1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/seq_file.h> 21 #include <linux/memblock.h> 22 23 #include <asm-generic/sections.h> 24 #include <linux/io.h> 25 26 #include "internal.h" 27 28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock; 32 #endif 33 34 struct memblock memblock __initdata_memblock = { 35 .memory.regions = memblock_memory_init_regions, 36 .memory.cnt = 1, /* empty dummy entry */ 37 .memory.max = INIT_MEMBLOCK_REGIONS, 38 39 .reserved.regions = memblock_reserved_init_regions, 40 .reserved.cnt = 1, /* empty dummy entry */ 41 .reserved.max = INIT_MEMBLOCK_REGIONS, 42 43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 44 .physmem.regions = memblock_physmem_init_regions, 45 .physmem.cnt = 1, /* empty dummy entry */ 46 .physmem.max = INIT_PHYSMEM_REGIONS, 47 #endif 48 49 .bottom_up = false, 50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 51 }; 52 53 int memblock_debug __initdata_memblock; 54 #ifdef CONFIG_MOVABLE_NODE 55 bool movable_node_enabled __initdata_memblock = false; 56 #endif 57 static bool system_has_some_mirror __initdata_memblock = false; 58 static int memblock_can_resize __initdata_memblock; 59 static int memblock_memory_in_slab __initdata_memblock = 0; 60 static int memblock_reserved_in_slab __initdata_memblock = 0; 61 62 ulong __init_memblock choose_memblock_flags(void) 63 { 64 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 65 } 66 67 /* inline so we don't get a warning when pr_debug is compiled out */ 68 static __init_memblock const char * 69 memblock_type_name(struct memblock_type *type) 70 { 71 if (type == &memblock.memory) 72 return "memory"; 73 else if (type == &memblock.reserved) 74 return "reserved"; 75 else 76 return "unknown"; 77 } 78 79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 80 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 81 { 82 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); 83 } 84 85 /* 86 * Address comparison utilities 87 */ 88 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 89 phys_addr_t base2, phys_addr_t size2) 90 { 91 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 92 } 93 94 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 95 phys_addr_t base, phys_addr_t size) 96 { 97 unsigned long i; 98 99 for (i = 0; i < type->cnt; i++) { 100 phys_addr_t rgnbase = type->regions[i].base; 101 phys_addr_t rgnsize = type->regions[i].size; 102 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) 103 break; 104 } 105 106 return i < type->cnt; 107 } 108 109 /* 110 * __memblock_find_range_bottom_up - find free area utility in bottom-up 111 * @start: start of candidate range 112 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 113 * @size: size of free area to find 114 * @align: alignment of free area to find 115 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 116 * @flags: pick from blocks based on memory attributes 117 * 118 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 119 * 120 * RETURNS: 121 * Found address on success, 0 on failure. 122 */ 123 static phys_addr_t __init_memblock 124 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 125 phys_addr_t size, phys_addr_t align, int nid, 126 ulong flags) 127 { 128 phys_addr_t this_start, this_end, cand; 129 u64 i; 130 131 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 132 this_start = clamp(this_start, start, end); 133 this_end = clamp(this_end, start, end); 134 135 cand = round_up(this_start, align); 136 if (cand < this_end && this_end - cand >= size) 137 return cand; 138 } 139 140 return 0; 141 } 142 143 /** 144 * __memblock_find_range_top_down - find free area utility, in top-down 145 * @start: start of candidate range 146 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 147 * @size: size of free area to find 148 * @align: alignment of free area to find 149 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 150 * @flags: pick from blocks based on memory attributes 151 * 152 * Utility called from memblock_find_in_range_node(), find free area top-down. 153 * 154 * RETURNS: 155 * Found address on success, 0 on failure. 156 */ 157 static phys_addr_t __init_memblock 158 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 159 phys_addr_t size, phys_addr_t align, int nid, 160 ulong flags) 161 { 162 phys_addr_t this_start, this_end, cand; 163 u64 i; 164 165 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 166 NULL) { 167 this_start = clamp(this_start, start, end); 168 this_end = clamp(this_end, start, end); 169 170 if (this_end < size) 171 continue; 172 173 cand = round_down(this_end - size, align); 174 if (cand >= this_start) 175 return cand; 176 } 177 178 return 0; 179 } 180 181 /** 182 * memblock_find_in_range_node - find free area in given range and node 183 * @size: size of free area to find 184 * @align: alignment of free area to find 185 * @start: start of candidate range 186 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 187 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 188 * @flags: pick from blocks based on memory attributes 189 * 190 * Find @size free area aligned to @align in the specified range and node. 191 * 192 * When allocation direction is bottom-up, the @start should be greater 193 * than the end of the kernel image. Otherwise, it will be trimmed. The 194 * reason is that we want the bottom-up allocation just near the kernel 195 * image so it is highly likely that the allocated memory and the kernel 196 * will reside in the same node. 197 * 198 * If bottom-up allocation failed, will try to allocate memory top-down. 199 * 200 * RETURNS: 201 * Found address on success, 0 on failure. 202 */ 203 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 204 phys_addr_t align, phys_addr_t start, 205 phys_addr_t end, int nid, ulong flags) 206 { 207 phys_addr_t kernel_end, ret; 208 209 /* pump up @end */ 210 if (end == MEMBLOCK_ALLOC_ACCESSIBLE) 211 end = memblock.current_limit; 212 213 /* avoid allocating the first page */ 214 start = max_t(phys_addr_t, start, PAGE_SIZE); 215 end = max(start, end); 216 kernel_end = __pa_symbol(_end); 217 218 /* 219 * try bottom-up allocation only when bottom-up mode 220 * is set and @end is above the kernel image. 221 */ 222 if (memblock_bottom_up() && end > kernel_end) { 223 phys_addr_t bottom_up_start; 224 225 /* make sure we will allocate above the kernel */ 226 bottom_up_start = max(start, kernel_end); 227 228 /* ok, try bottom-up allocation first */ 229 ret = __memblock_find_range_bottom_up(bottom_up_start, end, 230 size, align, nid, flags); 231 if (ret) 232 return ret; 233 234 /* 235 * we always limit bottom-up allocation above the kernel, 236 * but top-down allocation doesn't have the limit, so 237 * retrying top-down allocation may succeed when bottom-up 238 * allocation failed. 239 * 240 * bottom-up allocation is expected to be fail very rarely, 241 * so we use WARN_ONCE() here to see the stack trace if 242 * fail happens. 243 */ 244 WARN_ONCE(1, "memblock: bottom-up allocation failed, " 245 "memory hotunplug may be affected\n"); 246 } 247 248 return __memblock_find_range_top_down(start, end, size, align, nid, 249 flags); 250 } 251 252 /** 253 * memblock_find_in_range - find free area in given range 254 * @start: start of candidate range 255 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 256 * @size: size of free area to find 257 * @align: alignment of free area to find 258 * 259 * Find @size free area aligned to @align in the specified range. 260 * 261 * RETURNS: 262 * Found address on success, 0 on failure. 263 */ 264 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 265 phys_addr_t end, phys_addr_t size, 266 phys_addr_t align) 267 { 268 phys_addr_t ret; 269 ulong flags = choose_memblock_flags(); 270 271 again: 272 ret = memblock_find_in_range_node(size, align, start, end, 273 NUMA_NO_NODE, flags); 274 275 if (!ret && (flags & MEMBLOCK_MIRROR)) { 276 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 277 &size); 278 flags &= ~MEMBLOCK_MIRROR; 279 goto again; 280 } 281 282 return ret; 283 } 284 285 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 286 { 287 type->total_size -= type->regions[r].size; 288 memmove(&type->regions[r], &type->regions[r + 1], 289 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 290 type->cnt--; 291 292 /* Special case for empty arrays */ 293 if (type->cnt == 0) { 294 WARN_ON(type->total_size != 0); 295 type->cnt = 1; 296 type->regions[0].base = 0; 297 type->regions[0].size = 0; 298 type->regions[0].flags = 0; 299 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 300 } 301 } 302 303 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 304 305 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( 306 phys_addr_t *addr) 307 { 308 if (memblock.reserved.regions == memblock_reserved_init_regions) 309 return 0; 310 311 *addr = __pa(memblock.reserved.regions); 312 313 return PAGE_ALIGN(sizeof(struct memblock_region) * 314 memblock.reserved.max); 315 } 316 317 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info( 318 phys_addr_t *addr) 319 { 320 if (memblock.memory.regions == memblock_memory_init_regions) 321 return 0; 322 323 *addr = __pa(memblock.memory.regions); 324 325 return PAGE_ALIGN(sizeof(struct memblock_region) * 326 memblock.memory.max); 327 } 328 329 #endif 330 331 /** 332 * memblock_double_array - double the size of the memblock regions array 333 * @type: memblock type of the regions array being doubled 334 * @new_area_start: starting address of memory range to avoid overlap with 335 * @new_area_size: size of memory range to avoid overlap with 336 * 337 * Double the size of the @type regions array. If memblock is being used to 338 * allocate memory for a new reserved regions array and there is a previously 339 * allocated memory range [@new_area_start,@new_area_start+@new_area_size] 340 * waiting to be reserved, ensure the memory used by the new array does 341 * not overlap. 342 * 343 * RETURNS: 344 * 0 on success, -1 on failure. 345 */ 346 static int __init_memblock memblock_double_array(struct memblock_type *type, 347 phys_addr_t new_area_start, 348 phys_addr_t new_area_size) 349 { 350 struct memblock_region *new_array, *old_array; 351 phys_addr_t old_alloc_size, new_alloc_size; 352 phys_addr_t old_size, new_size, addr; 353 int use_slab = slab_is_available(); 354 int *in_slab; 355 356 /* We don't allow resizing until we know about the reserved regions 357 * of memory that aren't suitable for allocation 358 */ 359 if (!memblock_can_resize) 360 return -1; 361 362 /* Calculate new doubled size */ 363 old_size = type->max * sizeof(struct memblock_region); 364 new_size = old_size << 1; 365 /* 366 * We need to allocated new one align to PAGE_SIZE, 367 * so we can free them completely later. 368 */ 369 old_alloc_size = PAGE_ALIGN(old_size); 370 new_alloc_size = PAGE_ALIGN(new_size); 371 372 /* Retrieve the slab flag */ 373 if (type == &memblock.memory) 374 in_slab = &memblock_memory_in_slab; 375 else 376 in_slab = &memblock_reserved_in_slab; 377 378 /* Try to find some space for it. 379 * 380 * WARNING: We assume that either slab_is_available() and we use it or 381 * we use MEMBLOCK for allocations. That means that this is unsafe to 382 * use when bootmem is currently active (unless bootmem itself is 383 * implemented on top of MEMBLOCK which isn't the case yet) 384 * 385 * This should however not be an issue for now, as we currently only 386 * call into MEMBLOCK while it's still active, or much later when slab 387 * is active for memory hotplug operations 388 */ 389 if (use_slab) { 390 new_array = kmalloc(new_size, GFP_KERNEL); 391 addr = new_array ? __pa(new_array) : 0; 392 } else { 393 /* only exclude range when trying to double reserved.regions */ 394 if (type != &memblock.reserved) 395 new_area_start = new_area_size = 0; 396 397 addr = memblock_find_in_range(new_area_start + new_area_size, 398 memblock.current_limit, 399 new_alloc_size, PAGE_SIZE); 400 if (!addr && new_area_size) 401 addr = memblock_find_in_range(0, 402 min(new_area_start, memblock.current_limit), 403 new_alloc_size, PAGE_SIZE); 404 405 new_array = addr ? __va(addr) : NULL; 406 } 407 if (!addr) { 408 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 409 memblock_type_name(type), type->max, type->max * 2); 410 return -1; 411 } 412 413 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]", 414 memblock_type_name(type), type->max * 2, (u64)addr, 415 (u64)addr + new_size - 1); 416 417 /* 418 * Found space, we now need to move the array over before we add the 419 * reserved region since it may be our reserved array itself that is 420 * full. 421 */ 422 memcpy(new_array, type->regions, old_size); 423 memset(new_array + type->max, 0, old_size); 424 old_array = type->regions; 425 type->regions = new_array; 426 type->max <<= 1; 427 428 /* Free old array. We needn't free it if the array is the static one */ 429 if (*in_slab) 430 kfree(old_array); 431 else if (old_array != memblock_memory_init_regions && 432 old_array != memblock_reserved_init_regions) 433 memblock_free(__pa(old_array), old_alloc_size); 434 435 /* 436 * Reserve the new array if that comes from the memblock. Otherwise, we 437 * needn't do it 438 */ 439 if (!use_slab) 440 BUG_ON(memblock_reserve(addr, new_alloc_size)); 441 442 /* Update slab flag */ 443 *in_slab = use_slab; 444 445 return 0; 446 } 447 448 /** 449 * memblock_merge_regions - merge neighboring compatible regions 450 * @type: memblock type to scan 451 * 452 * Scan @type and merge neighboring compatible regions. 453 */ 454 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 455 { 456 int i = 0; 457 458 /* cnt never goes below 1 */ 459 while (i < type->cnt - 1) { 460 struct memblock_region *this = &type->regions[i]; 461 struct memblock_region *next = &type->regions[i + 1]; 462 463 if (this->base + this->size != next->base || 464 memblock_get_region_node(this) != 465 memblock_get_region_node(next) || 466 this->flags != next->flags) { 467 BUG_ON(this->base + this->size > next->base); 468 i++; 469 continue; 470 } 471 472 this->size += next->size; 473 /* move forward from next + 1, index of which is i + 2 */ 474 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 475 type->cnt--; 476 } 477 } 478 479 /** 480 * memblock_insert_region - insert new memblock region 481 * @type: memblock type to insert into 482 * @idx: index for the insertion point 483 * @base: base address of the new region 484 * @size: size of the new region 485 * @nid: node id of the new region 486 * @flags: flags of the new region 487 * 488 * Insert new memblock region [@base,@base+@size) into @type at @idx. 489 * @type must already have extra room to accomodate the new region. 490 */ 491 static void __init_memblock memblock_insert_region(struct memblock_type *type, 492 int idx, phys_addr_t base, 493 phys_addr_t size, 494 int nid, unsigned long flags) 495 { 496 struct memblock_region *rgn = &type->regions[idx]; 497 498 BUG_ON(type->cnt >= type->max); 499 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 500 rgn->base = base; 501 rgn->size = size; 502 rgn->flags = flags; 503 memblock_set_region_node(rgn, nid); 504 type->cnt++; 505 type->total_size += size; 506 } 507 508 /** 509 * memblock_add_range - add new memblock region 510 * @type: memblock type to add new region into 511 * @base: base address of the new region 512 * @size: size of the new region 513 * @nid: nid of the new region 514 * @flags: flags of the new region 515 * 516 * Add new memblock region [@base,@base+@size) into @type. The new region 517 * is allowed to overlap with existing ones - overlaps don't affect already 518 * existing regions. @type is guaranteed to be minimal (all neighbouring 519 * compatible regions are merged) after the addition. 520 * 521 * RETURNS: 522 * 0 on success, -errno on failure. 523 */ 524 int __init_memblock memblock_add_range(struct memblock_type *type, 525 phys_addr_t base, phys_addr_t size, 526 int nid, unsigned long flags) 527 { 528 bool insert = false; 529 phys_addr_t obase = base; 530 phys_addr_t end = base + memblock_cap_size(base, &size); 531 int i, nr_new; 532 533 if (!size) 534 return 0; 535 536 /* special case for empty array */ 537 if (type->regions[0].size == 0) { 538 WARN_ON(type->cnt != 1 || type->total_size); 539 type->regions[0].base = base; 540 type->regions[0].size = size; 541 type->regions[0].flags = flags; 542 memblock_set_region_node(&type->regions[0], nid); 543 type->total_size = size; 544 return 0; 545 } 546 repeat: 547 /* 548 * The following is executed twice. Once with %false @insert and 549 * then with %true. The first counts the number of regions needed 550 * to accomodate the new area. The second actually inserts them. 551 */ 552 base = obase; 553 nr_new = 0; 554 555 for (i = 0; i < type->cnt; i++) { 556 struct memblock_region *rgn = &type->regions[i]; 557 phys_addr_t rbase = rgn->base; 558 phys_addr_t rend = rbase + rgn->size; 559 560 if (rbase >= end) 561 break; 562 if (rend <= base) 563 continue; 564 /* 565 * @rgn overlaps. If it separates the lower part of new 566 * area, insert that portion. 567 */ 568 if (rbase > base) { 569 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 570 WARN_ON(nid != memblock_get_region_node(rgn)); 571 #endif 572 WARN_ON(flags != rgn->flags); 573 nr_new++; 574 if (insert) 575 memblock_insert_region(type, i++, base, 576 rbase - base, nid, 577 flags); 578 } 579 /* area below @rend is dealt with, forget about it */ 580 base = min(rend, end); 581 } 582 583 /* insert the remaining portion */ 584 if (base < end) { 585 nr_new++; 586 if (insert) 587 memblock_insert_region(type, i, base, end - base, 588 nid, flags); 589 } 590 591 /* 592 * If this was the first round, resize array and repeat for actual 593 * insertions; otherwise, merge and return. 594 */ 595 if (!insert) { 596 while (type->cnt + nr_new > type->max) 597 if (memblock_double_array(type, obase, size) < 0) 598 return -ENOMEM; 599 insert = true; 600 goto repeat; 601 } else { 602 memblock_merge_regions(type); 603 return 0; 604 } 605 } 606 607 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 608 int nid) 609 { 610 return memblock_add_range(&memblock.memory, base, size, nid, 0); 611 } 612 613 static int __init_memblock memblock_add_region(phys_addr_t base, 614 phys_addr_t size, 615 int nid, 616 unsigned long flags) 617 { 618 struct memblock_type *type = &memblock.memory; 619 620 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n", 621 (unsigned long long)base, 622 (unsigned long long)base + size - 1, 623 flags, (void *)_RET_IP_); 624 625 return memblock_add_range(type, base, size, nid, flags); 626 } 627 628 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 629 { 630 return memblock_add_region(base, size, MAX_NUMNODES, 0); 631 } 632 633 /** 634 * memblock_isolate_range - isolate given range into disjoint memblocks 635 * @type: memblock type to isolate range for 636 * @base: base of range to isolate 637 * @size: size of range to isolate 638 * @start_rgn: out parameter for the start of isolated region 639 * @end_rgn: out parameter for the end of isolated region 640 * 641 * Walk @type and ensure that regions don't cross the boundaries defined by 642 * [@base,@base+@size). Crossing regions are split at the boundaries, 643 * which may create at most two more regions. The index of the first 644 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 645 * 646 * RETURNS: 647 * 0 on success, -errno on failure. 648 */ 649 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 650 phys_addr_t base, phys_addr_t size, 651 int *start_rgn, int *end_rgn) 652 { 653 phys_addr_t end = base + memblock_cap_size(base, &size); 654 int i; 655 656 *start_rgn = *end_rgn = 0; 657 658 if (!size) 659 return 0; 660 661 /* we'll create at most two more regions */ 662 while (type->cnt + 2 > type->max) 663 if (memblock_double_array(type, base, size) < 0) 664 return -ENOMEM; 665 666 for (i = 0; i < type->cnt; i++) { 667 struct memblock_region *rgn = &type->regions[i]; 668 phys_addr_t rbase = rgn->base; 669 phys_addr_t rend = rbase + rgn->size; 670 671 if (rbase >= end) 672 break; 673 if (rend <= base) 674 continue; 675 676 if (rbase < base) { 677 /* 678 * @rgn intersects from below. Split and continue 679 * to process the next region - the new top half. 680 */ 681 rgn->base = base; 682 rgn->size -= base - rbase; 683 type->total_size -= base - rbase; 684 memblock_insert_region(type, i, rbase, base - rbase, 685 memblock_get_region_node(rgn), 686 rgn->flags); 687 } else if (rend > end) { 688 /* 689 * @rgn intersects from above. Split and redo the 690 * current region - the new bottom half. 691 */ 692 rgn->base = end; 693 rgn->size -= end - rbase; 694 type->total_size -= end - rbase; 695 memblock_insert_region(type, i--, rbase, end - rbase, 696 memblock_get_region_node(rgn), 697 rgn->flags); 698 } else { 699 /* @rgn is fully contained, record it */ 700 if (!*end_rgn) 701 *start_rgn = i; 702 *end_rgn = i + 1; 703 } 704 } 705 706 return 0; 707 } 708 709 static int __init_memblock memblock_remove_range(struct memblock_type *type, 710 phys_addr_t base, phys_addr_t size) 711 { 712 int start_rgn, end_rgn; 713 int i, ret; 714 715 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 716 if (ret) 717 return ret; 718 719 for (i = end_rgn - 1; i >= start_rgn; i--) 720 memblock_remove_region(type, i); 721 return 0; 722 } 723 724 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 725 { 726 return memblock_remove_range(&memblock.memory, base, size); 727 } 728 729 730 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 731 { 732 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", 733 (unsigned long long)base, 734 (unsigned long long)base + size - 1, 735 (void *)_RET_IP_); 736 737 kmemleak_free_part(__va(base), size); 738 return memblock_remove_range(&memblock.reserved, base, size); 739 } 740 741 static int __init_memblock memblock_reserve_region(phys_addr_t base, 742 phys_addr_t size, 743 int nid, 744 unsigned long flags) 745 { 746 struct memblock_type *type = &memblock.reserved; 747 748 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n", 749 (unsigned long long)base, 750 (unsigned long long)base + size - 1, 751 flags, (void *)_RET_IP_); 752 753 return memblock_add_range(type, base, size, nid, flags); 754 } 755 756 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 757 { 758 return memblock_reserve_region(base, size, MAX_NUMNODES, 0); 759 } 760 761 /** 762 * 763 * This function isolates region [@base, @base + @size), and sets/clears flag 764 * 765 * Return 0 on success, -errno on failure. 766 */ 767 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 768 phys_addr_t size, int set, int flag) 769 { 770 struct memblock_type *type = &memblock.memory; 771 int i, ret, start_rgn, end_rgn; 772 773 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 774 if (ret) 775 return ret; 776 777 for (i = start_rgn; i < end_rgn; i++) 778 if (set) 779 memblock_set_region_flags(&type->regions[i], flag); 780 else 781 memblock_clear_region_flags(&type->regions[i], flag); 782 783 memblock_merge_regions(type); 784 return 0; 785 } 786 787 /** 788 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 789 * @base: the base phys addr of the region 790 * @size: the size of the region 791 * 792 * Return 0 on success, -errno on failure. 793 */ 794 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 795 { 796 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 797 } 798 799 /** 800 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 801 * @base: the base phys addr of the region 802 * @size: the size of the region 803 * 804 * Return 0 on success, -errno on failure. 805 */ 806 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 807 { 808 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 809 } 810 811 /** 812 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 813 * @base: the base phys addr of the region 814 * @size: the size of the region 815 * 816 * Return 0 on success, -errno on failure. 817 */ 818 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 819 { 820 system_has_some_mirror = true; 821 822 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 823 } 824 825 826 /** 827 * __next_reserved_mem_region - next function for for_each_reserved_region() 828 * @idx: pointer to u64 loop variable 829 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL 830 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL 831 * 832 * Iterate over all reserved memory regions. 833 */ 834 void __init_memblock __next_reserved_mem_region(u64 *idx, 835 phys_addr_t *out_start, 836 phys_addr_t *out_end) 837 { 838 struct memblock_type *type = &memblock.reserved; 839 840 if (*idx >= 0 && *idx < type->cnt) { 841 struct memblock_region *r = &type->regions[*idx]; 842 phys_addr_t base = r->base; 843 phys_addr_t size = r->size; 844 845 if (out_start) 846 *out_start = base; 847 if (out_end) 848 *out_end = base + size - 1; 849 850 *idx += 1; 851 return; 852 } 853 854 /* signal end of iteration */ 855 *idx = ULLONG_MAX; 856 } 857 858 /** 859 * __next__mem_range - next function for for_each_free_mem_range() etc. 860 * @idx: pointer to u64 loop variable 861 * @nid: node selector, %NUMA_NO_NODE for all nodes 862 * @flags: pick from blocks based on memory attributes 863 * @type_a: pointer to memblock_type from where the range is taken 864 * @type_b: pointer to memblock_type which excludes memory from being taken 865 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 866 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 867 * @out_nid: ptr to int for nid of the range, can be %NULL 868 * 869 * Find the first area from *@idx which matches @nid, fill the out 870 * parameters, and update *@idx for the next iteration. The lower 32bit of 871 * *@idx contains index into type_a and the upper 32bit indexes the 872 * areas before each region in type_b. For example, if type_b regions 873 * look like the following, 874 * 875 * 0:[0-16), 1:[32-48), 2:[128-130) 876 * 877 * The upper 32bit indexes the following regions. 878 * 879 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 880 * 881 * As both region arrays are sorted, the function advances the two indices 882 * in lockstep and returns each intersection. 883 */ 884 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags, 885 struct memblock_type *type_a, 886 struct memblock_type *type_b, 887 phys_addr_t *out_start, 888 phys_addr_t *out_end, int *out_nid) 889 { 890 int idx_a = *idx & 0xffffffff; 891 int idx_b = *idx >> 32; 892 893 if (WARN_ONCE(nid == MAX_NUMNODES, 894 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 895 nid = NUMA_NO_NODE; 896 897 for (; idx_a < type_a->cnt; idx_a++) { 898 struct memblock_region *m = &type_a->regions[idx_a]; 899 900 phys_addr_t m_start = m->base; 901 phys_addr_t m_end = m->base + m->size; 902 int m_nid = memblock_get_region_node(m); 903 904 /* only memory regions are associated with nodes, check it */ 905 if (nid != NUMA_NO_NODE && nid != m_nid) 906 continue; 907 908 /* skip hotpluggable memory regions if needed */ 909 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 910 continue; 911 912 /* if we want mirror memory skip non-mirror memory regions */ 913 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 914 continue; 915 916 if (!type_b) { 917 if (out_start) 918 *out_start = m_start; 919 if (out_end) 920 *out_end = m_end; 921 if (out_nid) 922 *out_nid = m_nid; 923 idx_a++; 924 *idx = (u32)idx_a | (u64)idx_b << 32; 925 return; 926 } 927 928 /* scan areas before each reservation */ 929 for (; idx_b < type_b->cnt + 1; idx_b++) { 930 struct memblock_region *r; 931 phys_addr_t r_start; 932 phys_addr_t r_end; 933 934 r = &type_b->regions[idx_b]; 935 r_start = idx_b ? r[-1].base + r[-1].size : 0; 936 r_end = idx_b < type_b->cnt ? 937 r->base : ULLONG_MAX; 938 939 /* 940 * if idx_b advanced past idx_a, 941 * break out to advance idx_a 942 */ 943 if (r_start >= m_end) 944 break; 945 /* if the two regions intersect, we're done */ 946 if (m_start < r_end) { 947 if (out_start) 948 *out_start = 949 max(m_start, r_start); 950 if (out_end) 951 *out_end = min(m_end, r_end); 952 if (out_nid) 953 *out_nid = m_nid; 954 /* 955 * The region which ends first is 956 * advanced for the next iteration. 957 */ 958 if (m_end <= r_end) 959 idx_a++; 960 else 961 idx_b++; 962 *idx = (u32)idx_a | (u64)idx_b << 32; 963 return; 964 } 965 } 966 } 967 968 /* signal end of iteration */ 969 *idx = ULLONG_MAX; 970 } 971 972 /** 973 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 974 * 975 * Finds the next range from type_a which is not marked as unsuitable 976 * in type_b. 977 * 978 * @idx: pointer to u64 loop variable 979 * @nid: node selector, %NUMA_NO_NODE for all nodes 980 * @flags: pick from blocks based on memory attributes 981 * @type_a: pointer to memblock_type from where the range is taken 982 * @type_b: pointer to memblock_type which excludes memory from being taken 983 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 984 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 985 * @out_nid: ptr to int for nid of the range, can be %NULL 986 * 987 * Reverse of __next_mem_range(). 988 */ 989 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags, 990 struct memblock_type *type_a, 991 struct memblock_type *type_b, 992 phys_addr_t *out_start, 993 phys_addr_t *out_end, int *out_nid) 994 { 995 int idx_a = *idx & 0xffffffff; 996 int idx_b = *idx >> 32; 997 998 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 999 nid = NUMA_NO_NODE; 1000 1001 if (*idx == (u64)ULLONG_MAX) { 1002 idx_a = type_a->cnt - 1; 1003 idx_b = type_b->cnt; 1004 } 1005 1006 for (; idx_a >= 0; idx_a--) { 1007 struct memblock_region *m = &type_a->regions[idx_a]; 1008 1009 phys_addr_t m_start = m->base; 1010 phys_addr_t m_end = m->base + m->size; 1011 int m_nid = memblock_get_region_node(m); 1012 1013 /* only memory regions are associated with nodes, check it */ 1014 if (nid != NUMA_NO_NODE && nid != m_nid) 1015 continue; 1016 1017 /* skip hotpluggable memory regions if needed */ 1018 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 1019 continue; 1020 1021 /* if we want mirror memory skip non-mirror memory regions */ 1022 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 1023 continue; 1024 1025 if (!type_b) { 1026 if (out_start) 1027 *out_start = m_start; 1028 if (out_end) 1029 *out_end = m_end; 1030 if (out_nid) 1031 *out_nid = m_nid; 1032 idx_a++; 1033 *idx = (u32)idx_a | (u64)idx_b << 32; 1034 return; 1035 } 1036 1037 /* scan areas before each reservation */ 1038 for (; idx_b >= 0; idx_b--) { 1039 struct memblock_region *r; 1040 phys_addr_t r_start; 1041 phys_addr_t r_end; 1042 1043 r = &type_b->regions[idx_b]; 1044 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1045 r_end = idx_b < type_b->cnt ? 1046 r->base : ULLONG_MAX; 1047 /* 1048 * if idx_b advanced past idx_a, 1049 * break out to advance idx_a 1050 */ 1051 1052 if (r_end <= m_start) 1053 break; 1054 /* if the two regions intersect, we're done */ 1055 if (m_end > r_start) { 1056 if (out_start) 1057 *out_start = max(m_start, r_start); 1058 if (out_end) 1059 *out_end = min(m_end, r_end); 1060 if (out_nid) 1061 *out_nid = m_nid; 1062 if (m_start >= r_start) 1063 idx_a--; 1064 else 1065 idx_b--; 1066 *idx = (u32)idx_a | (u64)idx_b << 32; 1067 return; 1068 } 1069 } 1070 } 1071 /* signal end of iteration */ 1072 *idx = ULLONG_MAX; 1073 } 1074 1075 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1076 /* 1077 * Common iterator interface used to define for_each_mem_range(). 1078 */ 1079 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1080 unsigned long *out_start_pfn, 1081 unsigned long *out_end_pfn, int *out_nid) 1082 { 1083 struct memblock_type *type = &memblock.memory; 1084 struct memblock_region *r; 1085 1086 while (++*idx < type->cnt) { 1087 r = &type->regions[*idx]; 1088 1089 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1090 continue; 1091 if (nid == MAX_NUMNODES || nid == r->nid) 1092 break; 1093 } 1094 if (*idx >= type->cnt) { 1095 *idx = -1; 1096 return; 1097 } 1098 1099 if (out_start_pfn) 1100 *out_start_pfn = PFN_UP(r->base); 1101 if (out_end_pfn) 1102 *out_end_pfn = PFN_DOWN(r->base + r->size); 1103 if (out_nid) 1104 *out_nid = r->nid; 1105 } 1106 1107 /** 1108 * memblock_set_node - set node ID on memblock regions 1109 * @base: base of area to set node ID for 1110 * @size: size of area to set node ID for 1111 * @type: memblock type to set node ID for 1112 * @nid: node ID to set 1113 * 1114 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid. 1115 * Regions which cross the area boundaries are split as necessary. 1116 * 1117 * RETURNS: 1118 * 0 on success, -errno on failure. 1119 */ 1120 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1121 struct memblock_type *type, int nid) 1122 { 1123 int start_rgn, end_rgn; 1124 int i, ret; 1125 1126 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1127 if (ret) 1128 return ret; 1129 1130 for (i = start_rgn; i < end_rgn; i++) 1131 memblock_set_region_node(&type->regions[i], nid); 1132 1133 memblock_merge_regions(type); 1134 return 0; 1135 } 1136 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1137 1138 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1139 phys_addr_t align, phys_addr_t start, 1140 phys_addr_t end, int nid, ulong flags) 1141 { 1142 phys_addr_t found; 1143 1144 if (!align) 1145 align = SMP_CACHE_BYTES; 1146 1147 found = memblock_find_in_range_node(size, align, start, end, nid, 1148 flags); 1149 if (found && !memblock_reserve(found, size)) { 1150 /* 1151 * The min_count is set to 0 so that memblock allocations are 1152 * never reported as leaks. 1153 */ 1154 kmemleak_alloc(__va(found), size, 0, 0); 1155 return found; 1156 } 1157 return 0; 1158 } 1159 1160 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align, 1161 phys_addr_t start, phys_addr_t end, 1162 ulong flags) 1163 { 1164 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1165 flags); 1166 } 1167 1168 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, 1169 phys_addr_t align, phys_addr_t max_addr, 1170 int nid, ulong flags) 1171 { 1172 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags); 1173 } 1174 1175 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 1176 { 1177 ulong flags = choose_memblock_flags(); 1178 phys_addr_t ret; 1179 1180 again: 1181 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, 1182 nid, flags); 1183 1184 if (!ret && (flags & MEMBLOCK_MIRROR)) { 1185 flags &= ~MEMBLOCK_MIRROR; 1186 goto again; 1187 } 1188 return ret; 1189 } 1190 1191 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1192 { 1193 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE, 1194 MEMBLOCK_NONE); 1195 } 1196 1197 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1198 { 1199 phys_addr_t alloc; 1200 1201 alloc = __memblock_alloc_base(size, align, max_addr); 1202 1203 if (alloc == 0) 1204 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", 1205 (unsigned long long) size, (unsigned long long) max_addr); 1206 1207 return alloc; 1208 } 1209 1210 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) 1211 { 1212 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1213 } 1214 1215 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1216 { 1217 phys_addr_t res = memblock_alloc_nid(size, align, nid); 1218 1219 if (res) 1220 return res; 1221 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1222 } 1223 1224 /** 1225 * memblock_virt_alloc_internal - allocate boot memory block 1226 * @size: size of memory block to be allocated in bytes 1227 * @align: alignment of the region and block's size 1228 * @min_addr: the lower bound of the memory region to allocate (phys address) 1229 * @max_addr: the upper bound of the memory region to allocate (phys address) 1230 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1231 * 1232 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1233 * will fall back to memory below @min_addr. Also, allocation may fall back 1234 * to any node in the system if the specified node can not 1235 * hold the requested memory. 1236 * 1237 * The allocation is performed from memory region limited by 1238 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE. 1239 * 1240 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0. 1241 * 1242 * The phys address of allocated boot memory block is converted to virtual and 1243 * allocated memory is reset to 0. 1244 * 1245 * In addition, function sets the min_count to 0 using kmemleak_alloc for 1246 * allocated boot memory block, so that it is never reported as leaks. 1247 * 1248 * RETURNS: 1249 * Virtual address of allocated memory block on success, NULL on failure. 1250 */ 1251 static void * __init memblock_virt_alloc_internal( 1252 phys_addr_t size, phys_addr_t align, 1253 phys_addr_t min_addr, phys_addr_t max_addr, 1254 int nid) 1255 { 1256 phys_addr_t alloc; 1257 void *ptr; 1258 ulong flags = choose_memblock_flags(); 1259 1260 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1261 nid = NUMA_NO_NODE; 1262 1263 /* 1264 * Detect any accidental use of these APIs after slab is ready, as at 1265 * this moment memblock may be deinitialized already and its 1266 * internal data may be destroyed (after execution of free_all_bootmem) 1267 */ 1268 if (WARN_ON_ONCE(slab_is_available())) 1269 return kzalloc_node(size, GFP_NOWAIT, nid); 1270 1271 if (!align) 1272 align = SMP_CACHE_BYTES; 1273 1274 if (max_addr > memblock.current_limit) 1275 max_addr = memblock.current_limit; 1276 1277 again: 1278 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr, 1279 nid, flags); 1280 if (alloc) 1281 goto done; 1282 1283 if (nid != NUMA_NO_NODE) { 1284 alloc = memblock_find_in_range_node(size, align, min_addr, 1285 max_addr, NUMA_NO_NODE, 1286 flags); 1287 if (alloc) 1288 goto done; 1289 } 1290 1291 if (min_addr) { 1292 min_addr = 0; 1293 goto again; 1294 } 1295 1296 if (flags & MEMBLOCK_MIRROR) { 1297 flags &= ~MEMBLOCK_MIRROR; 1298 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1299 &size); 1300 goto again; 1301 } 1302 1303 return NULL; 1304 done: 1305 memblock_reserve(alloc, size); 1306 ptr = phys_to_virt(alloc); 1307 memset(ptr, 0, size); 1308 1309 /* 1310 * The min_count is set to 0 so that bootmem allocated blocks 1311 * are never reported as leaks. This is because many of these blocks 1312 * are only referred via the physical address which is not 1313 * looked up by kmemleak. 1314 */ 1315 kmemleak_alloc(ptr, size, 0, 0); 1316 1317 return ptr; 1318 } 1319 1320 /** 1321 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block 1322 * @size: size of memory block to be allocated in bytes 1323 * @align: alignment of the region and block's size 1324 * @min_addr: the lower bound of the memory region from where the allocation 1325 * is preferred (phys address) 1326 * @max_addr: the upper bound of the memory region from where the allocation 1327 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1328 * allocate only from memory limited by memblock.current_limit value 1329 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1330 * 1331 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides 1332 * additional debug information (including caller info), if enabled. 1333 * 1334 * RETURNS: 1335 * Virtual address of allocated memory block on success, NULL on failure. 1336 */ 1337 void * __init memblock_virt_alloc_try_nid_nopanic( 1338 phys_addr_t size, phys_addr_t align, 1339 phys_addr_t min_addr, phys_addr_t max_addr, 1340 int nid) 1341 { 1342 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", 1343 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1344 (u64)max_addr, (void *)_RET_IP_); 1345 return memblock_virt_alloc_internal(size, align, min_addr, 1346 max_addr, nid); 1347 } 1348 1349 /** 1350 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking 1351 * @size: size of memory block to be allocated in bytes 1352 * @align: alignment of the region and block's size 1353 * @min_addr: the lower bound of the memory region from where the allocation 1354 * is preferred (phys address) 1355 * @max_addr: the upper bound of the memory region from where the allocation 1356 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1357 * allocate only from memory limited by memblock.current_limit value 1358 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1359 * 1360 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic() 1361 * which provides debug information (including caller info), if enabled, 1362 * and panics if the request can not be satisfied. 1363 * 1364 * RETURNS: 1365 * Virtual address of allocated memory block on success, NULL on failure. 1366 */ 1367 void * __init memblock_virt_alloc_try_nid( 1368 phys_addr_t size, phys_addr_t align, 1369 phys_addr_t min_addr, phys_addr_t max_addr, 1370 int nid) 1371 { 1372 void *ptr; 1373 1374 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", 1375 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1376 (u64)max_addr, (void *)_RET_IP_); 1377 ptr = memblock_virt_alloc_internal(size, align, 1378 min_addr, max_addr, nid); 1379 if (ptr) 1380 return ptr; 1381 1382 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n", 1383 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1384 (u64)max_addr); 1385 return NULL; 1386 } 1387 1388 /** 1389 * __memblock_free_early - free boot memory block 1390 * @base: phys starting address of the boot memory block 1391 * @size: size of the boot memory block in bytes 1392 * 1393 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API. 1394 * The freeing memory will not be released to the buddy allocator. 1395 */ 1396 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size) 1397 { 1398 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", 1399 __func__, (u64)base, (u64)base + size - 1, 1400 (void *)_RET_IP_); 1401 kmemleak_free_part(__va(base), size); 1402 memblock_remove_range(&memblock.reserved, base, size); 1403 } 1404 1405 /* 1406 * __memblock_free_late - free bootmem block pages directly to buddy allocator 1407 * @addr: phys starting address of the boot memory block 1408 * @size: size of the boot memory block in bytes 1409 * 1410 * This is only useful when the bootmem allocator has already been torn 1411 * down, but we are still initializing the system. Pages are released directly 1412 * to the buddy allocator, no bootmem metadata is updated because it is gone. 1413 */ 1414 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1415 { 1416 u64 cursor, end; 1417 1418 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", 1419 __func__, (u64)base, (u64)base + size - 1, 1420 (void *)_RET_IP_); 1421 kmemleak_free_part(__va(base), size); 1422 cursor = PFN_UP(base); 1423 end = PFN_DOWN(base + size); 1424 1425 for (; cursor < end; cursor++) { 1426 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0); 1427 totalram_pages++; 1428 } 1429 } 1430 1431 /* 1432 * Remaining API functions 1433 */ 1434 1435 phys_addr_t __init memblock_phys_mem_size(void) 1436 { 1437 return memblock.memory.total_size; 1438 } 1439 1440 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) 1441 { 1442 unsigned long pages = 0; 1443 struct memblock_region *r; 1444 unsigned long start_pfn, end_pfn; 1445 1446 for_each_memblock(memory, r) { 1447 start_pfn = memblock_region_memory_base_pfn(r); 1448 end_pfn = memblock_region_memory_end_pfn(r); 1449 start_pfn = min_t(unsigned long, start_pfn, limit_pfn); 1450 end_pfn = min_t(unsigned long, end_pfn, limit_pfn); 1451 pages += end_pfn - start_pfn; 1452 } 1453 1454 return PFN_PHYS(pages); 1455 } 1456 1457 /* lowest address */ 1458 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1459 { 1460 return memblock.memory.regions[0].base; 1461 } 1462 1463 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1464 { 1465 int idx = memblock.memory.cnt - 1; 1466 1467 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1468 } 1469 1470 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1471 { 1472 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 1473 struct memblock_region *r; 1474 1475 if (!limit) 1476 return; 1477 1478 /* find out max address */ 1479 for_each_memblock(memory, r) { 1480 if (limit <= r->size) { 1481 max_addr = r->base + limit; 1482 break; 1483 } 1484 limit -= r->size; 1485 } 1486 1487 /* truncate both memory and reserved regions */ 1488 memblock_remove_range(&memblock.memory, max_addr, 1489 (phys_addr_t)ULLONG_MAX); 1490 memblock_remove_range(&memblock.reserved, max_addr, 1491 (phys_addr_t)ULLONG_MAX); 1492 } 1493 1494 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1495 { 1496 unsigned int left = 0, right = type->cnt; 1497 1498 do { 1499 unsigned int mid = (right + left) / 2; 1500 1501 if (addr < type->regions[mid].base) 1502 right = mid; 1503 else if (addr >= (type->regions[mid].base + 1504 type->regions[mid].size)) 1505 left = mid + 1; 1506 else 1507 return mid; 1508 } while (left < right); 1509 return -1; 1510 } 1511 1512 int __init memblock_is_reserved(phys_addr_t addr) 1513 { 1514 return memblock_search(&memblock.reserved, addr) != -1; 1515 } 1516 1517 int __init_memblock memblock_is_memory(phys_addr_t addr) 1518 { 1519 return memblock_search(&memblock.memory, addr) != -1; 1520 } 1521 1522 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1523 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1524 unsigned long *start_pfn, unsigned long *end_pfn) 1525 { 1526 struct memblock_type *type = &memblock.memory; 1527 int mid = memblock_search(type, PFN_PHYS(pfn)); 1528 1529 if (mid == -1) 1530 return -1; 1531 1532 *start_pfn = PFN_DOWN(type->regions[mid].base); 1533 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1534 1535 return type->regions[mid].nid; 1536 } 1537 #endif 1538 1539 /** 1540 * memblock_is_region_memory - check if a region is a subset of memory 1541 * @base: base of region to check 1542 * @size: size of region to check 1543 * 1544 * Check if the region [@base, @base+@size) is a subset of a memory block. 1545 * 1546 * RETURNS: 1547 * 0 if false, non-zero if true 1548 */ 1549 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1550 { 1551 int idx = memblock_search(&memblock.memory, base); 1552 phys_addr_t end = base + memblock_cap_size(base, &size); 1553 1554 if (idx == -1) 1555 return 0; 1556 return memblock.memory.regions[idx].base <= base && 1557 (memblock.memory.regions[idx].base + 1558 memblock.memory.regions[idx].size) >= end; 1559 } 1560 1561 /** 1562 * memblock_is_region_reserved - check if a region intersects reserved memory 1563 * @base: base of region to check 1564 * @size: size of region to check 1565 * 1566 * Check if the region [@base, @base+@size) intersects a reserved memory block. 1567 * 1568 * RETURNS: 1569 * True if they intersect, false if not. 1570 */ 1571 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1572 { 1573 memblock_cap_size(base, &size); 1574 return memblock_overlaps_region(&memblock.reserved, base, size); 1575 } 1576 1577 void __init_memblock memblock_trim_memory(phys_addr_t align) 1578 { 1579 phys_addr_t start, end, orig_start, orig_end; 1580 struct memblock_region *r; 1581 1582 for_each_memblock(memory, r) { 1583 orig_start = r->base; 1584 orig_end = r->base + r->size; 1585 start = round_up(orig_start, align); 1586 end = round_down(orig_end, align); 1587 1588 if (start == orig_start && end == orig_end) 1589 continue; 1590 1591 if (start < end) { 1592 r->base = start; 1593 r->size = end - start; 1594 } else { 1595 memblock_remove_region(&memblock.memory, 1596 r - memblock.memory.regions); 1597 r--; 1598 } 1599 } 1600 } 1601 1602 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1603 { 1604 memblock.current_limit = limit; 1605 } 1606 1607 phys_addr_t __init_memblock memblock_get_current_limit(void) 1608 { 1609 return memblock.current_limit; 1610 } 1611 1612 static void __init_memblock memblock_dump(struct memblock_type *type, char *name) 1613 { 1614 unsigned long long base, size; 1615 unsigned long flags; 1616 int i; 1617 1618 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); 1619 1620 for (i = 0; i < type->cnt; i++) { 1621 struct memblock_region *rgn = &type->regions[i]; 1622 char nid_buf[32] = ""; 1623 1624 base = rgn->base; 1625 size = rgn->size; 1626 flags = rgn->flags; 1627 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1628 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1629 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1630 memblock_get_region_node(rgn)); 1631 #endif 1632 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n", 1633 name, i, base, base + size - 1, size, nid_buf, flags); 1634 } 1635 } 1636 1637 void __init_memblock __memblock_dump_all(void) 1638 { 1639 pr_info("MEMBLOCK configuration:\n"); 1640 pr_info(" memory size = %#llx reserved size = %#llx\n", 1641 (unsigned long long)memblock.memory.total_size, 1642 (unsigned long long)memblock.reserved.total_size); 1643 1644 memblock_dump(&memblock.memory, "memory"); 1645 memblock_dump(&memblock.reserved, "reserved"); 1646 } 1647 1648 void __init memblock_allow_resize(void) 1649 { 1650 memblock_can_resize = 1; 1651 } 1652 1653 static int __init early_memblock(char *p) 1654 { 1655 if (p && strstr(p, "debug")) 1656 memblock_debug = 1; 1657 return 0; 1658 } 1659 early_param("memblock", early_memblock); 1660 1661 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) 1662 1663 static int memblock_debug_show(struct seq_file *m, void *private) 1664 { 1665 struct memblock_type *type = m->private; 1666 struct memblock_region *reg; 1667 int i; 1668 1669 for (i = 0; i < type->cnt; i++) { 1670 reg = &type->regions[i]; 1671 seq_printf(m, "%4d: ", i); 1672 if (sizeof(phys_addr_t) == 4) 1673 seq_printf(m, "0x%08lx..0x%08lx\n", 1674 (unsigned long)reg->base, 1675 (unsigned long)(reg->base + reg->size - 1)); 1676 else 1677 seq_printf(m, "0x%016llx..0x%016llx\n", 1678 (unsigned long long)reg->base, 1679 (unsigned long long)(reg->base + reg->size - 1)); 1680 1681 } 1682 return 0; 1683 } 1684 1685 static int memblock_debug_open(struct inode *inode, struct file *file) 1686 { 1687 return single_open(file, memblock_debug_show, inode->i_private); 1688 } 1689 1690 static const struct file_operations memblock_debug_fops = { 1691 .open = memblock_debug_open, 1692 .read = seq_read, 1693 .llseek = seq_lseek, 1694 .release = single_release, 1695 }; 1696 1697 static int __init memblock_init_debugfs(void) 1698 { 1699 struct dentry *root = debugfs_create_dir("memblock", NULL); 1700 if (!root) 1701 return -ENXIO; 1702 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); 1703 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); 1704 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1705 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops); 1706 #endif 1707 1708 return 0; 1709 } 1710 __initcall(memblock_init_debugfs); 1711 1712 #endif /* CONFIG_DEBUG_FS */ 1713