xref: /openbmc/linux/mm/memblock.c (revision a8fe58ce)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22 
23 #include <asm-generic/sections.h>
24 #include <linux/io.h>
25 
26 #include "internal.h"
27 
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33 
34 struct memblock memblock __initdata_memblock = {
35 	.memory.regions		= memblock_memory_init_regions,
36 	.memory.cnt		= 1,	/* empty dummy entry */
37 	.memory.max		= INIT_MEMBLOCK_REGIONS,
38 
39 	.reserved.regions	= memblock_reserved_init_regions,
40 	.reserved.cnt		= 1,	/* empty dummy entry */
41 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
42 
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 	.physmem.regions	= memblock_physmem_init_regions,
45 	.physmem.cnt		= 1,	/* empty dummy entry */
46 	.physmem.max		= INIT_PHYSMEM_REGIONS,
47 #endif
48 
49 	.bottom_up		= false,
50 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
51 };
52 
53 int memblock_debug __initdata_memblock;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock = false;
56 #endif
57 static bool system_has_some_mirror __initdata_memblock = false;
58 static int memblock_can_resize __initdata_memblock;
59 static int memblock_memory_in_slab __initdata_memblock = 0;
60 static int memblock_reserved_in_slab __initdata_memblock = 0;
61 
62 ulong __init_memblock choose_memblock_flags(void)
63 {
64 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
65 }
66 
67 /* inline so we don't get a warning when pr_debug is compiled out */
68 static __init_memblock const char *
69 memblock_type_name(struct memblock_type *type)
70 {
71 	if (type == &memblock.memory)
72 		return "memory";
73 	else if (type == &memblock.reserved)
74 		return "reserved";
75 	else
76 		return "unknown";
77 }
78 
79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
80 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
81 {
82 	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
83 }
84 
85 /*
86  * Address comparison utilities
87  */
88 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
89 				       phys_addr_t base2, phys_addr_t size2)
90 {
91 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
92 }
93 
94 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
95 					phys_addr_t base, phys_addr_t size)
96 {
97 	unsigned long i;
98 
99 	for (i = 0; i < type->cnt; i++)
100 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
101 					   type->regions[i].size))
102 			break;
103 	return i < type->cnt;
104 }
105 
106 /*
107  * __memblock_find_range_bottom_up - find free area utility in bottom-up
108  * @start: start of candidate range
109  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
110  * @size: size of free area to find
111  * @align: alignment of free area to find
112  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
113  * @flags: pick from blocks based on memory attributes
114  *
115  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
116  *
117  * RETURNS:
118  * Found address on success, 0 on failure.
119  */
120 static phys_addr_t __init_memblock
121 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
122 				phys_addr_t size, phys_addr_t align, int nid,
123 				ulong flags)
124 {
125 	phys_addr_t this_start, this_end, cand;
126 	u64 i;
127 
128 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
129 		this_start = clamp(this_start, start, end);
130 		this_end = clamp(this_end, start, end);
131 
132 		cand = round_up(this_start, align);
133 		if (cand < this_end && this_end - cand >= size)
134 			return cand;
135 	}
136 
137 	return 0;
138 }
139 
140 /**
141  * __memblock_find_range_top_down - find free area utility, in top-down
142  * @start: start of candidate range
143  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
144  * @size: size of free area to find
145  * @align: alignment of free area to find
146  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
147  * @flags: pick from blocks based on memory attributes
148  *
149  * Utility called from memblock_find_in_range_node(), find free area top-down.
150  *
151  * RETURNS:
152  * Found address on success, 0 on failure.
153  */
154 static phys_addr_t __init_memblock
155 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
156 			       phys_addr_t size, phys_addr_t align, int nid,
157 			       ulong flags)
158 {
159 	phys_addr_t this_start, this_end, cand;
160 	u64 i;
161 
162 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
163 					NULL) {
164 		this_start = clamp(this_start, start, end);
165 		this_end = clamp(this_end, start, end);
166 
167 		if (this_end < size)
168 			continue;
169 
170 		cand = round_down(this_end - size, align);
171 		if (cand >= this_start)
172 			return cand;
173 	}
174 
175 	return 0;
176 }
177 
178 /**
179  * memblock_find_in_range_node - find free area in given range and node
180  * @size: size of free area to find
181  * @align: alignment of free area to find
182  * @start: start of candidate range
183  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
184  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
185  * @flags: pick from blocks based on memory attributes
186  *
187  * Find @size free area aligned to @align in the specified range and node.
188  *
189  * When allocation direction is bottom-up, the @start should be greater
190  * than the end of the kernel image. Otherwise, it will be trimmed. The
191  * reason is that we want the bottom-up allocation just near the kernel
192  * image so it is highly likely that the allocated memory and the kernel
193  * will reside in the same node.
194  *
195  * If bottom-up allocation failed, will try to allocate memory top-down.
196  *
197  * RETURNS:
198  * Found address on success, 0 on failure.
199  */
200 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
201 					phys_addr_t align, phys_addr_t start,
202 					phys_addr_t end, int nid, ulong flags)
203 {
204 	phys_addr_t kernel_end, ret;
205 
206 	/* pump up @end */
207 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
208 		end = memblock.current_limit;
209 
210 	/* avoid allocating the first page */
211 	start = max_t(phys_addr_t, start, PAGE_SIZE);
212 	end = max(start, end);
213 	kernel_end = __pa_symbol(_end);
214 
215 	/*
216 	 * try bottom-up allocation only when bottom-up mode
217 	 * is set and @end is above the kernel image.
218 	 */
219 	if (memblock_bottom_up() && end > kernel_end) {
220 		phys_addr_t bottom_up_start;
221 
222 		/* make sure we will allocate above the kernel */
223 		bottom_up_start = max(start, kernel_end);
224 
225 		/* ok, try bottom-up allocation first */
226 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
227 						      size, align, nid, flags);
228 		if (ret)
229 			return ret;
230 
231 		/*
232 		 * we always limit bottom-up allocation above the kernel,
233 		 * but top-down allocation doesn't have the limit, so
234 		 * retrying top-down allocation may succeed when bottom-up
235 		 * allocation failed.
236 		 *
237 		 * bottom-up allocation is expected to be fail very rarely,
238 		 * so we use WARN_ONCE() here to see the stack trace if
239 		 * fail happens.
240 		 */
241 		WARN_ONCE(1, "memblock: bottom-up allocation failed, "
242 			     "memory hotunplug may be affected\n");
243 	}
244 
245 	return __memblock_find_range_top_down(start, end, size, align, nid,
246 					      flags);
247 }
248 
249 /**
250  * memblock_find_in_range - find free area in given range
251  * @start: start of candidate range
252  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
253  * @size: size of free area to find
254  * @align: alignment of free area to find
255  *
256  * Find @size free area aligned to @align in the specified range.
257  *
258  * RETURNS:
259  * Found address on success, 0 on failure.
260  */
261 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
262 					phys_addr_t end, phys_addr_t size,
263 					phys_addr_t align)
264 {
265 	phys_addr_t ret;
266 	ulong flags = choose_memblock_flags();
267 
268 again:
269 	ret = memblock_find_in_range_node(size, align, start, end,
270 					    NUMA_NO_NODE, flags);
271 
272 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
273 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
274 			&size);
275 		flags &= ~MEMBLOCK_MIRROR;
276 		goto again;
277 	}
278 
279 	return ret;
280 }
281 
282 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
283 {
284 	type->total_size -= type->regions[r].size;
285 	memmove(&type->regions[r], &type->regions[r + 1],
286 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
287 	type->cnt--;
288 
289 	/* Special case for empty arrays */
290 	if (type->cnt == 0) {
291 		WARN_ON(type->total_size != 0);
292 		type->cnt = 1;
293 		type->regions[0].base = 0;
294 		type->regions[0].size = 0;
295 		type->regions[0].flags = 0;
296 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
297 	}
298 }
299 
300 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
301 
302 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
303 					phys_addr_t *addr)
304 {
305 	if (memblock.reserved.regions == memblock_reserved_init_regions)
306 		return 0;
307 
308 	*addr = __pa(memblock.reserved.regions);
309 
310 	return PAGE_ALIGN(sizeof(struct memblock_region) *
311 			  memblock.reserved.max);
312 }
313 
314 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
315 					phys_addr_t *addr)
316 {
317 	if (memblock.memory.regions == memblock_memory_init_regions)
318 		return 0;
319 
320 	*addr = __pa(memblock.memory.regions);
321 
322 	return PAGE_ALIGN(sizeof(struct memblock_region) *
323 			  memblock.memory.max);
324 }
325 
326 #endif
327 
328 /**
329  * memblock_double_array - double the size of the memblock regions array
330  * @type: memblock type of the regions array being doubled
331  * @new_area_start: starting address of memory range to avoid overlap with
332  * @new_area_size: size of memory range to avoid overlap with
333  *
334  * Double the size of the @type regions array. If memblock is being used to
335  * allocate memory for a new reserved regions array and there is a previously
336  * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
337  * waiting to be reserved, ensure the memory used by the new array does
338  * not overlap.
339  *
340  * RETURNS:
341  * 0 on success, -1 on failure.
342  */
343 static int __init_memblock memblock_double_array(struct memblock_type *type,
344 						phys_addr_t new_area_start,
345 						phys_addr_t new_area_size)
346 {
347 	struct memblock_region *new_array, *old_array;
348 	phys_addr_t old_alloc_size, new_alloc_size;
349 	phys_addr_t old_size, new_size, addr;
350 	int use_slab = slab_is_available();
351 	int *in_slab;
352 
353 	/* We don't allow resizing until we know about the reserved regions
354 	 * of memory that aren't suitable for allocation
355 	 */
356 	if (!memblock_can_resize)
357 		return -1;
358 
359 	/* Calculate new doubled size */
360 	old_size = type->max * sizeof(struct memblock_region);
361 	new_size = old_size << 1;
362 	/*
363 	 * We need to allocated new one align to PAGE_SIZE,
364 	 *   so we can free them completely later.
365 	 */
366 	old_alloc_size = PAGE_ALIGN(old_size);
367 	new_alloc_size = PAGE_ALIGN(new_size);
368 
369 	/* Retrieve the slab flag */
370 	if (type == &memblock.memory)
371 		in_slab = &memblock_memory_in_slab;
372 	else
373 		in_slab = &memblock_reserved_in_slab;
374 
375 	/* Try to find some space for it.
376 	 *
377 	 * WARNING: We assume that either slab_is_available() and we use it or
378 	 * we use MEMBLOCK for allocations. That means that this is unsafe to
379 	 * use when bootmem is currently active (unless bootmem itself is
380 	 * implemented on top of MEMBLOCK which isn't the case yet)
381 	 *
382 	 * This should however not be an issue for now, as we currently only
383 	 * call into MEMBLOCK while it's still active, or much later when slab
384 	 * is active for memory hotplug operations
385 	 */
386 	if (use_slab) {
387 		new_array = kmalloc(new_size, GFP_KERNEL);
388 		addr = new_array ? __pa(new_array) : 0;
389 	} else {
390 		/* only exclude range when trying to double reserved.regions */
391 		if (type != &memblock.reserved)
392 			new_area_start = new_area_size = 0;
393 
394 		addr = memblock_find_in_range(new_area_start + new_area_size,
395 						memblock.current_limit,
396 						new_alloc_size, PAGE_SIZE);
397 		if (!addr && new_area_size)
398 			addr = memblock_find_in_range(0,
399 				min(new_area_start, memblock.current_limit),
400 				new_alloc_size, PAGE_SIZE);
401 
402 		new_array = addr ? __va(addr) : NULL;
403 	}
404 	if (!addr) {
405 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
406 		       memblock_type_name(type), type->max, type->max * 2);
407 		return -1;
408 	}
409 
410 	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
411 			memblock_type_name(type), type->max * 2, (u64)addr,
412 			(u64)addr + new_size - 1);
413 
414 	/*
415 	 * Found space, we now need to move the array over before we add the
416 	 * reserved region since it may be our reserved array itself that is
417 	 * full.
418 	 */
419 	memcpy(new_array, type->regions, old_size);
420 	memset(new_array + type->max, 0, old_size);
421 	old_array = type->regions;
422 	type->regions = new_array;
423 	type->max <<= 1;
424 
425 	/* Free old array. We needn't free it if the array is the static one */
426 	if (*in_slab)
427 		kfree(old_array);
428 	else if (old_array != memblock_memory_init_regions &&
429 		 old_array != memblock_reserved_init_regions)
430 		memblock_free(__pa(old_array), old_alloc_size);
431 
432 	/*
433 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
434 	 * needn't do it
435 	 */
436 	if (!use_slab)
437 		BUG_ON(memblock_reserve(addr, new_alloc_size));
438 
439 	/* Update slab flag */
440 	*in_slab = use_slab;
441 
442 	return 0;
443 }
444 
445 /**
446  * memblock_merge_regions - merge neighboring compatible regions
447  * @type: memblock type to scan
448  *
449  * Scan @type and merge neighboring compatible regions.
450  */
451 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
452 {
453 	int i = 0;
454 
455 	/* cnt never goes below 1 */
456 	while (i < type->cnt - 1) {
457 		struct memblock_region *this = &type->regions[i];
458 		struct memblock_region *next = &type->regions[i + 1];
459 
460 		if (this->base + this->size != next->base ||
461 		    memblock_get_region_node(this) !=
462 		    memblock_get_region_node(next) ||
463 		    this->flags != next->flags) {
464 			BUG_ON(this->base + this->size > next->base);
465 			i++;
466 			continue;
467 		}
468 
469 		this->size += next->size;
470 		/* move forward from next + 1, index of which is i + 2 */
471 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
472 		type->cnt--;
473 	}
474 }
475 
476 /**
477  * memblock_insert_region - insert new memblock region
478  * @type:	memblock type to insert into
479  * @idx:	index for the insertion point
480  * @base:	base address of the new region
481  * @size:	size of the new region
482  * @nid:	node id of the new region
483  * @flags:	flags of the new region
484  *
485  * Insert new memblock region [@base,@base+@size) into @type at @idx.
486  * @type must already have extra room to accomodate the new region.
487  */
488 static void __init_memblock memblock_insert_region(struct memblock_type *type,
489 						   int idx, phys_addr_t base,
490 						   phys_addr_t size,
491 						   int nid, unsigned long flags)
492 {
493 	struct memblock_region *rgn = &type->regions[idx];
494 
495 	BUG_ON(type->cnt >= type->max);
496 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
497 	rgn->base = base;
498 	rgn->size = size;
499 	rgn->flags = flags;
500 	memblock_set_region_node(rgn, nid);
501 	type->cnt++;
502 	type->total_size += size;
503 }
504 
505 /**
506  * memblock_add_range - add new memblock region
507  * @type: memblock type to add new region into
508  * @base: base address of the new region
509  * @size: size of the new region
510  * @nid: nid of the new region
511  * @flags: flags of the new region
512  *
513  * Add new memblock region [@base,@base+@size) into @type.  The new region
514  * is allowed to overlap with existing ones - overlaps don't affect already
515  * existing regions.  @type is guaranteed to be minimal (all neighbouring
516  * compatible regions are merged) after the addition.
517  *
518  * RETURNS:
519  * 0 on success, -errno on failure.
520  */
521 int __init_memblock memblock_add_range(struct memblock_type *type,
522 				phys_addr_t base, phys_addr_t size,
523 				int nid, unsigned long flags)
524 {
525 	bool insert = false;
526 	phys_addr_t obase = base;
527 	phys_addr_t end = base + memblock_cap_size(base, &size);
528 	int idx, nr_new;
529 	struct memblock_region *rgn;
530 
531 	if (!size)
532 		return 0;
533 
534 	/* special case for empty array */
535 	if (type->regions[0].size == 0) {
536 		WARN_ON(type->cnt != 1 || type->total_size);
537 		type->regions[0].base = base;
538 		type->regions[0].size = size;
539 		type->regions[0].flags = flags;
540 		memblock_set_region_node(&type->regions[0], nid);
541 		type->total_size = size;
542 		return 0;
543 	}
544 repeat:
545 	/*
546 	 * The following is executed twice.  Once with %false @insert and
547 	 * then with %true.  The first counts the number of regions needed
548 	 * to accomodate the new area.  The second actually inserts them.
549 	 */
550 	base = obase;
551 	nr_new = 0;
552 
553 	for_each_memblock_type(type, rgn) {
554 		phys_addr_t rbase = rgn->base;
555 		phys_addr_t rend = rbase + rgn->size;
556 
557 		if (rbase >= end)
558 			break;
559 		if (rend <= base)
560 			continue;
561 		/*
562 		 * @rgn overlaps.  If it separates the lower part of new
563 		 * area, insert that portion.
564 		 */
565 		if (rbase > base) {
566 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
567 			WARN_ON(nid != memblock_get_region_node(rgn));
568 #endif
569 			WARN_ON(flags != rgn->flags);
570 			nr_new++;
571 			if (insert)
572 				memblock_insert_region(type, idx++, base,
573 						       rbase - base, nid,
574 						       flags);
575 		}
576 		/* area below @rend is dealt with, forget about it */
577 		base = min(rend, end);
578 	}
579 
580 	/* insert the remaining portion */
581 	if (base < end) {
582 		nr_new++;
583 		if (insert)
584 			memblock_insert_region(type, idx, base, end - base,
585 					       nid, flags);
586 	}
587 
588 	/*
589 	 * If this was the first round, resize array and repeat for actual
590 	 * insertions; otherwise, merge and return.
591 	 */
592 	if (!insert) {
593 		while (type->cnt + nr_new > type->max)
594 			if (memblock_double_array(type, obase, size) < 0)
595 				return -ENOMEM;
596 		insert = true;
597 		goto repeat;
598 	} else {
599 		memblock_merge_regions(type);
600 		return 0;
601 	}
602 }
603 
604 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
605 				       int nid)
606 {
607 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
608 }
609 
610 static int __init_memblock memblock_add_region(phys_addr_t base,
611 						phys_addr_t size,
612 						int nid,
613 						unsigned long flags)
614 {
615 	struct memblock_type *type = &memblock.memory;
616 
617 	memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
618 		     (unsigned long long)base,
619 		     (unsigned long long)base + size - 1,
620 		     flags, (void *)_RET_IP_);
621 
622 	return memblock_add_range(type, base, size, nid, flags);
623 }
624 
625 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
626 {
627 	return memblock_add_region(base, size, MAX_NUMNODES, 0);
628 }
629 
630 /**
631  * memblock_isolate_range - isolate given range into disjoint memblocks
632  * @type: memblock type to isolate range for
633  * @base: base of range to isolate
634  * @size: size of range to isolate
635  * @start_rgn: out parameter for the start of isolated region
636  * @end_rgn: out parameter for the end of isolated region
637  *
638  * Walk @type and ensure that regions don't cross the boundaries defined by
639  * [@base,@base+@size).  Crossing regions are split at the boundaries,
640  * which may create at most two more regions.  The index of the first
641  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
642  *
643  * RETURNS:
644  * 0 on success, -errno on failure.
645  */
646 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
647 					phys_addr_t base, phys_addr_t size,
648 					int *start_rgn, int *end_rgn)
649 {
650 	phys_addr_t end = base + memblock_cap_size(base, &size);
651 	int idx;
652 	struct memblock_region *rgn;
653 
654 	*start_rgn = *end_rgn = 0;
655 
656 	if (!size)
657 		return 0;
658 
659 	/* we'll create at most two more regions */
660 	while (type->cnt + 2 > type->max)
661 		if (memblock_double_array(type, base, size) < 0)
662 			return -ENOMEM;
663 
664 	for_each_memblock_type(type, rgn) {
665 		phys_addr_t rbase = rgn->base;
666 		phys_addr_t rend = rbase + rgn->size;
667 
668 		if (rbase >= end)
669 			break;
670 		if (rend <= base)
671 			continue;
672 
673 		if (rbase < base) {
674 			/*
675 			 * @rgn intersects from below.  Split and continue
676 			 * to process the next region - the new top half.
677 			 */
678 			rgn->base = base;
679 			rgn->size -= base - rbase;
680 			type->total_size -= base - rbase;
681 			memblock_insert_region(type, idx, rbase, base - rbase,
682 					       memblock_get_region_node(rgn),
683 					       rgn->flags);
684 		} else if (rend > end) {
685 			/*
686 			 * @rgn intersects from above.  Split and redo the
687 			 * current region - the new bottom half.
688 			 */
689 			rgn->base = end;
690 			rgn->size -= end - rbase;
691 			type->total_size -= end - rbase;
692 			memblock_insert_region(type, idx--, rbase, end - rbase,
693 					       memblock_get_region_node(rgn),
694 					       rgn->flags);
695 		} else {
696 			/* @rgn is fully contained, record it */
697 			if (!*end_rgn)
698 				*start_rgn = idx;
699 			*end_rgn = idx + 1;
700 		}
701 	}
702 
703 	return 0;
704 }
705 
706 static int __init_memblock memblock_remove_range(struct memblock_type *type,
707 					  phys_addr_t base, phys_addr_t size)
708 {
709 	int start_rgn, end_rgn;
710 	int i, ret;
711 
712 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
713 	if (ret)
714 		return ret;
715 
716 	for (i = end_rgn - 1; i >= start_rgn; i--)
717 		memblock_remove_region(type, i);
718 	return 0;
719 }
720 
721 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
722 {
723 	return memblock_remove_range(&memblock.memory, base, size);
724 }
725 
726 
727 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
728 {
729 	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
730 		     (unsigned long long)base,
731 		     (unsigned long long)base + size - 1,
732 		     (void *)_RET_IP_);
733 
734 	kmemleak_free_part(__va(base), size);
735 	return memblock_remove_range(&memblock.reserved, base, size);
736 }
737 
738 static int __init_memblock memblock_reserve_region(phys_addr_t base,
739 						   phys_addr_t size,
740 						   int nid,
741 						   unsigned long flags)
742 {
743 	struct memblock_type *type = &memblock.reserved;
744 
745 	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
746 		     (unsigned long long)base,
747 		     (unsigned long long)base + size - 1,
748 		     flags, (void *)_RET_IP_);
749 
750 	return memblock_add_range(type, base, size, nid, flags);
751 }
752 
753 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
754 {
755 	return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
756 }
757 
758 /**
759  *
760  * This function isolates region [@base, @base + @size), and sets/clears flag
761  *
762  * Return 0 on success, -errno on failure.
763  */
764 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
765 				phys_addr_t size, int set, int flag)
766 {
767 	struct memblock_type *type = &memblock.memory;
768 	int i, ret, start_rgn, end_rgn;
769 
770 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
771 	if (ret)
772 		return ret;
773 
774 	for (i = start_rgn; i < end_rgn; i++)
775 		if (set)
776 			memblock_set_region_flags(&type->regions[i], flag);
777 		else
778 			memblock_clear_region_flags(&type->regions[i], flag);
779 
780 	memblock_merge_regions(type);
781 	return 0;
782 }
783 
784 /**
785  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
786  * @base: the base phys addr of the region
787  * @size: the size of the region
788  *
789  * Return 0 on success, -errno on failure.
790  */
791 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
792 {
793 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
794 }
795 
796 /**
797  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
798  * @base: the base phys addr of the region
799  * @size: the size of the region
800  *
801  * Return 0 on success, -errno on failure.
802  */
803 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
804 {
805 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
806 }
807 
808 /**
809  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
810  * @base: the base phys addr of the region
811  * @size: the size of the region
812  *
813  * Return 0 on success, -errno on failure.
814  */
815 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
816 {
817 	system_has_some_mirror = true;
818 
819 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
820 }
821 
822 /**
823  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
824  * @base: the base phys addr of the region
825  * @size: the size of the region
826  *
827  * Return 0 on success, -errno on failure.
828  */
829 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
830 {
831 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
832 }
833 
834 /**
835  * __next_reserved_mem_region - next function for for_each_reserved_region()
836  * @idx: pointer to u64 loop variable
837  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
838  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
839  *
840  * Iterate over all reserved memory regions.
841  */
842 void __init_memblock __next_reserved_mem_region(u64 *idx,
843 					   phys_addr_t *out_start,
844 					   phys_addr_t *out_end)
845 {
846 	struct memblock_type *type = &memblock.reserved;
847 
848 	if (*idx >= 0 && *idx < type->cnt) {
849 		struct memblock_region *r = &type->regions[*idx];
850 		phys_addr_t base = r->base;
851 		phys_addr_t size = r->size;
852 
853 		if (out_start)
854 			*out_start = base;
855 		if (out_end)
856 			*out_end = base + size - 1;
857 
858 		*idx += 1;
859 		return;
860 	}
861 
862 	/* signal end of iteration */
863 	*idx = ULLONG_MAX;
864 }
865 
866 /**
867  * __next__mem_range - next function for for_each_free_mem_range() etc.
868  * @idx: pointer to u64 loop variable
869  * @nid: node selector, %NUMA_NO_NODE for all nodes
870  * @flags: pick from blocks based on memory attributes
871  * @type_a: pointer to memblock_type from where the range is taken
872  * @type_b: pointer to memblock_type which excludes memory from being taken
873  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
874  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
875  * @out_nid: ptr to int for nid of the range, can be %NULL
876  *
877  * Find the first area from *@idx which matches @nid, fill the out
878  * parameters, and update *@idx for the next iteration.  The lower 32bit of
879  * *@idx contains index into type_a and the upper 32bit indexes the
880  * areas before each region in type_b.	For example, if type_b regions
881  * look like the following,
882  *
883  *	0:[0-16), 1:[32-48), 2:[128-130)
884  *
885  * The upper 32bit indexes the following regions.
886  *
887  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
888  *
889  * As both region arrays are sorted, the function advances the two indices
890  * in lockstep and returns each intersection.
891  */
892 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
893 				      struct memblock_type *type_a,
894 				      struct memblock_type *type_b,
895 				      phys_addr_t *out_start,
896 				      phys_addr_t *out_end, int *out_nid)
897 {
898 	int idx_a = *idx & 0xffffffff;
899 	int idx_b = *idx >> 32;
900 
901 	if (WARN_ONCE(nid == MAX_NUMNODES,
902 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
903 		nid = NUMA_NO_NODE;
904 
905 	for (; idx_a < type_a->cnt; idx_a++) {
906 		struct memblock_region *m = &type_a->regions[idx_a];
907 
908 		phys_addr_t m_start = m->base;
909 		phys_addr_t m_end = m->base + m->size;
910 		int	    m_nid = memblock_get_region_node(m);
911 
912 		/* only memory regions are associated with nodes, check it */
913 		if (nid != NUMA_NO_NODE && nid != m_nid)
914 			continue;
915 
916 		/* skip hotpluggable memory regions if needed */
917 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
918 			continue;
919 
920 		/* if we want mirror memory skip non-mirror memory regions */
921 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
922 			continue;
923 
924 		/* skip nomap memory unless we were asked for it explicitly */
925 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
926 			continue;
927 
928 		if (!type_b) {
929 			if (out_start)
930 				*out_start = m_start;
931 			if (out_end)
932 				*out_end = m_end;
933 			if (out_nid)
934 				*out_nid = m_nid;
935 			idx_a++;
936 			*idx = (u32)idx_a | (u64)idx_b << 32;
937 			return;
938 		}
939 
940 		/* scan areas before each reservation */
941 		for (; idx_b < type_b->cnt + 1; idx_b++) {
942 			struct memblock_region *r;
943 			phys_addr_t r_start;
944 			phys_addr_t r_end;
945 
946 			r = &type_b->regions[idx_b];
947 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
948 			r_end = idx_b < type_b->cnt ?
949 				r->base : ULLONG_MAX;
950 
951 			/*
952 			 * if idx_b advanced past idx_a,
953 			 * break out to advance idx_a
954 			 */
955 			if (r_start >= m_end)
956 				break;
957 			/* if the two regions intersect, we're done */
958 			if (m_start < r_end) {
959 				if (out_start)
960 					*out_start =
961 						max(m_start, r_start);
962 				if (out_end)
963 					*out_end = min(m_end, r_end);
964 				if (out_nid)
965 					*out_nid = m_nid;
966 				/*
967 				 * The region which ends first is
968 				 * advanced for the next iteration.
969 				 */
970 				if (m_end <= r_end)
971 					idx_a++;
972 				else
973 					idx_b++;
974 				*idx = (u32)idx_a | (u64)idx_b << 32;
975 				return;
976 			}
977 		}
978 	}
979 
980 	/* signal end of iteration */
981 	*idx = ULLONG_MAX;
982 }
983 
984 /**
985  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
986  *
987  * Finds the next range from type_a which is not marked as unsuitable
988  * in type_b.
989  *
990  * @idx: pointer to u64 loop variable
991  * @nid: node selector, %NUMA_NO_NODE for all nodes
992  * @flags: pick from blocks based on memory attributes
993  * @type_a: pointer to memblock_type from where the range is taken
994  * @type_b: pointer to memblock_type which excludes memory from being taken
995  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
996  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
997  * @out_nid: ptr to int for nid of the range, can be %NULL
998  *
999  * Reverse of __next_mem_range().
1000  */
1001 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
1002 					  struct memblock_type *type_a,
1003 					  struct memblock_type *type_b,
1004 					  phys_addr_t *out_start,
1005 					  phys_addr_t *out_end, int *out_nid)
1006 {
1007 	int idx_a = *idx & 0xffffffff;
1008 	int idx_b = *idx >> 32;
1009 
1010 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1011 		nid = NUMA_NO_NODE;
1012 
1013 	if (*idx == (u64)ULLONG_MAX) {
1014 		idx_a = type_a->cnt - 1;
1015 		idx_b = type_b->cnt;
1016 	}
1017 
1018 	for (; idx_a >= 0; idx_a--) {
1019 		struct memblock_region *m = &type_a->regions[idx_a];
1020 
1021 		phys_addr_t m_start = m->base;
1022 		phys_addr_t m_end = m->base + m->size;
1023 		int m_nid = memblock_get_region_node(m);
1024 
1025 		/* only memory regions are associated with nodes, check it */
1026 		if (nid != NUMA_NO_NODE && nid != m_nid)
1027 			continue;
1028 
1029 		/* skip hotpluggable memory regions if needed */
1030 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1031 			continue;
1032 
1033 		/* if we want mirror memory skip non-mirror memory regions */
1034 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1035 			continue;
1036 
1037 		/* skip nomap memory unless we were asked for it explicitly */
1038 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1039 			continue;
1040 
1041 		if (!type_b) {
1042 			if (out_start)
1043 				*out_start = m_start;
1044 			if (out_end)
1045 				*out_end = m_end;
1046 			if (out_nid)
1047 				*out_nid = m_nid;
1048 			idx_a++;
1049 			*idx = (u32)idx_a | (u64)idx_b << 32;
1050 			return;
1051 		}
1052 
1053 		/* scan areas before each reservation */
1054 		for (; idx_b >= 0; idx_b--) {
1055 			struct memblock_region *r;
1056 			phys_addr_t r_start;
1057 			phys_addr_t r_end;
1058 
1059 			r = &type_b->regions[idx_b];
1060 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1061 			r_end = idx_b < type_b->cnt ?
1062 				r->base : ULLONG_MAX;
1063 			/*
1064 			 * if idx_b advanced past idx_a,
1065 			 * break out to advance idx_a
1066 			 */
1067 
1068 			if (r_end <= m_start)
1069 				break;
1070 			/* if the two regions intersect, we're done */
1071 			if (m_end > r_start) {
1072 				if (out_start)
1073 					*out_start = max(m_start, r_start);
1074 				if (out_end)
1075 					*out_end = min(m_end, r_end);
1076 				if (out_nid)
1077 					*out_nid = m_nid;
1078 				if (m_start >= r_start)
1079 					idx_a--;
1080 				else
1081 					idx_b--;
1082 				*idx = (u32)idx_a | (u64)idx_b << 32;
1083 				return;
1084 			}
1085 		}
1086 	}
1087 	/* signal end of iteration */
1088 	*idx = ULLONG_MAX;
1089 }
1090 
1091 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1092 /*
1093  * Common iterator interface used to define for_each_mem_range().
1094  */
1095 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1096 				unsigned long *out_start_pfn,
1097 				unsigned long *out_end_pfn, int *out_nid)
1098 {
1099 	struct memblock_type *type = &memblock.memory;
1100 	struct memblock_region *r;
1101 
1102 	while (++*idx < type->cnt) {
1103 		r = &type->regions[*idx];
1104 
1105 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1106 			continue;
1107 		if (nid == MAX_NUMNODES || nid == r->nid)
1108 			break;
1109 	}
1110 	if (*idx >= type->cnt) {
1111 		*idx = -1;
1112 		return;
1113 	}
1114 
1115 	if (out_start_pfn)
1116 		*out_start_pfn = PFN_UP(r->base);
1117 	if (out_end_pfn)
1118 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1119 	if (out_nid)
1120 		*out_nid = r->nid;
1121 }
1122 
1123 /**
1124  * memblock_set_node - set node ID on memblock regions
1125  * @base: base of area to set node ID for
1126  * @size: size of area to set node ID for
1127  * @type: memblock type to set node ID for
1128  * @nid: node ID to set
1129  *
1130  * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1131  * Regions which cross the area boundaries are split as necessary.
1132  *
1133  * RETURNS:
1134  * 0 on success, -errno on failure.
1135  */
1136 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1137 				      struct memblock_type *type, int nid)
1138 {
1139 	int start_rgn, end_rgn;
1140 	int i, ret;
1141 
1142 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1143 	if (ret)
1144 		return ret;
1145 
1146 	for (i = start_rgn; i < end_rgn; i++)
1147 		memblock_set_region_node(&type->regions[i], nid);
1148 
1149 	memblock_merge_regions(type);
1150 	return 0;
1151 }
1152 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1153 
1154 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1155 					phys_addr_t align, phys_addr_t start,
1156 					phys_addr_t end, int nid, ulong flags)
1157 {
1158 	phys_addr_t found;
1159 
1160 	if (!align)
1161 		align = SMP_CACHE_BYTES;
1162 
1163 	found = memblock_find_in_range_node(size, align, start, end, nid,
1164 					    flags);
1165 	if (found && !memblock_reserve(found, size)) {
1166 		/*
1167 		 * The min_count is set to 0 so that memblock allocations are
1168 		 * never reported as leaks.
1169 		 */
1170 		kmemleak_alloc(__va(found), size, 0, 0);
1171 		return found;
1172 	}
1173 	return 0;
1174 }
1175 
1176 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1177 					phys_addr_t start, phys_addr_t end,
1178 					ulong flags)
1179 {
1180 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1181 					flags);
1182 }
1183 
1184 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1185 					phys_addr_t align, phys_addr_t max_addr,
1186 					int nid, ulong flags)
1187 {
1188 	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1189 }
1190 
1191 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1192 {
1193 	ulong flags = choose_memblock_flags();
1194 	phys_addr_t ret;
1195 
1196 again:
1197 	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1198 				      nid, flags);
1199 
1200 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1201 		flags &= ~MEMBLOCK_MIRROR;
1202 		goto again;
1203 	}
1204 	return ret;
1205 }
1206 
1207 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1208 {
1209 	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1210 				       MEMBLOCK_NONE);
1211 }
1212 
1213 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1214 {
1215 	phys_addr_t alloc;
1216 
1217 	alloc = __memblock_alloc_base(size, align, max_addr);
1218 
1219 	if (alloc == 0)
1220 		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1221 		      (unsigned long long) size, (unsigned long long) max_addr);
1222 
1223 	return alloc;
1224 }
1225 
1226 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1227 {
1228 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1229 }
1230 
1231 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1232 {
1233 	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1234 
1235 	if (res)
1236 		return res;
1237 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1238 }
1239 
1240 /**
1241  * memblock_virt_alloc_internal - allocate boot memory block
1242  * @size: size of memory block to be allocated in bytes
1243  * @align: alignment of the region and block's size
1244  * @min_addr: the lower bound of the memory region to allocate (phys address)
1245  * @max_addr: the upper bound of the memory region to allocate (phys address)
1246  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1247  *
1248  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1249  * will fall back to memory below @min_addr. Also, allocation may fall back
1250  * to any node in the system if the specified node can not
1251  * hold the requested memory.
1252  *
1253  * The allocation is performed from memory region limited by
1254  * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1255  *
1256  * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1257  *
1258  * The phys address of allocated boot memory block is converted to virtual and
1259  * allocated memory is reset to 0.
1260  *
1261  * In addition, function sets the min_count to 0 using kmemleak_alloc for
1262  * allocated boot memory block, so that it is never reported as leaks.
1263  *
1264  * RETURNS:
1265  * Virtual address of allocated memory block on success, NULL on failure.
1266  */
1267 static void * __init memblock_virt_alloc_internal(
1268 				phys_addr_t size, phys_addr_t align,
1269 				phys_addr_t min_addr, phys_addr_t max_addr,
1270 				int nid)
1271 {
1272 	phys_addr_t alloc;
1273 	void *ptr;
1274 	ulong flags = choose_memblock_flags();
1275 
1276 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1277 		nid = NUMA_NO_NODE;
1278 
1279 	/*
1280 	 * Detect any accidental use of these APIs after slab is ready, as at
1281 	 * this moment memblock may be deinitialized already and its
1282 	 * internal data may be destroyed (after execution of free_all_bootmem)
1283 	 */
1284 	if (WARN_ON_ONCE(slab_is_available()))
1285 		return kzalloc_node(size, GFP_NOWAIT, nid);
1286 
1287 	if (!align)
1288 		align = SMP_CACHE_BYTES;
1289 
1290 	if (max_addr > memblock.current_limit)
1291 		max_addr = memblock.current_limit;
1292 
1293 again:
1294 	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1295 					    nid, flags);
1296 	if (alloc)
1297 		goto done;
1298 
1299 	if (nid != NUMA_NO_NODE) {
1300 		alloc = memblock_find_in_range_node(size, align, min_addr,
1301 						    max_addr, NUMA_NO_NODE,
1302 						    flags);
1303 		if (alloc)
1304 			goto done;
1305 	}
1306 
1307 	if (min_addr) {
1308 		min_addr = 0;
1309 		goto again;
1310 	}
1311 
1312 	if (flags & MEMBLOCK_MIRROR) {
1313 		flags &= ~MEMBLOCK_MIRROR;
1314 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1315 			&size);
1316 		goto again;
1317 	}
1318 
1319 	return NULL;
1320 done:
1321 	memblock_reserve(alloc, size);
1322 	ptr = phys_to_virt(alloc);
1323 	memset(ptr, 0, size);
1324 
1325 	/*
1326 	 * The min_count is set to 0 so that bootmem allocated blocks
1327 	 * are never reported as leaks. This is because many of these blocks
1328 	 * are only referred via the physical address which is not
1329 	 * looked up by kmemleak.
1330 	 */
1331 	kmemleak_alloc(ptr, size, 0, 0);
1332 
1333 	return ptr;
1334 }
1335 
1336 /**
1337  * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1338  * @size: size of memory block to be allocated in bytes
1339  * @align: alignment of the region and block's size
1340  * @min_addr: the lower bound of the memory region from where the allocation
1341  *	  is preferred (phys address)
1342  * @max_addr: the upper bound of the memory region from where the allocation
1343  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1344  *	      allocate only from memory limited by memblock.current_limit value
1345  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1346  *
1347  * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1348  * additional debug information (including caller info), if enabled.
1349  *
1350  * RETURNS:
1351  * Virtual address of allocated memory block on success, NULL on failure.
1352  */
1353 void * __init memblock_virt_alloc_try_nid_nopanic(
1354 				phys_addr_t size, phys_addr_t align,
1355 				phys_addr_t min_addr, phys_addr_t max_addr,
1356 				int nid)
1357 {
1358 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1359 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1360 		     (u64)max_addr, (void *)_RET_IP_);
1361 	return memblock_virt_alloc_internal(size, align, min_addr,
1362 					     max_addr, nid);
1363 }
1364 
1365 /**
1366  * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1367  * @size: size of memory block to be allocated in bytes
1368  * @align: alignment of the region and block's size
1369  * @min_addr: the lower bound of the memory region from where the allocation
1370  *	  is preferred (phys address)
1371  * @max_addr: the upper bound of the memory region from where the allocation
1372  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1373  *	      allocate only from memory limited by memblock.current_limit value
1374  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1375  *
1376  * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1377  * which provides debug information (including caller info), if enabled,
1378  * and panics if the request can not be satisfied.
1379  *
1380  * RETURNS:
1381  * Virtual address of allocated memory block on success, NULL on failure.
1382  */
1383 void * __init memblock_virt_alloc_try_nid(
1384 			phys_addr_t size, phys_addr_t align,
1385 			phys_addr_t min_addr, phys_addr_t max_addr,
1386 			int nid)
1387 {
1388 	void *ptr;
1389 
1390 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1391 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1392 		     (u64)max_addr, (void *)_RET_IP_);
1393 	ptr = memblock_virt_alloc_internal(size, align,
1394 					   min_addr, max_addr, nid);
1395 	if (ptr)
1396 		return ptr;
1397 
1398 	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1399 	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1400 	      (u64)max_addr);
1401 	return NULL;
1402 }
1403 
1404 /**
1405  * __memblock_free_early - free boot memory block
1406  * @base: phys starting address of the  boot memory block
1407  * @size: size of the boot memory block in bytes
1408  *
1409  * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1410  * The freeing memory will not be released to the buddy allocator.
1411  */
1412 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1413 {
1414 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1415 		     __func__, (u64)base, (u64)base + size - 1,
1416 		     (void *)_RET_IP_);
1417 	kmemleak_free_part(__va(base), size);
1418 	memblock_remove_range(&memblock.reserved, base, size);
1419 }
1420 
1421 /*
1422  * __memblock_free_late - free bootmem block pages directly to buddy allocator
1423  * @addr: phys starting address of the  boot memory block
1424  * @size: size of the boot memory block in bytes
1425  *
1426  * This is only useful when the bootmem allocator has already been torn
1427  * down, but we are still initializing the system.  Pages are released directly
1428  * to the buddy allocator, no bootmem metadata is updated because it is gone.
1429  */
1430 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1431 {
1432 	u64 cursor, end;
1433 
1434 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1435 		     __func__, (u64)base, (u64)base + size - 1,
1436 		     (void *)_RET_IP_);
1437 	kmemleak_free_part(__va(base), size);
1438 	cursor = PFN_UP(base);
1439 	end = PFN_DOWN(base + size);
1440 
1441 	for (; cursor < end; cursor++) {
1442 		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1443 		totalram_pages++;
1444 	}
1445 }
1446 
1447 /*
1448  * Remaining API functions
1449  */
1450 
1451 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1452 {
1453 	return memblock.memory.total_size;
1454 }
1455 
1456 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1457 {
1458 	unsigned long pages = 0;
1459 	struct memblock_region *r;
1460 	unsigned long start_pfn, end_pfn;
1461 
1462 	for_each_memblock(memory, r) {
1463 		start_pfn = memblock_region_memory_base_pfn(r);
1464 		end_pfn = memblock_region_memory_end_pfn(r);
1465 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1466 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1467 		pages += end_pfn - start_pfn;
1468 	}
1469 
1470 	return PFN_PHYS(pages);
1471 }
1472 
1473 /* lowest address */
1474 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1475 {
1476 	return memblock.memory.regions[0].base;
1477 }
1478 
1479 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1480 {
1481 	int idx = memblock.memory.cnt - 1;
1482 
1483 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1484 }
1485 
1486 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1487 {
1488 	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1489 	struct memblock_region *r;
1490 
1491 	if (!limit)
1492 		return;
1493 
1494 	/* find out max address */
1495 	for_each_memblock(memory, r) {
1496 		if (limit <= r->size) {
1497 			max_addr = r->base + limit;
1498 			break;
1499 		}
1500 		limit -= r->size;
1501 	}
1502 
1503 	/* truncate both memory and reserved regions */
1504 	memblock_remove_range(&memblock.memory, max_addr,
1505 			      (phys_addr_t)ULLONG_MAX);
1506 	memblock_remove_range(&memblock.reserved, max_addr,
1507 			      (phys_addr_t)ULLONG_MAX);
1508 }
1509 
1510 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1511 {
1512 	unsigned int left = 0, right = type->cnt;
1513 
1514 	do {
1515 		unsigned int mid = (right + left) / 2;
1516 
1517 		if (addr < type->regions[mid].base)
1518 			right = mid;
1519 		else if (addr >= (type->regions[mid].base +
1520 				  type->regions[mid].size))
1521 			left = mid + 1;
1522 		else
1523 			return mid;
1524 	} while (left < right);
1525 	return -1;
1526 }
1527 
1528 bool __init memblock_is_reserved(phys_addr_t addr)
1529 {
1530 	return memblock_search(&memblock.reserved, addr) != -1;
1531 }
1532 
1533 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1534 {
1535 	return memblock_search(&memblock.memory, addr) != -1;
1536 }
1537 
1538 int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1539 {
1540 	int i = memblock_search(&memblock.memory, addr);
1541 
1542 	if (i == -1)
1543 		return false;
1544 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1545 }
1546 
1547 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1548 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1549 			 unsigned long *start_pfn, unsigned long *end_pfn)
1550 {
1551 	struct memblock_type *type = &memblock.memory;
1552 	int mid = memblock_search(type, PFN_PHYS(pfn));
1553 
1554 	if (mid == -1)
1555 		return -1;
1556 
1557 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1558 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1559 
1560 	return type->regions[mid].nid;
1561 }
1562 #endif
1563 
1564 /**
1565  * memblock_is_region_memory - check if a region is a subset of memory
1566  * @base: base of region to check
1567  * @size: size of region to check
1568  *
1569  * Check if the region [@base, @base+@size) is a subset of a memory block.
1570  *
1571  * RETURNS:
1572  * 0 if false, non-zero if true
1573  */
1574 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1575 {
1576 	int idx = memblock_search(&memblock.memory, base);
1577 	phys_addr_t end = base + memblock_cap_size(base, &size);
1578 
1579 	if (idx == -1)
1580 		return 0;
1581 	return memblock.memory.regions[idx].base <= base &&
1582 		(memblock.memory.regions[idx].base +
1583 		 memblock.memory.regions[idx].size) >= end;
1584 }
1585 
1586 /**
1587  * memblock_is_region_reserved - check if a region intersects reserved memory
1588  * @base: base of region to check
1589  * @size: size of region to check
1590  *
1591  * Check if the region [@base, @base+@size) intersects a reserved memory block.
1592  *
1593  * RETURNS:
1594  * True if they intersect, false if not.
1595  */
1596 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1597 {
1598 	memblock_cap_size(base, &size);
1599 	return memblock_overlaps_region(&memblock.reserved, base, size);
1600 }
1601 
1602 void __init_memblock memblock_trim_memory(phys_addr_t align)
1603 {
1604 	phys_addr_t start, end, orig_start, orig_end;
1605 	struct memblock_region *r;
1606 
1607 	for_each_memblock(memory, r) {
1608 		orig_start = r->base;
1609 		orig_end = r->base + r->size;
1610 		start = round_up(orig_start, align);
1611 		end = round_down(orig_end, align);
1612 
1613 		if (start == orig_start && end == orig_end)
1614 			continue;
1615 
1616 		if (start < end) {
1617 			r->base = start;
1618 			r->size = end - start;
1619 		} else {
1620 			memblock_remove_region(&memblock.memory,
1621 					       r - memblock.memory.regions);
1622 			r--;
1623 		}
1624 	}
1625 }
1626 
1627 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1628 {
1629 	memblock.current_limit = limit;
1630 }
1631 
1632 phys_addr_t __init_memblock memblock_get_current_limit(void)
1633 {
1634 	return memblock.current_limit;
1635 }
1636 
1637 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1638 {
1639 	unsigned long long base, size;
1640 	unsigned long flags;
1641 	int idx;
1642 	struct memblock_region *rgn;
1643 
1644 	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
1645 
1646 	for_each_memblock_type(type, rgn) {
1647 		char nid_buf[32] = "";
1648 
1649 		base = rgn->base;
1650 		size = rgn->size;
1651 		flags = rgn->flags;
1652 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1653 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1654 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1655 				 memblock_get_region_node(rgn));
1656 #endif
1657 		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1658 			name, idx, base, base + size - 1, size, nid_buf, flags);
1659 	}
1660 }
1661 
1662 void __init_memblock __memblock_dump_all(void)
1663 {
1664 	pr_info("MEMBLOCK configuration:\n");
1665 	pr_info(" memory size = %#llx reserved size = %#llx\n",
1666 		(unsigned long long)memblock.memory.total_size,
1667 		(unsigned long long)memblock.reserved.total_size);
1668 
1669 	memblock_dump(&memblock.memory, "memory");
1670 	memblock_dump(&memblock.reserved, "reserved");
1671 }
1672 
1673 void __init memblock_allow_resize(void)
1674 {
1675 	memblock_can_resize = 1;
1676 }
1677 
1678 static int __init early_memblock(char *p)
1679 {
1680 	if (p && strstr(p, "debug"))
1681 		memblock_debug = 1;
1682 	return 0;
1683 }
1684 early_param("memblock", early_memblock);
1685 
1686 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1687 
1688 static int memblock_debug_show(struct seq_file *m, void *private)
1689 {
1690 	struct memblock_type *type = m->private;
1691 	struct memblock_region *reg;
1692 	int i;
1693 
1694 	for (i = 0; i < type->cnt; i++) {
1695 		reg = &type->regions[i];
1696 		seq_printf(m, "%4d: ", i);
1697 		if (sizeof(phys_addr_t) == 4)
1698 			seq_printf(m, "0x%08lx..0x%08lx\n",
1699 				   (unsigned long)reg->base,
1700 				   (unsigned long)(reg->base + reg->size - 1));
1701 		else
1702 			seq_printf(m, "0x%016llx..0x%016llx\n",
1703 				   (unsigned long long)reg->base,
1704 				   (unsigned long long)(reg->base + reg->size - 1));
1705 
1706 	}
1707 	return 0;
1708 }
1709 
1710 static int memblock_debug_open(struct inode *inode, struct file *file)
1711 {
1712 	return single_open(file, memblock_debug_show, inode->i_private);
1713 }
1714 
1715 static const struct file_operations memblock_debug_fops = {
1716 	.open = memblock_debug_open,
1717 	.read = seq_read,
1718 	.llseek = seq_lseek,
1719 	.release = single_release,
1720 };
1721 
1722 static int __init memblock_init_debugfs(void)
1723 {
1724 	struct dentry *root = debugfs_create_dir("memblock", NULL);
1725 	if (!root)
1726 		return -ENXIO;
1727 	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1728 	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1729 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1730 	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1731 #endif
1732 
1733 	return 0;
1734 }
1735 __initcall(memblock_init_debugfs);
1736 
1737 #endif /* CONFIG_DEBUG_FS */
1738