xref: /openbmc/linux/mm/memblock.c (revision 63dc02bd)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22 
23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
25 
26 struct memblock memblock __initdata_memblock = {
27 	.memory.regions		= memblock_memory_init_regions,
28 	.memory.cnt		= 1,	/* empty dummy entry */
29 	.memory.max		= INIT_MEMBLOCK_REGIONS,
30 
31 	.reserved.regions	= memblock_reserved_init_regions,
32 	.reserved.cnt		= 1,	/* empty dummy entry */
33 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
34 
35 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
36 };
37 
38 int memblock_debug __initdata_memblock;
39 static int memblock_can_resize __initdata_memblock;
40 
41 /* inline so we don't get a warning when pr_debug is compiled out */
42 static inline const char *memblock_type_name(struct memblock_type *type)
43 {
44 	if (type == &memblock.memory)
45 		return "memory";
46 	else if (type == &memblock.reserved)
47 		return "reserved";
48 	else
49 		return "unknown";
50 }
51 
52 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
53 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
54 {
55 	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
56 }
57 
58 /*
59  * Address comparison utilities
60  */
61 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
62 				       phys_addr_t base2, phys_addr_t size2)
63 {
64 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
65 }
66 
67 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
68 					phys_addr_t base, phys_addr_t size)
69 {
70 	unsigned long i;
71 
72 	for (i = 0; i < type->cnt; i++) {
73 		phys_addr_t rgnbase = type->regions[i].base;
74 		phys_addr_t rgnsize = type->regions[i].size;
75 		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
76 			break;
77 	}
78 
79 	return (i < type->cnt) ? i : -1;
80 }
81 
82 /**
83  * memblock_find_in_range_node - find free area in given range and node
84  * @start: start of candidate range
85  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
86  * @size: size of free area to find
87  * @align: alignment of free area to find
88  * @nid: nid of the free area to find, %MAX_NUMNODES for any node
89  *
90  * Find @size free area aligned to @align in the specified range and node.
91  *
92  * RETURNS:
93  * Found address on success, %0 on failure.
94  */
95 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
96 					phys_addr_t end, phys_addr_t size,
97 					phys_addr_t align, int nid)
98 {
99 	phys_addr_t this_start, this_end, cand;
100 	u64 i;
101 
102 	/* pump up @end */
103 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
104 		end = memblock.current_limit;
105 
106 	/* avoid allocating the first page */
107 	start = max_t(phys_addr_t, start, PAGE_SIZE);
108 	end = max(start, end);
109 
110 	for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
111 		this_start = clamp(this_start, start, end);
112 		this_end = clamp(this_end, start, end);
113 
114 		if (this_end < size)
115 			continue;
116 
117 		cand = round_down(this_end - size, align);
118 		if (cand >= this_start)
119 			return cand;
120 	}
121 	return 0;
122 }
123 
124 /**
125  * memblock_find_in_range - find free area in given range
126  * @start: start of candidate range
127  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
128  * @size: size of free area to find
129  * @align: alignment of free area to find
130  *
131  * Find @size free area aligned to @align in the specified range.
132  *
133  * RETURNS:
134  * Found address on success, %0 on failure.
135  */
136 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
137 					phys_addr_t end, phys_addr_t size,
138 					phys_addr_t align)
139 {
140 	return memblock_find_in_range_node(start, end, size, align,
141 					   MAX_NUMNODES);
142 }
143 
144 /*
145  * Free memblock.reserved.regions
146  */
147 int __init_memblock memblock_free_reserved_regions(void)
148 {
149 	if (memblock.reserved.regions == memblock_reserved_init_regions)
150 		return 0;
151 
152 	return memblock_free(__pa(memblock.reserved.regions),
153 		 sizeof(struct memblock_region) * memblock.reserved.max);
154 }
155 
156 /*
157  * Reserve memblock.reserved.regions
158  */
159 int __init_memblock memblock_reserve_reserved_regions(void)
160 {
161 	if (memblock.reserved.regions == memblock_reserved_init_regions)
162 		return 0;
163 
164 	return memblock_reserve(__pa(memblock.reserved.regions),
165 		 sizeof(struct memblock_region) * memblock.reserved.max);
166 }
167 
168 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
169 {
170 	type->total_size -= type->regions[r].size;
171 	memmove(&type->regions[r], &type->regions[r + 1],
172 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
173 	type->cnt--;
174 
175 	/* Special case for empty arrays */
176 	if (type->cnt == 0) {
177 		WARN_ON(type->total_size != 0);
178 		type->cnt = 1;
179 		type->regions[0].base = 0;
180 		type->regions[0].size = 0;
181 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
182 	}
183 }
184 
185 static int __init_memblock memblock_double_array(struct memblock_type *type)
186 {
187 	struct memblock_region *new_array, *old_array;
188 	phys_addr_t old_size, new_size, addr;
189 	int use_slab = slab_is_available();
190 
191 	/* We don't allow resizing until we know about the reserved regions
192 	 * of memory that aren't suitable for allocation
193 	 */
194 	if (!memblock_can_resize)
195 		return -1;
196 
197 	/* Calculate new doubled size */
198 	old_size = type->max * sizeof(struct memblock_region);
199 	new_size = old_size << 1;
200 
201 	/* Try to find some space for it.
202 	 *
203 	 * WARNING: We assume that either slab_is_available() and we use it or
204 	 * we use MEMBLOCK for allocations. That means that this is unsafe to use
205 	 * when bootmem is currently active (unless bootmem itself is implemented
206 	 * on top of MEMBLOCK which isn't the case yet)
207 	 *
208 	 * This should however not be an issue for now, as we currently only
209 	 * call into MEMBLOCK while it's still active, or much later when slab is
210 	 * active for memory hotplug operations
211 	 */
212 	if (use_slab) {
213 		new_array = kmalloc(new_size, GFP_KERNEL);
214 		addr = new_array ? __pa(new_array) : 0;
215 	} else
216 		addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
217 	if (!addr) {
218 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
219 		       memblock_type_name(type), type->max, type->max * 2);
220 		return -1;
221 	}
222 	new_array = __va(addr);
223 
224 	memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
225 		 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
226 
227 	/* Found space, we now need to move the array over before
228 	 * we add the reserved region since it may be our reserved
229 	 * array itself that is full.
230 	 */
231 	memcpy(new_array, type->regions, old_size);
232 	memset(new_array + type->max, 0, old_size);
233 	old_array = type->regions;
234 	type->regions = new_array;
235 	type->max <<= 1;
236 
237 	/* If we use SLAB that's it, we are done */
238 	if (use_slab)
239 		return 0;
240 
241 	/* Add the new reserved region now. Should not fail ! */
242 	BUG_ON(memblock_reserve(addr, new_size));
243 
244 	/* If the array wasn't our static init one, then free it. We only do
245 	 * that before SLAB is available as later on, we don't know whether
246 	 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
247 	 * anyways
248 	 */
249 	if (old_array != memblock_memory_init_regions &&
250 	    old_array != memblock_reserved_init_regions)
251 		memblock_free(__pa(old_array), old_size);
252 
253 	return 0;
254 }
255 
256 /**
257  * memblock_merge_regions - merge neighboring compatible regions
258  * @type: memblock type to scan
259  *
260  * Scan @type and merge neighboring compatible regions.
261  */
262 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
263 {
264 	int i = 0;
265 
266 	/* cnt never goes below 1 */
267 	while (i < type->cnt - 1) {
268 		struct memblock_region *this = &type->regions[i];
269 		struct memblock_region *next = &type->regions[i + 1];
270 
271 		if (this->base + this->size != next->base ||
272 		    memblock_get_region_node(this) !=
273 		    memblock_get_region_node(next)) {
274 			BUG_ON(this->base + this->size > next->base);
275 			i++;
276 			continue;
277 		}
278 
279 		this->size += next->size;
280 		memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
281 		type->cnt--;
282 	}
283 }
284 
285 /**
286  * memblock_insert_region - insert new memblock region
287  * @type: memblock type to insert into
288  * @idx: index for the insertion point
289  * @base: base address of the new region
290  * @size: size of the new region
291  *
292  * Insert new memblock region [@base,@base+@size) into @type at @idx.
293  * @type must already have extra room to accomodate the new region.
294  */
295 static void __init_memblock memblock_insert_region(struct memblock_type *type,
296 						   int idx, phys_addr_t base,
297 						   phys_addr_t size, int nid)
298 {
299 	struct memblock_region *rgn = &type->regions[idx];
300 
301 	BUG_ON(type->cnt >= type->max);
302 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
303 	rgn->base = base;
304 	rgn->size = size;
305 	memblock_set_region_node(rgn, nid);
306 	type->cnt++;
307 	type->total_size += size;
308 }
309 
310 /**
311  * memblock_add_region - add new memblock region
312  * @type: memblock type to add new region into
313  * @base: base address of the new region
314  * @size: size of the new region
315  * @nid: nid of the new region
316  *
317  * Add new memblock region [@base,@base+@size) into @type.  The new region
318  * is allowed to overlap with existing ones - overlaps don't affect already
319  * existing regions.  @type is guaranteed to be minimal (all neighbouring
320  * compatible regions are merged) after the addition.
321  *
322  * RETURNS:
323  * 0 on success, -errno on failure.
324  */
325 static int __init_memblock memblock_add_region(struct memblock_type *type,
326 				phys_addr_t base, phys_addr_t size, int nid)
327 {
328 	bool insert = false;
329 	phys_addr_t obase = base;
330 	phys_addr_t end = base + memblock_cap_size(base, &size);
331 	int i, nr_new;
332 
333 	if (!size)
334 		return 0;
335 
336 	/* special case for empty array */
337 	if (type->regions[0].size == 0) {
338 		WARN_ON(type->cnt != 1 || type->total_size);
339 		type->regions[0].base = base;
340 		type->regions[0].size = size;
341 		memblock_set_region_node(&type->regions[0], nid);
342 		type->total_size = size;
343 		return 0;
344 	}
345 repeat:
346 	/*
347 	 * The following is executed twice.  Once with %false @insert and
348 	 * then with %true.  The first counts the number of regions needed
349 	 * to accomodate the new area.  The second actually inserts them.
350 	 */
351 	base = obase;
352 	nr_new = 0;
353 
354 	for (i = 0; i < type->cnt; i++) {
355 		struct memblock_region *rgn = &type->regions[i];
356 		phys_addr_t rbase = rgn->base;
357 		phys_addr_t rend = rbase + rgn->size;
358 
359 		if (rbase >= end)
360 			break;
361 		if (rend <= base)
362 			continue;
363 		/*
364 		 * @rgn overlaps.  If it separates the lower part of new
365 		 * area, insert that portion.
366 		 */
367 		if (rbase > base) {
368 			nr_new++;
369 			if (insert)
370 				memblock_insert_region(type, i++, base,
371 						       rbase - base, nid);
372 		}
373 		/* area below @rend is dealt with, forget about it */
374 		base = min(rend, end);
375 	}
376 
377 	/* insert the remaining portion */
378 	if (base < end) {
379 		nr_new++;
380 		if (insert)
381 			memblock_insert_region(type, i, base, end - base, nid);
382 	}
383 
384 	/*
385 	 * If this was the first round, resize array and repeat for actual
386 	 * insertions; otherwise, merge and return.
387 	 */
388 	if (!insert) {
389 		while (type->cnt + nr_new > type->max)
390 			if (memblock_double_array(type) < 0)
391 				return -ENOMEM;
392 		insert = true;
393 		goto repeat;
394 	} else {
395 		memblock_merge_regions(type);
396 		return 0;
397 	}
398 }
399 
400 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
401 				       int nid)
402 {
403 	return memblock_add_region(&memblock.memory, base, size, nid);
404 }
405 
406 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
407 {
408 	return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
409 }
410 
411 /**
412  * memblock_isolate_range - isolate given range into disjoint memblocks
413  * @type: memblock type to isolate range for
414  * @base: base of range to isolate
415  * @size: size of range to isolate
416  * @start_rgn: out parameter for the start of isolated region
417  * @end_rgn: out parameter for the end of isolated region
418  *
419  * Walk @type and ensure that regions don't cross the boundaries defined by
420  * [@base,@base+@size).  Crossing regions are split at the boundaries,
421  * which may create at most two more regions.  The index of the first
422  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
423  *
424  * RETURNS:
425  * 0 on success, -errno on failure.
426  */
427 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
428 					phys_addr_t base, phys_addr_t size,
429 					int *start_rgn, int *end_rgn)
430 {
431 	phys_addr_t end = base + memblock_cap_size(base, &size);
432 	int i;
433 
434 	*start_rgn = *end_rgn = 0;
435 
436 	if (!size)
437 		return 0;
438 
439 	/* we'll create at most two more regions */
440 	while (type->cnt + 2 > type->max)
441 		if (memblock_double_array(type) < 0)
442 			return -ENOMEM;
443 
444 	for (i = 0; i < type->cnt; i++) {
445 		struct memblock_region *rgn = &type->regions[i];
446 		phys_addr_t rbase = rgn->base;
447 		phys_addr_t rend = rbase + rgn->size;
448 
449 		if (rbase >= end)
450 			break;
451 		if (rend <= base)
452 			continue;
453 
454 		if (rbase < base) {
455 			/*
456 			 * @rgn intersects from below.  Split and continue
457 			 * to process the next region - the new top half.
458 			 */
459 			rgn->base = base;
460 			rgn->size -= base - rbase;
461 			type->total_size -= base - rbase;
462 			memblock_insert_region(type, i, rbase, base - rbase,
463 					       memblock_get_region_node(rgn));
464 		} else if (rend > end) {
465 			/*
466 			 * @rgn intersects from above.  Split and redo the
467 			 * current region - the new bottom half.
468 			 */
469 			rgn->base = end;
470 			rgn->size -= end - rbase;
471 			type->total_size -= end - rbase;
472 			memblock_insert_region(type, i--, rbase, end - rbase,
473 					       memblock_get_region_node(rgn));
474 		} else {
475 			/* @rgn is fully contained, record it */
476 			if (!*end_rgn)
477 				*start_rgn = i;
478 			*end_rgn = i + 1;
479 		}
480 	}
481 
482 	return 0;
483 }
484 
485 static int __init_memblock __memblock_remove(struct memblock_type *type,
486 					     phys_addr_t base, phys_addr_t size)
487 {
488 	int start_rgn, end_rgn;
489 	int i, ret;
490 
491 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
492 	if (ret)
493 		return ret;
494 
495 	for (i = end_rgn - 1; i >= start_rgn; i--)
496 		memblock_remove_region(type, i);
497 	return 0;
498 }
499 
500 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
501 {
502 	return __memblock_remove(&memblock.memory, base, size);
503 }
504 
505 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
506 {
507 	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
508 		     (unsigned long long)base,
509 		     (unsigned long long)base + size,
510 		     (void *)_RET_IP_);
511 
512 	return __memblock_remove(&memblock.reserved, base, size);
513 }
514 
515 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
516 {
517 	struct memblock_type *_rgn = &memblock.reserved;
518 
519 	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
520 		     (unsigned long long)base,
521 		     (unsigned long long)base + size,
522 		     (void *)_RET_IP_);
523 
524 	return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
525 }
526 
527 /**
528  * __next_free_mem_range - next function for for_each_free_mem_range()
529  * @idx: pointer to u64 loop variable
530  * @nid: nid: node selector, %MAX_NUMNODES for all nodes
531  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
532  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
533  * @p_nid: ptr to int for nid of the range, can be %NULL
534  *
535  * Find the first free area from *@idx which matches @nid, fill the out
536  * parameters, and update *@idx for the next iteration.  The lower 32bit of
537  * *@idx contains index into memory region and the upper 32bit indexes the
538  * areas before each reserved region.  For example, if reserved regions
539  * look like the following,
540  *
541  *	0:[0-16), 1:[32-48), 2:[128-130)
542  *
543  * The upper 32bit indexes the following regions.
544  *
545  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
546  *
547  * As both region arrays are sorted, the function advances the two indices
548  * in lockstep and returns each intersection.
549  */
550 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
551 					   phys_addr_t *out_start,
552 					   phys_addr_t *out_end, int *out_nid)
553 {
554 	struct memblock_type *mem = &memblock.memory;
555 	struct memblock_type *rsv = &memblock.reserved;
556 	int mi = *idx & 0xffffffff;
557 	int ri = *idx >> 32;
558 
559 	for ( ; mi < mem->cnt; mi++) {
560 		struct memblock_region *m = &mem->regions[mi];
561 		phys_addr_t m_start = m->base;
562 		phys_addr_t m_end = m->base + m->size;
563 
564 		/* only memory regions are associated with nodes, check it */
565 		if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
566 			continue;
567 
568 		/* scan areas before each reservation for intersection */
569 		for ( ; ri < rsv->cnt + 1; ri++) {
570 			struct memblock_region *r = &rsv->regions[ri];
571 			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
572 			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
573 
574 			/* if ri advanced past mi, break out to advance mi */
575 			if (r_start >= m_end)
576 				break;
577 			/* if the two regions intersect, we're done */
578 			if (m_start < r_end) {
579 				if (out_start)
580 					*out_start = max(m_start, r_start);
581 				if (out_end)
582 					*out_end = min(m_end, r_end);
583 				if (out_nid)
584 					*out_nid = memblock_get_region_node(m);
585 				/*
586 				 * The region which ends first is advanced
587 				 * for the next iteration.
588 				 */
589 				if (m_end <= r_end)
590 					mi++;
591 				else
592 					ri++;
593 				*idx = (u32)mi | (u64)ri << 32;
594 				return;
595 			}
596 		}
597 	}
598 
599 	/* signal end of iteration */
600 	*idx = ULLONG_MAX;
601 }
602 
603 /**
604  * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
605  * @idx: pointer to u64 loop variable
606  * @nid: nid: node selector, %MAX_NUMNODES for all nodes
607  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
608  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
609  * @p_nid: ptr to int for nid of the range, can be %NULL
610  *
611  * Reverse of __next_free_mem_range().
612  */
613 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
614 					   phys_addr_t *out_start,
615 					   phys_addr_t *out_end, int *out_nid)
616 {
617 	struct memblock_type *mem = &memblock.memory;
618 	struct memblock_type *rsv = &memblock.reserved;
619 	int mi = *idx & 0xffffffff;
620 	int ri = *idx >> 32;
621 
622 	if (*idx == (u64)ULLONG_MAX) {
623 		mi = mem->cnt - 1;
624 		ri = rsv->cnt;
625 	}
626 
627 	for ( ; mi >= 0; mi--) {
628 		struct memblock_region *m = &mem->regions[mi];
629 		phys_addr_t m_start = m->base;
630 		phys_addr_t m_end = m->base + m->size;
631 
632 		/* only memory regions are associated with nodes, check it */
633 		if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
634 			continue;
635 
636 		/* scan areas before each reservation for intersection */
637 		for ( ; ri >= 0; ri--) {
638 			struct memblock_region *r = &rsv->regions[ri];
639 			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
640 			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
641 
642 			/* if ri advanced past mi, break out to advance mi */
643 			if (r_end <= m_start)
644 				break;
645 			/* if the two regions intersect, we're done */
646 			if (m_end > r_start) {
647 				if (out_start)
648 					*out_start = max(m_start, r_start);
649 				if (out_end)
650 					*out_end = min(m_end, r_end);
651 				if (out_nid)
652 					*out_nid = memblock_get_region_node(m);
653 
654 				if (m_start >= r_start)
655 					mi--;
656 				else
657 					ri--;
658 				*idx = (u32)mi | (u64)ri << 32;
659 				return;
660 			}
661 		}
662 	}
663 
664 	*idx = ULLONG_MAX;
665 }
666 
667 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
668 /*
669  * Common iterator interface used to define for_each_mem_range().
670  */
671 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
672 				unsigned long *out_start_pfn,
673 				unsigned long *out_end_pfn, int *out_nid)
674 {
675 	struct memblock_type *type = &memblock.memory;
676 	struct memblock_region *r;
677 
678 	while (++*idx < type->cnt) {
679 		r = &type->regions[*idx];
680 
681 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
682 			continue;
683 		if (nid == MAX_NUMNODES || nid == r->nid)
684 			break;
685 	}
686 	if (*idx >= type->cnt) {
687 		*idx = -1;
688 		return;
689 	}
690 
691 	if (out_start_pfn)
692 		*out_start_pfn = PFN_UP(r->base);
693 	if (out_end_pfn)
694 		*out_end_pfn = PFN_DOWN(r->base + r->size);
695 	if (out_nid)
696 		*out_nid = r->nid;
697 }
698 
699 /**
700  * memblock_set_node - set node ID on memblock regions
701  * @base: base of area to set node ID for
702  * @size: size of area to set node ID for
703  * @nid: node ID to set
704  *
705  * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
706  * Regions which cross the area boundaries are split as necessary.
707  *
708  * RETURNS:
709  * 0 on success, -errno on failure.
710  */
711 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
712 				      int nid)
713 {
714 	struct memblock_type *type = &memblock.memory;
715 	int start_rgn, end_rgn;
716 	int i, ret;
717 
718 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
719 	if (ret)
720 		return ret;
721 
722 	for (i = start_rgn; i < end_rgn; i++)
723 		type->regions[i].nid = nid;
724 
725 	memblock_merge_regions(type);
726 	return 0;
727 }
728 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
729 
730 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
731 					phys_addr_t align, phys_addr_t max_addr,
732 					int nid)
733 {
734 	phys_addr_t found;
735 
736 	/* align @size to avoid excessive fragmentation on reserved array */
737 	size = round_up(size, align);
738 
739 	found = memblock_find_in_range_node(0, max_addr, size, align, nid);
740 	if (found && !memblock_reserve(found, size))
741 		return found;
742 
743 	return 0;
744 }
745 
746 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
747 {
748 	return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
749 }
750 
751 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
752 {
753 	return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
754 }
755 
756 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
757 {
758 	phys_addr_t alloc;
759 
760 	alloc = __memblock_alloc_base(size, align, max_addr);
761 
762 	if (alloc == 0)
763 		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
764 		      (unsigned long long) size, (unsigned long long) max_addr);
765 
766 	return alloc;
767 }
768 
769 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
770 {
771 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
772 }
773 
774 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
775 {
776 	phys_addr_t res = memblock_alloc_nid(size, align, nid);
777 
778 	if (res)
779 		return res;
780 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
781 }
782 
783 
784 /*
785  * Remaining API functions
786  */
787 
788 phys_addr_t __init memblock_phys_mem_size(void)
789 {
790 	return memblock.memory.total_size;
791 }
792 
793 /* lowest address */
794 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
795 {
796 	return memblock.memory.regions[0].base;
797 }
798 
799 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
800 {
801 	int idx = memblock.memory.cnt - 1;
802 
803 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
804 }
805 
806 void __init memblock_enforce_memory_limit(phys_addr_t limit)
807 {
808 	unsigned long i;
809 	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
810 
811 	if (!limit)
812 		return;
813 
814 	/* find out max address */
815 	for (i = 0; i < memblock.memory.cnt; i++) {
816 		struct memblock_region *r = &memblock.memory.regions[i];
817 
818 		if (limit <= r->size) {
819 			max_addr = r->base + limit;
820 			break;
821 		}
822 		limit -= r->size;
823 	}
824 
825 	/* truncate both memory and reserved regions */
826 	__memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
827 	__memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
828 }
829 
830 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
831 {
832 	unsigned int left = 0, right = type->cnt;
833 
834 	do {
835 		unsigned int mid = (right + left) / 2;
836 
837 		if (addr < type->regions[mid].base)
838 			right = mid;
839 		else if (addr >= (type->regions[mid].base +
840 				  type->regions[mid].size))
841 			left = mid + 1;
842 		else
843 			return mid;
844 	} while (left < right);
845 	return -1;
846 }
847 
848 int __init memblock_is_reserved(phys_addr_t addr)
849 {
850 	return memblock_search(&memblock.reserved, addr) != -1;
851 }
852 
853 int __init_memblock memblock_is_memory(phys_addr_t addr)
854 {
855 	return memblock_search(&memblock.memory, addr) != -1;
856 }
857 
858 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
859 {
860 	int idx = memblock_search(&memblock.memory, base);
861 	phys_addr_t end = base + memblock_cap_size(base, &size);
862 
863 	if (idx == -1)
864 		return 0;
865 	return memblock.memory.regions[idx].base <= base &&
866 		(memblock.memory.regions[idx].base +
867 		 memblock.memory.regions[idx].size) >= end;
868 }
869 
870 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
871 {
872 	memblock_cap_size(base, &size);
873 	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
874 }
875 
876 
877 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
878 {
879 	memblock.current_limit = limit;
880 }
881 
882 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
883 {
884 	unsigned long long base, size;
885 	int i;
886 
887 	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
888 
889 	for (i = 0; i < type->cnt; i++) {
890 		struct memblock_region *rgn = &type->regions[i];
891 		char nid_buf[32] = "";
892 
893 		base = rgn->base;
894 		size = rgn->size;
895 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
896 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
897 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
898 				 memblock_get_region_node(rgn));
899 #endif
900 		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
901 			name, i, base, base + size - 1, size, nid_buf);
902 	}
903 }
904 
905 void __init_memblock __memblock_dump_all(void)
906 {
907 	pr_info("MEMBLOCK configuration:\n");
908 	pr_info(" memory size = %#llx reserved size = %#llx\n",
909 		(unsigned long long)memblock.memory.total_size,
910 		(unsigned long long)memblock.reserved.total_size);
911 
912 	memblock_dump(&memblock.memory, "memory");
913 	memblock_dump(&memblock.reserved, "reserved");
914 }
915 
916 void __init memblock_allow_resize(void)
917 {
918 	memblock_can_resize = 1;
919 }
920 
921 static int __init early_memblock(char *p)
922 {
923 	if (p && strstr(p, "debug"))
924 		memblock_debug = 1;
925 	return 0;
926 }
927 early_param("memblock", early_memblock);
928 
929 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
930 
931 static int memblock_debug_show(struct seq_file *m, void *private)
932 {
933 	struct memblock_type *type = m->private;
934 	struct memblock_region *reg;
935 	int i;
936 
937 	for (i = 0; i < type->cnt; i++) {
938 		reg = &type->regions[i];
939 		seq_printf(m, "%4d: ", i);
940 		if (sizeof(phys_addr_t) == 4)
941 			seq_printf(m, "0x%08lx..0x%08lx\n",
942 				   (unsigned long)reg->base,
943 				   (unsigned long)(reg->base + reg->size - 1));
944 		else
945 			seq_printf(m, "0x%016llx..0x%016llx\n",
946 				   (unsigned long long)reg->base,
947 				   (unsigned long long)(reg->base + reg->size - 1));
948 
949 	}
950 	return 0;
951 }
952 
953 static int memblock_debug_open(struct inode *inode, struct file *file)
954 {
955 	return single_open(file, memblock_debug_show, inode->i_private);
956 }
957 
958 static const struct file_operations memblock_debug_fops = {
959 	.open = memblock_debug_open,
960 	.read = seq_read,
961 	.llseek = seq_lseek,
962 	.release = single_release,
963 };
964 
965 static int __init memblock_init_debugfs(void)
966 {
967 	struct dentry *root = debugfs_create_dir("memblock", NULL);
968 	if (!root)
969 		return -ENXIO;
970 	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
971 	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
972 
973 	return 0;
974 }
975 __initcall(memblock_init_debugfs);
976 
977 #endif /* CONFIG_DEBUG_FS */
978