1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/seq_file.h> 21 #include <linux/memblock.h> 22 23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 25 26 struct memblock memblock __initdata_memblock = { 27 .memory.regions = memblock_memory_init_regions, 28 .memory.cnt = 1, /* empty dummy entry */ 29 .memory.max = INIT_MEMBLOCK_REGIONS, 30 31 .reserved.regions = memblock_reserved_init_regions, 32 .reserved.cnt = 1, /* empty dummy entry */ 33 .reserved.max = INIT_MEMBLOCK_REGIONS, 34 35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 36 }; 37 38 int memblock_debug __initdata_memblock; 39 static int memblock_can_resize __initdata_memblock; 40 static int memblock_memory_in_slab __initdata_memblock = 0; 41 static int memblock_reserved_in_slab __initdata_memblock = 0; 42 43 /* inline so we don't get a warning when pr_debug is compiled out */ 44 static __init_memblock const char * 45 memblock_type_name(struct memblock_type *type) 46 { 47 if (type == &memblock.memory) 48 return "memory"; 49 else if (type == &memblock.reserved) 50 return "reserved"; 51 else 52 return "unknown"; 53 } 54 55 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 56 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 57 { 58 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); 59 } 60 61 /* 62 * Address comparison utilities 63 */ 64 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 65 phys_addr_t base2, phys_addr_t size2) 66 { 67 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 68 } 69 70 static long __init_memblock memblock_overlaps_region(struct memblock_type *type, 71 phys_addr_t base, phys_addr_t size) 72 { 73 unsigned long i; 74 75 for (i = 0; i < type->cnt; i++) { 76 phys_addr_t rgnbase = type->regions[i].base; 77 phys_addr_t rgnsize = type->regions[i].size; 78 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) 79 break; 80 } 81 82 return (i < type->cnt) ? i : -1; 83 } 84 85 /** 86 * memblock_find_in_range_node - find free area in given range and node 87 * @start: start of candidate range 88 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 89 * @size: size of free area to find 90 * @align: alignment of free area to find 91 * @nid: nid of the free area to find, %MAX_NUMNODES for any node 92 * 93 * Find @size free area aligned to @align in the specified range and node. 94 * 95 * RETURNS: 96 * Found address on success, %0 on failure. 97 */ 98 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start, 99 phys_addr_t end, phys_addr_t size, 100 phys_addr_t align, int nid) 101 { 102 phys_addr_t this_start, this_end, cand; 103 u64 i; 104 105 /* pump up @end */ 106 if (end == MEMBLOCK_ALLOC_ACCESSIBLE) 107 end = memblock.current_limit; 108 109 /* avoid allocating the first page */ 110 start = max_t(phys_addr_t, start, PAGE_SIZE); 111 end = max(start, end); 112 113 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) { 114 this_start = clamp(this_start, start, end); 115 this_end = clamp(this_end, start, end); 116 117 if (this_end < size) 118 continue; 119 120 cand = round_down(this_end - size, align); 121 if (cand >= this_start) 122 return cand; 123 } 124 return 0; 125 } 126 127 /** 128 * memblock_find_in_range - find free area in given range 129 * @start: start of candidate range 130 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 131 * @size: size of free area to find 132 * @align: alignment of free area to find 133 * 134 * Find @size free area aligned to @align in the specified range. 135 * 136 * RETURNS: 137 * Found address on success, %0 on failure. 138 */ 139 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 140 phys_addr_t end, phys_addr_t size, 141 phys_addr_t align) 142 { 143 return memblock_find_in_range_node(start, end, size, align, 144 MAX_NUMNODES); 145 } 146 147 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 148 { 149 type->total_size -= type->regions[r].size; 150 memmove(&type->regions[r], &type->regions[r + 1], 151 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 152 type->cnt--; 153 154 /* Special case for empty arrays */ 155 if (type->cnt == 0) { 156 WARN_ON(type->total_size != 0); 157 type->cnt = 1; 158 type->regions[0].base = 0; 159 type->regions[0].size = 0; 160 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 161 } 162 } 163 164 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( 165 phys_addr_t *addr) 166 { 167 if (memblock.reserved.regions == memblock_reserved_init_regions) 168 return 0; 169 170 *addr = __pa(memblock.reserved.regions); 171 172 return PAGE_ALIGN(sizeof(struct memblock_region) * 173 memblock.reserved.max); 174 } 175 176 /** 177 * memblock_double_array - double the size of the memblock regions array 178 * @type: memblock type of the regions array being doubled 179 * @new_area_start: starting address of memory range to avoid overlap with 180 * @new_area_size: size of memory range to avoid overlap with 181 * 182 * Double the size of the @type regions array. If memblock is being used to 183 * allocate memory for a new reserved regions array and there is a previously 184 * allocated memory range [@new_area_start,@new_area_start+@new_area_size] 185 * waiting to be reserved, ensure the memory used by the new array does 186 * not overlap. 187 * 188 * RETURNS: 189 * 0 on success, -1 on failure. 190 */ 191 static int __init_memblock memblock_double_array(struct memblock_type *type, 192 phys_addr_t new_area_start, 193 phys_addr_t new_area_size) 194 { 195 struct memblock_region *new_array, *old_array; 196 phys_addr_t old_alloc_size, new_alloc_size; 197 phys_addr_t old_size, new_size, addr; 198 int use_slab = slab_is_available(); 199 int *in_slab; 200 201 /* We don't allow resizing until we know about the reserved regions 202 * of memory that aren't suitable for allocation 203 */ 204 if (!memblock_can_resize) 205 return -1; 206 207 /* Calculate new doubled size */ 208 old_size = type->max * sizeof(struct memblock_region); 209 new_size = old_size << 1; 210 /* 211 * We need to allocated new one align to PAGE_SIZE, 212 * so we can free them completely later. 213 */ 214 old_alloc_size = PAGE_ALIGN(old_size); 215 new_alloc_size = PAGE_ALIGN(new_size); 216 217 /* Retrieve the slab flag */ 218 if (type == &memblock.memory) 219 in_slab = &memblock_memory_in_slab; 220 else 221 in_slab = &memblock_reserved_in_slab; 222 223 /* Try to find some space for it. 224 * 225 * WARNING: We assume that either slab_is_available() and we use it or 226 * we use MEMBLOCK for allocations. That means that this is unsafe to 227 * use when bootmem is currently active (unless bootmem itself is 228 * implemented on top of MEMBLOCK which isn't the case yet) 229 * 230 * This should however not be an issue for now, as we currently only 231 * call into MEMBLOCK while it's still active, or much later when slab 232 * is active for memory hotplug operations 233 */ 234 if (use_slab) { 235 new_array = kmalloc(new_size, GFP_KERNEL); 236 addr = new_array ? __pa(new_array) : 0; 237 } else { 238 /* only exclude range when trying to double reserved.regions */ 239 if (type != &memblock.reserved) 240 new_area_start = new_area_size = 0; 241 242 addr = memblock_find_in_range(new_area_start + new_area_size, 243 memblock.current_limit, 244 new_alloc_size, PAGE_SIZE); 245 if (!addr && new_area_size) 246 addr = memblock_find_in_range(0, 247 min(new_area_start, memblock.current_limit), 248 new_alloc_size, PAGE_SIZE); 249 250 new_array = addr ? __va(addr) : NULL; 251 } 252 if (!addr) { 253 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 254 memblock_type_name(type), type->max, type->max * 2); 255 return -1; 256 } 257 258 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]", 259 memblock_type_name(type), type->max * 2, (u64)addr, 260 (u64)addr + new_size - 1); 261 262 /* 263 * Found space, we now need to move the array over before we add the 264 * reserved region since it may be our reserved array itself that is 265 * full. 266 */ 267 memcpy(new_array, type->regions, old_size); 268 memset(new_array + type->max, 0, old_size); 269 old_array = type->regions; 270 type->regions = new_array; 271 type->max <<= 1; 272 273 /* Free old array. We needn't free it if the array is the static one */ 274 if (*in_slab) 275 kfree(old_array); 276 else if (old_array != memblock_memory_init_regions && 277 old_array != memblock_reserved_init_regions) 278 memblock_free(__pa(old_array), old_alloc_size); 279 280 /* 281 * Reserve the new array if that comes from the memblock. Otherwise, we 282 * needn't do it 283 */ 284 if (!use_slab) 285 BUG_ON(memblock_reserve(addr, new_alloc_size)); 286 287 /* Update slab flag */ 288 *in_slab = use_slab; 289 290 return 0; 291 } 292 293 /** 294 * memblock_merge_regions - merge neighboring compatible regions 295 * @type: memblock type to scan 296 * 297 * Scan @type and merge neighboring compatible regions. 298 */ 299 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 300 { 301 int i = 0; 302 303 /* cnt never goes below 1 */ 304 while (i < type->cnt - 1) { 305 struct memblock_region *this = &type->regions[i]; 306 struct memblock_region *next = &type->regions[i + 1]; 307 308 if (this->base + this->size != next->base || 309 memblock_get_region_node(this) != 310 memblock_get_region_node(next)) { 311 BUG_ON(this->base + this->size > next->base); 312 i++; 313 continue; 314 } 315 316 this->size += next->size; 317 /* move forward from next + 1, index of which is i + 2 */ 318 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 319 type->cnt--; 320 } 321 } 322 323 /** 324 * memblock_insert_region - insert new memblock region 325 * @type: memblock type to insert into 326 * @idx: index for the insertion point 327 * @base: base address of the new region 328 * @size: size of the new region 329 * 330 * Insert new memblock region [@base,@base+@size) into @type at @idx. 331 * @type must already have extra room to accomodate the new region. 332 */ 333 static void __init_memblock memblock_insert_region(struct memblock_type *type, 334 int idx, phys_addr_t base, 335 phys_addr_t size, int nid) 336 { 337 struct memblock_region *rgn = &type->regions[idx]; 338 339 BUG_ON(type->cnt >= type->max); 340 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 341 rgn->base = base; 342 rgn->size = size; 343 memblock_set_region_node(rgn, nid); 344 type->cnt++; 345 type->total_size += size; 346 } 347 348 /** 349 * memblock_add_region - add new memblock region 350 * @type: memblock type to add new region into 351 * @base: base address of the new region 352 * @size: size of the new region 353 * @nid: nid of the new region 354 * 355 * Add new memblock region [@base,@base+@size) into @type. The new region 356 * is allowed to overlap with existing ones - overlaps don't affect already 357 * existing regions. @type is guaranteed to be minimal (all neighbouring 358 * compatible regions are merged) after the addition. 359 * 360 * RETURNS: 361 * 0 on success, -errno on failure. 362 */ 363 static int __init_memblock memblock_add_region(struct memblock_type *type, 364 phys_addr_t base, phys_addr_t size, int nid) 365 { 366 bool insert = false; 367 phys_addr_t obase = base; 368 phys_addr_t end = base + memblock_cap_size(base, &size); 369 int i, nr_new; 370 371 if (!size) 372 return 0; 373 374 /* special case for empty array */ 375 if (type->regions[0].size == 0) { 376 WARN_ON(type->cnt != 1 || type->total_size); 377 type->regions[0].base = base; 378 type->regions[0].size = size; 379 memblock_set_region_node(&type->regions[0], nid); 380 type->total_size = size; 381 return 0; 382 } 383 repeat: 384 /* 385 * The following is executed twice. Once with %false @insert and 386 * then with %true. The first counts the number of regions needed 387 * to accomodate the new area. The second actually inserts them. 388 */ 389 base = obase; 390 nr_new = 0; 391 392 for (i = 0; i < type->cnt; i++) { 393 struct memblock_region *rgn = &type->regions[i]; 394 phys_addr_t rbase = rgn->base; 395 phys_addr_t rend = rbase + rgn->size; 396 397 if (rbase >= end) 398 break; 399 if (rend <= base) 400 continue; 401 /* 402 * @rgn overlaps. If it separates the lower part of new 403 * area, insert that portion. 404 */ 405 if (rbase > base) { 406 nr_new++; 407 if (insert) 408 memblock_insert_region(type, i++, base, 409 rbase - base, nid); 410 } 411 /* area below @rend is dealt with, forget about it */ 412 base = min(rend, end); 413 } 414 415 /* insert the remaining portion */ 416 if (base < end) { 417 nr_new++; 418 if (insert) 419 memblock_insert_region(type, i, base, end - base, nid); 420 } 421 422 /* 423 * If this was the first round, resize array and repeat for actual 424 * insertions; otherwise, merge and return. 425 */ 426 if (!insert) { 427 while (type->cnt + nr_new > type->max) 428 if (memblock_double_array(type, obase, size) < 0) 429 return -ENOMEM; 430 insert = true; 431 goto repeat; 432 } else { 433 memblock_merge_regions(type); 434 return 0; 435 } 436 } 437 438 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 439 int nid) 440 { 441 return memblock_add_region(&memblock.memory, base, size, nid); 442 } 443 444 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 445 { 446 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES); 447 } 448 449 /** 450 * memblock_isolate_range - isolate given range into disjoint memblocks 451 * @type: memblock type to isolate range for 452 * @base: base of range to isolate 453 * @size: size of range to isolate 454 * @start_rgn: out parameter for the start of isolated region 455 * @end_rgn: out parameter for the end of isolated region 456 * 457 * Walk @type and ensure that regions don't cross the boundaries defined by 458 * [@base,@base+@size). Crossing regions are split at the boundaries, 459 * which may create at most two more regions. The index of the first 460 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 461 * 462 * RETURNS: 463 * 0 on success, -errno on failure. 464 */ 465 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 466 phys_addr_t base, phys_addr_t size, 467 int *start_rgn, int *end_rgn) 468 { 469 phys_addr_t end = base + memblock_cap_size(base, &size); 470 int i; 471 472 *start_rgn = *end_rgn = 0; 473 474 if (!size) 475 return 0; 476 477 /* we'll create at most two more regions */ 478 while (type->cnt + 2 > type->max) 479 if (memblock_double_array(type, base, size) < 0) 480 return -ENOMEM; 481 482 for (i = 0; i < type->cnt; i++) { 483 struct memblock_region *rgn = &type->regions[i]; 484 phys_addr_t rbase = rgn->base; 485 phys_addr_t rend = rbase + rgn->size; 486 487 if (rbase >= end) 488 break; 489 if (rend <= base) 490 continue; 491 492 if (rbase < base) { 493 /* 494 * @rgn intersects from below. Split and continue 495 * to process the next region - the new top half. 496 */ 497 rgn->base = base; 498 rgn->size -= base - rbase; 499 type->total_size -= base - rbase; 500 memblock_insert_region(type, i, rbase, base - rbase, 501 memblock_get_region_node(rgn)); 502 } else if (rend > end) { 503 /* 504 * @rgn intersects from above. Split and redo the 505 * current region - the new bottom half. 506 */ 507 rgn->base = end; 508 rgn->size -= end - rbase; 509 type->total_size -= end - rbase; 510 memblock_insert_region(type, i--, rbase, end - rbase, 511 memblock_get_region_node(rgn)); 512 } else { 513 /* @rgn is fully contained, record it */ 514 if (!*end_rgn) 515 *start_rgn = i; 516 *end_rgn = i + 1; 517 } 518 } 519 520 return 0; 521 } 522 523 static int __init_memblock __memblock_remove(struct memblock_type *type, 524 phys_addr_t base, phys_addr_t size) 525 { 526 int start_rgn, end_rgn; 527 int i, ret; 528 529 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 530 if (ret) 531 return ret; 532 533 for (i = end_rgn - 1; i >= start_rgn; i--) 534 memblock_remove_region(type, i); 535 return 0; 536 } 537 538 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 539 { 540 return __memblock_remove(&memblock.memory, base, size); 541 } 542 543 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 544 { 545 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", 546 (unsigned long long)base, 547 (unsigned long long)base + size, 548 (void *)_RET_IP_); 549 550 return __memblock_remove(&memblock.reserved, base, size); 551 } 552 553 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 554 { 555 struct memblock_type *_rgn = &memblock.reserved; 556 557 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n", 558 (unsigned long long)base, 559 (unsigned long long)base + size, 560 (void *)_RET_IP_); 561 562 return memblock_add_region(_rgn, base, size, MAX_NUMNODES); 563 } 564 565 /** 566 * __next_free_mem_range - next function for for_each_free_mem_range() 567 * @idx: pointer to u64 loop variable 568 * @nid: nid: node selector, %MAX_NUMNODES for all nodes 569 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 570 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 571 * @out_nid: ptr to int for nid of the range, can be %NULL 572 * 573 * Find the first free area from *@idx which matches @nid, fill the out 574 * parameters, and update *@idx for the next iteration. The lower 32bit of 575 * *@idx contains index into memory region and the upper 32bit indexes the 576 * areas before each reserved region. For example, if reserved regions 577 * look like the following, 578 * 579 * 0:[0-16), 1:[32-48), 2:[128-130) 580 * 581 * The upper 32bit indexes the following regions. 582 * 583 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 584 * 585 * As both region arrays are sorted, the function advances the two indices 586 * in lockstep and returns each intersection. 587 */ 588 void __init_memblock __next_free_mem_range(u64 *idx, int nid, 589 phys_addr_t *out_start, 590 phys_addr_t *out_end, int *out_nid) 591 { 592 struct memblock_type *mem = &memblock.memory; 593 struct memblock_type *rsv = &memblock.reserved; 594 int mi = *idx & 0xffffffff; 595 int ri = *idx >> 32; 596 597 for ( ; mi < mem->cnt; mi++) { 598 struct memblock_region *m = &mem->regions[mi]; 599 phys_addr_t m_start = m->base; 600 phys_addr_t m_end = m->base + m->size; 601 602 /* only memory regions are associated with nodes, check it */ 603 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) 604 continue; 605 606 /* scan areas before each reservation for intersection */ 607 for ( ; ri < rsv->cnt + 1; ri++) { 608 struct memblock_region *r = &rsv->regions[ri]; 609 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; 610 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; 611 612 /* if ri advanced past mi, break out to advance mi */ 613 if (r_start >= m_end) 614 break; 615 /* if the two regions intersect, we're done */ 616 if (m_start < r_end) { 617 if (out_start) 618 *out_start = max(m_start, r_start); 619 if (out_end) 620 *out_end = min(m_end, r_end); 621 if (out_nid) 622 *out_nid = memblock_get_region_node(m); 623 /* 624 * The region which ends first is advanced 625 * for the next iteration. 626 */ 627 if (m_end <= r_end) 628 mi++; 629 else 630 ri++; 631 *idx = (u32)mi | (u64)ri << 32; 632 return; 633 } 634 } 635 } 636 637 /* signal end of iteration */ 638 *idx = ULLONG_MAX; 639 } 640 641 /** 642 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse() 643 * @idx: pointer to u64 loop variable 644 * @nid: nid: node selector, %MAX_NUMNODES for all nodes 645 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 646 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 647 * @out_nid: ptr to int for nid of the range, can be %NULL 648 * 649 * Reverse of __next_free_mem_range(). 650 */ 651 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid, 652 phys_addr_t *out_start, 653 phys_addr_t *out_end, int *out_nid) 654 { 655 struct memblock_type *mem = &memblock.memory; 656 struct memblock_type *rsv = &memblock.reserved; 657 int mi = *idx & 0xffffffff; 658 int ri = *idx >> 32; 659 660 if (*idx == (u64)ULLONG_MAX) { 661 mi = mem->cnt - 1; 662 ri = rsv->cnt; 663 } 664 665 for ( ; mi >= 0; mi--) { 666 struct memblock_region *m = &mem->regions[mi]; 667 phys_addr_t m_start = m->base; 668 phys_addr_t m_end = m->base + m->size; 669 670 /* only memory regions are associated with nodes, check it */ 671 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) 672 continue; 673 674 /* scan areas before each reservation for intersection */ 675 for ( ; ri >= 0; ri--) { 676 struct memblock_region *r = &rsv->regions[ri]; 677 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; 678 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; 679 680 /* if ri advanced past mi, break out to advance mi */ 681 if (r_end <= m_start) 682 break; 683 /* if the two regions intersect, we're done */ 684 if (m_end > r_start) { 685 if (out_start) 686 *out_start = max(m_start, r_start); 687 if (out_end) 688 *out_end = min(m_end, r_end); 689 if (out_nid) 690 *out_nid = memblock_get_region_node(m); 691 692 if (m_start >= r_start) 693 mi--; 694 else 695 ri--; 696 *idx = (u32)mi | (u64)ri << 32; 697 return; 698 } 699 } 700 } 701 702 *idx = ULLONG_MAX; 703 } 704 705 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 706 /* 707 * Common iterator interface used to define for_each_mem_range(). 708 */ 709 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 710 unsigned long *out_start_pfn, 711 unsigned long *out_end_pfn, int *out_nid) 712 { 713 struct memblock_type *type = &memblock.memory; 714 struct memblock_region *r; 715 716 while (++*idx < type->cnt) { 717 r = &type->regions[*idx]; 718 719 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 720 continue; 721 if (nid == MAX_NUMNODES || nid == r->nid) 722 break; 723 } 724 if (*idx >= type->cnt) { 725 *idx = -1; 726 return; 727 } 728 729 if (out_start_pfn) 730 *out_start_pfn = PFN_UP(r->base); 731 if (out_end_pfn) 732 *out_end_pfn = PFN_DOWN(r->base + r->size); 733 if (out_nid) 734 *out_nid = r->nid; 735 } 736 737 /** 738 * memblock_set_node - set node ID on memblock regions 739 * @base: base of area to set node ID for 740 * @size: size of area to set node ID for 741 * @nid: node ID to set 742 * 743 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid. 744 * Regions which cross the area boundaries are split as necessary. 745 * 746 * RETURNS: 747 * 0 on success, -errno on failure. 748 */ 749 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 750 int nid) 751 { 752 struct memblock_type *type = &memblock.memory; 753 int start_rgn, end_rgn; 754 int i, ret; 755 756 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 757 if (ret) 758 return ret; 759 760 for (i = start_rgn; i < end_rgn; i++) 761 memblock_set_region_node(&type->regions[i], nid); 762 763 memblock_merge_regions(type); 764 return 0; 765 } 766 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 767 768 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, 769 phys_addr_t align, phys_addr_t max_addr, 770 int nid) 771 { 772 phys_addr_t found; 773 774 /* align @size to avoid excessive fragmentation on reserved array */ 775 size = round_up(size, align); 776 777 found = memblock_find_in_range_node(0, max_addr, size, align, nid); 778 if (found && !memblock_reserve(found, size)) 779 return found; 780 781 return 0; 782 } 783 784 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 785 { 786 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 787 } 788 789 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 790 { 791 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES); 792 } 793 794 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 795 { 796 phys_addr_t alloc; 797 798 alloc = __memblock_alloc_base(size, align, max_addr); 799 800 if (alloc == 0) 801 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", 802 (unsigned long long) size, (unsigned long long) max_addr); 803 804 return alloc; 805 } 806 807 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) 808 { 809 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 810 } 811 812 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 813 { 814 phys_addr_t res = memblock_alloc_nid(size, align, nid); 815 816 if (res) 817 return res; 818 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 819 } 820 821 822 /* 823 * Remaining API functions 824 */ 825 826 phys_addr_t __init memblock_phys_mem_size(void) 827 { 828 return memblock.memory.total_size; 829 } 830 831 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) 832 { 833 unsigned long pages = 0; 834 struct memblock_region *r; 835 unsigned long start_pfn, end_pfn; 836 837 for_each_memblock(memory, r) { 838 start_pfn = memblock_region_memory_base_pfn(r); 839 end_pfn = memblock_region_memory_end_pfn(r); 840 start_pfn = min_t(unsigned long, start_pfn, limit_pfn); 841 end_pfn = min_t(unsigned long, end_pfn, limit_pfn); 842 pages += end_pfn - start_pfn; 843 } 844 845 return (phys_addr_t)pages << PAGE_SHIFT; 846 } 847 848 /* lowest address */ 849 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 850 { 851 return memblock.memory.regions[0].base; 852 } 853 854 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 855 { 856 int idx = memblock.memory.cnt - 1; 857 858 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 859 } 860 861 void __init memblock_enforce_memory_limit(phys_addr_t limit) 862 { 863 unsigned long i; 864 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 865 866 if (!limit) 867 return; 868 869 /* find out max address */ 870 for (i = 0; i < memblock.memory.cnt; i++) { 871 struct memblock_region *r = &memblock.memory.regions[i]; 872 873 if (limit <= r->size) { 874 max_addr = r->base + limit; 875 break; 876 } 877 limit -= r->size; 878 } 879 880 /* truncate both memory and reserved regions */ 881 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX); 882 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX); 883 } 884 885 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 886 { 887 unsigned int left = 0, right = type->cnt; 888 889 do { 890 unsigned int mid = (right + left) / 2; 891 892 if (addr < type->regions[mid].base) 893 right = mid; 894 else if (addr >= (type->regions[mid].base + 895 type->regions[mid].size)) 896 left = mid + 1; 897 else 898 return mid; 899 } while (left < right); 900 return -1; 901 } 902 903 int __init memblock_is_reserved(phys_addr_t addr) 904 { 905 return memblock_search(&memblock.reserved, addr) != -1; 906 } 907 908 int __init_memblock memblock_is_memory(phys_addr_t addr) 909 { 910 return memblock_search(&memblock.memory, addr) != -1; 911 } 912 913 /** 914 * memblock_is_region_memory - check if a region is a subset of memory 915 * @base: base of region to check 916 * @size: size of region to check 917 * 918 * Check if the region [@base, @base+@size) is a subset of a memory block. 919 * 920 * RETURNS: 921 * 0 if false, non-zero if true 922 */ 923 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 924 { 925 int idx = memblock_search(&memblock.memory, base); 926 phys_addr_t end = base + memblock_cap_size(base, &size); 927 928 if (idx == -1) 929 return 0; 930 return memblock.memory.regions[idx].base <= base && 931 (memblock.memory.regions[idx].base + 932 memblock.memory.regions[idx].size) >= end; 933 } 934 935 /** 936 * memblock_is_region_reserved - check if a region intersects reserved memory 937 * @base: base of region to check 938 * @size: size of region to check 939 * 940 * Check if the region [@base, @base+@size) intersects a reserved memory block. 941 * 942 * RETURNS: 943 * 0 if false, non-zero if true 944 */ 945 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 946 { 947 memblock_cap_size(base, &size); 948 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; 949 } 950 951 void __init_memblock memblock_trim_memory(phys_addr_t align) 952 { 953 int i; 954 phys_addr_t start, end, orig_start, orig_end; 955 struct memblock_type *mem = &memblock.memory; 956 957 for (i = 0; i < mem->cnt; i++) { 958 orig_start = mem->regions[i].base; 959 orig_end = mem->regions[i].base + mem->regions[i].size; 960 start = round_up(orig_start, align); 961 end = round_down(orig_end, align); 962 963 if (start == orig_start && end == orig_end) 964 continue; 965 966 if (start < end) { 967 mem->regions[i].base = start; 968 mem->regions[i].size = end - start; 969 } else { 970 memblock_remove_region(mem, i); 971 i--; 972 } 973 } 974 } 975 976 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 977 { 978 memblock.current_limit = limit; 979 } 980 981 static void __init_memblock memblock_dump(struct memblock_type *type, char *name) 982 { 983 unsigned long long base, size; 984 int i; 985 986 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); 987 988 for (i = 0; i < type->cnt; i++) { 989 struct memblock_region *rgn = &type->regions[i]; 990 char nid_buf[32] = ""; 991 992 base = rgn->base; 993 size = rgn->size; 994 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 995 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 996 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 997 memblock_get_region_node(rgn)); 998 #endif 999 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n", 1000 name, i, base, base + size - 1, size, nid_buf); 1001 } 1002 } 1003 1004 void __init_memblock __memblock_dump_all(void) 1005 { 1006 pr_info("MEMBLOCK configuration:\n"); 1007 pr_info(" memory size = %#llx reserved size = %#llx\n", 1008 (unsigned long long)memblock.memory.total_size, 1009 (unsigned long long)memblock.reserved.total_size); 1010 1011 memblock_dump(&memblock.memory, "memory"); 1012 memblock_dump(&memblock.reserved, "reserved"); 1013 } 1014 1015 void __init memblock_allow_resize(void) 1016 { 1017 memblock_can_resize = 1; 1018 } 1019 1020 static int __init early_memblock(char *p) 1021 { 1022 if (p && strstr(p, "debug")) 1023 memblock_debug = 1; 1024 return 0; 1025 } 1026 early_param("memblock", early_memblock); 1027 1028 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) 1029 1030 static int memblock_debug_show(struct seq_file *m, void *private) 1031 { 1032 struct memblock_type *type = m->private; 1033 struct memblock_region *reg; 1034 int i; 1035 1036 for (i = 0; i < type->cnt; i++) { 1037 reg = &type->regions[i]; 1038 seq_printf(m, "%4d: ", i); 1039 if (sizeof(phys_addr_t) == 4) 1040 seq_printf(m, "0x%08lx..0x%08lx\n", 1041 (unsigned long)reg->base, 1042 (unsigned long)(reg->base + reg->size - 1)); 1043 else 1044 seq_printf(m, "0x%016llx..0x%016llx\n", 1045 (unsigned long long)reg->base, 1046 (unsigned long long)(reg->base + reg->size - 1)); 1047 1048 } 1049 return 0; 1050 } 1051 1052 static int memblock_debug_open(struct inode *inode, struct file *file) 1053 { 1054 return single_open(file, memblock_debug_show, inode->i_private); 1055 } 1056 1057 static const struct file_operations memblock_debug_fops = { 1058 .open = memblock_debug_open, 1059 .read = seq_read, 1060 .llseek = seq_lseek, 1061 .release = single_release, 1062 }; 1063 1064 static int __init memblock_init_debugfs(void) 1065 { 1066 struct dentry *root = debugfs_create_dir("memblock", NULL); 1067 if (!root) 1068 return -ENXIO; 1069 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); 1070 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); 1071 1072 return 0; 1073 } 1074 __initcall(memblock_init_debugfs); 1075 1076 #endif /* CONFIG_DEBUG_FS */ 1077