first is
1121 				 * advanced for the next iteration.
1122 				 */
1123 				if (m_end <= r_end)
1124 					idx_a++;
1125 				else
1126 					idx_b++;
1127 				*idx = (u32)idx_a | (u64)idx_b << 32;
1128 				return;
1129 			}
1130 		}
1131 	}
1132 
1133 	/* signal end of iteration */
1134 	*idx = ULLONG_MAX;
1135 }
1136 
1137 /**
1138  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1139  *
1140  * @idx: pointer to u64 loop variable
1141  * @nid: node selector, %NUMA_NO_NODE for all nodes
1142  * @flags: pick from blocks based on memory attributes
1143  * @type_a: pointer to memblock_type from where the range is taken
1144  * @type_b: pointer to memblock_type which excludes memory from being taken
1145  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1146  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1147  * @out_nid: ptr to int for nid of the range, can be %NULL
1148  *
1149  * Finds the next range from type_a which is not marked as unsuitable
1150  * in type_b.
1151  *
1152  * Reverse of __next_mem_range().
1153  */
1154 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1155 					  enum memblock_flags flags,
1156 					  struct memblock_type *type_a,
1157 					  struct memblock_type *type_b,
1158 					  phys_addr_t *out_start,
1159 					  phys_addr_t *out_end, int *out_nid)
1160 {
1161 	int idx_a = *idx & 0xffffffff;
1162 	int idx_b = *idx >> 32;
1163 
1164 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1165 		nid = NUMA_NO_NODE;
1166 
1167 	if (*idx == (u64)ULLONG_MAX) {
1168 		idx_a = type_a->cnt - 1;
1169 		if (type_b != NULL)
1170 			idx_b = type_b->cnt;
1171 		else
1172 			idx_b = 0;
1173 	}
1174 
1175 	for (; idx_a >= 0; idx_a--) {
1176 		struct memblock_region *m = &type_a->regions[idx_a];
1177 
1178 		phys_addr_t m_start = m->base;
1179 		phys_addr_t m_end = m->base + m->size;
1180 		int m_nid = memblock_get_region_node(m);
1181 
1182 		if (should_skip_region(type_a, m, nid, flags))
1183 			continue;
1184 
1185 		if (!type_b) {
1186 			if (out_start)
1187 				*out_start = m_start;
1188 			if (out_end)
1189 				*out_end = m_end;
1190 			if (out_nid)
1191 				*out_nid = m_nid;
1192 			idx_a--;
1193 			*idx = (u32)idx_a | (u64)idx_b << 32;
1194 			return;
1195 		}
1196 
1197 		/* scan areas before each reservation */
1198 		for (; idx_b >= 0; idx_b--) {
1199 			struct memblock_region *r;
1200 			phys_addr_t r_start;
1201 			phys_addr_t r_end;
1202 
1203 			r = &type_b->regions[idx_b];
1204 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1205 			r_end = idx_b < type_b->cnt ?
1206 				r->base : PHYS_ADDR_MAX;
1207 			/*
1208 			 * if idx_b advanced past idx_a,
1209 			 * break out to advance idx_a
1210 			 */
1211 
1212 			if (r_end <= m_start)
1213 				break;
1214 			/* if the two regions intersect, we're done */
1215 			if (m_end > r_start) {
1216 				if (out_start)
1217 					*out_start = max(m_start, r_start);
1218 				if (out_end)
1219 					*out_end = min(m_end, r_end);
1220 				if (out_nid)
1221 					*out_nid = m_nid;
1222 				if (m_start >= r_start)
1223 					idx_a--;
1224 				else
1225 					idx_b--;
1226 				*idx = (u32)idx_a | (u64)idx_b << 32;
1227 				return;
1228 			}
1229 		}
1230 	}
1231 	/* signal end of iteration */
1232 	*idx = ULLONG_MAX;
1233 }
1234 
1235 /*
1236  * Common iterator interface used to define for_each_mem_pfn_range().
1237  */
1238 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1239 				unsigned long *out_start_pfn,
1240 				unsigned long *out_end_pfn, int *out_nid)
1241 {
1242 	struct memblock_type *type = &memblock.memory;
1243 	struct memblock_region *r;
1244 	int r_nid;
1245 
1246 	while (++*idx < type->cnt) {
1247 		r = &type->regions[*idx];
1248 		r_nid = memblock_get_region_node(r);
1249 
1250 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1251 			continue;
1252 		if (nid == MAX_NUMNODES || nid == r_nid)
1253 			break;
1254 	}
1255 	if (*idx >= type->cnt) {
1256 		*idx = -1;
1257 		return;
1258 	}
1259 
1260 	if (out_start_pfn)
1261 		*out_start_pfn = PFN_UP(r->base);
1262 	if (out_end_pfn)
1263 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1264 	if (out_nid)
1265 		*out_nid = r_nid;
1266 }
1267 
1268 /**
1269  * memblock_set_node - set node ID on memblock regions
1270  * @base: base of area to set node ID for
1271  * @size: size of area to set node ID for
1272  * @type: memblock type to set node ID for
1273  * @nid: node ID to set
1274  *
1275  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1276  * Regions which cross the area boundaries are split as necessary.
1277  *
1278  * Return:
1279  * 0 on success, -errno on failure.
1280  */
1281 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1282 				      struct memblock_type *type, int nid)
1283 {
1284 #ifdef CONFIG_NUMA
1285 	int start_rgn, end_rgn;
1286 	int i, ret;
1287 
1288 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1289 	if (ret)
1290 		return ret;
1291 
1292 	for (i = start_rgn; i < end_rgn; i++)
1293 		memblock_set_region_node(&type->regions[i], nid);
1294 
1295 	memblock_merge_regions(type, start_rgn, end_rgn);
1296 #endif
1297 	return 0;
1298 }
1299 
1300 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1301 /**
1302  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1303  *
1304  * @idx: pointer to u64 loop variable
1305  * @zone: zone in which all of the memory blocks reside
1306  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1307  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1308  *
1309  * This function is meant to be a zone/pfn specific wrapper for the
1310  * for_each_mem_range type iterators. Specifically they are used in the
1311  * deferred memory init routines and as such we were duplicating much of
1312  * this logic throughout the code. So instead of having it in multiple
1313  * locations it seemed like it would make more sense to centralize this to
1314  * one new iterator that does everything they need.
1315  */
1316 void __init_memblock
1317 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1318 			     unsigned long *out_spfn, unsigned long *out_epfn)
1319 {
1320 	int zone_nid = zone_to_nid(zone);
1321 	phys_addr_t spa, epa;
1322 
1323 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1324 			 &memblock.memory, &memblock.reserved,
1325 			 &spa, &epa, NULL);
1326 
1327 	while (*idx != U64_MAX) {
1328 		unsigned long epfn = PFN_DOWN(epa);
1329 		unsigned long spfn = PFN_UP(spa);
1330 
1331 		/*
1332 		 * Verify the end is at least past the start of the zone and
1333 		 * that we have at least one PFN to initialize.
1334 		 */
1335 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1336 			/* if we went too far just stop searching */
1337 			if (zone_end_pfn(zone) <= spfn) {
1338 				*idx = U64_MAX;
1339 				break;
1340 			}
1341 
1342 			if (out_spfn)
1343 				*out_spfn = max(zone->zone_start_pfn, spfn);
1344 			if (out_epfn)
1345 				*out_epfn = min(zone_end_pfn(zone), epfn);
1346 
1347 			return;
1348 		}
1349 
1350 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1351 				 &memblock.memory, &memblock.reserved,
1352 				 &spa, &epa, NULL);
1353 	}
1354 
1355 	/* signal end of iteration */
1356 	if (out_spfn)
1357 		*out_spfn = ULONG_MAX;
1358 	if (out_epfn)
1359 		*out_epfn = 0;
1360 }
1361 
1362 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1363 
1364 /**
1365  * memblock_alloc_range_nid - allocate boot memory block
1366  * @size: size of memory block to be allocated in bytes
1367  * @align: alignment of the region and block's size
1368  * @start: the lower bound of the memory region to allocate (phys address)
1369  * @end: the upper bound of the memory region to allocate (phys address)
1370  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1371  * @exact_nid: control the allocation fall back to other nodes
1372  *
1373  * The allocation is performed from memory region limited by
1374  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1375  *
1376  * If the specified node can not hold the requested memory and @exact_nid
1377  * is false, the allocation falls back to any node in the system.
1378  *
1379  * For systems with memory mirroring, the allocation is attempted first
1380  * from the regions with mirroring enabled and then retried from any
1381  * memory region.
1382  *
1383  * In addition, function using kmemleak_alloc_phys for allocated boot
1384  * memory block, it is never reported as leaks.
1385  *
1386  * Return:
1387  * Physical address of allocated memory block on success, %0 on failure.
1388  */
1389 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1390 					phys_addr_t align, phys_addr_t start,
1391 					phys_addr_t end, int nid,
1392 					bool exact_nid)
1393 {
1394 	enum memblock_flags flags = choose_memblock_flags();
1395 	phys_addr_t found;
1396 
1397 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1398 		nid = NUMA_NO_NODE;
1399 
1400 	if (!align) {
1401 		/* Can't use WARNs this early in boot on powerpc */
1402 		dump_stack();
1403 		align = SMP_CACHE_BYTES;
1404 	}
1405 
1406 again:
1407 	found = memblock_find_in_range_node(size, align, start, end, nid,
1408 					    flags);
1409 	if (found && !memblock_reserve(found, size))
1410 		goto done;
1411 
1412 	if (nid != NUMA_NO_NODE && !exact_nid) {
1413 		found = memblock_find_in_range_node(size, align, start,
1414 						    end, NUMA_NO_NODE,
1415 						    flags);
1416 		if (found && !memblock_reserve(found, size))
1417 			goto done;
1418 	}
1419 
1420 	if (flags & MEMBLOCK_MIRROR) {
1421 		flags &= ~MEMBLOCK_MIRROR;
1422 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1423 			&size);
1424 		goto again;
1425 	}
1426 
1427 	return 0;
1428 
1429 done:
1430 	/*
1431 	 * Skip kmemleak for those places like kasan_init() and
1432 	 * early_pgtable_alloc() due to high volume.
1433 	 */
1434 	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1435 		/*
1436 		 * Memblock allocated blocks are never reported as
1437 		 * leaks. This is because many of these blocks are
1438 		 * only referred via the physical address which is
1439 		 * not looked up by kmemleak.
1440 		 */
1441 		kmemleak_alloc_phys(found, size, 0);
1442 
1443 	/*
1444 	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1445 	 * require memory to be accepted before it can be used by the
1446 	 * guest.
1447 	 *
1448 	 * Accept the memory of the allocated buffer.
1449 	 */
1450 	accept_memory(found, found + size);
1451 
1452 	return found;
1453 }
1454 
1455 /**
1456  * memblock_phys_alloc_range - allocate a memory block inside specified range
1457  * @size: size of memory block to be allocated in bytes
1458  * @align: alignment of the region and block's size
1459  * @start: the lower bound of the memory region to allocate (physical address)
1460  * @end: the upper bound of the memory region to allocate (physical address)
1461  *
1462  * Allocate @size bytes in the between @start and @end.
1463  *
1464  * Return: physical address of the allocated memory block on success,
1465  * %0 on failure.
1466  */
1467 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1468 					     phys_addr_t align,
1469 					     phys_addr_t start,
1470 					     phys_addr_t end)
1471 {
1472 	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1473 		     __func__, (u64)size, (u64)align, &start, &end,
1474 		     (void *)_RET_IP_);
1475 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1476 					false);
1477 }
1478 
1479 /**
1480  * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1481  * @size: size of memory block to be allocated in bytes
1482  * @align: alignment of the region and block's size
1483  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1484  *
1485  * Allocates memory block from the specified NUMA node. If the node
1486  * has no available memory, attempts to allocated from any node in the
1487  * system.
1488  *
1489  * Return: physical address of the allocated memory block on success,
1490  * %0 on failure.
1491  */
1492 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1493 {
1494 	return memblock_alloc_range_nid(size, align, 0,
1495 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1496 }
1497 
1498 /**
1499  * memblock_alloc_internal - allocate boot memory block
1500  * @size: size of memory block to be allocated in bytes
1501  * @align: alignment of the region and block's size
1502  * @min_addr: the lower bound of the memory region to allocate (phys address)
1503  * @max_addr: the upper bound of the memory region to allocate (phys address)
1504  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1505  * @exact_nid: control the allocation fall back to other nodes
1506  *
1507  * Allocates memory block using memblock_alloc_range_nid() and
1508  * converts the returned physical address to virtual.
1509  *
1510  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1511  * will fall back to memory below @min_addr. Other constraints, such
1512  * as node and mirrored memory will be handled again in
1513  * memblock_alloc_range_nid().
1514  *
1515  * Return:
1516  * Virtual address of allocated memory block on success, NULL on failure.
1517  */
1518 static void * __init memblock_alloc_internal(
1519 				phys_addr_t size, phys_addr_t align,
1520 				phys_addr_t min_addr, phys_addr_t max_addr,
1521 				int nid, bool exact_nid)
1522 {
1523 	phys_addr_t alloc;
1524 
1525 	/*
1526 	 * Detect any accidental use of these APIs after slab is ready, as at
1527 	 * this moment memblock may be deinitialized already and its
1528 	 * internal data may be destroyed (after execution of memblock_free_all)
1529 	 */
1530 	if (WARN_ON_ONCE(slab_is_available()))
1531 		return kzalloc_node(size, GFP_NOWAIT, nid);
1532 
1533 	if (max_addr > memblock.current_limit)
1534 		max_addr = memblock.current_limit;
1535 
1536 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1537 					exact_nid);
1538 
1539 	/* retry allocation without lower limit */
1540 	if (!alloc && min_addr)
1541 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1542 						exact_nid);
1543 
1544 	if (!alloc)
1545 		return NULL;
1546 
1547 	return phys_to_virt(alloc);
1548 }
1549 
1550 /**
1551  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1552  * without zeroing memory
1553  * @size: size of memory block to be allocated in bytes
1554  * @align: alignment of the region and block's size
1555  * @min_addr: the lower bound of the memory region from where the allocation
1556  *	  is preferred (phys address)
1557  * @max_addr: the upper bound of the memory region from where the allocation
1558  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1559  *	      allocate only from memory limited by memblock.current_limit value
1560  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1561  *
1562  * Public function, provides additional debug information (including caller
1563  * info), if enabled. Does not zero allocated memory.
1564  *
1565  * Return:
1566  * Virtual address of allocated memory block on success, NULL on failure.
1567  */
1568 void * __init memblock_alloc_exact_nid_raw(
1569 			phys_addr_t size, phys_addr_t align,
1570 			phys_addr_t min_addr, phys_addr_t max_addr,
1571 			int nid)
1572 {
1573 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1574 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1575 		     &max_addr, (void *)_RET_IP_);
1576 
1577 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1578 				       true);
1579 }
1580 
1581 /**
1582  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1583  * memory and without panicking
1584  * @size: size of memory block to be allocated in bytes
1585  * @align: alignment of the region and block's size
1586  * @min_addr: the lower bound of the memory region from where the allocation
1587  *	  is preferred (phys address)
1588  * @max_addr: the upper bound of the memory region from where the allocation
1589  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1590  *	      allocate only from memory limited by memblock.current_limit value
1591  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1592  *
1593  * Public function, provides additional debug information (including caller
1594  * info), if enabled. Does not zero allocated memory, does not panic if request
1595  * cannot be satisfied.
1596  *
1597  * Return:
1598  * Virtual address of allocated memory block on success, NULL on failure.
1599  */
1600 void * __init memblock_alloc_try_nid_raw(
1601 			phys_addr_t size, phys_addr_t align,
1602 			phys_addr_t min_addr, phys_addr_t max_addr,
1603 			int nid)
1604 {
1605 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1606 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1607 		     &max_addr, (void *)_RET_IP_);
1608 
1609 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1610 				       false);
1611 }
1612 
1613 /**
1614  * memblock_alloc_try_nid - allocate boot memory block
1615  * @size: size of memory block to be allocated in bytes
1616  * @align: alignment of the region and block's size
1617  * @min_addr: the lower bound of the memory region from where the allocation
1618  *	  is preferred (phys address)
1619  * @max_addr: the upper bound of the memory region from where the allocation
1620  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1621  *	      allocate only from memory limited by memblock.current_limit value
1622  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1623  *
1624  * Public function, provides additional debug information (including caller
1625  * info), if enabled. This function zeroes the allocated memory.
1626  *
1627  * Return:
1628  * Virtual address of allocated memory block on success, NULL on failure.
1629  */
1630 void * __init memblock_alloc_try_nid(
1631 			phys_addr_t size, phys_addr_t align,
1632 			phys_addr_t min_addr, phys_addr_t max_addr,
1633 			int nid)
1634 {
1635 	void *ptr;
1636 
1637 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1638 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1639 		     &max_addr, (void *)_RET_IP_);
1640 	ptr = memblock_alloc_internal(size, align,
1641 					   min_addr, max_addr, nid, false);
1642 	if (ptr)
1643 		memset(ptr, 0, size);
1644 
1645 	return ptr;
1646 }
1647 
1648 /**
1649  * memblock_free_late - free pages directly to buddy allocator
1650  * @base: phys starting address of the  boot memory block
1651  * @size: size of the boot memory block in bytes
1652  *
1653  * This is only useful when the memblock allocator has already been torn
1654  * down, but we are still initializing the system.  Pages are released directly
1655  * to the buddy allocator.
1656  */
1657 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1658 {
1659 	phys_addr_t cursor, end;
1660 
1661 	end = base + size - 1;
1662 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1663 		     __func__, &base, &end, (void *)_RET_IP_);
1664 	kmemleak_free_part_phys(base, size);
1665 	cursor = PFN_UP(base);
1666 	end = PFN_DOWN(base + size);
1667 
1668 	for (; cursor < end; cursor++) {
1669 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1670 		totalram_pages_inc();
1671 	}
1672 }
1673 
1674 /*
1675  * Remaining API functions
1676  */
1677 
1678 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1679 {
1680 	return memblock.memory.total_size;
1681 }
1682 
1683 phys_addr_t __init_memblock memblock_reserved_size(void)
1684 {
1685 	return memblock.reserved.total_size;
1686 }
1687 
1688 /* lowest address */
1689 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1690 {
1691 	return memblock.memory.regions[0].base;
1692 }
1693 
1694 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1695 {
1696 	int idx = memblock.memory.cnt - 1;
1697 
1698 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1699 }
1700 
1701 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1702 {
1703 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1704 	struct memblock_region *r;
1705 
1706 	/*
1707 	 * translate the memory @limit size into the max address within one of
1708 	 * the memory memblock regions, if the @limit exceeds the total size
1709 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1710 	 */
1711 	for_each_mem_region(r) {
1712 		if (limit <= r->size) {
1713 			max_addr = r->base + limit;
1714 			break;
1715 		}
1716 		limit -= r->size;
1717 	}
1718 
1719 	return max_addr;
1720 }
1721 
1722 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1723 {
1724 	phys_addr_t max_addr;
1725 
1726 	if (!limit)
1727 		return;
1728 
1729 	max_addr = __find_max_addr(limit);
1730 
1731 	/* @limit exceeds the total size of the memory, do nothing */
1732 	if (max_addr == PHYS_ADDR_MAX)
1733 		return;
1734 
1735 	/* truncate both memory and reserved regions */
1736 	memblock_remove_range(&memblock.memory, max_addr,
1737 			      PHYS_ADDR_MAX);
1738 	memblock_remove_range(&memblock.reserved, max_addr,
1739 			      PHYS_ADDR_MAX);
1740 }
1741 
1742 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1743 {
1744 	int start_rgn, end_rgn;
1745 	int i, ret;
1746 
1747 	if (!size)
1748 		return;
1749 
1750 	if (!memblock_memory->total_size) {
1751 		pr_warn("%s: No memory registered yet\n", __func__);
1752 		return;
1753 	}
1754 
1755 	ret = memblock_isolate_range(&memblock.memory, base, size,
1756 						&start_rgn, &end_rgn);
1757 	if (ret)
1758 		return;
1759 
1760 	/* remove all the MAP regions */
1761 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1762 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1763 			memblock_remove_region(&memblock.memory, i);
1764 
1765 	for (i = start_rgn - 1; i >= 0; i--)
1766 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1767 			memblock_remove_region(&memblock.memory, i);
1768 
1769 	/* truncate the reserved regions */
1770 	memblock_remove_range(&memblock.reserved, 0, base);
1771 	memblock_remove_range(&memblock.reserved,
1772 			base + size, PHYS_ADDR_MAX);
1773 }
1774 
1775 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1776 {
1777 	phys_addr_t max_addr;
1778 
1779 	if (!limit)
1780 		return;
1781 
1782 	max_addr = __find_max_addr(limit);
1783 
1784 	/* @limit exceeds the total size of the memory, do nothing */
1785 	if (max_addr == PHYS_ADDR_MAX)
1786 		return;
1787 
1788 	memblock_cap_memory_range(0, max_addr);
1789 }
1790 
1791 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1792 {
1793 	unsigned int left = 0, right = type->cnt;
1794 
1795 	do {
1796 		unsigned int mid = (right + left) / 2;
1797 
1798 		if (addr < type->regions[mid].base)
1799 			right = mid;
1800 		else if (addr >= (type->regions[mid].base +
1801 				  type->regions[mid].size))
1802 			left = mid + 1;
1803 		else
1804 			return mid;
1805 	} while (left < right);
1806 	return -1;
1807 }
1808 
1809 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1810 {
1811 	return memblock_search(&memblock.reserved, addr) != -1;
1812 }
1813 
1814 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1815 {
1816 	return memblock_search(&memblock.memory, addr) != -1;
1817 }
1818 
1819 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1820 {
1821 	int i = memblock_search(&memblock.memory, addr);
1822 
1823 	if (i == -1)
1824 		return false;
1825 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1826 }
1827 
1828 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1829 			 unsigned long *start_pfn, unsigned long *end_pfn)
1830 {
1831 	struct memblock_type *type = &memblock.memory;
1832 	int mid = memblock_search(type, PFN_PHYS(pfn));
1833 
1834 	if (mid == -1)
1835 		return -1;
1836 
1837 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1838 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1839 
1840 	return memblock_get_region_node(&type->regions[mid]);
1841 }
1842 
1843 /**
1844  * memblock_is_region_memory - check if a region is a subset of memory
1845  * @base: base of region to check
1846  * @size: size of region to check
1847  *
1848  * Check if the region [@base, @base + @size) is a subset of a memory block.
1849  *
1850  * Return:
1851  * 0 if false, non-zero if true
1852  */
1853 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1854 {
1855 	int idx = memblock_search(&memblock.memory, base);
1856 	phys_addr_t end = base + memblock_cap_size(base, &size);
1857 
1858 	if (idx == -1)
1859 		return false;
1860 	return (memblock.memory.regions[idx].base +
1861 		 memblock.memory.regions[idx].size) >= end;
1862 }
1863 
1864 /**
1865  * memblock_is_region_reserved - check if a region intersects reserved memory
1866  * @base: base of region to check
1867  * @size: size of region to check
1868  *
1869  * Check if the region [@base, @base + @size) intersects a reserved
1870  * memory block.
1871  *
1872  * Return:
1873  * True if they intersect, false if not.
1874  */
1875 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1876 {
1877 	return memblock_overlaps_region(&memblock.reserved, base, size);
1878 }
1879 
1880 void __init_memblock memblock_trim_memory(phys_addr_t align)
1881 {
1882 	phys_addr_t start, end, orig_start, orig_end;
1883 	struct memblock_region *r;
1884 
1885 	for_each_mem_region(r) {
1886 		orig_start = r->base;
1887 		orig_end = r->base + r->size;
1888 		start = round_up(orig_start, align);
1889 		end = round_down(orig_end, align);
1890 
1891 		if (start == orig_start && end == orig_end)
1892 			continue;
1893 
1894 		if (start < end) {
1895 			r->base = start;
1896 			r->size = end - start;
1897 		} else {
1898 			memblock_remove_region(&memblock.memory,
1899 					       r - memblock.memory.regions);
1900 			r--;
1901 		}
1902 	}
1903 }
1904 
1905 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1906 {
1907 	memblock.current_limit = limit;
1908 }
1909 
1910 phys_addr_t __init_memblock memblock_get_current_limit(void)
1911 {
1912 	return memblock.current_limit;
1913 }
1914 
1915 static void __init_memblock memblock_dump(struct memblock_type *type)
1916 {
1917 	phys_addr_t base, end, size;
1918 	enum memblock_flags flags;
1919 	int idx;
1920 	struct memblock_region *rgn;
1921 
1922 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1923 
1924 	for_each_memblock_type(idx, type, rgn) {
1925 		char nid_buf[32] = "";
1926 
1927 		base = rgn->base;
1928 		size = rgn->size;
1929 		end = base + size - 1;
1930 		flags = rgn->flags;
1931 #ifdef CONFIG_NUMA
1932 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1933 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1934 				 memblock_get_region_node(rgn));
1935 #endif
1936 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1937 			type->name, idx, &base, &end, &size, nid_buf, flags);
1938 	}
1939 }
1940 
1941 static void __init_memblock __memblock_dump_all(void)
1942 {
1943 	pr_info("MEMBLOCK configuration:\n");
1944 	pr_info(" memory size = %pa reserved size = %pa\n",
1945 		&memblock.memory.total_size,
1946 		&memblock.reserved.total_size);
1947 
1948 	memblock_dump(&memblock.memory);
1949 	memblock_dump(&memblock.reserved);
1950 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1951 	memblock_dump(&physmem);
1952 #endif
1953 }
1954 
1955 void __init_memblock memblock_dump_all(void)
1956 {
1957 	if (memblock_debug)
1958 		__memblock_dump_all();
1959 }
1960 
1961 void __init memblock_allow_resize(void)
1962 {
1963 	memblock_can_resize = 1;
1964 }
1965 
1966 static int __init early_memblock(char *p)
1967 {
1968 	if (p && strstr(p, "debug"))
1969 		memblock_debug = 1;
1970 	return 0;
1971 }
1972 early_param("memblock", early_memblock);
1973 
1974 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1975 {
1976 	struct page *start_pg, *end_pg;
1977 	phys_addr_t pg, pgend;
1978 
1979 	/*
1980 	 * Convert start_pfn/end_pfn to a struct page pointer.
1981 	 */
1982 	start_pg = pfn_to_page(start_pfn - 1) + 1;
1983 	end_pg = pfn_to_page(end_pfn - 1) + 1;
1984 
1985 	/*
1986 	 * Convert to physical addresses, and round start upwards and end
1987 	 * downwards.
1988 	 */
1989 	pg = PAGE_ALIGN(__pa(start_pg));
1990 	pgend = __pa(end_pg) & PAGE_MASK;
1991 
1992 	/*
1993 	 * If there are free pages between these, free the section of the
1994 	 * memmap array.
1995 	 */
1996 	if (pg < pgend)
1997 		memblock_phys_free(pg, pgend - pg);
1998 }
1999 
2000 /*
2001  * The mem_map array can get very big.  Free the unused area of the memory map.
2002  */
2003 static void __init free_unused_memmap(void)
2004 {
2005 	unsigned long start, end, prev_end = 0;
2006 	int i;
2007 
2008 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2009 	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2010 		return;
2011 
2012 	/*
2013 	 * This relies on each bank being in address order.
2014 	 * The banks are sorted previously in bootmem_init().
2015 	 */
2016 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2017 #ifdef CONFIG_SPARSEMEM
2018 		/*
2019 		 * Take care not to free memmap entries that don't exist
2020 		 * due to SPARSEMEM sections which aren't present.
2021 		 */
2022 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2023 #endif
2024 		/*
2025 		 * Align down here since many operations in VM subsystem
2026 		 * presume that there are no holes in the memory map inside
2027 		 * a pageblock
2028 		 */
2029 		start = pageblock_start_pfn(start);
2030 
2031 		/*
2032 		 * If we had a previous bank, and there is a space
2033 		 * between the current bank and the previous, free it.
2034 		 */
2035 		if (prev_end && prev_end < start)
2036 			free_memmap(prev_end, start);
2037 
2038 		/*
2039 		 * Align up here since many operations in VM subsystem
2040 		 * presume that there are no holes in the memory map inside
2041 		 * a pageblock
2042 		 */
2043 		prev_end = pageblock_align(end);
2044 	}
2045 
2046 #ifdef CONFIG_SPARSEMEM
2047 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2048 		prev_end = pageblock_align(end);
2049 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2050 	}
2051 #endif
2052 }
2053 
2054 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2055 {
2056 	int order;
2057 
2058 	while (start < end) {
2059 		/*
2060 		 * Free the pages in the largest chunks alignment allows.
2061 		 *
2062 		 * __ffs() behaviour is undefined for 0. start == 0 is
2063 		 * MAX_ORDER-aligned, set order to MAX_ORDER for the case.
2064 		 */
2065 		if (start)
2066 			order = min_t(int, MAX_ORDER, __ffs(start));
2067 		else
2068 			order = MAX_ORDER;
2069 
2070 		while (start + (1UL << order) > end)
2071 			order--;
2072 
2073 		memblock_free_pages(pfn_to_page(start), start, order);
2074 
2075 		start += (1UL << order);
2076 	}
2077 }
2078 
2079 static unsigned long __init __free_memory_core(phys_addr_t start,
2080 				 phys_addr_t end)
2081 {
2082 	unsigned long start_pfn = PFN_UP(start);
2083 	unsigned long end_pfn = min_t(unsigned long,
2084 				      PFN_DOWN(end), max_low_pfn);
2085 
2086 	if (start_pfn >= end_pfn)
2087 		return 0;
2088 
2089 	__free_pages_memory(start_pfn, end_pfn);
2090 
2091 	return end_pfn - start_pfn;
2092 }
2093 
2094 static void __init memmap_init_reserved_pages(void)
2095 {
2096 	struct memblock_region *region;
2097 	phys_addr_t start, end;
2098 	int nid;
2099 
2100 	/*
2101 	 * set nid on all reserved pages and also treat struct
2102 	 * pages for the NOMAP regions as PageReserved
2103 	 */
2104 	for_each_mem_region(region) {
2105 		nid = memblock_get_region_node(region);
2106 		start = region->base;
2107 		end = start + region->size;
2108 
2109 		if (memblock_is_nomap(region))
2110 			reserve_bootmem_region(start, end, nid);
2111 
2112 		memblock_set_node(start, end, &memblock.reserved, nid);
2113 	}
2114 
2115 	/* initialize struct pages for the reserved regions */
2116 	for_each_reserved_mem_region(region) {
2117 		nid = memblock_get_region_node(region);
2118 		start = region->base;
2119 		end = start + region->size;
2120 
2121 		reserve_bootmem_region(start, end, nid);
2122 	}
2123 }
2124 
2125 static unsigned long __init free_low_memory_core_early(void)
2126 {
2127 	unsigned long count = 0;
2128 	phys_addr_t start, end;
2129 	u64 i;
2130 
2131 	memblock_clear_hotplug(0, -1);
2132 
2133 	memmap_init_reserved_pages();
2134 
2135 	/*
2136 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2137 	 *  because in some case like Node0 doesn't have RAM installed
2138 	 *  low ram will be on Node1
2139 	 */
2140 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2141 				NULL)
2142 		count += __free_memory_core(start, end);
2143 
2144 	return count;
2145 }
2146 
2147 static int reset_managed_pages_done __initdata;
2148 
2149 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2150 {
2151 	struct zone *z;
2152 
2153 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2154 		atomic_long_set(&z->managed_pages, 0);
2155 }
2156 
2157 void __init reset_all_zones_managed_pages(void)
2158 {
2159 	struct pglist_data *pgdat;
2160 
2161 	if (reset_managed_pages_done)
2162 		return;
2163 
2164 	for_each_online_pgdat(pgdat)
2165 		reset_node_managed_pages(pgdat);
2166 
2167 	reset_managed_pages_done = 1;
2168 }
2169 
2170 /**
2171  * memblock_free_all - release free pages to the buddy allocator
2172  */
2173 void __init memblock_free_all(void)
2174 {
2175 	unsigned long pages;
2176 
2177 	free_unused_memmap();
2178 	reset_all_zones_managed_pages();
2179 
2180 	pages = free_low_memory_core_early();
2181 	totalram_pages_add(pages);
2182 }
2183 
2184 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2185 static const char * const flagname[] = {
2186 	[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2187 	[ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2188 	[ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2189 	[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2190 };
2191 
2192 static int memblock_debug_show(struct seq_file *m, void *private)
2193 {
2194 	struct memblock_type *type = m->private;
2195 	struct memblock_region *reg;
2196 	int i, j, nid;
2197 	unsigned int count = ARRAY_SIZE(flagname);
2198 	phys_addr_t end;
2199 
2200 	for (i = 0; i < type->cnt; i++) {
2201 		reg = &type->regions[i];
2202 		end = reg->base + reg->size - 1;
2203 		nid = memblock_get_region_node(reg);
2204 
2205 		seq_printf(m, "%4d: ", i);
2206 		seq_printf(m, "%pa..%pa ", &reg->base, &end);
2207 		if (nid != MAX_NUMNODES)
2208 			seq_printf(m, "%4d ", nid);
2209 		else
2210 			seq_printf(m, "%4c ", 'x');
2211 		if (reg->flags) {
2212 			for (j = 0; j < count; j++) {
2213 				if (reg->flags & (1U << j)) {
2214 					seq_printf(m, "%s\n", flagname[j]);
2215 					break;
2216 				}
2217 			}
2218 			if (j == count)
2219 				seq_printf(m, "%s\n", "UNKNOWN");
2220 		} else {
2221 			seq_printf(m, "%s\n", "NONE");
2222 		}
2223 	}
2224 	return 0;
2225 }
2226 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2227 
2228 static int __init memblock_init_debugfs(void)
2229 {
2230 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2231 
2232 	debugfs_create_file("memory", 0444, root,
2233 			    &memblock.memory, &memblock_debug_fops);
2234 	debugfs_create_file("reserved", 0444, root,
2235 			    &memblock.reserved, &memblock_debug_fops);
2236 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2237 	debugfs_create_file("physmem", 0444, root, &physmem,
2238 			    &memblock_debug_fops);
2239 #endif
2240 
2241 	return 0;
2242 }
2243 __initcall(memblock_init_debugfs);
2244 
2245 #endif /* CONFIG_DEBUG_FS */
2246