xref: /openbmc/linux/mm/memblock.c (revision 98ddec80)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/kmemleak.h>
21 #include <linux/seq_file.h>
22 #include <linux/memblock.h>
23 
24 #include <asm/sections.h>
25 #include <linux/io.h>
26 
27 #include "internal.h"
28 
29 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
31 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
32 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
33 #endif
34 
35 struct memblock memblock __initdata_memblock = {
36 	.memory.regions		= memblock_memory_init_regions,
37 	.memory.cnt		= 1,	/* empty dummy entry */
38 	.memory.max		= INIT_MEMBLOCK_REGIONS,
39 	.memory.name		= "memory",
40 
41 	.reserved.regions	= memblock_reserved_init_regions,
42 	.reserved.cnt		= 1,	/* empty dummy entry */
43 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
44 	.reserved.name		= "reserved",
45 
46 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
47 	.physmem.regions	= memblock_physmem_init_regions,
48 	.physmem.cnt		= 1,	/* empty dummy entry */
49 	.physmem.max		= INIT_PHYSMEM_REGIONS,
50 	.physmem.name		= "physmem",
51 #endif
52 
53 	.bottom_up		= false,
54 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
55 };
56 
57 int memblock_debug __initdata_memblock;
58 static bool system_has_some_mirror __initdata_memblock = false;
59 static int memblock_can_resize __initdata_memblock;
60 static int memblock_memory_in_slab __initdata_memblock = 0;
61 static int memblock_reserved_in_slab __initdata_memblock = 0;
62 
63 ulong __init_memblock choose_memblock_flags(void)
64 {
65 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
66 }
67 
68 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
69 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
70 {
71 	return *size = min(*size, PHYS_ADDR_MAX - base);
72 }
73 
74 /*
75  * Address comparison utilities
76  */
77 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
78 				       phys_addr_t base2, phys_addr_t size2)
79 {
80 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
81 }
82 
83 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
84 					phys_addr_t base, phys_addr_t size)
85 {
86 	unsigned long i;
87 
88 	for (i = 0; i < type->cnt; i++)
89 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
90 					   type->regions[i].size))
91 			break;
92 	return i < type->cnt;
93 }
94 
95 /*
96  * __memblock_find_range_bottom_up - find free area utility in bottom-up
97  * @start: start of candidate range
98  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
99  * @size: size of free area to find
100  * @align: alignment of free area to find
101  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
102  * @flags: pick from blocks based on memory attributes
103  *
104  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
105  *
106  * RETURNS:
107  * Found address on success, 0 on failure.
108  */
109 static phys_addr_t __init_memblock
110 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
111 				phys_addr_t size, phys_addr_t align, int nid,
112 				ulong flags)
113 {
114 	phys_addr_t this_start, this_end, cand;
115 	u64 i;
116 
117 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
118 		this_start = clamp(this_start, start, end);
119 		this_end = clamp(this_end, start, end);
120 
121 		cand = round_up(this_start, align);
122 		if (cand < this_end && this_end - cand >= size)
123 			return cand;
124 	}
125 
126 	return 0;
127 }
128 
129 /**
130  * __memblock_find_range_top_down - find free area utility, in top-down
131  * @start: start of candidate range
132  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
133  * @size: size of free area to find
134  * @align: alignment of free area to find
135  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
136  * @flags: pick from blocks based on memory attributes
137  *
138  * Utility called from memblock_find_in_range_node(), find free area top-down.
139  *
140  * RETURNS:
141  * Found address on success, 0 on failure.
142  */
143 static phys_addr_t __init_memblock
144 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
145 			       phys_addr_t size, phys_addr_t align, int nid,
146 			       ulong flags)
147 {
148 	phys_addr_t this_start, this_end, cand;
149 	u64 i;
150 
151 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
152 					NULL) {
153 		this_start = clamp(this_start, start, end);
154 		this_end = clamp(this_end, start, end);
155 
156 		if (this_end < size)
157 			continue;
158 
159 		cand = round_down(this_end - size, align);
160 		if (cand >= this_start)
161 			return cand;
162 	}
163 
164 	return 0;
165 }
166 
167 /**
168  * memblock_find_in_range_node - find free area in given range and node
169  * @size: size of free area to find
170  * @align: alignment of free area to find
171  * @start: start of candidate range
172  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
173  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
174  * @flags: pick from blocks based on memory attributes
175  *
176  * Find @size free area aligned to @align in the specified range and node.
177  *
178  * When allocation direction is bottom-up, the @start should be greater
179  * than the end of the kernel image. Otherwise, it will be trimmed. The
180  * reason is that we want the bottom-up allocation just near the kernel
181  * image so it is highly likely that the allocated memory and the kernel
182  * will reside in the same node.
183  *
184  * If bottom-up allocation failed, will try to allocate memory top-down.
185  *
186  * RETURNS:
187  * Found address on success, 0 on failure.
188  */
189 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
190 					phys_addr_t align, phys_addr_t start,
191 					phys_addr_t end, int nid, ulong flags)
192 {
193 	phys_addr_t kernel_end, ret;
194 
195 	/* pump up @end */
196 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
197 		end = memblock.current_limit;
198 
199 	/* avoid allocating the first page */
200 	start = max_t(phys_addr_t, start, PAGE_SIZE);
201 	end = max(start, end);
202 	kernel_end = __pa_symbol(_end);
203 
204 	/*
205 	 * try bottom-up allocation only when bottom-up mode
206 	 * is set and @end is above the kernel image.
207 	 */
208 	if (memblock_bottom_up() && end > kernel_end) {
209 		phys_addr_t bottom_up_start;
210 
211 		/* make sure we will allocate above the kernel */
212 		bottom_up_start = max(start, kernel_end);
213 
214 		/* ok, try bottom-up allocation first */
215 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
216 						      size, align, nid, flags);
217 		if (ret)
218 			return ret;
219 
220 		/*
221 		 * we always limit bottom-up allocation above the kernel,
222 		 * but top-down allocation doesn't have the limit, so
223 		 * retrying top-down allocation may succeed when bottom-up
224 		 * allocation failed.
225 		 *
226 		 * bottom-up allocation is expected to be fail very rarely,
227 		 * so we use WARN_ONCE() here to see the stack trace if
228 		 * fail happens.
229 		 */
230 		WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
231 	}
232 
233 	return __memblock_find_range_top_down(start, end, size, align, nid,
234 					      flags);
235 }
236 
237 /**
238  * memblock_find_in_range - find free area in given range
239  * @start: start of candidate range
240  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
241  * @size: size of free area to find
242  * @align: alignment of free area to find
243  *
244  * Find @size free area aligned to @align in the specified range.
245  *
246  * RETURNS:
247  * Found address on success, 0 on failure.
248  */
249 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
250 					phys_addr_t end, phys_addr_t size,
251 					phys_addr_t align)
252 {
253 	phys_addr_t ret;
254 	ulong flags = choose_memblock_flags();
255 
256 again:
257 	ret = memblock_find_in_range_node(size, align, start, end,
258 					    NUMA_NO_NODE, flags);
259 
260 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
261 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
262 			&size);
263 		flags &= ~MEMBLOCK_MIRROR;
264 		goto again;
265 	}
266 
267 	return ret;
268 }
269 
270 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
271 {
272 	type->total_size -= type->regions[r].size;
273 	memmove(&type->regions[r], &type->regions[r + 1],
274 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
275 	type->cnt--;
276 
277 	/* Special case for empty arrays */
278 	if (type->cnt == 0) {
279 		WARN_ON(type->total_size != 0);
280 		type->cnt = 1;
281 		type->regions[0].base = 0;
282 		type->regions[0].size = 0;
283 		type->regions[0].flags = 0;
284 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
285 	}
286 }
287 
288 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
289 /**
290  * Discard memory and reserved arrays if they were allocated
291  */
292 void __init memblock_discard(void)
293 {
294 	phys_addr_t addr, size;
295 
296 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
297 		addr = __pa(memblock.reserved.regions);
298 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
299 				  memblock.reserved.max);
300 		__memblock_free_late(addr, size);
301 	}
302 
303 	if (memblock.memory.regions != memblock_memory_init_regions) {
304 		addr = __pa(memblock.memory.regions);
305 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
306 				  memblock.memory.max);
307 		__memblock_free_late(addr, size);
308 	}
309 }
310 #endif
311 
312 /**
313  * memblock_double_array - double the size of the memblock regions array
314  * @type: memblock type of the regions array being doubled
315  * @new_area_start: starting address of memory range to avoid overlap with
316  * @new_area_size: size of memory range to avoid overlap with
317  *
318  * Double the size of the @type regions array. If memblock is being used to
319  * allocate memory for a new reserved regions array and there is a previously
320  * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
321  * waiting to be reserved, ensure the memory used by the new array does
322  * not overlap.
323  *
324  * RETURNS:
325  * 0 on success, -1 on failure.
326  */
327 static int __init_memblock memblock_double_array(struct memblock_type *type,
328 						phys_addr_t new_area_start,
329 						phys_addr_t new_area_size)
330 {
331 	struct memblock_region *new_array, *old_array;
332 	phys_addr_t old_alloc_size, new_alloc_size;
333 	phys_addr_t old_size, new_size, addr;
334 	int use_slab = slab_is_available();
335 	int *in_slab;
336 
337 	/* We don't allow resizing until we know about the reserved regions
338 	 * of memory that aren't suitable for allocation
339 	 */
340 	if (!memblock_can_resize)
341 		return -1;
342 
343 	/* Calculate new doubled size */
344 	old_size = type->max * sizeof(struct memblock_region);
345 	new_size = old_size << 1;
346 	/*
347 	 * We need to allocated new one align to PAGE_SIZE,
348 	 *   so we can free them completely later.
349 	 */
350 	old_alloc_size = PAGE_ALIGN(old_size);
351 	new_alloc_size = PAGE_ALIGN(new_size);
352 
353 	/* Retrieve the slab flag */
354 	if (type == &memblock.memory)
355 		in_slab = &memblock_memory_in_slab;
356 	else
357 		in_slab = &memblock_reserved_in_slab;
358 
359 	/* Try to find some space for it.
360 	 *
361 	 * WARNING: We assume that either slab_is_available() and we use it or
362 	 * we use MEMBLOCK for allocations. That means that this is unsafe to
363 	 * use when bootmem is currently active (unless bootmem itself is
364 	 * implemented on top of MEMBLOCK which isn't the case yet)
365 	 *
366 	 * This should however not be an issue for now, as we currently only
367 	 * call into MEMBLOCK while it's still active, or much later when slab
368 	 * is active for memory hotplug operations
369 	 */
370 	if (use_slab) {
371 		new_array = kmalloc(new_size, GFP_KERNEL);
372 		addr = new_array ? __pa(new_array) : 0;
373 	} else {
374 		/* only exclude range when trying to double reserved.regions */
375 		if (type != &memblock.reserved)
376 			new_area_start = new_area_size = 0;
377 
378 		addr = memblock_find_in_range(new_area_start + new_area_size,
379 						memblock.current_limit,
380 						new_alloc_size, PAGE_SIZE);
381 		if (!addr && new_area_size)
382 			addr = memblock_find_in_range(0,
383 				min(new_area_start, memblock.current_limit),
384 				new_alloc_size, PAGE_SIZE);
385 
386 		new_array = addr ? __va(addr) : NULL;
387 	}
388 	if (!addr) {
389 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
390 		       type->name, type->max, type->max * 2);
391 		return -1;
392 	}
393 
394 	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
395 			type->name, type->max * 2, (u64)addr,
396 			(u64)addr + new_size - 1);
397 
398 	/*
399 	 * Found space, we now need to move the array over before we add the
400 	 * reserved region since it may be our reserved array itself that is
401 	 * full.
402 	 */
403 	memcpy(new_array, type->regions, old_size);
404 	memset(new_array + type->max, 0, old_size);
405 	old_array = type->regions;
406 	type->regions = new_array;
407 	type->max <<= 1;
408 
409 	/* Free old array. We needn't free it if the array is the static one */
410 	if (*in_slab)
411 		kfree(old_array);
412 	else if (old_array != memblock_memory_init_regions &&
413 		 old_array != memblock_reserved_init_regions)
414 		memblock_free(__pa(old_array), old_alloc_size);
415 
416 	/*
417 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
418 	 * needn't do it
419 	 */
420 	if (!use_slab)
421 		BUG_ON(memblock_reserve(addr, new_alloc_size));
422 
423 	/* Update slab flag */
424 	*in_slab = use_slab;
425 
426 	return 0;
427 }
428 
429 /**
430  * memblock_merge_regions - merge neighboring compatible regions
431  * @type: memblock type to scan
432  *
433  * Scan @type and merge neighboring compatible regions.
434  */
435 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
436 {
437 	int i = 0;
438 
439 	/* cnt never goes below 1 */
440 	while (i < type->cnt - 1) {
441 		struct memblock_region *this = &type->regions[i];
442 		struct memblock_region *next = &type->regions[i + 1];
443 
444 		if (this->base + this->size != next->base ||
445 		    memblock_get_region_node(this) !=
446 		    memblock_get_region_node(next) ||
447 		    this->flags != next->flags) {
448 			BUG_ON(this->base + this->size > next->base);
449 			i++;
450 			continue;
451 		}
452 
453 		this->size += next->size;
454 		/* move forward from next + 1, index of which is i + 2 */
455 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
456 		type->cnt--;
457 	}
458 }
459 
460 /**
461  * memblock_insert_region - insert new memblock region
462  * @type:	memblock type to insert into
463  * @idx:	index for the insertion point
464  * @base:	base address of the new region
465  * @size:	size of the new region
466  * @nid:	node id of the new region
467  * @flags:	flags of the new region
468  *
469  * Insert new memblock region [@base,@base+@size) into @type at @idx.
470  * @type must already have extra room to accommodate the new region.
471  */
472 static void __init_memblock memblock_insert_region(struct memblock_type *type,
473 						   int idx, phys_addr_t base,
474 						   phys_addr_t size,
475 						   int nid, unsigned long flags)
476 {
477 	struct memblock_region *rgn = &type->regions[idx];
478 
479 	BUG_ON(type->cnt >= type->max);
480 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
481 	rgn->base = base;
482 	rgn->size = size;
483 	rgn->flags = flags;
484 	memblock_set_region_node(rgn, nid);
485 	type->cnt++;
486 	type->total_size += size;
487 }
488 
489 /**
490  * memblock_add_range - add new memblock region
491  * @type: memblock type to add new region into
492  * @base: base address of the new region
493  * @size: size of the new region
494  * @nid: nid of the new region
495  * @flags: flags of the new region
496  *
497  * Add new memblock region [@base,@base+@size) into @type.  The new region
498  * is allowed to overlap with existing ones - overlaps don't affect already
499  * existing regions.  @type is guaranteed to be minimal (all neighbouring
500  * compatible regions are merged) after the addition.
501  *
502  * RETURNS:
503  * 0 on success, -errno on failure.
504  */
505 int __init_memblock memblock_add_range(struct memblock_type *type,
506 				phys_addr_t base, phys_addr_t size,
507 				int nid, unsigned long flags)
508 {
509 	bool insert = false;
510 	phys_addr_t obase = base;
511 	phys_addr_t end = base + memblock_cap_size(base, &size);
512 	int idx, nr_new;
513 	struct memblock_region *rgn;
514 
515 	if (!size)
516 		return 0;
517 
518 	/* special case for empty array */
519 	if (type->regions[0].size == 0) {
520 		WARN_ON(type->cnt != 1 || type->total_size);
521 		type->regions[0].base = base;
522 		type->regions[0].size = size;
523 		type->regions[0].flags = flags;
524 		memblock_set_region_node(&type->regions[0], nid);
525 		type->total_size = size;
526 		return 0;
527 	}
528 repeat:
529 	/*
530 	 * The following is executed twice.  Once with %false @insert and
531 	 * then with %true.  The first counts the number of regions needed
532 	 * to accommodate the new area.  The second actually inserts them.
533 	 */
534 	base = obase;
535 	nr_new = 0;
536 
537 	for_each_memblock_type(idx, type, rgn) {
538 		phys_addr_t rbase = rgn->base;
539 		phys_addr_t rend = rbase + rgn->size;
540 
541 		if (rbase >= end)
542 			break;
543 		if (rend <= base)
544 			continue;
545 		/*
546 		 * @rgn overlaps.  If it separates the lower part of new
547 		 * area, insert that portion.
548 		 */
549 		if (rbase > base) {
550 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
551 			WARN_ON(nid != memblock_get_region_node(rgn));
552 #endif
553 			WARN_ON(flags != rgn->flags);
554 			nr_new++;
555 			if (insert)
556 				memblock_insert_region(type, idx++, base,
557 						       rbase - base, nid,
558 						       flags);
559 		}
560 		/* area below @rend is dealt with, forget about it */
561 		base = min(rend, end);
562 	}
563 
564 	/* insert the remaining portion */
565 	if (base < end) {
566 		nr_new++;
567 		if (insert)
568 			memblock_insert_region(type, idx, base, end - base,
569 					       nid, flags);
570 	}
571 
572 	if (!nr_new)
573 		return 0;
574 
575 	/*
576 	 * If this was the first round, resize array and repeat for actual
577 	 * insertions; otherwise, merge and return.
578 	 */
579 	if (!insert) {
580 		while (type->cnt + nr_new > type->max)
581 			if (memblock_double_array(type, obase, size) < 0)
582 				return -ENOMEM;
583 		insert = true;
584 		goto repeat;
585 	} else {
586 		memblock_merge_regions(type);
587 		return 0;
588 	}
589 }
590 
591 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
592 				       int nid)
593 {
594 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
595 }
596 
597 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
598 {
599 	phys_addr_t end = base + size - 1;
600 
601 	memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
602 		     &base, &end, (void *)_RET_IP_);
603 
604 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
605 }
606 
607 /**
608  * memblock_isolate_range - isolate given range into disjoint memblocks
609  * @type: memblock type to isolate range for
610  * @base: base of range to isolate
611  * @size: size of range to isolate
612  * @start_rgn: out parameter for the start of isolated region
613  * @end_rgn: out parameter for the end of isolated region
614  *
615  * Walk @type and ensure that regions don't cross the boundaries defined by
616  * [@base,@base+@size).  Crossing regions are split at the boundaries,
617  * which may create at most two more regions.  The index of the first
618  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
619  *
620  * RETURNS:
621  * 0 on success, -errno on failure.
622  */
623 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
624 					phys_addr_t base, phys_addr_t size,
625 					int *start_rgn, int *end_rgn)
626 {
627 	phys_addr_t end = base + memblock_cap_size(base, &size);
628 	int idx;
629 	struct memblock_region *rgn;
630 
631 	*start_rgn = *end_rgn = 0;
632 
633 	if (!size)
634 		return 0;
635 
636 	/* we'll create at most two more regions */
637 	while (type->cnt + 2 > type->max)
638 		if (memblock_double_array(type, base, size) < 0)
639 			return -ENOMEM;
640 
641 	for_each_memblock_type(idx, type, rgn) {
642 		phys_addr_t rbase = rgn->base;
643 		phys_addr_t rend = rbase + rgn->size;
644 
645 		if (rbase >= end)
646 			break;
647 		if (rend <= base)
648 			continue;
649 
650 		if (rbase < base) {
651 			/*
652 			 * @rgn intersects from below.  Split and continue
653 			 * to process the next region - the new top half.
654 			 */
655 			rgn->base = base;
656 			rgn->size -= base - rbase;
657 			type->total_size -= base - rbase;
658 			memblock_insert_region(type, idx, rbase, base - rbase,
659 					       memblock_get_region_node(rgn),
660 					       rgn->flags);
661 		} else if (rend > end) {
662 			/*
663 			 * @rgn intersects from above.  Split and redo the
664 			 * current region - the new bottom half.
665 			 */
666 			rgn->base = end;
667 			rgn->size -= end - rbase;
668 			type->total_size -= end - rbase;
669 			memblock_insert_region(type, idx--, rbase, end - rbase,
670 					       memblock_get_region_node(rgn),
671 					       rgn->flags);
672 		} else {
673 			/* @rgn is fully contained, record it */
674 			if (!*end_rgn)
675 				*start_rgn = idx;
676 			*end_rgn = idx + 1;
677 		}
678 	}
679 
680 	return 0;
681 }
682 
683 static int __init_memblock memblock_remove_range(struct memblock_type *type,
684 					  phys_addr_t base, phys_addr_t size)
685 {
686 	int start_rgn, end_rgn;
687 	int i, ret;
688 
689 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
690 	if (ret)
691 		return ret;
692 
693 	for (i = end_rgn - 1; i >= start_rgn; i--)
694 		memblock_remove_region(type, i);
695 	return 0;
696 }
697 
698 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
699 {
700 	phys_addr_t end = base + size - 1;
701 
702 	memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
703 		     &base, &end, (void *)_RET_IP_);
704 
705 	return memblock_remove_range(&memblock.memory, base, size);
706 }
707 
708 
709 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
710 {
711 	phys_addr_t end = base + size - 1;
712 
713 	memblock_dbg("   memblock_free: [%pa-%pa] %pF\n",
714 		     &base, &end, (void *)_RET_IP_);
715 
716 	kmemleak_free_part_phys(base, size);
717 	return memblock_remove_range(&memblock.reserved, base, size);
718 }
719 
720 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
721 {
722 	phys_addr_t end = base + size - 1;
723 
724 	memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
725 		     &base, &end, (void *)_RET_IP_);
726 
727 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
728 }
729 
730 /**
731  *
732  * This function isolates region [@base, @base + @size), and sets/clears flag
733  *
734  * Return 0 on success, -errno on failure.
735  */
736 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
737 				phys_addr_t size, int set, int flag)
738 {
739 	struct memblock_type *type = &memblock.memory;
740 	int i, ret, start_rgn, end_rgn;
741 
742 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
743 	if (ret)
744 		return ret;
745 
746 	for (i = start_rgn; i < end_rgn; i++)
747 		if (set)
748 			memblock_set_region_flags(&type->regions[i], flag);
749 		else
750 			memblock_clear_region_flags(&type->regions[i], flag);
751 
752 	memblock_merge_regions(type);
753 	return 0;
754 }
755 
756 /**
757  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
758  * @base: the base phys addr of the region
759  * @size: the size of the region
760  *
761  * Return 0 on success, -errno on failure.
762  */
763 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
764 {
765 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
766 }
767 
768 /**
769  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
770  * @base: the base phys addr of the region
771  * @size: the size of the region
772  *
773  * Return 0 on success, -errno on failure.
774  */
775 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
776 {
777 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
778 }
779 
780 /**
781  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
782  * @base: the base phys addr of the region
783  * @size: the size of the region
784  *
785  * Return 0 on success, -errno on failure.
786  */
787 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
788 {
789 	system_has_some_mirror = true;
790 
791 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
792 }
793 
794 /**
795  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
796  * @base: the base phys addr of the region
797  * @size: the size of the region
798  *
799  * Return 0 on success, -errno on failure.
800  */
801 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
802 {
803 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
804 }
805 
806 /**
807  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
808  * @base: the base phys addr of the region
809  * @size: the size of the region
810  *
811  * Return 0 on success, -errno on failure.
812  */
813 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
814 {
815 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
816 }
817 
818 /**
819  * __next_reserved_mem_region - next function for for_each_reserved_region()
820  * @idx: pointer to u64 loop variable
821  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
822  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
823  *
824  * Iterate over all reserved memory regions.
825  */
826 void __init_memblock __next_reserved_mem_region(u64 *idx,
827 					   phys_addr_t *out_start,
828 					   phys_addr_t *out_end)
829 {
830 	struct memblock_type *type = &memblock.reserved;
831 
832 	if (*idx < type->cnt) {
833 		struct memblock_region *r = &type->regions[*idx];
834 		phys_addr_t base = r->base;
835 		phys_addr_t size = r->size;
836 
837 		if (out_start)
838 			*out_start = base;
839 		if (out_end)
840 			*out_end = base + size - 1;
841 
842 		*idx += 1;
843 		return;
844 	}
845 
846 	/* signal end of iteration */
847 	*idx = ULLONG_MAX;
848 }
849 
850 /**
851  * __next__mem_range - next function for for_each_free_mem_range() etc.
852  * @idx: pointer to u64 loop variable
853  * @nid: node selector, %NUMA_NO_NODE for all nodes
854  * @flags: pick from blocks based on memory attributes
855  * @type_a: pointer to memblock_type from where the range is taken
856  * @type_b: pointer to memblock_type which excludes memory from being taken
857  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
858  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
859  * @out_nid: ptr to int for nid of the range, can be %NULL
860  *
861  * Find the first area from *@idx which matches @nid, fill the out
862  * parameters, and update *@idx for the next iteration.  The lower 32bit of
863  * *@idx contains index into type_a and the upper 32bit indexes the
864  * areas before each region in type_b.	For example, if type_b regions
865  * look like the following,
866  *
867  *	0:[0-16), 1:[32-48), 2:[128-130)
868  *
869  * The upper 32bit indexes the following regions.
870  *
871  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
872  *
873  * As both region arrays are sorted, the function advances the two indices
874  * in lockstep and returns each intersection.
875  */
876 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
877 				      struct memblock_type *type_a,
878 				      struct memblock_type *type_b,
879 				      phys_addr_t *out_start,
880 				      phys_addr_t *out_end, int *out_nid)
881 {
882 	int idx_a = *idx & 0xffffffff;
883 	int idx_b = *idx >> 32;
884 
885 	if (WARN_ONCE(nid == MAX_NUMNODES,
886 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
887 		nid = NUMA_NO_NODE;
888 
889 	for (; idx_a < type_a->cnt; idx_a++) {
890 		struct memblock_region *m = &type_a->regions[idx_a];
891 
892 		phys_addr_t m_start = m->base;
893 		phys_addr_t m_end = m->base + m->size;
894 		int	    m_nid = memblock_get_region_node(m);
895 
896 		/* only memory regions are associated with nodes, check it */
897 		if (nid != NUMA_NO_NODE && nid != m_nid)
898 			continue;
899 
900 		/* skip hotpluggable memory regions if needed */
901 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
902 			continue;
903 
904 		/* if we want mirror memory skip non-mirror memory regions */
905 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
906 			continue;
907 
908 		/* skip nomap memory unless we were asked for it explicitly */
909 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
910 			continue;
911 
912 		if (!type_b) {
913 			if (out_start)
914 				*out_start = m_start;
915 			if (out_end)
916 				*out_end = m_end;
917 			if (out_nid)
918 				*out_nid = m_nid;
919 			idx_a++;
920 			*idx = (u32)idx_a | (u64)idx_b << 32;
921 			return;
922 		}
923 
924 		/* scan areas before each reservation */
925 		for (; idx_b < type_b->cnt + 1; idx_b++) {
926 			struct memblock_region *r;
927 			phys_addr_t r_start;
928 			phys_addr_t r_end;
929 
930 			r = &type_b->regions[idx_b];
931 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
932 			r_end = idx_b < type_b->cnt ?
933 				r->base : PHYS_ADDR_MAX;
934 
935 			/*
936 			 * if idx_b advanced past idx_a,
937 			 * break out to advance idx_a
938 			 */
939 			if (r_start >= m_end)
940 				break;
941 			/* if the two regions intersect, we're done */
942 			if (m_start < r_end) {
943 				if (out_start)
944 					*out_start =
945 						max(m_start, r_start);
946 				if (out_end)
947 					*out_end = min(m_end, r_end);
948 				if (out_nid)
949 					*out_nid = m_nid;
950 				/*
951 				 * The region which ends first is
952 				 * advanced for the next iteration.
953 				 */
954 				if (m_end <= r_end)
955 					idx_a++;
956 				else
957 					idx_b++;
958 				*idx = (u32)idx_a | (u64)idx_b << 32;
959 				return;
960 			}
961 		}
962 	}
963 
964 	/* signal end of iteration */
965 	*idx = ULLONG_MAX;
966 }
967 
968 /**
969  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
970  *
971  * Finds the next range from type_a which is not marked as unsuitable
972  * in type_b.
973  *
974  * @idx: pointer to u64 loop variable
975  * @nid: node selector, %NUMA_NO_NODE for all nodes
976  * @flags: pick from blocks based on memory attributes
977  * @type_a: pointer to memblock_type from where the range is taken
978  * @type_b: pointer to memblock_type which excludes memory from being taken
979  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
980  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
981  * @out_nid: ptr to int for nid of the range, can be %NULL
982  *
983  * Reverse of __next_mem_range().
984  */
985 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
986 					  struct memblock_type *type_a,
987 					  struct memblock_type *type_b,
988 					  phys_addr_t *out_start,
989 					  phys_addr_t *out_end, int *out_nid)
990 {
991 	int idx_a = *idx & 0xffffffff;
992 	int idx_b = *idx >> 32;
993 
994 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
995 		nid = NUMA_NO_NODE;
996 
997 	if (*idx == (u64)ULLONG_MAX) {
998 		idx_a = type_a->cnt - 1;
999 		if (type_b != NULL)
1000 			idx_b = type_b->cnt;
1001 		else
1002 			idx_b = 0;
1003 	}
1004 
1005 	for (; idx_a >= 0; idx_a--) {
1006 		struct memblock_region *m = &type_a->regions[idx_a];
1007 
1008 		phys_addr_t m_start = m->base;
1009 		phys_addr_t m_end = m->base + m->size;
1010 		int m_nid = memblock_get_region_node(m);
1011 
1012 		/* only memory regions are associated with nodes, check it */
1013 		if (nid != NUMA_NO_NODE && nid != m_nid)
1014 			continue;
1015 
1016 		/* skip hotpluggable memory regions if needed */
1017 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1018 			continue;
1019 
1020 		/* if we want mirror memory skip non-mirror memory regions */
1021 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1022 			continue;
1023 
1024 		/* skip nomap memory unless we were asked for it explicitly */
1025 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1026 			continue;
1027 
1028 		if (!type_b) {
1029 			if (out_start)
1030 				*out_start = m_start;
1031 			if (out_end)
1032 				*out_end = m_end;
1033 			if (out_nid)
1034 				*out_nid = m_nid;
1035 			idx_a--;
1036 			*idx = (u32)idx_a | (u64)idx_b << 32;
1037 			return;
1038 		}
1039 
1040 		/* scan areas before each reservation */
1041 		for (; idx_b >= 0; idx_b--) {
1042 			struct memblock_region *r;
1043 			phys_addr_t r_start;
1044 			phys_addr_t r_end;
1045 
1046 			r = &type_b->regions[idx_b];
1047 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1048 			r_end = idx_b < type_b->cnt ?
1049 				r->base : PHYS_ADDR_MAX;
1050 			/*
1051 			 * if idx_b advanced past idx_a,
1052 			 * break out to advance idx_a
1053 			 */
1054 
1055 			if (r_end <= m_start)
1056 				break;
1057 			/* if the two regions intersect, we're done */
1058 			if (m_end > r_start) {
1059 				if (out_start)
1060 					*out_start = max(m_start, r_start);
1061 				if (out_end)
1062 					*out_end = min(m_end, r_end);
1063 				if (out_nid)
1064 					*out_nid = m_nid;
1065 				if (m_start >= r_start)
1066 					idx_a--;
1067 				else
1068 					idx_b--;
1069 				*idx = (u32)idx_a | (u64)idx_b << 32;
1070 				return;
1071 			}
1072 		}
1073 	}
1074 	/* signal end of iteration */
1075 	*idx = ULLONG_MAX;
1076 }
1077 
1078 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1079 /*
1080  * Common iterator interface used to define for_each_mem_range().
1081  */
1082 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1083 				unsigned long *out_start_pfn,
1084 				unsigned long *out_end_pfn, int *out_nid)
1085 {
1086 	struct memblock_type *type = &memblock.memory;
1087 	struct memblock_region *r;
1088 
1089 	while (++*idx < type->cnt) {
1090 		r = &type->regions[*idx];
1091 
1092 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1093 			continue;
1094 		if (nid == MAX_NUMNODES || nid == r->nid)
1095 			break;
1096 	}
1097 	if (*idx >= type->cnt) {
1098 		*idx = -1;
1099 		return;
1100 	}
1101 
1102 	if (out_start_pfn)
1103 		*out_start_pfn = PFN_UP(r->base);
1104 	if (out_end_pfn)
1105 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1106 	if (out_nid)
1107 		*out_nid = r->nid;
1108 }
1109 
1110 /**
1111  * memblock_set_node - set node ID on memblock regions
1112  * @base: base of area to set node ID for
1113  * @size: size of area to set node ID for
1114  * @type: memblock type to set node ID for
1115  * @nid: node ID to set
1116  *
1117  * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1118  * Regions which cross the area boundaries are split as necessary.
1119  *
1120  * RETURNS:
1121  * 0 on success, -errno on failure.
1122  */
1123 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1124 				      struct memblock_type *type, int nid)
1125 {
1126 	int start_rgn, end_rgn;
1127 	int i, ret;
1128 
1129 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1130 	if (ret)
1131 		return ret;
1132 
1133 	for (i = start_rgn; i < end_rgn; i++)
1134 		memblock_set_region_node(&type->regions[i], nid);
1135 
1136 	memblock_merge_regions(type);
1137 	return 0;
1138 }
1139 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1140 
1141 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1142 					phys_addr_t align, phys_addr_t start,
1143 					phys_addr_t end, int nid, ulong flags)
1144 {
1145 	phys_addr_t found;
1146 
1147 	if (!align)
1148 		align = SMP_CACHE_BYTES;
1149 
1150 	found = memblock_find_in_range_node(size, align, start, end, nid,
1151 					    flags);
1152 	if (found && !memblock_reserve(found, size)) {
1153 		/*
1154 		 * The min_count is set to 0 so that memblock allocations are
1155 		 * never reported as leaks.
1156 		 */
1157 		kmemleak_alloc_phys(found, size, 0, 0);
1158 		return found;
1159 	}
1160 	return 0;
1161 }
1162 
1163 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1164 					phys_addr_t start, phys_addr_t end,
1165 					ulong flags)
1166 {
1167 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1168 					flags);
1169 }
1170 
1171 phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1172 					phys_addr_t align, phys_addr_t max_addr,
1173 					int nid, ulong flags)
1174 {
1175 	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1176 }
1177 
1178 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1179 {
1180 	ulong flags = choose_memblock_flags();
1181 	phys_addr_t ret;
1182 
1183 again:
1184 	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1185 				      nid, flags);
1186 
1187 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1188 		flags &= ~MEMBLOCK_MIRROR;
1189 		goto again;
1190 	}
1191 	return ret;
1192 }
1193 
1194 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1195 {
1196 	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1197 				       MEMBLOCK_NONE);
1198 }
1199 
1200 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1201 {
1202 	phys_addr_t alloc;
1203 
1204 	alloc = __memblock_alloc_base(size, align, max_addr);
1205 
1206 	if (alloc == 0)
1207 		panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1208 		      &size, &max_addr);
1209 
1210 	return alloc;
1211 }
1212 
1213 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1214 {
1215 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1216 }
1217 
1218 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1219 {
1220 	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1221 
1222 	if (res)
1223 		return res;
1224 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1225 }
1226 
1227 /**
1228  * memblock_virt_alloc_internal - allocate boot memory block
1229  * @size: size of memory block to be allocated in bytes
1230  * @align: alignment of the region and block's size
1231  * @min_addr: the lower bound of the memory region to allocate (phys address)
1232  * @max_addr: the upper bound of the memory region to allocate (phys address)
1233  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1234  *
1235  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1236  * will fall back to memory below @min_addr. Also, allocation may fall back
1237  * to any node in the system if the specified node can not
1238  * hold the requested memory.
1239  *
1240  * The allocation is performed from memory region limited by
1241  * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1242  *
1243  * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1244  *
1245  * The phys address of allocated boot memory block is converted to virtual and
1246  * allocated memory is reset to 0.
1247  *
1248  * In addition, function sets the min_count to 0 using kmemleak_alloc for
1249  * allocated boot memory block, so that it is never reported as leaks.
1250  *
1251  * RETURNS:
1252  * Virtual address of allocated memory block on success, NULL on failure.
1253  */
1254 static void * __init memblock_virt_alloc_internal(
1255 				phys_addr_t size, phys_addr_t align,
1256 				phys_addr_t min_addr, phys_addr_t max_addr,
1257 				int nid)
1258 {
1259 	phys_addr_t alloc;
1260 	void *ptr;
1261 	ulong flags = choose_memblock_flags();
1262 
1263 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1264 		nid = NUMA_NO_NODE;
1265 
1266 	/*
1267 	 * Detect any accidental use of these APIs after slab is ready, as at
1268 	 * this moment memblock may be deinitialized already and its
1269 	 * internal data may be destroyed (after execution of free_all_bootmem)
1270 	 */
1271 	if (WARN_ON_ONCE(slab_is_available()))
1272 		return kzalloc_node(size, GFP_NOWAIT, nid);
1273 
1274 	if (!align)
1275 		align = SMP_CACHE_BYTES;
1276 
1277 	if (max_addr > memblock.current_limit)
1278 		max_addr = memblock.current_limit;
1279 again:
1280 	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1281 					    nid, flags);
1282 	if (alloc && !memblock_reserve(alloc, size))
1283 		goto done;
1284 
1285 	if (nid != NUMA_NO_NODE) {
1286 		alloc = memblock_find_in_range_node(size, align, min_addr,
1287 						    max_addr, NUMA_NO_NODE,
1288 						    flags);
1289 		if (alloc && !memblock_reserve(alloc, size))
1290 			goto done;
1291 	}
1292 
1293 	if (min_addr) {
1294 		min_addr = 0;
1295 		goto again;
1296 	}
1297 
1298 	if (flags & MEMBLOCK_MIRROR) {
1299 		flags &= ~MEMBLOCK_MIRROR;
1300 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1301 			&size);
1302 		goto again;
1303 	}
1304 
1305 	return NULL;
1306 done:
1307 	ptr = phys_to_virt(alloc);
1308 
1309 	/*
1310 	 * The min_count is set to 0 so that bootmem allocated blocks
1311 	 * are never reported as leaks. This is because many of these blocks
1312 	 * are only referred via the physical address which is not
1313 	 * looked up by kmemleak.
1314 	 */
1315 	kmemleak_alloc(ptr, size, 0, 0);
1316 
1317 	return ptr;
1318 }
1319 
1320 /**
1321  * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1322  * memory and without panicking
1323  * @size: size of memory block to be allocated in bytes
1324  * @align: alignment of the region and block's size
1325  * @min_addr: the lower bound of the memory region from where the allocation
1326  *	  is preferred (phys address)
1327  * @max_addr: the upper bound of the memory region from where the allocation
1328  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1329  *	      allocate only from memory limited by memblock.current_limit value
1330  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1331  *
1332  * Public function, provides additional debug information (including caller
1333  * info), if enabled. Does not zero allocated memory, does not panic if request
1334  * cannot be satisfied.
1335  *
1336  * RETURNS:
1337  * Virtual address of allocated memory block on success, NULL on failure.
1338  */
1339 void * __init memblock_virt_alloc_try_nid_raw(
1340 			phys_addr_t size, phys_addr_t align,
1341 			phys_addr_t min_addr, phys_addr_t max_addr,
1342 			int nid)
1343 {
1344 	void *ptr;
1345 
1346 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1347 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1348 		     (u64)max_addr, (void *)_RET_IP_);
1349 
1350 	ptr = memblock_virt_alloc_internal(size, align,
1351 					   min_addr, max_addr, nid);
1352 #ifdef CONFIG_DEBUG_VM
1353 	if (ptr && size > 0)
1354 		memset(ptr, PAGE_POISON_PATTERN, size);
1355 #endif
1356 	return ptr;
1357 }
1358 
1359 /**
1360  * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1361  * @size: size of memory block to be allocated in bytes
1362  * @align: alignment of the region and block's size
1363  * @min_addr: the lower bound of the memory region from where the allocation
1364  *	  is preferred (phys address)
1365  * @max_addr: the upper bound of the memory region from where the allocation
1366  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1367  *	      allocate only from memory limited by memblock.current_limit value
1368  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1369  *
1370  * Public function, provides additional debug information (including caller
1371  * info), if enabled. This function zeroes the allocated memory.
1372  *
1373  * RETURNS:
1374  * Virtual address of allocated memory block on success, NULL on failure.
1375  */
1376 void * __init memblock_virt_alloc_try_nid_nopanic(
1377 				phys_addr_t size, phys_addr_t align,
1378 				phys_addr_t min_addr, phys_addr_t max_addr,
1379 				int nid)
1380 {
1381 	void *ptr;
1382 
1383 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1384 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1385 		     (u64)max_addr, (void *)_RET_IP_);
1386 
1387 	ptr = memblock_virt_alloc_internal(size, align,
1388 					   min_addr, max_addr, nid);
1389 	if (ptr)
1390 		memset(ptr, 0, size);
1391 	return ptr;
1392 }
1393 
1394 /**
1395  * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1396  * @size: size of memory block to be allocated in bytes
1397  * @align: alignment of the region and block's size
1398  * @min_addr: the lower bound of the memory region from where the allocation
1399  *	  is preferred (phys address)
1400  * @max_addr: the upper bound of the memory region from where the allocation
1401  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1402  *	      allocate only from memory limited by memblock.current_limit value
1403  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1404  *
1405  * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1406  * which provides debug information (including caller info), if enabled,
1407  * and panics if the request can not be satisfied.
1408  *
1409  * RETURNS:
1410  * Virtual address of allocated memory block on success, NULL on failure.
1411  */
1412 void * __init memblock_virt_alloc_try_nid(
1413 			phys_addr_t size, phys_addr_t align,
1414 			phys_addr_t min_addr, phys_addr_t max_addr,
1415 			int nid)
1416 {
1417 	void *ptr;
1418 
1419 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1420 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1421 		     (u64)max_addr, (void *)_RET_IP_);
1422 	ptr = memblock_virt_alloc_internal(size, align,
1423 					   min_addr, max_addr, nid);
1424 	if (ptr) {
1425 		memset(ptr, 0, size);
1426 		return ptr;
1427 	}
1428 
1429 	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1430 	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1431 	      (u64)max_addr);
1432 	return NULL;
1433 }
1434 
1435 /**
1436  * __memblock_free_early - free boot memory block
1437  * @base: phys starting address of the  boot memory block
1438  * @size: size of the boot memory block in bytes
1439  *
1440  * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1441  * The freeing memory will not be released to the buddy allocator.
1442  */
1443 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1444 {
1445 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1446 		     __func__, (u64)base, (u64)base + size - 1,
1447 		     (void *)_RET_IP_);
1448 	kmemleak_free_part_phys(base, size);
1449 	memblock_remove_range(&memblock.reserved, base, size);
1450 }
1451 
1452 /*
1453  * __memblock_free_late - free bootmem block pages directly to buddy allocator
1454  * @addr: phys starting address of the  boot memory block
1455  * @size: size of the boot memory block in bytes
1456  *
1457  * This is only useful when the bootmem allocator has already been torn
1458  * down, but we are still initializing the system.  Pages are released directly
1459  * to the buddy allocator, no bootmem metadata is updated because it is gone.
1460  */
1461 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1462 {
1463 	u64 cursor, end;
1464 
1465 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1466 		     __func__, (u64)base, (u64)base + size - 1,
1467 		     (void *)_RET_IP_);
1468 	kmemleak_free_part_phys(base, size);
1469 	cursor = PFN_UP(base);
1470 	end = PFN_DOWN(base + size);
1471 
1472 	for (; cursor < end; cursor++) {
1473 		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1474 		totalram_pages++;
1475 	}
1476 }
1477 
1478 /*
1479  * Remaining API functions
1480  */
1481 
1482 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1483 {
1484 	return memblock.memory.total_size;
1485 }
1486 
1487 phys_addr_t __init_memblock memblock_reserved_size(void)
1488 {
1489 	return memblock.reserved.total_size;
1490 }
1491 
1492 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1493 {
1494 	unsigned long pages = 0;
1495 	struct memblock_region *r;
1496 	unsigned long start_pfn, end_pfn;
1497 
1498 	for_each_memblock(memory, r) {
1499 		start_pfn = memblock_region_memory_base_pfn(r);
1500 		end_pfn = memblock_region_memory_end_pfn(r);
1501 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1502 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1503 		pages += end_pfn - start_pfn;
1504 	}
1505 
1506 	return PFN_PHYS(pages);
1507 }
1508 
1509 /* lowest address */
1510 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1511 {
1512 	return memblock.memory.regions[0].base;
1513 }
1514 
1515 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1516 {
1517 	int idx = memblock.memory.cnt - 1;
1518 
1519 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1520 }
1521 
1522 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1523 {
1524 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1525 	struct memblock_region *r;
1526 
1527 	/*
1528 	 * translate the memory @limit size into the max address within one of
1529 	 * the memory memblock regions, if the @limit exceeds the total size
1530 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1531 	 */
1532 	for_each_memblock(memory, r) {
1533 		if (limit <= r->size) {
1534 			max_addr = r->base + limit;
1535 			break;
1536 		}
1537 		limit -= r->size;
1538 	}
1539 
1540 	return max_addr;
1541 }
1542 
1543 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1544 {
1545 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1546 
1547 	if (!limit)
1548 		return;
1549 
1550 	max_addr = __find_max_addr(limit);
1551 
1552 	/* @limit exceeds the total size of the memory, do nothing */
1553 	if (max_addr == PHYS_ADDR_MAX)
1554 		return;
1555 
1556 	/* truncate both memory and reserved regions */
1557 	memblock_remove_range(&memblock.memory, max_addr,
1558 			      PHYS_ADDR_MAX);
1559 	memblock_remove_range(&memblock.reserved, max_addr,
1560 			      PHYS_ADDR_MAX);
1561 }
1562 
1563 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1564 {
1565 	int start_rgn, end_rgn;
1566 	int i, ret;
1567 
1568 	if (!size)
1569 		return;
1570 
1571 	ret = memblock_isolate_range(&memblock.memory, base, size,
1572 						&start_rgn, &end_rgn);
1573 	if (ret)
1574 		return;
1575 
1576 	/* remove all the MAP regions */
1577 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1578 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1579 			memblock_remove_region(&memblock.memory, i);
1580 
1581 	for (i = start_rgn - 1; i >= 0; i--)
1582 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1583 			memblock_remove_region(&memblock.memory, i);
1584 
1585 	/* truncate the reserved regions */
1586 	memblock_remove_range(&memblock.reserved, 0, base);
1587 	memblock_remove_range(&memblock.reserved,
1588 			base + size, PHYS_ADDR_MAX);
1589 }
1590 
1591 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1592 {
1593 	phys_addr_t max_addr;
1594 
1595 	if (!limit)
1596 		return;
1597 
1598 	max_addr = __find_max_addr(limit);
1599 
1600 	/* @limit exceeds the total size of the memory, do nothing */
1601 	if (max_addr == PHYS_ADDR_MAX)
1602 		return;
1603 
1604 	memblock_cap_memory_range(0, max_addr);
1605 }
1606 
1607 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1608 {
1609 	unsigned int left = 0, right = type->cnt;
1610 
1611 	do {
1612 		unsigned int mid = (right + left) / 2;
1613 
1614 		if (addr < type->regions[mid].base)
1615 			right = mid;
1616 		else if (addr >= (type->regions[mid].base +
1617 				  type->regions[mid].size))
1618 			left = mid + 1;
1619 		else
1620 			return mid;
1621 	} while (left < right);
1622 	return -1;
1623 }
1624 
1625 bool __init memblock_is_reserved(phys_addr_t addr)
1626 {
1627 	return memblock_search(&memblock.reserved, addr) != -1;
1628 }
1629 
1630 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1631 {
1632 	return memblock_search(&memblock.memory, addr) != -1;
1633 }
1634 
1635 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1636 {
1637 	int i = memblock_search(&memblock.memory, addr);
1638 
1639 	if (i == -1)
1640 		return false;
1641 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1642 }
1643 
1644 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1645 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1646 			 unsigned long *start_pfn, unsigned long *end_pfn)
1647 {
1648 	struct memblock_type *type = &memblock.memory;
1649 	int mid = memblock_search(type, PFN_PHYS(pfn));
1650 
1651 	if (mid == -1)
1652 		return -1;
1653 
1654 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1655 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1656 
1657 	return type->regions[mid].nid;
1658 }
1659 #endif
1660 
1661 /**
1662  * memblock_is_region_memory - check if a region is a subset of memory
1663  * @base: base of region to check
1664  * @size: size of region to check
1665  *
1666  * Check if the region [@base, @base+@size) is a subset of a memory block.
1667  *
1668  * RETURNS:
1669  * 0 if false, non-zero if true
1670  */
1671 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1672 {
1673 	int idx = memblock_search(&memblock.memory, base);
1674 	phys_addr_t end = base + memblock_cap_size(base, &size);
1675 
1676 	if (idx == -1)
1677 		return false;
1678 	return (memblock.memory.regions[idx].base +
1679 		 memblock.memory.regions[idx].size) >= end;
1680 }
1681 
1682 /**
1683  * memblock_is_region_reserved - check if a region intersects reserved memory
1684  * @base: base of region to check
1685  * @size: size of region to check
1686  *
1687  * Check if the region [@base, @base+@size) intersects a reserved memory block.
1688  *
1689  * RETURNS:
1690  * True if they intersect, false if not.
1691  */
1692 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1693 {
1694 	memblock_cap_size(base, &size);
1695 	return memblock_overlaps_region(&memblock.reserved, base, size);
1696 }
1697 
1698 void __init_memblock memblock_trim_memory(phys_addr_t align)
1699 {
1700 	phys_addr_t start, end, orig_start, orig_end;
1701 	struct memblock_region *r;
1702 
1703 	for_each_memblock(memory, r) {
1704 		orig_start = r->base;
1705 		orig_end = r->base + r->size;
1706 		start = round_up(orig_start, align);
1707 		end = round_down(orig_end, align);
1708 
1709 		if (start == orig_start && end == orig_end)
1710 			continue;
1711 
1712 		if (start < end) {
1713 			r->base = start;
1714 			r->size = end - start;
1715 		} else {
1716 			memblock_remove_region(&memblock.memory,
1717 					       r - memblock.memory.regions);
1718 			r--;
1719 		}
1720 	}
1721 }
1722 
1723 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1724 {
1725 	memblock.current_limit = limit;
1726 }
1727 
1728 phys_addr_t __init_memblock memblock_get_current_limit(void)
1729 {
1730 	return memblock.current_limit;
1731 }
1732 
1733 static void __init_memblock memblock_dump(struct memblock_type *type)
1734 {
1735 	phys_addr_t base, end, size;
1736 	unsigned long flags;
1737 	int idx;
1738 	struct memblock_region *rgn;
1739 
1740 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1741 
1742 	for_each_memblock_type(idx, type, rgn) {
1743 		char nid_buf[32] = "";
1744 
1745 		base = rgn->base;
1746 		size = rgn->size;
1747 		end = base + size - 1;
1748 		flags = rgn->flags;
1749 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1750 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1751 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1752 				 memblock_get_region_node(rgn));
1753 #endif
1754 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1755 			type->name, idx, &base, &end, &size, nid_buf, flags);
1756 	}
1757 }
1758 
1759 void __init_memblock __memblock_dump_all(void)
1760 {
1761 	pr_info("MEMBLOCK configuration:\n");
1762 	pr_info(" memory size = %pa reserved size = %pa\n",
1763 		&memblock.memory.total_size,
1764 		&memblock.reserved.total_size);
1765 
1766 	memblock_dump(&memblock.memory);
1767 	memblock_dump(&memblock.reserved);
1768 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1769 	memblock_dump(&memblock.physmem);
1770 #endif
1771 }
1772 
1773 void __init memblock_allow_resize(void)
1774 {
1775 	memblock_can_resize = 1;
1776 }
1777 
1778 static int __init early_memblock(char *p)
1779 {
1780 	if (p && strstr(p, "debug"))
1781 		memblock_debug = 1;
1782 	return 0;
1783 }
1784 early_param("memblock", early_memblock);
1785 
1786 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1787 
1788 static int memblock_debug_show(struct seq_file *m, void *private)
1789 {
1790 	struct memblock_type *type = m->private;
1791 	struct memblock_region *reg;
1792 	int i;
1793 	phys_addr_t end;
1794 
1795 	for (i = 0; i < type->cnt; i++) {
1796 		reg = &type->regions[i];
1797 		end = reg->base + reg->size - 1;
1798 
1799 		seq_printf(m, "%4d: ", i);
1800 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1801 	}
1802 	return 0;
1803 }
1804 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
1805 
1806 static int __init memblock_init_debugfs(void)
1807 {
1808 	struct dentry *root = debugfs_create_dir("memblock", NULL);
1809 	if (!root)
1810 		return -ENXIO;
1811 	debugfs_create_file("memory", 0444, root,
1812 			    &memblock.memory, &memblock_debug_fops);
1813 	debugfs_create_file("reserved", 0444, root,
1814 			    &memblock.reserved, &memblock_debug_fops);
1815 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1816 	debugfs_create_file("physmem", 0444, root,
1817 			    &memblock.physmem, &memblock_debug_fops);
1818 #endif
1819 
1820 	return 0;
1821 }
1822 __initcall(memblock_init_debugfs);
1823 
1824 #endif /* CONFIG_DEBUG_FS */
1825