xref: /openbmc/linux/mm/memblock.c (revision 95777591)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/kmemleak.h>
21 #include <linux/seq_file.h>
22 #include <linux/memblock.h>
23 
24 #include <asm/sections.h>
25 #include <linux/io.h>
26 
27 #include "internal.h"
28 
29 #define INIT_MEMBLOCK_REGIONS			128
30 #define INIT_PHYSMEM_REGIONS			4
31 
32 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
33 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
34 #endif
35 
36 /**
37  * DOC: memblock overview
38  *
39  * Memblock is a method of managing memory regions during the early
40  * boot period when the usual kernel memory allocators are not up and
41  * running.
42  *
43  * Memblock views the system memory as collections of contiguous
44  * regions. There are several types of these collections:
45  *
46  * * ``memory`` - describes the physical memory available to the
47  *   kernel; this may differ from the actual physical memory installed
48  *   in the system, for instance when the memory is restricted with
49  *   ``mem=`` command line parameter
50  * * ``reserved`` - describes the regions that were allocated
51  * * ``physmap`` - describes the actual physical memory regardless of
52  *   the possible restrictions; the ``physmap`` type is only available
53  *   on some architectures.
54  *
55  * Each region is represented by :c:type:`struct memblock_region` that
56  * defines the region extents, its attributes and NUMA node id on NUMA
57  * systems. Every memory type is described by the :c:type:`struct
58  * memblock_type` which contains an array of memory regions along with
59  * the allocator metadata. The memory types are nicely wrapped with
60  * :c:type:`struct memblock`. This structure is statically initialzed
61  * at build time. The region arrays for the "memory" and "reserved"
62  * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
63  * "physmap" type to %INIT_PHYSMEM_REGIONS.
64  * The :c:func:`memblock_allow_resize` enables automatic resizing of
65  * the region arrays during addition of new regions. This feature
66  * should be used with care so that memory allocated for the region
67  * array will not overlap with areas that should be reserved, for
68  * example initrd.
69  *
70  * The early architecture setup should tell memblock what the physical
71  * memory layout is by using :c:func:`memblock_add` or
72  * :c:func:`memblock_add_node` functions. The first function does not
73  * assign the region to a NUMA node and it is appropriate for UMA
74  * systems. Yet, it is possible to use it on NUMA systems as well and
75  * assign the region to a NUMA node later in the setup process using
76  * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
77  * performs such an assignment directly.
78  *
79  * Once memblock is setup the memory can be allocated using either
80  * memblock or bootmem APIs.
81  *
82  * As the system boot progresses, the architecture specific
83  * :c:func:`mem_init` function frees all the memory to the buddy page
84  * allocator.
85  *
86  * If an architecure enables %CONFIG_ARCH_DISCARD_MEMBLOCK, the
87  * memblock data structures will be discarded after the system
88  * initialization compltes.
89  */
90 
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 struct pglist_data __refdata contig_page_data;
93 EXPORT_SYMBOL(contig_page_data);
94 #endif
95 
96 unsigned long max_low_pfn;
97 unsigned long min_low_pfn;
98 unsigned long max_pfn;
99 unsigned long long max_possible_pfn;
100 
101 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
102 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
103 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
104 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
105 #endif
106 
107 struct memblock memblock __initdata_memblock = {
108 	.memory.regions		= memblock_memory_init_regions,
109 	.memory.cnt		= 1,	/* empty dummy entry */
110 	.memory.max		= INIT_MEMBLOCK_REGIONS,
111 	.memory.name		= "memory",
112 
113 	.reserved.regions	= memblock_reserved_init_regions,
114 	.reserved.cnt		= 1,	/* empty dummy entry */
115 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
116 	.reserved.name		= "reserved",
117 
118 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
119 	.physmem.regions	= memblock_physmem_init_regions,
120 	.physmem.cnt		= 1,	/* empty dummy entry */
121 	.physmem.max		= INIT_PHYSMEM_REGIONS,
122 	.physmem.name		= "physmem",
123 #endif
124 
125 	.bottom_up		= false,
126 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
127 };
128 
129 int memblock_debug __initdata_memblock;
130 static bool system_has_some_mirror __initdata_memblock = false;
131 static int memblock_can_resize __initdata_memblock;
132 static int memblock_memory_in_slab __initdata_memblock = 0;
133 static int memblock_reserved_in_slab __initdata_memblock = 0;
134 
135 enum memblock_flags __init_memblock choose_memblock_flags(void)
136 {
137 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
138 }
139 
140 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
141 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
142 {
143 	return *size = min(*size, PHYS_ADDR_MAX - base);
144 }
145 
146 /*
147  * Address comparison utilities
148  */
149 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
150 				       phys_addr_t base2, phys_addr_t size2)
151 {
152 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
153 }
154 
155 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
156 					phys_addr_t base, phys_addr_t size)
157 {
158 	unsigned long i;
159 
160 	for (i = 0; i < type->cnt; i++)
161 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
162 					   type->regions[i].size))
163 			break;
164 	return i < type->cnt;
165 }
166 
167 /**
168  * __memblock_find_range_bottom_up - find free area utility in bottom-up
169  * @start: start of candidate range
170  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
171  *       %MEMBLOCK_ALLOC_ACCESSIBLE
172  * @size: size of free area to find
173  * @align: alignment of free area to find
174  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
175  * @flags: pick from blocks based on memory attributes
176  *
177  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
178  *
179  * Return:
180  * Found address on success, 0 on failure.
181  */
182 static phys_addr_t __init_memblock
183 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
184 				phys_addr_t size, phys_addr_t align, int nid,
185 				enum memblock_flags flags)
186 {
187 	phys_addr_t this_start, this_end, cand;
188 	u64 i;
189 
190 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
191 		this_start = clamp(this_start, start, end);
192 		this_end = clamp(this_end, start, end);
193 
194 		cand = round_up(this_start, align);
195 		if (cand < this_end && this_end - cand >= size)
196 			return cand;
197 	}
198 
199 	return 0;
200 }
201 
202 /**
203  * __memblock_find_range_top_down - find free area utility, in top-down
204  * @start: start of candidate range
205  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
206  *       %MEMBLOCK_ALLOC_ACCESSIBLE
207  * @size: size of free area to find
208  * @align: alignment of free area to find
209  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
210  * @flags: pick from blocks based on memory attributes
211  *
212  * Utility called from memblock_find_in_range_node(), find free area top-down.
213  *
214  * Return:
215  * Found address on success, 0 on failure.
216  */
217 static phys_addr_t __init_memblock
218 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
219 			       phys_addr_t size, phys_addr_t align, int nid,
220 			       enum memblock_flags flags)
221 {
222 	phys_addr_t this_start, this_end, cand;
223 	u64 i;
224 
225 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
226 					NULL) {
227 		this_start = clamp(this_start, start, end);
228 		this_end = clamp(this_end, start, end);
229 
230 		if (this_end < size)
231 			continue;
232 
233 		cand = round_down(this_end - size, align);
234 		if (cand >= this_start)
235 			return cand;
236 	}
237 
238 	return 0;
239 }
240 
241 /**
242  * memblock_find_in_range_node - find free area in given range and node
243  * @size: size of free area to find
244  * @align: alignment of free area to find
245  * @start: start of candidate range
246  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
247  *       %MEMBLOCK_ALLOC_ACCESSIBLE
248  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
249  * @flags: pick from blocks based on memory attributes
250  *
251  * Find @size free area aligned to @align in the specified range and node.
252  *
253  * When allocation direction is bottom-up, the @start should be greater
254  * than the end of the kernel image. Otherwise, it will be trimmed. The
255  * reason is that we want the bottom-up allocation just near the kernel
256  * image so it is highly likely that the allocated memory and the kernel
257  * will reside in the same node.
258  *
259  * If bottom-up allocation failed, will try to allocate memory top-down.
260  *
261  * Return:
262  * Found address on success, 0 on failure.
263  */
264 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
265 					phys_addr_t align, phys_addr_t start,
266 					phys_addr_t end, int nid,
267 					enum memblock_flags flags)
268 {
269 	phys_addr_t kernel_end, ret;
270 
271 	/* pump up @end */
272 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
273 	    end == MEMBLOCK_ALLOC_KASAN)
274 		end = memblock.current_limit;
275 
276 	/* avoid allocating the first page */
277 	start = max_t(phys_addr_t, start, PAGE_SIZE);
278 	end = max(start, end);
279 	kernel_end = __pa_symbol(_end);
280 
281 	/*
282 	 * try bottom-up allocation only when bottom-up mode
283 	 * is set and @end is above the kernel image.
284 	 */
285 	if (memblock_bottom_up() && end > kernel_end) {
286 		phys_addr_t bottom_up_start;
287 
288 		/* make sure we will allocate above the kernel */
289 		bottom_up_start = max(start, kernel_end);
290 
291 		/* ok, try bottom-up allocation first */
292 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
293 						      size, align, nid, flags);
294 		if (ret)
295 			return ret;
296 
297 		/*
298 		 * we always limit bottom-up allocation above the kernel,
299 		 * but top-down allocation doesn't have the limit, so
300 		 * retrying top-down allocation may succeed when bottom-up
301 		 * allocation failed.
302 		 *
303 		 * bottom-up allocation is expected to be fail very rarely,
304 		 * so we use WARN_ONCE() here to see the stack trace if
305 		 * fail happens.
306 		 */
307 		WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
308 			  "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
309 	}
310 
311 	return __memblock_find_range_top_down(start, end, size, align, nid,
312 					      flags);
313 }
314 
315 /**
316  * memblock_find_in_range - find free area in given range
317  * @start: start of candidate range
318  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
319  *       %MEMBLOCK_ALLOC_ACCESSIBLE
320  * @size: size of free area to find
321  * @align: alignment of free area to find
322  *
323  * Find @size free area aligned to @align in the specified range.
324  *
325  * Return:
326  * Found address on success, 0 on failure.
327  */
328 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
329 					phys_addr_t end, phys_addr_t size,
330 					phys_addr_t align)
331 {
332 	phys_addr_t ret;
333 	enum memblock_flags flags = choose_memblock_flags();
334 
335 again:
336 	ret = memblock_find_in_range_node(size, align, start, end,
337 					    NUMA_NO_NODE, flags);
338 
339 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
340 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
341 			&size);
342 		flags &= ~MEMBLOCK_MIRROR;
343 		goto again;
344 	}
345 
346 	return ret;
347 }
348 
349 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
350 {
351 	type->total_size -= type->regions[r].size;
352 	memmove(&type->regions[r], &type->regions[r + 1],
353 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
354 	type->cnt--;
355 
356 	/* Special case for empty arrays */
357 	if (type->cnt == 0) {
358 		WARN_ON(type->total_size != 0);
359 		type->cnt = 1;
360 		type->regions[0].base = 0;
361 		type->regions[0].size = 0;
362 		type->regions[0].flags = 0;
363 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
364 	}
365 }
366 
367 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
368 /**
369  * memblock_discard - discard memory and reserved arrays if they were allocated
370  */
371 void __init memblock_discard(void)
372 {
373 	phys_addr_t addr, size;
374 
375 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
376 		addr = __pa(memblock.reserved.regions);
377 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
378 				  memblock.reserved.max);
379 		__memblock_free_late(addr, size);
380 	}
381 
382 	if (memblock.memory.regions != memblock_memory_init_regions) {
383 		addr = __pa(memblock.memory.regions);
384 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
385 				  memblock.memory.max);
386 		__memblock_free_late(addr, size);
387 	}
388 }
389 #endif
390 
391 /**
392  * memblock_double_array - double the size of the memblock regions array
393  * @type: memblock type of the regions array being doubled
394  * @new_area_start: starting address of memory range to avoid overlap with
395  * @new_area_size: size of memory range to avoid overlap with
396  *
397  * Double the size of the @type regions array. If memblock is being used to
398  * allocate memory for a new reserved regions array and there is a previously
399  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
400  * waiting to be reserved, ensure the memory used by the new array does
401  * not overlap.
402  *
403  * Return:
404  * 0 on success, -1 on failure.
405  */
406 static int __init_memblock memblock_double_array(struct memblock_type *type,
407 						phys_addr_t new_area_start,
408 						phys_addr_t new_area_size)
409 {
410 	struct memblock_region *new_array, *old_array;
411 	phys_addr_t old_alloc_size, new_alloc_size;
412 	phys_addr_t old_size, new_size, addr, new_end;
413 	int use_slab = slab_is_available();
414 	int *in_slab;
415 
416 	/* We don't allow resizing until we know about the reserved regions
417 	 * of memory that aren't suitable for allocation
418 	 */
419 	if (!memblock_can_resize)
420 		return -1;
421 
422 	/* Calculate new doubled size */
423 	old_size = type->max * sizeof(struct memblock_region);
424 	new_size = old_size << 1;
425 	/*
426 	 * We need to allocated new one align to PAGE_SIZE,
427 	 *   so we can free them completely later.
428 	 */
429 	old_alloc_size = PAGE_ALIGN(old_size);
430 	new_alloc_size = PAGE_ALIGN(new_size);
431 
432 	/* Retrieve the slab flag */
433 	if (type == &memblock.memory)
434 		in_slab = &memblock_memory_in_slab;
435 	else
436 		in_slab = &memblock_reserved_in_slab;
437 
438 	/* Try to find some space for it.
439 	 *
440 	 * WARNING: We assume that either slab_is_available() and we use it or
441 	 * we use MEMBLOCK for allocations. That means that this is unsafe to
442 	 * use when bootmem is currently active (unless bootmem itself is
443 	 * implemented on top of MEMBLOCK which isn't the case yet)
444 	 *
445 	 * This should however not be an issue for now, as we currently only
446 	 * call into MEMBLOCK while it's still active, or much later when slab
447 	 * is active for memory hotplug operations
448 	 */
449 	if (use_slab) {
450 		new_array = kmalloc(new_size, GFP_KERNEL);
451 		addr = new_array ? __pa(new_array) : 0;
452 	} else {
453 		/* only exclude range when trying to double reserved.regions */
454 		if (type != &memblock.reserved)
455 			new_area_start = new_area_size = 0;
456 
457 		addr = memblock_find_in_range(new_area_start + new_area_size,
458 						memblock.current_limit,
459 						new_alloc_size, PAGE_SIZE);
460 		if (!addr && new_area_size)
461 			addr = memblock_find_in_range(0,
462 				min(new_area_start, memblock.current_limit),
463 				new_alloc_size, PAGE_SIZE);
464 
465 		new_array = addr ? __va(addr) : NULL;
466 	}
467 	if (!addr) {
468 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
469 		       type->name, type->max, type->max * 2);
470 		return -1;
471 	}
472 
473 	new_end = addr + new_size - 1;
474 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
475 			type->name, type->max * 2, &addr, &new_end);
476 
477 	/*
478 	 * Found space, we now need to move the array over before we add the
479 	 * reserved region since it may be our reserved array itself that is
480 	 * full.
481 	 */
482 	memcpy(new_array, type->regions, old_size);
483 	memset(new_array + type->max, 0, old_size);
484 	old_array = type->regions;
485 	type->regions = new_array;
486 	type->max <<= 1;
487 
488 	/* Free old array. We needn't free it if the array is the static one */
489 	if (*in_slab)
490 		kfree(old_array);
491 	else if (old_array != memblock_memory_init_regions &&
492 		 old_array != memblock_reserved_init_regions)
493 		memblock_free(__pa(old_array), old_alloc_size);
494 
495 	/*
496 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
497 	 * needn't do it
498 	 */
499 	if (!use_slab)
500 		BUG_ON(memblock_reserve(addr, new_alloc_size));
501 
502 	/* Update slab flag */
503 	*in_slab = use_slab;
504 
505 	return 0;
506 }
507 
508 /**
509  * memblock_merge_regions - merge neighboring compatible regions
510  * @type: memblock type to scan
511  *
512  * Scan @type and merge neighboring compatible regions.
513  */
514 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
515 {
516 	int i = 0;
517 
518 	/* cnt never goes below 1 */
519 	while (i < type->cnt - 1) {
520 		struct memblock_region *this = &type->regions[i];
521 		struct memblock_region *next = &type->regions[i + 1];
522 
523 		if (this->base + this->size != next->base ||
524 		    memblock_get_region_node(this) !=
525 		    memblock_get_region_node(next) ||
526 		    this->flags != next->flags) {
527 			BUG_ON(this->base + this->size > next->base);
528 			i++;
529 			continue;
530 		}
531 
532 		this->size += next->size;
533 		/* move forward from next + 1, index of which is i + 2 */
534 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
535 		type->cnt--;
536 	}
537 }
538 
539 /**
540  * memblock_insert_region - insert new memblock region
541  * @type:	memblock type to insert into
542  * @idx:	index for the insertion point
543  * @base:	base address of the new region
544  * @size:	size of the new region
545  * @nid:	node id of the new region
546  * @flags:	flags of the new region
547  *
548  * Insert new memblock region [@base, @base + @size) into @type at @idx.
549  * @type must already have extra room to accommodate the new region.
550  */
551 static void __init_memblock memblock_insert_region(struct memblock_type *type,
552 						   int idx, phys_addr_t base,
553 						   phys_addr_t size,
554 						   int nid,
555 						   enum memblock_flags flags)
556 {
557 	struct memblock_region *rgn = &type->regions[idx];
558 
559 	BUG_ON(type->cnt >= type->max);
560 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
561 	rgn->base = base;
562 	rgn->size = size;
563 	rgn->flags = flags;
564 	memblock_set_region_node(rgn, nid);
565 	type->cnt++;
566 	type->total_size += size;
567 }
568 
569 /**
570  * memblock_add_range - add new memblock region
571  * @type: memblock type to add new region into
572  * @base: base address of the new region
573  * @size: size of the new region
574  * @nid: nid of the new region
575  * @flags: flags of the new region
576  *
577  * Add new memblock region [@base, @base + @size) into @type.  The new region
578  * is allowed to overlap with existing ones - overlaps don't affect already
579  * existing regions.  @type is guaranteed to be minimal (all neighbouring
580  * compatible regions are merged) after the addition.
581  *
582  * Return:
583  * 0 on success, -errno on failure.
584  */
585 int __init_memblock memblock_add_range(struct memblock_type *type,
586 				phys_addr_t base, phys_addr_t size,
587 				int nid, enum memblock_flags flags)
588 {
589 	bool insert = false;
590 	phys_addr_t obase = base;
591 	phys_addr_t end = base + memblock_cap_size(base, &size);
592 	int idx, nr_new;
593 	struct memblock_region *rgn;
594 
595 	if (!size)
596 		return 0;
597 
598 	/* special case for empty array */
599 	if (type->regions[0].size == 0) {
600 		WARN_ON(type->cnt != 1 || type->total_size);
601 		type->regions[0].base = base;
602 		type->regions[0].size = size;
603 		type->regions[0].flags = flags;
604 		memblock_set_region_node(&type->regions[0], nid);
605 		type->total_size = size;
606 		return 0;
607 	}
608 repeat:
609 	/*
610 	 * The following is executed twice.  Once with %false @insert and
611 	 * then with %true.  The first counts the number of regions needed
612 	 * to accommodate the new area.  The second actually inserts them.
613 	 */
614 	base = obase;
615 	nr_new = 0;
616 
617 	for_each_memblock_type(idx, type, rgn) {
618 		phys_addr_t rbase = rgn->base;
619 		phys_addr_t rend = rbase + rgn->size;
620 
621 		if (rbase >= end)
622 			break;
623 		if (rend <= base)
624 			continue;
625 		/*
626 		 * @rgn overlaps.  If it separates the lower part of new
627 		 * area, insert that portion.
628 		 */
629 		if (rbase > base) {
630 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
631 			WARN_ON(nid != memblock_get_region_node(rgn));
632 #endif
633 			WARN_ON(flags != rgn->flags);
634 			nr_new++;
635 			if (insert)
636 				memblock_insert_region(type, idx++, base,
637 						       rbase - base, nid,
638 						       flags);
639 		}
640 		/* area below @rend is dealt with, forget about it */
641 		base = min(rend, end);
642 	}
643 
644 	/* insert the remaining portion */
645 	if (base < end) {
646 		nr_new++;
647 		if (insert)
648 			memblock_insert_region(type, idx, base, end - base,
649 					       nid, flags);
650 	}
651 
652 	if (!nr_new)
653 		return 0;
654 
655 	/*
656 	 * If this was the first round, resize array and repeat for actual
657 	 * insertions; otherwise, merge and return.
658 	 */
659 	if (!insert) {
660 		while (type->cnt + nr_new > type->max)
661 			if (memblock_double_array(type, obase, size) < 0)
662 				return -ENOMEM;
663 		insert = true;
664 		goto repeat;
665 	} else {
666 		memblock_merge_regions(type);
667 		return 0;
668 	}
669 }
670 
671 /**
672  * memblock_add_node - add new memblock region within a NUMA node
673  * @base: base address of the new region
674  * @size: size of the new region
675  * @nid: nid of the new region
676  *
677  * Add new memblock region [@base, @base + @size) to the "memory"
678  * type. See memblock_add_range() description for mode details
679  *
680  * Return:
681  * 0 on success, -errno on failure.
682  */
683 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
684 				       int nid)
685 {
686 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
687 }
688 
689 /**
690  * memblock_add - add new memblock region
691  * @base: base address of the new region
692  * @size: size of the new region
693  *
694  * Add new memblock region [@base, @base + @size) to the "memory"
695  * type. See memblock_add_range() description for mode details
696  *
697  * Return:
698  * 0 on success, -errno on failure.
699  */
700 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
701 {
702 	phys_addr_t end = base + size - 1;
703 
704 	memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
705 		     &base, &end, (void *)_RET_IP_);
706 
707 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
708 }
709 
710 /**
711  * memblock_isolate_range - isolate given range into disjoint memblocks
712  * @type: memblock type to isolate range for
713  * @base: base of range to isolate
714  * @size: size of range to isolate
715  * @start_rgn: out parameter for the start of isolated region
716  * @end_rgn: out parameter for the end of isolated region
717  *
718  * Walk @type and ensure that regions don't cross the boundaries defined by
719  * [@base, @base + @size).  Crossing regions are split at the boundaries,
720  * which may create at most two more regions.  The index of the first
721  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
722  *
723  * Return:
724  * 0 on success, -errno on failure.
725  */
726 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
727 					phys_addr_t base, phys_addr_t size,
728 					int *start_rgn, int *end_rgn)
729 {
730 	phys_addr_t end = base + memblock_cap_size(base, &size);
731 	int idx;
732 	struct memblock_region *rgn;
733 
734 	*start_rgn = *end_rgn = 0;
735 
736 	if (!size)
737 		return 0;
738 
739 	/* we'll create at most two more regions */
740 	while (type->cnt + 2 > type->max)
741 		if (memblock_double_array(type, base, size) < 0)
742 			return -ENOMEM;
743 
744 	for_each_memblock_type(idx, type, rgn) {
745 		phys_addr_t rbase = rgn->base;
746 		phys_addr_t rend = rbase + rgn->size;
747 
748 		if (rbase >= end)
749 			break;
750 		if (rend <= base)
751 			continue;
752 
753 		if (rbase < base) {
754 			/*
755 			 * @rgn intersects from below.  Split and continue
756 			 * to process the next region - the new top half.
757 			 */
758 			rgn->base = base;
759 			rgn->size -= base - rbase;
760 			type->total_size -= base - rbase;
761 			memblock_insert_region(type, idx, rbase, base - rbase,
762 					       memblock_get_region_node(rgn),
763 					       rgn->flags);
764 		} else if (rend > end) {
765 			/*
766 			 * @rgn intersects from above.  Split and redo the
767 			 * current region - the new bottom half.
768 			 */
769 			rgn->base = end;
770 			rgn->size -= end - rbase;
771 			type->total_size -= end - rbase;
772 			memblock_insert_region(type, idx--, rbase, end - rbase,
773 					       memblock_get_region_node(rgn),
774 					       rgn->flags);
775 		} else {
776 			/* @rgn is fully contained, record it */
777 			if (!*end_rgn)
778 				*start_rgn = idx;
779 			*end_rgn = idx + 1;
780 		}
781 	}
782 
783 	return 0;
784 }
785 
786 static int __init_memblock memblock_remove_range(struct memblock_type *type,
787 					  phys_addr_t base, phys_addr_t size)
788 {
789 	int start_rgn, end_rgn;
790 	int i, ret;
791 
792 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
793 	if (ret)
794 		return ret;
795 
796 	for (i = end_rgn - 1; i >= start_rgn; i--)
797 		memblock_remove_region(type, i);
798 	return 0;
799 }
800 
801 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
802 {
803 	phys_addr_t end = base + size - 1;
804 
805 	memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
806 		     &base, &end, (void *)_RET_IP_);
807 
808 	return memblock_remove_range(&memblock.memory, base, size);
809 }
810 
811 /**
812  * memblock_free - free boot memory block
813  * @base: phys starting address of the  boot memory block
814  * @size: size of the boot memory block in bytes
815  *
816  * Free boot memory block previously allocated by memblock_alloc_xx() API.
817  * The freeing memory will not be released to the buddy allocator.
818  */
819 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
820 {
821 	phys_addr_t end = base + size - 1;
822 
823 	memblock_dbg("   memblock_free: [%pa-%pa] %pF\n",
824 		     &base, &end, (void *)_RET_IP_);
825 
826 	kmemleak_free_part_phys(base, size);
827 	return memblock_remove_range(&memblock.reserved, base, size);
828 }
829 
830 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
831 {
832 	phys_addr_t end = base + size - 1;
833 
834 	memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
835 		     &base, &end, (void *)_RET_IP_);
836 
837 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
838 }
839 
840 /**
841  * memblock_setclr_flag - set or clear flag for a memory region
842  * @base: base address of the region
843  * @size: size of the region
844  * @set: set or clear the flag
845  * @flag: the flag to udpate
846  *
847  * This function isolates region [@base, @base + @size), and sets/clears flag
848  *
849  * Return: 0 on success, -errno on failure.
850  */
851 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
852 				phys_addr_t size, int set, int flag)
853 {
854 	struct memblock_type *type = &memblock.memory;
855 	int i, ret, start_rgn, end_rgn;
856 
857 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
858 	if (ret)
859 		return ret;
860 
861 	for (i = start_rgn; i < end_rgn; i++)
862 		if (set)
863 			memblock_set_region_flags(&type->regions[i], flag);
864 		else
865 			memblock_clear_region_flags(&type->regions[i], flag);
866 
867 	memblock_merge_regions(type);
868 	return 0;
869 }
870 
871 /**
872  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
873  * @base: the base phys addr of the region
874  * @size: the size of the region
875  *
876  * Return: 0 on success, -errno on failure.
877  */
878 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
879 {
880 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
881 }
882 
883 /**
884  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
885  * @base: the base phys addr of the region
886  * @size: the size of the region
887  *
888  * Return: 0 on success, -errno on failure.
889  */
890 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
891 {
892 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
893 }
894 
895 /**
896  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
897  * @base: the base phys addr of the region
898  * @size: the size of the region
899  *
900  * Return: 0 on success, -errno on failure.
901  */
902 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
903 {
904 	system_has_some_mirror = true;
905 
906 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
907 }
908 
909 /**
910  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
911  * @base: the base phys addr of the region
912  * @size: the size of the region
913  *
914  * Return: 0 on success, -errno on failure.
915  */
916 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
917 {
918 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
919 }
920 
921 /**
922  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
923  * @base: the base phys addr of the region
924  * @size: the size of the region
925  *
926  * Return: 0 on success, -errno on failure.
927  */
928 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
929 {
930 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
931 }
932 
933 /**
934  * __next_reserved_mem_region - next function for for_each_reserved_region()
935  * @idx: pointer to u64 loop variable
936  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
937  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
938  *
939  * Iterate over all reserved memory regions.
940  */
941 void __init_memblock __next_reserved_mem_region(u64 *idx,
942 					   phys_addr_t *out_start,
943 					   phys_addr_t *out_end)
944 {
945 	struct memblock_type *type = &memblock.reserved;
946 
947 	if (*idx < type->cnt) {
948 		struct memblock_region *r = &type->regions[*idx];
949 		phys_addr_t base = r->base;
950 		phys_addr_t size = r->size;
951 
952 		if (out_start)
953 			*out_start = base;
954 		if (out_end)
955 			*out_end = base + size - 1;
956 
957 		*idx += 1;
958 		return;
959 	}
960 
961 	/* signal end of iteration */
962 	*idx = ULLONG_MAX;
963 }
964 
965 /**
966  * __next__mem_range - next function for for_each_free_mem_range() etc.
967  * @idx: pointer to u64 loop variable
968  * @nid: node selector, %NUMA_NO_NODE for all nodes
969  * @flags: pick from blocks based on memory attributes
970  * @type_a: pointer to memblock_type from where the range is taken
971  * @type_b: pointer to memblock_type which excludes memory from being taken
972  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
973  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
974  * @out_nid: ptr to int for nid of the range, can be %NULL
975  *
976  * Find the first area from *@idx which matches @nid, fill the out
977  * parameters, and update *@idx for the next iteration.  The lower 32bit of
978  * *@idx contains index into type_a and the upper 32bit indexes the
979  * areas before each region in type_b.	For example, if type_b regions
980  * look like the following,
981  *
982  *	0:[0-16), 1:[32-48), 2:[128-130)
983  *
984  * The upper 32bit indexes the following regions.
985  *
986  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
987  *
988  * As both region arrays are sorted, the function advances the two indices
989  * in lockstep and returns each intersection.
990  */
991 void __init_memblock __next_mem_range(u64 *idx, int nid,
992 				      enum memblock_flags flags,
993 				      struct memblock_type *type_a,
994 				      struct memblock_type *type_b,
995 				      phys_addr_t *out_start,
996 				      phys_addr_t *out_end, int *out_nid)
997 {
998 	int idx_a = *idx & 0xffffffff;
999 	int idx_b = *idx >> 32;
1000 
1001 	if (WARN_ONCE(nid == MAX_NUMNODES,
1002 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1003 		nid = NUMA_NO_NODE;
1004 
1005 	for (; idx_a < type_a->cnt; idx_a++) {
1006 		struct memblock_region *m = &type_a->regions[idx_a];
1007 
1008 		phys_addr_t m_start = m->base;
1009 		phys_addr_t m_end = m->base + m->size;
1010 		int	    m_nid = memblock_get_region_node(m);
1011 
1012 		/* only memory regions are associated with nodes, check it */
1013 		if (nid != NUMA_NO_NODE && nid != m_nid)
1014 			continue;
1015 
1016 		/* skip hotpluggable memory regions if needed */
1017 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1018 			continue;
1019 
1020 		/* if we want mirror memory skip non-mirror memory regions */
1021 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1022 			continue;
1023 
1024 		/* skip nomap memory unless we were asked for it explicitly */
1025 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1026 			continue;
1027 
1028 		if (!type_b) {
1029 			if (out_start)
1030 				*out_start = m_start;
1031 			if (out_end)
1032 				*out_end = m_end;
1033 			if (out_nid)
1034 				*out_nid = m_nid;
1035 			idx_a++;
1036 			*idx = (u32)idx_a | (u64)idx_b << 32;
1037 			return;
1038 		}
1039 
1040 		/* scan areas before each reservation */
1041 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1042 			struct memblock_region *r;
1043 			phys_addr_t r_start;
1044 			phys_addr_t r_end;
1045 
1046 			r = &type_b->regions[idx_b];
1047 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1048 			r_end = idx_b < type_b->cnt ?
1049 				r->base : PHYS_ADDR_MAX;
1050 
1051 			/*
1052 			 * if idx_b advanced past idx_a,
1053 			 * break out to advance idx_a
1054 			 */
1055 			if (r_start >= m_end)
1056 				break;
1057 			/* if the two regions intersect, we're done */
1058 			if (m_start < r_end) {
1059 				if (out_start)
1060 					*out_start =
1061 						max(m_start, r_start);
1062 				if (out_end)
1063 					*out_end = min(m_end, r_end);
1064 				if (out_nid)
1065 					*out_nid = m_nid;
1066 				/*
1067 				 * The region which ends first is
1068 				 * advanced for the next iteration.
1069 				 */
1070 				if (m_end <= r_end)
1071 					idx_a++;
1072 				else
1073 					idx_b++;
1074 				*idx = (u32)idx_a | (u64)idx_b << 32;
1075 				return;
1076 			}
1077 		}
1078 	}
1079 
1080 	/* signal end of iteration */
1081 	*idx = ULLONG_MAX;
1082 }
1083 
1084 /**
1085  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1086  *
1087  * @idx: pointer to u64 loop variable
1088  * @nid: node selector, %NUMA_NO_NODE for all nodes
1089  * @flags: pick from blocks based on memory attributes
1090  * @type_a: pointer to memblock_type from where the range is taken
1091  * @type_b: pointer to memblock_type which excludes memory from being taken
1092  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1093  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1094  * @out_nid: ptr to int for nid of the range, can be %NULL
1095  *
1096  * Finds the next range from type_a which is not marked as unsuitable
1097  * in type_b.
1098  *
1099  * Reverse of __next_mem_range().
1100  */
1101 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1102 					  enum memblock_flags flags,
1103 					  struct memblock_type *type_a,
1104 					  struct memblock_type *type_b,
1105 					  phys_addr_t *out_start,
1106 					  phys_addr_t *out_end, int *out_nid)
1107 {
1108 	int idx_a = *idx & 0xffffffff;
1109 	int idx_b = *idx >> 32;
1110 
1111 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1112 		nid = NUMA_NO_NODE;
1113 
1114 	if (*idx == (u64)ULLONG_MAX) {
1115 		idx_a = type_a->cnt - 1;
1116 		if (type_b != NULL)
1117 			idx_b = type_b->cnt;
1118 		else
1119 			idx_b = 0;
1120 	}
1121 
1122 	for (; idx_a >= 0; idx_a--) {
1123 		struct memblock_region *m = &type_a->regions[idx_a];
1124 
1125 		phys_addr_t m_start = m->base;
1126 		phys_addr_t m_end = m->base + m->size;
1127 		int m_nid = memblock_get_region_node(m);
1128 
1129 		/* only memory regions are associated with nodes, check it */
1130 		if (nid != NUMA_NO_NODE && nid != m_nid)
1131 			continue;
1132 
1133 		/* skip hotpluggable memory regions if needed */
1134 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1135 			continue;
1136 
1137 		/* if we want mirror memory skip non-mirror memory regions */
1138 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1139 			continue;
1140 
1141 		/* skip nomap memory unless we were asked for it explicitly */
1142 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1143 			continue;
1144 
1145 		if (!type_b) {
1146 			if (out_start)
1147 				*out_start = m_start;
1148 			if (out_end)
1149 				*out_end = m_end;
1150 			if (out_nid)
1151 				*out_nid = m_nid;
1152 			idx_a--;
1153 			*idx = (u32)idx_a | (u64)idx_b << 32;
1154 			return;
1155 		}
1156 
1157 		/* scan areas before each reservation */
1158 		for (; idx_b >= 0; idx_b--) {
1159 			struct memblock_region *r;
1160 			phys_addr_t r_start;
1161 			phys_addr_t r_end;
1162 
1163 			r = &type_b->regions[idx_b];
1164 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1165 			r_end = idx_b < type_b->cnt ?
1166 				r->base : PHYS_ADDR_MAX;
1167 			/*
1168 			 * if idx_b advanced past idx_a,
1169 			 * break out to advance idx_a
1170 			 */
1171 
1172 			if (r_end <= m_start)
1173 				break;
1174 			/* if the two regions intersect, we're done */
1175 			if (m_end > r_start) {
1176 				if (out_start)
1177 					*out_start = max(m_start, r_start);
1178 				if (out_end)
1179 					*out_end = min(m_end, r_end);
1180 				if (out_nid)
1181 					*out_nid = m_nid;
1182 				if (m_start >= r_start)
1183 					idx_a--;
1184 				else
1185 					idx_b--;
1186 				*idx = (u32)idx_a | (u64)idx_b << 32;
1187 				return;
1188 			}
1189 		}
1190 	}
1191 	/* signal end of iteration */
1192 	*idx = ULLONG_MAX;
1193 }
1194 
1195 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1196 /*
1197  * Common iterator interface used to define for_each_mem_pfn_range().
1198  */
1199 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1200 				unsigned long *out_start_pfn,
1201 				unsigned long *out_end_pfn, int *out_nid)
1202 {
1203 	struct memblock_type *type = &memblock.memory;
1204 	struct memblock_region *r;
1205 
1206 	while (++*idx < type->cnt) {
1207 		r = &type->regions[*idx];
1208 
1209 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1210 			continue;
1211 		if (nid == MAX_NUMNODES || nid == r->nid)
1212 			break;
1213 	}
1214 	if (*idx >= type->cnt) {
1215 		*idx = -1;
1216 		return;
1217 	}
1218 
1219 	if (out_start_pfn)
1220 		*out_start_pfn = PFN_UP(r->base);
1221 	if (out_end_pfn)
1222 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1223 	if (out_nid)
1224 		*out_nid = r->nid;
1225 }
1226 
1227 /**
1228  * memblock_set_node - set node ID on memblock regions
1229  * @base: base of area to set node ID for
1230  * @size: size of area to set node ID for
1231  * @type: memblock type to set node ID for
1232  * @nid: node ID to set
1233  *
1234  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1235  * Regions which cross the area boundaries are split as necessary.
1236  *
1237  * Return:
1238  * 0 on success, -errno on failure.
1239  */
1240 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1241 				      struct memblock_type *type, int nid)
1242 {
1243 	int start_rgn, end_rgn;
1244 	int i, ret;
1245 
1246 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1247 	if (ret)
1248 		return ret;
1249 
1250 	for (i = start_rgn; i < end_rgn; i++)
1251 		memblock_set_region_node(&type->regions[i], nid);
1252 
1253 	memblock_merge_regions(type);
1254 	return 0;
1255 }
1256 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1257 
1258 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1259 					phys_addr_t align, phys_addr_t start,
1260 					phys_addr_t end, int nid,
1261 					enum memblock_flags flags)
1262 {
1263 	phys_addr_t found;
1264 
1265 	if (!align) {
1266 		/* Can't use WARNs this early in boot on powerpc */
1267 		dump_stack();
1268 		align = SMP_CACHE_BYTES;
1269 	}
1270 
1271 	found = memblock_find_in_range_node(size, align, start, end, nid,
1272 					    flags);
1273 	if (found && !memblock_reserve(found, size)) {
1274 		/*
1275 		 * The min_count is set to 0 so that memblock allocations are
1276 		 * never reported as leaks.
1277 		 */
1278 		kmemleak_alloc_phys(found, size, 0, 0);
1279 		return found;
1280 	}
1281 	return 0;
1282 }
1283 
1284 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1285 					phys_addr_t start, phys_addr_t end,
1286 					enum memblock_flags flags)
1287 {
1288 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1289 					flags);
1290 }
1291 
1292 phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1293 					phys_addr_t align, phys_addr_t max_addr,
1294 					int nid, enum memblock_flags flags)
1295 {
1296 	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1297 }
1298 
1299 phys_addr_t __init memblock_phys_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1300 {
1301 	enum memblock_flags flags = choose_memblock_flags();
1302 	phys_addr_t ret;
1303 
1304 again:
1305 	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1306 				      nid, flags);
1307 
1308 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1309 		flags &= ~MEMBLOCK_MIRROR;
1310 		goto again;
1311 	}
1312 	return ret;
1313 }
1314 
1315 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1316 {
1317 	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1318 				       MEMBLOCK_NONE);
1319 }
1320 
1321 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1322 {
1323 	phys_addr_t alloc;
1324 
1325 	alloc = __memblock_alloc_base(size, align, max_addr);
1326 
1327 	if (alloc == 0)
1328 		panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1329 		      &size, &max_addr);
1330 
1331 	return alloc;
1332 }
1333 
1334 phys_addr_t __init memblock_phys_alloc(phys_addr_t size, phys_addr_t align)
1335 {
1336 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1337 }
1338 
1339 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1340 {
1341 	phys_addr_t res = memblock_phys_alloc_nid(size, align, nid);
1342 
1343 	if (res)
1344 		return res;
1345 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1346 }
1347 
1348 /**
1349  * memblock_alloc_internal - allocate boot memory block
1350  * @size: size of memory block to be allocated in bytes
1351  * @align: alignment of the region and block's size
1352  * @min_addr: the lower bound of the memory region to allocate (phys address)
1353  * @max_addr: the upper bound of the memory region to allocate (phys address)
1354  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1355  *
1356  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1357  * will fall back to memory below @min_addr. Also, allocation may fall back
1358  * to any node in the system if the specified node can not
1359  * hold the requested memory.
1360  *
1361  * The allocation is performed from memory region limited by
1362  * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE.
1363  *
1364  * The phys address of allocated boot memory block is converted to virtual and
1365  * allocated memory is reset to 0.
1366  *
1367  * In addition, function sets the min_count to 0 using kmemleak_alloc for
1368  * allocated boot memory block, so that it is never reported as leaks.
1369  *
1370  * Return:
1371  * Virtual address of allocated memory block on success, NULL on failure.
1372  */
1373 static void * __init memblock_alloc_internal(
1374 				phys_addr_t size, phys_addr_t align,
1375 				phys_addr_t min_addr, phys_addr_t max_addr,
1376 				int nid)
1377 {
1378 	phys_addr_t alloc;
1379 	void *ptr;
1380 	enum memblock_flags flags = choose_memblock_flags();
1381 
1382 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1383 		nid = NUMA_NO_NODE;
1384 
1385 	/*
1386 	 * Detect any accidental use of these APIs after slab is ready, as at
1387 	 * this moment memblock may be deinitialized already and its
1388 	 * internal data may be destroyed (after execution of memblock_free_all)
1389 	 */
1390 	if (WARN_ON_ONCE(slab_is_available()))
1391 		return kzalloc_node(size, GFP_NOWAIT, nid);
1392 
1393 	if (!align) {
1394 		dump_stack();
1395 		align = SMP_CACHE_BYTES;
1396 	}
1397 
1398 	if (max_addr > memblock.current_limit)
1399 		max_addr = memblock.current_limit;
1400 again:
1401 	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1402 					    nid, flags);
1403 	if (alloc && !memblock_reserve(alloc, size))
1404 		goto done;
1405 
1406 	if (nid != NUMA_NO_NODE) {
1407 		alloc = memblock_find_in_range_node(size, align, min_addr,
1408 						    max_addr, NUMA_NO_NODE,
1409 						    flags);
1410 		if (alloc && !memblock_reserve(alloc, size))
1411 			goto done;
1412 	}
1413 
1414 	if (min_addr) {
1415 		min_addr = 0;
1416 		goto again;
1417 	}
1418 
1419 	if (flags & MEMBLOCK_MIRROR) {
1420 		flags &= ~MEMBLOCK_MIRROR;
1421 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1422 			&size);
1423 		goto again;
1424 	}
1425 
1426 	return NULL;
1427 done:
1428 	ptr = phys_to_virt(alloc);
1429 
1430 	/* Skip kmemleak for kasan_init() due to high volume. */
1431 	if (max_addr != MEMBLOCK_ALLOC_KASAN)
1432 		/*
1433 		 * The min_count is set to 0 so that bootmem allocated
1434 		 * blocks are never reported as leaks. This is because many
1435 		 * of these blocks are only referred via the physical
1436 		 * address which is not looked up by kmemleak.
1437 		 */
1438 		kmemleak_alloc(ptr, size, 0, 0);
1439 
1440 	return ptr;
1441 }
1442 
1443 /**
1444  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1445  * memory and without panicking
1446  * @size: size of memory block to be allocated in bytes
1447  * @align: alignment of the region and block's size
1448  * @min_addr: the lower bound of the memory region from where the allocation
1449  *	  is preferred (phys address)
1450  * @max_addr: the upper bound of the memory region from where the allocation
1451  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1452  *	      allocate only from memory limited by memblock.current_limit value
1453  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1454  *
1455  * Public function, provides additional debug information (including caller
1456  * info), if enabled. Does not zero allocated memory, does not panic if request
1457  * cannot be satisfied.
1458  *
1459  * Return:
1460  * Virtual address of allocated memory block on success, NULL on failure.
1461  */
1462 void * __init memblock_alloc_try_nid_raw(
1463 			phys_addr_t size, phys_addr_t align,
1464 			phys_addr_t min_addr, phys_addr_t max_addr,
1465 			int nid)
1466 {
1467 	void *ptr;
1468 
1469 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1470 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1471 		     &max_addr, (void *)_RET_IP_);
1472 
1473 	ptr = memblock_alloc_internal(size, align,
1474 					   min_addr, max_addr, nid);
1475 	if (ptr && size > 0)
1476 		page_init_poison(ptr, size);
1477 
1478 	return ptr;
1479 }
1480 
1481 /**
1482  * memblock_alloc_try_nid_nopanic - allocate boot memory block
1483  * @size: size of memory block to be allocated in bytes
1484  * @align: alignment of the region and block's size
1485  * @min_addr: the lower bound of the memory region from where the allocation
1486  *	  is preferred (phys address)
1487  * @max_addr: the upper bound of the memory region from where the allocation
1488  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1489  *	      allocate only from memory limited by memblock.current_limit value
1490  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1491  *
1492  * Public function, provides additional debug information (including caller
1493  * info), if enabled. This function zeroes the allocated memory.
1494  *
1495  * Return:
1496  * Virtual address of allocated memory block on success, NULL on failure.
1497  */
1498 void * __init memblock_alloc_try_nid_nopanic(
1499 				phys_addr_t size, phys_addr_t align,
1500 				phys_addr_t min_addr, phys_addr_t max_addr,
1501 				int nid)
1502 {
1503 	void *ptr;
1504 
1505 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1506 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1507 		     &max_addr, (void *)_RET_IP_);
1508 
1509 	ptr = memblock_alloc_internal(size, align,
1510 					   min_addr, max_addr, nid);
1511 	if (ptr)
1512 		memset(ptr, 0, size);
1513 	return ptr;
1514 }
1515 
1516 /**
1517  * memblock_alloc_try_nid - allocate boot memory block with panicking
1518  * @size: size of memory block to be allocated in bytes
1519  * @align: alignment of the region and block's size
1520  * @min_addr: the lower bound of the memory region from where the allocation
1521  *	  is preferred (phys address)
1522  * @max_addr: the upper bound of the memory region from where the allocation
1523  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1524  *	      allocate only from memory limited by memblock.current_limit value
1525  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1526  *
1527  * Public panicking version of memblock_alloc_try_nid_nopanic()
1528  * which provides debug information (including caller info), if enabled,
1529  * and panics if the request can not be satisfied.
1530  *
1531  * Return:
1532  * Virtual address of allocated memory block on success, NULL on failure.
1533  */
1534 void * __init memblock_alloc_try_nid(
1535 			phys_addr_t size, phys_addr_t align,
1536 			phys_addr_t min_addr, phys_addr_t max_addr,
1537 			int nid)
1538 {
1539 	void *ptr;
1540 
1541 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1542 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1543 		     &max_addr, (void *)_RET_IP_);
1544 	ptr = memblock_alloc_internal(size, align,
1545 					   min_addr, max_addr, nid);
1546 	if (ptr) {
1547 		memset(ptr, 0, size);
1548 		return ptr;
1549 	}
1550 
1551 	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa\n",
1552 	      __func__, (u64)size, (u64)align, nid, &min_addr, &max_addr);
1553 	return NULL;
1554 }
1555 
1556 /**
1557  * __memblock_free_late - free bootmem block pages directly to buddy allocator
1558  * @base: phys starting address of the  boot memory block
1559  * @size: size of the boot memory block in bytes
1560  *
1561  * This is only useful when the bootmem allocator has already been torn
1562  * down, but we are still initializing the system.  Pages are released directly
1563  * to the buddy allocator, no bootmem metadata is updated because it is gone.
1564  */
1565 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1566 {
1567 	phys_addr_t cursor, end;
1568 
1569 	end = base + size - 1;
1570 	memblock_dbg("%s: [%pa-%pa] %pF\n",
1571 		     __func__, &base, &end, (void *)_RET_IP_);
1572 	kmemleak_free_part_phys(base, size);
1573 	cursor = PFN_UP(base);
1574 	end = PFN_DOWN(base + size);
1575 
1576 	for (; cursor < end; cursor++) {
1577 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1578 		totalram_pages_inc();
1579 	}
1580 }
1581 
1582 /*
1583  * Remaining API functions
1584  */
1585 
1586 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1587 {
1588 	return memblock.memory.total_size;
1589 }
1590 
1591 phys_addr_t __init_memblock memblock_reserved_size(void)
1592 {
1593 	return memblock.reserved.total_size;
1594 }
1595 
1596 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1597 {
1598 	unsigned long pages = 0;
1599 	struct memblock_region *r;
1600 	unsigned long start_pfn, end_pfn;
1601 
1602 	for_each_memblock(memory, r) {
1603 		start_pfn = memblock_region_memory_base_pfn(r);
1604 		end_pfn = memblock_region_memory_end_pfn(r);
1605 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1606 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1607 		pages += end_pfn - start_pfn;
1608 	}
1609 
1610 	return PFN_PHYS(pages);
1611 }
1612 
1613 /* lowest address */
1614 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1615 {
1616 	return memblock.memory.regions[0].base;
1617 }
1618 
1619 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1620 {
1621 	int idx = memblock.memory.cnt - 1;
1622 
1623 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1624 }
1625 
1626 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1627 {
1628 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1629 	struct memblock_region *r;
1630 
1631 	/*
1632 	 * translate the memory @limit size into the max address within one of
1633 	 * the memory memblock regions, if the @limit exceeds the total size
1634 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1635 	 */
1636 	for_each_memblock(memory, r) {
1637 		if (limit <= r->size) {
1638 			max_addr = r->base + limit;
1639 			break;
1640 		}
1641 		limit -= r->size;
1642 	}
1643 
1644 	return max_addr;
1645 }
1646 
1647 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1648 {
1649 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1650 
1651 	if (!limit)
1652 		return;
1653 
1654 	max_addr = __find_max_addr(limit);
1655 
1656 	/* @limit exceeds the total size of the memory, do nothing */
1657 	if (max_addr == PHYS_ADDR_MAX)
1658 		return;
1659 
1660 	/* truncate both memory and reserved regions */
1661 	memblock_remove_range(&memblock.memory, max_addr,
1662 			      PHYS_ADDR_MAX);
1663 	memblock_remove_range(&memblock.reserved, max_addr,
1664 			      PHYS_ADDR_MAX);
1665 }
1666 
1667 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1668 {
1669 	int start_rgn, end_rgn;
1670 	int i, ret;
1671 
1672 	if (!size)
1673 		return;
1674 
1675 	ret = memblock_isolate_range(&memblock.memory, base, size,
1676 						&start_rgn, &end_rgn);
1677 	if (ret)
1678 		return;
1679 
1680 	/* remove all the MAP regions */
1681 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1682 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1683 			memblock_remove_region(&memblock.memory, i);
1684 
1685 	for (i = start_rgn - 1; i >= 0; i--)
1686 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1687 			memblock_remove_region(&memblock.memory, i);
1688 
1689 	/* truncate the reserved regions */
1690 	memblock_remove_range(&memblock.reserved, 0, base);
1691 	memblock_remove_range(&memblock.reserved,
1692 			base + size, PHYS_ADDR_MAX);
1693 }
1694 
1695 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1696 {
1697 	phys_addr_t max_addr;
1698 
1699 	if (!limit)
1700 		return;
1701 
1702 	max_addr = __find_max_addr(limit);
1703 
1704 	/* @limit exceeds the total size of the memory, do nothing */
1705 	if (max_addr == PHYS_ADDR_MAX)
1706 		return;
1707 
1708 	memblock_cap_memory_range(0, max_addr);
1709 }
1710 
1711 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1712 {
1713 	unsigned int left = 0, right = type->cnt;
1714 
1715 	do {
1716 		unsigned int mid = (right + left) / 2;
1717 
1718 		if (addr < type->regions[mid].base)
1719 			right = mid;
1720 		else if (addr >= (type->regions[mid].base +
1721 				  type->regions[mid].size))
1722 			left = mid + 1;
1723 		else
1724 			return mid;
1725 	} while (left < right);
1726 	return -1;
1727 }
1728 
1729 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1730 {
1731 	return memblock_search(&memblock.reserved, addr) != -1;
1732 }
1733 
1734 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1735 {
1736 	return memblock_search(&memblock.memory, addr) != -1;
1737 }
1738 
1739 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1740 {
1741 	int i = memblock_search(&memblock.memory, addr);
1742 
1743 	if (i == -1)
1744 		return false;
1745 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1746 }
1747 
1748 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1749 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1750 			 unsigned long *start_pfn, unsigned long *end_pfn)
1751 {
1752 	struct memblock_type *type = &memblock.memory;
1753 	int mid = memblock_search(type, PFN_PHYS(pfn));
1754 
1755 	if (mid == -1)
1756 		return -1;
1757 
1758 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1759 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1760 
1761 	return type->regions[mid].nid;
1762 }
1763 #endif
1764 
1765 /**
1766  * memblock_is_region_memory - check if a region is a subset of memory
1767  * @base: base of region to check
1768  * @size: size of region to check
1769  *
1770  * Check if the region [@base, @base + @size) is a subset of a memory block.
1771  *
1772  * Return:
1773  * 0 if false, non-zero if true
1774  */
1775 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1776 {
1777 	int idx = memblock_search(&memblock.memory, base);
1778 	phys_addr_t end = base + memblock_cap_size(base, &size);
1779 
1780 	if (idx == -1)
1781 		return false;
1782 	return (memblock.memory.regions[idx].base +
1783 		 memblock.memory.regions[idx].size) >= end;
1784 }
1785 
1786 /**
1787  * memblock_is_region_reserved - check if a region intersects reserved memory
1788  * @base: base of region to check
1789  * @size: size of region to check
1790  *
1791  * Check if the region [@base, @base + @size) intersects a reserved
1792  * memory block.
1793  *
1794  * Return:
1795  * True if they intersect, false if not.
1796  */
1797 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1798 {
1799 	memblock_cap_size(base, &size);
1800 	return memblock_overlaps_region(&memblock.reserved, base, size);
1801 }
1802 
1803 void __init_memblock memblock_trim_memory(phys_addr_t align)
1804 {
1805 	phys_addr_t start, end, orig_start, orig_end;
1806 	struct memblock_region *r;
1807 
1808 	for_each_memblock(memory, r) {
1809 		orig_start = r->base;
1810 		orig_end = r->base + r->size;
1811 		start = round_up(orig_start, align);
1812 		end = round_down(orig_end, align);
1813 
1814 		if (start == orig_start && end == orig_end)
1815 			continue;
1816 
1817 		if (start < end) {
1818 			r->base = start;
1819 			r->size = end - start;
1820 		} else {
1821 			memblock_remove_region(&memblock.memory,
1822 					       r - memblock.memory.regions);
1823 			r--;
1824 		}
1825 	}
1826 }
1827 
1828 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1829 {
1830 	memblock.current_limit = limit;
1831 }
1832 
1833 phys_addr_t __init_memblock memblock_get_current_limit(void)
1834 {
1835 	return memblock.current_limit;
1836 }
1837 
1838 static void __init_memblock memblock_dump(struct memblock_type *type)
1839 {
1840 	phys_addr_t base, end, size;
1841 	enum memblock_flags flags;
1842 	int idx;
1843 	struct memblock_region *rgn;
1844 
1845 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1846 
1847 	for_each_memblock_type(idx, type, rgn) {
1848 		char nid_buf[32] = "";
1849 
1850 		base = rgn->base;
1851 		size = rgn->size;
1852 		end = base + size - 1;
1853 		flags = rgn->flags;
1854 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1855 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1856 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1857 				 memblock_get_region_node(rgn));
1858 #endif
1859 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1860 			type->name, idx, &base, &end, &size, nid_buf, flags);
1861 	}
1862 }
1863 
1864 void __init_memblock __memblock_dump_all(void)
1865 {
1866 	pr_info("MEMBLOCK configuration:\n");
1867 	pr_info(" memory size = %pa reserved size = %pa\n",
1868 		&memblock.memory.total_size,
1869 		&memblock.reserved.total_size);
1870 
1871 	memblock_dump(&memblock.memory);
1872 	memblock_dump(&memblock.reserved);
1873 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1874 	memblock_dump(&memblock.physmem);
1875 #endif
1876 }
1877 
1878 void __init memblock_allow_resize(void)
1879 {
1880 	memblock_can_resize = 1;
1881 }
1882 
1883 static int __init early_memblock(char *p)
1884 {
1885 	if (p && strstr(p, "debug"))
1886 		memblock_debug = 1;
1887 	return 0;
1888 }
1889 early_param("memblock", early_memblock);
1890 
1891 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1892 {
1893 	int order;
1894 
1895 	while (start < end) {
1896 		order = min(MAX_ORDER - 1UL, __ffs(start));
1897 
1898 		while (start + (1UL << order) > end)
1899 			order--;
1900 
1901 		memblock_free_pages(pfn_to_page(start), start, order);
1902 
1903 		start += (1UL << order);
1904 	}
1905 }
1906 
1907 static unsigned long __init __free_memory_core(phys_addr_t start,
1908 				 phys_addr_t end)
1909 {
1910 	unsigned long start_pfn = PFN_UP(start);
1911 	unsigned long end_pfn = min_t(unsigned long,
1912 				      PFN_DOWN(end), max_low_pfn);
1913 
1914 	if (start_pfn >= end_pfn)
1915 		return 0;
1916 
1917 	__free_pages_memory(start_pfn, end_pfn);
1918 
1919 	return end_pfn - start_pfn;
1920 }
1921 
1922 static unsigned long __init free_low_memory_core_early(void)
1923 {
1924 	unsigned long count = 0;
1925 	phys_addr_t start, end;
1926 	u64 i;
1927 
1928 	memblock_clear_hotplug(0, -1);
1929 
1930 	for_each_reserved_mem_region(i, &start, &end)
1931 		reserve_bootmem_region(start, end);
1932 
1933 	/*
1934 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1935 	 *  because in some case like Node0 doesn't have RAM installed
1936 	 *  low ram will be on Node1
1937 	 */
1938 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1939 				NULL)
1940 		count += __free_memory_core(start, end);
1941 
1942 	return count;
1943 }
1944 
1945 static int reset_managed_pages_done __initdata;
1946 
1947 void reset_node_managed_pages(pg_data_t *pgdat)
1948 {
1949 	struct zone *z;
1950 
1951 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1952 		atomic_long_set(&z->managed_pages, 0);
1953 }
1954 
1955 void __init reset_all_zones_managed_pages(void)
1956 {
1957 	struct pglist_data *pgdat;
1958 
1959 	if (reset_managed_pages_done)
1960 		return;
1961 
1962 	for_each_online_pgdat(pgdat)
1963 		reset_node_managed_pages(pgdat);
1964 
1965 	reset_managed_pages_done = 1;
1966 }
1967 
1968 /**
1969  * memblock_free_all - release free pages to the buddy allocator
1970  *
1971  * Return: the number of pages actually released.
1972  */
1973 unsigned long __init memblock_free_all(void)
1974 {
1975 	unsigned long pages;
1976 
1977 	reset_all_zones_managed_pages();
1978 
1979 	pages = free_low_memory_core_early();
1980 	totalram_pages_add(pages);
1981 
1982 	return pages;
1983 }
1984 
1985 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1986 
1987 static int memblock_debug_show(struct seq_file *m, void *private)
1988 {
1989 	struct memblock_type *type = m->private;
1990 	struct memblock_region *reg;
1991 	int i;
1992 	phys_addr_t end;
1993 
1994 	for (i = 0; i < type->cnt; i++) {
1995 		reg = &type->regions[i];
1996 		end = reg->base + reg->size - 1;
1997 
1998 		seq_printf(m, "%4d: ", i);
1999 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2000 	}
2001 	return 0;
2002 }
2003 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2004 
2005 static int __init memblock_init_debugfs(void)
2006 {
2007 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2008 
2009 	debugfs_create_file("memory", 0444, root,
2010 			    &memblock.memory, &memblock_debug_fops);
2011 	debugfs_create_file("reserved", 0444, root,
2012 			    &memblock.reserved, &memblock_debug_fops);
2013 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2014 	debugfs_create_file("physmem", 0444, root,
2015 			    &memblock.physmem, &memblock_debug_fops);
2016 #endif
2017 
2018 	return 0;
2019 }
2020 __initcall(memblock_init_debugfs);
2021 
2022 #endif /* CONFIG_DEBUG_FS */
2023