1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for maintaining information about logical memory blocks. 4 * 5 * Peter Bergner, IBM Corp. June 2001. 6 * Copyright (C) 2001 Peter Bergner. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/init.h> 12 #include <linux/bitops.h> 13 #include <linux/poison.h> 14 #include <linux/pfn.h> 15 #include <linux/debugfs.h> 16 #include <linux/kmemleak.h> 17 #include <linux/seq_file.h> 18 #include <linux/memblock.h> 19 20 #include <asm/sections.h> 21 #include <linux/io.h> 22 23 #include "internal.h" 24 25 #define INIT_MEMBLOCK_REGIONS 128 26 #define INIT_PHYSMEM_REGIONS 4 27 28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS 29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS 30 #endif 31 32 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS 33 #define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS 34 #endif 35 36 /** 37 * DOC: memblock overview 38 * 39 * Memblock is a method of managing memory regions during the early 40 * boot period when the usual kernel memory allocators are not up and 41 * running. 42 * 43 * Memblock views the system memory as collections of contiguous 44 * regions. There are several types of these collections: 45 * 46 * * ``memory`` - describes the physical memory available to the 47 * kernel; this may differ from the actual physical memory installed 48 * in the system, for instance when the memory is restricted with 49 * ``mem=`` command line parameter 50 * * ``reserved`` - describes the regions that were allocated 51 * * ``physmem`` - describes the actual physical memory available during 52 * boot regardless of the possible restrictions and memory hot(un)plug; 53 * the ``physmem`` type is only available on some architectures. 54 * 55 * Each region is represented by struct memblock_region that 56 * defines the region extents, its attributes and NUMA node id on NUMA 57 * systems. Every memory type is described by the struct memblock_type 58 * which contains an array of memory regions along with 59 * the allocator metadata. The "memory" and "reserved" types are nicely 60 * wrapped with struct memblock. This structure is statically 61 * initialized at build time. The region arrays are initially sized to 62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and 63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array 64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS. 65 * The memblock_allow_resize() enables automatic resizing of the region 66 * arrays during addition of new regions. This feature should be used 67 * with care so that memory allocated for the region array will not 68 * overlap with areas that should be reserved, for example initrd. 69 * 70 * The early architecture setup should tell memblock what the physical 71 * memory layout is by using memblock_add() or memblock_add_node() 72 * functions. The first function does not assign the region to a NUMA 73 * node and it is appropriate for UMA systems. Yet, it is possible to 74 * use it on NUMA systems as well and assign the region to a NUMA node 75 * later in the setup process using memblock_set_node(). The 76 * memblock_add_node() performs such an assignment directly. 77 * 78 * Once memblock is setup the memory can be allocated using one of the 79 * API variants: 80 * 81 * * memblock_phys_alloc*() - these functions return the **physical** 82 * address of the allocated memory 83 * * memblock_alloc*() - these functions return the **virtual** address 84 * of the allocated memory. 85 * 86 * Note, that both API variants use implicit assumptions about allowed 87 * memory ranges and the fallback methods. Consult the documentation 88 * of memblock_alloc_internal() and memblock_alloc_range_nid() 89 * functions for more elaborate description. 90 * 91 * As the system boot progresses, the architecture specific mem_init() 92 * function frees all the memory to the buddy page allocator. 93 * 94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the 95 * memblock data structures (except "physmem") will be discarded after the 96 * system initialization completes. 97 */ 98 99 #ifndef CONFIG_NUMA 100 struct pglist_data __refdata contig_page_data; 101 EXPORT_SYMBOL(contig_page_data); 102 #endif 103 104 unsigned long max_low_pfn; 105 unsigned long min_low_pfn; 106 unsigned long max_pfn; 107 unsigned long long max_possible_pfn; 108 109 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock; 110 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; 111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 112 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; 113 #endif 114 115 struct memblock memblock __initdata_memblock = { 116 .memory.regions = memblock_memory_init_regions, 117 .memory.cnt = 1, /* empty dummy entry */ 118 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS, 119 .memory.name = "memory", 120 121 .reserved.regions = memblock_reserved_init_regions, 122 .reserved.cnt = 1, /* empty dummy entry */ 123 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, 124 .reserved.name = "reserved", 125 126 .bottom_up = false, 127 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 128 }; 129 130 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 131 struct memblock_type physmem = { 132 .regions = memblock_physmem_init_regions, 133 .cnt = 1, /* empty dummy entry */ 134 .max = INIT_PHYSMEM_REGIONS, 135 .name = "physmem", 136 }; 137 #endif 138 139 /* 140 * keep a pointer to &memblock.memory in the text section to use it in 141 * __next_mem_range() and its helpers. 142 * For architectures that do not keep memblock data after init, this 143 * pointer will be reset to NULL at memblock_discard() 144 */ 145 static __refdata struct memblock_type *memblock_memory = &memblock.memory; 146 147 #define for_each_memblock_type(i, memblock_type, rgn) \ 148 for (i = 0, rgn = &memblock_type->regions[0]; \ 149 i < memblock_type->cnt; \ 150 i++, rgn = &memblock_type->regions[i]) 151 152 #define memblock_dbg(fmt, ...) \ 153 do { \ 154 if (memblock_debug) \ 155 pr_info(fmt, ##__VA_ARGS__); \ 156 } while (0) 157 158 static int memblock_debug __initdata_memblock; 159 static bool system_has_some_mirror __initdata_memblock = false; 160 static int memblock_can_resize __initdata_memblock; 161 static int memblock_memory_in_slab __initdata_memblock = 0; 162 static int memblock_reserved_in_slab __initdata_memblock = 0; 163 164 static enum memblock_flags __init_memblock choose_memblock_flags(void) 165 { 166 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 167 } 168 169 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 170 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 171 { 172 return *size = min(*size, PHYS_ADDR_MAX - base); 173 } 174 175 /* 176 * Address comparison utilities 177 */ 178 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 179 phys_addr_t base2, phys_addr_t size2) 180 { 181 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 182 } 183 184 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 185 phys_addr_t base, phys_addr_t size) 186 { 187 unsigned long i; 188 189 memblock_cap_size(base, &size); 190 191 for (i = 0; i < type->cnt; i++) 192 if (memblock_addrs_overlap(base, size, type->regions[i].base, 193 type->regions[i].size)) 194 break; 195 return i < type->cnt; 196 } 197 198 /** 199 * __memblock_find_range_bottom_up - find free area utility in bottom-up 200 * @start: start of candidate range 201 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 202 * %MEMBLOCK_ALLOC_ACCESSIBLE 203 * @size: size of free area to find 204 * @align: alignment of free area to find 205 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 206 * @flags: pick from blocks based on memory attributes 207 * 208 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 209 * 210 * Return: 211 * Found address on success, 0 on failure. 212 */ 213 static phys_addr_t __init_memblock 214 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 215 phys_addr_t size, phys_addr_t align, int nid, 216 enum memblock_flags flags) 217 { 218 phys_addr_t this_start, this_end, cand; 219 u64 i; 220 221 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 222 this_start = clamp(this_start, start, end); 223 this_end = clamp(this_end, start, end); 224 225 cand = round_up(this_start, align); 226 if (cand < this_end && this_end - cand >= size) 227 return cand; 228 } 229 230 return 0; 231 } 232 233 /** 234 * __memblock_find_range_top_down - find free area utility, in top-down 235 * @start: start of candidate range 236 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 237 * %MEMBLOCK_ALLOC_ACCESSIBLE 238 * @size: size of free area to find 239 * @align: alignment of free area to find 240 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 241 * @flags: pick from blocks based on memory attributes 242 * 243 * Utility called from memblock_find_in_range_node(), find free area top-down. 244 * 245 * Return: 246 * Found address on success, 0 on failure. 247 */ 248 static phys_addr_t __init_memblock 249 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 250 phys_addr_t size, phys_addr_t align, int nid, 251 enum memblock_flags flags) 252 { 253 phys_addr_t this_start, this_end, cand; 254 u64 i; 255 256 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 257 NULL) { 258 this_start = clamp(this_start, start, end); 259 this_end = clamp(this_end, start, end); 260 261 if (this_end < size) 262 continue; 263 264 cand = round_down(this_end - size, align); 265 if (cand >= this_start) 266 return cand; 267 } 268 269 return 0; 270 } 271 272 /** 273 * memblock_find_in_range_node - find free area in given range and node 274 * @size: size of free area to find 275 * @align: alignment of free area to find 276 * @start: start of candidate range 277 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 278 * %MEMBLOCK_ALLOC_ACCESSIBLE 279 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 280 * @flags: pick from blocks based on memory attributes 281 * 282 * Find @size free area aligned to @align in the specified range and node. 283 * 284 * Return: 285 * Found address on success, 0 on failure. 286 */ 287 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 288 phys_addr_t align, phys_addr_t start, 289 phys_addr_t end, int nid, 290 enum memblock_flags flags) 291 { 292 /* pump up @end */ 293 if (end == MEMBLOCK_ALLOC_ACCESSIBLE || 294 end == MEMBLOCK_ALLOC_NOLEAKTRACE) 295 end = memblock.current_limit; 296 297 /* avoid allocating the first page */ 298 start = max_t(phys_addr_t, start, PAGE_SIZE); 299 end = max(start, end); 300 301 if (memblock_bottom_up()) 302 return __memblock_find_range_bottom_up(start, end, size, align, 303 nid, flags); 304 else 305 return __memblock_find_range_top_down(start, end, size, align, 306 nid, flags); 307 } 308 309 /** 310 * memblock_find_in_range - find free area in given range 311 * @start: start of candidate range 312 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 313 * %MEMBLOCK_ALLOC_ACCESSIBLE 314 * @size: size of free area to find 315 * @align: alignment of free area to find 316 * 317 * Find @size free area aligned to @align in the specified range. 318 * 319 * Return: 320 * Found address on success, 0 on failure. 321 */ 322 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 323 phys_addr_t end, phys_addr_t size, 324 phys_addr_t align) 325 { 326 phys_addr_t ret; 327 enum memblock_flags flags = choose_memblock_flags(); 328 329 again: 330 ret = memblock_find_in_range_node(size, align, start, end, 331 NUMA_NO_NODE, flags); 332 333 if (!ret && (flags & MEMBLOCK_MIRROR)) { 334 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", 335 &size); 336 flags &= ~MEMBLOCK_MIRROR; 337 goto again; 338 } 339 340 return ret; 341 } 342 343 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 344 { 345 type->total_size -= type->regions[r].size; 346 memmove(&type->regions[r], &type->regions[r + 1], 347 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 348 type->cnt--; 349 350 /* Special case for empty arrays */ 351 if (type->cnt == 0) { 352 WARN_ON(type->total_size != 0); 353 type->cnt = 1; 354 type->regions[0].base = 0; 355 type->regions[0].size = 0; 356 type->regions[0].flags = 0; 357 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 358 } 359 } 360 361 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK 362 /** 363 * memblock_discard - discard memory and reserved arrays if they were allocated 364 */ 365 void __init memblock_discard(void) 366 { 367 phys_addr_t addr, size; 368 369 if (memblock.reserved.regions != memblock_reserved_init_regions) { 370 addr = __pa(memblock.reserved.regions); 371 size = PAGE_ALIGN(sizeof(struct memblock_region) * 372 memblock.reserved.max); 373 if (memblock_reserved_in_slab) 374 kfree(memblock.reserved.regions); 375 else 376 memblock_free_late(addr, size); 377 } 378 379 if (memblock.memory.regions != memblock_memory_init_regions) { 380 addr = __pa(memblock.memory.regions); 381 size = PAGE_ALIGN(sizeof(struct memblock_region) * 382 memblock.memory.max); 383 if (memblock_memory_in_slab) 384 kfree(memblock.memory.regions); 385 else 386 memblock_free_late(addr, size); 387 } 388 389 memblock_memory = NULL; 390 } 391 #endif 392 393 /** 394 * memblock_double_array - double the size of the memblock regions array 395 * @type: memblock type of the regions array being doubled 396 * @new_area_start: starting address of memory range to avoid overlap with 397 * @new_area_size: size of memory range to avoid overlap with 398 * 399 * Double the size of the @type regions array. If memblock is being used to 400 * allocate memory for a new reserved regions array and there is a previously 401 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 402 * waiting to be reserved, ensure the memory used by the new array does 403 * not overlap. 404 * 405 * Return: 406 * 0 on success, -1 on failure. 407 */ 408 static int __init_memblock memblock_double_array(struct memblock_type *type, 409 phys_addr_t new_area_start, 410 phys_addr_t new_area_size) 411 { 412 struct memblock_region *new_array, *old_array; 413 phys_addr_t old_alloc_size, new_alloc_size; 414 phys_addr_t old_size, new_size, addr, new_end; 415 int use_slab = slab_is_available(); 416 int *in_slab; 417 418 /* We don't allow resizing until we know about the reserved regions 419 * of memory that aren't suitable for allocation 420 */ 421 if (!memblock_can_resize) 422 return -1; 423 424 /* Calculate new doubled size */ 425 old_size = type->max * sizeof(struct memblock_region); 426 new_size = old_size << 1; 427 /* 428 * We need to allocated new one align to PAGE_SIZE, 429 * so we can free them completely later. 430 */ 431 old_alloc_size = PAGE_ALIGN(old_size); 432 new_alloc_size = PAGE_ALIGN(new_size); 433 434 /* Retrieve the slab flag */ 435 if (type == &memblock.memory) 436 in_slab = &memblock_memory_in_slab; 437 else 438 in_slab = &memblock_reserved_in_slab; 439 440 /* Try to find some space for it */ 441 if (use_slab) { 442 new_array = kmalloc(new_size, GFP_KERNEL); 443 addr = new_array ? __pa(new_array) : 0; 444 } else { 445 /* only exclude range when trying to double reserved.regions */ 446 if (type != &memblock.reserved) 447 new_area_start = new_area_size = 0; 448 449 addr = memblock_find_in_range(new_area_start + new_area_size, 450 memblock.current_limit, 451 new_alloc_size, PAGE_SIZE); 452 if (!addr && new_area_size) 453 addr = memblock_find_in_range(0, 454 min(new_area_start, memblock.current_limit), 455 new_alloc_size, PAGE_SIZE); 456 457 new_array = addr ? __va(addr) : NULL; 458 } 459 if (!addr) { 460 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 461 type->name, type->max, type->max * 2); 462 return -1; 463 } 464 465 new_end = addr + new_size - 1; 466 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 467 type->name, type->max * 2, &addr, &new_end); 468 469 /* 470 * Found space, we now need to move the array over before we add the 471 * reserved region since it may be our reserved array itself that is 472 * full. 473 */ 474 memcpy(new_array, type->regions, old_size); 475 memset(new_array + type->max, 0, old_size); 476 old_array = type->regions; 477 type->regions = new_array; 478 type->max <<= 1; 479 480 /* Free old array. We needn't free it if the array is the static one */ 481 if (*in_slab) 482 kfree(old_array); 483 else if (old_array != memblock_memory_init_regions && 484 old_array != memblock_reserved_init_regions) 485 memblock_free(old_array, old_alloc_size); 486 487 /* 488 * Reserve the new array if that comes from the memblock. Otherwise, we 489 * needn't do it 490 */ 491 if (!use_slab) 492 BUG_ON(memblock_reserve(addr, new_alloc_size)); 493 494 /* Update slab flag */ 495 *in_slab = use_slab; 496 497 return 0; 498 } 499 500 /** 501 * memblock_merge_regions - merge neighboring compatible regions 502 * @type: memblock type to scan 503 * 504 * Scan @type and merge neighboring compatible regions. 505 */ 506 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 507 { 508 int i = 0; 509 510 /* cnt never goes below 1 */ 511 while (i < type->cnt - 1) { 512 struct memblock_region *this = &type->regions[i]; 513 struct memblock_region *next = &type->regions[i + 1]; 514 515 if (this->base + this->size != next->base || 516 memblock_get_region_node(this) != 517 memblock_get_region_node(next) || 518 this->flags != next->flags) { 519 BUG_ON(this->base + this->size > next->base); 520 i++; 521 continue; 522 } 523 524 this->size += next->size; 525 /* move forward from next + 1, index of which is i + 2 */ 526 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 527 type->cnt--; 528 } 529 } 530 531 /** 532 * memblock_insert_region - insert new memblock region 533 * @type: memblock type to insert into 534 * @idx: index for the insertion point 535 * @base: base address of the new region 536 * @size: size of the new region 537 * @nid: node id of the new region 538 * @flags: flags of the new region 539 * 540 * Insert new memblock region [@base, @base + @size) into @type at @idx. 541 * @type must already have extra room to accommodate the new region. 542 */ 543 static void __init_memblock memblock_insert_region(struct memblock_type *type, 544 int idx, phys_addr_t base, 545 phys_addr_t size, 546 int nid, 547 enum memblock_flags flags) 548 { 549 struct memblock_region *rgn = &type->regions[idx]; 550 551 BUG_ON(type->cnt >= type->max); 552 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 553 rgn->base = base; 554 rgn->size = size; 555 rgn->flags = flags; 556 memblock_set_region_node(rgn, nid); 557 type->cnt++; 558 type->total_size += size; 559 } 560 561 /** 562 * memblock_add_range - add new memblock region 563 * @type: memblock type to add new region into 564 * @base: base address of the new region 565 * @size: size of the new region 566 * @nid: nid of the new region 567 * @flags: flags of the new region 568 * 569 * Add new memblock region [@base, @base + @size) into @type. The new region 570 * is allowed to overlap with existing ones - overlaps don't affect already 571 * existing regions. @type is guaranteed to be minimal (all neighbouring 572 * compatible regions are merged) after the addition. 573 * 574 * Return: 575 * 0 on success, -errno on failure. 576 */ 577 static int __init_memblock memblock_add_range(struct memblock_type *type, 578 phys_addr_t base, phys_addr_t size, 579 int nid, enum memblock_flags flags) 580 { 581 bool insert = false; 582 phys_addr_t obase = base; 583 phys_addr_t end = base + memblock_cap_size(base, &size); 584 int idx, nr_new; 585 struct memblock_region *rgn; 586 587 if (!size) 588 return 0; 589 590 /* special case for empty array */ 591 if (type->regions[0].size == 0) { 592 WARN_ON(type->cnt != 1 || type->total_size); 593 type->regions[0].base = base; 594 type->regions[0].size = size; 595 type->regions[0].flags = flags; 596 memblock_set_region_node(&type->regions[0], nid); 597 type->total_size = size; 598 return 0; 599 } 600 repeat: 601 /* 602 * The following is executed twice. Once with %false @insert and 603 * then with %true. The first counts the number of regions needed 604 * to accommodate the new area. The second actually inserts them. 605 */ 606 base = obase; 607 nr_new = 0; 608 609 for_each_memblock_type(idx, type, rgn) { 610 phys_addr_t rbase = rgn->base; 611 phys_addr_t rend = rbase + rgn->size; 612 613 if (rbase >= end) 614 break; 615 if (rend <= base) 616 continue; 617 /* 618 * @rgn overlaps. If it separates the lower part of new 619 * area, insert that portion. 620 */ 621 if (rbase > base) { 622 #ifdef CONFIG_NUMA 623 WARN_ON(nid != memblock_get_region_node(rgn)); 624 #endif 625 WARN_ON(flags != rgn->flags); 626 nr_new++; 627 if (insert) 628 memblock_insert_region(type, idx++, base, 629 rbase - base, nid, 630 flags); 631 } 632 /* area below @rend is dealt with, forget about it */ 633 base = min(rend, end); 634 } 635 636 /* insert the remaining portion */ 637 if (base < end) { 638 nr_new++; 639 if (insert) 640 memblock_insert_region(type, idx, base, end - base, 641 nid, flags); 642 } 643 644 if (!nr_new) 645 return 0; 646 647 /* 648 * If this was the first round, resize array and repeat for actual 649 * insertions; otherwise, merge and return. 650 */ 651 if (!insert) { 652 while (type->cnt + nr_new > type->max) 653 if (memblock_double_array(type, obase, size) < 0) 654 return -ENOMEM; 655 insert = true; 656 goto repeat; 657 } else { 658 memblock_merge_regions(type); 659 return 0; 660 } 661 } 662 663 /** 664 * memblock_add_node - add new memblock region within a NUMA node 665 * @base: base address of the new region 666 * @size: size of the new region 667 * @nid: nid of the new region 668 * @flags: flags of the new region 669 * 670 * Add new memblock region [@base, @base + @size) to the "memory" 671 * type. See memblock_add_range() description for mode details 672 * 673 * Return: 674 * 0 on success, -errno on failure. 675 */ 676 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 677 int nid, enum memblock_flags flags) 678 { 679 phys_addr_t end = base + size - 1; 680 681 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__, 682 &base, &end, nid, flags, (void *)_RET_IP_); 683 684 return memblock_add_range(&memblock.memory, base, size, nid, flags); 685 } 686 687 /** 688 * memblock_add - add new memblock region 689 * @base: base address of the new region 690 * @size: size of the new region 691 * 692 * Add new memblock region [@base, @base + @size) to the "memory" 693 * type. See memblock_add_range() description for mode details 694 * 695 * Return: 696 * 0 on success, -errno on failure. 697 */ 698 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 699 { 700 phys_addr_t end = base + size - 1; 701 702 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 703 &base, &end, (void *)_RET_IP_); 704 705 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 706 } 707 708 /** 709 * memblock_isolate_range - isolate given range into disjoint memblocks 710 * @type: memblock type to isolate range for 711 * @base: base of range to isolate 712 * @size: size of range to isolate 713 * @start_rgn: out parameter for the start of isolated region 714 * @end_rgn: out parameter for the end of isolated region 715 * 716 * Walk @type and ensure that regions don't cross the boundaries defined by 717 * [@base, @base + @size). Crossing regions are split at the boundaries, 718 * which may create at most two more regions. The index of the first 719 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 720 * 721 * Return: 722 * 0 on success, -errno on failure. 723 */ 724 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 725 phys_addr_t base, phys_addr_t size, 726 int *start_rgn, int *end_rgn) 727 { 728 phys_addr_t end = base + memblock_cap_size(base, &size); 729 int idx; 730 struct memblock_region *rgn; 731 732 *start_rgn = *end_rgn = 0; 733 734 if (!size) 735 return 0; 736 737 /* we'll create at most two more regions */ 738 while (type->cnt + 2 > type->max) 739 if (memblock_double_array(type, base, size) < 0) 740 return -ENOMEM; 741 742 for_each_memblock_type(idx, type, rgn) { 743 phys_addr_t rbase = rgn->base; 744 phys_addr_t rend = rbase + rgn->size; 745 746 if (rbase >= end) 747 break; 748 if (rend <= base) 749 continue; 750 751 if (rbase < base) { 752 /* 753 * @rgn intersects from below. Split and continue 754 * to process the next region - the new top half. 755 */ 756 rgn->base = base; 757 rgn->size -= base - rbase; 758 type->total_size -= base - rbase; 759 memblock_insert_region(type, idx, rbase, base - rbase, 760 memblock_get_region_node(rgn), 761 rgn->flags); 762 } else if (rend > end) { 763 /* 764 * @rgn intersects from above. Split and redo the 765 * current region - the new bottom half. 766 */ 767 rgn->base = end; 768 rgn->size -= end - rbase; 769 type->total_size -= end - rbase; 770 memblock_insert_region(type, idx--, rbase, end - rbase, 771 memblock_get_region_node(rgn), 772 rgn->flags); 773 } else { 774 /* @rgn is fully contained, record it */ 775 if (!*end_rgn) 776 *start_rgn = idx; 777 *end_rgn = idx + 1; 778 } 779 } 780 781 return 0; 782 } 783 784 static int __init_memblock memblock_remove_range(struct memblock_type *type, 785 phys_addr_t base, phys_addr_t size) 786 { 787 int start_rgn, end_rgn; 788 int i, ret; 789 790 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 791 if (ret) 792 return ret; 793 794 for (i = end_rgn - 1; i >= start_rgn; i--) 795 memblock_remove_region(type, i); 796 return 0; 797 } 798 799 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 800 { 801 phys_addr_t end = base + size - 1; 802 803 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 804 &base, &end, (void *)_RET_IP_); 805 806 return memblock_remove_range(&memblock.memory, base, size); 807 } 808 809 /** 810 * memblock_free - free boot memory allocation 811 * @ptr: starting address of the boot memory allocation 812 * @size: size of the boot memory block in bytes 813 * 814 * Free boot memory block previously allocated by memblock_alloc_xx() API. 815 * The freeing memory will not be released to the buddy allocator. 816 */ 817 void __init_memblock memblock_free(void *ptr, size_t size) 818 { 819 if (ptr) 820 memblock_phys_free(__pa(ptr), size); 821 } 822 823 /** 824 * memblock_phys_free - free boot memory block 825 * @base: phys starting address of the boot memory block 826 * @size: size of the boot memory block in bytes 827 * 828 * Free boot memory block previously allocated by memblock_alloc_xx() API. 829 * The freeing memory will not be released to the buddy allocator. 830 */ 831 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size) 832 { 833 phys_addr_t end = base + size - 1; 834 835 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 836 &base, &end, (void *)_RET_IP_); 837 838 kmemleak_free_part_phys(base, size); 839 return memblock_remove_range(&memblock.reserved, base, size); 840 } 841 842 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 843 { 844 phys_addr_t end = base + size - 1; 845 846 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 847 &base, &end, (void *)_RET_IP_); 848 849 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 850 } 851 852 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 853 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) 854 { 855 phys_addr_t end = base + size - 1; 856 857 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 858 &base, &end, (void *)_RET_IP_); 859 860 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); 861 } 862 #endif 863 864 /** 865 * memblock_setclr_flag - set or clear flag for a memory region 866 * @base: base address of the region 867 * @size: size of the region 868 * @set: set or clear the flag 869 * @flag: the flag to update 870 * 871 * This function isolates region [@base, @base + @size), and sets/clears flag 872 * 873 * Return: 0 on success, -errno on failure. 874 */ 875 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 876 phys_addr_t size, int set, int flag) 877 { 878 struct memblock_type *type = &memblock.memory; 879 int i, ret, start_rgn, end_rgn; 880 881 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 882 if (ret) 883 return ret; 884 885 for (i = start_rgn; i < end_rgn; i++) { 886 struct memblock_region *r = &type->regions[i]; 887 888 if (set) 889 r->flags |= flag; 890 else 891 r->flags &= ~flag; 892 } 893 894 memblock_merge_regions(type); 895 return 0; 896 } 897 898 /** 899 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 900 * @base: the base phys addr of the region 901 * @size: the size of the region 902 * 903 * Return: 0 on success, -errno on failure. 904 */ 905 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 906 { 907 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 908 } 909 910 /** 911 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 912 * @base: the base phys addr of the region 913 * @size: the size of the region 914 * 915 * Return: 0 on success, -errno on failure. 916 */ 917 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 918 { 919 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 920 } 921 922 /** 923 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 924 * @base: the base phys addr of the region 925 * @size: the size of the region 926 * 927 * Return: 0 on success, -errno on failure. 928 */ 929 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 930 { 931 if (!mirrored_kernelcore) 932 return 0; 933 934 system_has_some_mirror = true; 935 936 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 937 } 938 939 /** 940 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 941 * @base: the base phys addr of the region 942 * @size: the size of the region 943 * 944 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the 945 * direct mapping of the physical memory. These regions will still be 946 * covered by the memory map. The struct page representing NOMAP memory 947 * frames in the memory map will be PageReserved() 948 * 949 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from 950 * memblock, the caller must inform kmemleak to ignore that memory 951 * 952 * Return: 0 on success, -errno on failure. 953 */ 954 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 955 { 956 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 957 } 958 959 /** 960 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 961 * @base: the base phys addr of the region 962 * @size: the size of the region 963 * 964 * Return: 0 on success, -errno on failure. 965 */ 966 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 967 { 968 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 969 } 970 971 static bool should_skip_region(struct memblock_type *type, 972 struct memblock_region *m, 973 int nid, int flags) 974 { 975 int m_nid = memblock_get_region_node(m); 976 977 /* we never skip regions when iterating memblock.reserved or physmem */ 978 if (type != memblock_memory) 979 return false; 980 981 /* only memory regions are associated with nodes, check it */ 982 if (nid != NUMA_NO_NODE && nid != m_nid) 983 return true; 984 985 /* skip hotpluggable memory regions if needed */ 986 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) && 987 !(flags & MEMBLOCK_HOTPLUG)) 988 return true; 989 990 /* if we want mirror memory skip non-mirror memory regions */ 991 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 992 return true; 993 994 /* skip nomap memory unless we were asked for it explicitly */ 995 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 996 return true; 997 998 /* skip driver-managed memory unless we were asked for it explicitly */ 999 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m)) 1000 return true; 1001 1002 return false; 1003 } 1004 1005 /** 1006 * __next_mem_range - next function for for_each_free_mem_range() etc. 1007 * @idx: pointer to u64 loop variable 1008 * @nid: node selector, %NUMA_NO_NODE for all nodes 1009 * @flags: pick from blocks based on memory attributes 1010 * @type_a: pointer to memblock_type from where the range is taken 1011 * @type_b: pointer to memblock_type which excludes memory from being taken 1012 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1013 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1014 * @out_nid: ptr to int for nid of the range, can be %NULL 1015 * 1016 * Find the first area from *@idx which matches @nid, fill the out 1017 * parameters, and update *@idx for the next iteration. The lower 32bit of 1018 * *@idx contains index into type_a and the upper 32bit indexes the 1019 * areas before each region in type_b. For example, if type_b regions 1020 * look like the following, 1021 * 1022 * 0:[0-16), 1:[32-48), 2:[128-130) 1023 * 1024 * The upper 32bit indexes the following regions. 1025 * 1026 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 1027 * 1028 * As both region arrays are sorted, the function advances the two indices 1029 * in lockstep and returns each intersection. 1030 */ 1031 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, 1032 struct memblock_type *type_a, 1033 struct memblock_type *type_b, phys_addr_t *out_start, 1034 phys_addr_t *out_end, int *out_nid) 1035 { 1036 int idx_a = *idx & 0xffffffff; 1037 int idx_b = *idx >> 32; 1038 1039 if (WARN_ONCE(nid == MAX_NUMNODES, 1040 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1041 nid = NUMA_NO_NODE; 1042 1043 for (; idx_a < type_a->cnt; idx_a++) { 1044 struct memblock_region *m = &type_a->regions[idx_a]; 1045 1046 phys_addr_t m_start = m->base; 1047 phys_addr_t m_end = m->base + m->size; 1048 int m_nid = memblock_get_region_node(m); 1049 1050 if (should_skip_region(type_a, m, nid, flags)) 1051 continue; 1052 1053 if (!type_b) { 1054 if (out_start) 1055 *out_start = m_start; 1056 if (out_end) 1057 *out_end = m_end; 1058 if (out_nid) 1059 *out_nid = m_nid; 1060 idx_a++; 1061 *idx = (u32)idx_a | (u64)idx_b << 32; 1062 return; 1063 } 1064 1065 /* scan areas before each reservation */ 1066 for (; idx_b < type_b->cnt + 1; idx_b++) { 1067 struct memblock_region *r; 1068 phys_addr_t r_start; 1069 phys_addr_t r_end; 1070 1071 r = &type_b->regions[idx_b]; 1072 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1073 r_end = idx_b < type_b->cnt ? 1074 r->base : PHYS_ADDR_MAX; 1075 1076 /* 1077 * if idx_b advanced past idx_a, 1078 * break out to advance idx_a 1079 */ 1080 if (r_start >= m_end) 1081 break; 1082 /* if the two regions intersect, we're done */ 1083 if (m_start < r_end) { 1084 if (out_start) 1085 *out_start = 1086 max(m_start, r_start); 1087 if (out_end) 1088 *out_end = min(m_end, r_end); 1089 if (out_nid) 1090 *out_nid = m_nid; 1091 /* 1092 * The region which ends first is 1093 * advanced for the next iteration. 1094 */ 1095 if (m_end <= r_end) 1096 idx_a++; 1097 else 1098 idx_b++; 1099 *idx = (u32)idx_a | (u64)idx_b << 32; 1100 return; 1101 } 1102 } 1103 } 1104 1105 /* signal end of iteration */ 1106 *idx = ULLONG_MAX; 1107 } 1108 1109 /** 1110 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1111 * 1112 * @idx: pointer to u64 loop variable 1113 * @nid: node selector, %NUMA_NO_NODE for all nodes 1114 * @flags: pick from blocks based on memory attributes 1115 * @type_a: pointer to memblock_type from where the range is taken 1116 * @type_b: pointer to memblock_type which excludes memory from being taken 1117 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1118 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1119 * @out_nid: ptr to int for nid of the range, can be %NULL 1120 * 1121 * Finds the next range from type_a which is not marked as unsuitable 1122 * in type_b. 1123 * 1124 * Reverse of __next_mem_range(). 1125 */ 1126 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1127 enum memblock_flags flags, 1128 struct memblock_type *type_a, 1129 struct memblock_type *type_b, 1130 phys_addr_t *out_start, 1131 phys_addr_t *out_end, int *out_nid) 1132 { 1133 int idx_a = *idx & 0xffffffff; 1134 int idx_b = *idx >> 32; 1135 1136 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1137 nid = NUMA_NO_NODE; 1138 1139 if (*idx == (u64)ULLONG_MAX) { 1140 idx_a = type_a->cnt - 1; 1141 if (type_b != NULL) 1142 idx_b = type_b->cnt; 1143 else 1144 idx_b = 0; 1145 } 1146 1147 for (; idx_a >= 0; idx_a--) { 1148 struct memblock_region *m = &type_a->regions[idx_a]; 1149 1150 phys_addr_t m_start = m->base; 1151 phys_addr_t m_end = m->base + m->size; 1152 int m_nid = memblock_get_region_node(m); 1153 1154 if (should_skip_region(type_a, m, nid, flags)) 1155 continue; 1156 1157 if (!type_b) { 1158 if (out_start) 1159 *out_start = m_start; 1160 if (out_end) 1161 *out_end = m_end; 1162 if (out_nid) 1163 *out_nid = m_nid; 1164 idx_a--; 1165 *idx = (u32)idx_a | (u64)idx_b << 32; 1166 return; 1167 } 1168 1169 /* scan areas before each reservation */ 1170 for (; idx_b >= 0; idx_b--) { 1171 struct memblock_region *r; 1172 phys_addr_t r_start; 1173 phys_addr_t r_end; 1174 1175 r = &type_b->regions[idx_b]; 1176 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1177 r_end = idx_b < type_b->cnt ? 1178 r->base : PHYS_ADDR_MAX; 1179 /* 1180 * if idx_b advanced past idx_a, 1181 * break out to advance idx_a 1182 */ 1183 1184 if (r_end <= m_start) 1185 break; 1186 /* if the two regions intersect, we're done */ 1187 if (m_end > r_start) { 1188 if (out_start) 1189 *out_start = max(m_start, r_start); 1190 if (out_end) 1191 *out_end = min(m_end, r_end); 1192 if (out_nid) 1193 *out_nid = m_nid; 1194 if (m_start >= r_start) 1195 idx_a--; 1196 else 1197 idx_b--; 1198 *idx = (u32)idx_a | (u64)idx_b << 32; 1199 return; 1200 } 1201 } 1202 } 1203 /* signal end of iteration */ 1204 *idx = ULLONG_MAX; 1205 } 1206 1207 /* 1208 * Common iterator interface used to define for_each_mem_pfn_range(). 1209 */ 1210 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1211 unsigned long *out_start_pfn, 1212 unsigned long *out_end_pfn, int *out_nid) 1213 { 1214 struct memblock_type *type = &memblock.memory; 1215 struct memblock_region *r; 1216 int r_nid; 1217 1218 while (++*idx < type->cnt) { 1219 r = &type->regions[*idx]; 1220 r_nid = memblock_get_region_node(r); 1221 1222 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1223 continue; 1224 if (nid == MAX_NUMNODES || nid == r_nid) 1225 break; 1226 } 1227 if (*idx >= type->cnt) { 1228 *idx = -1; 1229 return; 1230 } 1231 1232 if (out_start_pfn) 1233 *out_start_pfn = PFN_UP(r->base); 1234 if (out_end_pfn) 1235 *out_end_pfn = PFN_DOWN(r->base + r->size); 1236 if (out_nid) 1237 *out_nid = r_nid; 1238 } 1239 1240 /** 1241 * memblock_set_node - set node ID on memblock regions 1242 * @base: base of area to set node ID for 1243 * @size: size of area to set node ID for 1244 * @type: memblock type to set node ID for 1245 * @nid: node ID to set 1246 * 1247 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1248 * Regions which cross the area boundaries are split as necessary. 1249 * 1250 * Return: 1251 * 0 on success, -errno on failure. 1252 */ 1253 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1254 struct memblock_type *type, int nid) 1255 { 1256 #ifdef CONFIG_NUMA 1257 int start_rgn, end_rgn; 1258 int i, ret; 1259 1260 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1261 if (ret) 1262 return ret; 1263 1264 for (i = start_rgn; i < end_rgn; i++) 1265 memblock_set_region_node(&type->regions[i], nid); 1266 1267 memblock_merge_regions(type); 1268 #endif 1269 return 0; 1270 } 1271 1272 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1273 /** 1274 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() 1275 * 1276 * @idx: pointer to u64 loop variable 1277 * @zone: zone in which all of the memory blocks reside 1278 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL 1279 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL 1280 * 1281 * This function is meant to be a zone/pfn specific wrapper for the 1282 * for_each_mem_range type iterators. Specifically they are used in the 1283 * deferred memory init routines and as such we were duplicating much of 1284 * this logic throughout the code. So instead of having it in multiple 1285 * locations it seemed like it would make more sense to centralize this to 1286 * one new iterator that does everything they need. 1287 */ 1288 void __init_memblock 1289 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 1290 unsigned long *out_spfn, unsigned long *out_epfn) 1291 { 1292 int zone_nid = zone_to_nid(zone); 1293 phys_addr_t spa, epa; 1294 1295 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1296 &memblock.memory, &memblock.reserved, 1297 &spa, &epa, NULL); 1298 1299 while (*idx != U64_MAX) { 1300 unsigned long epfn = PFN_DOWN(epa); 1301 unsigned long spfn = PFN_UP(spa); 1302 1303 /* 1304 * Verify the end is at least past the start of the zone and 1305 * that we have at least one PFN to initialize. 1306 */ 1307 if (zone->zone_start_pfn < epfn && spfn < epfn) { 1308 /* if we went too far just stop searching */ 1309 if (zone_end_pfn(zone) <= spfn) { 1310 *idx = U64_MAX; 1311 break; 1312 } 1313 1314 if (out_spfn) 1315 *out_spfn = max(zone->zone_start_pfn, spfn); 1316 if (out_epfn) 1317 *out_epfn = min(zone_end_pfn(zone), epfn); 1318 1319 return; 1320 } 1321 1322 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1323 &memblock.memory, &memblock.reserved, 1324 &spa, &epa, NULL); 1325 } 1326 1327 /* signal end of iteration */ 1328 if (out_spfn) 1329 *out_spfn = ULONG_MAX; 1330 if (out_epfn) 1331 *out_epfn = 0; 1332 } 1333 1334 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1335 1336 /** 1337 * memblock_alloc_range_nid - allocate boot memory block 1338 * @size: size of memory block to be allocated in bytes 1339 * @align: alignment of the region and block's size 1340 * @start: the lower bound of the memory region to allocate (phys address) 1341 * @end: the upper bound of the memory region to allocate (phys address) 1342 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1343 * @exact_nid: control the allocation fall back to other nodes 1344 * 1345 * The allocation is performed from memory region limited by 1346 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. 1347 * 1348 * If the specified node can not hold the requested memory and @exact_nid 1349 * is false, the allocation falls back to any node in the system. 1350 * 1351 * For systems with memory mirroring, the allocation is attempted first 1352 * from the regions with mirroring enabled and then retried from any 1353 * memory region. 1354 * 1355 * In addition, function using kmemleak_alloc_phys for allocated boot 1356 * memory block, it is never reported as leaks. 1357 * 1358 * Return: 1359 * Physical address of allocated memory block on success, %0 on failure. 1360 */ 1361 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1362 phys_addr_t align, phys_addr_t start, 1363 phys_addr_t end, int nid, 1364 bool exact_nid) 1365 { 1366 enum memblock_flags flags = choose_memblock_flags(); 1367 phys_addr_t found; 1368 1369 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1370 nid = NUMA_NO_NODE; 1371 1372 if (!align) { 1373 /* Can't use WARNs this early in boot on powerpc */ 1374 dump_stack(); 1375 align = SMP_CACHE_BYTES; 1376 } 1377 1378 again: 1379 found = memblock_find_in_range_node(size, align, start, end, nid, 1380 flags); 1381 if (found && !memblock_reserve(found, size)) 1382 goto done; 1383 1384 if (nid != NUMA_NO_NODE && !exact_nid) { 1385 found = memblock_find_in_range_node(size, align, start, 1386 end, NUMA_NO_NODE, 1387 flags); 1388 if (found && !memblock_reserve(found, size)) 1389 goto done; 1390 } 1391 1392 if (flags & MEMBLOCK_MIRROR) { 1393 flags &= ~MEMBLOCK_MIRROR; 1394 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", 1395 &size); 1396 goto again; 1397 } 1398 1399 return 0; 1400 1401 done: 1402 /* 1403 * Skip kmemleak for those places like kasan_init() and 1404 * early_pgtable_alloc() due to high volume. 1405 */ 1406 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE) 1407 /* 1408 * Memblock allocated blocks are never reported as 1409 * leaks. This is because many of these blocks are 1410 * only referred via the physical address which is 1411 * not looked up by kmemleak. 1412 */ 1413 kmemleak_alloc_phys(found, size, 0); 1414 1415 return found; 1416 } 1417 1418 /** 1419 * memblock_phys_alloc_range - allocate a memory block inside specified range 1420 * @size: size of memory block to be allocated in bytes 1421 * @align: alignment of the region and block's size 1422 * @start: the lower bound of the memory region to allocate (physical address) 1423 * @end: the upper bound of the memory region to allocate (physical address) 1424 * 1425 * Allocate @size bytes in the between @start and @end. 1426 * 1427 * Return: physical address of the allocated memory block on success, 1428 * %0 on failure. 1429 */ 1430 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, 1431 phys_addr_t align, 1432 phys_addr_t start, 1433 phys_addr_t end) 1434 { 1435 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n", 1436 __func__, (u64)size, (u64)align, &start, &end, 1437 (void *)_RET_IP_); 1438 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1439 false); 1440 } 1441 1442 /** 1443 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node 1444 * @size: size of memory block to be allocated in bytes 1445 * @align: alignment of the region and block's size 1446 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1447 * 1448 * Allocates memory block from the specified NUMA node. If the node 1449 * has no available memory, attempts to allocated from any node in the 1450 * system. 1451 * 1452 * Return: physical address of the allocated memory block on success, 1453 * %0 on failure. 1454 */ 1455 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1456 { 1457 return memblock_alloc_range_nid(size, align, 0, 1458 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); 1459 } 1460 1461 /** 1462 * memblock_alloc_internal - allocate boot memory block 1463 * @size: size of memory block to be allocated in bytes 1464 * @align: alignment of the region and block's size 1465 * @min_addr: the lower bound of the memory region to allocate (phys address) 1466 * @max_addr: the upper bound of the memory region to allocate (phys address) 1467 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1468 * @exact_nid: control the allocation fall back to other nodes 1469 * 1470 * Allocates memory block using memblock_alloc_range_nid() and 1471 * converts the returned physical address to virtual. 1472 * 1473 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1474 * will fall back to memory below @min_addr. Other constraints, such 1475 * as node and mirrored memory will be handled again in 1476 * memblock_alloc_range_nid(). 1477 * 1478 * Return: 1479 * Virtual address of allocated memory block on success, NULL on failure. 1480 */ 1481 static void * __init memblock_alloc_internal( 1482 phys_addr_t size, phys_addr_t align, 1483 phys_addr_t min_addr, phys_addr_t max_addr, 1484 int nid, bool exact_nid) 1485 { 1486 phys_addr_t alloc; 1487 1488 /* 1489 * Detect any accidental use of these APIs after slab is ready, as at 1490 * this moment memblock may be deinitialized already and its 1491 * internal data may be destroyed (after execution of memblock_free_all) 1492 */ 1493 if (WARN_ON_ONCE(slab_is_available())) 1494 return kzalloc_node(size, GFP_NOWAIT, nid); 1495 1496 if (max_addr > memblock.current_limit) 1497 max_addr = memblock.current_limit; 1498 1499 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, 1500 exact_nid); 1501 1502 /* retry allocation without lower limit */ 1503 if (!alloc && min_addr) 1504 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, 1505 exact_nid); 1506 1507 if (!alloc) 1508 return NULL; 1509 1510 return phys_to_virt(alloc); 1511 } 1512 1513 /** 1514 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node 1515 * without zeroing memory 1516 * @size: size of memory block to be allocated in bytes 1517 * @align: alignment of the region and block's size 1518 * @min_addr: the lower bound of the memory region from where the allocation 1519 * is preferred (phys address) 1520 * @max_addr: the upper bound of the memory region from where the allocation 1521 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1522 * allocate only from memory limited by memblock.current_limit value 1523 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1524 * 1525 * Public function, provides additional debug information (including caller 1526 * info), if enabled. Does not zero allocated memory. 1527 * 1528 * Return: 1529 * Virtual address of allocated memory block on success, NULL on failure. 1530 */ 1531 void * __init memblock_alloc_exact_nid_raw( 1532 phys_addr_t size, phys_addr_t align, 1533 phys_addr_t min_addr, phys_addr_t max_addr, 1534 int nid) 1535 { 1536 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1537 __func__, (u64)size, (u64)align, nid, &min_addr, 1538 &max_addr, (void *)_RET_IP_); 1539 1540 return memblock_alloc_internal(size, align, min_addr, max_addr, nid, 1541 true); 1542 } 1543 1544 /** 1545 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing 1546 * memory and without panicking 1547 * @size: size of memory block to be allocated in bytes 1548 * @align: alignment of the region and block's size 1549 * @min_addr: the lower bound of the memory region from where the allocation 1550 * is preferred (phys address) 1551 * @max_addr: the upper bound of the memory region from where the allocation 1552 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1553 * allocate only from memory limited by memblock.current_limit value 1554 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1555 * 1556 * Public function, provides additional debug information (including caller 1557 * info), if enabled. Does not zero allocated memory, does not panic if request 1558 * cannot be satisfied. 1559 * 1560 * Return: 1561 * Virtual address of allocated memory block on success, NULL on failure. 1562 */ 1563 void * __init memblock_alloc_try_nid_raw( 1564 phys_addr_t size, phys_addr_t align, 1565 phys_addr_t min_addr, phys_addr_t max_addr, 1566 int nid) 1567 { 1568 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1569 __func__, (u64)size, (u64)align, nid, &min_addr, 1570 &max_addr, (void *)_RET_IP_); 1571 1572 return memblock_alloc_internal(size, align, min_addr, max_addr, nid, 1573 false); 1574 } 1575 1576 /** 1577 * memblock_alloc_try_nid - allocate boot memory block 1578 * @size: size of memory block to be allocated in bytes 1579 * @align: alignment of the region and block's size 1580 * @min_addr: the lower bound of the memory region from where the allocation 1581 * is preferred (phys address) 1582 * @max_addr: the upper bound of the memory region from where the allocation 1583 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1584 * allocate only from memory limited by memblock.current_limit value 1585 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1586 * 1587 * Public function, provides additional debug information (including caller 1588 * info), if enabled. This function zeroes the allocated memory. 1589 * 1590 * Return: 1591 * Virtual address of allocated memory block on success, NULL on failure. 1592 */ 1593 void * __init memblock_alloc_try_nid( 1594 phys_addr_t size, phys_addr_t align, 1595 phys_addr_t min_addr, phys_addr_t max_addr, 1596 int nid) 1597 { 1598 void *ptr; 1599 1600 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1601 __func__, (u64)size, (u64)align, nid, &min_addr, 1602 &max_addr, (void *)_RET_IP_); 1603 ptr = memblock_alloc_internal(size, align, 1604 min_addr, max_addr, nid, false); 1605 if (ptr) 1606 memset(ptr, 0, size); 1607 1608 return ptr; 1609 } 1610 1611 /** 1612 * memblock_free_late - free pages directly to buddy allocator 1613 * @base: phys starting address of the boot memory block 1614 * @size: size of the boot memory block in bytes 1615 * 1616 * This is only useful when the memblock allocator has already been torn 1617 * down, but we are still initializing the system. Pages are released directly 1618 * to the buddy allocator. 1619 */ 1620 void __init memblock_free_late(phys_addr_t base, phys_addr_t size) 1621 { 1622 phys_addr_t cursor, end; 1623 1624 end = base + size - 1; 1625 memblock_dbg("%s: [%pa-%pa] %pS\n", 1626 __func__, &base, &end, (void *)_RET_IP_); 1627 kmemleak_free_part_phys(base, size); 1628 cursor = PFN_UP(base); 1629 end = PFN_DOWN(base + size); 1630 1631 for (; cursor < end; cursor++) { 1632 memblock_free_pages(pfn_to_page(cursor), cursor, 0); 1633 totalram_pages_inc(); 1634 } 1635 } 1636 1637 /* 1638 * Remaining API functions 1639 */ 1640 1641 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1642 { 1643 return memblock.memory.total_size; 1644 } 1645 1646 phys_addr_t __init_memblock memblock_reserved_size(void) 1647 { 1648 return memblock.reserved.total_size; 1649 } 1650 1651 /* lowest address */ 1652 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1653 { 1654 return memblock.memory.regions[0].base; 1655 } 1656 1657 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1658 { 1659 int idx = memblock.memory.cnt - 1; 1660 1661 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1662 } 1663 1664 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1665 { 1666 phys_addr_t max_addr = PHYS_ADDR_MAX; 1667 struct memblock_region *r; 1668 1669 /* 1670 * translate the memory @limit size into the max address within one of 1671 * the memory memblock regions, if the @limit exceeds the total size 1672 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1673 */ 1674 for_each_mem_region(r) { 1675 if (limit <= r->size) { 1676 max_addr = r->base + limit; 1677 break; 1678 } 1679 limit -= r->size; 1680 } 1681 1682 return max_addr; 1683 } 1684 1685 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1686 { 1687 phys_addr_t max_addr; 1688 1689 if (!limit) 1690 return; 1691 1692 max_addr = __find_max_addr(limit); 1693 1694 /* @limit exceeds the total size of the memory, do nothing */ 1695 if (max_addr == PHYS_ADDR_MAX) 1696 return; 1697 1698 /* truncate both memory and reserved regions */ 1699 memblock_remove_range(&memblock.memory, max_addr, 1700 PHYS_ADDR_MAX); 1701 memblock_remove_range(&memblock.reserved, max_addr, 1702 PHYS_ADDR_MAX); 1703 } 1704 1705 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1706 { 1707 int start_rgn, end_rgn; 1708 int i, ret; 1709 1710 if (!size) 1711 return; 1712 1713 if (!memblock_memory->total_size) { 1714 pr_warn("%s: No memory registered yet\n", __func__); 1715 return; 1716 } 1717 1718 ret = memblock_isolate_range(&memblock.memory, base, size, 1719 &start_rgn, &end_rgn); 1720 if (ret) 1721 return; 1722 1723 /* remove all the MAP regions */ 1724 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1725 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1726 memblock_remove_region(&memblock.memory, i); 1727 1728 for (i = start_rgn - 1; i >= 0; i--) 1729 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1730 memblock_remove_region(&memblock.memory, i); 1731 1732 /* truncate the reserved regions */ 1733 memblock_remove_range(&memblock.reserved, 0, base); 1734 memblock_remove_range(&memblock.reserved, 1735 base + size, PHYS_ADDR_MAX); 1736 } 1737 1738 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1739 { 1740 phys_addr_t max_addr; 1741 1742 if (!limit) 1743 return; 1744 1745 max_addr = __find_max_addr(limit); 1746 1747 /* @limit exceeds the total size of the memory, do nothing */ 1748 if (max_addr == PHYS_ADDR_MAX) 1749 return; 1750 1751 memblock_cap_memory_range(0, max_addr); 1752 } 1753 1754 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1755 { 1756 unsigned int left = 0, right = type->cnt; 1757 1758 do { 1759 unsigned int mid = (right + left) / 2; 1760 1761 if (addr < type->regions[mid].base) 1762 right = mid; 1763 else if (addr >= (type->regions[mid].base + 1764 type->regions[mid].size)) 1765 left = mid + 1; 1766 else 1767 return mid; 1768 } while (left < right); 1769 return -1; 1770 } 1771 1772 bool __init_memblock memblock_is_reserved(phys_addr_t addr) 1773 { 1774 return memblock_search(&memblock.reserved, addr) != -1; 1775 } 1776 1777 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1778 { 1779 return memblock_search(&memblock.memory, addr) != -1; 1780 } 1781 1782 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1783 { 1784 int i = memblock_search(&memblock.memory, addr); 1785 1786 if (i == -1) 1787 return false; 1788 return !memblock_is_nomap(&memblock.memory.regions[i]); 1789 } 1790 1791 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1792 unsigned long *start_pfn, unsigned long *end_pfn) 1793 { 1794 struct memblock_type *type = &memblock.memory; 1795 int mid = memblock_search(type, PFN_PHYS(pfn)); 1796 1797 if (mid == -1) 1798 return -1; 1799 1800 *start_pfn = PFN_DOWN(type->regions[mid].base); 1801 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1802 1803 return memblock_get_region_node(&type->regions[mid]); 1804 } 1805 1806 /** 1807 * memblock_is_region_memory - check if a region is a subset of memory 1808 * @base: base of region to check 1809 * @size: size of region to check 1810 * 1811 * Check if the region [@base, @base + @size) is a subset of a memory block. 1812 * 1813 * Return: 1814 * 0 if false, non-zero if true 1815 */ 1816 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1817 { 1818 int idx = memblock_search(&memblock.memory, base); 1819 phys_addr_t end = base + memblock_cap_size(base, &size); 1820 1821 if (idx == -1) 1822 return false; 1823 return (memblock.memory.regions[idx].base + 1824 memblock.memory.regions[idx].size) >= end; 1825 } 1826 1827 /** 1828 * memblock_is_region_reserved - check if a region intersects reserved memory 1829 * @base: base of region to check 1830 * @size: size of region to check 1831 * 1832 * Check if the region [@base, @base + @size) intersects a reserved 1833 * memory block. 1834 * 1835 * Return: 1836 * True if they intersect, false if not. 1837 */ 1838 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1839 { 1840 return memblock_overlaps_region(&memblock.reserved, base, size); 1841 } 1842 1843 void __init_memblock memblock_trim_memory(phys_addr_t align) 1844 { 1845 phys_addr_t start, end, orig_start, orig_end; 1846 struct memblock_region *r; 1847 1848 for_each_mem_region(r) { 1849 orig_start = r->base; 1850 orig_end = r->base + r->size; 1851 start = round_up(orig_start, align); 1852 end = round_down(orig_end, align); 1853 1854 if (start == orig_start && end == orig_end) 1855 continue; 1856 1857 if (start < end) { 1858 r->base = start; 1859 r->size = end - start; 1860 } else { 1861 memblock_remove_region(&memblock.memory, 1862 r - memblock.memory.regions); 1863 r--; 1864 } 1865 } 1866 } 1867 1868 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1869 { 1870 memblock.current_limit = limit; 1871 } 1872 1873 phys_addr_t __init_memblock memblock_get_current_limit(void) 1874 { 1875 return memblock.current_limit; 1876 } 1877 1878 static void __init_memblock memblock_dump(struct memblock_type *type) 1879 { 1880 phys_addr_t base, end, size; 1881 enum memblock_flags flags; 1882 int idx; 1883 struct memblock_region *rgn; 1884 1885 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1886 1887 for_each_memblock_type(idx, type, rgn) { 1888 char nid_buf[32] = ""; 1889 1890 base = rgn->base; 1891 size = rgn->size; 1892 end = base + size - 1; 1893 flags = rgn->flags; 1894 #ifdef CONFIG_NUMA 1895 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1896 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1897 memblock_get_region_node(rgn)); 1898 #endif 1899 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 1900 type->name, idx, &base, &end, &size, nid_buf, flags); 1901 } 1902 } 1903 1904 static void __init_memblock __memblock_dump_all(void) 1905 { 1906 pr_info("MEMBLOCK configuration:\n"); 1907 pr_info(" memory size = %pa reserved size = %pa\n", 1908 &memblock.memory.total_size, 1909 &memblock.reserved.total_size); 1910 1911 memblock_dump(&memblock.memory); 1912 memblock_dump(&memblock.reserved); 1913 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1914 memblock_dump(&physmem); 1915 #endif 1916 } 1917 1918 void __init_memblock memblock_dump_all(void) 1919 { 1920 if (memblock_debug) 1921 __memblock_dump_all(); 1922 } 1923 1924 void __init memblock_allow_resize(void) 1925 { 1926 memblock_can_resize = 1; 1927 } 1928 1929 static int __init early_memblock(char *p) 1930 { 1931 if (p && strstr(p, "debug")) 1932 memblock_debug = 1; 1933 return 0; 1934 } 1935 early_param("memblock", early_memblock); 1936 1937 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn) 1938 { 1939 struct page *start_pg, *end_pg; 1940 phys_addr_t pg, pgend; 1941 1942 /* 1943 * Convert start_pfn/end_pfn to a struct page pointer. 1944 */ 1945 start_pg = pfn_to_page(start_pfn - 1) + 1; 1946 end_pg = pfn_to_page(end_pfn - 1) + 1; 1947 1948 /* 1949 * Convert to physical addresses, and round start upwards and end 1950 * downwards. 1951 */ 1952 pg = PAGE_ALIGN(__pa(start_pg)); 1953 pgend = __pa(end_pg) & PAGE_MASK; 1954 1955 /* 1956 * If there are free pages between these, free the section of the 1957 * memmap array. 1958 */ 1959 if (pg < pgend) 1960 memblock_phys_free(pg, pgend - pg); 1961 } 1962 1963 /* 1964 * The mem_map array can get very big. Free the unused area of the memory map. 1965 */ 1966 static void __init free_unused_memmap(void) 1967 { 1968 unsigned long start, end, prev_end = 0; 1969 int i; 1970 1971 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) || 1972 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 1973 return; 1974 1975 /* 1976 * This relies on each bank being in address order. 1977 * The banks are sorted previously in bootmem_init(). 1978 */ 1979 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { 1980 #ifdef CONFIG_SPARSEMEM 1981 /* 1982 * Take care not to free memmap entries that don't exist 1983 * due to SPARSEMEM sections which aren't present. 1984 */ 1985 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 1986 #endif 1987 /* 1988 * Align down here since many operations in VM subsystem 1989 * presume that there are no holes in the memory map inside 1990 * a pageblock 1991 */ 1992 start = round_down(start, pageblock_nr_pages); 1993 1994 /* 1995 * If we had a previous bank, and there is a space 1996 * between the current bank and the previous, free it. 1997 */ 1998 if (prev_end && prev_end < start) 1999 free_memmap(prev_end, start); 2000 2001 /* 2002 * Align up here since many operations in VM subsystem 2003 * presume that there are no holes in the memory map inside 2004 * a pageblock 2005 */ 2006 prev_end = ALIGN(end, pageblock_nr_pages); 2007 } 2008 2009 #ifdef CONFIG_SPARSEMEM 2010 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) { 2011 prev_end = ALIGN(end, pageblock_nr_pages); 2012 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 2013 } 2014 #endif 2015 } 2016 2017 static void __init __free_pages_memory(unsigned long start, unsigned long end) 2018 { 2019 int order; 2020 2021 while (start < end) { 2022 order = min(MAX_ORDER - 1UL, __ffs(start)); 2023 2024 while (start + (1UL << order) > end) 2025 order--; 2026 2027 memblock_free_pages(pfn_to_page(start), start, order); 2028 2029 start += (1UL << order); 2030 } 2031 } 2032 2033 static unsigned long __init __free_memory_core(phys_addr_t start, 2034 phys_addr_t end) 2035 { 2036 unsigned long start_pfn = PFN_UP(start); 2037 unsigned long end_pfn = min_t(unsigned long, 2038 PFN_DOWN(end), max_low_pfn); 2039 2040 if (start_pfn >= end_pfn) 2041 return 0; 2042 2043 __free_pages_memory(start_pfn, end_pfn); 2044 2045 return end_pfn - start_pfn; 2046 } 2047 2048 static void __init memmap_init_reserved_pages(void) 2049 { 2050 struct memblock_region *region; 2051 phys_addr_t start, end; 2052 u64 i; 2053 2054 /* initialize struct pages for the reserved regions */ 2055 for_each_reserved_mem_range(i, &start, &end) 2056 reserve_bootmem_region(start, end); 2057 2058 /* and also treat struct pages for the NOMAP regions as PageReserved */ 2059 for_each_mem_region(region) { 2060 if (memblock_is_nomap(region)) { 2061 start = region->base; 2062 end = start + region->size; 2063 reserve_bootmem_region(start, end); 2064 } 2065 } 2066 } 2067 2068 static unsigned long __init free_low_memory_core_early(void) 2069 { 2070 unsigned long count = 0; 2071 phys_addr_t start, end; 2072 u64 i; 2073 2074 memblock_clear_hotplug(0, -1); 2075 2076 memmap_init_reserved_pages(); 2077 2078 /* 2079 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id 2080 * because in some case like Node0 doesn't have RAM installed 2081 * low ram will be on Node1 2082 */ 2083 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, 2084 NULL) 2085 count += __free_memory_core(start, end); 2086 2087 return count; 2088 } 2089 2090 static int reset_managed_pages_done __initdata; 2091 2092 void reset_node_managed_pages(pg_data_t *pgdat) 2093 { 2094 struct zone *z; 2095 2096 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 2097 atomic_long_set(&z->managed_pages, 0); 2098 } 2099 2100 void __init reset_all_zones_managed_pages(void) 2101 { 2102 struct pglist_data *pgdat; 2103 2104 if (reset_managed_pages_done) 2105 return; 2106 2107 for_each_online_pgdat(pgdat) 2108 reset_node_managed_pages(pgdat); 2109 2110 reset_managed_pages_done = 1; 2111 } 2112 2113 /** 2114 * memblock_free_all - release free pages to the buddy allocator 2115 */ 2116 void __init memblock_free_all(void) 2117 { 2118 unsigned long pages; 2119 2120 free_unused_memmap(); 2121 reset_all_zones_managed_pages(); 2122 2123 pages = free_low_memory_core_early(); 2124 totalram_pages_add(pages); 2125 } 2126 2127 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) 2128 2129 static int memblock_debug_show(struct seq_file *m, void *private) 2130 { 2131 struct memblock_type *type = m->private; 2132 struct memblock_region *reg; 2133 int i; 2134 phys_addr_t end; 2135 2136 for (i = 0; i < type->cnt; i++) { 2137 reg = &type->regions[i]; 2138 end = reg->base + reg->size - 1; 2139 2140 seq_printf(m, "%4d: ", i); 2141 seq_printf(m, "%pa..%pa\n", ®->base, &end); 2142 } 2143 return 0; 2144 } 2145 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 2146 2147 static int __init memblock_init_debugfs(void) 2148 { 2149 struct dentry *root = debugfs_create_dir("memblock", NULL); 2150 2151 debugfs_create_file("memory", 0444, root, 2152 &memblock.memory, &memblock_debug_fops); 2153 debugfs_create_file("reserved", 0444, root, 2154 &memblock.reserved, &memblock_debug_fops); 2155 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2156 debugfs_create_file("physmem", 0444, root, &physmem, 2157 &memblock_debug_fops); 2158 #endif 2159 2160 return 0; 2161 } 2162 __initcall(memblock_init_debugfs); 2163 2164 #endif /* CONFIG_DEBUG_FS */ 2165