xref: /openbmc/linux/mm/memblock.c (revision 6dfcd296)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22 
23 #include <asm/sections.h>
24 #include <linux/io.h>
25 
26 #include "internal.h"
27 
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33 
34 struct memblock memblock __initdata_memblock = {
35 	.memory.regions		= memblock_memory_init_regions,
36 	.memory.cnt		= 1,	/* empty dummy entry */
37 	.memory.max		= INIT_MEMBLOCK_REGIONS,
38 
39 	.reserved.regions	= memblock_reserved_init_regions,
40 	.reserved.cnt		= 1,	/* empty dummy entry */
41 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
42 
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 	.physmem.regions	= memblock_physmem_init_regions,
45 	.physmem.cnt		= 1,	/* empty dummy entry */
46 	.physmem.max		= INIT_PHYSMEM_REGIONS,
47 #endif
48 
49 	.bottom_up		= false,
50 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
51 };
52 
53 int memblock_debug __initdata_memblock;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock = false;
56 #endif
57 static bool system_has_some_mirror __initdata_memblock = false;
58 static int memblock_can_resize __initdata_memblock;
59 static int memblock_memory_in_slab __initdata_memblock = 0;
60 static int memblock_reserved_in_slab __initdata_memblock = 0;
61 
62 ulong __init_memblock choose_memblock_flags(void)
63 {
64 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
65 }
66 
67 /* inline so we don't get a warning when pr_debug is compiled out */
68 static __init_memblock const char *
69 memblock_type_name(struct memblock_type *type)
70 {
71 	if (type == &memblock.memory)
72 		return "memory";
73 	else if (type == &memblock.reserved)
74 		return "reserved";
75 	else
76 		return "unknown";
77 }
78 
79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
80 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
81 {
82 	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
83 }
84 
85 /*
86  * Address comparison utilities
87  */
88 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
89 				       phys_addr_t base2, phys_addr_t size2)
90 {
91 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
92 }
93 
94 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
95 					phys_addr_t base, phys_addr_t size)
96 {
97 	unsigned long i;
98 
99 	for (i = 0; i < type->cnt; i++)
100 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
101 					   type->regions[i].size))
102 			break;
103 	return i < type->cnt;
104 }
105 
106 /*
107  * __memblock_find_range_bottom_up - find free area utility in bottom-up
108  * @start: start of candidate range
109  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
110  * @size: size of free area to find
111  * @align: alignment of free area to find
112  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
113  * @flags: pick from blocks based on memory attributes
114  *
115  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
116  *
117  * RETURNS:
118  * Found address on success, 0 on failure.
119  */
120 static phys_addr_t __init_memblock
121 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
122 				phys_addr_t size, phys_addr_t align, int nid,
123 				ulong flags)
124 {
125 	phys_addr_t this_start, this_end, cand;
126 	u64 i;
127 
128 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
129 		this_start = clamp(this_start, start, end);
130 		this_end = clamp(this_end, start, end);
131 
132 		cand = round_up(this_start, align);
133 		if (cand < this_end && this_end - cand >= size)
134 			return cand;
135 	}
136 
137 	return 0;
138 }
139 
140 /**
141  * __memblock_find_range_top_down - find free area utility, in top-down
142  * @start: start of candidate range
143  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
144  * @size: size of free area to find
145  * @align: alignment of free area to find
146  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
147  * @flags: pick from blocks based on memory attributes
148  *
149  * Utility called from memblock_find_in_range_node(), find free area top-down.
150  *
151  * RETURNS:
152  * Found address on success, 0 on failure.
153  */
154 static phys_addr_t __init_memblock
155 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
156 			       phys_addr_t size, phys_addr_t align, int nid,
157 			       ulong flags)
158 {
159 	phys_addr_t this_start, this_end, cand;
160 	u64 i;
161 
162 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
163 					NULL) {
164 		this_start = clamp(this_start, start, end);
165 		this_end = clamp(this_end, start, end);
166 
167 		if (this_end < size)
168 			continue;
169 
170 		cand = round_down(this_end - size, align);
171 		if (cand >= this_start)
172 			return cand;
173 	}
174 
175 	return 0;
176 }
177 
178 /**
179  * memblock_find_in_range_node - find free area in given range and node
180  * @size: size of free area to find
181  * @align: alignment of free area to find
182  * @start: start of candidate range
183  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
184  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
185  * @flags: pick from blocks based on memory attributes
186  *
187  * Find @size free area aligned to @align in the specified range and node.
188  *
189  * When allocation direction is bottom-up, the @start should be greater
190  * than the end of the kernel image. Otherwise, it will be trimmed. The
191  * reason is that we want the bottom-up allocation just near the kernel
192  * image so it is highly likely that the allocated memory and the kernel
193  * will reside in the same node.
194  *
195  * If bottom-up allocation failed, will try to allocate memory top-down.
196  *
197  * RETURNS:
198  * Found address on success, 0 on failure.
199  */
200 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
201 					phys_addr_t align, phys_addr_t start,
202 					phys_addr_t end, int nid, ulong flags)
203 {
204 	phys_addr_t kernel_end, ret;
205 
206 	/* pump up @end */
207 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
208 		end = memblock.current_limit;
209 
210 	/* avoid allocating the first page */
211 	start = max_t(phys_addr_t, start, PAGE_SIZE);
212 	end = max(start, end);
213 	kernel_end = __pa_symbol(_end);
214 
215 	/*
216 	 * try bottom-up allocation only when bottom-up mode
217 	 * is set and @end is above the kernel image.
218 	 */
219 	if (memblock_bottom_up() && end > kernel_end) {
220 		phys_addr_t bottom_up_start;
221 
222 		/* make sure we will allocate above the kernel */
223 		bottom_up_start = max(start, kernel_end);
224 
225 		/* ok, try bottom-up allocation first */
226 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
227 						      size, align, nid, flags);
228 		if (ret)
229 			return ret;
230 
231 		/*
232 		 * we always limit bottom-up allocation above the kernel,
233 		 * but top-down allocation doesn't have the limit, so
234 		 * retrying top-down allocation may succeed when bottom-up
235 		 * allocation failed.
236 		 *
237 		 * bottom-up allocation is expected to be fail very rarely,
238 		 * so we use WARN_ONCE() here to see the stack trace if
239 		 * fail happens.
240 		 */
241 		WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
242 	}
243 
244 	return __memblock_find_range_top_down(start, end, size, align, nid,
245 					      flags);
246 }
247 
248 /**
249  * memblock_find_in_range - find free area in given range
250  * @start: start of candidate range
251  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
252  * @size: size of free area to find
253  * @align: alignment of free area to find
254  *
255  * Find @size free area aligned to @align in the specified range.
256  *
257  * RETURNS:
258  * Found address on success, 0 on failure.
259  */
260 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
261 					phys_addr_t end, phys_addr_t size,
262 					phys_addr_t align)
263 {
264 	phys_addr_t ret;
265 	ulong flags = choose_memblock_flags();
266 
267 again:
268 	ret = memblock_find_in_range_node(size, align, start, end,
269 					    NUMA_NO_NODE, flags);
270 
271 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
272 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
273 			&size);
274 		flags &= ~MEMBLOCK_MIRROR;
275 		goto again;
276 	}
277 
278 	return ret;
279 }
280 
281 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
282 {
283 	type->total_size -= type->regions[r].size;
284 	memmove(&type->regions[r], &type->regions[r + 1],
285 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
286 	type->cnt--;
287 
288 	/* Special case for empty arrays */
289 	if (type->cnt == 0) {
290 		WARN_ON(type->total_size != 0);
291 		type->cnt = 1;
292 		type->regions[0].base = 0;
293 		type->regions[0].size = 0;
294 		type->regions[0].flags = 0;
295 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
296 	}
297 }
298 
299 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
300 
301 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
302 					phys_addr_t *addr)
303 {
304 	if (memblock.reserved.regions == memblock_reserved_init_regions)
305 		return 0;
306 
307 	*addr = __pa(memblock.reserved.regions);
308 
309 	return PAGE_ALIGN(sizeof(struct memblock_region) *
310 			  memblock.reserved.max);
311 }
312 
313 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
314 					phys_addr_t *addr)
315 {
316 	if (memblock.memory.regions == memblock_memory_init_regions)
317 		return 0;
318 
319 	*addr = __pa(memblock.memory.regions);
320 
321 	return PAGE_ALIGN(sizeof(struct memblock_region) *
322 			  memblock.memory.max);
323 }
324 
325 #endif
326 
327 /**
328  * memblock_double_array - double the size of the memblock regions array
329  * @type: memblock type of the regions array being doubled
330  * @new_area_start: starting address of memory range to avoid overlap with
331  * @new_area_size: size of memory range to avoid overlap with
332  *
333  * Double the size of the @type regions array. If memblock is being used to
334  * allocate memory for a new reserved regions array and there is a previously
335  * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
336  * waiting to be reserved, ensure the memory used by the new array does
337  * not overlap.
338  *
339  * RETURNS:
340  * 0 on success, -1 on failure.
341  */
342 static int __init_memblock memblock_double_array(struct memblock_type *type,
343 						phys_addr_t new_area_start,
344 						phys_addr_t new_area_size)
345 {
346 	struct memblock_region *new_array, *old_array;
347 	phys_addr_t old_alloc_size, new_alloc_size;
348 	phys_addr_t old_size, new_size, addr;
349 	int use_slab = slab_is_available();
350 	int *in_slab;
351 
352 	/* We don't allow resizing until we know about the reserved regions
353 	 * of memory that aren't suitable for allocation
354 	 */
355 	if (!memblock_can_resize)
356 		return -1;
357 
358 	/* Calculate new doubled size */
359 	old_size = type->max * sizeof(struct memblock_region);
360 	new_size = old_size << 1;
361 	/*
362 	 * We need to allocated new one align to PAGE_SIZE,
363 	 *   so we can free them completely later.
364 	 */
365 	old_alloc_size = PAGE_ALIGN(old_size);
366 	new_alloc_size = PAGE_ALIGN(new_size);
367 
368 	/* Retrieve the slab flag */
369 	if (type == &memblock.memory)
370 		in_slab = &memblock_memory_in_slab;
371 	else
372 		in_slab = &memblock_reserved_in_slab;
373 
374 	/* Try to find some space for it.
375 	 *
376 	 * WARNING: We assume that either slab_is_available() and we use it or
377 	 * we use MEMBLOCK for allocations. That means that this is unsafe to
378 	 * use when bootmem is currently active (unless bootmem itself is
379 	 * implemented on top of MEMBLOCK which isn't the case yet)
380 	 *
381 	 * This should however not be an issue for now, as we currently only
382 	 * call into MEMBLOCK while it's still active, or much later when slab
383 	 * is active for memory hotplug operations
384 	 */
385 	if (use_slab) {
386 		new_array = kmalloc(new_size, GFP_KERNEL);
387 		addr = new_array ? __pa(new_array) : 0;
388 	} else {
389 		/* only exclude range when trying to double reserved.regions */
390 		if (type != &memblock.reserved)
391 			new_area_start = new_area_size = 0;
392 
393 		addr = memblock_find_in_range(new_area_start + new_area_size,
394 						memblock.current_limit,
395 						new_alloc_size, PAGE_SIZE);
396 		if (!addr && new_area_size)
397 			addr = memblock_find_in_range(0,
398 				min(new_area_start, memblock.current_limit),
399 				new_alloc_size, PAGE_SIZE);
400 
401 		new_array = addr ? __va(addr) : NULL;
402 	}
403 	if (!addr) {
404 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
405 		       memblock_type_name(type), type->max, type->max * 2);
406 		return -1;
407 	}
408 
409 	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
410 			memblock_type_name(type), type->max * 2, (u64)addr,
411 			(u64)addr + new_size - 1);
412 
413 	/*
414 	 * Found space, we now need to move the array over before we add the
415 	 * reserved region since it may be our reserved array itself that is
416 	 * full.
417 	 */
418 	memcpy(new_array, type->regions, old_size);
419 	memset(new_array + type->max, 0, old_size);
420 	old_array = type->regions;
421 	type->regions = new_array;
422 	type->max <<= 1;
423 
424 	/* Free old array. We needn't free it if the array is the static one */
425 	if (*in_slab)
426 		kfree(old_array);
427 	else if (old_array != memblock_memory_init_regions &&
428 		 old_array != memblock_reserved_init_regions)
429 		memblock_free(__pa(old_array), old_alloc_size);
430 
431 	/*
432 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
433 	 * needn't do it
434 	 */
435 	if (!use_slab)
436 		BUG_ON(memblock_reserve(addr, new_alloc_size));
437 
438 	/* Update slab flag */
439 	*in_slab = use_slab;
440 
441 	return 0;
442 }
443 
444 /**
445  * memblock_merge_regions - merge neighboring compatible regions
446  * @type: memblock type to scan
447  *
448  * Scan @type and merge neighboring compatible regions.
449  */
450 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
451 {
452 	int i = 0;
453 
454 	/* cnt never goes below 1 */
455 	while (i < type->cnt - 1) {
456 		struct memblock_region *this = &type->regions[i];
457 		struct memblock_region *next = &type->regions[i + 1];
458 
459 		if (this->base + this->size != next->base ||
460 		    memblock_get_region_node(this) !=
461 		    memblock_get_region_node(next) ||
462 		    this->flags != next->flags) {
463 			BUG_ON(this->base + this->size > next->base);
464 			i++;
465 			continue;
466 		}
467 
468 		this->size += next->size;
469 		/* move forward from next + 1, index of which is i + 2 */
470 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
471 		type->cnt--;
472 	}
473 }
474 
475 /**
476  * memblock_insert_region - insert new memblock region
477  * @type:	memblock type to insert into
478  * @idx:	index for the insertion point
479  * @base:	base address of the new region
480  * @size:	size of the new region
481  * @nid:	node id of the new region
482  * @flags:	flags of the new region
483  *
484  * Insert new memblock region [@base,@base+@size) into @type at @idx.
485  * @type must already have extra room to accommodate the new region.
486  */
487 static void __init_memblock memblock_insert_region(struct memblock_type *type,
488 						   int idx, phys_addr_t base,
489 						   phys_addr_t size,
490 						   int nid, unsigned long flags)
491 {
492 	struct memblock_region *rgn = &type->regions[idx];
493 
494 	BUG_ON(type->cnt >= type->max);
495 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
496 	rgn->base = base;
497 	rgn->size = size;
498 	rgn->flags = flags;
499 	memblock_set_region_node(rgn, nid);
500 	type->cnt++;
501 	type->total_size += size;
502 }
503 
504 /**
505  * memblock_add_range - add new memblock region
506  * @type: memblock type to add new region into
507  * @base: base address of the new region
508  * @size: size of the new region
509  * @nid: nid of the new region
510  * @flags: flags of the new region
511  *
512  * Add new memblock region [@base,@base+@size) into @type.  The new region
513  * is allowed to overlap with existing ones - overlaps don't affect already
514  * existing regions.  @type is guaranteed to be minimal (all neighbouring
515  * compatible regions are merged) after the addition.
516  *
517  * RETURNS:
518  * 0 on success, -errno on failure.
519  */
520 int __init_memblock memblock_add_range(struct memblock_type *type,
521 				phys_addr_t base, phys_addr_t size,
522 				int nid, unsigned long flags)
523 {
524 	bool insert = false;
525 	phys_addr_t obase = base;
526 	phys_addr_t end = base + memblock_cap_size(base, &size);
527 	int idx, nr_new;
528 	struct memblock_region *rgn;
529 
530 	if (!size)
531 		return 0;
532 
533 	/* special case for empty array */
534 	if (type->regions[0].size == 0) {
535 		WARN_ON(type->cnt != 1 || type->total_size);
536 		type->regions[0].base = base;
537 		type->regions[0].size = size;
538 		type->regions[0].flags = flags;
539 		memblock_set_region_node(&type->regions[0], nid);
540 		type->total_size = size;
541 		return 0;
542 	}
543 repeat:
544 	/*
545 	 * The following is executed twice.  Once with %false @insert and
546 	 * then with %true.  The first counts the number of regions needed
547 	 * to accommodate the new area.  The second actually inserts them.
548 	 */
549 	base = obase;
550 	nr_new = 0;
551 
552 	for_each_memblock_type(type, rgn) {
553 		phys_addr_t rbase = rgn->base;
554 		phys_addr_t rend = rbase + rgn->size;
555 
556 		if (rbase >= end)
557 			break;
558 		if (rend <= base)
559 			continue;
560 		/*
561 		 * @rgn overlaps.  If it separates the lower part of new
562 		 * area, insert that portion.
563 		 */
564 		if (rbase > base) {
565 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
566 			WARN_ON(nid != memblock_get_region_node(rgn));
567 #endif
568 			WARN_ON(flags != rgn->flags);
569 			nr_new++;
570 			if (insert)
571 				memblock_insert_region(type, idx++, base,
572 						       rbase - base, nid,
573 						       flags);
574 		}
575 		/* area below @rend is dealt with, forget about it */
576 		base = min(rend, end);
577 	}
578 
579 	/* insert the remaining portion */
580 	if (base < end) {
581 		nr_new++;
582 		if (insert)
583 			memblock_insert_region(type, idx, base, end - base,
584 					       nid, flags);
585 	}
586 
587 	if (!nr_new)
588 		return 0;
589 
590 	/*
591 	 * If this was the first round, resize array and repeat for actual
592 	 * insertions; otherwise, merge and return.
593 	 */
594 	if (!insert) {
595 		while (type->cnt + nr_new > type->max)
596 			if (memblock_double_array(type, obase, size) < 0)
597 				return -ENOMEM;
598 		insert = true;
599 		goto repeat;
600 	} else {
601 		memblock_merge_regions(type);
602 		return 0;
603 	}
604 }
605 
606 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
607 				       int nid)
608 {
609 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
610 }
611 
612 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
613 {
614 	memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
615 		     (unsigned long long)base,
616 		     (unsigned long long)base + size - 1,
617 		     0UL, (void *)_RET_IP_);
618 
619 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
620 }
621 
622 /**
623  * memblock_isolate_range - isolate given range into disjoint memblocks
624  * @type: memblock type to isolate range for
625  * @base: base of range to isolate
626  * @size: size of range to isolate
627  * @start_rgn: out parameter for the start of isolated region
628  * @end_rgn: out parameter for the end of isolated region
629  *
630  * Walk @type and ensure that regions don't cross the boundaries defined by
631  * [@base,@base+@size).  Crossing regions are split at the boundaries,
632  * which may create at most two more regions.  The index of the first
633  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
634  *
635  * RETURNS:
636  * 0 on success, -errno on failure.
637  */
638 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
639 					phys_addr_t base, phys_addr_t size,
640 					int *start_rgn, int *end_rgn)
641 {
642 	phys_addr_t end = base + memblock_cap_size(base, &size);
643 	int idx;
644 	struct memblock_region *rgn;
645 
646 	*start_rgn = *end_rgn = 0;
647 
648 	if (!size)
649 		return 0;
650 
651 	/* we'll create at most two more regions */
652 	while (type->cnt + 2 > type->max)
653 		if (memblock_double_array(type, base, size) < 0)
654 			return -ENOMEM;
655 
656 	for_each_memblock_type(type, rgn) {
657 		phys_addr_t rbase = rgn->base;
658 		phys_addr_t rend = rbase + rgn->size;
659 
660 		if (rbase >= end)
661 			break;
662 		if (rend <= base)
663 			continue;
664 
665 		if (rbase < base) {
666 			/*
667 			 * @rgn intersects from below.  Split and continue
668 			 * to process the next region - the new top half.
669 			 */
670 			rgn->base = base;
671 			rgn->size -= base - rbase;
672 			type->total_size -= base - rbase;
673 			memblock_insert_region(type, idx, rbase, base - rbase,
674 					       memblock_get_region_node(rgn),
675 					       rgn->flags);
676 		} else if (rend > end) {
677 			/*
678 			 * @rgn intersects from above.  Split and redo the
679 			 * current region - the new bottom half.
680 			 */
681 			rgn->base = end;
682 			rgn->size -= end - rbase;
683 			type->total_size -= end - rbase;
684 			memblock_insert_region(type, idx--, rbase, end - rbase,
685 					       memblock_get_region_node(rgn),
686 					       rgn->flags);
687 		} else {
688 			/* @rgn is fully contained, record it */
689 			if (!*end_rgn)
690 				*start_rgn = idx;
691 			*end_rgn = idx + 1;
692 		}
693 	}
694 
695 	return 0;
696 }
697 
698 static int __init_memblock memblock_remove_range(struct memblock_type *type,
699 					  phys_addr_t base, phys_addr_t size)
700 {
701 	int start_rgn, end_rgn;
702 	int i, ret;
703 
704 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
705 	if (ret)
706 		return ret;
707 
708 	for (i = end_rgn - 1; i >= start_rgn; i--)
709 		memblock_remove_region(type, i);
710 	return 0;
711 }
712 
713 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
714 {
715 	return memblock_remove_range(&memblock.memory, base, size);
716 }
717 
718 
719 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
720 {
721 	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
722 		     (unsigned long long)base,
723 		     (unsigned long long)base + size - 1,
724 		     (void *)_RET_IP_);
725 
726 	kmemleak_free_part_phys(base, size);
727 	return memblock_remove_range(&memblock.reserved, base, size);
728 }
729 
730 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
731 {
732 	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
733 		     (unsigned long long)base,
734 		     (unsigned long long)base + size - 1,
735 		     0UL, (void *)_RET_IP_);
736 
737 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
738 }
739 
740 /**
741  *
742  * This function isolates region [@base, @base + @size), and sets/clears flag
743  *
744  * Return 0 on success, -errno on failure.
745  */
746 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
747 				phys_addr_t size, int set, int flag)
748 {
749 	struct memblock_type *type = &memblock.memory;
750 	int i, ret, start_rgn, end_rgn;
751 
752 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
753 	if (ret)
754 		return ret;
755 
756 	for (i = start_rgn; i < end_rgn; i++)
757 		if (set)
758 			memblock_set_region_flags(&type->regions[i], flag);
759 		else
760 			memblock_clear_region_flags(&type->regions[i], flag);
761 
762 	memblock_merge_regions(type);
763 	return 0;
764 }
765 
766 /**
767  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
768  * @base: the base phys addr of the region
769  * @size: the size of the region
770  *
771  * Return 0 on success, -errno on failure.
772  */
773 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
774 {
775 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
776 }
777 
778 /**
779  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
780  * @base: the base phys addr of the region
781  * @size: the size of the region
782  *
783  * Return 0 on success, -errno on failure.
784  */
785 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
786 {
787 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
788 }
789 
790 /**
791  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
792  * @base: the base phys addr of the region
793  * @size: the size of the region
794  *
795  * Return 0 on success, -errno on failure.
796  */
797 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
798 {
799 	system_has_some_mirror = true;
800 
801 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
802 }
803 
804 /**
805  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
806  * @base: the base phys addr of the region
807  * @size: the size of the region
808  *
809  * Return 0 on success, -errno on failure.
810  */
811 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
812 {
813 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
814 }
815 
816 /**
817  * __next_reserved_mem_region - next function for for_each_reserved_region()
818  * @idx: pointer to u64 loop variable
819  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
820  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
821  *
822  * Iterate over all reserved memory regions.
823  */
824 void __init_memblock __next_reserved_mem_region(u64 *idx,
825 					   phys_addr_t *out_start,
826 					   phys_addr_t *out_end)
827 {
828 	struct memblock_type *type = &memblock.reserved;
829 
830 	if (*idx < type->cnt) {
831 		struct memblock_region *r = &type->regions[*idx];
832 		phys_addr_t base = r->base;
833 		phys_addr_t size = r->size;
834 
835 		if (out_start)
836 			*out_start = base;
837 		if (out_end)
838 			*out_end = base + size - 1;
839 
840 		*idx += 1;
841 		return;
842 	}
843 
844 	/* signal end of iteration */
845 	*idx = ULLONG_MAX;
846 }
847 
848 /**
849  * __next__mem_range - next function for for_each_free_mem_range() etc.
850  * @idx: pointer to u64 loop variable
851  * @nid: node selector, %NUMA_NO_NODE for all nodes
852  * @flags: pick from blocks based on memory attributes
853  * @type_a: pointer to memblock_type from where the range is taken
854  * @type_b: pointer to memblock_type which excludes memory from being taken
855  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
856  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
857  * @out_nid: ptr to int for nid of the range, can be %NULL
858  *
859  * Find the first area from *@idx which matches @nid, fill the out
860  * parameters, and update *@idx for the next iteration.  The lower 32bit of
861  * *@idx contains index into type_a and the upper 32bit indexes the
862  * areas before each region in type_b.	For example, if type_b regions
863  * look like the following,
864  *
865  *	0:[0-16), 1:[32-48), 2:[128-130)
866  *
867  * The upper 32bit indexes the following regions.
868  *
869  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
870  *
871  * As both region arrays are sorted, the function advances the two indices
872  * in lockstep and returns each intersection.
873  */
874 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
875 				      struct memblock_type *type_a,
876 				      struct memblock_type *type_b,
877 				      phys_addr_t *out_start,
878 				      phys_addr_t *out_end, int *out_nid)
879 {
880 	int idx_a = *idx & 0xffffffff;
881 	int idx_b = *idx >> 32;
882 
883 	if (WARN_ONCE(nid == MAX_NUMNODES,
884 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
885 		nid = NUMA_NO_NODE;
886 
887 	for (; idx_a < type_a->cnt; idx_a++) {
888 		struct memblock_region *m = &type_a->regions[idx_a];
889 
890 		phys_addr_t m_start = m->base;
891 		phys_addr_t m_end = m->base + m->size;
892 		int	    m_nid = memblock_get_region_node(m);
893 
894 		/* only memory regions are associated with nodes, check it */
895 		if (nid != NUMA_NO_NODE && nid != m_nid)
896 			continue;
897 
898 		/* skip hotpluggable memory regions if needed */
899 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
900 			continue;
901 
902 		/* if we want mirror memory skip non-mirror memory regions */
903 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
904 			continue;
905 
906 		/* skip nomap memory unless we were asked for it explicitly */
907 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
908 			continue;
909 
910 		if (!type_b) {
911 			if (out_start)
912 				*out_start = m_start;
913 			if (out_end)
914 				*out_end = m_end;
915 			if (out_nid)
916 				*out_nid = m_nid;
917 			idx_a++;
918 			*idx = (u32)idx_a | (u64)idx_b << 32;
919 			return;
920 		}
921 
922 		/* scan areas before each reservation */
923 		for (; idx_b < type_b->cnt + 1; idx_b++) {
924 			struct memblock_region *r;
925 			phys_addr_t r_start;
926 			phys_addr_t r_end;
927 
928 			r = &type_b->regions[idx_b];
929 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
930 			r_end = idx_b < type_b->cnt ?
931 				r->base : ULLONG_MAX;
932 
933 			/*
934 			 * if idx_b advanced past idx_a,
935 			 * break out to advance idx_a
936 			 */
937 			if (r_start >= m_end)
938 				break;
939 			/* if the two regions intersect, we're done */
940 			if (m_start < r_end) {
941 				if (out_start)
942 					*out_start =
943 						max(m_start, r_start);
944 				if (out_end)
945 					*out_end = min(m_end, r_end);
946 				if (out_nid)
947 					*out_nid = m_nid;
948 				/*
949 				 * The region which ends first is
950 				 * advanced for the next iteration.
951 				 */
952 				if (m_end <= r_end)
953 					idx_a++;
954 				else
955 					idx_b++;
956 				*idx = (u32)idx_a | (u64)idx_b << 32;
957 				return;
958 			}
959 		}
960 	}
961 
962 	/* signal end of iteration */
963 	*idx = ULLONG_MAX;
964 }
965 
966 /**
967  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
968  *
969  * Finds the next range from type_a which is not marked as unsuitable
970  * in type_b.
971  *
972  * @idx: pointer to u64 loop variable
973  * @nid: node selector, %NUMA_NO_NODE for all nodes
974  * @flags: pick from blocks based on memory attributes
975  * @type_a: pointer to memblock_type from where the range is taken
976  * @type_b: pointer to memblock_type which excludes memory from being taken
977  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
978  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
979  * @out_nid: ptr to int for nid of the range, can be %NULL
980  *
981  * Reverse of __next_mem_range().
982  */
983 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
984 					  struct memblock_type *type_a,
985 					  struct memblock_type *type_b,
986 					  phys_addr_t *out_start,
987 					  phys_addr_t *out_end, int *out_nid)
988 {
989 	int idx_a = *idx & 0xffffffff;
990 	int idx_b = *idx >> 32;
991 
992 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
993 		nid = NUMA_NO_NODE;
994 
995 	if (*idx == (u64)ULLONG_MAX) {
996 		idx_a = type_a->cnt - 1;
997 		if (type_b != NULL)
998 			idx_b = type_b->cnt;
999 		else
1000 			idx_b = 0;
1001 	}
1002 
1003 	for (; idx_a >= 0; idx_a--) {
1004 		struct memblock_region *m = &type_a->regions[idx_a];
1005 
1006 		phys_addr_t m_start = m->base;
1007 		phys_addr_t m_end = m->base + m->size;
1008 		int m_nid = memblock_get_region_node(m);
1009 
1010 		/* only memory regions are associated with nodes, check it */
1011 		if (nid != NUMA_NO_NODE && nid != m_nid)
1012 			continue;
1013 
1014 		/* skip hotpluggable memory regions if needed */
1015 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1016 			continue;
1017 
1018 		/* if we want mirror memory skip non-mirror memory regions */
1019 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1020 			continue;
1021 
1022 		/* skip nomap memory unless we were asked for it explicitly */
1023 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1024 			continue;
1025 
1026 		if (!type_b) {
1027 			if (out_start)
1028 				*out_start = m_start;
1029 			if (out_end)
1030 				*out_end = m_end;
1031 			if (out_nid)
1032 				*out_nid = m_nid;
1033 			idx_a--;
1034 			*idx = (u32)idx_a | (u64)idx_b << 32;
1035 			return;
1036 		}
1037 
1038 		/* scan areas before each reservation */
1039 		for (; idx_b >= 0; idx_b--) {
1040 			struct memblock_region *r;
1041 			phys_addr_t r_start;
1042 			phys_addr_t r_end;
1043 
1044 			r = &type_b->regions[idx_b];
1045 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1046 			r_end = idx_b < type_b->cnt ?
1047 				r->base : ULLONG_MAX;
1048 			/*
1049 			 * if idx_b advanced past idx_a,
1050 			 * break out to advance idx_a
1051 			 */
1052 
1053 			if (r_end <= m_start)
1054 				break;
1055 			/* if the two regions intersect, we're done */
1056 			if (m_end > r_start) {
1057 				if (out_start)
1058 					*out_start = max(m_start, r_start);
1059 				if (out_end)
1060 					*out_end = min(m_end, r_end);
1061 				if (out_nid)
1062 					*out_nid = m_nid;
1063 				if (m_start >= r_start)
1064 					idx_a--;
1065 				else
1066 					idx_b--;
1067 				*idx = (u32)idx_a | (u64)idx_b << 32;
1068 				return;
1069 			}
1070 		}
1071 	}
1072 	/* signal end of iteration */
1073 	*idx = ULLONG_MAX;
1074 }
1075 
1076 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1077 /*
1078  * Common iterator interface used to define for_each_mem_range().
1079  */
1080 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1081 				unsigned long *out_start_pfn,
1082 				unsigned long *out_end_pfn, int *out_nid)
1083 {
1084 	struct memblock_type *type = &memblock.memory;
1085 	struct memblock_region *r;
1086 
1087 	while (++*idx < type->cnt) {
1088 		r = &type->regions[*idx];
1089 
1090 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1091 			continue;
1092 		if (nid == MAX_NUMNODES || nid == r->nid)
1093 			break;
1094 	}
1095 	if (*idx >= type->cnt) {
1096 		*idx = -1;
1097 		return;
1098 	}
1099 
1100 	if (out_start_pfn)
1101 		*out_start_pfn = PFN_UP(r->base);
1102 	if (out_end_pfn)
1103 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1104 	if (out_nid)
1105 		*out_nid = r->nid;
1106 }
1107 
1108 /**
1109  * memblock_set_node - set node ID on memblock regions
1110  * @base: base of area to set node ID for
1111  * @size: size of area to set node ID for
1112  * @type: memblock type to set node ID for
1113  * @nid: node ID to set
1114  *
1115  * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1116  * Regions which cross the area boundaries are split as necessary.
1117  *
1118  * RETURNS:
1119  * 0 on success, -errno on failure.
1120  */
1121 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1122 				      struct memblock_type *type, int nid)
1123 {
1124 	int start_rgn, end_rgn;
1125 	int i, ret;
1126 
1127 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1128 	if (ret)
1129 		return ret;
1130 
1131 	for (i = start_rgn; i < end_rgn; i++)
1132 		memblock_set_region_node(&type->regions[i], nid);
1133 
1134 	memblock_merge_regions(type);
1135 	return 0;
1136 }
1137 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1138 
1139 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1140 					phys_addr_t align, phys_addr_t start,
1141 					phys_addr_t end, int nid, ulong flags)
1142 {
1143 	phys_addr_t found;
1144 
1145 	if (!align)
1146 		align = SMP_CACHE_BYTES;
1147 
1148 	found = memblock_find_in_range_node(size, align, start, end, nid,
1149 					    flags);
1150 	if (found && !memblock_reserve(found, size)) {
1151 		/*
1152 		 * The min_count is set to 0 so that memblock allocations are
1153 		 * never reported as leaks.
1154 		 */
1155 		kmemleak_alloc_phys(found, size, 0, 0);
1156 		return found;
1157 	}
1158 	return 0;
1159 }
1160 
1161 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1162 					phys_addr_t start, phys_addr_t end,
1163 					ulong flags)
1164 {
1165 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1166 					flags);
1167 }
1168 
1169 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1170 					phys_addr_t align, phys_addr_t max_addr,
1171 					int nid, ulong flags)
1172 {
1173 	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1174 }
1175 
1176 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1177 {
1178 	ulong flags = choose_memblock_flags();
1179 	phys_addr_t ret;
1180 
1181 again:
1182 	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1183 				      nid, flags);
1184 
1185 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1186 		flags &= ~MEMBLOCK_MIRROR;
1187 		goto again;
1188 	}
1189 	return ret;
1190 }
1191 
1192 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1193 {
1194 	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1195 				       MEMBLOCK_NONE);
1196 }
1197 
1198 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1199 {
1200 	phys_addr_t alloc;
1201 
1202 	alloc = __memblock_alloc_base(size, align, max_addr);
1203 
1204 	if (alloc == 0)
1205 		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1206 		      (unsigned long long) size, (unsigned long long) max_addr);
1207 
1208 	return alloc;
1209 }
1210 
1211 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1212 {
1213 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1214 }
1215 
1216 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1217 {
1218 	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1219 
1220 	if (res)
1221 		return res;
1222 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1223 }
1224 
1225 /**
1226  * memblock_virt_alloc_internal - allocate boot memory block
1227  * @size: size of memory block to be allocated in bytes
1228  * @align: alignment of the region and block's size
1229  * @min_addr: the lower bound of the memory region to allocate (phys address)
1230  * @max_addr: the upper bound of the memory region to allocate (phys address)
1231  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1232  *
1233  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1234  * will fall back to memory below @min_addr. Also, allocation may fall back
1235  * to any node in the system if the specified node can not
1236  * hold the requested memory.
1237  *
1238  * The allocation is performed from memory region limited by
1239  * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1240  *
1241  * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1242  *
1243  * The phys address of allocated boot memory block is converted to virtual and
1244  * allocated memory is reset to 0.
1245  *
1246  * In addition, function sets the min_count to 0 using kmemleak_alloc for
1247  * allocated boot memory block, so that it is never reported as leaks.
1248  *
1249  * RETURNS:
1250  * Virtual address of allocated memory block on success, NULL on failure.
1251  */
1252 static void * __init memblock_virt_alloc_internal(
1253 				phys_addr_t size, phys_addr_t align,
1254 				phys_addr_t min_addr, phys_addr_t max_addr,
1255 				int nid)
1256 {
1257 	phys_addr_t alloc;
1258 	void *ptr;
1259 	ulong flags = choose_memblock_flags();
1260 
1261 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1262 		nid = NUMA_NO_NODE;
1263 
1264 	/*
1265 	 * Detect any accidental use of these APIs after slab is ready, as at
1266 	 * this moment memblock may be deinitialized already and its
1267 	 * internal data may be destroyed (after execution of free_all_bootmem)
1268 	 */
1269 	if (WARN_ON_ONCE(slab_is_available()))
1270 		return kzalloc_node(size, GFP_NOWAIT, nid);
1271 
1272 	if (!align)
1273 		align = SMP_CACHE_BYTES;
1274 
1275 	if (max_addr > memblock.current_limit)
1276 		max_addr = memblock.current_limit;
1277 
1278 again:
1279 	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1280 					    nid, flags);
1281 	if (alloc)
1282 		goto done;
1283 
1284 	if (nid != NUMA_NO_NODE) {
1285 		alloc = memblock_find_in_range_node(size, align, min_addr,
1286 						    max_addr, NUMA_NO_NODE,
1287 						    flags);
1288 		if (alloc)
1289 			goto done;
1290 	}
1291 
1292 	if (min_addr) {
1293 		min_addr = 0;
1294 		goto again;
1295 	}
1296 
1297 	if (flags & MEMBLOCK_MIRROR) {
1298 		flags &= ~MEMBLOCK_MIRROR;
1299 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1300 			&size);
1301 		goto again;
1302 	}
1303 
1304 	return NULL;
1305 done:
1306 	memblock_reserve(alloc, size);
1307 	ptr = phys_to_virt(alloc);
1308 	memset(ptr, 0, size);
1309 
1310 	/*
1311 	 * The min_count is set to 0 so that bootmem allocated blocks
1312 	 * are never reported as leaks. This is because many of these blocks
1313 	 * are only referred via the physical address which is not
1314 	 * looked up by kmemleak.
1315 	 */
1316 	kmemleak_alloc(ptr, size, 0, 0);
1317 
1318 	return ptr;
1319 }
1320 
1321 /**
1322  * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1323  * @size: size of memory block to be allocated in bytes
1324  * @align: alignment of the region and block's size
1325  * @min_addr: the lower bound of the memory region from where the allocation
1326  *	  is preferred (phys address)
1327  * @max_addr: the upper bound of the memory region from where the allocation
1328  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1329  *	      allocate only from memory limited by memblock.current_limit value
1330  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1331  *
1332  * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1333  * additional debug information (including caller info), if enabled.
1334  *
1335  * RETURNS:
1336  * Virtual address of allocated memory block on success, NULL on failure.
1337  */
1338 void * __init memblock_virt_alloc_try_nid_nopanic(
1339 				phys_addr_t size, phys_addr_t align,
1340 				phys_addr_t min_addr, phys_addr_t max_addr,
1341 				int nid)
1342 {
1343 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1344 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1345 		     (u64)max_addr, (void *)_RET_IP_);
1346 	return memblock_virt_alloc_internal(size, align, min_addr,
1347 					     max_addr, nid);
1348 }
1349 
1350 /**
1351  * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1352  * @size: size of memory block to be allocated in bytes
1353  * @align: alignment of the region and block's size
1354  * @min_addr: the lower bound of the memory region from where the allocation
1355  *	  is preferred (phys address)
1356  * @max_addr: the upper bound of the memory region from where the allocation
1357  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1358  *	      allocate only from memory limited by memblock.current_limit value
1359  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1360  *
1361  * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1362  * which provides debug information (including caller info), if enabled,
1363  * and panics if the request can not be satisfied.
1364  *
1365  * RETURNS:
1366  * Virtual address of allocated memory block on success, NULL on failure.
1367  */
1368 void * __init memblock_virt_alloc_try_nid(
1369 			phys_addr_t size, phys_addr_t align,
1370 			phys_addr_t min_addr, phys_addr_t max_addr,
1371 			int nid)
1372 {
1373 	void *ptr;
1374 
1375 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1376 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1377 		     (u64)max_addr, (void *)_RET_IP_);
1378 	ptr = memblock_virt_alloc_internal(size, align,
1379 					   min_addr, max_addr, nid);
1380 	if (ptr)
1381 		return ptr;
1382 
1383 	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1384 	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1385 	      (u64)max_addr);
1386 	return NULL;
1387 }
1388 
1389 /**
1390  * __memblock_free_early - free boot memory block
1391  * @base: phys starting address of the  boot memory block
1392  * @size: size of the boot memory block in bytes
1393  *
1394  * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1395  * The freeing memory will not be released to the buddy allocator.
1396  */
1397 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1398 {
1399 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1400 		     __func__, (u64)base, (u64)base + size - 1,
1401 		     (void *)_RET_IP_);
1402 	kmemleak_free_part_phys(base, size);
1403 	memblock_remove_range(&memblock.reserved, base, size);
1404 }
1405 
1406 /*
1407  * __memblock_free_late - free bootmem block pages directly to buddy allocator
1408  * @addr: phys starting address of the  boot memory block
1409  * @size: size of the boot memory block in bytes
1410  *
1411  * This is only useful when the bootmem allocator has already been torn
1412  * down, but we are still initializing the system.  Pages are released directly
1413  * to the buddy allocator, no bootmem metadata is updated because it is gone.
1414  */
1415 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1416 {
1417 	u64 cursor, end;
1418 
1419 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1420 		     __func__, (u64)base, (u64)base + size - 1,
1421 		     (void *)_RET_IP_);
1422 	kmemleak_free_part_phys(base, size);
1423 	cursor = PFN_UP(base);
1424 	end = PFN_DOWN(base + size);
1425 
1426 	for (; cursor < end; cursor++) {
1427 		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1428 		totalram_pages++;
1429 	}
1430 }
1431 
1432 /*
1433  * Remaining API functions
1434  */
1435 
1436 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1437 {
1438 	return memblock.memory.total_size;
1439 }
1440 
1441 phys_addr_t __init_memblock memblock_reserved_size(void)
1442 {
1443 	return memblock.reserved.total_size;
1444 }
1445 
1446 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1447 {
1448 	unsigned long pages = 0;
1449 	struct memblock_region *r;
1450 	unsigned long start_pfn, end_pfn;
1451 
1452 	for_each_memblock(memory, r) {
1453 		start_pfn = memblock_region_memory_base_pfn(r);
1454 		end_pfn = memblock_region_memory_end_pfn(r);
1455 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1456 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1457 		pages += end_pfn - start_pfn;
1458 	}
1459 
1460 	return PFN_PHYS(pages);
1461 }
1462 
1463 /* lowest address */
1464 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1465 {
1466 	return memblock.memory.regions[0].base;
1467 }
1468 
1469 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1470 {
1471 	int idx = memblock.memory.cnt - 1;
1472 
1473 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1474 }
1475 
1476 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1477 {
1478 	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1479 	struct memblock_region *r;
1480 
1481 	/*
1482 	 * translate the memory @limit size into the max address within one of
1483 	 * the memory memblock regions, if the @limit exceeds the total size
1484 	 * of those regions, max_addr will keep original value ULLONG_MAX
1485 	 */
1486 	for_each_memblock(memory, r) {
1487 		if (limit <= r->size) {
1488 			max_addr = r->base + limit;
1489 			break;
1490 		}
1491 		limit -= r->size;
1492 	}
1493 
1494 	return max_addr;
1495 }
1496 
1497 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1498 {
1499 	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1500 
1501 	if (!limit)
1502 		return;
1503 
1504 	max_addr = __find_max_addr(limit);
1505 
1506 	/* @limit exceeds the total size of the memory, do nothing */
1507 	if (max_addr == (phys_addr_t)ULLONG_MAX)
1508 		return;
1509 
1510 	/* truncate both memory and reserved regions */
1511 	memblock_remove_range(&memblock.memory, max_addr,
1512 			      (phys_addr_t)ULLONG_MAX);
1513 	memblock_remove_range(&memblock.reserved, max_addr,
1514 			      (phys_addr_t)ULLONG_MAX);
1515 }
1516 
1517 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1518 {
1519 	struct memblock_type *type = &memblock.memory;
1520 	phys_addr_t max_addr;
1521 	int i, ret, start_rgn, end_rgn;
1522 
1523 	if (!limit)
1524 		return;
1525 
1526 	max_addr = __find_max_addr(limit);
1527 
1528 	/* @limit exceeds the total size of the memory, do nothing */
1529 	if (max_addr == (phys_addr_t)ULLONG_MAX)
1530 		return;
1531 
1532 	ret = memblock_isolate_range(type, max_addr, (phys_addr_t)ULLONG_MAX,
1533 				&start_rgn, &end_rgn);
1534 	if (ret)
1535 		return;
1536 
1537 	/* remove all the MAP regions above the limit */
1538 	for (i = end_rgn - 1; i >= start_rgn; i--) {
1539 		if (!memblock_is_nomap(&type->regions[i]))
1540 			memblock_remove_region(type, i);
1541 	}
1542 	/* truncate the reserved regions */
1543 	memblock_remove_range(&memblock.reserved, max_addr,
1544 			      (phys_addr_t)ULLONG_MAX);
1545 }
1546 
1547 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1548 {
1549 	unsigned int left = 0, right = type->cnt;
1550 
1551 	do {
1552 		unsigned int mid = (right + left) / 2;
1553 
1554 		if (addr < type->regions[mid].base)
1555 			right = mid;
1556 		else if (addr >= (type->regions[mid].base +
1557 				  type->regions[mid].size))
1558 			left = mid + 1;
1559 		else
1560 			return mid;
1561 	} while (left < right);
1562 	return -1;
1563 }
1564 
1565 bool __init memblock_is_reserved(phys_addr_t addr)
1566 {
1567 	return memblock_search(&memblock.reserved, addr) != -1;
1568 }
1569 
1570 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1571 {
1572 	return memblock_search(&memblock.memory, addr) != -1;
1573 }
1574 
1575 int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1576 {
1577 	int i = memblock_search(&memblock.memory, addr);
1578 
1579 	if (i == -1)
1580 		return false;
1581 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1582 }
1583 
1584 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1585 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1586 			 unsigned long *start_pfn, unsigned long *end_pfn)
1587 {
1588 	struct memblock_type *type = &memblock.memory;
1589 	int mid = memblock_search(type, PFN_PHYS(pfn));
1590 
1591 	if (mid == -1)
1592 		return -1;
1593 
1594 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1595 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1596 
1597 	return type->regions[mid].nid;
1598 }
1599 #endif
1600 
1601 /**
1602  * memblock_is_region_memory - check if a region is a subset of memory
1603  * @base: base of region to check
1604  * @size: size of region to check
1605  *
1606  * Check if the region [@base, @base+@size) is a subset of a memory block.
1607  *
1608  * RETURNS:
1609  * 0 if false, non-zero if true
1610  */
1611 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1612 {
1613 	int idx = memblock_search(&memblock.memory, base);
1614 	phys_addr_t end = base + memblock_cap_size(base, &size);
1615 
1616 	if (idx == -1)
1617 		return 0;
1618 	return memblock.memory.regions[idx].base <= base &&
1619 		(memblock.memory.regions[idx].base +
1620 		 memblock.memory.regions[idx].size) >= end;
1621 }
1622 
1623 /**
1624  * memblock_is_region_reserved - check if a region intersects reserved memory
1625  * @base: base of region to check
1626  * @size: size of region to check
1627  *
1628  * Check if the region [@base, @base+@size) intersects a reserved memory block.
1629  *
1630  * RETURNS:
1631  * True if they intersect, false if not.
1632  */
1633 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1634 {
1635 	memblock_cap_size(base, &size);
1636 	return memblock_overlaps_region(&memblock.reserved, base, size);
1637 }
1638 
1639 void __init_memblock memblock_trim_memory(phys_addr_t align)
1640 {
1641 	phys_addr_t start, end, orig_start, orig_end;
1642 	struct memblock_region *r;
1643 
1644 	for_each_memblock(memory, r) {
1645 		orig_start = r->base;
1646 		orig_end = r->base + r->size;
1647 		start = round_up(orig_start, align);
1648 		end = round_down(orig_end, align);
1649 
1650 		if (start == orig_start && end == orig_end)
1651 			continue;
1652 
1653 		if (start < end) {
1654 			r->base = start;
1655 			r->size = end - start;
1656 		} else {
1657 			memblock_remove_region(&memblock.memory,
1658 					       r - memblock.memory.regions);
1659 			r--;
1660 		}
1661 	}
1662 }
1663 
1664 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1665 {
1666 	memblock.current_limit = limit;
1667 }
1668 
1669 phys_addr_t __init_memblock memblock_get_current_limit(void)
1670 {
1671 	return memblock.current_limit;
1672 }
1673 
1674 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1675 {
1676 	unsigned long long base, size;
1677 	unsigned long flags;
1678 	int idx;
1679 	struct memblock_region *rgn;
1680 
1681 	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
1682 
1683 	for_each_memblock_type(type, rgn) {
1684 		char nid_buf[32] = "";
1685 
1686 		base = rgn->base;
1687 		size = rgn->size;
1688 		flags = rgn->flags;
1689 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1690 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1691 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1692 				 memblock_get_region_node(rgn));
1693 #endif
1694 		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1695 			name, idx, base, base + size - 1, size, nid_buf, flags);
1696 	}
1697 }
1698 
1699 void __init_memblock __memblock_dump_all(void)
1700 {
1701 	pr_info("MEMBLOCK configuration:\n");
1702 	pr_info(" memory size = %#llx reserved size = %#llx\n",
1703 		(unsigned long long)memblock.memory.total_size,
1704 		(unsigned long long)memblock.reserved.total_size);
1705 
1706 	memblock_dump(&memblock.memory, "memory");
1707 	memblock_dump(&memblock.reserved, "reserved");
1708 }
1709 
1710 void __init memblock_allow_resize(void)
1711 {
1712 	memblock_can_resize = 1;
1713 }
1714 
1715 static int __init early_memblock(char *p)
1716 {
1717 	if (p && strstr(p, "debug"))
1718 		memblock_debug = 1;
1719 	return 0;
1720 }
1721 early_param("memblock", early_memblock);
1722 
1723 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1724 
1725 static int memblock_debug_show(struct seq_file *m, void *private)
1726 {
1727 	struct memblock_type *type = m->private;
1728 	struct memblock_region *reg;
1729 	int i;
1730 
1731 	for (i = 0; i < type->cnt; i++) {
1732 		reg = &type->regions[i];
1733 		seq_printf(m, "%4d: ", i);
1734 		if (sizeof(phys_addr_t) == 4)
1735 			seq_printf(m, "0x%08lx..0x%08lx\n",
1736 				   (unsigned long)reg->base,
1737 				   (unsigned long)(reg->base + reg->size - 1));
1738 		else
1739 			seq_printf(m, "0x%016llx..0x%016llx\n",
1740 				   (unsigned long long)reg->base,
1741 				   (unsigned long long)(reg->base + reg->size - 1));
1742 
1743 	}
1744 	return 0;
1745 }
1746 
1747 static int memblock_debug_open(struct inode *inode, struct file *file)
1748 {
1749 	return single_open(file, memblock_debug_show, inode->i_private);
1750 }
1751 
1752 static const struct file_operations memblock_debug_fops = {
1753 	.open = memblock_debug_open,
1754 	.read = seq_read,
1755 	.llseek = seq_lseek,
1756 	.release = single_release,
1757 };
1758 
1759 static int __init memblock_init_debugfs(void)
1760 {
1761 	struct dentry *root = debugfs_create_dir("memblock", NULL);
1762 	if (!root)
1763 		return -ENXIO;
1764 	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1765 	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1766 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1767 	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1768 #endif
1769 
1770 	return 0;
1771 }
1772 __initcall(memblock_init_debugfs);
1773 
1774 #endif /* CONFIG_DEBUG_FS */
1775