1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for maintaining information about logical memory blocks. 4 * 5 * Peter Bergner, IBM Corp. June 2001. 6 * Copyright (C) 2001 Peter Bergner. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/init.h> 12 #include <linux/bitops.h> 13 #include <linux/poison.h> 14 #include <linux/pfn.h> 15 #include <linux/debugfs.h> 16 #include <linux/kmemleak.h> 17 #include <linux/seq_file.h> 18 #include <linux/memblock.h> 19 20 #include <asm/sections.h> 21 #include <linux/io.h> 22 23 #include "internal.h" 24 25 #define INIT_MEMBLOCK_REGIONS 128 26 #define INIT_PHYSMEM_REGIONS 4 27 28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS 29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS 30 #endif 31 32 /** 33 * DOC: memblock overview 34 * 35 * Memblock is a method of managing memory regions during the early 36 * boot period when the usual kernel memory allocators are not up and 37 * running. 38 * 39 * Memblock views the system memory as collections of contiguous 40 * regions. There are several types of these collections: 41 * 42 * * ``memory`` - describes the physical memory available to the 43 * kernel; this may differ from the actual physical memory installed 44 * in the system, for instance when the memory is restricted with 45 * ``mem=`` command line parameter 46 * * ``reserved`` - describes the regions that were allocated 47 * * ``physmem`` - describes the actual physical memory available during 48 * boot regardless of the possible restrictions and memory hot(un)plug; 49 * the ``physmem`` type is only available on some architectures. 50 * 51 * Each region is represented by struct memblock_region that 52 * defines the region extents, its attributes and NUMA node id on NUMA 53 * systems. Every memory type is described by the struct memblock_type 54 * which contains an array of memory regions along with 55 * the allocator metadata. The "memory" and "reserved" types are nicely 56 * wrapped with struct memblock. This structure is statically 57 * initialized at build time. The region arrays are initially sized to 58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS 59 * for "reserved". The region array for "physmem" is initially sized to 60 * %INIT_PHYSMEM_REGIONS. 61 * The memblock_allow_resize() enables automatic resizing of the region 62 * arrays during addition of new regions. This feature should be used 63 * with care so that memory allocated for the region array will not 64 * overlap with areas that should be reserved, for example initrd. 65 * 66 * The early architecture setup should tell memblock what the physical 67 * memory layout is by using memblock_add() or memblock_add_node() 68 * functions. The first function does not assign the region to a NUMA 69 * node and it is appropriate for UMA systems. Yet, it is possible to 70 * use it on NUMA systems as well and assign the region to a NUMA node 71 * later in the setup process using memblock_set_node(). The 72 * memblock_add_node() performs such an assignment directly. 73 * 74 * Once memblock is setup the memory can be allocated using one of the 75 * API variants: 76 * 77 * * memblock_phys_alloc*() - these functions return the **physical** 78 * address of the allocated memory 79 * * memblock_alloc*() - these functions return the **virtual** address 80 * of the allocated memory. 81 * 82 * Note, that both API variants use implicit assumptions about allowed 83 * memory ranges and the fallback methods. Consult the documentation 84 * of memblock_alloc_internal() and memblock_alloc_range_nid() 85 * functions for more elaborate description. 86 * 87 * As the system boot progresses, the architecture specific mem_init() 88 * function frees all the memory to the buddy page allocator. 89 * 90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the 91 * memblock data structures (except "physmem") will be discarded after the 92 * system initialization completes. 93 */ 94 95 #ifndef CONFIG_NUMA 96 struct pglist_data __refdata contig_page_data; 97 EXPORT_SYMBOL(contig_page_data); 98 #endif 99 100 unsigned long max_low_pfn; 101 unsigned long min_low_pfn; 102 unsigned long max_pfn; 103 unsigned long long max_possible_pfn; 104 105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; 107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; 109 #endif 110 111 struct memblock memblock __initdata_memblock = { 112 .memory.regions = memblock_memory_init_regions, 113 .memory.cnt = 1, /* empty dummy entry */ 114 .memory.max = INIT_MEMBLOCK_REGIONS, 115 .memory.name = "memory", 116 117 .reserved.regions = memblock_reserved_init_regions, 118 .reserved.cnt = 1, /* empty dummy entry */ 119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, 120 .reserved.name = "reserved", 121 122 .bottom_up = false, 123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 124 }; 125 126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 127 struct memblock_type physmem = { 128 .regions = memblock_physmem_init_regions, 129 .cnt = 1, /* empty dummy entry */ 130 .max = INIT_PHYSMEM_REGIONS, 131 .name = "physmem", 132 }; 133 #endif 134 135 /* 136 * keep a pointer to &memblock.memory in the text section to use it in 137 * __next_mem_range() and its helpers. 138 * For architectures that do not keep memblock data after init, this 139 * pointer will be reset to NULL at memblock_discard() 140 */ 141 static __refdata struct memblock_type *memblock_memory = &memblock.memory; 142 143 #define for_each_memblock_type(i, memblock_type, rgn) \ 144 for (i = 0, rgn = &memblock_type->regions[0]; \ 145 i < memblock_type->cnt; \ 146 i++, rgn = &memblock_type->regions[i]) 147 148 #define memblock_dbg(fmt, ...) \ 149 do { \ 150 if (memblock_debug) \ 151 pr_info(fmt, ##__VA_ARGS__); \ 152 } while (0) 153 154 static int memblock_debug __initdata_memblock; 155 static bool system_has_some_mirror __initdata_memblock = false; 156 static int memblock_can_resize __initdata_memblock; 157 static int memblock_memory_in_slab __initdata_memblock = 0; 158 static int memblock_reserved_in_slab __initdata_memblock = 0; 159 160 static enum memblock_flags __init_memblock choose_memblock_flags(void) 161 { 162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 163 } 164 165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 167 { 168 return *size = min(*size, PHYS_ADDR_MAX - base); 169 } 170 171 /* 172 * Address comparison utilities 173 */ 174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 175 phys_addr_t base2, phys_addr_t size2) 176 { 177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 178 } 179 180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 181 phys_addr_t base, phys_addr_t size) 182 { 183 unsigned long i; 184 185 memblock_cap_size(base, &size); 186 187 for (i = 0; i < type->cnt; i++) 188 if (memblock_addrs_overlap(base, size, type->regions[i].base, 189 type->regions[i].size)) 190 break; 191 return i < type->cnt; 192 } 193 194 /** 195 * __memblock_find_range_bottom_up - find free area utility in bottom-up 196 * @start: start of candidate range 197 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 198 * %MEMBLOCK_ALLOC_ACCESSIBLE 199 * @size: size of free area to find 200 * @align: alignment of free area to find 201 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 202 * @flags: pick from blocks based on memory attributes 203 * 204 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 205 * 206 * Return: 207 * Found address on success, 0 on failure. 208 */ 209 static phys_addr_t __init_memblock 210 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 211 phys_addr_t size, phys_addr_t align, int nid, 212 enum memblock_flags flags) 213 { 214 phys_addr_t this_start, this_end, cand; 215 u64 i; 216 217 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 218 this_start = clamp(this_start, start, end); 219 this_end = clamp(this_end, start, end); 220 221 cand = round_up(this_start, align); 222 if (cand < this_end && this_end - cand >= size) 223 return cand; 224 } 225 226 return 0; 227 } 228 229 /** 230 * __memblock_find_range_top_down - find free area utility, in top-down 231 * @start: start of candidate range 232 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 233 * %MEMBLOCK_ALLOC_ACCESSIBLE 234 * @size: size of free area to find 235 * @align: alignment of free area to find 236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 237 * @flags: pick from blocks based on memory attributes 238 * 239 * Utility called from memblock_find_in_range_node(), find free area top-down. 240 * 241 * Return: 242 * Found address on success, 0 on failure. 243 */ 244 static phys_addr_t __init_memblock 245 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 246 phys_addr_t size, phys_addr_t align, int nid, 247 enum memblock_flags flags) 248 { 249 phys_addr_t this_start, this_end, cand; 250 u64 i; 251 252 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 253 NULL) { 254 this_start = clamp(this_start, start, end); 255 this_end = clamp(this_end, start, end); 256 257 if (this_end < size) 258 continue; 259 260 cand = round_down(this_end - size, align); 261 if (cand >= this_start) 262 return cand; 263 } 264 265 return 0; 266 } 267 268 /** 269 * memblock_find_in_range_node - find free area in given range and node 270 * @size: size of free area to find 271 * @align: alignment of free area to find 272 * @start: start of candidate range 273 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 274 * %MEMBLOCK_ALLOC_ACCESSIBLE 275 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 276 * @flags: pick from blocks based on memory attributes 277 * 278 * Find @size free area aligned to @align in the specified range and node. 279 * 280 * Return: 281 * Found address on success, 0 on failure. 282 */ 283 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 284 phys_addr_t align, phys_addr_t start, 285 phys_addr_t end, int nid, 286 enum memblock_flags flags) 287 { 288 /* pump up @end */ 289 if (end == MEMBLOCK_ALLOC_ACCESSIBLE || 290 end == MEMBLOCK_ALLOC_KASAN) 291 end = memblock.current_limit; 292 293 /* avoid allocating the first page */ 294 start = max_t(phys_addr_t, start, PAGE_SIZE); 295 end = max(start, end); 296 297 if (memblock_bottom_up()) 298 return __memblock_find_range_bottom_up(start, end, size, align, 299 nid, flags); 300 else 301 return __memblock_find_range_top_down(start, end, size, align, 302 nid, flags); 303 } 304 305 /** 306 * memblock_find_in_range - find free area in given range 307 * @start: start of candidate range 308 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 309 * %MEMBLOCK_ALLOC_ACCESSIBLE 310 * @size: size of free area to find 311 * @align: alignment of free area to find 312 * 313 * Find @size free area aligned to @align in the specified range. 314 * 315 * Return: 316 * Found address on success, 0 on failure. 317 */ 318 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 319 phys_addr_t end, phys_addr_t size, 320 phys_addr_t align) 321 { 322 phys_addr_t ret; 323 enum memblock_flags flags = choose_memblock_flags(); 324 325 again: 326 ret = memblock_find_in_range_node(size, align, start, end, 327 NUMA_NO_NODE, flags); 328 329 if (!ret && (flags & MEMBLOCK_MIRROR)) { 330 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 331 &size); 332 flags &= ~MEMBLOCK_MIRROR; 333 goto again; 334 } 335 336 return ret; 337 } 338 339 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 340 { 341 type->total_size -= type->regions[r].size; 342 memmove(&type->regions[r], &type->regions[r + 1], 343 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 344 type->cnt--; 345 346 /* Special case for empty arrays */ 347 if (type->cnt == 0) { 348 WARN_ON(type->total_size != 0); 349 type->cnt = 1; 350 type->regions[0].base = 0; 351 type->regions[0].size = 0; 352 type->regions[0].flags = 0; 353 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 354 } 355 } 356 357 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK 358 /** 359 * memblock_discard - discard memory and reserved arrays if they were allocated 360 */ 361 void __init memblock_discard(void) 362 { 363 phys_addr_t addr, size; 364 365 if (memblock.reserved.regions != memblock_reserved_init_regions) { 366 addr = __pa(memblock.reserved.regions); 367 size = PAGE_ALIGN(sizeof(struct memblock_region) * 368 memblock.reserved.max); 369 __memblock_free_late(addr, size); 370 } 371 372 if (memblock.memory.regions != memblock_memory_init_regions) { 373 addr = __pa(memblock.memory.regions); 374 size = PAGE_ALIGN(sizeof(struct memblock_region) * 375 memblock.memory.max); 376 __memblock_free_late(addr, size); 377 } 378 379 memblock_memory = NULL; 380 } 381 #endif 382 383 /** 384 * memblock_double_array - double the size of the memblock regions array 385 * @type: memblock type of the regions array being doubled 386 * @new_area_start: starting address of memory range to avoid overlap with 387 * @new_area_size: size of memory range to avoid overlap with 388 * 389 * Double the size of the @type regions array. If memblock is being used to 390 * allocate memory for a new reserved regions array and there is a previously 391 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 392 * waiting to be reserved, ensure the memory used by the new array does 393 * not overlap. 394 * 395 * Return: 396 * 0 on success, -1 on failure. 397 */ 398 static int __init_memblock memblock_double_array(struct memblock_type *type, 399 phys_addr_t new_area_start, 400 phys_addr_t new_area_size) 401 { 402 struct memblock_region *new_array, *old_array; 403 phys_addr_t old_alloc_size, new_alloc_size; 404 phys_addr_t old_size, new_size, addr, new_end; 405 int use_slab = slab_is_available(); 406 int *in_slab; 407 408 /* We don't allow resizing until we know about the reserved regions 409 * of memory that aren't suitable for allocation 410 */ 411 if (!memblock_can_resize) 412 return -1; 413 414 /* Calculate new doubled size */ 415 old_size = type->max * sizeof(struct memblock_region); 416 new_size = old_size << 1; 417 /* 418 * We need to allocated new one align to PAGE_SIZE, 419 * so we can free them completely later. 420 */ 421 old_alloc_size = PAGE_ALIGN(old_size); 422 new_alloc_size = PAGE_ALIGN(new_size); 423 424 /* Retrieve the slab flag */ 425 if (type == &memblock.memory) 426 in_slab = &memblock_memory_in_slab; 427 else 428 in_slab = &memblock_reserved_in_slab; 429 430 /* Try to find some space for it */ 431 if (use_slab) { 432 new_array = kmalloc(new_size, GFP_KERNEL); 433 addr = new_array ? __pa(new_array) : 0; 434 } else { 435 /* only exclude range when trying to double reserved.regions */ 436 if (type != &memblock.reserved) 437 new_area_start = new_area_size = 0; 438 439 addr = memblock_find_in_range(new_area_start + new_area_size, 440 memblock.current_limit, 441 new_alloc_size, PAGE_SIZE); 442 if (!addr && new_area_size) 443 addr = memblock_find_in_range(0, 444 min(new_area_start, memblock.current_limit), 445 new_alloc_size, PAGE_SIZE); 446 447 new_array = addr ? __va(addr) : NULL; 448 } 449 if (!addr) { 450 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 451 type->name, type->max, type->max * 2); 452 return -1; 453 } 454 455 new_end = addr + new_size - 1; 456 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 457 type->name, type->max * 2, &addr, &new_end); 458 459 /* 460 * Found space, we now need to move the array over before we add the 461 * reserved region since it may be our reserved array itself that is 462 * full. 463 */ 464 memcpy(new_array, type->regions, old_size); 465 memset(new_array + type->max, 0, old_size); 466 old_array = type->regions; 467 type->regions = new_array; 468 type->max <<= 1; 469 470 /* Free old array. We needn't free it if the array is the static one */ 471 if (*in_slab) 472 kfree(old_array); 473 else if (old_array != memblock_memory_init_regions && 474 old_array != memblock_reserved_init_regions) 475 memblock_free(__pa(old_array), old_alloc_size); 476 477 /* 478 * Reserve the new array if that comes from the memblock. Otherwise, we 479 * needn't do it 480 */ 481 if (!use_slab) 482 BUG_ON(memblock_reserve(addr, new_alloc_size)); 483 484 /* Update slab flag */ 485 *in_slab = use_slab; 486 487 return 0; 488 } 489 490 /** 491 * memblock_merge_regions - merge neighboring compatible regions 492 * @type: memblock type to scan 493 * 494 * Scan @type and merge neighboring compatible regions. 495 */ 496 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 497 { 498 int i = 0; 499 500 /* cnt never goes below 1 */ 501 while (i < type->cnt - 1) { 502 struct memblock_region *this = &type->regions[i]; 503 struct memblock_region *next = &type->regions[i + 1]; 504 505 if (this->base + this->size != next->base || 506 memblock_get_region_node(this) != 507 memblock_get_region_node(next) || 508 this->flags != next->flags) { 509 BUG_ON(this->base + this->size > next->base); 510 i++; 511 continue; 512 } 513 514 this->size += next->size; 515 /* move forward from next + 1, index of which is i + 2 */ 516 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 517 type->cnt--; 518 } 519 } 520 521 /** 522 * memblock_insert_region - insert new memblock region 523 * @type: memblock type to insert into 524 * @idx: index for the insertion point 525 * @base: base address of the new region 526 * @size: size of the new region 527 * @nid: node id of the new region 528 * @flags: flags of the new region 529 * 530 * Insert new memblock region [@base, @base + @size) into @type at @idx. 531 * @type must already have extra room to accommodate the new region. 532 */ 533 static void __init_memblock memblock_insert_region(struct memblock_type *type, 534 int idx, phys_addr_t base, 535 phys_addr_t size, 536 int nid, 537 enum memblock_flags flags) 538 { 539 struct memblock_region *rgn = &type->regions[idx]; 540 541 BUG_ON(type->cnt >= type->max); 542 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 543 rgn->base = base; 544 rgn->size = size; 545 rgn->flags = flags; 546 memblock_set_region_node(rgn, nid); 547 type->cnt++; 548 type->total_size += size; 549 } 550 551 /** 552 * memblock_add_range - add new memblock region 553 * @type: memblock type to add new region into 554 * @base: base address of the new region 555 * @size: size of the new region 556 * @nid: nid of the new region 557 * @flags: flags of the new region 558 * 559 * Add new memblock region [@base, @base + @size) into @type. The new region 560 * is allowed to overlap with existing ones - overlaps don't affect already 561 * existing regions. @type is guaranteed to be minimal (all neighbouring 562 * compatible regions are merged) after the addition. 563 * 564 * Return: 565 * 0 on success, -errno on failure. 566 */ 567 static int __init_memblock memblock_add_range(struct memblock_type *type, 568 phys_addr_t base, phys_addr_t size, 569 int nid, enum memblock_flags flags) 570 { 571 bool insert = false; 572 phys_addr_t obase = base; 573 phys_addr_t end = base + memblock_cap_size(base, &size); 574 int idx, nr_new; 575 struct memblock_region *rgn; 576 577 if (!size) 578 return 0; 579 580 /* special case for empty array */ 581 if (type->regions[0].size == 0) { 582 WARN_ON(type->cnt != 1 || type->total_size); 583 type->regions[0].base = base; 584 type->regions[0].size = size; 585 type->regions[0].flags = flags; 586 memblock_set_region_node(&type->regions[0], nid); 587 type->total_size = size; 588 return 0; 589 } 590 repeat: 591 /* 592 * The following is executed twice. Once with %false @insert and 593 * then with %true. The first counts the number of regions needed 594 * to accommodate the new area. The second actually inserts them. 595 */ 596 base = obase; 597 nr_new = 0; 598 599 for_each_memblock_type(idx, type, rgn) { 600 phys_addr_t rbase = rgn->base; 601 phys_addr_t rend = rbase + rgn->size; 602 603 if (rbase >= end) 604 break; 605 if (rend <= base) 606 continue; 607 /* 608 * @rgn overlaps. If it separates the lower part of new 609 * area, insert that portion. 610 */ 611 if (rbase > base) { 612 #ifdef CONFIG_NUMA 613 WARN_ON(nid != memblock_get_region_node(rgn)); 614 #endif 615 WARN_ON(flags != rgn->flags); 616 nr_new++; 617 if (insert) 618 memblock_insert_region(type, idx++, base, 619 rbase - base, nid, 620 flags); 621 } 622 /* area below @rend is dealt with, forget about it */ 623 base = min(rend, end); 624 } 625 626 /* insert the remaining portion */ 627 if (base < end) { 628 nr_new++; 629 if (insert) 630 memblock_insert_region(type, idx, base, end - base, 631 nid, flags); 632 } 633 634 if (!nr_new) 635 return 0; 636 637 /* 638 * If this was the first round, resize array and repeat for actual 639 * insertions; otherwise, merge and return. 640 */ 641 if (!insert) { 642 while (type->cnt + nr_new > type->max) 643 if (memblock_double_array(type, obase, size) < 0) 644 return -ENOMEM; 645 insert = true; 646 goto repeat; 647 } else { 648 memblock_merge_regions(type); 649 return 0; 650 } 651 } 652 653 /** 654 * memblock_add_node - add new memblock region within a NUMA node 655 * @base: base address of the new region 656 * @size: size of the new region 657 * @nid: nid of the new region 658 * 659 * Add new memblock region [@base, @base + @size) to the "memory" 660 * type. See memblock_add_range() description for mode details 661 * 662 * Return: 663 * 0 on success, -errno on failure. 664 */ 665 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 666 int nid) 667 { 668 phys_addr_t end = base + size - 1; 669 670 memblock_dbg("%s: [%pa-%pa] nid=%d %pS\n", __func__, 671 &base, &end, nid, (void *)_RET_IP_); 672 673 return memblock_add_range(&memblock.memory, base, size, nid, 0); 674 } 675 676 /** 677 * memblock_add - add new memblock region 678 * @base: base address of the new region 679 * @size: size of the new region 680 * 681 * Add new memblock region [@base, @base + @size) to the "memory" 682 * type. See memblock_add_range() description for mode details 683 * 684 * Return: 685 * 0 on success, -errno on failure. 686 */ 687 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 688 { 689 phys_addr_t end = base + size - 1; 690 691 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 692 &base, &end, (void *)_RET_IP_); 693 694 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 695 } 696 697 /** 698 * memblock_isolate_range - isolate given range into disjoint memblocks 699 * @type: memblock type to isolate range for 700 * @base: base of range to isolate 701 * @size: size of range to isolate 702 * @start_rgn: out parameter for the start of isolated region 703 * @end_rgn: out parameter for the end of isolated region 704 * 705 * Walk @type and ensure that regions don't cross the boundaries defined by 706 * [@base, @base + @size). Crossing regions are split at the boundaries, 707 * which may create at most two more regions. The index of the first 708 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 709 * 710 * Return: 711 * 0 on success, -errno on failure. 712 */ 713 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 714 phys_addr_t base, phys_addr_t size, 715 int *start_rgn, int *end_rgn) 716 { 717 phys_addr_t end = base + memblock_cap_size(base, &size); 718 int idx; 719 struct memblock_region *rgn; 720 721 *start_rgn = *end_rgn = 0; 722 723 if (!size) 724 return 0; 725 726 /* we'll create at most two more regions */ 727 while (type->cnt + 2 > type->max) 728 if (memblock_double_array(type, base, size) < 0) 729 return -ENOMEM; 730 731 for_each_memblock_type(idx, type, rgn) { 732 phys_addr_t rbase = rgn->base; 733 phys_addr_t rend = rbase + rgn->size; 734 735 if (rbase >= end) 736 break; 737 if (rend <= base) 738 continue; 739 740 if (rbase < base) { 741 /* 742 * @rgn intersects from below. Split and continue 743 * to process the next region - the new top half. 744 */ 745 rgn->base = base; 746 rgn->size -= base - rbase; 747 type->total_size -= base - rbase; 748 memblock_insert_region(type, idx, rbase, base - rbase, 749 memblock_get_region_node(rgn), 750 rgn->flags); 751 } else if (rend > end) { 752 /* 753 * @rgn intersects from above. Split and redo the 754 * current region - the new bottom half. 755 */ 756 rgn->base = end; 757 rgn->size -= end - rbase; 758 type->total_size -= end - rbase; 759 memblock_insert_region(type, idx--, rbase, end - rbase, 760 memblock_get_region_node(rgn), 761 rgn->flags); 762 } else { 763 /* @rgn is fully contained, record it */ 764 if (!*end_rgn) 765 *start_rgn = idx; 766 *end_rgn = idx + 1; 767 } 768 } 769 770 return 0; 771 } 772 773 static int __init_memblock memblock_remove_range(struct memblock_type *type, 774 phys_addr_t base, phys_addr_t size) 775 { 776 int start_rgn, end_rgn; 777 int i, ret; 778 779 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 780 if (ret) 781 return ret; 782 783 for (i = end_rgn - 1; i >= start_rgn; i--) 784 memblock_remove_region(type, i); 785 return 0; 786 } 787 788 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 789 { 790 phys_addr_t end = base + size - 1; 791 792 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 793 &base, &end, (void *)_RET_IP_); 794 795 return memblock_remove_range(&memblock.memory, base, size); 796 } 797 798 /** 799 * memblock_free - free boot memory block 800 * @base: phys starting address of the boot memory block 801 * @size: size of the boot memory block in bytes 802 * 803 * Free boot memory block previously allocated by memblock_alloc_xx() API. 804 * The freeing memory will not be released to the buddy allocator. 805 */ 806 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 807 { 808 phys_addr_t end = base + size - 1; 809 810 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 811 &base, &end, (void *)_RET_IP_); 812 813 kmemleak_free_part_phys(base, size); 814 return memblock_remove_range(&memblock.reserved, base, size); 815 } 816 817 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 818 { 819 phys_addr_t end = base + size - 1; 820 821 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 822 &base, &end, (void *)_RET_IP_); 823 824 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 825 } 826 827 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 828 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) 829 { 830 phys_addr_t end = base + size - 1; 831 832 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 833 &base, &end, (void *)_RET_IP_); 834 835 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); 836 } 837 #endif 838 839 /** 840 * memblock_setclr_flag - set or clear flag for a memory region 841 * @base: base address of the region 842 * @size: size of the region 843 * @set: set or clear the flag 844 * @flag: the flag to update 845 * 846 * This function isolates region [@base, @base + @size), and sets/clears flag 847 * 848 * Return: 0 on success, -errno on failure. 849 */ 850 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 851 phys_addr_t size, int set, int flag) 852 { 853 struct memblock_type *type = &memblock.memory; 854 int i, ret, start_rgn, end_rgn; 855 856 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 857 if (ret) 858 return ret; 859 860 for (i = start_rgn; i < end_rgn; i++) { 861 struct memblock_region *r = &type->regions[i]; 862 863 if (set) 864 r->flags |= flag; 865 else 866 r->flags &= ~flag; 867 } 868 869 memblock_merge_regions(type); 870 return 0; 871 } 872 873 /** 874 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 875 * @base: the base phys addr of the region 876 * @size: the size of the region 877 * 878 * Return: 0 on success, -errno on failure. 879 */ 880 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 881 { 882 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 883 } 884 885 /** 886 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 887 * @base: the base phys addr of the region 888 * @size: the size of the region 889 * 890 * Return: 0 on success, -errno on failure. 891 */ 892 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 893 { 894 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 895 } 896 897 /** 898 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 899 * @base: the base phys addr of the region 900 * @size: the size of the region 901 * 902 * Return: 0 on success, -errno on failure. 903 */ 904 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 905 { 906 system_has_some_mirror = true; 907 908 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 909 } 910 911 /** 912 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 913 * @base: the base phys addr of the region 914 * @size: the size of the region 915 * 916 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the 917 * direct mapping of the physical memory. These regions will still be 918 * covered by the memory map. The struct page representing NOMAP memory 919 * frames in the memory map will be PageReserved() 920 * 921 * Return: 0 on success, -errno on failure. 922 */ 923 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 924 { 925 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 926 } 927 928 /** 929 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 930 * @base: the base phys addr of the region 931 * @size: the size of the region 932 * 933 * Return: 0 on success, -errno on failure. 934 */ 935 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 936 { 937 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 938 } 939 940 static bool should_skip_region(struct memblock_type *type, 941 struct memblock_region *m, 942 int nid, int flags) 943 { 944 int m_nid = memblock_get_region_node(m); 945 946 /* we never skip regions when iterating memblock.reserved or physmem */ 947 if (type != memblock_memory) 948 return false; 949 950 /* only memory regions are associated with nodes, check it */ 951 if (nid != NUMA_NO_NODE && nid != m_nid) 952 return true; 953 954 /* skip hotpluggable memory regions if needed */ 955 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) && 956 !(flags & MEMBLOCK_HOTPLUG)) 957 return true; 958 959 /* if we want mirror memory skip non-mirror memory regions */ 960 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 961 return true; 962 963 /* skip nomap memory unless we were asked for it explicitly */ 964 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 965 return true; 966 967 return false; 968 } 969 970 /** 971 * __next_mem_range - next function for for_each_free_mem_range() etc. 972 * @idx: pointer to u64 loop variable 973 * @nid: node selector, %NUMA_NO_NODE for all nodes 974 * @flags: pick from blocks based on memory attributes 975 * @type_a: pointer to memblock_type from where the range is taken 976 * @type_b: pointer to memblock_type which excludes memory from being taken 977 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 978 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 979 * @out_nid: ptr to int for nid of the range, can be %NULL 980 * 981 * Find the first area from *@idx which matches @nid, fill the out 982 * parameters, and update *@idx for the next iteration. The lower 32bit of 983 * *@idx contains index into type_a and the upper 32bit indexes the 984 * areas before each region in type_b. For example, if type_b regions 985 * look like the following, 986 * 987 * 0:[0-16), 1:[32-48), 2:[128-130) 988 * 989 * The upper 32bit indexes the following regions. 990 * 991 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 992 * 993 * As both region arrays are sorted, the function advances the two indices 994 * in lockstep and returns each intersection. 995 */ 996 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, 997 struct memblock_type *type_a, 998 struct memblock_type *type_b, phys_addr_t *out_start, 999 phys_addr_t *out_end, int *out_nid) 1000 { 1001 int idx_a = *idx & 0xffffffff; 1002 int idx_b = *idx >> 32; 1003 1004 if (WARN_ONCE(nid == MAX_NUMNODES, 1005 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1006 nid = NUMA_NO_NODE; 1007 1008 for (; idx_a < type_a->cnt; idx_a++) { 1009 struct memblock_region *m = &type_a->regions[idx_a]; 1010 1011 phys_addr_t m_start = m->base; 1012 phys_addr_t m_end = m->base + m->size; 1013 int m_nid = memblock_get_region_node(m); 1014 1015 if (should_skip_region(type_a, m, nid, flags)) 1016 continue; 1017 1018 if (!type_b) { 1019 if (out_start) 1020 *out_start = m_start; 1021 if (out_end) 1022 *out_end = m_end; 1023 if (out_nid) 1024 *out_nid = m_nid; 1025 idx_a++; 1026 *idx = (u32)idx_a | (u64)idx_b << 32; 1027 return; 1028 } 1029 1030 /* scan areas before each reservation */ 1031 for (; idx_b < type_b->cnt + 1; idx_b++) { 1032 struct memblock_region *r; 1033 phys_addr_t r_start; 1034 phys_addr_t r_end; 1035 1036 r = &type_b->regions[idx_b]; 1037 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1038 r_end = idx_b < type_b->cnt ? 1039 r->base : PHYS_ADDR_MAX; 1040 1041 /* 1042 * if idx_b advanced past idx_a, 1043 * break out to advance idx_a 1044 */ 1045 if (r_start >= m_end) 1046 break; 1047 /* if the two regions intersect, we're done */ 1048 if (m_start < r_end) { 1049 if (out_start) 1050 *out_start = 1051 max(m_start, r_start); 1052 if (out_end) 1053 *out_end = min(m_end, r_end); 1054 if (out_nid) 1055 *out_nid = m_nid; 1056 /* 1057 * The region which ends first is 1058 * advanced for the next iteration. 1059 */ 1060 if (m_end <= r_end) 1061 idx_a++; 1062 else 1063 idx_b++; 1064 *idx = (u32)idx_a | (u64)idx_b << 32; 1065 return; 1066 } 1067 } 1068 } 1069 1070 /* signal end of iteration */ 1071 *idx = ULLONG_MAX; 1072 } 1073 1074 /** 1075 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1076 * 1077 * @idx: pointer to u64 loop variable 1078 * @nid: node selector, %NUMA_NO_NODE for all nodes 1079 * @flags: pick from blocks based on memory attributes 1080 * @type_a: pointer to memblock_type from where the range is taken 1081 * @type_b: pointer to memblock_type which excludes memory from being taken 1082 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1083 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1084 * @out_nid: ptr to int for nid of the range, can be %NULL 1085 * 1086 * Finds the next range from type_a which is not marked as unsuitable 1087 * in type_b. 1088 * 1089 * Reverse of __next_mem_range(). 1090 */ 1091 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1092 enum memblock_flags flags, 1093 struct memblock_type *type_a, 1094 struct memblock_type *type_b, 1095 phys_addr_t *out_start, 1096 phys_addr_t *out_end, int *out_nid) 1097 { 1098 int idx_a = *idx & 0xffffffff; 1099 int idx_b = *idx >> 32; 1100 1101 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1102 nid = NUMA_NO_NODE; 1103 1104 if (*idx == (u64)ULLONG_MAX) { 1105 idx_a = type_a->cnt - 1; 1106 if (type_b != NULL) 1107 idx_b = type_b->cnt; 1108 else 1109 idx_b = 0; 1110 } 1111 1112 for (; idx_a >= 0; idx_a--) { 1113 struct memblock_region *m = &type_a->regions[idx_a]; 1114 1115 phys_addr_t m_start = m->base; 1116 phys_addr_t m_end = m->base + m->size; 1117 int m_nid = memblock_get_region_node(m); 1118 1119 if (should_skip_region(type_a, m, nid, flags)) 1120 continue; 1121 1122 if (!type_b) { 1123 if (out_start) 1124 *out_start = m_start; 1125 if (out_end) 1126 *out_end = m_end; 1127 if (out_nid) 1128 *out_nid = m_nid; 1129 idx_a--; 1130 *idx = (u32)idx_a | (u64)idx_b << 32; 1131 return; 1132 } 1133 1134 /* scan areas before each reservation */ 1135 for (; idx_b >= 0; idx_b--) { 1136 struct memblock_region *r; 1137 phys_addr_t r_start; 1138 phys_addr_t r_end; 1139 1140 r = &type_b->regions[idx_b]; 1141 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1142 r_end = idx_b < type_b->cnt ? 1143 r->base : PHYS_ADDR_MAX; 1144 /* 1145 * if idx_b advanced past idx_a, 1146 * break out to advance idx_a 1147 */ 1148 1149 if (r_end <= m_start) 1150 break; 1151 /* if the two regions intersect, we're done */ 1152 if (m_end > r_start) { 1153 if (out_start) 1154 *out_start = max(m_start, r_start); 1155 if (out_end) 1156 *out_end = min(m_end, r_end); 1157 if (out_nid) 1158 *out_nid = m_nid; 1159 if (m_start >= r_start) 1160 idx_a--; 1161 else 1162 idx_b--; 1163 *idx = (u32)idx_a | (u64)idx_b << 32; 1164 return; 1165 } 1166 } 1167 } 1168 /* signal end of iteration */ 1169 *idx = ULLONG_MAX; 1170 } 1171 1172 /* 1173 * Common iterator interface used to define for_each_mem_pfn_range(). 1174 */ 1175 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1176 unsigned long *out_start_pfn, 1177 unsigned long *out_end_pfn, int *out_nid) 1178 { 1179 struct memblock_type *type = &memblock.memory; 1180 struct memblock_region *r; 1181 int r_nid; 1182 1183 while (++*idx < type->cnt) { 1184 r = &type->regions[*idx]; 1185 r_nid = memblock_get_region_node(r); 1186 1187 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1188 continue; 1189 if (nid == MAX_NUMNODES || nid == r_nid) 1190 break; 1191 } 1192 if (*idx >= type->cnt) { 1193 *idx = -1; 1194 return; 1195 } 1196 1197 if (out_start_pfn) 1198 *out_start_pfn = PFN_UP(r->base); 1199 if (out_end_pfn) 1200 *out_end_pfn = PFN_DOWN(r->base + r->size); 1201 if (out_nid) 1202 *out_nid = r_nid; 1203 } 1204 1205 /** 1206 * memblock_set_node - set node ID on memblock regions 1207 * @base: base of area to set node ID for 1208 * @size: size of area to set node ID for 1209 * @type: memblock type to set node ID for 1210 * @nid: node ID to set 1211 * 1212 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1213 * Regions which cross the area boundaries are split as necessary. 1214 * 1215 * Return: 1216 * 0 on success, -errno on failure. 1217 */ 1218 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1219 struct memblock_type *type, int nid) 1220 { 1221 #ifdef CONFIG_NUMA 1222 int start_rgn, end_rgn; 1223 int i, ret; 1224 1225 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1226 if (ret) 1227 return ret; 1228 1229 for (i = start_rgn; i < end_rgn; i++) 1230 memblock_set_region_node(&type->regions[i], nid); 1231 1232 memblock_merge_regions(type); 1233 #endif 1234 return 0; 1235 } 1236 1237 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1238 /** 1239 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() 1240 * 1241 * @idx: pointer to u64 loop variable 1242 * @zone: zone in which all of the memory blocks reside 1243 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL 1244 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL 1245 * 1246 * This function is meant to be a zone/pfn specific wrapper for the 1247 * for_each_mem_range type iterators. Specifically they are used in the 1248 * deferred memory init routines and as such we were duplicating much of 1249 * this logic throughout the code. So instead of having it in multiple 1250 * locations it seemed like it would make more sense to centralize this to 1251 * one new iterator that does everything they need. 1252 */ 1253 void __init_memblock 1254 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 1255 unsigned long *out_spfn, unsigned long *out_epfn) 1256 { 1257 int zone_nid = zone_to_nid(zone); 1258 phys_addr_t spa, epa; 1259 int nid; 1260 1261 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1262 &memblock.memory, &memblock.reserved, 1263 &spa, &epa, &nid); 1264 1265 while (*idx != U64_MAX) { 1266 unsigned long epfn = PFN_DOWN(epa); 1267 unsigned long spfn = PFN_UP(spa); 1268 1269 /* 1270 * Verify the end is at least past the start of the zone and 1271 * that we have at least one PFN to initialize. 1272 */ 1273 if (zone->zone_start_pfn < epfn && spfn < epfn) { 1274 /* if we went too far just stop searching */ 1275 if (zone_end_pfn(zone) <= spfn) { 1276 *idx = U64_MAX; 1277 break; 1278 } 1279 1280 if (out_spfn) 1281 *out_spfn = max(zone->zone_start_pfn, spfn); 1282 if (out_epfn) 1283 *out_epfn = min(zone_end_pfn(zone), epfn); 1284 1285 return; 1286 } 1287 1288 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1289 &memblock.memory, &memblock.reserved, 1290 &spa, &epa, &nid); 1291 } 1292 1293 /* signal end of iteration */ 1294 if (out_spfn) 1295 *out_spfn = ULONG_MAX; 1296 if (out_epfn) 1297 *out_epfn = 0; 1298 } 1299 1300 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1301 1302 /** 1303 * memblock_alloc_range_nid - allocate boot memory block 1304 * @size: size of memory block to be allocated in bytes 1305 * @align: alignment of the region and block's size 1306 * @start: the lower bound of the memory region to allocate (phys address) 1307 * @end: the upper bound of the memory region to allocate (phys address) 1308 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1309 * @exact_nid: control the allocation fall back to other nodes 1310 * 1311 * The allocation is performed from memory region limited by 1312 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. 1313 * 1314 * If the specified node can not hold the requested memory and @exact_nid 1315 * is false, the allocation falls back to any node in the system. 1316 * 1317 * For systems with memory mirroring, the allocation is attempted first 1318 * from the regions with mirroring enabled and then retried from any 1319 * memory region. 1320 * 1321 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for 1322 * allocated boot memory block, so that it is never reported as leaks. 1323 * 1324 * Return: 1325 * Physical address of allocated memory block on success, %0 on failure. 1326 */ 1327 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1328 phys_addr_t align, phys_addr_t start, 1329 phys_addr_t end, int nid, 1330 bool exact_nid) 1331 { 1332 enum memblock_flags flags = choose_memblock_flags(); 1333 phys_addr_t found; 1334 1335 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1336 nid = NUMA_NO_NODE; 1337 1338 if (!align) { 1339 /* Can't use WARNs this early in boot on powerpc */ 1340 dump_stack(); 1341 align = SMP_CACHE_BYTES; 1342 } 1343 1344 again: 1345 found = memblock_find_in_range_node(size, align, start, end, nid, 1346 flags); 1347 if (found && !memblock_reserve(found, size)) 1348 goto done; 1349 1350 if (nid != NUMA_NO_NODE && !exact_nid) { 1351 found = memblock_find_in_range_node(size, align, start, 1352 end, NUMA_NO_NODE, 1353 flags); 1354 if (found && !memblock_reserve(found, size)) 1355 goto done; 1356 } 1357 1358 if (flags & MEMBLOCK_MIRROR) { 1359 flags &= ~MEMBLOCK_MIRROR; 1360 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1361 &size); 1362 goto again; 1363 } 1364 1365 return 0; 1366 1367 done: 1368 /* Skip kmemleak for kasan_init() due to high volume. */ 1369 if (end != MEMBLOCK_ALLOC_KASAN) 1370 /* 1371 * The min_count is set to 0 so that memblock allocated 1372 * blocks are never reported as leaks. This is because many 1373 * of these blocks are only referred via the physical 1374 * address which is not looked up by kmemleak. 1375 */ 1376 kmemleak_alloc_phys(found, size, 0, 0); 1377 1378 return found; 1379 } 1380 1381 /** 1382 * memblock_phys_alloc_range - allocate a memory block inside specified range 1383 * @size: size of memory block to be allocated in bytes 1384 * @align: alignment of the region and block's size 1385 * @start: the lower bound of the memory region to allocate (physical address) 1386 * @end: the upper bound of the memory region to allocate (physical address) 1387 * 1388 * Allocate @size bytes in the between @start and @end. 1389 * 1390 * Return: physical address of the allocated memory block on success, 1391 * %0 on failure. 1392 */ 1393 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, 1394 phys_addr_t align, 1395 phys_addr_t start, 1396 phys_addr_t end) 1397 { 1398 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n", 1399 __func__, (u64)size, (u64)align, &start, &end, 1400 (void *)_RET_IP_); 1401 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1402 false); 1403 } 1404 1405 /** 1406 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node 1407 * @size: size of memory block to be allocated in bytes 1408 * @align: alignment of the region and block's size 1409 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1410 * 1411 * Allocates memory block from the specified NUMA node. If the node 1412 * has no available memory, attempts to allocated from any node in the 1413 * system. 1414 * 1415 * Return: physical address of the allocated memory block on success, 1416 * %0 on failure. 1417 */ 1418 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1419 { 1420 return memblock_alloc_range_nid(size, align, 0, 1421 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); 1422 } 1423 1424 /** 1425 * memblock_alloc_internal - allocate boot memory block 1426 * @size: size of memory block to be allocated in bytes 1427 * @align: alignment of the region and block's size 1428 * @min_addr: the lower bound of the memory region to allocate (phys address) 1429 * @max_addr: the upper bound of the memory region to allocate (phys address) 1430 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1431 * @exact_nid: control the allocation fall back to other nodes 1432 * 1433 * Allocates memory block using memblock_alloc_range_nid() and 1434 * converts the returned physical address to virtual. 1435 * 1436 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1437 * will fall back to memory below @min_addr. Other constraints, such 1438 * as node and mirrored memory will be handled again in 1439 * memblock_alloc_range_nid(). 1440 * 1441 * Return: 1442 * Virtual address of allocated memory block on success, NULL on failure. 1443 */ 1444 static void * __init memblock_alloc_internal( 1445 phys_addr_t size, phys_addr_t align, 1446 phys_addr_t min_addr, phys_addr_t max_addr, 1447 int nid, bool exact_nid) 1448 { 1449 phys_addr_t alloc; 1450 1451 /* 1452 * Detect any accidental use of these APIs after slab is ready, as at 1453 * this moment memblock may be deinitialized already and its 1454 * internal data may be destroyed (after execution of memblock_free_all) 1455 */ 1456 if (WARN_ON_ONCE(slab_is_available())) 1457 return kzalloc_node(size, GFP_NOWAIT, nid); 1458 1459 if (max_addr > memblock.current_limit) 1460 max_addr = memblock.current_limit; 1461 1462 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, 1463 exact_nid); 1464 1465 /* retry allocation without lower limit */ 1466 if (!alloc && min_addr) 1467 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, 1468 exact_nid); 1469 1470 if (!alloc) 1471 return NULL; 1472 1473 return phys_to_virt(alloc); 1474 } 1475 1476 /** 1477 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node 1478 * without zeroing memory 1479 * @size: size of memory block to be allocated in bytes 1480 * @align: alignment of the region and block's size 1481 * @min_addr: the lower bound of the memory region from where the allocation 1482 * is preferred (phys address) 1483 * @max_addr: the upper bound of the memory region from where the allocation 1484 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1485 * allocate only from memory limited by memblock.current_limit value 1486 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1487 * 1488 * Public function, provides additional debug information (including caller 1489 * info), if enabled. Does not zero allocated memory. 1490 * 1491 * Return: 1492 * Virtual address of allocated memory block on success, NULL on failure. 1493 */ 1494 void * __init memblock_alloc_exact_nid_raw( 1495 phys_addr_t size, phys_addr_t align, 1496 phys_addr_t min_addr, phys_addr_t max_addr, 1497 int nid) 1498 { 1499 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1500 __func__, (u64)size, (u64)align, nid, &min_addr, 1501 &max_addr, (void *)_RET_IP_); 1502 1503 return memblock_alloc_internal(size, align, min_addr, max_addr, nid, 1504 true); 1505 } 1506 1507 /** 1508 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing 1509 * memory and without panicking 1510 * @size: size of memory block to be allocated in bytes 1511 * @align: alignment of the region and block's size 1512 * @min_addr: the lower bound of the memory region from where the allocation 1513 * is preferred (phys address) 1514 * @max_addr: the upper bound of the memory region from where the allocation 1515 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1516 * allocate only from memory limited by memblock.current_limit value 1517 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1518 * 1519 * Public function, provides additional debug information (including caller 1520 * info), if enabled. Does not zero allocated memory, does not panic if request 1521 * cannot be satisfied. 1522 * 1523 * Return: 1524 * Virtual address of allocated memory block on success, NULL on failure. 1525 */ 1526 void * __init memblock_alloc_try_nid_raw( 1527 phys_addr_t size, phys_addr_t align, 1528 phys_addr_t min_addr, phys_addr_t max_addr, 1529 int nid) 1530 { 1531 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1532 __func__, (u64)size, (u64)align, nid, &min_addr, 1533 &max_addr, (void *)_RET_IP_); 1534 1535 return memblock_alloc_internal(size, align, min_addr, max_addr, nid, 1536 false); 1537 } 1538 1539 /** 1540 * memblock_alloc_try_nid - allocate boot memory block 1541 * @size: size of memory block to be allocated in bytes 1542 * @align: alignment of the region and block's size 1543 * @min_addr: the lower bound of the memory region from where the allocation 1544 * is preferred (phys address) 1545 * @max_addr: the upper bound of the memory region from where the allocation 1546 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1547 * allocate only from memory limited by memblock.current_limit value 1548 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1549 * 1550 * Public function, provides additional debug information (including caller 1551 * info), if enabled. This function zeroes the allocated memory. 1552 * 1553 * Return: 1554 * Virtual address of allocated memory block on success, NULL on failure. 1555 */ 1556 void * __init memblock_alloc_try_nid( 1557 phys_addr_t size, phys_addr_t align, 1558 phys_addr_t min_addr, phys_addr_t max_addr, 1559 int nid) 1560 { 1561 void *ptr; 1562 1563 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1564 __func__, (u64)size, (u64)align, nid, &min_addr, 1565 &max_addr, (void *)_RET_IP_); 1566 ptr = memblock_alloc_internal(size, align, 1567 min_addr, max_addr, nid, false); 1568 if (ptr) 1569 memset(ptr, 0, size); 1570 1571 return ptr; 1572 } 1573 1574 /** 1575 * __memblock_free_late - free pages directly to buddy allocator 1576 * @base: phys starting address of the boot memory block 1577 * @size: size of the boot memory block in bytes 1578 * 1579 * This is only useful when the memblock allocator has already been torn 1580 * down, but we are still initializing the system. Pages are released directly 1581 * to the buddy allocator. 1582 */ 1583 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1584 { 1585 phys_addr_t cursor, end; 1586 1587 end = base + size - 1; 1588 memblock_dbg("%s: [%pa-%pa] %pS\n", 1589 __func__, &base, &end, (void *)_RET_IP_); 1590 kmemleak_free_part_phys(base, size); 1591 cursor = PFN_UP(base); 1592 end = PFN_DOWN(base + size); 1593 1594 for (; cursor < end; cursor++) { 1595 memblock_free_pages(pfn_to_page(cursor), cursor, 0); 1596 totalram_pages_inc(); 1597 } 1598 } 1599 1600 /* 1601 * Remaining API functions 1602 */ 1603 1604 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1605 { 1606 return memblock.memory.total_size; 1607 } 1608 1609 phys_addr_t __init_memblock memblock_reserved_size(void) 1610 { 1611 return memblock.reserved.total_size; 1612 } 1613 1614 /* lowest address */ 1615 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1616 { 1617 return memblock.memory.regions[0].base; 1618 } 1619 1620 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1621 { 1622 int idx = memblock.memory.cnt - 1; 1623 1624 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1625 } 1626 1627 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1628 { 1629 phys_addr_t max_addr = PHYS_ADDR_MAX; 1630 struct memblock_region *r; 1631 1632 /* 1633 * translate the memory @limit size into the max address within one of 1634 * the memory memblock regions, if the @limit exceeds the total size 1635 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1636 */ 1637 for_each_mem_region(r) { 1638 if (limit <= r->size) { 1639 max_addr = r->base + limit; 1640 break; 1641 } 1642 limit -= r->size; 1643 } 1644 1645 return max_addr; 1646 } 1647 1648 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1649 { 1650 phys_addr_t max_addr; 1651 1652 if (!limit) 1653 return; 1654 1655 max_addr = __find_max_addr(limit); 1656 1657 /* @limit exceeds the total size of the memory, do nothing */ 1658 if (max_addr == PHYS_ADDR_MAX) 1659 return; 1660 1661 /* truncate both memory and reserved regions */ 1662 memblock_remove_range(&memblock.memory, max_addr, 1663 PHYS_ADDR_MAX); 1664 memblock_remove_range(&memblock.reserved, max_addr, 1665 PHYS_ADDR_MAX); 1666 } 1667 1668 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1669 { 1670 int start_rgn, end_rgn; 1671 int i, ret; 1672 1673 if (!size) 1674 return; 1675 1676 if (memblock.memory.cnt <= 1) { 1677 pr_warn("%s: No memory registered yet\n", __func__); 1678 return; 1679 } 1680 1681 ret = memblock_isolate_range(&memblock.memory, base, size, 1682 &start_rgn, &end_rgn); 1683 if (ret) 1684 return; 1685 1686 /* remove all the MAP regions */ 1687 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1688 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1689 memblock_remove_region(&memblock.memory, i); 1690 1691 for (i = start_rgn - 1; i >= 0; i--) 1692 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1693 memblock_remove_region(&memblock.memory, i); 1694 1695 /* truncate the reserved regions */ 1696 memblock_remove_range(&memblock.reserved, 0, base); 1697 memblock_remove_range(&memblock.reserved, 1698 base + size, PHYS_ADDR_MAX); 1699 } 1700 1701 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1702 { 1703 phys_addr_t max_addr; 1704 1705 if (!limit) 1706 return; 1707 1708 max_addr = __find_max_addr(limit); 1709 1710 /* @limit exceeds the total size of the memory, do nothing */ 1711 if (max_addr == PHYS_ADDR_MAX) 1712 return; 1713 1714 memblock_cap_memory_range(0, max_addr); 1715 } 1716 1717 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1718 { 1719 unsigned int left = 0, right = type->cnt; 1720 1721 do { 1722 unsigned int mid = (right + left) / 2; 1723 1724 if (addr < type->regions[mid].base) 1725 right = mid; 1726 else if (addr >= (type->regions[mid].base + 1727 type->regions[mid].size)) 1728 left = mid + 1; 1729 else 1730 return mid; 1731 } while (left < right); 1732 return -1; 1733 } 1734 1735 bool __init_memblock memblock_is_reserved(phys_addr_t addr) 1736 { 1737 return memblock_search(&memblock.reserved, addr) != -1; 1738 } 1739 1740 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1741 { 1742 return memblock_search(&memblock.memory, addr) != -1; 1743 } 1744 1745 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1746 { 1747 int i = memblock_search(&memblock.memory, addr); 1748 1749 if (i == -1) 1750 return false; 1751 return !memblock_is_nomap(&memblock.memory.regions[i]); 1752 } 1753 1754 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1755 unsigned long *start_pfn, unsigned long *end_pfn) 1756 { 1757 struct memblock_type *type = &memblock.memory; 1758 int mid = memblock_search(type, PFN_PHYS(pfn)); 1759 1760 if (mid == -1) 1761 return -1; 1762 1763 *start_pfn = PFN_DOWN(type->regions[mid].base); 1764 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1765 1766 return memblock_get_region_node(&type->regions[mid]); 1767 } 1768 1769 /** 1770 * memblock_is_region_memory - check if a region is a subset of memory 1771 * @base: base of region to check 1772 * @size: size of region to check 1773 * 1774 * Check if the region [@base, @base + @size) is a subset of a memory block. 1775 * 1776 * Return: 1777 * 0 if false, non-zero if true 1778 */ 1779 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1780 { 1781 int idx = memblock_search(&memblock.memory, base); 1782 phys_addr_t end = base + memblock_cap_size(base, &size); 1783 1784 if (idx == -1) 1785 return false; 1786 return (memblock.memory.regions[idx].base + 1787 memblock.memory.regions[idx].size) >= end; 1788 } 1789 1790 /** 1791 * memblock_is_region_reserved - check if a region intersects reserved memory 1792 * @base: base of region to check 1793 * @size: size of region to check 1794 * 1795 * Check if the region [@base, @base + @size) intersects a reserved 1796 * memory block. 1797 * 1798 * Return: 1799 * True if they intersect, false if not. 1800 */ 1801 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1802 { 1803 return memblock_overlaps_region(&memblock.reserved, base, size); 1804 } 1805 1806 void __init_memblock memblock_trim_memory(phys_addr_t align) 1807 { 1808 phys_addr_t start, end, orig_start, orig_end; 1809 struct memblock_region *r; 1810 1811 for_each_mem_region(r) { 1812 orig_start = r->base; 1813 orig_end = r->base + r->size; 1814 start = round_up(orig_start, align); 1815 end = round_down(orig_end, align); 1816 1817 if (start == orig_start && end == orig_end) 1818 continue; 1819 1820 if (start < end) { 1821 r->base = start; 1822 r->size = end - start; 1823 } else { 1824 memblock_remove_region(&memblock.memory, 1825 r - memblock.memory.regions); 1826 r--; 1827 } 1828 } 1829 } 1830 1831 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1832 { 1833 memblock.current_limit = limit; 1834 } 1835 1836 phys_addr_t __init_memblock memblock_get_current_limit(void) 1837 { 1838 return memblock.current_limit; 1839 } 1840 1841 static void __init_memblock memblock_dump(struct memblock_type *type) 1842 { 1843 phys_addr_t base, end, size; 1844 enum memblock_flags flags; 1845 int idx; 1846 struct memblock_region *rgn; 1847 1848 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1849 1850 for_each_memblock_type(idx, type, rgn) { 1851 char nid_buf[32] = ""; 1852 1853 base = rgn->base; 1854 size = rgn->size; 1855 end = base + size - 1; 1856 flags = rgn->flags; 1857 #ifdef CONFIG_NUMA 1858 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1859 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1860 memblock_get_region_node(rgn)); 1861 #endif 1862 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 1863 type->name, idx, &base, &end, &size, nid_buf, flags); 1864 } 1865 } 1866 1867 static void __init_memblock __memblock_dump_all(void) 1868 { 1869 pr_info("MEMBLOCK configuration:\n"); 1870 pr_info(" memory size = %pa reserved size = %pa\n", 1871 &memblock.memory.total_size, 1872 &memblock.reserved.total_size); 1873 1874 memblock_dump(&memblock.memory); 1875 memblock_dump(&memblock.reserved); 1876 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1877 memblock_dump(&physmem); 1878 #endif 1879 } 1880 1881 void __init_memblock memblock_dump_all(void) 1882 { 1883 if (memblock_debug) 1884 __memblock_dump_all(); 1885 } 1886 1887 void __init memblock_allow_resize(void) 1888 { 1889 memblock_can_resize = 1; 1890 } 1891 1892 static int __init early_memblock(char *p) 1893 { 1894 if (p && strstr(p, "debug")) 1895 memblock_debug = 1; 1896 return 0; 1897 } 1898 early_param("memblock", early_memblock); 1899 1900 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn) 1901 { 1902 struct page *start_pg, *end_pg; 1903 phys_addr_t pg, pgend; 1904 1905 /* 1906 * Convert start_pfn/end_pfn to a struct page pointer. 1907 */ 1908 start_pg = pfn_to_page(start_pfn - 1) + 1; 1909 end_pg = pfn_to_page(end_pfn - 1) + 1; 1910 1911 /* 1912 * Convert to physical addresses, and round start upwards and end 1913 * downwards. 1914 */ 1915 pg = PAGE_ALIGN(__pa(start_pg)); 1916 pgend = __pa(end_pg) & PAGE_MASK; 1917 1918 /* 1919 * If there are free pages between these, free the section of the 1920 * memmap array. 1921 */ 1922 if (pg < pgend) 1923 memblock_free(pg, pgend - pg); 1924 } 1925 1926 /* 1927 * The mem_map array can get very big. Free the unused area of the memory map. 1928 */ 1929 static void __init free_unused_memmap(void) 1930 { 1931 unsigned long start, end, prev_end = 0; 1932 int i; 1933 1934 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) || 1935 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 1936 return; 1937 1938 /* 1939 * This relies on each bank being in address order. 1940 * The banks are sorted previously in bootmem_init(). 1941 */ 1942 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { 1943 #ifdef CONFIG_SPARSEMEM 1944 /* 1945 * Take care not to free memmap entries that don't exist 1946 * due to SPARSEMEM sections which aren't present. 1947 */ 1948 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 1949 #endif 1950 /* 1951 * Align down here since many operations in VM subsystem 1952 * presume that there are no holes in the memory map inside 1953 * a pageblock 1954 */ 1955 start = round_down(start, pageblock_nr_pages); 1956 1957 /* 1958 * If we had a previous bank, and there is a space 1959 * between the current bank and the previous, free it. 1960 */ 1961 if (prev_end && prev_end < start) 1962 free_memmap(prev_end, start); 1963 1964 /* 1965 * Align up here since many operations in VM subsystem 1966 * presume that there are no holes in the memory map inside 1967 * a pageblock 1968 */ 1969 prev_end = ALIGN(end, pageblock_nr_pages); 1970 } 1971 1972 #ifdef CONFIG_SPARSEMEM 1973 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) { 1974 prev_end = ALIGN(end, pageblock_nr_pages); 1975 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 1976 } 1977 #endif 1978 } 1979 1980 static void __init __free_pages_memory(unsigned long start, unsigned long end) 1981 { 1982 int order; 1983 1984 while (start < end) { 1985 order = min(MAX_ORDER - 1UL, __ffs(start)); 1986 1987 while (start + (1UL << order) > end) 1988 order--; 1989 1990 memblock_free_pages(pfn_to_page(start), start, order); 1991 1992 start += (1UL << order); 1993 } 1994 } 1995 1996 static unsigned long __init __free_memory_core(phys_addr_t start, 1997 phys_addr_t end) 1998 { 1999 unsigned long start_pfn = PFN_UP(start); 2000 unsigned long end_pfn = min_t(unsigned long, 2001 PFN_DOWN(end), max_low_pfn); 2002 2003 if (start_pfn >= end_pfn) 2004 return 0; 2005 2006 __free_pages_memory(start_pfn, end_pfn); 2007 2008 return end_pfn - start_pfn; 2009 } 2010 2011 static void __init memmap_init_reserved_pages(void) 2012 { 2013 struct memblock_region *region; 2014 phys_addr_t start, end; 2015 u64 i; 2016 2017 /* initialize struct pages for the reserved regions */ 2018 for_each_reserved_mem_range(i, &start, &end) 2019 reserve_bootmem_region(start, end); 2020 2021 /* and also treat struct pages for the NOMAP regions as PageReserved */ 2022 for_each_mem_region(region) { 2023 if (memblock_is_nomap(region)) { 2024 start = region->base; 2025 end = start + region->size; 2026 reserve_bootmem_region(start, end); 2027 } 2028 } 2029 } 2030 2031 static unsigned long __init free_low_memory_core_early(void) 2032 { 2033 unsigned long count = 0; 2034 phys_addr_t start, end; 2035 u64 i; 2036 2037 memblock_clear_hotplug(0, -1); 2038 2039 memmap_init_reserved_pages(); 2040 2041 /* 2042 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id 2043 * because in some case like Node0 doesn't have RAM installed 2044 * low ram will be on Node1 2045 */ 2046 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, 2047 NULL) 2048 count += __free_memory_core(start, end); 2049 2050 return count; 2051 } 2052 2053 static int reset_managed_pages_done __initdata; 2054 2055 void reset_node_managed_pages(pg_data_t *pgdat) 2056 { 2057 struct zone *z; 2058 2059 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 2060 atomic_long_set(&z->managed_pages, 0); 2061 } 2062 2063 void __init reset_all_zones_managed_pages(void) 2064 { 2065 struct pglist_data *pgdat; 2066 2067 if (reset_managed_pages_done) 2068 return; 2069 2070 for_each_online_pgdat(pgdat) 2071 reset_node_managed_pages(pgdat); 2072 2073 reset_managed_pages_done = 1; 2074 } 2075 2076 /** 2077 * memblock_free_all - release free pages to the buddy allocator 2078 */ 2079 void __init memblock_free_all(void) 2080 { 2081 unsigned long pages; 2082 2083 free_unused_memmap(); 2084 reset_all_zones_managed_pages(); 2085 2086 pages = free_low_memory_core_early(); 2087 totalram_pages_add(pages); 2088 } 2089 2090 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) 2091 2092 static int memblock_debug_show(struct seq_file *m, void *private) 2093 { 2094 struct memblock_type *type = m->private; 2095 struct memblock_region *reg; 2096 int i; 2097 phys_addr_t end; 2098 2099 for (i = 0; i < type->cnt; i++) { 2100 reg = &type->regions[i]; 2101 end = reg->base + reg->size - 1; 2102 2103 seq_printf(m, "%4d: ", i); 2104 seq_printf(m, "%pa..%pa\n", ®->base, &end); 2105 } 2106 return 0; 2107 } 2108 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 2109 2110 static int __init memblock_init_debugfs(void) 2111 { 2112 struct dentry *root = debugfs_create_dir("memblock", NULL); 2113 2114 debugfs_create_file("memory", 0444, root, 2115 &memblock.memory, &memblock_debug_fops); 2116 debugfs_create_file("reserved", 0444, root, 2117 &memblock.reserved, &memblock_debug_fops); 2118 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2119 debugfs_create_file("physmem", 0444, root, &physmem, 2120 &memblock_debug_fops); 2121 #endif 2122 2123 return 0; 2124 } 2125 __initcall(memblock_init_debugfs); 2126 2127 #endif /* CONFIG_DEBUG_FS */ 2128