1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/seq_file.h> 21 #include <linux/memblock.h> 22 23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 25 26 struct memblock memblock __initdata_memblock = { 27 .memory.regions = memblock_memory_init_regions, 28 .memory.cnt = 1, /* empty dummy entry */ 29 .memory.max = INIT_MEMBLOCK_REGIONS, 30 31 .reserved.regions = memblock_reserved_init_regions, 32 .reserved.cnt = 1, /* empty dummy entry */ 33 .reserved.max = INIT_MEMBLOCK_REGIONS, 34 35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 36 }; 37 38 int memblock_debug __initdata_memblock; 39 static int memblock_can_resize __initdata_memblock; 40 static int memblock_memory_in_slab __initdata_memblock = 0; 41 static int memblock_reserved_in_slab __initdata_memblock = 0; 42 43 /* inline so we don't get a warning when pr_debug is compiled out */ 44 static inline const char *memblock_type_name(struct memblock_type *type) 45 { 46 if (type == &memblock.memory) 47 return "memory"; 48 else if (type == &memblock.reserved) 49 return "reserved"; 50 else 51 return "unknown"; 52 } 53 54 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 55 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 56 { 57 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); 58 } 59 60 /* 61 * Address comparison utilities 62 */ 63 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 64 phys_addr_t base2, phys_addr_t size2) 65 { 66 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 67 } 68 69 static long __init_memblock memblock_overlaps_region(struct memblock_type *type, 70 phys_addr_t base, phys_addr_t size) 71 { 72 unsigned long i; 73 74 for (i = 0; i < type->cnt; i++) { 75 phys_addr_t rgnbase = type->regions[i].base; 76 phys_addr_t rgnsize = type->regions[i].size; 77 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) 78 break; 79 } 80 81 return (i < type->cnt) ? i : -1; 82 } 83 84 /** 85 * memblock_find_in_range_node - find free area in given range and node 86 * @start: start of candidate range 87 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 88 * @size: size of free area to find 89 * @align: alignment of free area to find 90 * @nid: nid of the free area to find, %MAX_NUMNODES for any node 91 * 92 * Find @size free area aligned to @align in the specified range and node. 93 * 94 * RETURNS: 95 * Found address on success, %0 on failure. 96 */ 97 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start, 98 phys_addr_t end, phys_addr_t size, 99 phys_addr_t align, int nid) 100 { 101 phys_addr_t this_start, this_end, cand; 102 u64 i; 103 104 /* pump up @end */ 105 if (end == MEMBLOCK_ALLOC_ACCESSIBLE) 106 end = memblock.current_limit; 107 108 /* avoid allocating the first page */ 109 start = max_t(phys_addr_t, start, PAGE_SIZE); 110 end = max(start, end); 111 112 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) { 113 this_start = clamp(this_start, start, end); 114 this_end = clamp(this_end, start, end); 115 116 if (this_end < size) 117 continue; 118 119 cand = round_down(this_end - size, align); 120 if (cand >= this_start) 121 return cand; 122 } 123 return 0; 124 } 125 126 /** 127 * memblock_find_in_range - find free area in given range 128 * @start: start of candidate range 129 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 130 * @size: size of free area to find 131 * @align: alignment of free area to find 132 * 133 * Find @size free area aligned to @align in the specified range. 134 * 135 * RETURNS: 136 * Found address on success, %0 on failure. 137 */ 138 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 139 phys_addr_t end, phys_addr_t size, 140 phys_addr_t align) 141 { 142 return memblock_find_in_range_node(start, end, size, align, 143 MAX_NUMNODES); 144 } 145 146 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 147 { 148 type->total_size -= type->regions[r].size; 149 memmove(&type->regions[r], &type->regions[r + 1], 150 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 151 type->cnt--; 152 153 /* Special case for empty arrays */ 154 if (type->cnt == 0) { 155 WARN_ON(type->total_size != 0); 156 type->cnt = 1; 157 type->regions[0].base = 0; 158 type->regions[0].size = 0; 159 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 160 } 161 } 162 163 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( 164 phys_addr_t *addr) 165 { 166 if (memblock.reserved.regions == memblock_reserved_init_regions) 167 return 0; 168 169 *addr = __pa(memblock.reserved.regions); 170 171 return PAGE_ALIGN(sizeof(struct memblock_region) * 172 memblock.reserved.max); 173 } 174 175 /** 176 * memblock_double_array - double the size of the memblock regions array 177 * @type: memblock type of the regions array being doubled 178 * @new_area_start: starting address of memory range to avoid overlap with 179 * @new_area_size: size of memory range to avoid overlap with 180 * 181 * Double the size of the @type regions array. If memblock is being used to 182 * allocate memory for a new reserved regions array and there is a previously 183 * allocated memory range [@new_area_start,@new_area_start+@new_area_size] 184 * waiting to be reserved, ensure the memory used by the new array does 185 * not overlap. 186 * 187 * RETURNS: 188 * 0 on success, -1 on failure. 189 */ 190 static int __init_memblock memblock_double_array(struct memblock_type *type, 191 phys_addr_t new_area_start, 192 phys_addr_t new_area_size) 193 { 194 struct memblock_region *new_array, *old_array; 195 phys_addr_t old_alloc_size, new_alloc_size; 196 phys_addr_t old_size, new_size, addr; 197 int use_slab = slab_is_available(); 198 int *in_slab; 199 200 /* We don't allow resizing until we know about the reserved regions 201 * of memory that aren't suitable for allocation 202 */ 203 if (!memblock_can_resize) 204 return -1; 205 206 /* Calculate new doubled size */ 207 old_size = type->max * sizeof(struct memblock_region); 208 new_size = old_size << 1; 209 /* 210 * We need to allocated new one align to PAGE_SIZE, 211 * so we can free them completely later. 212 */ 213 old_alloc_size = PAGE_ALIGN(old_size); 214 new_alloc_size = PAGE_ALIGN(new_size); 215 216 /* Retrieve the slab flag */ 217 if (type == &memblock.memory) 218 in_slab = &memblock_memory_in_slab; 219 else 220 in_slab = &memblock_reserved_in_slab; 221 222 /* Try to find some space for it. 223 * 224 * WARNING: We assume that either slab_is_available() and we use it or 225 * we use MEMBLOCK for allocations. That means that this is unsafe to 226 * use when bootmem is currently active (unless bootmem itself is 227 * implemented on top of MEMBLOCK which isn't the case yet) 228 * 229 * This should however not be an issue for now, as we currently only 230 * call into MEMBLOCK while it's still active, or much later when slab 231 * is active for memory hotplug operations 232 */ 233 if (use_slab) { 234 new_array = kmalloc(new_size, GFP_KERNEL); 235 addr = new_array ? __pa(new_array) : 0; 236 } else { 237 /* only exclude range when trying to double reserved.regions */ 238 if (type != &memblock.reserved) 239 new_area_start = new_area_size = 0; 240 241 addr = memblock_find_in_range(new_area_start + new_area_size, 242 memblock.current_limit, 243 new_alloc_size, PAGE_SIZE); 244 if (!addr && new_area_size) 245 addr = memblock_find_in_range(0, 246 min(new_area_start, memblock.current_limit), 247 new_alloc_size, PAGE_SIZE); 248 249 new_array = addr ? __va(addr) : 0; 250 } 251 if (!addr) { 252 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 253 memblock_type_name(type), type->max, type->max * 2); 254 return -1; 255 } 256 257 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]", 258 memblock_type_name(type), type->max * 2, (u64)addr, 259 (u64)addr + new_size - 1); 260 261 /* 262 * Found space, we now need to move the array over before we add the 263 * reserved region since it may be our reserved array itself that is 264 * full. 265 */ 266 memcpy(new_array, type->regions, old_size); 267 memset(new_array + type->max, 0, old_size); 268 old_array = type->regions; 269 type->regions = new_array; 270 type->max <<= 1; 271 272 /* Free old array. We needn't free it if the array is the static one */ 273 if (*in_slab) 274 kfree(old_array); 275 else if (old_array != memblock_memory_init_regions && 276 old_array != memblock_reserved_init_regions) 277 memblock_free(__pa(old_array), old_alloc_size); 278 279 /* 280 * Reserve the new array if that comes from the memblock. Otherwise, we 281 * needn't do it 282 */ 283 if (!use_slab) 284 BUG_ON(memblock_reserve(addr, new_alloc_size)); 285 286 /* Update slab flag */ 287 *in_slab = use_slab; 288 289 return 0; 290 } 291 292 /** 293 * memblock_merge_regions - merge neighboring compatible regions 294 * @type: memblock type to scan 295 * 296 * Scan @type and merge neighboring compatible regions. 297 */ 298 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 299 { 300 int i = 0; 301 302 /* cnt never goes below 1 */ 303 while (i < type->cnt - 1) { 304 struct memblock_region *this = &type->regions[i]; 305 struct memblock_region *next = &type->regions[i + 1]; 306 307 if (this->base + this->size != next->base || 308 memblock_get_region_node(this) != 309 memblock_get_region_node(next)) { 310 BUG_ON(this->base + this->size > next->base); 311 i++; 312 continue; 313 } 314 315 this->size += next->size; 316 memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next)); 317 type->cnt--; 318 } 319 } 320 321 /** 322 * memblock_insert_region - insert new memblock region 323 * @type: memblock type to insert into 324 * @idx: index for the insertion point 325 * @base: base address of the new region 326 * @size: size of the new region 327 * 328 * Insert new memblock region [@base,@base+@size) into @type at @idx. 329 * @type must already have extra room to accomodate the new region. 330 */ 331 static void __init_memblock memblock_insert_region(struct memblock_type *type, 332 int idx, phys_addr_t base, 333 phys_addr_t size, int nid) 334 { 335 struct memblock_region *rgn = &type->regions[idx]; 336 337 BUG_ON(type->cnt >= type->max); 338 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 339 rgn->base = base; 340 rgn->size = size; 341 memblock_set_region_node(rgn, nid); 342 type->cnt++; 343 type->total_size += size; 344 } 345 346 /** 347 * memblock_add_region - add new memblock region 348 * @type: memblock type to add new region into 349 * @base: base address of the new region 350 * @size: size of the new region 351 * @nid: nid of the new region 352 * 353 * Add new memblock region [@base,@base+@size) into @type. The new region 354 * is allowed to overlap with existing ones - overlaps don't affect already 355 * existing regions. @type is guaranteed to be minimal (all neighbouring 356 * compatible regions are merged) after the addition. 357 * 358 * RETURNS: 359 * 0 on success, -errno on failure. 360 */ 361 static int __init_memblock memblock_add_region(struct memblock_type *type, 362 phys_addr_t base, phys_addr_t size, int nid) 363 { 364 bool insert = false; 365 phys_addr_t obase = base; 366 phys_addr_t end = base + memblock_cap_size(base, &size); 367 int i, nr_new; 368 369 if (!size) 370 return 0; 371 372 /* special case for empty array */ 373 if (type->regions[0].size == 0) { 374 WARN_ON(type->cnt != 1 || type->total_size); 375 type->regions[0].base = base; 376 type->regions[0].size = size; 377 memblock_set_region_node(&type->regions[0], nid); 378 type->total_size = size; 379 return 0; 380 } 381 repeat: 382 /* 383 * The following is executed twice. Once with %false @insert and 384 * then with %true. The first counts the number of regions needed 385 * to accomodate the new area. The second actually inserts them. 386 */ 387 base = obase; 388 nr_new = 0; 389 390 for (i = 0; i < type->cnt; i++) { 391 struct memblock_region *rgn = &type->regions[i]; 392 phys_addr_t rbase = rgn->base; 393 phys_addr_t rend = rbase + rgn->size; 394 395 if (rbase >= end) 396 break; 397 if (rend <= base) 398 continue; 399 /* 400 * @rgn overlaps. If it separates the lower part of new 401 * area, insert that portion. 402 */ 403 if (rbase > base) { 404 nr_new++; 405 if (insert) 406 memblock_insert_region(type, i++, base, 407 rbase - base, nid); 408 } 409 /* area below @rend is dealt with, forget about it */ 410 base = min(rend, end); 411 } 412 413 /* insert the remaining portion */ 414 if (base < end) { 415 nr_new++; 416 if (insert) 417 memblock_insert_region(type, i, base, end - base, nid); 418 } 419 420 /* 421 * If this was the first round, resize array and repeat for actual 422 * insertions; otherwise, merge and return. 423 */ 424 if (!insert) { 425 while (type->cnt + nr_new > type->max) 426 if (memblock_double_array(type, obase, size) < 0) 427 return -ENOMEM; 428 insert = true; 429 goto repeat; 430 } else { 431 memblock_merge_regions(type); 432 return 0; 433 } 434 } 435 436 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 437 int nid) 438 { 439 return memblock_add_region(&memblock.memory, base, size, nid); 440 } 441 442 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 443 { 444 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES); 445 } 446 447 /** 448 * memblock_isolate_range - isolate given range into disjoint memblocks 449 * @type: memblock type to isolate range for 450 * @base: base of range to isolate 451 * @size: size of range to isolate 452 * @start_rgn: out parameter for the start of isolated region 453 * @end_rgn: out parameter for the end of isolated region 454 * 455 * Walk @type and ensure that regions don't cross the boundaries defined by 456 * [@base,@base+@size). Crossing regions are split at the boundaries, 457 * which may create at most two more regions. The index of the first 458 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 459 * 460 * RETURNS: 461 * 0 on success, -errno on failure. 462 */ 463 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 464 phys_addr_t base, phys_addr_t size, 465 int *start_rgn, int *end_rgn) 466 { 467 phys_addr_t end = base + memblock_cap_size(base, &size); 468 int i; 469 470 *start_rgn = *end_rgn = 0; 471 472 if (!size) 473 return 0; 474 475 /* we'll create at most two more regions */ 476 while (type->cnt + 2 > type->max) 477 if (memblock_double_array(type, base, size) < 0) 478 return -ENOMEM; 479 480 for (i = 0; i < type->cnt; i++) { 481 struct memblock_region *rgn = &type->regions[i]; 482 phys_addr_t rbase = rgn->base; 483 phys_addr_t rend = rbase + rgn->size; 484 485 if (rbase >= end) 486 break; 487 if (rend <= base) 488 continue; 489 490 if (rbase < base) { 491 /* 492 * @rgn intersects from below. Split and continue 493 * to process the next region - the new top half. 494 */ 495 rgn->base = base; 496 rgn->size -= base - rbase; 497 type->total_size -= base - rbase; 498 memblock_insert_region(type, i, rbase, base - rbase, 499 memblock_get_region_node(rgn)); 500 } else if (rend > end) { 501 /* 502 * @rgn intersects from above. Split and redo the 503 * current region - the new bottom half. 504 */ 505 rgn->base = end; 506 rgn->size -= end - rbase; 507 type->total_size -= end - rbase; 508 memblock_insert_region(type, i--, rbase, end - rbase, 509 memblock_get_region_node(rgn)); 510 } else { 511 /* @rgn is fully contained, record it */ 512 if (!*end_rgn) 513 *start_rgn = i; 514 *end_rgn = i + 1; 515 } 516 } 517 518 return 0; 519 } 520 521 static int __init_memblock __memblock_remove(struct memblock_type *type, 522 phys_addr_t base, phys_addr_t size) 523 { 524 int start_rgn, end_rgn; 525 int i, ret; 526 527 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 528 if (ret) 529 return ret; 530 531 for (i = end_rgn - 1; i >= start_rgn; i--) 532 memblock_remove_region(type, i); 533 return 0; 534 } 535 536 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 537 { 538 return __memblock_remove(&memblock.memory, base, size); 539 } 540 541 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 542 { 543 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", 544 (unsigned long long)base, 545 (unsigned long long)base + size, 546 (void *)_RET_IP_); 547 548 return __memblock_remove(&memblock.reserved, base, size); 549 } 550 551 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 552 { 553 struct memblock_type *_rgn = &memblock.reserved; 554 555 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n", 556 (unsigned long long)base, 557 (unsigned long long)base + size, 558 (void *)_RET_IP_); 559 560 return memblock_add_region(_rgn, base, size, MAX_NUMNODES); 561 } 562 563 /** 564 * __next_free_mem_range - next function for for_each_free_mem_range() 565 * @idx: pointer to u64 loop variable 566 * @nid: nid: node selector, %MAX_NUMNODES for all nodes 567 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 568 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 569 * @out_nid: ptr to int for nid of the range, can be %NULL 570 * 571 * Find the first free area from *@idx which matches @nid, fill the out 572 * parameters, and update *@idx for the next iteration. The lower 32bit of 573 * *@idx contains index into memory region and the upper 32bit indexes the 574 * areas before each reserved region. For example, if reserved regions 575 * look like the following, 576 * 577 * 0:[0-16), 1:[32-48), 2:[128-130) 578 * 579 * The upper 32bit indexes the following regions. 580 * 581 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 582 * 583 * As both region arrays are sorted, the function advances the two indices 584 * in lockstep and returns each intersection. 585 */ 586 void __init_memblock __next_free_mem_range(u64 *idx, int nid, 587 phys_addr_t *out_start, 588 phys_addr_t *out_end, int *out_nid) 589 { 590 struct memblock_type *mem = &memblock.memory; 591 struct memblock_type *rsv = &memblock.reserved; 592 int mi = *idx & 0xffffffff; 593 int ri = *idx >> 32; 594 595 for ( ; mi < mem->cnt; mi++) { 596 struct memblock_region *m = &mem->regions[mi]; 597 phys_addr_t m_start = m->base; 598 phys_addr_t m_end = m->base + m->size; 599 600 /* only memory regions are associated with nodes, check it */ 601 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) 602 continue; 603 604 /* scan areas before each reservation for intersection */ 605 for ( ; ri < rsv->cnt + 1; ri++) { 606 struct memblock_region *r = &rsv->regions[ri]; 607 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; 608 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; 609 610 /* if ri advanced past mi, break out to advance mi */ 611 if (r_start >= m_end) 612 break; 613 /* if the two regions intersect, we're done */ 614 if (m_start < r_end) { 615 if (out_start) 616 *out_start = max(m_start, r_start); 617 if (out_end) 618 *out_end = min(m_end, r_end); 619 if (out_nid) 620 *out_nid = memblock_get_region_node(m); 621 /* 622 * The region which ends first is advanced 623 * for the next iteration. 624 */ 625 if (m_end <= r_end) 626 mi++; 627 else 628 ri++; 629 *idx = (u32)mi | (u64)ri << 32; 630 return; 631 } 632 } 633 } 634 635 /* signal end of iteration */ 636 *idx = ULLONG_MAX; 637 } 638 639 /** 640 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse() 641 * @idx: pointer to u64 loop variable 642 * @nid: nid: node selector, %MAX_NUMNODES for all nodes 643 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 644 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 645 * @out_nid: ptr to int for nid of the range, can be %NULL 646 * 647 * Reverse of __next_free_mem_range(). 648 */ 649 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid, 650 phys_addr_t *out_start, 651 phys_addr_t *out_end, int *out_nid) 652 { 653 struct memblock_type *mem = &memblock.memory; 654 struct memblock_type *rsv = &memblock.reserved; 655 int mi = *idx & 0xffffffff; 656 int ri = *idx >> 32; 657 658 if (*idx == (u64)ULLONG_MAX) { 659 mi = mem->cnt - 1; 660 ri = rsv->cnt; 661 } 662 663 for ( ; mi >= 0; mi--) { 664 struct memblock_region *m = &mem->regions[mi]; 665 phys_addr_t m_start = m->base; 666 phys_addr_t m_end = m->base + m->size; 667 668 /* only memory regions are associated with nodes, check it */ 669 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) 670 continue; 671 672 /* scan areas before each reservation for intersection */ 673 for ( ; ri >= 0; ri--) { 674 struct memblock_region *r = &rsv->regions[ri]; 675 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; 676 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; 677 678 /* if ri advanced past mi, break out to advance mi */ 679 if (r_end <= m_start) 680 break; 681 /* if the two regions intersect, we're done */ 682 if (m_end > r_start) { 683 if (out_start) 684 *out_start = max(m_start, r_start); 685 if (out_end) 686 *out_end = min(m_end, r_end); 687 if (out_nid) 688 *out_nid = memblock_get_region_node(m); 689 690 if (m_start >= r_start) 691 mi--; 692 else 693 ri--; 694 *idx = (u32)mi | (u64)ri << 32; 695 return; 696 } 697 } 698 } 699 700 *idx = ULLONG_MAX; 701 } 702 703 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 704 /* 705 * Common iterator interface used to define for_each_mem_range(). 706 */ 707 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 708 unsigned long *out_start_pfn, 709 unsigned long *out_end_pfn, int *out_nid) 710 { 711 struct memblock_type *type = &memblock.memory; 712 struct memblock_region *r; 713 714 while (++*idx < type->cnt) { 715 r = &type->regions[*idx]; 716 717 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 718 continue; 719 if (nid == MAX_NUMNODES || nid == r->nid) 720 break; 721 } 722 if (*idx >= type->cnt) { 723 *idx = -1; 724 return; 725 } 726 727 if (out_start_pfn) 728 *out_start_pfn = PFN_UP(r->base); 729 if (out_end_pfn) 730 *out_end_pfn = PFN_DOWN(r->base + r->size); 731 if (out_nid) 732 *out_nid = r->nid; 733 } 734 735 /** 736 * memblock_set_node - set node ID on memblock regions 737 * @base: base of area to set node ID for 738 * @size: size of area to set node ID for 739 * @nid: node ID to set 740 * 741 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid. 742 * Regions which cross the area boundaries are split as necessary. 743 * 744 * RETURNS: 745 * 0 on success, -errno on failure. 746 */ 747 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 748 int nid) 749 { 750 struct memblock_type *type = &memblock.memory; 751 int start_rgn, end_rgn; 752 int i, ret; 753 754 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 755 if (ret) 756 return ret; 757 758 for (i = start_rgn; i < end_rgn; i++) 759 type->regions[i].nid = nid; 760 761 memblock_merge_regions(type); 762 return 0; 763 } 764 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 765 766 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, 767 phys_addr_t align, phys_addr_t max_addr, 768 int nid) 769 { 770 phys_addr_t found; 771 772 /* align @size to avoid excessive fragmentation on reserved array */ 773 size = round_up(size, align); 774 775 found = memblock_find_in_range_node(0, max_addr, size, align, nid); 776 if (found && !memblock_reserve(found, size)) 777 return found; 778 779 return 0; 780 } 781 782 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 783 { 784 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 785 } 786 787 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 788 { 789 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES); 790 } 791 792 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 793 { 794 phys_addr_t alloc; 795 796 alloc = __memblock_alloc_base(size, align, max_addr); 797 798 if (alloc == 0) 799 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", 800 (unsigned long long) size, (unsigned long long) max_addr); 801 802 return alloc; 803 } 804 805 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) 806 { 807 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 808 } 809 810 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 811 { 812 phys_addr_t res = memblock_alloc_nid(size, align, nid); 813 814 if (res) 815 return res; 816 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 817 } 818 819 820 /* 821 * Remaining API functions 822 */ 823 824 phys_addr_t __init memblock_phys_mem_size(void) 825 { 826 return memblock.memory.total_size; 827 } 828 829 /* lowest address */ 830 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 831 { 832 return memblock.memory.regions[0].base; 833 } 834 835 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 836 { 837 int idx = memblock.memory.cnt - 1; 838 839 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 840 } 841 842 void __init memblock_enforce_memory_limit(phys_addr_t limit) 843 { 844 unsigned long i; 845 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 846 847 if (!limit) 848 return; 849 850 /* find out max address */ 851 for (i = 0; i < memblock.memory.cnt; i++) { 852 struct memblock_region *r = &memblock.memory.regions[i]; 853 854 if (limit <= r->size) { 855 max_addr = r->base + limit; 856 break; 857 } 858 limit -= r->size; 859 } 860 861 /* truncate both memory and reserved regions */ 862 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX); 863 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX); 864 } 865 866 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 867 { 868 unsigned int left = 0, right = type->cnt; 869 870 do { 871 unsigned int mid = (right + left) / 2; 872 873 if (addr < type->regions[mid].base) 874 right = mid; 875 else if (addr >= (type->regions[mid].base + 876 type->regions[mid].size)) 877 left = mid + 1; 878 else 879 return mid; 880 } while (left < right); 881 return -1; 882 } 883 884 int __init memblock_is_reserved(phys_addr_t addr) 885 { 886 return memblock_search(&memblock.reserved, addr) != -1; 887 } 888 889 int __init_memblock memblock_is_memory(phys_addr_t addr) 890 { 891 return memblock_search(&memblock.memory, addr) != -1; 892 } 893 894 /** 895 * memblock_is_region_memory - check if a region is a subset of memory 896 * @base: base of region to check 897 * @size: size of region to check 898 * 899 * Check if the region [@base, @base+@size) is a subset of a memory block. 900 * 901 * RETURNS: 902 * 0 if false, non-zero if true 903 */ 904 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 905 { 906 int idx = memblock_search(&memblock.memory, base); 907 phys_addr_t end = base + memblock_cap_size(base, &size); 908 909 if (idx == -1) 910 return 0; 911 return memblock.memory.regions[idx].base <= base && 912 (memblock.memory.regions[idx].base + 913 memblock.memory.regions[idx].size) >= end; 914 } 915 916 /** 917 * memblock_is_region_reserved - check if a region intersects reserved memory 918 * @base: base of region to check 919 * @size: size of region to check 920 * 921 * Check if the region [@base, @base+@size) intersects a reserved memory block. 922 * 923 * RETURNS: 924 * 0 if false, non-zero if true 925 */ 926 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 927 { 928 memblock_cap_size(base, &size); 929 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; 930 } 931 932 933 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 934 { 935 memblock.current_limit = limit; 936 } 937 938 static void __init_memblock memblock_dump(struct memblock_type *type, char *name) 939 { 940 unsigned long long base, size; 941 int i; 942 943 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); 944 945 for (i = 0; i < type->cnt; i++) { 946 struct memblock_region *rgn = &type->regions[i]; 947 char nid_buf[32] = ""; 948 949 base = rgn->base; 950 size = rgn->size; 951 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 952 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 953 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 954 memblock_get_region_node(rgn)); 955 #endif 956 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n", 957 name, i, base, base + size - 1, size, nid_buf); 958 } 959 } 960 961 void __init_memblock __memblock_dump_all(void) 962 { 963 pr_info("MEMBLOCK configuration:\n"); 964 pr_info(" memory size = %#llx reserved size = %#llx\n", 965 (unsigned long long)memblock.memory.total_size, 966 (unsigned long long)memblock.reserved.total_size); 967 968 memblock_dump(&memblock.memory, "memory"); 969 memblock_dump(&memblock.reserved, "reserved"); 970 } 971 972 void __init memblock_allow_resize(void) 973 { 974 memblock_can_resize = 1; 975 } 976 977 static int __init early_memblock(char *p) 978 { 979 if (p && strstr(p, "debug")) 980 memblock_debug = 1; 981 return 0; 982 } 983 early_param("memblock", early_memblock); 984 985 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) 986 987 static int memblock_debug_show(struct seq_file *m, void *private) 988 { 989 struct memblock_type *type = m->private; 990 struct memblock_region *reg; 991 int i; 992 993 for (i = 0; i < type->cnt; i++) { 994 reg = &type->regions[i]; 995 seq_printf(m, "%4d: ", i); 996 if (sizeof(phys_addr_t) == 4) 997 seq_printf(m, "0x%08lx..0x%08lx\n", 998 (unsigned long)reg->base, 999 (unsigned long)(reg->base + reg->size - 1)); 1000 else 1001 seq_printf(m, "0x%016llx..0x%016llx\n", 1002 (unsigned long long)reg->base, 1003 (unsigned long long)(reg->base + reg->size - 1)); 1004 1005 } 1006 return 0; 1007 } 1008 1009 static int memblock_debug_open(struct inode *inode, struct file *file) 1010 { 1011 return single_open(file, memblock_debug_show, inode->i_private); 1012 } 1013 1014 static const struct file_operations memblock_debug_fops = { 1015 .open = memblock_debug_open, 1016 .read = seq_read, 1017 .llseek = seq_lseek, 1018 .release = single_release, 1019 }; 1020 1021 static int __init memblock_init_debugfs(void) 1022 { 1023 struct dentry *root = debugfs_create_dir("memblock", NULL); 1024 if (!root) 1025 return -ENXIO; 1026 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); 1027 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); 1028 1029 return 0; 1030 } 1031 __initcall(memblock_init_debugfs); 1032 1033 #endif /* CONFIG_DEBUG_FS */ 1034