1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/seq_file.h> 21 #include <linux/memblock.h> 22 23 #include <asm-generic/sections.h> 24 #include <linux/io.h> 25 26 #include "internal.h" 27 28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock; 32 #endif 33 34 struct memblock memblock __initdata_memblock = { 35 .memory.regions = memblock_memory_init_regions, 36 .memory.cnt = 1, /* empty dummy entry */ 37 .memory.max = INIT_MEMBLOCK_REGIONS, 38 39 .reserved.regions = memblock_reserved_init_regions, 40 .reserved.cnt = 1, /* empty dummy entry */ 41 .reserved.max = INIT_MEMBLOCK_REGIONS, 42 43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 44 .physmem.regions = memblock_physmem_init_regions, 45 .physmem.cnt = 1, /* empty dummy entry */ 46 .physmem.max = INIT_PHYSMEM_REGIONS, 47 #endif 48 49 .bottom_up = false, 50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 51 }; 52 53 int memblock_debug __initdata_memblock; 54 #ifdef CONFIG_MOVABLE_NODE 55 bool movable_node_enabled __initdata_memblock = false; 56 #endif 57 static int memblock_can_resize __initdata_memblock; 58 static int memblock_memory_in_slab __initdata_memblock = 0; 59 static int memblock_reserved_in_slab __initdata_memblock = 0; 60 61 /* inline so we don't get a warning when pr_debug is compiled out */ 62 static __init_memblock const char * 63 memblock_type_name(struct memblock_type *type) 64 { 65 if (type == &memblock.memory) 66 return "memory"; 67 else if (type == &memblock.reserved) 68 return "reserved"; 69 else 70 return "unknown"; 71 } 72 73 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 74 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 75 { 76 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); 77 } 78 79 /* 80 * Address comparison utilities 81 */ 82 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 83 phys_addr_t base2, phys_addr_t size2) 84 { 85 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 86 } 87 88 static long __init_memblock memblock_overlaps_region(struct memblock_type *type, 89 phys_addr_t base, phys_addr_t size) 90 { 91 unsigned long i; 92 93 for (i = 0; i < type->cnt; i++) { 94 phys_addr_t rgnbase = type->regions[i].base; 95 phys_addr_t rgnsize = type->regions[i].size; 96 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) 97 break; 98 } 99 100 return (i < type->cnt) ? i : -1; 101 } 102 103 /* 104 * __memblock_find_range_bottom_up - find free area utility in bottom-up 105 * @start: start of candidate range 106 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 107 * @size: size of free area to find 108 * @align: alignment of free area to find 109 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 110 * 111 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 112 * 113 * RETURNS: 114 * Found address on success, 0 on failure. 115 */ 116 static phys_addr_t __init_memblock 117 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 118 phys_addr_t size, phys_addr_t align, int nid) 119 { 120 phys_addr_t this_start, this_end, cand; 121 u64 i; 122 123 for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) { 124 this_start = clamp(this_start, start, end); 125 this_end = clamp(this_end, start, end); 126 127 cand = round_up(this_start, align); 128 if (cand < this_end && this_end - cand >= size) 129 return cand; 130 } 131 132 return 0; 133 } 134 135 /** 136 * __memblock_find_range_top_down - find free area utility, in top-down 137 * @start: start of candidate range 138 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 139 * @size: size of free area to find 140 * @align: alignment of free area to find 141 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 142 * 143 * Utility called from memblock_find_in_range_node(), find free area top-down. 144 * 145 * RETURNS: 146 * Found address on success, 0 on failure. 147 */ 148 static phys_addr_t __init_memblock 149 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 150 phys_addr_t size, phys_addr_t align, int nid) 151 { 152 phys_addr_t this_start, this_end, cand; 153 u64 i; 154 155 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) { 156 this_start = clamp(this_start, start, end); 157 this_end = clamp(this_end, start, end); 158 159 if (this_end < size) 160 continue; 161 162 cand = round_down(this_end - size, align); 163 if (cand >= this_start) 164 return cand; 165 } 166 167 return 0; 168 } 169 170 /** 171 * memblock_find_in_range_node - find free area in given range and node 172 * @size: size of free area to find 173 * @align: alignment of free area to find 174 * @start: start of candidate range 175 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 176 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 177 * 178 * Find @size free area aligned to @align in the specified range and node. 179 * 180 * When allocation direction is bottom-up, the @start should be greater 181 * than the end of the kernel image. Otherwise, it will be trimmed. The 182 * reason is that we want the bottom-up allocation just near the kernel 183 * image so it is highly likely that the allocated memory and the kernel 184 * will reside in the same node. 185 * 186 * If bottom-up allocation failed, will try to allocate memory top-down. 187 * 188 * RETURNS: 189 * Found address on success, 0 on failure. 190 */ 191 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 192 phys_addr_t align, phys_addr_t start, 193 phys_addr_t end, int nid) 194 { 195 phys_addr_t kernel_end, ret; 196 197 /* pump up @end */ 198 if (end == MEMBLOCK_ALLOC_ACCESSIBLE) 199 end = memblock.current_limit; 200 201 /* avoid allocating the first page */ 202 start = max_t(phys_addr_t, start, PAGE_SIZE); 203 end = max(start, end); 204 kernel_end = __pa_symbol(_end); 205 206 /* 207 * try bottom-up allocation only when bottom-up mode 208 * is set and @end is above the kernel image. 209 */ 210 if (memblock_bottom_up() && end > kernel_end) { 211 phys_addr_t bottom_up_start; 212 213 /* make sure we will allocate above the kernel */ 214 bottom_up_start = max(start, kernel_end); 215 216 /* ok, try bottom-up allocation first */ 217 ret = __memblock_find_range_bottom_up(bottom_up_start, end, 218 size, align, nid); 219 if (ret) 220 return ret; 221 222 /* 223 * we always limit bottom-up allocation above the kernel, 224 * but top-down allocation doesn't have the limit, so 225 * retrying top-down allocation may succeed when bottom-up 226 * allocation failed. 227 * 228 * bottom-up allocation is expected to be fail very rarely, 229 * so we use WARN_ONCE() here to see the stack trace if 230 * fail happens. 231 */ 232 WARN_ONCE(1, "memblock: bottom-up allocation failed, " 233 "memory hotunplug may be affected\n"); 234 } 235 236 return __memblock_find_range_top_down(start, end, size, align, nid); 237 } 238 239 /** 240 * memblock_find_in_range - find free area in given range 241 * @start: start of candidate range 242 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 243 * @size: size of free area to find 244 * @align: alignment of free area to find 245 * 246 * Find @size free area aligned to @align in the specified range. 247 * 248 * RETURNS: 249 * Found address on success, 0 on failure. 250 */ 251 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 252 phys_addr_t end, phys_addr_t size, 253 phys_addr_t align) 254 { 255 return memblock_find_in_range_node(size, align, start, end, 256 NUMA_NO_NODE); 257 } 258 259 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 260 { 261 type->total_size -= type->regions[r].size; 262 memmove(&type->regions[r], &type->regions[r + 1], 263 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 264 type->cnt--; 265 266 /* Special case for empty arrays */ 267 if (type->cnt == 0) { 268 WARN_ON(type->total_size != 0); 269 type->cnt = 1; 270 type->regions[0].base = 0; 271 type->regions[0].size = 0; 272 type->regions[0].flags = 0; 273 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 274 } 275 } 276 277 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 278 279 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( 280 phys_addr_t *addr) 281 { 282 if (memblock.reserved.regions == memblock_reserved_init_regions) 283 return 0; 284 285 *addr = __pa(memblock.reserved.regions); 286 287 return PAGE_ALIGN(sizeof(struct memblock_region) * 288 memblock.reserved.max); 289 } 290 291 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info( 292 phys_addr_t *addr) 293 { 294 if (memblock.memory.regions == memblock_memory_init_regions) 295 return 0; 296 297 *addr = __pa(memblock.memory.regions); 298 299 return PAGE_ALIGN(sizeof(struct memblock_region) * 300 memblock.memory.max); 301 } 302 303 #endif 304 305 /** 306 * memblock_double_array - double the size of the memblock regions array 307 * @type: memblock type of the regions array being doubled 308 * @new_area_start: starting address of memory range to avoid overlap with 309 * @new_area_size: size of memory range to avoid overlap with 310 * 311 * Double the size of the @type regions array. If memblock is being used to 312 * allocate memory for a new reserved regions array and there is a previously 313 * allocated memory range [@new_area_start,@new_area_start+@new_area_size] 314 * waiting to be reserved, ensure the memory used by the new array does 315 * not overlap. 316 * 317 * RETURNS: 318 * 0 on success, -1 on failure. 319 */ 320 static int __init_memblock memblock_double_array(struct memblock_type *type, 321 phys_addr_t new_area_start, 322 phys_addr_t new_area_size) 323 { 324 struct memblock_region *new_array, *old_array; 325 phys_addr_t old_alloc_size, new_alloc_size; 326 phys_addr_t old_size, new_size, addr; 327 int use_slab = slab_is_available(); 328 int *in_slab; 329 330 /* We don't allow resizing until we know about the reserved regions 331 * of memory that aren't suitable for allocation 332 */ 333 if (!memblock_can_resize) 334 return -1; 335 336 /* Calculate new doubled size */ 337 old_size = type->max * sizeof(struct memblock_region); 338 new_size = old_size << 1; 339 /* 340 * We need to allocated new one align to PAGE_SIZE, 341 * so we can free them completely later. 342 */ 343 old_alloc_size = PAGE_ALIGN(old_size); 344 new_alloc_size = PAGE_ALIGN(new_size); 345 346 /* Retrieve the slab flag */ 347 if (type == &memblock.memory) 348 in_slab = &memblock_memory_in_slab; 349 else 350 in_slab = &memblock_reserved_in_slab; 351 352 /* Try to find some space for it. 353 * 354 * WARNING: We assume that either slab_is_available() and we use it or 355 * we use MEMBLOCK for allocations. That means that this is unsafe to 356 * use when bootmem is currently active (unless bootmem itself is 357 * implemented on top of MEMBLOCK which isn't the case yet) 358 * 359 * This should however not be an issue for now, as we currently only 360 * call into MEMBLOCK while it's still active, or much later when slab 361 * is active for memory hotplug operations 362 */ 363 if (use_slab) { 364 new_array = kmalloc(new_size, GFP_KERNEL); 365 addr = new_array ? __pa(new_array) : 0; 366 } else { 367 /* only exclude range when trying to double reserved.regions */ 368 if (type != &memblock.reserved) 369 new_area_start = new_area_size = 0; 370 371 addr = memblock_find_in_range(new_area_start + new_area_size, 372 memblock.current_limit, 373 new_alloc_size, PAGE_SIZE); 374 if (!addr && new_area_size) 375 addr = memblock_find_in_range(0, 376 min(new_area_start, memblock.current_limit), 377 new_alloc_size, PAGE_SIZE); 378 379 new_array = addr ? __va(addr) : NULL; 380 } 381 if (!addr) { 382 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 383 memblock_type_name(type), type->max, type->max * 2); 384 return -1; 385 } 386 387 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]", 388 memblock_type_name(type), type->max * 2, (u64)addr, 389 (u64)addr + new_size - 1); 390 391 /* 392 * Found space, we now need to move the array over before we add the 393 * reserved region since it may be our reserved array itself that is 394 * full. 395 */ 396 memcpy(new_array, type->regions, old_size); 397 memset(new_array + type->max, 0, old_size); 398 old_array = type->regions; 399 type->regions = new_array; 400 type->max <<= 1; 401 402 /* Free old array. We needn't free it if the array is the static one */ 403 if (*in_slab) 404 kfree(old_array); 405 else if (old_array != memblock_memory_init_regions && 406 old_array != memblock_reserved_init_regions) 407 memblock_free(__pa(old_array), old_alloc_size); 408 409 /* 410 * Reserve the new array if that comes from the memblock. Otherwise, we 411 * needn't do it 412 */ 413 if (!use_slab) 414 BUG_ON(memblock_reserve(addr, new_alloc_size)); 415 416 /* Update slab flag */ 417 *in_slab = use_slab; 418 419 return 0; 420 } 421 422 /** 423 * memblock_merge_regions - merge neighboring compatible regions 424 * @type: memblock type to scan 425 * 426 * Scan @type and merge neighboring compatible regions. 427 */ 428 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 429 { 430 int i = 0; 431 432 /* cnt never goes below 1 */ 433 while (i < type->cnt - 1) { 434 struct memblock_region *this = &type->regions[i]; 435 struct memblock_region *next = &type->regions[i + 1]; 436 437 if (this->base + this->size != next->base || 438 memblock_get_region_node(this) != 439 memblock_get_region_node(next) || 440 this->flags != next->flags) { 441 BUG_ON(this->base + this->size > next->base); 442 i++; 443 continue; 444 } 445 446 this->size += next->size; 447 /* move forward from next + 1, index of which is i + 2 */ 448 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 449 type->cnt--; 450 } 451 } 452 453 /** 454 * memblock_insert_region - insert new memblock region 455 * @type: memblock type to insert into 456 * @idx: index for the insertion point 457 * @base: base address of the new region 458 * @size: size of the new region 459 * @nid: node id of the new region 460 * @flags: flags of the new region 461 * 462 * Insert new memblock region [@base,@base+@size) into @type at @idx. 463 * @type must already have extra room to accomodate the new region. 464 */ 465 static void __init_memblock memblock_insert_region(struct memblock_type *type, 466 int idx, phys_addr_t base, 467 phys_addr_t size, 468 int nid, unsigned long flags) 469 { 470 struct memblock_region *rgn = &type->regions[idx]; 471 472 BUG_ON(type->cnt >= type->max); 473 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 474 rgn->base = base; 475 rgn->size = size; 476 rgn->flags = flags; 477 memblock_set_region_node(rgn, nid); 478 type->cnt++; 479 type->total_size += size; 480 } 481 482 /** 483 * memblock_add_range - add new memblock region 484 * @type: memblock type to add new region into 485 * @base: base address of the new region 486 * @size: size of the new region 487 * @nid: nid of the new region 488 * @flags: flags of the new region 489 * 490 * Add new memblock region [@base,@base+@size) into @type. The new region 491 * is allowed to overlap with existing ones - overlaps don't affect already 492 * existing regions. @type is guaranteed to be minimal (all neighbouring 493 * compatible regions are merged) after the addition. 494 * 495 * RETURNS: 496 * 0 on success, -errno on failure. 497 */ 498 int __init_memblock memblock_add_range(struct memblock_type *type, 499 phys_addr_t base, phys_addr_t size, 500 int nid, unsigned long flags) 501 { 502 bool insert = false; 503 phys_addr_t obase = base; 504 phys_addr_t end = base + memblock_cap_size(base, &size); 505 int i, nr_new; 506 507 if (!size) 508 return 0; 509 510 /* special case for empty array */ 511 if (type->regions[0].size == 0) { 512 WARN_ON(type->cnt != 1 || type->total_size); 513 type->regions[0].base = base; 514 type->regions[0].size = size; 515 type->regions[0].flags = flags; 516 memblock_set_region_node(&type->regions[0], nid); 517 type->total_size = size; 518 return 0; 519 } 520 repeat: 521 /* 522 * The following is executed twice. Once with %false @insert and 523 * then with %true. The first counts the number of regions needed 524 * to accomodate the new area. The second actually inserts them. 525 */ 526 base = obase; 527 nr_new = 0; 528 529 for (i = 0; i < type->cnt; i++) { 530 struct memblock_region *rgn = &type->regions[i]; 531 phys_addr_t rbase = rgn->base; 532 phys_addr_t rend = rbase + rgn->size; 533 534 if (rbase >= end) 535 break; 536 if (rend <= base) 537 continue; 538 /* 539 * @rgn overlaps. If it separates the lower part of new 540 * area, insert that portion. 541 */ 542 if (rbase > base) { 543 nr_new++; 544 if (insert) 545 memblock_insert_region(type, i++, base, 546 rbase - base, nid, 547 flags); 548 } 549 /* area below @rend is dealt with, forget about it */ 550 base = min(rend, end); 551 } 552 553 /* insert the remaining portion */ 554 if (base < end) { 555 nr_new++; 556 if (insert) 557 memblock_insert_region(type, i, base, end - base, 558 nid, flags); 559 } 560 561 /* 562 * If this was the first round, resize array and repeat for actual 563 * insertions; otherwise, merge and return. 564 */ 565 if (!insert) { 566 while (type->cnt + nr_new > type->max) 567 if (memblock_double_array(type, obase, size) < 0) 568 return -ENOMEM; 569 insert = true; 570 goto repeat; 571 } else { 572 memblock_merge_regions(type); 573 return 0; 574 } 575 } 576 577 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 578 int nid) 579 { 580 return memblock_add_range(&memblock.memory, base, size, nid, 0); 581 } 582 583 static int __init_memblock memblock_add_region(phys_addr_t base, 584 phys_addr_t size, 585 int nid, 586 unsigned long flags) 587 { 588 struct memblock_type *_rgn = &memblock.memory; 589 590 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n", 591 (unsigned long long)base, 592 (unsigned long long)base + size - 1, 593 flags, (void *)_RET_IP_); 594 595 return memblock_add_range(_rgn, base, size, nid, flags); 596 } 597 598 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 599 { 600 return memblock_add_region(base, size, MAX_NUMNODES, 0); 601 } 602 603 /** 604 * memblock_isolate_range - isolate given range into disjoint memblocks 605 * @type: memblock type to isolate range for 606 * @base: base of range to isolate 607 * @size: size of range to isolate 608 * @start_rgn: out parameter for the start of isolated region 609 * @end_rgn: out parameter for the end of isolated region 610 * 611 * Walk @type and ensure that regions don't cross the boundaries defined by 612 * [@base,@base+@size). Crossing regions are split at the boundaries, 613 * which may create at most two more regions. The index of the first 614 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 615 * 616 * RETURNS: 617 * 0 on success, -errno on failure. 618 */ 619 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 620 phys_addr_t base, phys_addr_t size, 621 int *start_rgn, int *end_rgn) 622 { 623 phys_addr_t end = base + memblock_cap_size(base, &size); 624 int i; 625 626 *start_rgn = *end_rgn = 0; 627 628 if (!size) 629 return 0; 630 631 /* we'll create at most two more regions */ 632 while (type->cnt + 2 > type->max) 633 if (memblock_double_array(type, base, size) < 0) 634 return -ENOMEM; 635 636 for (i = 0; i < type->cnt; i++) { 637 struct memblock_region *rgn = &type->regions[i]; 638 phys_addr_t rbase = rgn->base; 639 phys_addr_t rend = rbase + rgn->size; 640 641 if (rbase >= end) 642 break; 643 if (rend <= base) 644 continue; 645 646 if (rbase < base) { 647 /* 648 * @rgn intersects from below. Split and continue 649 * to process the next region - the new top half. 650 */ 651 rgn->base = base; 652 rgn->size -= base - rbase; 653 type->total_size -= base - rbase; 654 memblock_insert_region(type, i, rbase, base - rbase, 655 memblock_get_region_node(rgn), 656 rgn->flags); 657 } else if (rend > end) { 658 /* 659 * @rgn intersects from above. Split and redo the 660 * current region - the new bottom half. 661 */ 662 rgn->base = end; 663 rgn->size -= end - rbase; 664 type->total_size -= end - rbase; 665 memblock_insert_region(type, i--, rbase, end - rbase, 666 memblock_get_region_node(rgn), 667 rgn->flags); 668 } else { 669 /* @rgn is fully contained, record it */ 670 if (!*end_rgn) 671 *start_rgn = i; 672 *end_rgn = i + 1; 673 } 674 } 675 676 return 0; 677 } 678 679 int __init_memblock memblock_remove_range(struct memblock_type *type, 680 phys_addr_t base, phys_addr_t size) 681 { 682 int start_rgn, end_rgn; 683 int i, ret; 684 685 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 686 if (ret) 687 return ret; 688 689 for (i = end_rgn - 1; i >= start_rgn; i--) 690 memblock_remove_region(type, i); 691 return 0; 692 } 693 694 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 695 { 696 return memblock_remove_range(&memblock.memory, base, size); 697 } 698 699 700 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 701 { 702 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", 703 (unsigned long long)base, 704 (unsigned long long)base + size - 1, 705 (void *)_RET_IP_); 706 707 kmemleak_free_part(__va(base), size); 708 return memblock_remove_range(&memblock.reserved, base, size); 709 } 710 711 static int __init_memblock memblock_reserve_region(phys_addr_t base, 712 phys_addr_t size, 713 int nid, 714 unsigned long flags) 715 { 716 struct memblock_type *type = &memblock.reserved; 717 718 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n", 719 (unsigned long long)base, 720 (unsigned long long)base + size - 1, 721 flags, (void *)_RET_IP_); 722 723 return memblock_add_range(type, base, size, nid, flags); 724 } 725 726 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 727 { 728 return memblock_reserve_region(base, size, MAX_NUMNODES, 0); 729 } 730 731 /** 732 * 733 * This function isolates region [@base, @base + @size), and sets/clears flag 734 * 735 * Return 0 on succees, -errno on failure. 736 */ 737 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 738 phys_addr_t size, int set, int flag) 739 { 740 struct memblock_type *type = &memblock.memory; 741 int i, ret, start_rgn, end_rgn; 742 743 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 744 if (ret) 745 return ret; 746 747 for (i = start_rgn; i < end_rgn; i++) 748 if (set) 749 memblock_set_region_flags(&type->regions[i], flag); 750 else 751 memblock_clear_region_flags(&type->regions[i], flag); 752 753 memblock_merge_regions(type); 754 return 0; 755 } 756 757 /** 758 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 759 * @base: the base phys addr of the region 760 * @size: the size of the region 761 * 762 * Return 0 on succees, -errno on failure. 763 */ 764 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 765 { 766 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 767 } 768 769 /** 770 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 771 * @base: the base phys addr of the region 772 * @size: the size of the region 773 * 774 * Return 0 on succees, -errno on failure. 775 */ 776 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 777 { 778 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 779 } 780 781 /** 782 * __next__mem_range - next function for for_each_free_mem_range() etc. 783 * @idx: pointer to u64 loop variable 784 * @nid: node selector, %NUMA_NO_NODE for all nodes 785 * @type_a: pointer to memblock_type from where the range is taken 786 * @type_b: pointer to memblock_type which excludes memory from being taken 787 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 788 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 789 * @out_nid: ptr to int for nid of the range, can be %NULL 790 * 791 * Find the first area from *@idx which matches @nid, fill the out 792 * parameters, and update *@idx for the next iteration. The lower 32bit of 793 * *@idx contains index into type_a and the upper 32bit indexes the 794 * areas before each region in type_b. For example, if type_b regions 795 * look like the following, 796 * 797 * 0:[0-16), 1:[32-48), 2:[128-130) 798 * 799 * The upper 32bit indexes the following regions. 800 * 801 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 802 * 803 * As both region arrays are sorted, the function advances the two indices 804 * in lockstep and returns each intersection. 805 */ 806 void __init_memblock __next_mem_range(u64 *idx, int nid, 807 struct memblock_type *type_a, 808 struct memblock_type *type_b, 809 phys_addr_t *out_start, 810 phys_addr_t *out_end, int *out_nid) 811 { 812 int idx_a = *idx & 0xffffffff; 813 int idx_b = *idx >> 32; 814 815 if (WARN_ONCE(nid == MAX_NUMNODES, 816 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 817 nid = NUMA_NO_NODE; 818 819 for (; idx_a < type_a->cnt; idx_a++) { 820 struct memblock_region *m = &type_a->regions[idx_a]; 821 822 phys_addr_t m_start = m->base; 823 phys_addr_t m_end = m->base + m->size; 824 int m_nid = memblock_get_region_node(m); 825 826 /* only memory regions are associated with nodes, check it */ 827 if (nid != NUMA_NO_NODE && nid != m_nid) 828 continue; 829 830 /* skip hotpluggable memory regions if needed */ 831 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 832 continue; 833 834 if (!type_b) { 835 if (out_start) 836 *out_start = m_start; 837 if (out_end) 838 *out_end = m_end; 839 if (out_nid) 840 *out_nid = m_nid; 841 idx_a++; 842 *idx = (u32)idx_a | (u64)idx_b << 32; 843 return; 844 } 845 846 /* scan areas before each reservation */ 847 for (; idx_b < type_b->cnt + 1; idx_b++) { 848 struct memblock_region *r; 849 phys_addr_t r_start; 850 phys_addr_t r_end; 851 852 r = &type_b->regions[idx_b]; 853 r_start = idx_b ? r[-1].base + r[-1].size : 0; 854 r_end = idx_b < type_b->cnt ? 855 r->base : ULLONG_MAX; 856 857 /* 858 * if idx_b advanced past idx_a, 859 * break out to advance idx_a 860 */ 861 if (r_start >= m_end) 862 break; 863 /* if the two regions intersect, we're done */ 864 if (m_start < r_end) { 865 if (out_start) 866 *out_start = 867 max(m_start, r_start); 868 if (out_end) 869 *out_end = min(m_end, r_end); 870 if (out_nid) 871 *out_nid = m_nid; 872 /* 873 * The region which ends first is 874 * advanced for the next iteration. 875 */ 876 if (m_end <= r_end) 877 idx_a++; 878 else 879 idx_b++; 880 *idx = (u32)idx_a | (u64)idx_b << 32; 881 return; 882 } 883 } 884 } 885 886 /* signal end of iteration */ 887 *idx = ULLONG_MAX; 888 } 889 890 /** 891 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 892 * 893 * Finds the next range from type_a which is not marked as unsuitable 894 * in type_b. 895 * 896 * @idx: pointer to u64 loop variable 897 * @nid: nid: node selector, %NUMA_NO_NODE for all nodes 898 * @type_a: pointer to memblock_type from where the range is taken 899 * @type_b: pointer to memblock_type which excludes memory from being taken 900 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 901 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 902 * @out_nid: ptr to int for nid of the range, can be %NULL 903 * 904 * Reverse of __next_mem_range(). 905 */ 906 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 907 struct memblock_type *type_a, 908 struct memblock_type *type_b, 909 phys_addr_t *out_start, 910 phys_addr_t *out_end, int *out_nid) 911 { 912 int idx_a = *idx & 0xffffffff; 913 int idx_b = *idx >> 32; 914 915 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 916 nid = NUMA_NO_NODE; 917 918 if (*idx == (u64)ULLONG_MAX) { 919 idx_a = type_a->cnt - 1; 920 idx_b = type_b->cnt; 921 } 922 923 for (; idx_a >= 0; idx_a--) { 924 struct memblock_region *m = &type_a->regions[idx_a]; 925 926 phys_addr_t m_start = m->base; 927 phys_addr_t m_end = m->base + m->size; 928 int m_nid = memblock_get_region_node(m); 929 930 /* only memory regions are associated with nodes, check it */ 931 if (nid != NUMA_NO_NODE && nid != m_nid) 932 continue; 933 934 /* skip hotpluggable memory regions if needed */ 935 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 936 continue; 937 938 if (!type_b) { 939 if (out_start) 940 *out_start = m_start; 941 if (out_end) 942 *out_end = m_end; 943 if (out_nid) 944 *out_nid = m_nid; 945 idx_a++; 946 *idx = (u32)idx_a | (u64)idx_b << 32; 947 return; 948 } 949 950 /* scan areas before each reservation */ 951 for (; idx_b >= 0; idx_b--) { 952 struct memblock_region *r; 953 phys_addr_t r_start; 954 phys_addr_t r_end; 955 956 r = &type_b->regions[idx_b]; 957 r_start = idx_b ? r[-1].base + r[-1].size : 0; 958 r_end = idx_b < type_b->cnt ? 959 r->base : ULLONG_MAX; 960 /* 961 * if idx_b advanced past idx_a, 962 * break out to advance idx_a 963 */ 964 965 if (r_end <= m_start) 966 break; 967 /* if the two regions intersect, we're done */ 968 if (m_end > r_start) { 969 if (out_start) 970 *out_start = max(m_start, r_start); 971 if (out_end) 972 *out_end = min(m_end, r_end); 973 if (out_nid) 974 *out_nid = m_nid; 975 if (m_start >= r_start) 976 idx_a--; 977 else 978 idx_b--; 979 *idx = (u32)idx_a | (u64)idx_b << 32; 980 return; 981 } 982 } 983 } 984 /* signal end of iteration */ 985 *idx = ULLONG_MAX; 986 } 987 988 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 989 /* 990 * Common iterator interface used to define for_each_mem_range(). 991 */ 992 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 993 unsigned long *out_start_pfn, 994 unsigned long *out_end_pfn, int *out_nid) 995 { 996 struct memblock_type *type = &memblock.memory; 997 struct memblock_region *r; 998 999 while (++*idx < type->cnt) { 1000 r = &type->regions[*idx]; 1001 1002 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1003 continue; 1004 if (nid == MAX_NUMNODES || nid == r->nid) 1005 break; 1006 } 1007 if (*idx >= type->cnt) { 1008 *idx = -1; 1009 return; 1010 } 1011 1012 if (out_start_pfn) 1013 *out_start_pfn = PFN_UP(r->base); 1014 if (out_end_pfn) 1015 *out_end_pfn = PFN_DOWN(r->base + r->size); 1016 if (out_nid) 1017 *out_nid = r->nid; 1018 } 1019 1020 /** 1021 * memblock_set_node - set node ID on memblock regions 1022 * @base: base of area to set node ID for 1023 * @size: size of area to set node ID for 1024 * @type: memblock type to set node ID for 1025 * @nid: node ID to set 1026 * 1027 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid. 1028 * Regions which cross the area boundaries are split as necessary. 1029 * 1030 * RETURNS: 1031 * 0 on success, -errno on failure. 1032 */ 1033 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1034 struct memblock_type *type, int nid) 1035 { 1036 int start_rgn, end_rgn; 1037 int i, ret; 1038 1039 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1040 if (ret) 1041 return ret; 1042 1043 for (i = start_rgn; i < end_rgn; i++) 1044 memblock_set_region_node(&type->regions[i], nid); 1045 1046 memblock_merge_regions(type); 1047 return 0; 1048 } 1049 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1050 1051 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1052 phys_addr_t align, phys_addr_t start, 1053 phys_addr_t end, int nid) 1054 { 1055 phys_addr_t found; 1056 1057 if (!align) 1058 align = SMP_CACHE_BYTES; 1059 1060 found = memblock_find_in_range_node(size, align, start, end, nid); 1061 if (found && !memblock_reserve(found, size)) { 1062 /* 1063 * The min_count is set to 0 so that memblock allocations are 1064 * never reported as leaks. 1065 */ 1066 kmemleak_alloc(__va(found), size, 0, 0); 1067 return found; 1068 } 1069 return 0; 1070 } 1071 1072 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align, 1073 phys_addr_t start, phys_addr_t end) 1074 { 1075 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE); 1076 } 1077 1078 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, 1079 phys_addr_t align, phys_addr_t max_addr, 1080 int nid) 1081 { 1082 return memblock_alloc_range_nid(size, align, 0, max_addr, nid); 1083 } 1084 1085 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 1086 { 1087 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 1088 } 1089 1090 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1091 { 1092 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE); 1093 } 1094 1095 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1096 { 1097 phys_addr_t alloc; 1098 1099 alloc = __memblock_alloc_base(size, align, max_addr); 1100 1101 if (alloc == 0) 1102 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", 1103 (unsigned long long) size, (unsigned long long) max_addr); 1104 1105 return alloc; 1106 } 1107 1108 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) 1109 { 1110 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1111 } 1112 1113 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1114 { 1115 phys_addr_t res = memblock_alloc_nid(size, align, nid); 1116 1117 if (res) 1118 return res; 1119 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1120 } 1121 1122 /** 1123 * memblock_virt_alloc_internal - allocate boot memory block 1124 * @size: size of memory block to be allocated in bytes 1125 * @align: alignment of the region and block's size 1126 * @min_addr: the lower bound of the memory region to allocate (phys address) 1127 * @max_addr: the upper bound of the memory region to allocate (phys address) 1128 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1129 * 1130 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1131 * will fall back to memory below @min_addr. Also, allocation may fall back 1132 * to any node in the system if the specified node can not 1133 * hold the requested memory. 1134 * 1135 * The allocation is performed from memory region limited by 1136 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE. 1137 * 1138 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0. 1139 * 1140 * The phys address of allocated boot memory block is converted to virtual and 1141 * allocated memory is reset to 0. 1142 * 1143 * In addition, function sets the min_count to 0 using kmemleak_alloc for 1144 * allocated boot memory block, so that it is never reported as leaks. 1145 * 1146 * RETURNS: 1147 * Virtual address of allocated memory block on success, NULL on failure. 1148 */ 1149 static void * __init memblock_virt_alloc_internal( 1150 phys_addr_t size, phys_addr_t align, 1151 phys_addr_t min_addr, phys_addr_t max_addr, 1152 int nid) 1153 { 1154 phys_addr_t alloc; 1155 void *ptr; 1156 1157 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1158 nid = NUMA_NO_NODE; 1159 1160 /* 1161 * Detect any accidental use of these APIs after slab is ready, as at 1162 * this moment memblock may be deinitialized already and its 1163 * internal data may be destroyed (after execution of free_all_bootmem) 1164 */ 1165 if (WARN_ON_ONCE(slab_is_available())) 1166 return kzalloc_node(size, GFP_NOWAIT, nid); 1167 1168 if (!align) 1169 align = SMP_CACHE_BYTES; 1170 1171 if (max_addr > memblock.current_limit) 1172 max_addr = memblock.current_limit; 1173 1174 again: 1175 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr, 1176 nid); 1177 if (alloc) 1178 goto done; 1179 1180 if (nid != NUMA_NO_NODE) { 1181 alloc = memblock_find_in_range_node(size, align, min_addr, 1182 max_addr, NUMA_NO_NODE); 1183 if (alloc) 1184 goto done; 1185 } 1186 1187 if (min_addr) { 1188 min_addr = 0; 1189 goto again; 1190 } else { 1191 goto error; 1192 } 1193 1194 done: 1195 memblock_reserve(alloc, size); 1196 ptr = phys_to_virt(alloc); 1197 memset(ptr, 0, size); 1198 1199 /* 1200 * The min_count is set to 0 so that bootmem allocated blocks 1201 * are never reported as leaks. This is because many of these blocks 1202 * are only referred via the physical address which is not 1203 * looked up by kmemleak. 1204 */ 1205 kmemleak_alloc(ptr, size, 0, 0); 1206 1207 return ptr; 1208 1209 error: 1210 return NULL; 1211 } 1212 1213 /** 1214 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block 1215 * @size: size of memory block to be allocated in bytes 1216 * @align: alignment of the region and block's size 1217 * @min_addr: the lower bound of the memory region from where the allocation 1218 * is preferred (phys address) 1219 * @max_addr: the upper bound of the memory region from where the allocation 1220 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1221 * allocate only from memory limited by memblock.current_limit value 1222 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1223 * 1224 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides 1225 * additional debug information (including caller info), if enabled. 1226 * 1227 * RETURNS: 1228 * Virtual address of allocated memory block on success, NULL on failure. 1229 */ 1230 void * __init memblock_virt_alloc_try_nid_nopanic( 1231 phys_addr_t size, phys_addr_t align, 1232 phys_addr_t min_addr, phys_addr_t max_addr, 1233 int nid) 1234 { 1235 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", 1236 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1237 (u64)max_addr, (void *)_RET_IP_); 1238 return memblock_virt_alloc_internal(size, align, min_addr, 1239 max_addr, nid); 1240 } 1241 1242 /** 1243 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking 1244 * @size: size of memory block to be allocated in bytes 1245 * @align: alignment of the region and block's size 1246 * @min_addr: the lower bound of the memory region from where the allocation 1247 * is preferred (phys address) 1248 * @max_addr: the upper bound of the memory region from where the allocation 1249 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1250 * allocate only from memory limited by memblock.current_limit value 1251 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1252 * 1253 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic() 1254 * which provides debug information (including caller info), if enabled, 1255 * and panics if the request can not be satisfied. 1256 * 1257 * RETURNS: 1258 * Virtual address of allocated memory block on success, NULL on failure. 1259 */ 1260 void * __init memblock_virt_alloc_try_nid( 1261 phys_addr_t size, phys_addr_t align, 1262 phys_addr_t min_addr, phys_addr_t max_addr, 1263 int nid) 1264 { 1265 void *ptr; 1266 1267 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", 1268 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1269 (u64)max_addr, (void *)_RET_IP_); 1270 ptr = memblock_virt_alloc_internal(size, align, 1271 min_addr, max_addr, nid); 1272 if (ptr) 1273 return ptr; 1274 1275 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n", 1276 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1277 (u64)max_addr); 1278 return NULL; 1279 } 1280 1281 /** 1282 * __memblock_free_early - free boot memory block 1283 * @base: phys starting address of the boot memory block 1284 * @size: size of the boot memory block in bytes 1285 * 1286 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API. 1287 * The freeing memory will not be released to the buddy allocator. 1288 */ 1289 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size) 1290 { 1291 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", 1292 __func__, (u64)base, (u64)base + size - 1, 1293 (void *)_RET_IP_); 1294 kmemleak_free_part(__va(base), size); 1295 memblock_remove_range(&memblock.reserved, base, size); 1296 } 1297 1298 /* 1299 * __memblock_free_late - free bootmem block pages directly to buddy allocator 1300 * @addr: phys starting address of the boot memory block 1301 * @size: size of the boot memory block in bytes 1302 * 1303 * This is only useful when the bootmem allocator has already been torn 1304 * down, but we are still initializing the system. Pages are released directly 1305 * to the buddy allocator, no bootmem metadata is updated because it is gone. 1306 */ 1307 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1308 { 1309 u64 cursor, end; 1310 1311 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", 1312 __func__, (u64)base, (u64)base + size - 1, 1313 (void *)_RET_IP_); 1314 kmemleak_free_part(__va(base), size); 1315 cursor = PFN_UP(base); 1316 end = PFN_DOWN(base + size); 1317 1318 for (; cursor < end; cursor++) { 1319 __free_pages_bootmem(pfn_to_page(cursor), 0); 1320 totalram_pages++; 1321 } 1322 } 1323 1324 /* 1325 * Remaining API functions 1326 */ 1327 1328 phys_addr_t __init memblock_phys_mem_size(void) 1329 { 1330 return memblock.memory.total_size; 1331 } 1332 1333 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) 1334 { 1335 unsigned long pages = 0; 1336 struct memblock_region *r; 1337 unsigned long start_pfn, end_pfn; 1338 1339 for_each_memblock(memory, r) { 1340 start_pfn = memblock_region_memory_base_pfn(r); 1341 end_pfn = memblock_region_memory_end_pfn(r); 1342 start_pfn = min_t(unsigned long, start_pfn, limit_pfn); 1343 end_pfn = min_t(unsigned long, end_pfn, limit_pfn); 1344 pages += end_pfn - start_pfn; 1345 } 1346 1347 return PFN_PHYS(pages); 1348 } 1349 1350 /* lowest address */ 1351 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1352 { 1353 return memblock.memory.regions[0].base; 1354 } 1355 1356 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1357 { 1358 int idx = memblock.memory.cnt - 1; 1359 1360 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1361 } 1362 1363 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1364 { 1365 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 1366 struct memblock_region *r; 1367 1368 if (!limit) 1369 return; 1370 1371 /* find out max address */ 1372 for_each_memblock(memory, r) { 1373 if (limit <= r->size) { 1374 max_addr = r->base + limit; 1375 break; 1376 } 1377 limit -= r->size; 1378 } 1379 1380 /* truncate both memory and reserved regions */ 1381 memblock_remove_range(&memblock.memory, max_addr, 1382 (phys_addr_t)ULLONG_MAX); 1383 memblock_remove_range(&memblock.reserved, max_addr, 1384 (phys_addr_t)ULLONG_MAX); 1385 } 1386 1387 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1388 { 1389 unsigned int left = 0, right = type->cnt; 1390 1391 do { 1392 unsigned int mid = (right + left) / 2; 1393 1394 if (addr < type->regions[mid].base) 1395 right = mid; 1396 else if (addr >= (type->regions[mid].base + 1397 type->regions[mid].size)) 1398 left = mid + 1; 1399 else 1400 return mid; 1401 } while (left < right); 1402 return -1; 1403 } 1404 1405 int __init memblock_is_reserved(phys_addr_t addr) 1406 { 1407 return memblock_search(&memblock.reserved, addr) != -1; 1408 } 1409 1410 int __init_memblock memblock_is_memory(phys_addr_t addr) 1411 { 1412 return memblock_search(&memblock.memory, addr) != -1; 1413 } 1414 1415 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1416 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1417 unsigned long *start_pfn, unsigned long *end_pfn) 1418 { 1419 struct memblock_type *type = &memblock.memory; 1420 int mid = memblock_search(type, PFN_PHYS(pfn)); 1421 1422 if (mid == -1) 1423 return -1; 1424 1425 *start_pfn = PFN_DOWN(type->regions[mid].base); 1426 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1427 1428 return type->regions[mid].nid; 1429 } 1430 #endif 1431 1432 /** 1433 * memblock_is_region_memory - check if a region is a subset of memory 1434 * @base: base of region to check 1435 * @size: size of region to check 1436 * 1437 * Check if the region [@base, @base+@size) is a subset of a memory block. 1438 * 1439 * RETURNS: 1440 * 0 if false, non-zero if true 1441 */ 1442 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1443 { 1444 int idx = memblock_search(&memblock.memory, base); 1445 phys_addr_t end = base + memblock_cap_size(base, &size); 1446 1447 if (idx == -1) 1448 return 0; 1449 return memblock.memory.regions[idx].base <= base && 1450 (memblock.memory.regions[idx].base + 1451 memblock.memory.regions[idx].size) >= end; 1452 } 1453 1454 /** 1455 * memblock_is_region_reserved - check if a region intersects reserved memory 1456 * @base: base of region to check 1457 * @size: size of region to check 1458 * 1459 * Check if the region [@base, @base+@size) intersects a reserved memory block. 1460 * 1461 * RETURNS: 1462 * 0 if false, non-zero if true 1463 */ 1464 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1465 { 1466 memblock_cap_size(base, &size); 1467 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; 1468 } 1469 1470 void __init_memblock memblock_trim_memory(phys_addr_t align) 1471 { 1472 phys_addr_t start, end, orig_start, orig_end; 1473 struct memblock_region *r; 1474 1475 for_each_memblock(memory, r) { 1476 orig_start = r->base; 1477 orig_end = r->base + r->size; 1478 start = round_up(orig_start, align); 1479 end = round_down(orig_end, align); 1480 1481 if (start == orig_start && end == orig_end) 1482 continue; 1483 1484 if (start < end) { 1485 r->base = start; 1486 r->size = end - start; 1487 } else { 1488 memblock_remove_region(&memblock.memory, 1489 r - memblock.memory.regions); 1490 r--; 1491 } 1492 } 1493 } 1494 1495 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1496 { 1497 memblock.current_limit = limit; 1498 } 1499 1500 phys_addr_t __init_memblock memblock_get_current_limit(void) 1501 { 1502 return memblock.current_limit; 1503 } 1504 1505 static void __init_memblock memblock_dump(struct memblock_type *type, char *name) 1506 { 1507 unsigned long long base, size; 1508 unsigned long flags; 1509 int i; 1510 1511 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); 1512 1513 for (i = 0; i < type->cnt; i++) { 1514 struct memblock_region *rgn = &type->regions[i]; 1515 char nid_buf[32] = ""; 1516 1517 base = rgn->base; 1518 size = rgn->size; 1519 flags = rgn->flags; 1520 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1521 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1522 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1523 memblock_get_region_node(rgn)); 1524 #endif 1525 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n", 1526 name, i, base, base + size - 1, size, nid_buf, flags); 1527 } 1528 } 1529 1530 void __init_memblock __memblock_dump_all(void) 1531 { 1532 pr_info("MEMBLOCK configuration:\n"); 1533 pr_info(" memory size = %#llx reserved size = %#llx\n", 1534 (unsigned long long)memblock.memory.total_size, 1535 (unsigned long long)memblock.reserved.total_size); 1536 1537 memblock_dump(&memblock.memory, "memory"); 1538 memblock_dump(&memblock.reserved, "reserved"); 1539 } 1540 1541 void __init memblock_allow_resize(void) 1542 { 1543 memblock_can_resize = 1; 1544 } 1545 1546 static int __init early_memblock(char *p) 1547 { 1548 if (p && strstr(p, "debug")) 1549 memblock_debug = 1; 1550 return 0; 1551 } 1552 early_param("memblock", early_memblock); 1553 1554 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) 1555 1556 static int memblock_debug_show(struct seq_file *m, void *private) 1557 { 1558 struct memblock_type *type = m->private; 1559 struct memblock_region *reg; 1560 int i; 1561 1562 for (i = 0; i < type->cnt; i++) { 1563 reg = &type->regions[i]; 1564 seq_printf(m, "%4d: ", i); 1565 if (sizeof(phys_addr_t) == 4) 1566 seq_printf(m, "0x%08lx..0x%08lx\n", 1567 (unsigned long)reg->base, 1568 (unsigned long)(reg->base + reg->size - 1)); 1569 else 1570 seq_printf(m, "0x%016llx..0x%016llx\n", 1571 (unsigned long long)reg->base, 1572 (unsigned long long)(reg->base + reg->size - 1)); 1573 1574 } 1575 return 0; 1576 } 1577 1578 static int memblock_debug_open(struct inode *inode, struct file *file) 1579 { 1580 return single_open(file, memblock_debug_show, inode->i_private); 1581 } 1582 1583 static const struct file_operations memblock_debug_fops = { 1584 .open = memblock_debug_open, 1585 .read = seq_read, 1586 .llseek = seq_lseek, 1587 .release = single_release, 1588 }; 1589 1590 static int __init memblock_init_debugfs(void) 1591 { 1592 struct dentry *root = debugfs_create_dir("memblock", NULL); 1593 if (!root) 1594 return -ENXIO; 1595 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); 1596 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); 1597 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1598 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops); 1599 #endif 1600 1601 return 0; 1602 } 1603 __initcall(memblock_init_debugfs); 1604 1605 #endif /* CONFIG_DEBUG_FS */ 1606