1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/kmemleak.h> 21 #include <linux/seq_file.h> 22 #include <linux/memblock.h> 23 #include <linux/bootmem.h> 24 25 #include <asm/sections.h> 26 #include <linux/io.h> 27 28 #include "internal.h" 29 30 /** 31 * DOC: memblock overview 32 * 33 * Memblock is a method of managing memory regions during the early 34 * boot period when the usual kernel memory allocators are not up and 35 * running. 36 * 37 * Memblock views the system memory as collections of contiguous 38 * regions. There are several types of these collections: 39 * 40 * * ``memory`` - describes the physical memory available to the 41 * kernel; this may differ from the actual physical memory installed 42 * in the system, for instance when the memory is restricted with 43 * ``mem=`` command line parameter 44 * * ``reserved`` - describes the regions that were allocated 45 * * ``physmap`` - describes the actual physical memory regardless of 46 * the possible restrictions; the ``physmap`` type is only available 47 * on some architectures. 48 * 49 * Each region is represented by :c:type:`struct memblock_region` that 50 * defines the region extents, its attributes and NUMA node id on NUMA 51 * systems. Every memory type is described by the :c:type:`struct 52 * memblock_type` which contains an array of memory regions along with 53 * the allocator metadata. The memory types are nicely wrapped with 54 * :c:type:`struct memblock`. This structure is statically initialzed 55 * at build time. The region arrays for the "memory" and "reserved" 56 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the 57 * "physmap" type to %INIT_PHYSMEM_REGIONS. 58 * The :c:func:`memblock_allow_resize` enables automatic resizing of 59 * the region arrays during addition of new regions. This feature 60 * should be used with care so that memory allocated for the region 61 * array will not overlap with areas that should be reserved, for 62 * example initrd. 63 * 64 * The early architecture setup should tell memblock what the physical 65 * memory layout is by using :c:func:`memblock_add` or 66 * :c:func:`memblock_add_node` functions. The first function does not 67 * assign the region to a NUMA node and it is appropriate for UMA 68 * systems. Yet, it is possible to use it on NUMA systems as well and 69 * assign the region to a NUMA node later in the setup process using 70 * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node` 71 * performs such an assignment directly. 72 * 73 * Once memblock is setup the memory can be allocated using either 74 * memblock or bootmem APIs. 75 * 76 * As the system boot progresses, the architecture specific 77 * :c:func:`mem_init` function frees all the memory to the buddy page 78 * allocator. 79 * 80 * If an architecure enables %CONFIG_ARCH_DISCARD_MEMBLOCK, the 81 * memblock data structures will be discarded after the system 82 * initialization compltes. 83 */ 84 85 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 86 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 87 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 88 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock; 89 #endif 90 91 struct memblock memblock __initdata_memblock = { 92 .memory.regions = memblock_memory_init_regions, 93 .memory.cnt = 1, /* empty dummy entry */ 94 .memory.max = INIT_MEMBLOCK_REGIONS, 95 .memory.name = "memory", 96 97 .reserved.regions = memblock_reserved_init_regions, 98 .reserved.cnt = 1, /* empty dummy entry */ 99 .reserved.max = INIT_MEMBLOCK_REGIONS, 100 .reserved.name = "reserved", 101 102 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 103 .physmem.regions = memblock_physmem_init_regions, 104 .physmem.cnt = 1, /* empty dummy entry */ 105 .physmem.max = INIT_PHYSMEM_REGIONS, 106 .physmem.name = "physmem", 107 #endif 108 109 .bottom_up = false, 110 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 111 }; 112 113 int memblock_debug __initdata_memblock; 114 static bool system_has_some_mirror __initdata_memblock = false; 115 static int memblock_can_resize __initdata_memblock; 116 static int memblock_memory_in_slab __initdata_memblock = 0; 117 static int memblock_reserved_in_slab __initdata_memblock = 0; 118 119 enum memblock_flags __init_memblock choose_memblock_flags(void) 120 { 121 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 122 } 123 124 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 125 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 126 { 127 return *size = min(*size, PHYS_ADDR_MAX - base); 128 } 129 130 /* 131 * Address comparison utilities 132 */ 133 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 134 phys_addr_t base2, phys_addr_t size2) 135 { 136 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 137 } 138 139 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 140 phys_addr_t base, phys_addr_t size) 141 { 142 unsigned long i; 143 144 for (i = 0; i < type->cnt; i++) 145 if (memblock_addrs_overlap(base, size, type->regions[i].base, 146 type->regions[i].size)) 147 break; 148 return i < type->cnt; 149 } 150 151 /** 152 * __memblock_find_range_bottom_up - find free area utility in bottom-up 153 * @start: start of candidate range 154 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 155 * %MEMBLOCK_ALLOC_ACCESSIBLE 156 * @size: size of free area to find 157 * @align: alignment of free area to find 158 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 159 * @flags: pick from blocks based on memory attributes 160 * 161 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 162 * 163 * Return: 164 * Found address on success, 0 on failure. 165 */ 166 static phys_addr_t __init_memblock 167 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 168 phys_addr_t size, phys_addr_t align, int nid, 169 enum memblock_flags flags) 170 { 171 phys_addr_t this_start, this_end, cand; 172 u64 i; 173 174 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 175 this_start = clamp(this_start, start, end); 176 this_end = clamp(this_end, start, end); 177 178 cand = round_up(this_start, align); 179 if (cand < this_end && this_end - cand >= size) 180 return cand; 181 } 182 183 return 0; 184 } 185 186 /** 187 * __memblock_find_range_top_down - find free area utility, in top-down 188 * @start: start of candidate range 189 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 190 * %MEMBLOCK_ALLOC_ACCESSIBLE 191 * @size: size of free area to find 192 * @align: alignment of free area to find 193 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 194 * @flags: pick from blocks based on memory attributes 195 * 196 * Utility called from memblock_find_in_range_node(), find free area top-down. 197 * 198 * Return: 199 * Found address on success, 0 on failure. 200 */ 201 static phys_addr_t __init_memblock 202 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 203 phys_addr_t size, phys_addr_t align, int nid, 204 enum memblock_flags flags) 205 { 206 phys_addr_t this_start, this_end, cand; 207 u64 i; 208 209 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 210 NULL) { 211 this_start = clamp(this_start, start, end); 212 this_end = clamp(this_end, start, end); 213 214 if (this_end < size) 215 continue; 216 217 cand = round_down(this_end - size, align); 218 if (cand >= this_start) 219 return cand; 220 } 221 222 return 0; 223 } 224 225 /** 226 * memblock_find_in_range_node - find free area in given range and node 227 * @size: size of free area to find 228 * @align: alignment of free area to find 229 * @start: start of candidate range 230 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 231 * %MEMBLOCK_ALLOC_ACCESSIBLE 232 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 233 * @flags: pick from blocks based on memory attributes 234 * 235 * Find @size free area aligned to @align in the specified range and node. 236 * 237 * When allocation direction is bottom-up, the @start should be greater 238 * than the end of the kernel image. Otherwise, it will be trimmed. The 239 * reason is that we want the bottom-up allocation just near the kernel 240 * image so it is highly likely that the allocated memory and the kernel 241 * will reside in the same node. 242 * 243 * If bottom-up allocation failed, will try to allocate memory top-down. 244 * 245 * Return: 246 * Found address on success, 0 on failure. 247 */ 248 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 249 phys_addr_t align, phys_addr_t start, 250 phys_addr_t end, int nid, 251 enum memblock_flags flags) 252 { 253 phys_addr_t kernel_end, ret; 254 255 /* pump up @end */ 256 if (end == MEMBLOCK_ALLOC_ACCESSIBLE) 257 end = memblock.current_limit; 258 259 /* avoid allocating the first page */ 260 start = max_t(phys_addr_t, start, PAGE_SIZE); 261 end = max(start, end); 262 kernel_end = __pa_symbol(_end); 263 264 /* 265 * try bottom-up allocation only when bottom-up mode 266 * is set and @end is above the kernel image. 267 */ 268 if (memblock_bottom_up() && end > kernel_end) { 269 phys_addr_t bottom_up_start; 270 271 /* make sure we will allocate above the kernel */ 272 bottom_up_start = max(start, kernel_end); 273 274 /* ok, try bottom-up allocation first */ 275 ret = __memblock_find_range_bottom_up(bottom_up_start, end, 276 size, align, nid, flags); 277 if (ret) 278 return ret; 279 280 /* 281 * we always limit bottom-up allocation above the kernel, 282 * but top-down allocation doesn't have the limit, so 283 * retrying top-down allocation may succeed when bottom-up 284 * allocation failed. 285 * 286 * bottom-up allocation is expected to be fail very rarely, 287 * so we use WARN_ONCE() here to see the stack trace if 288 * fail happens. 289 */ 290 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE), 291 "memblock: bottom-up allocation failed, memory hotremove may be affected\n"); 292 } 293 294 return __memblock_find_range_top_down(start, end, size, align, nid, 295 flags); 296 } 297 298 /** 299 * memblock_find_in_range - find free area in given range 300 * @start: start of candidate range 301 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 302 * %MEMBLOCK_ALLOC_ACCESSIBLE 303 * @size: size of free area to find 304 * @align: alignment of free area to find 305 * 306 * Find @size free area aligned to @align in the specified range. 307 * 308 * Return: 309 * Found address on success, 0 on failure. 310 */ 311 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 312 phys_addr_t end, phys_addr_t size, 313 phys_addr_t align) 314 { 315 phys_addr_t ret; 316 enum memblock_flags flags = choose_memblock_flags(); 317 318 again: 319 ret = memblock_find_in_range_node(size, align, start, end, 320 NUMA_NO_NODE, flags); 321 322 if (!ret && (flags & MEMBLOCK_MIRROR)) { 323 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 324 &size); 325 flags &= ~MEMBLOCK_MIRROR; 326 goto again; 327 } 328 329 return ret; 330 } 331 332 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 333 { 334 type->total_size -= type->regions[r].size; 335 memmove(&type->regions[r], &type->regions[r + 1], 336 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 337 type->cnt--; 338 339 /* Special case for empty arrays */ 340 if (type->cnt == 0) { 341 WARN_ON(type->total_size != 0); 342 type->cnt = 1; 343 type->regions[0].base = 0; 344 type->regions[0].size = 0; 345 type->regions[0].flags = 0; 346 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 347 } 348 } 349 350 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 351 /** 352 * memblock_discard - discard memory and reserved arrays if they were allocated 353 */ 354 void __init memblock_discard(void) 355 { 356 phys_addr_t addr, size; 357 358 if (memblock.reserved.regions != memblock_reserved_init_regions) { 359 addr = __pa(memblock.reserved.regions); 360 size = PAGE_ALIGN(sizeof(struct memblock_region) * 361 memblock.reserved.max); 362 __memblock_free_late(addr, size); 363 } 364 365 if (memblock.memory.regions != memblock_memory_init_regions) { 366 addr = __pa(memblock.memory.regions); 367 size = PAGE_ALIGN(sizeof(struct memblock_region) * 368 memblock.memory.max); 369 __memblock_free_late(addr, size); 370 } 371 } 372 #endif 373 374 /** 375 * memblock_double_array - double the size of the memblock regions array 376 * @type: memblock type of the regions array being doubled 377 * @new_area_start: starting address of memory range to avoid overlap with 378 * @new_area_size: size of memory range to avoid overlap with 379 * 380 * Double the size of the @type regions array. If memblock is being used to 381 * allocate memory for a new reserved regions array and there is a previously 382 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 383 * waiting to be reserved, ensure the memory used by the new array does 384 * not overlap. 385 * 386 * Return: 387 * 0 on success, -1 on failure. 388 */ 389 static int __init_memblock memblock_double_array(struct memblock_type *type, 390 phys_addr_t new_area_start, 391 phys_addr_t new_area_size) 392 { 393 struct memblock_region *new_array, *old_array; 394 phys_addr_t old_alloc_size, new_alloc_size; 395 phys_addr_t old_size, new_size, addr, new_end; 396 int use_slab = slab_is_available(); 397 int *in_slab; 398 399 /* We don't allow resizing until we know about the reserved regions 400 * of memory that aren't suitable for allocation 401 */ 402 if (!memblock_can_resize) 403 return -1; 404 405 /* Calculate new doubled size */ 406 old_size = type->max * sizeof(struct memblock_region); 407 new_size = old_size << 1; 408 /* 409 * We need to allocated new one align to PAGE_SIZE, 410 * so we can free them completely later. 411 */ 412 old_alloc_size = PAGE_ALIGN(old_size); 413 new_alloc_size = PAGE_ALIGN(new_size); 414 415 /* Retrieve the slab flag */ 416 if (type == &memblock.memory) 417 in_slab = &memblock_memory_in_slab; 418 else 419 in_slab = &memblock_reserved_in_slab; 420 421 /* Try to find some space for it. 422 * 423 * WARNING: We assume that either slab_is_available() and we use it or 424 * we use MEMBLOCK for allocations. That means that this is unsafe to 425 * use when bootmem is currently active (unless bootmem itself is 426 * implemented on top of MEMBLOCK which isn't the case yet) 427 * 428 * This should however not be an issue for now, as we currently only 429 * call into MEMBLOCK while it's still active, or much later when slab 430 * is active for memory hotplug operations 431 */ 432 if (use_slab) { 433 new_array = kmalloc(new_size, GFP_KERNEL); 434 addr = new_array ? __pa(new_array) : 0; 435 } else { 436 /* only exclude range when trying to double reserved.regions */ 437 if (type != &memblock.reserved) 438 new_area_start = new_area_size = 0; 439 440 addr = memblock_find_in_range(new_area_start + new_area_size, 441 memblock.current_limit, 442 new_alloc_size, PAGE_SIZE); 443 if (!addr && new_area_size) 444 addr = memblock_find_in_range(0, 445 min(new_area_start, memblock.current_limit), 446 new_alloc_size, PAGE_SIZE); 447 448 new_array = addr ? __va(addr) : NULL; 449 } 450 if (!addr) { 451 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 452 type->name, type->max, type->max * 2); 453 return -1; 454 } 455 456 new_end = addr + new_size - 1; 457 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 458 type->name, type->max * 2, &addr, &new_end); 459 460 /* 461 * Found space, we now need to move the array over before we add the 462 * reserved region since it may be our reserved array itself that is 463 * full. 464 */ 465 memcpy(new_array, type->regions, old_size); 466 memset(new_array + type->max, 0, old_size); 467 old_array = type->regions; 468 type->regions = new_array; 469 type->max <<= 1; 470 471 /* Free old array. We needn't free it if the array is the static one */ 472 if (*in_slab) 473 kfree(old_array); 474 else if (old_array != memblock_memory_init_regions && 475 old_array != memblock_reserved_init_regions) 476 memblock_free(__pa(old_array), old_alloc_size); 477 478 /* 479 * Reserve the new array if that comes from the memblock. Otherwise, we 480 * needn't do it 481 */ 482 if (!use_slab) 483 BUG_ON(memblock_reserve(addr, new_alloc_size)); 484 485 /* Update slab flag */ 486 *in_slab = use_slab; 487 488 return 0; 489 } 490 491 /** 492 * memblock_merge_regions - merge neighboring compatible regions 493 * @type: memblock type to scan 494 * 495 * Scan @type and merge neighboring compatible regions. 496 */ 497 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 498 { 499 int i = 0; 500 501 /* cnt never goes below 1 */ 502 while (i < type->cnt - 1) { 503 struct memblock_region *this = &type->regions[i]; 504 struct memblock_region *next = &type->regions[i + 1]; 505 506 if (this->base + this->size != next->base || 507 memblock_get_region_node(this) != 508 memblock_get_region_node(next) || 509 this->flags != next->flags) { 510 BUG_ON(this->base + this->size > next->base); 511 i++; 512 continue; 513 } 514 515 this->size += next->size; 516 /* move forward from next + 1, index of which is i + 2 */ 517 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 518 type->cnt--; 519 } 520 } 521 522 /** 523 * memblock_insert_region - insert new memblock region 524 * @type: memblock type to insert into 525 * @idx: index for the insertion point 526 * @base: base address of the new region 527 * @size: size of the new region 528 * @nid: node id of the new region 529 * @flags: flags of the new region 530 * 531 * Insert new memblock region [@base, @base + @size) into @type at @idx. 532 * @type must already have extra room to accommodate the new region. 533 */ 534 static void __init_memblock memblock_insert_region(struct memblock_type *type, 535 int idx, phys_addr_t base, 536 phys_addr_t size, 537 int nid, 538 enum memblock_flags flags) 539 { 540 struct memblock_region *rgn = &type->regions[idx]; 541 542 BUG_ON(type->cnt >= type->max); 543 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 544 rgn->base = base; 545 rgn->size = size; 546 rgn->flags = flags; 547 memblock_set_region_node(rgn, nid); 548 type->cnt++; 549 type->total_size += size; 550 } 551 552 /** 553 * memblock_add_range - add new memblock region 554 * @type: memblock type to add new region into 555 * @base: base address of the new region 556 * @size: size of the new region 557 * @nid: nid of the new region 558 * @flags: flags of the new region 559 * 560 * Add new memblock region [@base, @base + @size) into @type. The new region 561 * is allowed to overlap with existing ones - overlaps don't affect already 562 * existing regions. @type is guaranteed to be minimal (all neighbouring 563 * compatible regions are merged) after the addition. 564 * 565 * Return: 566 * 0 on success, -errno on failure. 567 */ 568 int __init_memblock memblock_add_range(struct memblock_type *type, 569 phys_addr_t base, phys_addr_t size, 570 int nid, enum memblock_flags flags) 571 { 572 bool insert = false; 573 phys_addr_t obase = base; 574 phys_addr_t end = base + memblock_cap_size(base, &size); 575 int idx, nr_new; 576 struct memblock_region *rgn; 577 578 if (!size) 579 return 0; 580 581 /* special case for empty array */ 582 if (type->regions[0].size == 0) { 583 WARN_ON(type->cnt != 1 || type->total_size); 584 type->regions[0].base = base; 585 type->regions[0].size = size; 586 type->regions[0].flags = flags; 587 memblock_set_region_node(&type->regions[0], nid); 588 type->total_size = size; 589 return 0; 590 } 591 repeat: 592 /* 593 * The following is executed twice. Once with %false @insert and 594 * then with %true. The first counts the number of regions needed 595 * to accommodate the new area. The second actually inserts them. 596 */ 597 base = obase; 598 nr_new = 0; 599 600 for_each_memblock_type(idx, type, rgn) { 601 phys_addr_t rbase = rgn->base; 602 phys_addr_t rend = rbase + rgn->size; 603 604 if (rbase >= end) 605 break; 606 if (rend <= base) 607 continue; 608 /* 609 * @rgn overlaps. If it separates the lower part of new 610 * area, insert that portion. 611 */ 612 if (rbase > base) { 613 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 614 WARN_ON(nid != memblock_get_region_node(rgn)); 615 #endif 616 WARN_ON(flags != rgn->flags); 617 nr_new++; 618 if (insert) 619 memblock_insert_region(type, idx++, base, 620 rbase - base, nid, 621 flags); 622 } 623 /* area below @rend is dealt with, forget about it */ 624 base = min(rend, end); 625 } 626 627 /* insert the remaining portion */ 628 if (base < end) { 629 nr_new++; 630 if (insert) 631 memblock_insert_region(type, idx, base, end - base, 632 nid, flags); 633 } 634 635 if (!nr_new) 636 return 0; 637 638 /* 639 * If this was the first round, resize array and repeat for actual 640 * insertions; otherwise, merge and return. 641 */ 642 if (!insert) { 643 while (type->cnt + nr_new > type->max) 644 if (memblock_double_array(type, obase, size) < 0) 645 return -ENOMEM; 646 insert = true; 647 goto repeat; 648 } else { 649 memblock_merge_regions(type); 650 return 0; 651 } 652 } 653 654 /** 655 * memblock_add_node - add new memblock region within a NUMA node 656 * @base: base address of the new region 657 * @size: size of the new region 658 * @nid: nid of the new region 659 * 660 * Add new memblock region [@base, @base + @size) to the "memory" 661 * type. See memblock_add_range() description for mode details 662 * 663 * Return: 664 * 0 on success, -errno on failure. 665 */ 666 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 667 int nid) 668 { 669 return memblock_add_range(&memblock.memory, base, size, nid, 0); 670 } 671 672 /** 673 * memblock_add - add new memblock region 674 * @base: base address of the new region 675 * @size: size of the new region 676 * 677 * Add new memblock region [@base, @base + @size) to the "memory" 678 * type. See memblock_add_range() description for mode details 679 * 680 * Return: 681 * 0 on success, -errno on failure. 682 */ 683 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 684 { 685 phys_addr_t end = base + size - 1; 686 687 memblock_dbg("memblock_add: [%pa-%pa] %pF\n", 688 &base, &end, (void *)_RET_IP_); 689 690 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 691 } 692 693 /** 694 * memblock_isolate_range - isolate given range into disjoint memblocks 695 * @type: memblock type to isolate range for 696 * @base: base of range to isolate 697 * @size: size of range to isolate 698 * @start_rgn: out parameter for the start of isolated region 699 * @end_rgn: out parameter for the end of isolated region 700 * 701 * Walk @type and ensure that regions don't cross the boundaries defined by 702 * [@base, @base + @size). Crossing regions are split at the boundaries, 703 * which may create at most two more regions. The index of the first 704 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 705 * 706 * Return: 707 * 0 on success, -errno on failure. 708 */ 709 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 710 phys_addr_t base, phys_addr_t size, 711 int *start_rgn, int *end_rgn) 712 { 713 phys_addr_t end = base + memblock_cap_size(base, &size); 714 int idx; 715 struct memblock_region *rgn; 716 717 *start_rgn = *end_rgn = 0; 718 719 if (!size) 720 return 0; 721 722 /* we'll create at most two more regions */ 723 while (type->cnt + 2 > type->max) 724 if (memblock_double_array(type, base, size) < 0) 725 return -ENOMEM; 726 727 for_each_memblock_type(idx, type, rgn) { 728 phys_addr_t rbase = rgn->base; 729 phys_addr_t rend = rbase + rgn->size; 730 731 if (rbase >= end) 732 break; 733 if (rend <= base) 734 continue; 735 736 if (rbase < base) { 737 /* 738 * @rgn intersects from below. Split and continue 739 * to process the next region - the new top half. 740 */ 741 rgn->base = base; 742 rgn->size -= base - rbase; 743 type->total_size -= base - rbase; 744 memblock_insert_region(type, idx, rbase, base - rbase, 745 memblock_get_region_node(rgn), 746 rgn->flags); 747 } else if (rend > end) { 748 /* 749 * @rgn intersects from above. Split and redo the 750 * current region - the new bottom half. 751 */ 752 rgn->base = end; 753 rgn->size -= end - rbase; 754 type->total_size -= end - rbase; 755 memblock_insert_region(type, idx--, rbase, end - rbase, 756 memblock_get_region_node(rgn), 757 rgn->flags); 758 } else { 759 /* @rgn is fully contained, record it */ 760 if (!*end_rgn) 761 *start_rgn = idx; 762 *end_rgn = idx + 1; 763 } 764 } 765 766 return 0; 767 } 768 769 static int __init_memblock memblock_remove_range(struct memblock_type *type, 770 phys_addr_t base, phys_addr_t size) 771 { 772 int start_rgn, end_rgn; 773 int i, ret; 774 775 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 776 if (ret) 777 return ret; 778 779 for (i = end_rgn - 1; i >= start_rgn; i--) 780 memblock_remove_region(type, i); 781 return 0; 782 } 783 784 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 785 { 786 phys_addr_t end = base + size - 1; 787 788 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n", 789 &base, &end, (void *)_RET_IP_); 790 791 return memblock_remove_range(&memblock.memory, base, size); 792 } 793 794 795 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 796 { 797 phys_addr_t end = base + size - 1; 798 799 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n", 800 &base, &end, (void *)_RET_IP_); 801 802 kmemleak_free_part_phys(base, size); 803 return memblock_remove_range(&memblock.reserved, base, size); 804 } 805 806 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 807 { 808 phys_addr_t end = base + size - 1; 809 810 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n", 811 &base, &end, (void *)_RET_IP_); 812 813 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 814 } 815 816 /** 817 * memblock_setclr_flag - set or clear flag for a memory region 818 * @base: base address of the region 819 * @size: size of the region 820 * @set: set or clear the flag 821 * @flag: the flag to udpate 822 * 823 * This function isolates region [@base, @base + @size), and sets/clears flag 824 * 825 * Return: 0 on success, -errno on failure. 826 */ 827 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 828 phys_addr_t size, int set, int flag) 829 { 830 struct memblock_type *type = &memblock.memory; 831 int i, ret, start_rgn, end_rgn; 832 833 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 834 if (ret) 835 return ret; 836 837 for (i = start_rgn; i < end_rgn; i++) 838 if (set) 839 memblock_set_region_flags(&type->regions[i], flag); 840 else 841 memblock_clear_region_flags(&type->regions[i], flag); 842 843 memblock_merge_regions(type); 844 return 0; 845 } 846 847 /** 848 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 849 * @base: the base phys addr of the region 850 * @size: the size of the region 851 * 852 * Return: 0 on success, -errno on failure. 853 */ 854 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 855 { 856 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 857 } 858 859 /** 860 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 861 * @base: the base phys addr of the region 862 * @size: the size of the region 863 * 864 * Return: 0 on success, -errno on failure. 865 */ 866 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 867 { 868 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 869 } 870 871 /** 872 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 873 * @base: the base phys addr of the region 874 * @size: the size of the region 875 * 876 * Return: 0 on success, -errno on failure. 877 */ 878 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 879 { 880 system_has_some_mirror = true; 881 882 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 883 } 884 885 /** 886 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 887 * @base: the base phys addr of the region 888 * @size: the size of the region 889 * 890 * Return: 0 on success, -errno on failure. 891 */ 892 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 893 { 894 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 895 } 896 897 /** 898 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 899 * @base: the base phys addr of the region 900 * @size: the size of the region 901 * 902 * Return: 0 on success, -errno on failure. 903 */ 904 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 905 { 906 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 907 } 908 909 /** 910 * __next_reserved_mem_region - next function for for_each_reserved_region() 911 * @idx: pointer to u64 loop variable 912 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL 913 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL 914 * 915 * Iterate over all reserved memory regions. 916 */ 917 void __init_memblock __next_reserved_mem_region(u64 *idx, 918 phys_addr_t *out_start, 919 phys_addr_t *out_end) 920 { 921 struct memblock_type *type = &memblock.reserved; 922 923 if (*idx < type->cnt) { 924 struct memblock_region *r = &type->regions[*idx]; 925 phys_addr_t base = r->base; 926 phys_addr_t size = r->size; 927 928 if (out_start) 929 *out_start = base; 930 if (out_end) 931 *out_end = base + size - 1; 932 933 *idx += 1; 934 return; 935 } 936 937 /* signal end of iteration */ 938 *idx = ULLONG_MAX; 939 } 940 941 /** 942 * __next__mem_range - next function for for_each_free_mem_range() etc. 943 * @idx: pointer to u64 loop variable 944 * @nid: node selector, %NUMA_NO_NODE for all nodes 945 * @flags: pick from blocks based on memory attributes 946 * @type_a: pointer to memblock_type from where the range is taken 947 * @type_b: pointer to memblock_type which excludes memory from being taken 948 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 949 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 950 * @out_nid: ptr to int for nid of the range, can be %NULL 951 * 952 * Find the first area from *@idx which matches @nid, fill the out 953 * parameters, and update *@idx for the next iteration. The lower 32bit of 954 * *@idx contains index into type_a and the upper 32bit indexes the 955 * areas before each region in type_b. For example, if type_b regions 956 * look like the following, 957 * 958 * 0:[0-16), 1:[32-48), 2:[128-130) 959 * 960 * The upper 32bit indexes the following regions. 961 * 962 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 963 * 964 * As both region arrays are sorted, the function advances the two indices 965 * in lockstep and returns each intersection. 966 */ 967 void __init_memblock __next_mem_range(u64 *idx, int nid, 968 enum memblock_flags flags, 969 struct memblock_type *type_a, 970 struct memblock_type *type_b, 971 phys_addr_t *out_start, 972 phys_addr_t *out_end, int *out_nid) 973 { 974 int idx_a = *idx & 0xffffffff; 975 int idx_b = *idx >> 32; 976 977 if (WARN_ONCE(nid == MAX_NUMNODES, 978 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 979 nid = NUMA_NO_NODE; 980 981 for (; idx_a < type_a->cnt; idx_a++) { 982 struct memblock_region *m = &type_a->regions[idx_a]; 983 984 phys_addr_t m_start = m->base; 985 phys_addr_t m_end = m->base + m->size; 986 int m_nid = memblock_get_region_node(m); 987 988 /* only memory regions are associated with nodes, check it */ 989 if (nid != NUMA_NO_NODE && nid != m_nid) 990 continue; 991 992 /* skip hotpluggable memory regions if needed */ 993 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 994 continue; 995 996 /* if we want mirror memory skip non-mirror memory regions */ 997 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 998 continue; 999 1000 /* skip nomap memory unless we were asked for it explicitly */ 1001 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 1002 continue; 1003 1004 if (!type_b) { 1005 if (out_start) 1006 *out_start = m_start; 1007 if (out_end) 1008 *out_end = m_end; 1009 if (out_nid) 1010 *out_nid = m_nid; 1011 idx_a++; 1012 *idx = (u32)idx_a | (u64)idx_b << 32; 1013 return; 1014 } 1015 1016 /* scan areas before each reservation */ 1017 for (; idx_b < type_b->cnt + 1; idx_b++) { 1018 struct memblock_region *r; 1019 phys_addr_t r_start; 1020 phys_addr_t r_end; 1021 1022 r = &type_b->regions[idx_b]; 1023 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1024 r_end = idx_b < type_b->cnt ? 1025 r->base : PHYS_ADDR_MAX; 1026 1027 /* 1028 * if idx_b advanced past idx_a, 1029 * break out to advance idx_a 1030 */ 1031 if (r_start >= m_end) 1032 break; 1033 /* if the two regions intersect, we're done */ 1034 if (m_start < r_end) { 1035 if (out_start) 1036 *out_start = 1037 max(m_start, r_start); 1038 if (out_end) 1039 *out_end = min(m_end, r_end); 1040 if (out_nid) 1041 *out_nid = m_nid; 1042 /* 1043 * The region which ends first is 1044 * advanced for the next iteration. 1045 */ 1046 if (m_end <= r_end) 1047 idx_a++; 1048 else 1049 idx_b++; 1050 *idx = (u32)idx_a | (u64)idx_b << 32; 1051 return; 1052 } 1053 } 1054 } 1055 1056 /* signal end of iteration */ 1057 *idx = ULLONG_MAX; 1058 } 1059 1060 /** 1061 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1062 * 1063 * @idx: pointer to u64 loop variable 1064 * @nid: node selector, %NUMA_NO_NODE for all nodes 1065 * @flags: pick from blocks based on memory attributes 1066 * @type_a: pointer to memblock_type from where the range is taken 1067 * @type_b: pointer to memblock_type which excludes memory from being taken 1068 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1069 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1070 * @out_nid: ptr to int for nid of the range, can be %NULL 1071 * 1072 * Finds the next range from type_a which is not marked as unsuitable 1073 * in type_b. 1074 * 1075 * Reverse of __next_mem_range(). 1076 */ 1077 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1078 enum memblock_flags flags, 1079 struct memblock_type *type_a, 1080 struct memblock_type *type_b, 1081 phys_addr_t *out_start, 1082 phys_addr_t *out_end, int *out_nid) 1083 { 1084 int idx_a = *idx & 0xffffffff; 1085 int idx_b = *idx >> 32; 1086 1087 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1088 nid = NUMA_NO_NODE; 1089 1090 if (*idx == (u64)ULLONG_MAX) { 1091 idx_a = type_a->cnt - 1; 1092 if (type_b != NULL) 1093 idx_b = type_b->cnt; 1094 else 1095 idx_b = 0; 1096 } 1097 1098 for (; idx_a >= 0; idx_a--) { 1099 struct memblock_region *m = &type_a->regions[idx_a]; 1100 1101 phys_addr_t m_start = m->base; 1102 phys_addr_t m_end = m->base + m->size; 1103 int m_nid = memblock_get_region_node(m); 1104 1105 /* only memory regions are associated with nodes, check it */ 1106 if (nid != NUMA_NO_NODE && nid != m_nid) 1107 continue; 1108 1109 /* skip hotpluggable memory regions if needed */ 1110 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 1111 continue; 1112 1113 /* if we want mirror memory skip non-mirror memory regions */ 1114 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 1115 continue; 1116 1117 /* skip nomap memory unless we were asked for it explicitly */ 1118 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 1119 continue; 1120 1121 if (!type_b) { 1122 if (out_start) 1123 *out_start = m_start; 1124 if (out_end) 1125 *out_end = m_end; 1126 if (out_nid) 1127 *out_nid = m_nid; 1128 idx_a--; 1129 *idx = (u32)idx_a | (u64)idx_b << 32; 1130 return; 1131 } 1132 1133 /* scan areas before each reservation */ 1134 for (; idx_b >= 0; idx_b--) { 1135 struct memblock_region *r; 1136 phys_addr_t r_start; 1137 phys_addr_t r_end; 1138 1139 r = &type_b->regions[idx_b]; 1140 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1141 r_end = idx_b < type_b->cnt ? 1142 r->base : PHYS_ADDR_MAX; 1143 /* 1144 * if idx_b advanced past idx_a, 1145 * break out to advance idx_a 1146 */ 1147 1148 if (r_end <= m_start) 1149 break; 1150 /* if the two regions intersect, we're done */ 1151 if (m_end > r_start) { 1152 if (out_start) 1153 *out_start = max(m_start, r_start); 1154 if (out_end) 1155 *out_end = min(m_end, r_end); 1156 if (out_nid) 1157 *out_nid = m_nid; 1158 if (m_start >= r_start) 1159 idx_a--; 1160 else 1161 idx_b--; 1162 *idx = (u32)idx_a | (u64)idx_b << 32; 1163 return; 1164 } 1165 } 1166 } 1167 /* signal end of iteration */ 1168 *idx = ULLONG_MAX; 1169 } 1170 1171 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1172 /* 1173 * Common iterator interface used to define for_each_mem_range(). 1174 */ 1175 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1176 unsigned long *out_start_pfn, 1177 unsigned long *out_end_pfn, int *out_nid) 1178 { 1179 struct memblock_type *type = &memblock.memory; 1180 struct memblock_region *r; 1181 1182 while (++*idx < type->cnt) { 1183 r = &type->regions[*idx]; 1184 1185 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1186 continue; 1187 if (nid == MAX_NUMNODES || nid == r->nid) 1188 break; 1189 } 1190 if (*idx >= type->cnt) { 1191 *idx = -1; 1192 return; 1193 } 1194 1195 if (out_start_pfn) 1196 *out_start_pfn = PFN_UP(r->base); 1197 if (out_end_pfn) 1198 *out_end_pfn = PFN_DOWN(r->base + r->size); 1199 if (out_nid) 1200 *out_nid = r->nid; 1201 } 1202 1203 /** 1204 * memblock_set_node - set node ID on memblock regions 1205 * @base: base of area to set node ID for 1206 * @size: size of area to set node ID for 1207 * @type: memblock type to set node ID for 1208 * @nid: node ID to set 1209 * 1210 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1211 * Regions which cross the area boundaries are split as necessary. 1212 * 1213 * Return: 1214 * 0 on success, -errno on failure. 1215 */ 1216 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1217 struct memblock_type *type, int nid) 1218 { 1219 int start_rgn, end_rgn; 1220 int i, ret; 1221 1222 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1223 if (ret) 1224 return ret; 1225 1226 for (i = start_rgn; i < end_rgn; i++) 1227 memblock_set_region_node(&type->regions[i], nid); 1228 1229 memblock_merge_regions(type); 1230 return 0; 1231 } 1232 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1233 1234 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1235 phys_addr_t align, phys_addr_t start, 1236 phys_addr_t end, int nid, 1237 enum memblock_flags flags) 1238 { 1239 phys_addr_t found; 1240 1241 if (!align) 1242 align = SMP_CACHE_BYTES; 1243 1244 found = memblock_find_in_range_node(size, align, start, end, nid, 1245 flags); 1246 if (found && !memblock_reserve(found, size)) { 1247 /* 1248 * The min_count is set to 0 so that memblock allocations are 1249 * never reported as leaks. 1250 */ 1251 kmemleak_alloc_phys(found, size, 0, 0); 1252 return found; 1253 } 1254 return 0; 1255 } 1256 1257 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align, 1258 phys_addr_t start, phys_addr_t end, 1259 enum memblock_flags flags) 1260 { 1261 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1262 flags); 1263 } 1264 1265 phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, 1266 phys_addr_t align, phys_addr_t max_addr, 1267 int nid, enum memblock_flags flags) 1268 { 1269 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags); 1270 } 1271 1272 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 1273 { 1274 enum memblock_flags flags = choose_memblock_flags(); 1275 phys_addr_t ret; 1276 1277 again: 1278 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, 1279 nid, flags); 1280 1281 if (!ret && (flags & MEMBLOCK_MIRROR)) { 1282 flags &= ~MEMBLOCK_MIRROR; 1283 goto again; 1284 } 1285 return ret; 1286 } 1287 1288 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1289 { 1290 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE, 1291 MEMBLOCK_NONE); 1292 } 1293 1294 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1295 { 1296 phys_addr_t alloc; 1297 1298 alloc = __memblock_alloc_base(size, align, max_addr); 1299 1300 if (alloc == 0) 1301 panic("ERROR: Failed to allocate %pa bytes below %pa.\n", 1302 &size, &max_addr); 1303 1304 return alloc; 1305 } 1306 1307 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) 1308 { 1309 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1310 } 1311 1312 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1313 { 1314 phys_addr_t res = memblock_alloc_nid(size, align, nid); 1315 1316 if (res) 1317 return res; 1318 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1319 } 1320 1321 #if defined(CONFIG_NO_BOOTMEM) 1322 /** 1323 * memblock_virt_alloc_internal - allocate boot memory block 1324 * @size: size of memory block to be allocated in bytes 1325 * @align: alignment of the region and block's size 1326 * @min_addr: the lower bound of the memory region to allocate (phys address) 1327 * @max_addr: the upper bound of the memory region to allocate (phys address) 1328 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1329 * 1330 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1331 * will fall back to memory below @min_addr. Also, allocation may fall back 1332 * to any node in the system if the specified node can not 1333 * hold the requested memory. 1334 * 1335 * The allocation is performed from memory region limited by 1336 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE. 1337 * 1338 * The memory block is aligned on %SMP_CACHE_BYTES if @align == 0. 1339 * 1340 * The phys address of allocated boot memory block is converted to virtual and 1341 * allocated memory is reset to 0. 1342 * 1343 * In addition, function sets the min_count to 0 using kmemleak_alloc for 1344 * allocated boot memory block, so that it is never reported as leaks. 1345 * 1346 * Return: 1347 * Virtual address of allocated memory block on success, NULL on failure. 1348 */ 1349 static void * __init memblock_virt_alloc_internal( 1350 phys_addr_t size, phys_addr_t align, 1351 phys_addr_t min_addr, phys_addr_t max_addr, 1352 int nid) 1353 { 1354 phys_addr_t alloc; 1355 void *ptr; 1356 enum memblock_flags flags = choose_memblock_flags(); 1357 1358 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1359 nid = NUMA_NO_NODE; 1360 1361 /* 1362 * Detect any accidental use of these APIs after slab is ready, as at 1363 * this moment memblock may be deinitialized already and its 1364 * internal data may be destroyed (after execution of free_all_bootmem) 1365 */ 1366 if (WARN_ON_ONCE(slab_is_available())) 1367 return kzalloc_node(size, GFP_NOWAIT, nid); 1368 1369 if (!align) 1370 align = SMP_CACHE_BYTES; 1371 1372 if (max_addr > memblock.current_limit) 1373 max_addr = memblock.current_limit; 1374 again: 1375 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr, 1376 nid, flags); 1377 if (alloc && !memblock_reserve(alloc, size)) 1378 goto done; 1379 1380 if (nid != NUMA_NO_NODE) { 1381 alloc = memblock_find_in_range_node(size, align, min_addr, 1382 max_addr, NUMA_NO_NODE, 1383 flags); 1384 if (alloc && !memblock_reserve(alloc, size)) 1385 goto done; 1386 } 1387 1388 if (min_addr) { 1389 min_addr = 0; 1390 goto again; 1391 } 1392 1393 if (flags & MEMBLOCK_MIRROR) { 1394 flags &= ~MEMBLOCK_MIRROR; 1395 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1396 &size); 1397 goto again; 1398 } 1399 1400 return NULL; 1401 done: 1402 ptr = phys_to_virt(alloc); 1403 1404 /* 1405 * The min_count is set to 0 so that bootmem allocated blocks 1406 * are never reported as leaks. This is because many of these blocks 1407 * are only referred via the physical address which is not 1408 * looked up by kmemleak. 1409 */ 1410 kmemleak_alloc(ptr, size, 0, 0); 1411 1412 return ptr; 1413 } 1414 1415 /** 1416 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing 1417 * memory and without panicking 1418 * @size: size of memory block to be allocated in bytes 1419 * @align: alignment of the region and block's size 1420 * @min_addr: the lower bound of the memory region from where the allocation 1421 * is preferred (phys address) 1422 * @max_addr: the upper bound of the memory region from where the allocation 1423 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1424 * allocate only from memory limited by memblock.current_limit value 1425 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1426 * 1427 * Public function, provides additional debug information (including caller 1428 * info), if enabled. Does not zero allocated memory, does not panic if request 1429 * cannot be satisfied. 1430 * 1431 * Return: 1432 * Virtual address of allocated memory block on success, NULL on failure. 1433 */ 1434 void * __init memblock_virt_alloc_try_nid_raw( 1435 phys_addr_t size, phys_addr_t align, 1436 phys_addr_t min_addr, phys_addr_t max_addr, 1437 int nid) 1438 { 1439 void *ptr; 1440 1441 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n", 1442 __func__, (u64)size, (u64)align, nid, &min_addr, 1443 &max_addr, (void *)_RET_IP_); 1444 1445 ptr = memblock_virt_alloc_internal(size, align, 1446 min_addr, max_addr, nid); 1447 #ifdef CONFIG_DEBUG_VM 1448 if (ptr && size > 0) 1449 memset(ptr, PAGE_POISON_PATTERN, size); 1450 #endif 1451 return ptr; 1452 } 1453 1454 /** 1455 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block 1456 * @size: size of memory block to be allocated in bytes 1457 * @align: alignment of the region and block's size 1458 * @min_addr: the lower bound of the memory region from where the allocation 1459 * is preferred (phys address) 1460 * @max_addr: the upper bound of the memory region from where the allocation 1461 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1462 * allocate only from memory limited by memblock.current_limit value 1463 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1464 * 1465 * Public function, provides additional debug information (including caller 1466 * info), if enabled. This function zeroes the allocated memory. 1467 * 1468 * Return: 1469 * Virtual address of allocated memory block on success, NULL on failure. 1470 */ 1471 void * __init memblock_virt_alloc_try_nid_nopanic( 1472 phys_addr_t size, phys_addr_t align, 1473 phys_addr_t min_addr, phys_addr_t max_addr, 1474 int nid) 1475 { 1476 void *ptr; 1477 1478 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n", 1479 __func__, (u64)size, (u64)align, nid, &min_addr, 1480 &max_addr, (void *)_RET_IP_); 1481 1482 ptr = memblock_virt_alloc_internal(size, align, 1483 min_addr, max_addr, nid); 1484 if (ptr) 1485 memset(ptr, 0, size); 1486 return ptr; 1487 } 1488 1489 /** 1490 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking 1491 * @size: size of memory block to be allocated in bytes 1492 * @align: alignment of the region and block's size 1493 * @min_addr: the lower bound of the memory region from where the allocation 1494 * is preferred (phys address) 1495 * @max_addr: the upper bound of the memory region from where the allocation 1496 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1497 * allocate only from memory limited by memblock.current_limit value 1498 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1499 * 1500 * Public panicking version of memblock_virt_alloc_try_nid_nopanic() 1501 * which provides debug information (including caller info), if enabled, 1502 * and panics if the request can not be satisfied. 1503 * 1504 * Return: 1505 * Virtual address of allocated memory block on success, NULL on failure. 1506 */ 1507 void * __init memblock_virt_alloc_try_nid( 1508 phys_addr_t size, phys_addr_t align, 1509 phys_addr_t min_addr, phys_addr_t max_addr, 1510 int nid) 1511 { 1512 void *ptr; 1513 1514 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n", 1515 __func__, (u64)size, (u64)align, nid, &min_addr, 1516 &max_addr, (void *)_RET_IP_); 1517 ptr = memblock_virt_alloc_internal(size, align, 1518 min_addr, max_addr, nid); 1519 if (ptr) { 1520 memset(ptr, 0, size); 1521 return ptr; 1522 } 1523 1524 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa\n", 1525 __func__, (u64)size, (u64)align, nid, &min_addr, &max_addr); 1526 return NULL; 1527 } 1528 #endif 1529 1530 /** 1531 * __memblock_free_early - free boot memory block 1532 * @base: phys starting address of the boot memory block 1533 * @size: size of the boot memory block in bytes 1534 * 1535 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API. 1536 * The freeing memory will not be released to the buddy allocator. 1537 */ 1538 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size) 1539 { 1540 phys_addr_t end = base + size - 1; 1541 1542 memblock_dbg("%s: [%pa-%pa] %pF\n", 1543 __func__, &base, &end, (void *)_RET_IP_); 1544 kmemleak_free_part_phys(base, size); 1545 memblock_remove_range(&memblock.reserved, base, size); 1546 } 1547 1548 /** 1549 * __memblock_free_late - free bootmem block pages directly to buddy allocator 1550 * @base: phys starting address of the boot memory block 1551 * @size: size of the boot memory block in bytes 1552 * 1553 * This is only useful when the bootmem allocator has already been torn 1554 * down, but we are still initializing the system. Pages are released directly 1555 * to the buddy allocator, no bootmem metadata is updated because it is gone. 1556 */ 1557 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1558 { 1559 phys_addr_t cursor, end; 1560 1561 end = base + size - 1; 1562 memblock_dbg("%s: [%pa-%pa] %pF\n", 1563 __func__, &base, &end, (void *)_RET_IP_); 1564 kmemleak_free_part_phys(base, size); 1565 cursor = PFN_UP(base); 1566 end = PFN_DOWN(base + size); 1567 1568 for (; cursor < end; cursor++) { 1569 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0); 1570 totalram_pages++; 1571 } 1572 } 1573 1574 /* 1575 * Remaining API functions 1576 */ 1577 1578 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1579 { 1580 return memblock.memory.total_size; 1581 } 1582 1583 phys_addr_t __init_memblock memblock_reserved_size(void) 1584 { 1585 return memblock.reserved.total_size; 1586 } 1587 1588 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) 1589 { 1590 unsigned long pages = 0; 1591 struct memblock_region *r; 1592 unsigned long start_pfn, end_pfn; 1593 1594 for_each_memblock(memory, r) { 1595 start_pfn = memblock_region_memory_base_pfn(r); 1596 end_pfn = memblock_region_memory_end_pfn(r); 1597 start_pfn = min_t(unsigned long, start_pfn, limit_pfn); 1598 end_pfn = min_t(unsigned long, end_pfn, limit_pfn); 1599 pages += end_pfn - start_pfn; 1600 } 1601 1602 return PFN_PHYS(pages); 1603 } 1604 1605 /* lowest address */ 1606 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1607 { 1608 return memblock.memory.regions[0].base; 1609 } 1610 1611 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1612 { 1613 int idx = memblock.memory.cnt - 1; 1614 1615 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1616 } 1617 1618 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1619 { 1620 phys_addr_t max_addr = PHYS_ADDR_MAX; 1621 struct memblock_region *r; 1622 1623 /* 1624 * translate the memory @limit size into the max address within one of 1625 * the memory memblock regions, if the @limit exceeds the total size 1626 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1627 */ 1628 for_each_memblock(memory, r) { 1629 if (limit <= r->size) { 1630 max_addr = r->base + limit; 1631 break; 1632 } 1633 limit -= r->size; 1634 } 1635 1636 return max_addr; 1637 } 1638 1639 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1640 { 1641 phys_addr_t max_addr = PHYS_ADDR_MAX; 1642 1643 if (!limit) 1644 return; 1645 1646 max_addr = __find_max_addr(limit); 1647 1648 /* @limit exceeds the total size of the memory, do nothing */ 1649 if (max_addr == PHYS_ADDR_MAX) 1650 return; 1651 1652 /* truncate both memory and reserved regions */ 1653 memblock_remove_range(&memblock.memory, max_addr, 1654 PHYS_ADDR_MAX); 1655 memblock_remove_range(&memblock.reserved, max_addr, 1656 PHYS_ADDR_MAX); 1657 } 1658 1659 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1660 { 1661 int start_rgn, end_rgn; 1662 int i, ret; 1663 1664 if (!size) 1665 return; 1666 1667 ret = memblock_isolate_range(&memblock.memory, base, size, 1668 &start_rgn, &end_rgn); 1669 if (ret) 1670 return; 1671 1672 /* remove all the MAP regions */ 1673 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1674 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1675 memblock_remove_region(&memblock.memory, i); 1676 1677 for (i = start_rgn - 1; i >= 0; i--) 1678 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1679 memblock_remove_region(&memblock.memory, i); 1680 1681 /* truncate the reserved regions */ 1682 memblock_remove_range(&memblock.reserved, 0, base); 1683 memblock_remove_range(&memblock.reserved, 1684 base + size, PHYS_ADDR_MAX); 1685 } 1686 1687 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1688 { 1689 phys_addr_t max_addr; 1690 1691 if (!limit) 1692 return; 1693 1694 max_addr = __find_max_addr(limit); 1695 1696 /* @limit exceeds the total size of the memory, do nothing */ 1697 if (max_addr == PHYS_ADDR_MAX) 1698 return; 1699 1700 memblock_cap_memory_range(0, max_addr); 1701 } 1702 1703 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1704 { 1705 unsigned int left = 0, right = type->cnt; 1706 1707 do { 1708 unsigned int mid = (right + left) / 2; 1709 1710 if (addr < type->regions[mid].base) 1711 right = mid; 1712 else if (addr >= (type->regions[mid].base + 1713 type->regions[mid].size)) 1714 left = mid + 1; 1715 else 1716 return mid; 1717 } while (left < right); 1718 return -1; 1719 } 1720 1721 bool __init memblock_is_reserved(phys_addr_t addr) 1722 { 1723 return memblock_search(&memblock.reserved, addr) != -1; 1724 } 1725 1726 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1727 { 1728 return memblock_search(&memblock.memory, addr) != -1; 1729 } 1730 1731 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1732 { 1733 int i = memblock_search(&memblock.memory, addr); 1734 1735 if (i == -1) 1736 return false; 1737 return !memblock_is_nomap(&memblock.memory.regions[i]); 1738 } 1739 1740 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1741 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1742 unsigned long *start_pfn, unsigned long *end_pfn) 1743 { 1744 struct memblock_type *type = &memblock.memory; 1745 int mid = memblock_search(type, PFN_PHYS(pfn)); 1746 1747 if (mid == -1) 1748 return -1; 1749 1750 *start_pfn = PFN_DOWN(type->regions[mid].base); 1751 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1752 1753 return type->regions[mid].nid; 1754 } 1755 #endif 1756 1757 /** 1758 * memblock_is_region_memory - check if a region is a subset of memory 1759 * @base: base of region to check 1760 * @size: size of region to check 1761 * 1762 * Check if the region [@base, @base + @size) is a subset of a memory block. 1763 * 1764 * Return: 1765 * 0 if false, non-zero if true 1766 */ 1767 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1768 { 1769 int idx = memblock_search(&memblock.memory, base); 1770 phys_addr_t end = base + memblock_cap_size(base, &size); 1771 1772 if (idx == -1) 1773 return false; 1774 return (memblock.memory.regions[idx].base + 1775 memblock.memory.regions[idx].size) >= end; 1776 } 1777 1778 /** 1779 * memblock_is_region_reserved - check if a region intersects reserved memory 1780 * @base: base of region to check 1781 * @size: size of region to check 1782 * 1783 * Check if the region [@base, @base + @size) intersects a reserved 1784 * memory block. 1785 * 1786 * Return: 1787 * True if they intersect, false if not. 1788 */ 1789 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1790 { 1791 memblock_cap_size(base, &size); 1792 return memblock_overlaps_region(&memblock.reserved, base, size); 1793 } 1794 1795 void __init_memblock memblock_trim_memory(phys_addr_t align) 1796 { 1797 phys_addr_t start, end, orig_start, orig_end; 1798 struct memblock_region *r; 1799 1800 for_each_memblock(memory, r) { 1801 orig_start = r->base; 1802 orig_end = r->base + r->size; 1803 start = round_up(orig_start, align); 1804 end = round_down(orig_end, align); 1805 1806 if (start == orig_start && end == orig_end) 1807 continue; 1808 1809 if (start < end) { 1810 r->base = start; 1811 r->size = end - start; 1812 } else { 1813 memblock_remove_region(&memblock.memory, 1814 r - memblock.memory.regions); 1815 r--; 1816 } 1817 } 1818 } 1819 1820 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1821 { 1822 memblock.current_limit = limit; 1823 } 1824 1825 phys_addr_t __init_memblock memblock_get_current_limit(void) 1826 { 1827 return memblock.current_limit; 1828 } 1829 1830 static void __init_memblock memblock_dump(struct memblock_type *type) 1831 { 1832 phys_addr_t base, end, size; 1833 enum memblock_flags flags; 1834 int idx; 1835 struct memblock_region *rgn; 1836 1837 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1838 1839 for_each_memblock_type(idx, type, rgn) { 1840 char nid_buf[32] = ""; 1841 1842 base = rgn->base; 1843 size = rgn->size; 1844 end = base + size - 1; 1845 flags = rgn->flags; 1846 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1847 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1848 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1849 memblock_get_region_node(rgn)); 1850 #endif 1851 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 1852 type->name, idx, &base, &end, &size, nid_buf, flags); 1853 } 1854 } 1855 1856 void __init_memblock __memblock_dump_all(void) 1857 { 1858 pr_info("MEMBLOCK configuration:\n"); 1859 pr_info(" memory size = %pa reserved size = %pa\n", 1860 &memblock.memory.total_size, 1861 &memblock.reserved.total_size); 1862 1863 memblock_dump(&memblock.memory); 1864 memblock_dump(&memblock.reserved); 1865 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1866 memblock_dump(&memblock.physmem); 1867 #endif 1868 } 1869 1870 void __init memblock_allow_resize(void) 1871 { 1872 memblock_can_resize = 1; 1873 } 1874 1875 static int __init early_memblock(char *p) 1876 { 1877 if (p && strstr(p, "debug")) 1878 memblock_debug = 1; 1879 return 0; 1880 } 1881 early_param("memblock", early_memblock); 1882 1883 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) 1884 1885 static int memblock_debug_show(struct seq_file *m, void *private) 1886 { 1887 struct memblock_type *type = m->private; 1888 struct memblock_region *reg; 1889 int i; 1890 phys_addr_t end; 1891 1892 for (i = 0; i < type->cnt; i++) { 1893 reg = &type->regions[i]; 1894 end = reg->base + reg->size - 1; 1895 1896 seq_printf(m, "%4d: ", i); 1897 seq_printf(m, "%pa..%pa\n", ®->base, &end); 1898 } 1899 return 0; 1900 } 1901 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 1902 1903 static int __init memblock_init_debugfs(void) 1904 { 1905 struct dentry *root = debugfs_create_dir("memblock", NULL); 1906 if (!root) 1907 return -ENXIO; 1908 debugfs_create_file("memory", 0444, root, 1909 &memblock.memory, &memblock_debug_fops); 1910 debugfs_create_file("reserved", 0444, root, 1911 &memblock.reserved, &memblock_debug_fops); 1912 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1913 debugfs_create_file("physmem", 0444, root, 1914 &memblock.physmem, &memblock_debug_fops); 1915 #endif 1916 1917 return 0; 1918 } 1919 __initcall(memblock_init_debugfs); 1920 1921 #endif /* CONFIG_DEBUG_FS */ 1922